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Abstract 

Although Bayesian Nets (BNs) are increasingly being used to solve real world risk 

problems, their use is still constrained by the difficulty of constructing the node probability 

tables (NPTs) for each node. In the absence of hard data, we must rely on domain experts to 

provide, often subjective, judgements to inform the NPTs. A key challenge is to construct 

relevant NPTs using the minimal amount of expert elicitation, recognising that it is rarely 

cost-effective to elicit complete sets of probability values. We describe a simple approach 

to defining NPTs for a large class of commonly occurring nodes (called ranked nodes). The 

approach is based on the doubly truncated Normal distribution with a central tendency that 

is invariably a type of weighted function of the parent nodes. In extensive real-world case 

studies we have found that this approach is sufficient for generating the NPTs of a very 

large class of nodes. The approach has been automated and is thus accessible to all types of 

domain experts, including those with little statistical expertise. The result has been that 

such individuals have been able to build large-scale realistic BN models that solve 

important problems. Hence, this work represents a breakthrough in BN research and 

technology since it can make the difference between being able to build realistic BN 

models and not. 

Keywords : Bayesian networks, node probability tables, ranked nodes, doubly truncated 

Normal distribution 
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1. Introduction 

In recent years Bayesian Networks (BNs) have become increasingly recognised as a potentially 

powerful solution to complex risk assessment problems [Heckerman et al 1995]. Our own work in this 

area has produced solutions to a number of real world, high-stakes problems such as: 

• Safety of embedded systems in railway applications [Neil et al, 2000]; 

• Military vehicle reliability, [Neil et al 2001]; 

• Risk of mid-air collisions in Air Traffic Control  [Neil et al 2003a]; 

• Software defect prediction in consumer electronics products [Fenton et al 2002, Neil et al 2003b]; 

All of these applications involved building extremely large-scale BN models. By extending the ideas 

of object-oriented Bayesian Networks [Koller and-Pfeffer 1997] we developed a range of methods 

that could be deployed in practice. For example, in [Neil et al 2000] we described a range of 

techniques that were primarily targeted at the problem of building large-scale BN topologies. The 

techniques described there have been validated in numerous projects and have been formally 

incorporated into BN tools such as Hugin [Hugin 2005] and AgenaRisk [Agena 2005]. However, that 

work said little about the even harder problem of building Node Probability Tables (NPTs) in large-

scale BNs. Hence, this paper focuses on one especially important part of this problem: how to build 

NPTs for the qualitative nodes that occur so frequently when modelling real-world problems. 

Consider, for example, the BN fragment shown in Figure 1. 

 
Figure 1 Typical qualitative BN fragment 
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Such fragments, which are very typical of those that frequently occur in the real-world models already 

cited, are characterised by the following: 

• The node values are typically measurable only on a subjective scale like {very low, low, 

medium, high, very high} 

• Only extremely limited statistical data (if any) is available to inform the probabilistic 

relationship for Y given X1 and X2. Yet, there is significant expert subjective judgement. 

Assuming each of the nodes has five states ranging from very low to very high, the NPT for the node 

Y has 125 states. This is not an impossible number to elicit exhaustively, but from extensive 

experience we know that all kinds of inconsistencies arise when experts attempt to do so. If the 

number of states increases to seven and/or the node Y has an additional parent then exhaustive 

elicitation becomes infeasible. Moreover, real-world models invariably involve dozens of fragments 

like these.  

