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ABSTRACT

This thesis presents the design and testing of a computational model of a stealth

strategy inspired by the apparent mating tactics of male hoverflies.  The stealth strategy

(motion camouflage) paradoxically allows a predator to approach a moving prey in such a

way that it appears not to move.  In the model the predators are controlled by artificial

neural control systems operating using realistic levels of sensory input information.

Preliminary investigations concerned the selection of an appropriate neural network

approach on which to base the design of the predator’s control systems.  A comparison

between the performance of a Self Organising network incorporating Radial Basis

functions and Multilayer Perceptrons trained using Backpropagation indicated the latter

to be the more appropriate solution in terms of both accuracy and network size.

Simulated control systems built from three Multilayer Perceptrons were shown to be able

to accurately employ motion camouflage to approach prey in two and three dimensional

environments.  In these simulations the prey moved along either real hoverfly flight paths

or artificially generated trajectories.  The camouflaged approaches were also shown to

demonstrate the control system’s ability to predict future prey motion.

The performance of the control systems was further tested in a psychophysical

experiment that masqueraded as a computer games competition.  The basis of the

competition was a 3D computer game written to allow comparison of the distances that

different strategies would allow a predator to approach to before being identified.  In the

game the player takes the role of the prey, who must shoot approaching missiles to gain a

high score.  It was shown statistically that missiles employing motion camouflage were in

general able to approach closer before being detected and shot than the non-motion

camouflage missiles tested.  Therefore it was concluded that the majority of experimental

subjects were susceptible to motion camouflage.  It is suggested that motion camouflage

control systems may be of interest to biologists, visual psychophysicists and engineers.

Possible uses for motion camouflage would be in controlling predatory agents in

computer games and military manoeuvres.
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1 INTRODUCTION

Motion camouflage (Srinivasan & Davey, 1995) is a stealth strategy intended to

allow one moving body (a shadower) to hide its motion from another moving body (the

prey).  The specifics of how this is accomplished are covered in detail in section 2.1,

although at this stage a brief description is helpful.  A shadower may camouflage its

motion by moving along a path such that its image projected onto the prey’s eye emulates

that of a stationary object in the environment (as perceived by the moving prey).  Motion

camouflage is a problem of sensorimotor integration, the shadower must be able to

transform sensory input into an appropriate motor reaction.  The main aim of this thesis

was to design an autonomous sensorimotor motion camouflage control system.

Biological processes have solved problems of sensorimotor integration efficiently

and robustly over and over again (section 3.1 shall see that there is evidence that male

hoverflies employ motion camouflage to track females).  It would be highly desirable to

be able to replicate these solutions artificially.  In the past few decades there has been a

widespread and concentrated effort on designing neurally inspired computational

algorithms.  However, although a large amount of empirical data has been collected,

neural systems are often poorly understood from a computational viewpoint.

Consequently, although they bear some resemblance to biology, artificial neural networks

are quite far removed from the true complexity of their biological counterparts.

Nevertheless, as shall be seen in section 3.3.3 artificial networks have been employed

in attempt to explain the operation of sensorimotor neural systems.  This thesis applies

artificial neural networks to the problem of motion camouflage.  This approach has the

inherent advantage that it may enable a greater understanding of and allow prediction of

the biological systems themselves.

The main question initially placed over the project was whether artificial technology

is sufficient to provide a solution to motion camouflage.  There was good evidence to say

that it is.  Cliff & Miller (1996) were able to co-evolve sensorimotor neural networks for

simulation of pursuit and evasion in autonomous ‘animats’.  Furthermore they observed
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that their pursuers and evaders evolved traits similar to those found in real animals.  For

instance the pursuers evolved eyes on the front of their bodies, whilst evaders evolved

eyes pointing sideways.  In another biologically flavoured study Krink & Vollrath (1996)

were able to optimise the web construction techniques of a population of simulated

artificial spiders so that they bore statistically confirmed similarities to their biological

cousins.  Both of these studies were successful and yielded results of some biological

importance.

The main novel contributions of this thesis are as follows:

• The provision of the first autonomous motion camouflage control system capable

of tracking a prey moving in 3D space;

• Demonstration that humans are susceptible to motion camouflage approaches.

The thesis also provides a detailed analysis of motion camouflage and compares the

performance of two different neural approaches when applied to motion camouflage.

The organisation of the thesis is as follows.  In chapter 2 motion camouflage is

described and analysed in detail.  Algorithms for motion camouflage are proposed and

some of the factors constraining the technique identified.  Chapter 3 looks to biology

for inspiration.  The chapter identifies animal behaviour that has relevance to motion

camouflage, discusses how biological sensory systems can retrieve the sorts of input

information necessary for motion camouflage from the environment and examines neural

sensorimotor controllers.  Finally the chapter provides an overview of artificial

intelligence and discusses the choice of neural algorithms made to model motion

camouflage.  Chapter 4 goes on to make the first steps towards the implementation and

testing of an autonomous motion camouflage control system using a self organising

neural network.  Chapter 5 applies the Backpropagation algorithm to the same task as

chapter 4.  The comparative results show that Backpropagation is the more appropriate

technique on which to base control system training throughout the remainder of the

thesis.  In chapter 6 the simulations are modified to bring them closer to the real world.



1. INTRODUCTION

9

Specifically, the inputs received by the controller are set to resemble those that could be

expected to be retrieved by a real sensory system.  Control systems are shown to be able

to employ motion camouflage to approach prey moving along real hoverfly flight paths.

Chapter 7 successfully extends the 2D simulation of chapter 6 to 3-Dimensions and

investigates the effect of further reducing the sensory input information provided.  In

chapter 8 the control systems are tested in a psychophysical experiment.  A computer

game that incorporates the camouflage control systems of chapter 7 is implemented and

the experiment conducted under the guise of a computer games competition.  In each

game the player is the prey whose aim is to spot and shoot approaching predators (some

of whom approach along motion camouflaged paths).  This is used to demonstrate that

the experimental subjects are susceptible to motion camouflage.  Finally, chapter 9

presents a summary of the work undertaken, conclusions and suggestions for areas of

future study.
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2  THE PROBLEM, MOTION CAMOUFLAGE

This chapter aims to provide a thorough introduction to motion camouflage and in

doing so enable an appreciation of what this thesis attempts to achieve and the nature of

the problems posed. The chapter is organised in four sections. Section 2.1 provides an

overview of camouflage techniques, introduces motion camouflage and suggests possible

applications for motion camouflage.  Section 2.2 proposes different algorithms for

motion camouflage and their requirements.  Section 2.3 addresses the influence of

shadower looming (an unavoidable consequence of the shadower’s approach or retreat

from the prey) on the success of motion camouflage.  Section 2.4 evaluates some of the

factors constraining camouflaged approaches.  Finally the main points of the chapter are

discussed in Section 2.5.  For ease of explanation this chapter shall concentrate on

camouflaged approaches in 2-Dimensional environments.  However as shall be seen in

chapters 7 and 8 motion camouflage is equally valid in 3D.

2.1 Camouflage and motion camouflage

Use of camouflage as both an offensive and defensive strategy is widespread

throughout nature.  Both animals and plants employ a wide variety of techniques intended

to deceive predators and prey.  Camouflage is most frequently associated with disguising

appearance.  Many animals have evolved appearances that enable them to blend into their

background (e.g. the Huntsman spider of Fig 2.1a).  Some would have to ensure that they

choose their background carefully to remain camouflaged (e.g. the typical form of the

peppered moth Biston betularia is camouflaged against lichen covered birch trees

(McFarland 1999)), others such as crab spiders may change colour to match the substrate

(Foelix 1996).  Animals that are not naturally camouflaged may conceal themselves by

decorating their bodies.  For instance spider crabs adorn themselves with sea anemones

so that they resemble the ocean floor (Owen 1980).  Camouflage need not only be used to

make the subject inconspicuous.  Advantages may be gained by mimicking something

different.  This could be an uninteresting object e.g. the grasshopper Arantia rectifolia

resembles a leaf McFarland (1999), something dangerous e.g. the hoverfly Episyrphus
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balteatus studied in chapter 6 and shown Fig 2.1b resembles a wasp), a decoy e.g. the

eye spots on butterflies’ and moths’ wings may direct attack to non-vital bodily parts or

alternatively may act to intimidate prey (Owen 1980).  Equally, mimicry may be used as

a lure.  The scent of the bolas of the Bolas spider imitates that of moth pheremones (note

that in this case camouflage is not visual) (Haynes et al. 2002).

Certain behaviours also may be classed as camouflage.  For example beetles and

possums feign death in order to discourage predators; the Eurasian Bittern sways its long

neck so that it resembles the reeds against which it is camouflaged blowing in the wind

(Owen 1980); and hunting cats employ stealth approaches characterised by sporadic

bursts of movement, when their prey is not paying attention.  The subject of this thesis is

another stealth behaviour that is intriguingly designed to camouflage motion.

Motion camouflage was first suggested in 1995 by Srinivasan & Davey as a strategy

that would allow one moving body (a shadower) to disguise its motion from another

moving body (the prey).  The basis of motion camouflage is that the shadower maintains

a trajectory such that it’s image projected on to the prey’s retina emulates that of a distant

stationary object (a fixed point).  This trajectory requires the shadower to always remain

directly in between the fixed point and the prey i.e. on the straight line (constraint line)

connecting the position of the fixed point to the present position of the prey.  For

Fig. 2.1(a) A Huntsman spider is camouflaged against the tree bark upon which it sits.  (b). The
hoverfly Episyrphus balteatus mimics a wasp.

(a) (b)
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example, if the shadower wanted to catch the prey and were to start its approach

positioned in front of a rock, it would ensure that it is always directly in between the rock

and the current position of the prey.  The optic flow of the shadower projected onto the

prey's eyes would then emulate the rock.  In other words, the prey would always see the

shadower silhouetted against the rock, and not be alerted to the shadower's approach.  An

example trajectory where the shadower is approaching the prey is shown in Fig 2.2a.

Motion camouflage could alternatively be used to retreat from the prey (Fig 2.2b) or to

hide the shadower’s movement to a particular destination (Fig 2.2c).  As such motion

camouflage could either be used offensively or defensively.  The majority of this thesis

shall concentrate on motion camouflage used to approach the prey.  As shall be seen in

section 3.1.1 there is evidence that motion camouflage is used by male hoverflies

tracking females.

2.1.1 Motion camouflage applications

Perhaps the most obvious real world applications for motion camouflage would be

military based.  For the past century the military has benefited from camouflaging troops

and equipment.  The mottled green and brown patterns that camouflage against

1 2 3 4 5 60

0

1
2

3 4 65

Fig 2.2a,b,c.  Three possible shadower trajectories demonstrating motion camouflage.  (a) Motion camouflage
used to approach the prey, (b) retreat from the prey, (c) reach a destination point.  Shadower and prey are shown at
seven time instants.  At each instant the shadower can be seen to adopt a position on the camouflage constraint line
joining the current position of the prey to the fixed point.  The fixed point could be a landmark in the environment
or the initial position of the shadower.

1 prey, number = time
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fixed point
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vegetation are well known (see Fig 2.3a),  their colour selected to imitate the background

and their pattern, to disguise the outline of the camouflaged object.  Similar to the

animals discussed in the previous section, military camouflage is not confined to

concealing objects against their environment.  For example, it is impossible to paint ships

a colour that would camouflage them adequately against the constantly changing colour

of the sea and sky.  Instead in WWI ships were painted with so called Dazzle camouflage

designs (Williams 2001).  This camouflage was characterised by large hard edged patches

of contrasting colour (see Fig 2.3b).  The intention of Dazzle camouflage was to disguise

the true outline of the ship, thus confusing enemy gunners as to which side of the ship

they were looking at.  This (arguably) made it more difficult to estimate the ship’s course

and therefore more difficult to aim torpedoes.  The military have also made extensive use

of decoys.  For example, in WWII, many false airbases were constructed to divert enemy

attacks from genuine targets.  Although these camouflage techniques have proved

successful against humans, technological advances have rendered some, such as Dazzle

camouflage ineffective.  Radar and thermal imaging may be employed to determine a

target’s position.  Modern camouflage must combat such technology.  For instance, with

respect to thermal imaging, contemporary military vehicles employ cooling systems and

decoys may emit heat.  With respect to radar avoidance, the stealth bomber is formed of

many flat surfaces and sharp edges that reflect radio signals away from their source

(Aronstein & Piccirillo 1997).  Machinery (including the stealth bomber) may also be

coated in radar absorbent material that reduces the energy of the returned radio signal.

Fig 2.3 (a)  A military camouflage pattern.  (b)  The HMS Belfast (background), painted with a
Dazzle camouflage design.

 (b) (a)
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It is suggested that motion camouflage would be a useful strategy for aircraft or

missile guidance.  Camouflaged approaches would be effective against any prey that is

not capable of sensing the shadower's depth directly.  This implies that motion

camouflage would not be successful against radar unless the shadower is capable of

absorbing and/or diverting the radio signal.  This situation will be addressed shortly.

Considering thermal imaging, a motion camouflage missile or craft could conceivably

disguise its heat from an infra red tracker by approaching against an external heat source

(such as the sun).  Alternatively, the missile could even create its own external dummy

heat source.  Such a missile could adopt a conventional approach to travel to an

opportune position, at which point it would release an explosive charge.  The missile

would then be able to adopt a motion camouflaged approach against the heat of the

explosion in the background (whilst the prey is more likely to assume that the missile

itself has exploded).

Stealth aircraft aside, there seems little that could be done to properly camouflage a

single approaching shadower from an accurate radar system.  However, motion

camouflage could still give an important advantage.  If multiple missiles/attack craft were

to approach simultaneously along the same camouflage constraint line (behind one

another) only the foremost missile would be visible to any radar/infra red system.  If the

prey has no reason to expect that it is under attack from more than one missile, this could

prove an ingenious method of overloading it's defences.  Either way the prey would have

no means of estimating the number of missiles currently approaching.  Similar tactics

could be employed on the ground to conceal the number of military vehicles approaching.

Finally it should be stressed that camouflage is multi-faceted in that a body may have

to simultaneously employ several strategies to maintain camouflage (e.g. to conceal

audio, visual and olfactory cues).  In this respect, motion camouflage should not be

thought of exclusively as a stand alone technique but as a technique that may be used to

augment other camouflage strategies.  For example, a static body may be perfectly

camouflaged in appearance against its background, however may risk exposure if it

moves.  If this is the case, motion camouflage could be employed to minimise the chance
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of detection as the camouflaged body moves.  Where either strategy alone would fail, the

combined strategies may be successful.

The other application for motion camouflage would be for entertainment purposes.

Motion camouflage could be incorporated into the artificial intelligence of 'bots' in

computer games.  Indeed, artificial intelligence is rapidly becoming one of the major

selling points of computer games (Laird 2000).  Again the likely use of the strategy

would be to help conceal the approaches of predatory agents (e.g. missiles, space ships

etc).  An example implementation of motion camouflage in a computer game is presented

in chapter 8.

2.2 Algorithms for Motion Camouflage

Three motion camouflage algorithms are introduced in this section.  The first is the

algorithm originally provided by Srinivasan & Davey (1995).  As shall be seen in

section 2.2.2 for practical purposes the Srinivasan & Davey algorithm is incomplete.

Two alternative algorithms are proposed in sections 2.2.3 and 2.2.4.  Essential

requirements for each are identified, though in the interests of maintaining simplicity at

this stage the algorithms are discussed at a high level.  Lower level constructs and

implementational issues form the majority of this thesis.  This section assumes that the

shadower:

• possesses the relevant sensory apparatus to locate the position of prey and fixed

point;

• has reaction time and flexibility of movement adequate to maintain a camouflaged

trajectory;

• is at a distance from the prey such that the prey is not able to sense any difference

in the shadower’s range as it moves. The problem of shadower looming is

covered in section 2.2.
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2.2.1 Positioning of the Fixed Point

Any algorithm describing motion camouflage must take into account the initial

position of the shadower relative to the fixed point.  Srinivasan & Davey (1995) suggest

two possibilities for this position:

• The fixed point is taken to be a landmark.  In this case the shadower would hope

to appear to be or be located at this landmark;

• The fixed point is located at the initial position of the shadower (or indeed, less

conveniently, anywhere along the line connecting the initial position of shadower

and prey).  Here the intention would be that the prey regards the shadower itself

to be a stationary landmark.

The importance of this choice is made apparent when considering the calculations

that the shadower must perform to maintain a camouflaged path.  In the first case, the

shadower may be able to sense (e.g. see) the positions of both prey and fixed point and

would only need to ensure that it is positioned in between these.  Depending on the scope

of vision of the shadower this need not be such an advantage as both fixed point and prey

must be viewed simultaneously (or at least the positions of both monitored frequently).

In the second, the shadower has no exact visual reference with which to estimate the

position of the fixed point and must co-ordinate itself using another method.

2.2.2 Srinivasan & Davey algorithm

Srinivasan & Davey (1995) show that, in theory, the shadower will remain

camouflaged as long as it knows its instantaneous distance from the fixed point by:

• always viewing the prey frontally;

• always pointing radially away from the fixed point;

• making corrective yaws of angle Δθ and its lateral motion Δλ such that the

magnitudes are related by: Δλ/Δθ = ρ  where ρ = the distance of the shadower

from the fixed point (see Fig 2.4).  Note that hoverflies are capable of rotating
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independently of the direction they are flying (Collett & Land 1975), see also

section 3.1.1).

The ratio Δλ/Δθ = ρ assumes that the lateral component of the shadowers movement

alone would carry it along the circumference of a circle centred at the fixed point with

radius ρ (for the ratio to hold the lateral component of movement alone must correspond

to an arc on the circumference of this circle).  However, for practical purposes, the

algorithm is lacking in two respects.  Firstly it implicitly makes the assumption that the

shadower already knows the appropriate yaw or lateral component of movement to make.

Unless the shadower can be certain of the prey’s pattern of movement in advance, neither

of these terms can be known instantaneously and both must be estimated.  Furthermore,

in order to estimate either, the shadower must have a concept of its distance from the prey

(see Fig 2.4c).  Secondly, the algorithm does not specify how the shadower's lateral

movement relates to its movement forward of backward.  The algorithms proposed in the

following sections address these problems.

Fig 2.4.   Demonstration of the motion camouflage algorithm of Srinivasan & Davey (1995).

(a) A possible shadower trajectory.  The shadower can be seen to continually rotate so as always to view the prey
frontally.

(b) The underlying mechanism.  The shadower makes corrective yaws (Δθ) and corrective lateral movements
(Δλ) such that the two are related by Δλ/Δθ = ρ.  As the distance (ρ) increases the lateral movement (Δλ)
must be made proportionally larger in relation to the yaw (Δθ).

(c) to be able to estimate Δθ   the shadower must have a concept of the distance to the prey.  The same prey
movement is shown with the prey at different distances from the shadower, each would require the shadower
to move differently to maintain camouflage.
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2.2.3 Responsive algorithm

Adopting the responsive algorithm the shadower would move so that it is correctly

camouflaged according to the time instant at which it commenced its movement.

However on completion of the move the prey may have moved elsewhere.  Thus,

although this strategy may never involve the shadower lying on the current constraint line

it would enable a reduction in apparent motion.  This is especially true if the shadower is

able to detect very small changes in Δθ over very short time intervals Δt and respond by

making corrective movements that are so rapid that they are not noticed by the prey.  As

Δt, and the responsive corrective movements tend to 0 this algorithm becomes equivalent

to that of Srinivasan & Davey (i.e. the shadower spots infinitesimally small changes in

the position of the prey and responds by making infinitesimally small movements to

maintain camouflage).

To perform this algorithm the shadower would need to be able to estimate the

position and orientation of the constraint line relative to itself.  This may be calculated

from the following information using trigonometry (see also Appendix 1):

• the angle subtended at the fixed point by shadower and prey (to estimate this the

shadower must have some concept of the distance to the prey);

• the distance between shadower and fixed point.

• the set of positions the shadower can expect to reach with its next movement.

Alternatively:

• the angle subtended at the prey by shadower and fixed point (for this estimation

the shadower must have a concept of the distance to the fixed point);

• and the distance between shadower and prey;

• again, the set of positions that the shadower can expect to reach with its next

movement.
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The rotational requirement of the Srinivasan & Davey algorithm is equivalent to the

estimate of the angle subtended at the fixed point by shadower and prey.  This is not to

say that in practice rotation may not be helpful to the shadower (see section 6 and 7),

simply that it is not strictly necessary for performing motion camouflage.

The responsive algorithm is relatively sparing in its processing requirements (see Fig

2.5).  The shadower need only recognise that it is not on the present constraint line (i.e. it

is not directly in between prey and fixed point) and move to rectify the situation.

However, if the shadower is not able to react quickly enough, the prey will notice the lag

in the shadower’s response (an example responsive shadower trajectory and the

corresponding visual error (i.e. retinal slip) incurred is shown in Fig. 2.7a).  In this case,

if the shadower were able to reliably predict the position of future constraint lines (i.e.

indirectly predicting the prey’s forthcoming movement) and move towards these instead

then it should be able to improve its camouflage.

2.2.4 Predictive algorithm

The predictive algorithm requires the shadower to be able to predict future

camouflaged positions based on prior prey movement and move accordingly.  As such, it

is an extension of the responsive algorithm adding complexity and some limitations.  It

also introduces the possibility of performing perfect motion camouflage.  Furthermore a

predictive capability could help the shadower to regulate its movement to optimise

certain parameters.  For example, prediction could help the shadower to optimise its

approach trajectory to reach the prey in the minimum time, or with the minimum energy

expenditure.

Camouflage movementProcessor

Position of prey

Position of fixed point

Shadower step size

Fig. 2.5.  Information and processing required by the responsive algorithm.
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Regarding the limitations, the conditions in which the predictive algorithm would be

useful are dictated by a combination of prey characteristics and environmental factors.

These may be reduced to:

• foremost whether it is indeed possible to predict forthcoming prey movements;

• if so, whether it is possible to obtain information sufficient to make accurate

predictions of forthcoming prey movements;

• finally whether it is possible to process this information in time to allow

undetected movement to the next camouflaged position.

To predict future camouflaged positions the shadower requires some knowledge of

past events.  It is suggested that in addition to the requirements of the responsive

algorithm the shadower is likely to have to:

• possess some sort of memory of previous positions of the constraint line/prey;

• be able to combine this memorised information with the current sensory input to

predict a position on the next constraint line;

• time its movement so that it coincides with the prey (so as not to over or under

step the next constraint line).  For this it is likely to be helpful if the shadower

possesses a memory of its own recent movement.

Fig. 2.6.  Information and processing required by the predictive algorithm.

Camouflage movementProcessor
Position of prey

Position of fixed point

Previous prey
movements

Previous shadower
movements

Shadower step size
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Two examples of shadowers following predictive trajectories are shown in Fig. 2.7b

& c.  The two respective shadowers differ in the time that it takes them to make

predictions.  This difference is highlighted by the increased visual error seen in Fig. 2.7b.

However, depending upon the vigilance of the prey, either could be adequately

camouflaged.

2.2.5 Discussion of algorithms

This section has introduced three different algorithms for motion camouflage.  The

Srinivasan & Davey algorithm and two adaptions of this made for practical purposes.

These provide the grounds for the models presented throughout this thesis.  This section

has achieved two purposes:

Firstly, to show that there is not necessarily a definitive motion camouflage algorithm

that is optimal in all situations.  The responsive algorithm rarely involves the shadower

lying on the present constraint line but can not be surpassed if it is not possible to predict

future prey movement.  Alternatively the predictive algorithm could allow perfect motion

camouflage but is liable to increased error resulting from incorrect prediction.  However,

it is reasonable to expect that an entity performing motion camouflage would at some

level have to adopt the sorts of strategies described in this section which rely upon the

following:  Physically, a shadower must have rapid reactions and be sufficiently dextrous

to follow a camouflaged path.  It must have a concept, whether explicit or implicit, of its

own distance from the fixed point and the angle subtended at the fixed point by itself and

the prey.  To estimate this angle the shadower must possess the sensory apparatus to

sample the spatial arrangement of important objects in its environment.  Finally it must

have the ability to manipulate this information to produce the appropriate motor

responses which may require mechanisms to predict subsequent prey movements.

Secondly, the section has emphasised the apparent importance of the prey’s

characteristics in determining the appropriate camouflage algorithm to use.  For example,

returning to Fig.2.7, suppose that the prey is very good at detecting movement and also
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Figs 2.7a,b,c.  Three hypothetical motion camouflage strategy trajectories.    The line graphs represent an
approximation of the visual error (measured as the angle subtended at the prey by the shadower and the fixed point).
The visual error diagrams are drawn, though they have been verified with values calculated using trigonometry.  The
magnitude of the error increases as the shadower approaches the prey as a result of geometry (coupled with the fact that
the shadower is constrained to a single movement per time step). The shadower always remains at the initial position for
a single time step in order to monitor the first prey movement from which to base its subsequent movements.

(a) (Responsive) The shadower detects the movement of the prey and then updates its position to lie on the constraint
line correct for the previous position.  Whilst moving the shadower continues to monitor movement so that it may
always lie on the previous constraint line.  Therefore detection and movement are undertaken at the same time within a
single time step.  Tracking this prey trajectory the shadower is unlikely to occupy a position on the current constraint
line after it has commenced motion.

(b) (Delayed predictive) The shadower detects movement of the prey, accurately predicts the forthcoming position of
the constraint line and moves there.  Monitoring and prediction take one time step, movement a second.  Using this
strategy the shadower occupies a position on the current constraint line once every second time step.

(c) (Perfect predictive) The shadower simultaneously detects movement of the prey, accurately predicts the forthcoming
position of the constraint line and moves there accordingly.  Whilst moving the shadower continues to monitor the
movement of the prey and accurately predicts the next prey position, so that with its next movement it can meet the
constraint line.  Now the shadower lies at a position on the constraint line once every time step.  However, due to the
shadowers straight step (and constant speed) it still deviates from the constraint line in between time steps.

ASSUMPTIONS OF DIAGRAM:
1. The shadower samples for prey movement once

every time step.
2. Movements are controlled by discrete events (e.g.

a step or flap of the wings).
3. Movements are made at a constant speed.
4. The shadower can make one movement per

sample event (see 1).
5. All shadower predictions are correct (b & c)
6. The fixed point is the position of the shadower at

time 0.
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has a very high sample rate (i.e. it performs checks to see whether objects have moved

very frequently).  In this case a shadower adopting the responsive strategy of Fig 2.7a or

the perfect predictive strategy of Fig 2.7c would be most likely to remain undetected.

Both involve small frequent movements, so small that they could be discounted as being

associated with the motion of an approaching object.  In contrast the shadower of Fig

2.7b (delayed predictive) would periodically appear to make quick movements.  Now,

consider a prey that samples less frequently, perhaps at evenly spaced intervals of two

time steps, starting at time 0.  Here the strategies of Fig 2.7b (delayed predictive) or Fig

2.7c (perfect predictive) would leave the shadower perfectly camouflaged, whereas

movement would be obvious in Fig 2.7a (responsive).  If the sample frequency were

doubled only the shadower of Fig 2.7c (perfect predictive) would remain totally

concealed.   Lastly there could be a prey that simultaneously samples for movement over

a wide range of frequencies where the shadower of Fig 2.7c (perfect predictive) would be

the most likely to be camouflaged.

2.3 Shadower looming

Up until this point, discussion has been made under the assumption that the shadower

is at such a distance from the prey that it appears as a structureless dot and any looming

cues resulting from the shadower’s approach are insignificant.  Motion camouflage need

not involve a change in the distance between shadower and fixed point, but as almost all

applications would involve this, shadower looming can not be ignored.  Short of the

shadower changing its morphology on approach or retreat there seems no obvious method

of eliminating looming cues.  This section therefore aims to illustrate the effects of

looming and identify methods by which looming cues may be reduced.  It is hoped that

this shall give an impression of the constraint imposed on motion camouflage by

shadower looming and consequently an idea of the situations in which motion

camouflage is likely to be successful.

Section 2.1 has already recognised that the relative success of motion camouflage is

likely to be prey specific.  In a given situation the relationship between the:
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• precision of prey vision;

• frequency that the prey is able to process visual information;

will determine the:

• speed that the shadower may approach (or retreat);

• related to this speed, the spatial range over which motion camouflage can

successfully be performed without looming cues arousing prey attention.

This need not imply that motion camouflage becomes useless beyond the point at

which the prey notices that the fixed point appears to have changed size.  Motion

camouflage may still give the shadower an advantage by minimising its apparent motion,

especially if the environment is dominated by movement.

It is possible to gain an impression of the impact of shadower looming through

approximating the apparent size of the shadower as an angle φ in two dimensions. φ is the

angle subtended at the prey’s retina by the two outmost points of the shadower  given by:

( )15.0arctan2 −⋅⋅⋅= ss dwφ (2.1)

where ws is the width of the shadower (the distance between the two outmost points) and

ds is the distance between shadower and prey.  Fig. 2.8 shows the variation in φ  as ds is

changed and ws held constant. As the shadower moves closer to the prey, the angle at the

prey’s retina can be seen to rise exponentially to π radians.  As the separating distance

tends to infinity the angle gradually tends toward 0.  So, as already mentioned, motion

camouflage is a technique likely to work better at distance.  However the minimum

distance at which motion camouflage is effective may be reduced if the fixed point is a

landmark of greater size than the shadower.
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2.3.1 Reduction of looming cues through choice of large fixed point

It is suggested here that an appropriately sized, textured and placed fixed point could

provide a means of reducing looming cues.  The proposition is that if the fixed point is

larger than the shadower and the shadower is adequately physically camouflaged against

the fixed point then looming will be less apparent.  This would be effective up until the

point at which the apparent size of the shadower exceeds that of the fixed point.

Furthermore this may help to reduce the impact of the shadower’s errors.  This is

illustrated in Fig. 2.9, where the shaded area, accounting for a significant portion of the

distance between fixed point and prey, represents this area of tolerance to looming and

movement error.

shadower

prey eye area of tolerance
to looming cues

fixed point

Fig. 2.9.  reduction of looming cues by a large fixed point.  The shadower is assumed to be camouflaged
against the fixed point.  It is shown at a position beyond which any movement in the direction of the prey
would incur looming cues.  In a perfect situation it would be camouflaged as long as it lies within the shaded
area.  The diagram is demonstrative of a single time instant.  The shape of the shaded area of tolerance would
change as the prey moves.

Fig. 2.8  The change in apparent size of shadower on approach.  The apparent size is
measured as the angle subtended at the prey’s retina by the two outmost points of the
shadower.  Lines are plotted for 5 shadower widths of {2,4,6,8,10} units, with the lowest
line representing a width of 2 and the upper line a width of 10.
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In two dimensions, the distance between shadower and prey ds beyond which a large

fixed point would fail to conceal looming (i.e. the angle subtended at the prey’s retina by

the shadower equals the angle subtended by the fixed point) is given by:

fp

fps
s w

dw
d

⋅
= (2.2)

where dfp is the distance separating prey and fixed point, wfp is the width of the fixed point

(the distance between the two outmost points of the fixed point) and similarly ws  is the

width of the shadower.  Figs. 2.10a&b attempt to quantify the advantage offered by a

large fixed point.  The diagrams show, that in perfect conditions, as the width of the fixed

becomes large, ds asymptotes.  Also the larger this width, the lesser the rate of change of

ds with respect to dfp.  For example, if the fixed point is four times the width of the

shadower, looming cues would only be unavoidable when the shadower is located within

a distance of the prey one quarter that between prey and fixed point.
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Fig. 2.10.  Change in the minimum distance between shadower and prey (i.e. minimum ds)  at which a large fixed
point could act to reduce looming cues.  In both a and b shadower width is held constant at 2 units.

(a)  Change as the width of the fixed point is held constant at 2, 3, 4, … 8 and the distance separating fixed point and
prey is varied.
(b)  Change as the distance separating fixed point and prey is held constant at 10, 20, 30…80 and the width of the
fixed point is varied.

(a) (b)
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2.3.2 Reduction of looming cues by movement out of preys vision

The alternative method proposed here for reducing looming cues attempts to exploit

prey with incomplete visual fields.  It is suggested that the shadower could control its

apparent size by gradually moving out of or into the preys field of vision as it approaches

or retreats (see Fig 2.11).  In doing so, it would be possible for the shadower to maintain

its apparent image projected onto the prey’s eye at a constant size.  The successful

coupling of this strategy with motion camouflage would be reliant on the fixed point

being continuously on the boundary of the prey’s field of view.  The unfortunate

implication being that the technique will only be relevant to motion camouflage if the

prey stops and continues to look in the same direction, thus allowing the shadower to

control looming.