Hence, the problem and challenge is to produce an appropriate NPT for nodes like Y that makes the 

most of limited expert elicitation. This problem is certainly not new. It has, for example, been 

addressed in [Druzdzel and van der Gaag 1995, Takikawa and D'Ambrosio 1999, Wellman 1990] and 

there have been serious case studies on specific elicitation techniques [van der Gaal et al 2001, Monti 

and Carenini 2000, Laskey and Mahoney 1998, 2000]. Also the Noisy-OR is well established as a 

standard way of encoding expertise in large NPTs [Huang and Henrion 1996], but has the 

disadvantage that it applies only to Boolean nodes and implicitly ignores the interaction effects 

between variables. What has been missing is a general, easily accessible approach that could be used 

directly with domain experts who are neither expert probability theorists nor mathematicians. We 

were determined that we could produce a method that could be easily explained to such people as well 

as easily used. The approach presented here has evolved over a number of years from the process of 

engaging with domain experts in real commercial situations.  
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We begin in Section 2 by formalising the notion of ranked nodes along with the conditions under 

which they occur most commonly in BNs. In Section 3 we describe the simple class of functions 

required to generate the NPTs for these ranked nodes. In each case we find that a special function (the 

doubly truncated Normal) whose mean is a type of weighted function of the parent nodes is sufficient. 

In Section 4 we describe the other instance where ranked nodes commonly occur, namely as indicator 

nodes. Again the doubly truncated Normal is sufficient for generating the necessary NPTs for this 

class of ranked nodes. Throughout the paper we explain how the method has been fully implemented 

in the AgenaRisk software so that we can justify our claim that the approach can (and has) been used 

effectively by domain experts (with little statistical expertise) to generate large-scale NPTs. 

2. Ranked nodes 

Consider the following examples of BN nodes:  

• "Staff experience": {very low, low, average, high, very high} 

• "Requirements complexity": {very complex, complex, average complexity, simple, very simple} 

• "Product quality":  {abysmal, very poor, poor, average, good, very good, perfect} 

These nodes are discrete variables whose states are expressed on an ordinal scale. However, what 

makes them special is that we can assume that not only is the scale ordinal, but that it can be mapped 

onto a bounded numerical scale that is continuous and monotonically ordered. Under such 

assumptions we shall call the node a ranked node. 

We can assume that all ranked nodes are defined on an underlying unit interval, [0-1], scale. For a 

given number of intervals defined, and labelled, on this scale we simply discretise accordingly. For 

example, for a 5-point scale such as {very low, low, average, high, very high} our interval widths for 

each state are 0.2. Thus "very low" is associated with the interval [0 - 0.2), "low" is associated with 

the interval [0.2 - 0.4) etc.  
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As far as the user is concerned the underlying numeric scale is invisible — the displayed scale is still 

the labelled one rather than the numeric one, but the latter is used for the purposes of computation and 

generating the NPT. 

The crucial thing about ranked nodes is that they can make the BN construction and editing task much 

simpler than is otherwise possible. In particular, providing they appear in the appropriate 

combinations described below, the normally complex task of constructing sensible associated NPTs is 

drastically simplified.  

2.1 The Problem 

When building an NPT there are typically situations where we want to use a simple averaging scheme 

as a guide to defining the “central tendency” of the child node based on a set causal parent node 

values. For example, in [Fenton et al 2002] (in attempting to construct the NPT for a node like Y  of 

Figure 1) we adopted an approach based on sampling values, getting expert elicitation assertions like 

the following:  

• When X1  and X2 are both ‘very high’ the distribution of Y is heavily skewed toward ‘very high’. 

• When X1 and X2 are both ‘very low’ the distribution of Y is heavily skewed toward ‘very low’. 

• When X1 is ‘very low’ and X2 is ‘very high’ the distribution of Y is centred below ‘medium’. 

• When X1 is ‘very high’ and X2 is ‘very low’ the distribution of Y is centred above ‘medium’. 

Since we are assuming that each node has an underlying numerical scale in the interval [0, 1] such 

assertions suggest intuitively that Y  is some kind of weighted average function. In fact, experts find it 

easier to understand and express relationships in such terms. Many so-called "self-assessment" or 

"scorecard" systems are based around little more than weighted averages of attribute hierarchies. 