The benefits of this approach can be seen to be very scenario dependent.  It is limited

not only by the situation in which it may be used, but also by the necessity for the prey to

have a suitable field of vision and the shadower to be suitably homogenous in appearance

from one extremity to the other.  Nevertheless, if the prey were prone to stopping, it could

provide an advantage.

φ

 _

Fig 2.11 a A shadower trajectory intended to reduce looming cues.  The prey is best thought of as being stationary.  As
the shadower approaches the prey it moves out of the preys field of vision so as to appear a constant size at all times.
(b) To reliably follow this trajectory the shadower requires knowledge of the distance between it and the prey (_) and
the angle subtended at the prey by its extremities (φ ) (or the extremities of the fixed point) at the time when it is first
touching the boundary of the visual field.
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In viewOut of view
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2.3.3 Summary of shadower looming

Summarising, in this section it has been seen that looming cues are an unavoidable

consequence of a shadower’s approach, though are only likely to be of importance when

the shadower is close to the prey.  It has been suggested that if the shadower is

camouflaged against a large fixed point then looming cues may be reduced.  However the

levels of reduction and indeed the degree to which looming is disadvantageous must be

seen as prey specific and a possible topic for future investigation.

2.4 Camouflage constraint

The number of different camouflaged moves a shadower may make at any one time

is very much dependent on situational factors.  This section seeks to identify how the

relative positions of shadower, prey and fixed point constrain movement.  Possible

environmental influences (e.g. wind) are ignored.

It is assumed that it is possible to break down the shadower’s movement into discrete

events or steps.  The shadower’s step size will determine the set of possible positions on

the forthcoming constraint line that the shadower can reach.  Looked at differently this

could be seen as the set of directions in which the shadower may move so as to remain

camouflaged.  For a given shadower location and vector describing the prey’s

forthcoming move the set of positions available are controlled by:

• the angle subtended at the prey by its future position and the position of the fixed

point;

• the distance between prey and fixed point;

• the distance between shadower and fixed point.

The effects of these factors are illustrated in Fig. 2.12.  The level of constraint can be

seen to increase as the angle between the forthcoming prey position and the fixed point

gets larger.  Maximum constraint occurs when the angle subtended at two contiguous

prey positions by the fixed point is equal (i.e. an isocoles triangle is formed by
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contiguous prey positions and fixed point).  Also as the shadower moves towards the

prey, geometry imposes additional constraint.

In order to investigate these relationships it is necessary to provide a more formal

measure of constraint (see also Fig 2.13d):  Let lt denote the distance encompassing the

set of points that the shadower can reach on the constraint line at time t.  Let st denote the

maximum value of lt (when the shadower is moving toward or away from the prey, this

distance corresponds to twice the shadower's step size i.e. the diameter of the circles in

Fig 2.12).  So if the shadower is enabled complete freedom of movement within a circle

of radius r, and a movement is assumed to last one time step, then st is described by:

12 −⋅= tt rs  (2.3)

Equ (2.3) allows constraint to be measured in terms of a value Ct:

t

t
t s

l
C = (2.4)

0 shadower, number = time

1 prey, number = time

fixed point

boundary of the set of all  possible
positions that the shadower may
reach within the next time step

set of all possible positions on the
constraint line that the shadower may
reach in the next time step (lt)
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Fig. 2.12.  Variation in the constraint of
shadower movement resulting from: the direction
of prey movement relative to the bearing of the
fixed point (from the prey); the distance
separating shadower and fixed point.  For
illustrative purposes the shadower is moving
slower than the prey (which would be unlikely if
the shadower was attempting to catch the prey).
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Ct therefore assumes values in the range 0 to 1.  0 when the shadower can not

actually reach the constraint line and 1 when the shadower is already positioned on the

constraint line.

Figs 2.13a-c demonstrate the change in Ct for the same prey movement (shown in

Fig 2.13d) as a result of different shadower and fixed point positions.  Replicating Fig

2.12 at time t-1 the shadower is camouflaged.  Both shadower and prey move a distance

of one unit per step (i.e. rt-1 = 1).  No significance is attached to the fact that the shadower

is moving at the same speed as the prey, it is purely for illustrative purposes.  Fig 2.13a

reiterates the information presented in Fig 2.12 and helps to clarify the extent of the

constraint caused by the angle subtended at the prey by forthcoming prey position and the

fixed point (afp).  When the shadower is close to the fixed point afp has little relevance,
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Fig. 2.13a,b,c.  Change Ct corresponding to different positions of fixed point and shadower relative to the prey.

(a) Change in Ct as afp is varied between 0 and 2π radians.  The distance separating shadower and prey is held
constant at 50 units.  Each line represents a different distance between shadower and prey.

(b) Change in Ct as the distance between shadower and fixed point is varied between 1 and 100.  The distance
separating shadower and prey is held constant at 5.  Each line represents a different afp.

(c) Change in Ct as the distance between shadower and prey is varied between 1 and 100. afp is held constant at
π radians.  Each line represents a different distance between fixed point and prey.

(d) Explanation of terminology (see text)
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however as the shadower approaches the prey its importance increases rapidly.  In the

example the difference between the maximum and minimum Ct value resulting from

change in afp is approximately 0.56.  This range will change depending on the distance

between fixed point and prey (dfp).  In Fig 2.13b the shadower is held at a constant

distance from the prey whilst the distance between prey and fixed point (dfp), is varied,

each line represents a different afp.  This diagram indicates that once beyond a certain

distance, the size of dfp is inconsequential to Ct.  Again the significance of afp on the value

of Ct is highlighted.  The relatively small distance between shadower and prey (ds) has

been picked to emphasise the pattern of the relationship.  As ds is increased Ct can be

expected to increase wherever dfp > ds.  The sudden drop in Ct when ds > dfp is explained

with reference to Fig 2.13c.  Fig 2.13c represents one of the more severe scenarios for

motion constraint where afp is held constant at π/2 radians.  The distance to the shadower

is varied and each line represents a different dfp.  As has been seen, as the shadower

moves further away from the fixed point, the level of constraint increases (Ct decreases).

What is especially interesting is that this graph identifies a limitation in the use of motion

camouflage for retreating from the prey.  As can be seen in Fig 2.13c, when ds is just over

double dfp the shadower can not physically move far enough to maintain camouflage (Ct =

0 ).  Indeed, for each configuration of shadower, prey and fixed point (with the exception

of the case when the prey is moving directly toward or away from the fixed point), there

will be critical distance beyond which the shadower will not be able to reach the

constraint line.  This critical distance will vary with afp and dfp.  Investigation of the

effects on the critical distance of varying these parameters is not undertaken here as

emphasis throughout the remainder of the thesis is placed on the shadower approaching

the prey.

In closing, the section has raised two important points.  Firstly, that for the same prey

trajectory there can be considerable variation in the constraint of camouflaged

movements.  Ignoring possible environmental influences the level of constraint has been

shown to be dependent upon the relative positioning of shadower, fixed point and prey,

their physical abilities and directions of movement.  It follows that different prey
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trajectories will constrain motion differently.  This suggests that it may be possible to

design prey trajectories that maximise the constraint imposed on shadower movement.

Secondly, that the shadower may be able to minimise the level of constraint on its

movement if it is able to predict the bearing at which the prey is likely to appear and the

direction that is likely to move in, and position itself accordingly (i.e. if the shadower can

guess where its prey is going to come from, it may benefit from lying in wait in an

opportunistic position).  Aside from this, the level of constraint has been shown to

increase the closer the shadower is to the prey, again emphasising that motion

camouflage is a technique better suited to gaining an advantage at distance.

2.5 Summary

This chapter has introduced motion camouflage as a stealth strategy designed to

conceal the motion of one moving body from another.  Two general algorithms for

motion camouflage have been proposed and were named as the responsive and predictive

algorithms.  The major difference between the algorithms is that the responsive

algorithm, theoretically, can be performed using only the current perceptual input,

whereas the predictive algorithm requires knowledge of past events.  Throughout this

thesis a particular area of interest will be the variation in the shadower’s performance as

the input information available to the shadower is changed.  For instance the shadower

may not have direct access to its distance from the fixed point and could have to estimate

this from other cues (chapter 3 discusses methods used by animals to retrieve such

information).  Advantages and disadvantages of the algorithms were suggested and it was

concluded that neither is universally suitable (i.e. if the prey trajectory is erratic,

prediction may be impossible.  Alternatively, if the prey is particularly attentive it may

notice the lag in response characteristic of the responsive algorithm).

Shadower looming was identified as a factor that may reveal the motion of the

shadower, and methods to reduce the impact of this (including choice of a large landmark

as fixed point) proposed.   The chapter also identified that the relative positions of

shadower, prey and fixed point will constrain the number of camouflaged moves

available to the shadower.  This implies that different prey trajectories constrain motion
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camouflage differently and as such it may be possible to design prey trajectories that

maximise this constraint.  Finally, both of the above observations suggest that motion

camouflage is a technique likely to be more successful the greater the distance from the

prey (i.e. looming cues are less obvious and constraint of camouflage movement is less).
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3 BIOLOGICAL MECHANISMS AND ARTIFICIAL INTELLIGENCE

This chapter introduces the processes existing in biology that provide the basis of the

motion camouflage models presented in this thesis.  The chapter commences in section

3.1 with an account of animal behaviours that have relevance to motion camouflage and

a consideration of the sorts of algorithms employed by these animals.  Section 3.2 looks

at how animals sense the spatial information necessary for motion camouflage from their

environment.  Section 3.3 focuses on control systems that can transform such sensory

input into appropriate motor responses.  This section proposes underlying models for

motion camouflage control systems, relating to the algorithms suggested in section 2.2,

before discussing the neurophysiological circuitry of a biological sensorimotor control

system.  An account of the motor system is also provided.  Finally section 3.4 provides

an overview of the field of artificial intelligence giving precedence to computational

algorithms inspired by neurophysiology.  This section also covers the selection of a

neural approach to model motion camouflage.

3.1 Naturally occurring behaviour relevant to motion camouflage

Although, to the author’s knowledge, there is no definitive proof that motion

camouflage exists in nature, there are examples of behaviour that could be motion

camouflage and examples of behaviour dependent on similar knowledge.  The section

concentrates upon insect behaviour.  It is of some significance that the examples are taken

from the insects, which, in comparison with mammals tend to have much smaller and less

complex nervous systems.

3.1.1 Tracking and interception in hoverflies

The behaviour exhibited by male hoverflies (Syritta pipiens) tracking females

recorded and described by Collett & Land (1975) is a possible example of motion

camouflage.  This tracking behaviour which is thought to have a sexual function is

characterised by the male hoverfly:
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• maintaining a constant distance from the target;

• continually adjusting its orientation to face the target;

• sometimes supplementing this turn with sideways velocity.

Srinivasan & Davey (1995) re-examined the same tracking trajectories to discover

that some closely resembled those that would be expected of a shadower performing

motion camouflage.  However, in cases the shadower appeared to abruptly switch the

position of the fixed point to either a nearby location or to a point at infinity.  For this

reason they were unable to conclude whether the male hoverflies were employing motion

camouflage, or whether the apparent shadowing was an artefact of another behaviour.

Regardless, the tracking fly can be seen to be employing an algorithm that is similar to

the responsive algorithm (section 2.2.3).  What is uncertain is whether there is any use

of a fixed point.  Section 3.1.2 shows that the calculations necessary to estimate the

position of a fixed point are not beyond other insects.  Firstly, with respect to the

predictive algorithm, is there any evidence that males can predict female movement?

Collett & Land (1978) show that male hoverflies are indeed able to make accurate

predictions of female movement and use these to compute an interception course.  What

is interesting is that the majority of the male’s interception trajectory appears to be

determined by the movement of the female within the first few milliseconds of the chase.

Once the male has made the prediction, it keeps to the same course irrespective of the

forthcoming movements of the female (i.e. an open loop response, see section 3.3.1).

Collett & Land (1978) suggest that the mechanism used to predict the female’s path is

dependent on a number of assumptions made about the image motion of the female

projected on to the male’s eye at the moment of first sighting.  They explain that if the

male assumes that a female has a constant size, it will be spotted at a constant distance.

Then if it is further assumed that females travel at a constant speed, the image velocity at

first sight will give the line along which the female is moving.  Unless the female

unexpectedly changes course the male’s attack routine will be successful.  As might be

expected amorous male hoverflies may find themselves chasing wholly inappropriate

targets resembling females at distance (including peas fired from pea shooters in the
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experiments of Collett & Land).  However as long as the strategy works occasionally on a

female, this need not be of great consequence.

3.1.2 Homing by path integration

The behaviour demonstrated by hoverflies is ample at least to show that there is the

potential for existence of motion camouflage in nature.  However, evidence that

hoverflies utilise a fixed point is lacking.  As the fixed point need not be visible (i.e.

either because it is not a visible landmark (section 2.2.1) or because the shadower does

not have all round vision) the shadower is likely to have to be capable of dead reckoning

to determine its position.  Many animals demonstrate the ability to precisely locate points

or areas of interest that they can not directly sense.  This is shown in homing behaviour.

A variety of different classification schemes for categorising homing behaviour exist

based upon the orientation mechanisms, genetic information and individual experience of

the animal in question (Papi 1992).  Of interest here is path integration.  Path integration

enables an animal to navigate directly back to its starting point despite a complex

outbound journey.  This is achieved by the animal continuously integrating all directions

taken and distances travelled into a vector describing the starting position.  Such skills

could be employed to determine the position of the fixed point.

Path integration may be divided into two groups, allothetic and idiothetic, according

to the mechanism of orientation used.  Allothetic path integrators depend upon external

reference points, whereas idiothetic integrators use only internally generated signals.  In

practice animals tend to use a combination of both (Papi 1992).

The predominant method of navigation in bees and ants is allothetic, based on a sky

light compass (although land mark cues may be helpful, they are not essential) (Wehner

1996).  The Saharan desert ant Cataglyphis is able to return in a straight line to its nest in

a featureless landscape from distances in the range of 200m.  In order to do this, the ant

requires angular and distance information for each part of the outward journey.  Direction
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is retrieved from an internal celestial compass that takes into account the position of the

sun, spectral and in particular polarised light patterns in the sky.  It is thought that the ant

compares the sky to a fixed neural template residing in its retina and uses the difference

between the two to determine the direction.  Distance comes from measuring the image

flow on the eye over time (see also section 3.2.2).  What is surprising is the

approximate method used to compute the homeward vector.  Mathematically, the simple

solution would be to continuously calculate a vector summation (having reduced

movements to vectors defined in a Cartesian co-ordinate system).  Cataglyphis does not

do this.  Muller & Wehner (1988) show that if Cataglyphis is forced to follow an

outbound path through narrow channels, that involves a single sharp backward angle, it

will trace an incorrect return journey.  The degree of error is dependent on the size of the

angle.  This error would not result from a vector summation technique.  Muller & Wehner

(1988) go on to propose a non-trigonometric model that accurately describes the

behaviour.   This is based upon a calculation of the arithmetic mean of the angles steered

weighted by the distance covered in the relevant direction.  Computation is performed

continuously and does not require explicit memory of all previous legs of the journey.

But, surely the error is a cause for concern for the ant?  This is not the case.  Behaving

naturally Cataglyphis rarely makes the sharp backward turns that cause it to offset.

Moreover, even if it does the ant tends to turn equal amounts in both directions cancelling

out errors.  So, under normal circumstances using this approximate system the ant can

navigate perfectly well.

An example of idiothetic path integration is provided by the wandering spider

Cupiennius.  The spider can re-locate its retreat after night-time excursions lasting several

hours and also find prey that it has been forced to abandon.  With respect to the latter

ability Seyfarth et al. (1982) found through experimentally eliminating the different

senses that the spider could navigate back to the position where it had left its dead prey

using only mechanical stress sensors located on its legs (lyriform organs).  Although the

method that the spider uses to process this information is unknown, it makes judgmental

errors in similar circumstances to those described above for Cataglyphis, that are in

accord with the Muller & Wehner model.
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3.1.3 How fielders determine where to run to catch a ball

A final area identified to be of interest to motion camouflage is the field of research

concerned with explanation of the mechanism that allows humans to determine the

correct path to catch a ball.  This task differs from motion camouflage in two ways.

Firstly that the trajectory of a ball is likely to be less variable than that of the prey in

motion camouflage (unlike the prey, once launched the ball has no control over its own

trajectory).  Secondly, that the path of a motion camouflage shadower is more constrained

than that of a fielder who is not concerned with camouflaging motion.  Nonetheless,

fielding is of interest as it is an instance of a closed loop control system employed for the

purpose of interception (control systems are discussed in section 3.3.1).

The first theory proposed for how fielders choose a path to intercept the ball was

originated by Chapman (1968).  The theory makes the simplifying assumption that the

ball is hit directly toward the fielder.  It postulates that the fielder chooses their path so as

to cancel the optical acceleration of the ball.  In explanation, once the ball has been hit, as

long as the fielder runs so that the angle of elevation of the ball (α) is within 0 to π/2 rad

they will catch the ball (McLeod, Reed & Dienes 2001).  Note that if α > π/2 rad the ball

will have travelled over the fielder's head.  If the fielder runs forwards or backwards at a

rate such that the vertical optical velocity (tanα) is held constant, α will remain in this

range (i.e. if the fielder runs to far in, the rate of change of tanα will increase and the

fielder will have to slow down and vice versa).  This is equivalent to running so as to

cancel optical velocity acceleration, hence the theory has been named Optical

Acceleration Cancellation (OAC).

OAC does not cover the case where the ball is hit to either side of the fielder.  Also it

has been argued that humans are not capable of measuring acceleration to the precision

that would be required for OAC to be a viable technique (McBeath, Shaffer & Kaiser

1995).  Addressing these issues, McBeath, Shaffer & Kaiser (1995) proposed the Linear

Optical Trajectory (LOT) model.  The basis of the LOT model is that the temporal
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problem of OAC is transformed into a spatial problem.  The LOT model conjectures that

the fielder moves in such a way that the optical trajectory (i.e. the path of the ball

projected on the fielder's retina as the fielder runs) of the ball is linear.  Restating the

problem, if β is the azimuth of the ball (i.e. the angle subtended at the fielder by the balls

launch point and the vertical projection of the ball on the ground) and ψ is the angle

between the linear optical trajectory and the horizontal, the fielder would choose their

path so that α and β continuously increase to keep ψ constant (see Fig 3.1).  This means

that the fielder has move to control tanα/tanβ so that tanψ and therefore ψ is constant.

McBeath, Shaffer & Kaiser (1995) backed up their theory with two pieces of empirical

evidence.  Firstly that fielders' interception paths tend to be curved (as predicted by the

LOT model).  Secondly, footage taken from head mounted video cameras indicated that

the optic trajectory of the ball was approximately linear.  However, later testing of the

LOT model undertaken by McLeod, Reed & Dienes (2001) showed that when the ball

was hit on trajectories outside the range of those studied by McBeath, Shaffer & Kaiser

(1995), in that α and β were greater, the paths adopted by fielders would have resulted in

a non-linear optic trajectory.  All results were however consistent with the fielders using

the OAC model.

Marken (2001) proposes that an extension of the OAC model, Optical Velocity

Control (OVC) is sufficient to explain fielder's behaviour.  Marken views the fielder as

controlling two separate perceptual variables (i.e. consisting of two control systems).  The

αβ

Fielder

Ball

Line of fielder's sight

Path of ball as projected
onto fielder's retina

αβ

ψ

Fig. 3.1 (a) Path taken by baseball fielder to catch ball demonstrating the LOT model.  (b) Terminology.
(b)(a)
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first is the perception of vertical optical velocity (tanα).  Similar to OAC, the OVC model

acts to keep the optical velocity constant.  The addition of OVC is that a critical value at

which the velocity should be maintained is suggested.  The second system controls the

lateral optical displacement (the degree to which the ball is non central in the fielder's

view).  Effectively, this control system acts to ensure that the fielder always faces the

ball.  In a computational simulation Marken (2001) demonstrates that his technique is

sufficient to replicate the paths adopted by fielders in the empirical tests of McBeath,

Shaffer & Kaiser (1995) and McLeod, Reed & Dienes (2001).  This model does not

however appear to address McBeath, Shaffer & Kaisers' (1995) initial concern that

humans may not have the sufficient apparatus to detect acceleration sufficient for

calculation of the approach path.  As such, whether or not it will be universally accepted

as a 'unified fielder theory' remains to be seen.  Regardless, the explanation for the

fielder's path choice is likely to lie with a control system similar to those described in the

above examples.  The next section looks at the sensory systems that could be used to

obtain the input information necessary for motion camouflage.

3.2 Sensory systems

3.2.1 Senses that could supply motion camouflage input

In section 2.2 each of the motion camouflage algorithms required the shadower to

have knowledge of the direction and distance of objects in its environment.  In the

previous section, both hoverfly and ant gained this information via their visual system.

However vision is not the only sense that may be employed to sample the spatial structure

of the surroundings.  The most notable alternatives are hearing and electromagnetic

senses.

The barn owl (Tyto alba) is capable of catching prey in total darkness using hearing

alone.  It achieves this though comparing the difference in intensity, spectral quality and

time of arrival of the sound reaching its two asymmetrically positioned ears (Taylor

1994).  Perhaps a more famous example of the use of hearing to estimate distance is

echolocation.  Bats (Chiroptera) emit brief high frequency sound pulses.  By measuring
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the time it takes the echo from these pulses to return they can accurately determine the

distance to the object emanating the echo.  Through various aural specialisations bats are

able to gain an accurate understanding of their spatial surroundings.  Alternatively,

dogfish (Scyliorhinus) use local distortions in the earth’s electric field to detect buried

prey (McFarland 1999).

Despite these other senses this section shall concentrate on the visual system.  There

are several reasons for this.  Firstly, as has been seen, all the external information

necessary for motion camouflage can be obtained though vision.  Assuming that there is

adequate light, vision tends to be the most accurate source of spatial information

available to an animal (Wehner 1997) especially concerning distant objects.  Supporting

this, few fast moving animals do not depend upon vision and most of these operate in low

light (notable exceptions are found with deep sea fish and web spinning spiders).  On the

other hand, this is not to say that motion camouflage could not be performed using

hearing alone, or that hearing could not supplement vision.  Furthermore it does not

exclude motion camouflage from having some use in disguising the shadower from a

prey whose primary spatial sense is hearing.  For instance, with echolocation, the

accuracy of the estimate of target distance decreases with target range (as the signal

deteriorates).  So similar to vision, within a certain range the prey may not be able to

sense a change in distance of the shadower.

The remainder of this section shall be divided between discussion of how visual

systems are able to determine the direction and distance of objects.  There are two

(known) types of eyes that have the potential to provide the information necessary for

motion camouflage.  These are the single lensed eye characteristic of mammals, and the

compound eye characteristic of insects.  The single lensed eye uses a convex lens to focus

light on a concave map of photoreceptive cells (the retina).  A compound eye is formed

from an array of ommatidia.  Each ommatidium contains a lens and a light sensitive

rhabdom. Unlike single lensed eyes, compound eyes are stationary and virtually fixed

focus.  Therefore compared with the single lensed eye they have poor resolution.  Their

advantage is that they have a much wider field of vision, so much so that many insects
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including hoverflies are able to simultaneously view the majority of their close

surroundings.  The two eye types use different methods to process information.  Coverage

is given of both.  For further information on compound and single lensed eyes see Bruce,

Green & Georgeson (1996).

3.2.2 Estimating an object's direction from vision

The spatial organisation of either the photoreceptive cells in the retina or the

ommatidia of the compound eye is such that each cell will respond to light arriving from

a small set of spatial angles.  So assuming that an object can be successfully segmented

from its surroundings, determining its direction is trivial.  However, in many cases what

is important is not the relative direction of an object from the eye, but the relative

direction of the object from the front of the body.  Therefore if the eyes and head are not

stationary relative to the body, then visual information must be combined with other

information concerning, for example, the position of the eye relative to the head and the

position of the head relative to the body.  In humans this information is derived from

commands sent to eye muscles and information received from the neck and the inner ear

(Carpenter 1996).

3.2.3 Estimating an object's distance from vision

Retrieving depth from the essentially two-dimensional images received by the eyes is

significantly more complex than determining object direction.  Evolution has resulted in a

variety of different strategies.  Firstly, binocular depth cues are considered.

When focussed on a point, the degree of convergence of the eyes gives an indication

of the distance to that particular point.  This convergence measure has to be obtained

from the ocular muscles and is both imprecise (Carpenter 1996) and as it stands has

relevance only to the point in focus.  Information regarding the distance to a second

object, relative to the present point of fixation is given by the muscular effort required to

bring that object into focus.  However, as the level of accommodation necessary to keep
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an object that is displaced in focus decreases rapidly with object distance, the technique

can only be thought of as useful for providing distance information about nearby objects.

Although the degree of blurring may be used to ascertain depth over the whole image

(Pentland 1987 referenced by Bruce, Green & Georgeson 1996), more accurate

information can be extracted from binocular disparity (binocular stereopsis).  Each eye

has a slightly different view of the world.  This means that if both eyes are focused on a

particular point, the image of that point will be projected onto the same position on each

retina.  Conversely, the image of any other point will be projected onto different positions

on each retina.  Of importance in calculating distance, is the angular difference (more

specifically, the distance along the circumference of the retina) between the projection of

focused and unfocused points on each retina.  Through knowing the magnitude and sign

of both differences, it is possible to calculate the distance of the unfocused point relative

to the focused (see Fig 3.2).  In order to be able to calculate absolute distances accurate

information regarding the convergence of the focused eyes and the relative positions of

the eyes would be necessary.  Again, binocular stereopsis has difficulty judging the

difference in depth between far away objects as the angular difference between

projections in each eye becomes increasingly small.  Its usefulness is also dependent on

the distance separating eyes and the ability of the brain to correctly match images of

Fig. 3.2.  Binocular disparity in single lensed eyes.  Both eyes are
focussed on point F.  Points X and Y are disparate.  The angular disparity
of point Y is given by the difference between angles a and b.  Through
knowing the sign and magnitude of angles a and b, the degree of
convergence of the eyes on the point of focus, and the distance between
the eyes it is possible to calculate the absolute distance of point Y.  Note
that the degree of convergence and distance between the eyes gives the
distance to F.

a b

F

X

Y
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corresponding points in both eyes (see Bruce, Green & Georgeson (1996) for more

information on the correspondence problem).

Binocular vision is not essential for measuring depth.  There is conclusive evidence

that it is used by members of only one insect order, the praying mantids (Mantodea)

(Srinivasan et al. 1999)∗ and their predominant methods of sensing absolute depth are

probably monocular.  Certainly in humans it is likely that comparisons between the visual

size of well known objects (e.g. the hand) and distant objects are highly instrumental in

this respect.  Other monocular cues include perspective, image overlap and importantly

image motion.

To humans perhaps the most obvious use of image motion is motion parallax.

During head movement the image of nearby stationary objects can be observed to move

across the retina at a greater speed than those further away.  Bees use this to their

advantage to expose potential predators approaching against camouflaged backgrounds

(Srinivasan et al. 1999).  Furthermore image motion can be used to obtain accurate

measures of absolute distance.  Praying mantids use side to side head movements

(peering) to generate retinal image motion that allows estimation of the distance of

stationary targets.  Kral (1988) suggests that it is speed of image motion rather than

amplitude which is important to mantids.  As the speed and amplitude of head motion

vary during peering both may have be taken into account in the calculation.  For instance

target range may be derived in terms of the ratio of peering speed to image speed.

Sufficed to say that the exact neural mechanism responsible has yet to be explained.  An

alternative use of image motion is in the estimation of distance travelled.  Both bees

(Srinivasan et al., 1999) and Cataglyphis (Wehner, et al., 1996) measure distance

travelled by integrating optic flow over time.  Srinivasan et al. report that through

artificially varying the speed of optic flow it is possible to prompt bees to over and

underestimate the distance to their destination.  Finally, flies regulate their flight speed by

maintaining the speed of the image motion of their environment at a constant level.  This

                                                            
∗ As compound eyes are immobile and fixed focus, accommodation and convergence are not possible.
Regarding binocular stereopsis, even if insects are capable of the required neural processing their eyes are
too close together and of such low spatial acuity for it to be of much use.
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means that an insect may react to the optical illusion of high speed flight by moving

backwards (Srinivasan et al. 1999).

3.3 Sensorimotor control systems

Having considered the sensory mechanisms that may be used to obtain the

information required by motion camouflage it is now necessary to look at control systems

that may be used to transform this into motor signals.  Use of control systems has been

traced back to 300 BC by Lewis (1992) with the Greeks attempts to measure time using

water clocks.  These water clocks used a float regulator to maintain the water in a tank at

a constant level (i.e. a similar function to the ballcock in modern toilets).  Maintenance of

water at a constant depth ensured that water would flow out of the tank at a constant rate.

This allowed time to be measured by the volume of water that had flowed from the tank.

The introduction of a mechanical control system, Watt's flyball governor, arguably

marked the onset of the industrial revolution.  Watt's governor allowed automatic

operation of steam engines that previously had to be regulated by hand.  Watt's governor

consisted of two weights attached by pivots to a rotating pole.  As the speed of the engine

(and hence rotation of the pole) increases, the weights are swung outwards and upwards

by centrifugal force operating a valve releasing steam that acts to slow down the engine.

Thus the engine is maintained at a constant speed.

This section commences with a brief introduction to the study of control systems,

before continuing the discussion in light of motion camouflage.  The mechanism of a

biological sensorimotor control system, the vestibulo-ocular-reflex is examined and the

section is concluded with an account of the motor system.

3.3.1 Control systems background

A control system will typically consist of an interconnection of components that

provide a desired function (Stefani et al. 1994).  A system is classically considered to

contain a controller and a plant.  The plant receives input from the controller that is

intended to modify it so as to produce a desired outcome (or output).   The plant may also

receive external input signals that could disturb its behaviour with respect to this desired
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outcome.  So, a successful controller must be able to operate regardless of the

environmental situation.

Conceptually the most simple control system is the open loop or ballistic system (Fig

3.3a).  Here the plant output has no influence upon subsequent inputs to the controller.  A

commonly used example that illustrates the basic concepts of control systems is the

central heating system.  A ballistic central heating system would pay no regard to the

household temperature.  Once set at a certain level it would continue to put the same

effort into heating until externally instructed to do otherwise (or running out of power).

As the purpose of the central heating system is to maintain a constant temperature, this is

undesirable.   It will not be able to compensate for diurnal or seasonal fluctuations in

temperature.  Thus the performance of an open loop control system can be regarded to be

vulnerable to unpredicted events (noise).  How could it be improved so that it can operate

in a noisy environment?  Keeping to a strictly ballistic system, a possible improvement

could be made by giving the controller access to information concerning the

environmental noise beforehand. This system would be termed a feed forward system

(Fig 3.3b).  The controller of the central heating system could have access to a list of

previous temperature readings for different times of the year and base heating effort on

expected values.  However, a far better solution to the problem would be to give the

controller a temperature sensor.  Then, when the temperature is below the desired level

the heating is switched on and vice versa (i.e. a thermostat).  This is the basis of the

closed loop or feedback system (Fig 3.3c).  In feedback some or all of the plant outputs

Controller Plant

Noise

Input Controller Plant

Noise

Input

Controller Plant

Noise

Input

Controller Plant

Noise

Input

Model
Plant

Controller Plant

Noise

Input

(a) (b)

(c) (d)

(e) Fig. 3.3 a-e.  Different types of control system (see
text for details).

(a) Open loop (ballistic).
(b) Open loop with feed forward.
(c) Closed Loop (feedback).
(d) Open loop with parametric feedback
(e) Internal feedback
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are measured and used by the controller.  The thermostat is illustrative of negative

feedback.  Here the actual output is subtracted from the desired output to give an error

signal.  The controller uses the negative of this error to form the input to the plant.