However, such systems are usually implemented in spreadsheet-based programmes that have 

associated with them a number of problems: 

• Difficulty in handling missing data; 
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• Problems with assessing credibility of information sources; 

• Difficulty in using different scales; 

Since all of these problems are readily solved using BNs, the challenge is to provide the appropriate 

BN implementation that captures the explicit simplicity of the weighted average while also preserving 

the intuitive properties that the resulting distributions have to satisfy. For example, simply making Y  

the (exact) weighted average of its parents does not work – since the only uncertainty in the 

distribution of Y  given its parents will be the result of discretisation inaccuracy rather than deliberate 

modelling. What is especially tricky to model properly are the intuitive beliefs about the causes given 

certain child observations — i.e. so-called back propagated beliefs where, for example, we have 

observed Y  and X1 and wish to infer the value of X2 like:   

• If Y is ‘very high’ and X1 is ‘very low’ then we would be almost certain that X2 is ‘very high’. 

• If Y is ‘very high’ and X1 is ‘average’ then we would be confident that X2 is ‘very high’ but not as 

confident as in the above case.   

• In general if Y is ‘very high’ then the lower value that X1 is the more confident we are that X2 is 

'very high'. 

For example, using an interpolated Beta distribution to approximate Y (as in [Fenton et al 2002]), does 

not preserve these back-propagation beliefs. However, a straightforward solution for defining the 

NPT for ( | )p Y X  in such a way that these various properties are all satisfied is given in Section 2.2. 

2.2 Theory 

Formally, the ranked nodes’ causal structure is characterised by a joint probability distribution with a 

set of causes, X , containing 1,2, ,i n= …   ranked nodes, iX , as parents of Y : 

1

( , ) ( | ) ( )
n

i
i

p X Y p Y X p X
=

= ∏  
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In general the node Y  is considered to be a consequence of two or more cause nodes where each of 

the cause nodes is assumed to be independent when calculating the NPT. The BN in Figure 1 is a very 

simple example. 

We draw an analogy with linear regression where i iy xβ ε= +  with 2~ (0, )YNε σ  and where the 

contribution to the variance of Y  is 2
Yσ . We feel the regression analogy is apt here since we are 

attempting to “target” the area of central tendency in Y  given different values of iX  and then are 

adding a fixed amount of uncertainty around this. The only issue we need to resolve is the 

contribution of each cause to the effect and a clear way to do this is to use the correlation between the 

cause and the effect as the appropriate measure. 

Rather than the Normal distribution commonly assumed in linear regression for ranked causal nodes 

we use the doubly truncated Normal distribution (denoted TNormal hereafter) as defined, for example, 

in [Cozman and Krotkov 1997], where all nodes are truncated in the [0, 1] region. Unlike the regular 

Normal distribution (which must be in the range –infinity to +infinity) the TNormal has finite end 

points. We denote the TNormal by TNormal( µ , 2σ , 0, 1) where µ  is the mean and 2σ  is the 

variance. In the TNormal we start with a regular Normal distribution but ‘ignore’ the probability mass 

to the left and right of the finite endpoints and then normalise the resulting distribution over the finite 

range [0, 1]. This enables us to model a variety of shapes including a uniform distribution, achieved 

when the variance 2σ → ∞ , and highly skewed distributions, achieved when 2 0σ → . 

We use a simple weighted sum model to measure the contribution of each iX to explaining Y  as a 

“credibility weight”, iw , (it could even be elicited from an expert in this way) expressed as real 

values, 0iw ≥ . The higher the credibility index the greater the correlation between iX and Y .  Thus, 

in our method the equivalent to the error variance, 2
Yσ , in the linear regression model is simply the 

inverse of the sum of the weights: 
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2

1

1
Y n

i
i

w
σ

=

=

∑
 

Given that Y  lies within [0, 1] we must normalise the regression equation, 
1

( )
n

i i
i

E Y w X
=

= ∑ , by 

dividing with 
1

n

i
i

w
=
∑  thus: 