Notice that the controller is not concerned with what is causing the error (unlike

feedforward), just in how to rectify it.  With particular relevance to neurophysiology

Carpenter (1988) identifies two other types of feedback, parametric and internal

feedback.  Parametric feedback (Fig 3.3d)  defines feedback used to alter parameters in

the controller.  Parametric feedback could be used to re-calibrate the controller of a faulty

central heating system that maintained temperatures five degrees in excess of the desired

value.  Internal feedback (Fig 3.3e)  on the other hand involves a prediction of the actual

plant output being fed back to the controller.  Returning to our central heating system,

this would be of use if the temperature sensor produces temperature readings less

frequently than the controller passes instructions to the plant.  Through a prediction of the

actual temperature, the controller may be able to pass more valuable instructions to the

plant than otherwise.  The accuracy of the model making the predictions could be

monitored by parametric feedback.

Sensor readings are prone to noise and inaccuracy.  It is usually desirable to attempt

to remove such noise through filtering.  For instance, filtering is successfully employed to

remove noise from radio communications signals whilst retaining the important

information.  A particularly important development in filtering was the proposal of the

Kalman filter (Kalman 1960).  Although this thesis does not make use of Kalman filters,

a high level overview of the underlying principles is provided due to their importance to

engineering applications (for further information see Maybeck 1979).  The Kalman filter

may be thought of as an optimal recursive data processing algorithm (Maybeck 1979).

The filter is optimal in the sense that it provides the best statistical estimate of the

variable in question.  Criteria for optimality could be that the estimate made is on average

correct, alternatively it may be more important to ensure that the maximum error is

reduced to a minimum.  A Kalman filter incorporates all of the information available to

obtain the most likely estimate of a system variable.  Note also that the filter does not

require storage of all data that it has processed at previous time steps.  All information
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required on all previous states is provided by feedback of the estimate made at the

previous time step.

At its most simple level, the filter bases its estimate on a function of the previous

estimate that it made and any new information currently available.  The importance of

each source of information to the estimate is weighted according to the confidence in its

accuracy.  For instance each source of information will in practice have an associated

level of noise.  The Kalman filter assumes this to be Gaussian white noise (noise drawn

from a Gaussian distribution that is uncorrelated through time).  The confidence of an

information source may be represented in terms of the standard deviation in error for that

information source (note that a Gaussian distribution is defined in terms of the mean and

standard deviation).  This formulation allows a maximum likelihood estimate of the value

of the system variable and the confidence associated with it (expressed as the standard

deviation of the noise).  The original confidence estimates must be measured in advance

and supplied to the filter.  The filter's estimate of the system variable (which is

statistically the best estimate based on all information previously seen) is fed-back to

form part of the input at the next time step.  Needless to say, although the Kalman filter

provides maximum likelihood estimates, the accuracy is dependent upon the reliability of

the information (e.g. confidence values) given to the filter.

As an example the central heating system used in the previous example could

conceivably employ a Kalman filter as follows.  Firstly, assume that the heating system

has two thermometers, one of which is known to be more accurate than the other (and

that the standard deviation in the noise of the thermometer readings has previously been

measured.  Secondly, that the heating system controller has just been switched on (and

has no previous estimate or prior knowledge of the current temperature).  Upon this

information alone, the most likely estimate of the temperature would lie in between the

readings of the two thermometers (closer to the more accurate thermometer, with the

weighting made according to the relative confidences in the readings of the two

thermometers).  The confidence in the estimate of the temperature would be calculated

according to the confidence in each temperature reading.  Having taken into account both
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readings the filter's temperature estimate is likely to be more accurate than either of the

individual thermometers (hence the standard deviation in the noise of the filter's

temperature estimate is less than that for either of the thermometers).  Assume that on the

basis of the temperature estimate made by the filter, the heater's control system decides

that it is too cold and switches the heating on.  Assume also that the rate of change of the

temperature with heating is constant and (as an extreme example) that the next time the

temperature is measured the most accurate thermometer has broken.  The knowledge that

the Kalman filter has at its disposal is its previous estimate of the temperature (with

associated confidence calculated from the combined confidence in thermometer

accuracies), the reading of the less accurate thermometer and the knowledge that the

current heat is a linear function of the previous heat. This information would be combined

in the manner previously described for the new temperature estimate.

3.3.2 Possible motion camouflage control systems

Adopting the same terminology as the previous sub-section, let the shadower be the

plant of the motion camouflage control system.  The desired behaviour of the shadower is

that it move so as to consistently be positioned on the camouflage constraint line.

Necessary external information is obtained through senses such as the visual system.  The

regulation of movement is the job of the controller.  Conceptually there are a variety of

different control system designs that could satisfy the requirements for motion

camouflage.

(a) (b)

Model
Plant

Controller Plant

Noise

Bodily operation

Movement

sensory
input Movement

sequence

Controller Plant

Noise

Bodily operation

sensory
input

Fig. 3.4. a, b. Abstract representation of two possible motion camouflage control systems.

(a) Closed loop with parametric and internal feedback.  Parametric feedback is used to report whether the body is
functioning as expected.  Internal feedback, to make a prediction of state when sensory input is not available.  This
system could be applicable to either the responsive or the predictive algorithm (assuming that sensory input is
monitored frequently). (b) Open loop with parametric feedback and feedforward relevant to the predictive
algorithm.  The system bases a sequence of output movements upon a single input and sample of environmental
noise.  Whilst undertaking the movement sequence, sensory input is ignored.
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The responsive algorithm, (that requires a rapid reaction to prey movement) is a

closed loop system: the output of the plant, movement, affects the controller input (e.g.

optic flow).  Being thorough, the system would benefit from parametric feedback to

ensure that the operation of the body is as expected (for instance, the parameters in the

controller may have to compensate for a damaged wing or cold muscles). Conceivably

the system could be further improved through use of internal feedback.  This would be

advantageous if muscular movements can be made more rapidly than sensory inputs can

be processed.  For example if a sensory input is received once every three movements,

two out of three of the movements could be prompted by a prediction of the result of the

system output. A diagram of the responsive control system is depicted in Fig 3.4a

incorporating both parametric and internal feedback.

Depending upon the extent to which the prey trajectory may be predicted from a

given amount of sensory information, the control system for the predictive algorithm

could be either open or closed loop.  If the prey movement is erratic requiring frequent

monitoring then the control system would need to be closed loop.  In this case the control

system design would be similar to that of the responsive algorithm.  The difference being

that the predictive controller would need to be more complex, taking into account the

recent history of the pursuit (see section 2.2.4).  Alternatively, an open loop controller

would be appropriate if a substantial portion of the prey trajectory can be reliably

predicted from a small sample of sensory information.  This is the same principle as the

hoverfly of section 3.1.1 computing the interception path according to image motion of

the target at the moment of first sighting.  Here a whole sequence of target movements

(defining the shadower trajectory) would be based upon a single sensory input.  In this

case, the system could possibly improve performance through use of feedforward to

sample environmental noise.  For instance, returning to the hoverfly example, knowing

the speed and direction of wind could enhance the accuracy of prediction.  It is suggested

that feedforward would be of lesser use in the closed loop systems due to the frequent

sensory sampling implicit in such a system. The predictive open loop system with

feedforward is shown in Fig 3.4b.
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The optimal control system for motion camouflage will to a large extent depend upon

prey motion and capabilities (see chapter 2) but also upon the level of importance of

remaining camouflaged.  If it were possible for a shadower to predict the prey's path in

advance, then an open loop system would be suitable for calculating the shadower's entire

approach route.  However in the more likely event that it is not possible to predict

substantial portions of the prey's trajectory, then the control system would need to closed.

All that remains is to look at the operation of biological controllers.

3.3.3 An introduction to the workings of biological sensorimotor controllers

A biological central nervous system characteristically comprises an immense number

of massively interconnected analogue processing units (the nerve cells known as

neurons).  Putting this into perspective the human brain is estimated to contain

approximately 1010 neurons, with each connected to as many as 104 others.  Calculation

of complex functions is distributed over a set of neurons where processing is undertaken

simultaneously.  This may be contrasted to a conventional digital computer which uses a

single unit to process instructions sequentially (although parallel computers may use two

or more processing units, the number is many orders of magnitude less than a brain).

Even though an individual artificial unit may process in excess of a million times more

instructions per second than any neuron, the computational power and efficiency of a

(sufficiently sized) set of neurons operating in parallel can be vastly greater.  However

care should be taken when interpreting such comparisons to acknowledge that the

operation of an artificial processing unit and a computer is very different to that of a

neuron and the brain.

The operation of a single neuron is itself quite complex.  Although within and

between species there are many different designs of neuron, the general properties of

each are similar.  In the interests of simplicity the discussion that follows shall

concentrate on the flow of information in and between neurons and avoid the chemical

processes involved.  For further information in this area the reader is directed toward a

standard neurophysiology text such as Carpenter (1996).
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A standard neuron consists of a set of dendrites, a cell body (soma) and an axon.

Inputs are received along the dendrites and progress to the soma.  If the accumulation of

input is sufficient an electric pulse (action potential) is fired along the axon.  If it is not,

the neuron does not output.  The amplitude of the electric pulse fired is always the same,

irrespective of whether the total input is marginally or hugely in excess of the firing

threshold.  However the amplitude does vary between neurons.  Following firing there is

a delay before the neuron is capable of firing again and then a period during which the

firing threshold returns to its normal level.  In this latter period a greater effort would be

required to make the neuron fire.  As such, in biological systems it tends to be the

frequency of a neuron firing rather than an individual firing event that tends to be of

consequence.

The output of the neuron is subsequently propagated along the axon until it reaches a

synapse with the dendrite of another neuron.  At the synapse the two neurons do not

touch.  The incoming signal is transferred from axon to dendrite by means of chemical

neurotransmitters.  It is received by receptors on the dendrite.  Once activated the

receptors can act to increase or reduce the chance of the neuron firing (i.e. the input is

either excitatory or inhibitory).  The position of synapse relative to the soma influences

the contribution made to the state of the neuron.  In general, the closer the synapse, the

greater the effect.  Through changing the modifications of the input signals made at the

synapses it is possible to alter the behaviour of a neuron.  It is precisely through such

changes that learning is thought to occur.  For instance, Hebbian learning postulates that

the synapses between cells are strengthened when the firing of pre-synaptic cell is

followed by firing of the post-synaptic cell.

Structures of neurons often specialise in performing specific tasks.  These networks

tend to be distributed over expansive areas of the central nervous system and frequently

share neurons with other circuits.  One such is the relatively simple network that provides

the sensorimotor Vestibular-Ocular-Reflex (VOR).
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The purpose of the VOR is to stabilise the image on the retina during head

movement, by instigating compensatory eye movements.  For instance, if the head is

moved to the left, the present image will be stabilised by moving the eyes to the right at a

similar speed and acceleration.  The VOR can be nothing other than an open loop system,

the time scale over which it is performed is too small for direct feedback to be returned.

There is however parametric feedback.  If the output eye movements are inappropriate

(e.g. if direction/size altering lenses were to be worn) visual feedback is used to

recalibrate the response (Churchland & Sejnowski, 1992).

The VOR involves a three-neuron-arc (Anastasio & Robinson, 1989) - three sets of

neurons connected in a chain.  The first layer passes signals concerning the present state

of head movement from the semi-circular canals in the inner ear to an intermediate set of

neurons, the vestibular nuclei.   From here the signal is projected to the eye muscles that

perform the necessary eye movement.  During this time the signal must be transformed.

This is necessary because the canal and muscle co-ordinate systems are rotated from each

other and are both non-orthogonal (Anastasio & Robinson, 1989).  In order to achieve the

transformation the information from different canals must be combined.  This is

apparently achieved at the vestibular nuclei where input from the semi circular canals is

distributed across the neurons (Anastasio & Robinson, 1989).  The calculation is

dispersed over the nuclei where different neurons undertake different parts of the

computation.  The vestibular nuclei are not exclusively dedicated to performance of the

VOR.  Some neurons are shared with the smooth pursuit (tracking a moving image with

the eye) and saccadic (abrupt high speed eye movements to new areas of interest)

subsystems whose signals are also distributed over the vestibular nucleus.  The problem

that faced neurophysiologists was to explain this organisation.

An attempt to do so was made by creating artificial neural network models of the

VOR (Anastasio & Robinson, 1989,  Anastasio, 1991) .  These models used a learning

rule (back-propagation, see also chapters 5, 6 and 7) to train the network to transform

simulated input from the semi-circular canals to an appropriate motor response value.

This learning rule adapts the artificial synaptic weights from a random starting point



3. BIOLOGICAL MECHANISMS AND ARTIFICIAL INTELLIGENCE

54

toward an error minimum for the response.  Although it was not a plausible argument that

the biological system had used the same learning rule it was reasoned that a combination

of evolution and biological learning processes could have found a similar error minimum.

Investigation of the trained artificial networks indicated that they exhibited some

similarities to their real counterparts.  In particular it was found that some of the artificial

vestibular nuclei were dedicated solely to either pursuit or VOR and some were shared.

Also resembling the biological network was the simultaneous inhibition and excitation of

different motor neurons by the neurons of the vestibular nucleus.  These results suggest

that althought the biological and artificial networks may learn in different ways, both

optimisation processes have a similar outcome.

As has been implied, the operation of biological systems is both very different to

human engineering and consequently can be very difficult to understand.  However

biological systems work and they do so well.  Although it is possible to conceive some of

the benefits of the neural organisation (for instance distributed processing is robust to

damage.  Loss of several neurons is inconsequential to the operation of the network), it is

very difficult to design such systems and do so without returning to conventional

engineering practices.  This is especially true when large numbers of neurons are

involved.  Little is known about how biological systems regulate changes to synaptic

weights over large networks, however artificial algorithms such as Backpropagation are

available.  In this section it has been seen that they are able to reproduce some of the

functionality of neural systems.

3.3.4 Control structures in the motor system

Before finishing this chapter with an introduction to artificial intelligence, this

section looks briefly at the motor system.  With respect to motion camouflage this system

would execute the instructions supplied by the control system.  This introduction

concentrates on the motor system of the human body as an example as this system has

been studied extensively.  The information covered has been largely derived from
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Rosenzweig, Leiman & Breedlove (1996), for more details the reader is encouraged to

consult this text.

The motor system is formed from a combination of muscles and movement

controllers.  Muscles are formed from long thin fibres.  Muscle fibres may be categorised

as either fast muscle fibres or slow muscle fibres.  As the name suggests fast muscle

fibres are responsible for performing rapid movements but tend to fatigue rapidly.  Slow

muscles are less strong but are capable of maintaining contractile forces over long

periods.  Most muscles are formed from a combination of fast and slow fibres.  For

instance the extra-ocular muscles (that move the eyes) are formed from fast fibres.  Slow

muscle fibres are of greater importance to maintaining posture.

The activity of muscles is controlled by motor neurons travelling down through the

spinal column.  The pattern of firing of motor neurons control the onset, coordination and

completion of muscular operation.  Motor neurons responsible for operating fast muscles

tend to have a wide diameter, so that signals may be propagated rapidly.  Slow muscles

tend to be controlled by smaller neurons.

Motor neurons (which typically integrate many thousands of signals received at their

synapses) connect to muscles at relatively large structures known as neuromuscular

junctions.  The diminished response from fatigued muscles following excessive use is in

part due to a reduction in the effectiveness of these neuromuscular junctions.  The ratio of

motor neurons to muscular fibres is proportional to the precision required in control of

the muscle.  For example, motor neurons controlling ocular movements may synapse at

as few as three fibres, whereas neurons responsible for leg movements may synapse at

many hundred fibres.

Movement coordination is also highly dependent upon information fed back from the

muscles, tendons and joints.  For example this feedback may describe the current state of

the muscle or the position of a limb.  Feedback is provided by muscle spindles and Golgi

tendon organs.  Muscle spindles run parallel to the muscles themselves, whereas Golgi
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tendon organs are attached at one end to the muscle and at the other to the tendon (see

Fig. 3.5).  The spindles are largely responsible for giving feedback when the muscle is

stretched and the Golgi organs responsible when it is contracted (thus detecting when the

muscle and tendon are overloaded).  The sensitivity of muscle spindles is controlled by

motor neurons known as gamma motor neurons.  This change of sensitivity is manifested

by a change in length (and tension) of the spindle.

Motor neurons typically receive many thousands of inputs.  Some of these are signals

fed back from muscles, the vast majority can be traced back to the cortex and in particular

the primary motor cortex.  This is thought to be the area responsible for initiating

voluntary movements.  The primary motor cortex comprised from a topographic map of

neurons with different regions responsible for controlling different areas of the body.