1

1 1

1( | ) , ,0,1

n

i i
i

n n

i i
i i

w X
p Y X TNormal

w w

=

= =

 
 
 =
 
  

∑

∑ ∑
 

Suppose, for example, that n = 3 and that the allocation of weights, iw , for each iX ’s contribution to 

explaining Y  is in the ratio 2:3:5 with a variance, 2 0.001Yσ = . Then the joint distribution generated 

will be: 

1 2 3200 300 500 1
( | ) , ,0,1

200 300 500 200 300 500
X X X

p Y X TNormal
+ + =  + + + + 

 

This is equivalent to: 

1 2 32 3 5
( | ) ,0.001,0,1

10
X X X

p Y X TNormal
+ + =   

 

The resulting distribution for ( )p Y will not produce summary statistics exactly matching the function 

because we are using coarse discretisations in arriving at the result. Given this, the mean values will 

tend to differ within the bin range specified; specifically for five ranks defined on [0-1] the mean 

value may be out by up to 0.1. Also, the variance values observed will be considerably higher because 

of the coarse discretisation. However, neither of these are major problems since the approach is a 

means to an end. 

It is important to note that the theory and practice must go hand-in-hand. For the purpose of building 

realistic NPTs that adequately capture expert judgement, the existence of a good theoretical approach 
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is insufficient. The approach we have described works in practice because it is supported by a tool, 

such as AgenaRisk, that: 

• Enables domain experts without any statistical knowledge to quickly and easily generate 

distributions  

• Provides instant visual feedback to check that the NPT is working as expected. 

It is also worth noting that domain experts can change the scale (from say a 5-point scale to a 7-point 

scale) with the click of a single button and without having to redefine the weighted function. They can 

also, if they wish edit individual NPT entries by hand in rare cases where certain combinations of 

parent values result in a probability value not properly captured by the generic function. 

2.3 Example  

We use the example shown in Figure 1. In this example we have two cause nodes, 1 2{ , }X X X= . The 

weights associated with the cause nodes are respectively 3, 1 and the variance is 0.01. Hence   

1 23
( | ) ,0.01,0,1

4
X X

p Y X TNormal
+ =   

 

Using the AgenaRisk software this distribution can either be entered directly as an expression for the 

node Y, or via a simple wizard. 

When we have crisp evidence for the parents, 1 1 2 2{ , }X X x X x= = = , the prediction of ( )p Y has a 

mean value equal to the weighted average and a variance that reflects our confidence in the result. 

Figure 2 shows that the result is weighted by the importance of the parent nodes. Since 2X is less 

important than 1X  the resulting ( )p Y is biased towards the 1X  value. 
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Figure 2 Prediction of ( )p Y given 1 2{ , }X X high X medium= = =  

The relative importance reflected in the weighting scheme used is also evident when we propagate 

evidence from effects to causes. Those nodes with higher weights will be identified as the most likely 

causes of the consequence. This is shown in Figure 3 where we can see that a high value of 1X is 

identified as the most likely cause of the high value of Y  because of its higher weight. 

 
Figure 3 Prediction of ( )p X given very highY =  

3. Alternative functions for ranked causes 

The weighted average is not the only natural function that could be used as the measure of central 

tendency in the ranked cause model. Suppose, for example, that in Figure 1, we replace the node 

“Quality of testing process” with the node “Testing effort” as shown in Figure 4. 
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Figure 4 Revised BN fragment 

 In this case we elicit the following information:  

• When X1 and X2 are both ‘very high’ the distribution of Y is heavily skewed toward ‘very high’. 

• When X1 and X2 are both ‘very low’ the distribution of Y is heavily skewed toward ‘very low’. 

• When X1 is ‘very low’ and X2 is ‘very high’ the distribution of Y is centred toward 'very low'. 

• When X1 is ‘very high’ and X2 is ‘very low’ the distribution of Y is centred toward ‘low'. 

Intuitively, the expert is saying here that for testing to be effective you need not just to have good 

people, but also to put in the effort. If either the people or the effort are insufficient then result will be 

poor. However, really good people can compensate, to a small extent, for lack of effort.  

A weighted sum for Y  will not produce an NPT to satisfy these elicited requirements. Formally, Y 's 

mean is something like the minimum of the parent values, but with a small weighting in favour of 1X . 

The necessary function, which we call the weighted min function, WMIN, has the following general 

form: 

1..

where 0 and  is the number of parent nodes
( 1)min

n

i i j

i j

i

i n i

w

w n
w n

X X
WMIN ≠

=

+

≥
+ −

 
 

=  
 
  

∑
 

with a suitable variance 2
Yσ  that quantifies our uncertainty about the result, thus giving: 
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2( | ) [ ( ), ,0,1]Yp Y X TNormalWMIN X σ=  

The WMIN function can be viewed as a generalised version of the normal MIN function. In fact, if all 

of the weights iw  are large then WMIN is close to the normal MIN At the other extreme, if all the 

weights 1iw =  then WMIN is simply the average of the iX s. Mixing the magnitude of the weights 

gives a result between a MIN and an AVERAGE. In the above example, taking 1 3w =  and 2 1w =  (with 

a variance 2 0.01Yσ = ) yields the results shown in Figure 5 and Figure 6. 

 
Figure 5 WMIN function for Y. Quality of Testing Staff = “very low” , Testing Effort = “very high” 

 

 
Figure 6 WMIN function for Y. Quality of Testing Staff = “very high”, Testing Effort = “very low”  
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Again it is important to stress that constructing the necessary NPT requires experts only to go through 

two simple steps involving the use of a Wizard in AgenaRisk to select the weighted expression and 

then use slider bars to select the weights and apply the variance value. 

We can also use an analogous WMAX function: 

1..

where 0
( 1)

WMAX

n

i i j

i j

i

i n i

w

w
w n

X X

MAX
≠

∀ =

+

≥
+ −

 
 

=  
 
  

∑
 

And finally a function MIXMINMAX which is a mixture of the classic MIN and MAX functions. 

min min

min max

min max

where 0
( )  ( )

MIXMINMAX= ,w w
w MIN X w MAX X

w w
+

>
+

 

In each case the user need only supply the parameters to generate the NPT. We have found that this 

set of functions is sufficient to generate almost any ranked node NPT in practice.  

4. Ranked Indicators 

In addition to their occurrence as described in Section 2, ranked nodes occur frequently as indicators 

of other ranked nodes, such as shown in Figure 7. Here we can see a simple single ranked indicator 

modelling the relationship between “staff quality” and “staff motivation” and another supplementing 

the first by adding an additional two indicators: “staff training” and “staff experience”. In this section 

we describe the notion of indicator nodes formally and explain how to define the necessary NPTs. 

 
Figure 7 Ranked indicator examples 



 
14 

4.1 Theory 

Indicator nodes operate in a similar way to “filter” nodes in a Kalman filter. In object radar tracking 

applications a Kalman filter operates by filtering out the noise from noisy radar observations in order 

to reveal the true position of the object in space. Here we can think of the indicators as providing 

noisy or imperfect observations and the parent node as the true, perhaps unobservable or that cannot 

be measured directly or economically, value awaiting estimation [Maybeck 1979]. In a Kalman filter 

we wish to condition our estimate for the “true” value on the data to hand from each of our “indicator” 

nodes assuming each indicator is Gaussian distributed.  

Formally, the joint distribution for a set, X , containing 1,2, ,i n= …   ranked indicators, iX , of a single 

causal parent node, Y  is: 

1

( , ) ( ) ( | )
n

i
i

p X Y p Y p X Y
=

= ∏  

We model the NPT for each indicator node using the doubly TNormal distribution: 

2( | ) ( , ,0,1)
iip X Y TNormal Y σ=  

This assumes, of course, that the nodes Y  and iX  are on the same scale. The expert simply has to 

specify the variance parameter, 2
iσ , whose inverse acts as a “credibility index” — the higher the 

credibility index the greater the correlation between the indicator and the parent cause node. 