What is especially interesting is the organisation of cells, in that adjacent areas of the

body are controlled by adjacent areas of the map.  The area of the motor cortex devoted

to each body region is proportional to the precision of movement required for the

corresponding bodily area.  For example the hands and tongue occupy disproportionately

large areas of the cortex.

Fig. 3.5.  Muscle receptors.  (a) the muscle is stretched.  Both the Golgi tendon
organ and the spindle are excited.  (b) only the Golgi tendon organs are excited.
If the muscle were relaxed none of the receptors would be excited.
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3.4 Artificial Intelligence

Artificial Intelligence has been defined by Minsky (1968) as "the science of getting

machines to do things that would require intelligence if done by men".  In fact, this is

only one of many definitions of artificial intelligence.  Russell & Norvig (1995) list eight

alternative definitions that have been proposed, that they organise into four categories

according to the aim and measure of success of artificial intelligence.  These are

concerned with provision of systems that:

• think like humans;

• act like humans;

• think rationally;

• act rationally.

In these definitions the difference in aim is whether or not the system is intended to

emulate thought processes or behaviour.  The difference in success is whether or not the

intelligence of the system is measured against a human or against alternative criteria.  The

difference between these definitions reflects the different approaches taken towards

solving artificial intelligence.  In this thesis the division is seen as being between the

symbolic approach and the connectionist approach.  Before these approaches are

introduced the following definition of artificial intelligence provided by Schalkoff (1990)

seems to broadly cover the categories mentioned above: "The field of study that seeks to

explain and emulate intelligent behaviour in terms of computational processes."

An early theme in AI was to set up a computational model of logic. There had

already been a long history of philosophic and mathematical study of logic to act as

foundation. This went back to the work of Aristotle (Logic) and was added to by many

eminent people in the history of science including Galileo, Descartes and Leibniz (Luger

2001, Russell and Norvig 1995). In the 19th century Boole initiated a major advance by

expressing the laws of logic in mathematical form.
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Boole's calculus was at the level of propositions, where a proposition is a basic

statement that is either true or false.  For example 'the integer 2 is prime' is a true

proposition.  Boole showed how more complex propositions (sentences) could be built up

out of basic propositions and symbolic operators (AND, OR and NOT) and how to

evaluate these complex propositions as true or false. Certain sentences, for example (P

OR (NOT P)) where P is a proposition, are always true irrespective of the truth value of P

itself.  These are called valid sentences, or tautologies.  The calculation of true/false is

well known in the field of computer science as Boolean Algebra.

Subsequently Frege (1879) extended the expressiveness of logical sentences by

introducing Predicates, which are propositions incorporating variables.  Predicates are

true or false according to the value of the variable.  For example 'x is prime' and 'm is less

than n' are predicates.  Along with the propositional operators Frege introduced

quantifiers (For all) and (There exists).  These allowed sentences such as the following to

be made: (There exists x) ('x is a natural number' AND 'x is even' AND 'x is prime')

which in this case is true because 2 is such a natural number.  This logical system is

known as the First Order Predicate Calculus.  It is possible to have 2nd and higher order

logics by introducing variables which range over functions, and over functions of

functions and so on.  This is out of the scope of this introduction.

The other major early advance of mathematical logic was the introduction of proof or

deduction.  This identified a subset of sentences as theorems by a purely formal technique

(deterministic rules for transforming one sentence into another so that if the first is a

theorem so is the other).  The whole process was based upon an initial selection of

sentences to be axioms (which may be thought of as basic theorems).  There were now

two ways of assessing sentences, the formal derivation of a theorem and the calculation

of whether it was valid following the approach of Boole.  If it is possible to select axioms

and rules for transforming sentences so that the set of theorems are identical to the set of

valid sentences a logical system is said to be complete.  Deduction rules can always be

represented algorithmically so that from a later AI point of view it became theoretically

possible to code up logical reasoning in a program.
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By the time of the publication of Principia Mathematica by Whitehead and Russell

(1910) the propositional calculus and first order predicate calculus were well established

and it was known that the propositional calculus was complete in that the provable

sentences were valid and vice versa. The result for the predicate calculus was not

established until 1931 when Gödel demonstrated the completeness theorem.  However if

the Predicate Calculus is augmented by enough extra structure to express arithmetic

Gödel (1931) also showed in his incompleteness theorem that there are true sentences

which cannot be proved.

In principle all true arithmetic statements can not be established algorithmically

(likewise for any equally complex domain).  This is an example of a non computable

problem as investigated by Turing (1936).  Turing aimed to establish the limits of what

could and could not be computed algorithmically.  Turing defined an abstract device, the

Turing Machine, which has a finite number of internal states and an unbounded storage

medium (the tape) each cell of which can hold one of a finite number of symbols (with no

loss of generality they can be 0 and 1 as with typical digital computers) and at any

computation step one cell is read/written to.  The machine operates according to a totally

defined set of rules taking as input the internal state and the symbol read and as output a

change in state, a write to the cell and a selection of a new cell.  Turing provided an

argument, which is generally accepted, that any algorithmic process can be emulated by a

Turing machine.  As such something is non computable if it can be shown that a Turing

machine cannot compute it.  Turing's abstract machine predated digital computers as they

are recognised today. Turing himself was involved in the early development of digital

computers and very early understood the potential for AI.  He is famous for proposing the

Turing test whereby if an observer is incapable of discriminating between a human and a

computer in a typed interaction the machine is judged to have demonstrated intelligence.

The advent of attempts to build artificial systems really began after World War II when

digital computers had demonstrated their ability to perform the computation necessary for

AI investigations.  During this period the symbolic approach to artificial intelligence

dominated.
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3.4.1 The symbolic approach

The symbolic approach to artificial intelligence is effectively concerned with the

development of software programs built on a set of logical rules grounded in Boolean

algebra.  These rules manipulate symbols, so as to logically search to solve a problem.

The commercial product of this approach are expert systems.  These are systems designed

to capture knowledge of experts in the field so as to make decisions about real world

problems.  Human experts' understanding and practical experience are coded into a set of

rules, which, together with the logical rules of inference allow the systems to deduce

answers to questions.  Expert systems tend to be written for specialist domains and

incorporate thousands of rules.  A famous example of an expert system is MYCIN

(Shortliffe 1976), designed for the diagnosis of infectious blood diseases.  The system

asks a series of questions in response to which a patient would enter their symptoms.

Based on a search guided by a set of rules, MYCIN is able to rate possible conclusions,

often giving more accurate diagnoses than human experts.  However, despite this success,

expert systems may be criticised for being brittle, in that if knowledge of a certain

situation has not been provided they are likely to give an incorrect response (Luger 2001).

Also conventionally, expert systems are not able to learn from their experiences, so

unless the new knowledge is supplied they will fail again in the same situation.

The symbolic approach to artificial intelligence has been seen to explicitly code

knowledge as symbols to that are manipulated sequentially by logical algebra.  In this

respect it is attempting to recreate our perception of our own thought processes.

Certainly this is the case with MYCIN, where a task that is already understood has been

automated in a manner that is understood.  As so much of what is commonly regarded as

intelligent behaviour involves the logical manipulation of signals it is reasonable to

expect that this approach will always have significance to AI.  It is also deserves mention

that the automating of logical systems pioneered by AI investigators has been found

useful in the field of high integrity computing.  Here automated proof tools may be used

to see whether a safety related program fulfils its requirements (Rushby 1993).
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However, artificial intelligence faces many other problems that are poorly understood

and do not necessarily have any direct relationship with human thought.  For example

interpreting sensory information and acting on that interpretation.  It is probably fair to

say that many insects' ability to interpret their vision surpasses current artificial

technology, even though no insect could pass the Turing test.  In such a case where the

solution to a problem is not understood, an alternative approach is to model the

underlying mechanism responsible for solving the problem.  This is the basis of the

connectionist approach.  Whereas the symbolic approach has its roots in introspection the

connectionist approach is inspired by neurophysiology.  The connectionist approach is

characterised by parallel distributed processing.  Calculations are distributed over many

different processing units (i.e. neurons) and undertaken simultaneously.  Following this

approach knowledge is coded implicitly (for example as the synaptic weightings of

neurons) rather than explicitly as symbols.

3.4.2 The connectionist approach

The first work widely recognised as artificial intelligence was connectionist.  This

was the proposal of a computational model of a neuron by McCulloch & Pitts (1943).  A

McCulloch & Pitts neuron is shown in Fig 3.6a.  The neuron takes an array inputs that

are weighted through multiplication (analogous to the alteration of the incoming signal

that takes place at synaptic connections see section 3.3.3).  If the sum of the weighted

inputs (i.e. the inner product of the input vector and the weight vector) exceeds a certain

threshold value, the neuron fires (i.e. 1 is output), otherwise it outputs 0.  Although

simple, this model is capable of modelling basic Boolean operations.  But, to do so, the

weights had to be set by hand.  In 1958, Rosenblatt presented a learning rule for the

Perceptron (a McCulloch & Pitts neuron).  Learning is achieved by modifying the

weights in the following way (the weights are initialised randomly).  If the Perceptron

output is too small (i.e. 0 is output when the target is 1) a value proportional to the

corresponding input is added to each weight.  If the output is too large, the value is

subtracted  This learning rule is guaranteed to teach the Perceptron any problem that it

can model in a finite number of steps.  The Perceptron learning rule is only applicable to

networks with binary output.  It was not long before Widrow (1962) proposed the Least
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Mean Square algorithm, capable of training Perceptrons with linear output functions

(capable of performing linear regression).  This algorithm firstly involves calculation of

the error of the network with each presentation of input (where the error is represented as

the square of the difference between the target output and the actual output).  The error is

considered as a function of the weights.  Each weight is changed in proportion to the

negative of the slope of the error with respect to that weight (e.g. if the rate of change is

positive, the weight is increased, if it is negative it is decreased).  These discoveries were

seen as extremely encouraging, until Minsky & Papert (1969) showed that the functions

that Perceptrons (with binary or linear outputs) were capable of modelling were

extremely limited, to the extent that they could not manage many fundamental

classification tasks.  For example the Perceptron is not capable of distinguishing between

two classes that can not be separated by a straight line.  Such problems are termed to be

linearly inseparable (see Fig. 3.7), the most famous example being the XOR function.  As

a result interest in the connectionist approach dwindled.

Nevertheless, research continued over the following decade or so.  Self organising

maps, inspired by the topographical arrangement of neurons in the brain were developed

(Willshaw & von der Malsburg, 1976, Kohonen 1982) as were the autoassociative

memories of Hopfield (1982).  Self organising maps (as shall be seen in section 3.4.6)

are unsupervised classifiers (i.e. they require no teacher) and are appropriate for tasks

such as data compression.  Hopfield's auto-associative memories were based on studies in

physics of the energy dynamics of lattice models.  Applications included image

restoration (e.g. matching a corrupted image with the intact original).  The publication of
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Fig. 3.6.  (a) A McCulloch and Pitts node.  Inputs are represented by xi, weights by w i.  (b) Heaviside
activation function (utilised by Rosenblatt's Perceptron.  (c) Sigmoidal activation function (utilised by
Multilayer Perceptron).
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the Backpropagation algorithm (Rumelhart, Hinton & Williams 1986) is arguably

responsible for the resurgence of interest in neural computing.  This provides a method to

train networks formed from multiple layers of Perceptrons (Multilayer Perceptrons or

MLPs).  Multilayer Perceptrons act as universal function approximators, capable of

performing the non-linear classification tasks upon which the Perceptron had failed.

Motion camouflage is a problem of sensorimotor integration, that effectively reduces

to non-linear regression (in that the motor output is a function of the input, where both

input and output are measured on a continuous scale, rather than as discrete classes).

Bearing in mind that biological systems have solved such problems successfully motion

camouflage lends itself to the connectionist approach.  The remainder of this section

provides an overview of four of the more successful neural network approaches:

Backpropagation, Radial Basis Function networks, Support Vector Machines and

Kohonen Self Organising Maps.

The first three approaches are categorised as supervised learning.  This is to say that

the networks are trained to learn a function from a training set of inputs and target

responses (as with the Perceptron and Least Mean Square training algorithm).  Before

going on to introduce these networks it is helpful to provide a brief introduction to a

generic problem posed in attempting to learn the most accurate representation of the

0 1

1

Fig. 3.7.  Examples of classification tasks.  (a) The two classes are linearly separable (the line
represents a possible decision boundary).  (b) The classes are linearly inseparable.  (c) The XOR
problem represented graphically.  The two classes X and O can not be separated by one straight line.

Fig 3.8 (a).  The network is too simple to model the target function, the bias is high and the variance is low.
(b)  The network is complex over-fitting the training data.  The bias of the network is low, but the variance is
high (after Bishop 1995).
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target function.

The objective of training may be seen as to minimise the expected error of the

network (i.e. to make the network approximate the target function as closely as possible).

As the true target function describing the training set is likely to be unknown, the

accuracy of the network is dependent upon the available training data.  There may be

many different networks (describing different functions) that are capable of modelling the

training data accurately.  The difficulty is in choosing the network that best matches the

actual target function.  Choice of an overly complex network (e.g. a network with a large

number of nodes) risks over-fitting the training data, i.e. the network may model details

of the training data that are artefacts of the training sample chosen (e.g. due to noise or

too few training samples).  Therefore despite perfectly modelling the training data the

network may have a large expected error.  Conversely a network that is too simplistic

may ignore important details that are representative of the truth.  In general the ideal

choice for the classification function lies between the two.  This trade-off is also known

as the bias/variance dilemma.  The network error may be seen as originating from two

sources, the (bias)2 and the variance (see Bishop (1995) for details), where the bias refers

to the average error of the network from the actual target function and the variance is the

extent to which the network is sensitive to the data in the training set (i.e. the variance is

effectively a confidence interval that is a consequence of the inadequacy of the training

data set).  As shown in Fig 3.8a if the network is too simplistic, it will have a high error

and comparatively low variance (i.e. the error is high regardless of the training data set).

In Fig 3.8b, the error is low, however the variance is high (a different training is likely to

produce a markedly different network).  Specifically, the problem posed to learning

machines, is how to judge when the optimal balance has been struck between bias and

variance.

3.4.3 Backpropagation

Backpropagation is an algorithm that may be used to train Multilayer Perceptron

networks.  Multilayer perceptrons are universal function approximators which may be

applied to both classification and regression problems.  The technique has been
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established for almost 20 years and is still used widely.  Example applications include:

spatio-temporal signature recognition (Everitt & McOwan 2003), visual emotion

classification (Anderson & McOwan 2003), speech recognition (Rimer & Martinez

2002), missile guidance (Efe, Kaynak, & Wilamowski 2002), public key cryptography

(Yee & DeSilva 2002), prediction of tree growth factors (e.g. trunk circumference) from

environmental factors (Jutras et al. 2002), predictions of stockmarket growth (Wang,

Okunbor & Lin 2002) and recognition of Mongolian characters (Efe, Kaynak, &

Wilamowski 2002).

A Multilayer perceptron (see Fig 3.9) is a feed-forward neural network formed from

multiple layers of nodes (i.e. the input signal is propagated forward through the network

layer by layer, along connections between nodes in neighbouring layers).  The first layer

of the network corresponds to the vector presented as input.  The final or output layer of

the network corresponds to the network output.  In between there can be any number of

hidden layers.  MLPs tend to be fully connected (though it is not essential).  This means

that each node in a hidden layer or the output layer receives a signal from each node in

the previous layer.  Connections between nodes are weighted.  Each node in the hidden

layer and output layer acts to compute an activation function of the sum of its weighted

inputs.  Activation functions tend to be sigmoidal (e.g. Fig 3.7c) and are necessarily

differentiable to enable training.  It is the non-linearity of the activation functions that

enables the network to perform non-linear classification tasks.

Fig. 3.9.  Abstract representation of a Multilayer Perceptron with 2 hidden layers.  Note that in Backpropagation
the connections between nodes are used to propagate error signals back through the network (see section
5.1.1).

…
…

Connection: (weight * input)

Hidden/output node.  Sigmoidal
function of sum of weighted inputs

Network input/output
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Backpropagation training is supervised and follows an iterative process. In each

training iteration the network is provided with an input and the target response.  The

purpose of training is to find a combination of weights for which the network error is at

an acceptable level.  In accordance, at each training iteration the current network error is

calculated (represented as a function of the difference between the actual output and the

target output).  Weights are adjusted in proportion to their estimated contribution to the

error (i.e. the rate of change of the error with respect to that weight) and an adaption rate.