Clearly, indicator nodes are correlated with each other by virtue of the diverging d-connected 

structure. This correlation is desirable given that indicators reflect the true state of the underlying, 

unknown, cause. Only when the cause itself is instantiated with hard evidence are the indicators 

uncorrelated. However, given that the causal nodes are usually unobservable (this is after all why we 

will use an indicator) the indicator nodes are generally not independent in practice. 
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Before showing some examples of how ranked indicators work it is instructive to discuss a small 

example Kalman filter and compare it with ranked indicators. In general a Kalman filter uses multiple 

observations to estimate the hidden node. Given two observations 1 1X x= and 2 2X x= , each with 

variance 2
1σ and 2

2σ  we can estimate the unknown parent, Y  , as 2( , )N µ σ with parameters: 

2 2
2 1

1 22 2 2 2
1 2 1 2

2 2 2
1 2

1 1 1

Y

Y

x xσ σµ
σ σ σ σ

σ σσ

   
= +   + +   

= +

 

Figure 8 shows a Kalman filter constructed in AgenaRisk with two indicator nodes, 1X  and 2X , each 

with variance 2
1 500σ =  and 2

2 1000σ =  respectively. The blue coloured histogram shows 

1( | 500)p Y X = . The green coloured histogram shows 2( | 700)p Y X = and the red coloured histogram 

shows 1 2( | 500, 700)p Y X X= = . Notice that under 1 2( | 500, 700)p Y X X= = the estimates for Y  are 

(566,333)N . Thus the quality of the estimate of Y  is better than the quality of each of the 

observations, 1X  and 2X . In this way a series of observations that are in themselves inaccurate can, 

when taken together, give accurate estimates of the true value. 

 
Figure 8: Kalman filter results for the three scenarios  

 

Ranked indicators use a similar philosophy to that used in a Kalman filter. The difference is that the 

indicator nodes are bounded on [0, 1] and rather than use, analytically solved, Normal distributions 

we use doubly truncated Normal distributions solved numerically (there is no analytical solution to 



 
16 

1

( | )
n

i
i

p X Y
=

∏ when the indicators are doubly truncated Normal). Given this, we should not necessarily 

expect the results achieved using a rank node formulation to give the same results as the Kalman 

filter. It is, however, helpful to know where the differences lie. 

The general properties and behaviour are similar insofar that our approach very closely approximates 

a Kalman filter in the region where 0.5Yµ = . However, when an observation is made on an indicator 

node near its truncation boundary, [0, 1], its actual variance is less because of the effects of truncation 

and this lower variance obviously translates into a stronger influence on Y .  Note also that as the 

variance values allocated to indicator nodes get very large, the resulting NPT approximates a 

conditional uniform distribution. Therefore 0.5Yµ →  and as a result the correlation between the 

indicators, X ,  and the Y approaches zero. Practically speaking, for 5 and 7 point scaled rank nodes, 

setting 2 0.1iσ >  indicates a very poor correlation. This also means that the actual mean value induced 

on Y  for an indicator with high variance will not be Y ixµ → but rather 0.5Yµ → . 

In practice small variance values tend to be selected and this means our rank node solution 

approximates the analytical Kalman filter nicely. For example , if we had two rank nodes with 

2 2
1 2 0.01σ σ= =  and 1 0.05X = and 2 0.15X =  the difference between the analytical, Kalman filter result, 

Y , and the rank node approximation, Ŷ , is: 

~ (0.10,0.005)Y N , ˆ ~ (0.0909,0.0037,0,1)Y TNormal  

We believe that this level of error is acceptable given the unavoidably crude nature of the rank scales 

we are using. 

Another perspective on the use of indicator nodes is that each can be treated either as a different sub-

attribute of the parent node or as a different measure of that sub-attribute from a different source. This 

second view is helpful where we have multiple experts, each with a different credibility, producing 

different observations. Also, using indicator nodes is simply a form of object classification and 

traditionally classification is done using naive Bayesian methods where a hidden “unknown” node, Y , 
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is classified from a set X  containing n ranked indicators or classifiers. In [Neil et al 2000] we 

described a common idiom called the measurement idiom where the credibility of an indicator is itself 

contingent on some other factor. This is easily modelled in practice by setting up an additional parent 

node for one or more indictors with parameterised values for 
2
iσ .  

4.2 Example  

Suppose we have three indicators of Y , such as that presented in Figure 7 where 1 2 3{ , , }X X X X= . In 

this example we assume that X1 is a reasonably accurate indicator of Y , while 2X  is much less so and 

3X  even worse. We could capture this information by specifying the variance values as follows: 

1( | ) ( ,0.001,0,1)p X Y TNormal Y= , 2( | ) ( ,0.008,0,1)p X Y TNormal Y= , 3( | ) ( ,0.02,0,1)p X Y TNormal Y=  

Figure 9 shows how the marginal probability distribution on the indicator nodes 1 2 3{ , , }X X X X= given 

an observation on the parent, Y medium= . Clearly 1  X is more highly correla ted with Y  than either 

2 3 or .X X  

 
Figure 9 Marginal distributions for indicators, ( )ip X , given causal node Y medium=  

Figure 10 shows how we can use the indicator nodes to infer the true state of the parent node, Y , from 

the observations 2 3,X medium X low= = . Note also that the unobserved indicators, such as 1X , are 

correlated with observed indicators because of the shared parent node, Y . Compare this to Figure 11 



 
18 

where we invert the observation values such that 2 3,X low X medium= =  and notice how the 

distribution on Y is influenced more highly by indicator 2X  in both figures. 

 
Figure 10 Inferring ( )p Y  from 2X medium= and 2X low=  observations 

 
Figure 11 Inferring ( )p Y  from 2X low= and 2X medium=  observations 

5. Conclusions 

One of the most important  challenges in building effective BN models to solve real-world risk 

assessment problems is that of constructing the NPTs. Because of the need to involve busy domain 

experts (who do not necessarily understand probability theory in detail) we have to construct NPTs 

using the minimal amount of expert elicitation, recognising that it is rarely cost-effective or feasible  to 

elicit complete sets of probability values. We have identified a large class of BN nodes (the ranked 

nodes) for which we have provided a semi-automated method of NPT construction.  There is 

obviously a trade-off between the benefits a general method, like ours, can provide and the costs of 

developing a bespoke modelling approach for every specific situation. In the many real applications 
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we have developed we have found bespoke modelling to be too costly and demanding to be feasible. 

Our general approach offers a marked improvement over current practice and has proven to be 

acceptable to practitioners. 

The approach presented here has evolved over a number of years from the process of engaging with 

domain experts in real commercial situations. We have found that this approach often makes the 

difference between being able to build realistic  BN models and not. The BN solutions to real-world 

problems described in [Fenton et al 2002, Neil et al 2001, 2003] all used early versions of the 

approach described in this paper. Moreover, the work in those projects was crucial in informing the 

automated version of the method that has recently been implemented completely in the AgenaRisk 

tool. An earlier prototype of the automated version was used extensively to build the models 

described in [Fenton et al 2004] and has been validated by partners such as Philips, Israel Aircraft 

Industries, and QinetiQ in that project. Validation was on two levels. On the first level domain 

experts, who were not statistic ians, were able to build and tailor serious models that captured their 

beliefs well. On the second level, the models produced predictions and decision support insights that 

were demonstrably better than previous methods had produced.   
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