The error signal is passed back along the connections of the network layer by layer, so

giving Backpropagation its name.  Although it has been shown that a network with a

single hidden layer can model any continuous function (see Haykin (1999)) and a

convergence proof for Backpropagation exists (based upon infinitesimally small weight

changes and infinite training time (Rumelhart, Hinton & Williams 1986))  training may

take many iterations and the network may get trapped in local error minima (e.g. when

the error is unacceptably high but the rate of change of the error with respect to the

weights is zero).

A particular problem associated with Backpropagation is deciding when to terminate

training.  For instance continuing training for too long risks overfitting the target

function.  A variety of methods to combat this problem have been suggested (see Haykin

1999 for further details on all approaches mentioned here).  The first technique is cross

validation.  Here the training data is divided into two sets.  The first set is used for

training the network.  Training is undertaken as normal, however training is periodically

interrupted for the network to be tested (with fixed weights) on the second set of data (the

validation set).  The training process is stopped when the error resulting from the test on

the validation set is at an acceptable level (or at a minimum).  Hence as the network is

being tested on data that has not been used to adapt the weights, it is more likely to

demonstrate better generalisation.  The problem of overfitting may also be addressed by

refining the structure of the network.  At the most simple level, if overfitting is suspected,

the network complexity could be reduced (e.g. by removing weights) and the network

retrained from the beginning.  Alternatively, the complexity of the network may be



3. BIOLOGICAL MECHANISMS AND ARTIFICIAL INTELLIGENCE

67

reduced during training by removing or weakening weights.  This process is known as

network pruning.  Criteria proposed for the removal of weights include the magnitude of

the weight (the somewhat risky conjecture being that weights with high magnitude are

more likely to be of importance to the network and therefore that weights with low

magnitude may be removed).  Alternatively the Optimal Brain Surgeon technique

(Hassibi & Stork 1993) considers the second order derivative of the error surface in order

to select weights to eliminate for which the increase in error incurred is minimal.

Another drawback of standard Backpropagation is that the training technique is

inefficient and it may take many training iterations before the network reaches the desired

accuracy (if at all).  Many methods have been proposed with the aim of decreasing

training time (a detailed coverage is out of the scope of the introduction, for detailed

information on the methods discussed below the reader is referred to Bishop (1995)).

Heuristic techniques for decreasing training time include the delta bar delta rule and

Quickprop.  The delta bar delta rule acts to change the adaption rate of a nodes weights

throughout training (whereas with standard Backpropagation the adaption rates remain

constant).  The underlying principle is that if weight changes oscillate between positive

and negative values on successive training iterations, the adaption rate should be

decreased.  If the weight change retains the same sign over successive training iterations

it should be increased.  Quickprop attempts to approximate the error as a function of each

of the weights using a quadratic polynomial.  After the coefficients of the polynomial

have been estimated in consecutive training steps, the weight is moved to its minimum.

In practice both of these techniques encounter a variety of difficulties and require an

additional level of handcrafting to standard Backpropagation to improve training

efficiency.  A more principled approach is that of conjugate gradient descent.  At each

stage of the algorithm a line search is carried out in the direction of the change to the

weight vector.  The search is for three points, where the middle point has an error less

than the outer points.  A quadratic polynomial is fitted to these points and weights

changed to lie at the minimum of the polynomial.  Using conjugate gradient descent, the

next search direction would not be the weight change given by Backpropagation.  It

would be chosen so that the component of the error gradient parallel to the previous
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direction remained zero (otherwise the path down the error surface is likely to zigzag).  If

the successive search direction satisfies this criteria it is said to be conjugate.  Variants

and extensions of this approach are covered in both Bishop (1995) and Haykin (1999).

3.4.4 Radial Basis Function networks

The second set of networks to be considered are RBF networks.  RBF networks were

pioneered in the late 1980s in the work of Powell (1987), Broomhead & Lowe (1988) and

Moody & Darken (1989).  Recent applications of RBF networks include: distinguishing

between humans, pets and other objects for surveillance systems (Gutta & Philomin

2002), face recognition (Haddadnia, Ahmadi. & Faez 2002), protein sequence

classification (Wang et al. 2002) and diagnosis of thyroid disease (Ozyilmaz & Yildirim

2002).

Radial basis function networks take a slightly different approach to function

approximation.  To model a problem, the RBF network attempts to fit a curve in

multidimensional space.  RBF networks are non-linear, fully connected and feed-forward.

They consist of three layers of nodes, an input layer, a single hidden layer and an output

layer (see also Fig. 3.10).  Each layer of nodes serves a different purpose.  The input layer

represents the vector presented as input to the network.  In contrast to the MLP which

calculates the inner product of the input and weights, the RBF network is based on the

distance between the two.  Each node in the hidden layer calculates a Radial basis

function (typically Gaussian) of the distance between the weights connecting that node to

the input layer (i.e. the weights define the centre of the node, the function calculated at

the node is also referred to as a kernel function).  This calculation effectively serves to

cast the problem non-linearly into a high dimensional space (the space defined by the

hidden layer is typically of higher dimension than the input space).  Finally, the nodes of

the output layer bear more resemblance to those of a MLP by calculating a linear

summation function of their inputs.  Haykin (1999) traces the mathematical justification

of this non-linear transformation to a high dimensional space followed by a linear

transformation to Cover (1965).  With respect to pattern classification problems Cover
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states that a problem mapped into higher dimensional space is more likely to be linearly

separable than in low dimensional space.

Training an RBF network is undertaken in two stages.  Although the training is

ultimately supervised, the first stage is unsupervised.  The weights connecting input to

hidden layer tend to be self organised (for instance using a clustering algorithm such as k

means, expectation maximisation or even training similar to Kohonen networks, see

Bishop (1995) for further information).  The weights then remain fixed, defining the

centroid of the radial basis function for the respective node.  Also the widths of the radial

basis function (e.g. the standard deviation of Gaussians) may be set using a nearest

neighbour technique operating on the distance between each node’s centroid and the set

of surrounding centroids (e.g. the root mean square distance to the P nearest centroids).

Thus the hidden layer is a Gaussian mixture model.  The second stage of training uses

Least Mean Squares (see section 3.4.2).  The weights connecting the hidden layer to

the output are adjusted in proportion to the contribution of that node to the error of the

network.  As in Backpropagation the error is a function of the distance between the actual

output of the network and the target output.

Both MLPs and RBF networks are universal function approximators and as such

there will always be an RBF network capable of performing the same function as an MLP

and vice versa.  However practically, the RBF network training process is likely to be less

time consuming than for Backpropagation at the expense that an RBF network is likely to

…
…

Connection: (weight - input)2

Hidden node (RBF of sum of input
connections)

Connection: (hidden node output * weight)

Output node, function of dot product
of hidden layer outputs and weights

Network input/output

Fig. 3.10.  Abstract representation of a Radial Basis Function network.  Note that the sum of input connections
calculated at the hidden node is a measure of the distance between the RBF centroid (determined by the nodes
weights) and the current input.
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require more parameters for the same modelling accuracy (Haykin 1999).  Determining

the number of hidden nodes to accurately model a problem requires a degree of

handcrafting (especially as clustering techniques are susceptible to finding sub-optimal

solutions incorrect initialisation).  Such problems may be remedied through use of

Support Vector Machines as detailed in the next section.

3.4.5 Support Vector Machines

A third technique for designing feedforward networks that has more recently become

popular is the Support Vector approach (Vapnik 1995).  Recent applications of support

vector machines include face detection (Ng & Gong 2002, Smeraldi & Bigun 2002, Li &

Tang 2002), disease classification based on protein sequences (Sheng et al. 2002),

phoneme classification (Ech-Sherif et al.  2002), prediction of airborne pollutants (Lu et

al.  2002), recognition of abnormal usage of information systems in order to detect

intruders (Mukkamala, Guadalupe & Sung 2002), arc welding quality control (Feng et al.

2002).

Seen from a connectionist viewpoint, Support Vector Machines (SVMs) contain three

layers of nodes (see also Fig. 3.11):  An input layer, a single hidden layer of non-linear

nodes and a linear output layer.  SVMs effectively form a superclass of networks

encompassing RBF networks and MLPs with a single hidden layer (with respect to these

…
…

Connection (input * weight)

Hidden node (Kernel function of dot
product of inputs and weights)

Connection (hidden node output * weight)

Output node, function of dot product
of hidden layer outputs and weights

Network input/output

Fig. 3.11.  Abstract representation of a Support Vector Machine.  The weights on the connections between the
input and each node in the hidden layer may be considered to represent the coordinates of each support vector
(the number of support vectors is the number of hidden nodes).
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architectures SVMs provide a different means of training).  With a few changes, SVM

can be used to construct both pattern classification and non-linear regression networks.

SVMs are grounded on the Structured Risk Minimisation principle which directly

addresses the bias variance dilemma (section 3.4.2).  SRM is introduced as follows.

This text is largely referenced from Burges (1998) and Müller et al. (2001).

As described previously, the objective of training is to minimise the actual error of

the network (i.e. the average error when measured against the target function).  The

expected risk (actual error) of a network may be estimated in terms of the sum of its

empirical error (the average error on the training set) and the Vapnik-Chervonenkis (VC)

confidence.  This estimate, which approximately quantifies the bias variance trade-off is

known as the risk bound.  The VC confidence itself is a function of the VC dimension (a

measure of the capacity of the network discussed in the following paragraph) and the size

of the training data set.  The VC confidence increases monotonically with VC dimension.

The capacity of a network is its ability to learn any training set without error (Burges

1998).  The capacity may be measured in terms of the VC dimension.  The VC dimension

for a set of classification functions (e.g. a machine with all possible combinations of

parameters) is the number of points that can be correctly classified, for all possible

labellings of that set of points (if there are n points there are 2n labellings).  For example,

a MLP with a large number of hidden nodes would have a high VC dimension and

consequently would be more likely to overfit a training data set (see also Fig 3.8b).

Therefore despite having a low empirical error, the VC confidence term would be high.

Margin

Optimal
Hyperplane

Fig. 3.12.  The optimal hyperplane constructed by the support vector machine.  The points circled
represent the support vectors.
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In most cases the lowest risk bound will given by a network of intermediate empirical

error and VC confidence.

Given a set of networks with different capacities the risk bound, therefore, provides a

principled approach to the selection of the network that is most likely to have the best

generalisation performance.  The risk bound is independent of the actual target function.

This principle is applied to the case of obtaining the optimal classification boundary for

linearly separable data as follows.

If the data is linearly separable, there may be many linear classification functions

(each representing a hyperplane in feature space) that accurately separates the classes.

There will only be one that can be considered to separate the data optimally.  This plane

is referred to as the optimal hyperplane and is most likely to give the best generalisation

performance.  The optimal hyperplane is positioned at maximum distance from the

closest data point of each class.  The sum of these two distances is referred to as the

margin of separation.  Points lying on the boundary of the margin of separation are

support vectors.  It is these critical elements of the training data alone that determine the

optimal hyperplane (see Fig. 3.12).  If all data points but for the support vectors were

removed from the training set, and training repeated, the optimal hyperplane would be the

same.  The Support Vector Machine searches for the optimal hyperplane by maximising

the margin of separation.  This search is cast as a quadratic optimisation problem (that

has a unique solution) based on the use of Lagrangian multipliers.  The quadratic

optimisation determines the weights between hidden layer and the output.  Non-support

vectors are given weights of 0 (i.e. the hidden layer is formed from the support vectors

only and hence the number of nodes in the hidden layer are automatically determined).

This maximisation process is in fact equivalent to implementing the Structured Risk

Minimisation principle so as to minimise the risk bound.  The hyperplane is selected so

that the empirical risk of the machine is minimal.  Secondly the capacity of the machine

is reduced (decreasing the VC confidence) by reducing the set of hyperplanes possible

(i.e. a hyperplane can not pass within a critical distance of the training data points).
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The choice of a linear decision function may appear somewhat limiting.  However

non-linear problems may be addressed by mapping the data non-linearly into a high

dimensional feature space (e.g. linearly inseparable problems may be mapped to a feature

space in which they are separable).  This would appear to pose two problems.  Firstly

finding a suitable non-linear mapping.  Secondly performing calculations in the feature

space may be computationally prohibitive (the feature space could have infinite

dimensions).  As training depends only upon the calculation of dot products, both

problems can be avoided through use of kernel functions.  It is possible to perform dot

product calculations in this high dimensional space through use of kernel functions,

without ever explicitly using or even knowing the mapping.  Training follows a similar

process to that described above with the mapping being simply carried out by the kernel

function.  The kernel functions could for instance be radial basis functions (in which case

the network would emulate an RBF network), or sigmoidal (then the network would

resemble a MLP).

If the SVM is to be applied to regression, a linear regression function is estimated in

the feature space that lies within a specified distance of all training points.  Training the

network again is posed as a quadratic programming problem, in which a cost function is

minimised.  In training decisions must be made as to the distance from the regression

estimate that training points must lie within, or to the number of training points that may

lay outside the error boundary (in which case this distance is automatically determined).

A problem associated with non-linear SVM is that there is no control over the number of

support vectors that the algorithm may choose.  With large data sets the algorithm may

choose a prohibitively large number leading to inefficient execution (Haykin 1999).

Secondly there are still numerical difficulties involved in the quadratic programming

problem when the training set is large making computation lengthy and memory intensive

(Joachims 1999).

3.4.6 Self organising maps

The final neural network approach to be considered is Kohonen’s self organising

feature map (SOM).  The purpose of a SOM may be seen as to learn a discrete low
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dimensional map of a high dimensional input space.  The SOM is most frequently used

for data compression and pattern classification tasks.  Applications for SOM’s have

included: document classification (Bakus, Hussin. & Kamel  2002, Freeman, Yin &

Allison  2002), protein classification (Pollock, Lane & Watts 2002), Arabic character

recognition (Klassen & Heywood 2002), gesture recognition (Ishikawa & Sasaki 2002)

and face classification (Navarette & Ruiz-del-Solar 2002).

The architecture of the SOM is again fully connected and feed-forward, however the

network is formed from two layers of nodes (see Fig. 3.13).  The first layer is the input

vector and the second layer is the feature map. The structure of the map is inspired by the

topographical arrangement of neurons in the brain (e.g. the cortex) and is typically

formed from a one or two dimensional grid of nodes, where each node is associated with

a higher dimensional point in the input space.  The point in input space corresponding to

each node may be considered as being represented by the weights connecting the input to

that node.  In operation, the SOM will map the current input presented, to the node on the

map that most closely resembles it (in terms of the distance weights connecting that node

to the input and the actual input).

Ideally, the SOM training process maps similar inputs to similar regions on the

topographic map.  SOM training is unsupervised, effectively meaning that each input also

acts as the target.  On presentation of an input, the weights of the node that is closest to

the input (in terms of a distance metric such as the Euclidian distance) are adapted to

Fig. 3.13.  Abstract representation of a Kohonen self organising map.  The weights on the connections
between the input and each node in the hidden layer may be considered to represent the co-ordinates in
feature space of the nodes.  The map has a 2D topology (shaded grey).

Connection: (weight - input)2

Network input/output

Node (Sum of connections).

Node with least sum gives output
(e.g. its 2D position on grid)
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bring them closer to the current input.  Also the weights of the nodes neighbouring (in

terms of their position on the feature map) the closest node, will have their weights

adjusted in proportion to their proximity (on the feature map).  Thus particular clusters of

nodes on the map will correspond to particular features in the input space.  The size of the

neighbourhood is gradually reduced over the training period in attempt to distinguish

between the finer features in the input space.  Similarly, the rate at which the weights are

adapted is reduced over the training process (i.e. for exactly the same vector of weights

and input, the change made to the weights would be of lesser magnitude at later stages of

training).  The correct setting of these rates again is likely to require a degree of

handcrafting.

3.4.7 Choice of approach to model motion camouflage

This section has introduced four neural network approaches that are in widespread

use.  The first three (MLPs, RBF networks and SVMs) act as universal function

approximators and are applicable to non-linear regression problems such as motion

camouflage.  Conversely, the Kohonen Self Organising Map is suitable for classification

tasks rather than regression and inappropriate.

SVMs have recently become popular, with their appeal lying in their basis in

statistics.  Despite this, it is probably true to say that there is still to be found an

application where support vector machines have been found to significantly outperform

all other approaches (Hearst 1998).  For example, more recently in a comparison on a

regression problem (a geographical spatial analysis task) SVMs were observed to perform

slightly but not significantly better than MLPs (Gilardi & Bengio 2002).  Comparisons of

RBF networks and MLPs on regression tasks have also generally yielded little difference.

For instance in a statistical comparison, there was found to be no significant difference

between the probability estimate (in a medical task) given by MLPs trained using

Backpropagation and RBF networks (Li et al. 1997).  In another comparison involving

the prediction of river flow, MLPs trained with Backpropagation were shown to give

more accurate predictions than RBF networks (Dawson & Wilby 1999).  Therefore for
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the purposes of this thesis there is no reason to expect (a priori) that any one of these

techniques should give a dramatically better result than any other.

The majority of this thesis concentrates on MLPs trained using Backpropagation.

The main reason for this is that the work is aimed to interest biologists and psychologists

as well as computer scientists.  The MLP architecture and Backpropagation training

technique are arguably the most widely known and best understood in the biological

community.  From the perspective of biological plausibility it is thought fair to say that

the architecture of the MLP resembles the wiring of biological systems at least as well as

the other architectures discussed.  The Backpropagation algorithm also allows greater

flexibility in training a MLP than the SVM approach (e.g. a SVM is constrained to a

single hidden layer).  Two criticisms of this choice of Backpropagation are: that

Backpropagation training is time consuming.  This is conceded, however the time taken

to train the networks in early experimentation was not judged to be too great a hindrance

to warrant use of a different technique (or trial of techniques intended to hasten the

training process).  Secondly that to counter the bias variance trade-off Backpropagation

requires a certain amount of handcrafting (methods such as network pruning and cross

validation are effectively an afterthought for Backpropagation, in comparison to the SVM

that approaches them directly).  However, as shall be discussed in section 5.1.2 the

majority of the simulations presented in this thesis (with the exception of the experiments

using hoverfly trajectories in chapter 6) represent the somewhat unusual situation where

there is an unlimited supply of noise free training data available (i.e. the training data is

automatically generated, it should also be noted that large training sets may pose

problems for the SVM, see section 3.4.5).  As such, methods employed largely to

counter problems arising from small noisy training samples are not of such great

relevance to this thesis.  Nevertheless, a variant of cross validation is employed in an

attempt to avoid networks becoming too finely tuned to particular training samples.

As a comparison to the MLP control system, a motion camouflage controller is

implemented using a hybrid network incorporating elements of the Kohonen self-

organising map with radial basis functions.  This architecture had previously been
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suggested for robot homing (Rao & Fuentes 1995) and it was thought interesting to see

how its performance would compare to the MLP (MLPs have been compared to RBF and

SVM before (see above) and it would not be especially surprising to get comparative or

even better performance with an RBF network or SVM).  A control system based on this

self-organising architecture is implemented in chapter 4.  In chapter 5 a similar

control system is implemented using Backpropagation.  The performance of the two

approaches is compared in section 5.3).

3.5 Summary

Section 3.1 presented evidence that the relatively simple neural systems of insects

are capable of solving problems similar to motion camouflage and provided a high level

explanation of the methods used.  The path integration techniques used by animals have

been instrumental in suggesting methods that a shadower could use to determine the

position of the fixed point without the aid of a reference point.  Notable has been the

simplicity of the algorithms used for the problems discussed.  The behaviour of the

hoverfly intercepting a target and of the ant navigating homeward can be described by

simple but not obvious algorithms (see Collett & Land (1978) and Muller & Wehner

(1988) respectively).  At the expense of this simplicity, there comes a certain level of

approximation and unreliability.  However, in both cases described this does not seem to

significantly compromise the animal in its natural surroundings.

Section 3.2 provided an overview of the sensory methods used by biological

organisms to recover the spatial information necessary for motion camouflage.  It was

seen that the visual system is capable of providing this information alone, although other

senses such as hearing could potentially be used or used to supplement the performance.

Retrieval of direction and depth was seen to rely on complex calculations involving

integration of several cues and high level processing (e.g. assuming the size of a well

known object).  Often some of the necessary information is generated internally (e.g.

accommodation and convergence rely on information generated by the ocular muscles).

Nevertheless, although eyes may be tricked by illusions, they are capable of providing

accurate spatial information.  It is indeed inadequacies of prey vision that motion

camouflage seeks to capitalise upon.  Motion camouflage minimises image motion
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through the shadower emulating the optic flow of a stationary object.  As such the

strategy stands a high chance of success against prey using image motion to sense depth.

Conversely it is unlikely to be of practical value at distances where the prey can benefit

from binocular depth cues, such as stereopsis, accommodation and convergence.

However, as has been seen binocular depth cues become rapidly less precise as the

distance to the target increases.  Chapter  2  has already identified that motion

camouflage is a technique likely to be more successful at distance.

Section 3.3 commenced with an introduction to the basic concepts of control

systems from an engineers perspective, then went on to suggest possible control systems

for motion camouflage before closing with an introduction to biological networks.  It was

identified that there is not likely to be a definitive underlying model for a motion

camouflage control system.  Similar to chapter 2, where there was no definitive motion

camouflage algorithm, the optimal will be very much dependent on situation.  For most

applications it is anticipated that the closed loop system that is tolerant to unexpected

events would be preferable.  It has also been shown that biological control systems are

very complex and consequently difficult to understand.  At the same time, whilst their

complexity is unintuitive to human designers, they are efficient, they are adaptive and

most importantly they work.

Finally Section 3.4 provided an overview of the field of artificial intelligence.  The

symbolic approach (based on the logical manipulation of symbols) and connectionist

approach (parallel distributed processing inspired by neurophysiology) were introduced

and contrasted.  This thesis adopts the connectionist approach (i.e. it was not obvious how

to directly derive a solution to the motion camouflage problem, therefore the most

profitable approach was seen as to attempt to train a mechanism that is likely to be able to

learn the answer).  Four of the more widely used connectionist learning algorithms were

introduced and contrasted.  The section concluded by selecting the MLP and the

Backpropagation training algorithm upon which to concentrate work throughout the

remainder of the thesis.
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4 FIRST STEPS, IMPLEMENTATION OF A RESPONSIVE

CONTROLLER WITH A SELF ORGANISING MAP

As mentioned in the previous chapter, this thesis applies two different neural

approaches to motion camouflage.  The first of these and the subject of this chapter is a

self organising network incorporating radial basis functions.  The network was originally

employed by Rao & Fuentes (1995) for perceptual homing in an autonomous robot and

they argue network architecture bears some similarity to the structure of the mammalian

cerebellum.  The second approach and the subject of chapter 5 is Backpropagation.  The

problem task in this chapter and the next is the implementation of the responsive (motion

camouflage) algorithm when the control systems are given sensory input information

known to be sufficient to calculate camouflaged movements.  It was reasoned that this

preliminary investigation would give a good indication of the performance of the

networks when applied to more difficult problems such as predictive motion camouflage.

Hence, work in later chapters builds on the results of this chapter and the next.

The chapter commences in section 4.1 with a general description of the methods

used to train and test the networks in this and later chapters.  In section 4.2 the

architecture, training procedure and operation of the self-organising map is described.

The remainder of the chapter follows the form of an experimental write-up and describes

the specifics of training, discusses the results of testing and suggests possible

improvements to the system.

4.1 General Methods

The underlying methods used to train the networks are similar throughout the thesis.

They are therefore described here in a separate section.  Specific parameters and

configurations are identified where relevant throughout the text.  The calculation of

camouflaged positions from the exact locations of shadower, prey and fixed point is

described in Appendix 1.
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4.1.1 Assumptions of the simulation

Throughout the remainder of the thesis, all motion camouflage simulations shall be

based upon the following assumptions:

• The controller receives input at discrete time steps;

• After receiving input the controller initiates movement at the same time step, (the

move will be completed by the next time step when the new input is received);

• The duration of and distance travelled in each movement are the same (i.e. the

shadower moves at constant speed, in chapters 4 and 5 the prey is constrained

to move at a constant speed, in later chapters this constraint is relaxed);

• The shadower has freedom to move in any direction at any time step;

• The shadower can rotate independently of the direction that it moves;

• The fixed point is the initial position of the shadower.

These are at least two criticisms of the first three assumptions.  The first criticism

questions how closely the simulated control system that operates in discrete time steps

models a real biological system.  Biological sensors, control systems and motor structures

were introduced in chapter 3.  From the information presented in this introduction, it

can be said without hesitation that any real world camouflage control system would not

make decisions and movements at equally spaced time steps.  Not least because a

biological system would be controlled by the frequency signals of a multitude of neurons

firing (not necessarily concurrently).  A real system would also have to combat a whole

range of problems such as muscular fatigue (e.g. muscles taking longer to contract than

they had previously) that are not accounted for in the simulation.  Nevertheless, this does

not mean that it is not possible to model at least some of the processes in discrete time.

For example the human visual system is deceived by animations where an image is

rapidly updated at discrete intervals (indeed animation underlies the psychophysical

experiment based on a computer game presented in chapter 8).  The models presented

throughout this thesis should be thought of as developing an initial framework from

which to examine the basics of the motion camouflage problem.  Once the framework has

been established it may be extended.  This incremental approach may be likened to the
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development of the fielder algorithms described in section 3.1.3 culminating in

Marken's (2001) simulation (which made a similar assumption of discrete time to make

the problem tractable).

The second criticism concerns the shadower's movement.  A real world shadower is

unlikely to move at a constant speed and unlikely to be able to move in any direction at

any time.  Again, both were pragmatic initial assumptions made so as to provide a

foundation for the study of camouflage control systems (that may be built upon in future

work).  However, in practice, giving the shadower complete freedom of movement is not

as contentious as it may at first seem.  Camouflaged approaches are by definition

constrained (i.e. the shadower must lie on the constraint line).  As long as the shadower

approximates a camouflaged approach an argument can be made that it is moving

realistically (qualified by the hoverfly flight paths that resemble motion camouflage

observed by Srinivasan & Davey (1995)).  Moreover casual inspection of motion

camouflage trajectories generated by the control systems (e.g. tracking a hoverfly prey,

Fig 6.2) give no reason to suspect that (for the parameters used in this thesis) the

shadower's approach would require any more complex movement than the prey's (e.g. in

Fig. 6.2 the shadower's turns are less tight than the prey's).  Given additional and specific

information on the movement dynamics of a particular shadower (artificial or biological),

incorporation of these into the model would constitute a worthy future progression of the

work presented here.

The main reason for the selection of the fixed point at the initial shadower position is

that it removes the need for the fixed point to be an existing object (see also section

2.2.1).  Although in this chapter and the next the shadower is able to see the fixed point,

in chapters 6 and 7, the position is estimated using path integration (in which case it

makes no difference whether or not the fixed point can be seen).  Note also that the

choice of fixed point to be the initial shadower position is seen as the most natural by

Srinivasan & Davey (1995).
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4.1.2 Responsive training algorithm

The responsive algorithm introduced in section 2.2.3 had one requirement, that the

shadower make the lateral component of its movement sufficient to stay on the constraint

line correct for the previous prey position.  However for the purposes of network training

it is also necessary to specify:

• the motivation for camouflage (i.e. whether the shadower wishes to catch,

observe or retreat from the prey);

• the appropriate response when the shadower is not able to move far enough to

reach the constraint line.

Addressing the first point, the training algorithm used throughout this thesis

encourages the shadower to approach and catch the prey as quickly as possible.  With

respect to the second, if the shadower is incapable of actually reaching the constraint line

it is trained to move as close to it as possible.  This means that if the angle subtended at

the prey by the fixed point and shadower is greater than or equal to π/2 radians (i.e. the

prey is in between the fixed point and the shadower), then the shadower should move

directly toward the prey (the nearest point on the constraint line is the prey).  Otherwise it

should move in a direction perpendicular to the constraint line (to bring it as close to the

constraint line as possible).  Finally, in keeping with the Srinivasan & Davey algorithm

(section 2.2.2) the shadower is also trained to rotate to always view the prey (as

t t t

t t

t

t
t

t

0 shadower, number = time

0 prey, number = time fixed point

shadower step

Fig. 4.1.  Responsive training algorithm, shown at time = 0.  Note: the shadower
is also trained to rotate at time t to view the prey (positioned as it was at time t)
frontally.

if ( distance to constraint line <= step size )
{

move to the intersection of step and constraint line nearest to the prey
}
else
{

move directly towards the nearest point on the constraint line
}
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positioned at the time of movement) frontally.  The responsive training algorithm is

illustrated in Fig 4.1.

4.1.3 Sensory inputs and motor outputs

In this chapter and the next it was decided to give the shadower access to information

that it was known could allow calculation (using trigonometry) of appropriate motion

camouflage responses. What was required for the simulation was a simple and reliable

technique of supplying this information with some biological plausibility.  Section 3.2

saw the diversity of biological sensory systems and strategies used in nature to retrieve

such information.  It was also seen that if the angle of convergence of the eyes were

known it would be possible to calculate the absolute distance to any point through

binocular disparity.

In a similar vein it was decided to give the shadower access to the angle of prey and

fixed point relative to two eyes (positioned on opposite sides of the head).  This

information describes the exact position of both prey and fixed point relative to the

shadower.  As such it is likely to be far more detailed than the sensory input received by

any biological organism.  This choice could be further questioned, for if it were possible

for the shadower to have such accurate spatial information then it is equally plausible that

the prey could have also.  The implication being that camouflage could be broken by

shadower eye

shadower

prey

fixed point

Neural
Controller

direction

rotation

Bearing of fixed
point from right
eye

Bearing of prey
from right eye

Bearing of prey from
right eye

Bearing of fixed
point from left eye

Fig. 4.2 Sensory inputs and motor outputs of responsive controller.  The controller is provided with the bearing of prey
and fixed point from both left and right eyes.  It is expected to transform the information into an appropriate direction of
movement and rotation (both relative to shadower orientation).
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looming cues (see section 2.3).  However, as the primary concern was to gain an

understanding of how well different neural architectures were likely to perform at motion

camouflage, these points are regarded of secondary importance here.  Nevertheless, they

are addressed in chapters 6 and 7 .  The shadower is assumed to move a constant

distance at each time step.  The controller is expected to output a direction of movement

and a rotation similar to those specified by the responsive training algorithm.  This input

and output configuration is displayed in Fig 4.2.

4.1.4 Training and testing procedures

This section describes the general training and testing procedures used throughout the

thesis.  The specific parameters used are identified throughout later text where relevant.

Training and testing were undertaken by running sets of trials, during which the shadower

would attempt to perform motion camouflage on a prey led along a fixed trajectory.

Initial shadower positions were set at random distances (within a set range) from the

initial prey position.  The fixed point was always taken to be the initial shadower

position.

In this chapter, in training the shadower was directed along camouflaged trajectories

using the training algorithm.  At each step along these trajectories the neural controller of

the shadower would attempt to learn the correspondence between sensory input and

motor output (i.e. supervised learning).  During training in later chapters the control

system was left to determine its own route and trained with the target output that it should

have made after each step.

In testing the shadower was left to autonomously decide its course.  For each

shadower movement, recordings were made of the:

• directional and rotational deviations (error) of the controller output from the

targets specified by the training algorithm (i.e. the angle difference between the

actual direction moved and the target output);

• visual error, the angle subtended at the prey by the fixed point and the shadower;



4. FIRST STEPS, IMPLEMENTATION OF A RESPONSIVE CONTROLLER WITH A S.O.M

85

• change in visual error from each shadower step to the next.

These were used to provide a measure of the overall quality of the camouflage trajectory.

4.2 Self organising network

The self organising network used by Rao & Fuentes is one of a number of

biologically inspired approaches to robot homing proposed recently.  Lambrinos et al.

(2000) developed a robot homing system based upon mechanisms used by the desert ant

Cataglyphis (discussed in section 3.1.2).  They developed a polarised light compass in

analogue hardware that complemented proprioreceptive signals fed back from the wheels

of the robot to estimate the current orientation.  The distance travelled at each leg of the

outward journey was estimated from the wheel encoders.  The additional information

supplied by the polarised light compass was statistically shown to improve the homing

accuracy of the robot.  Although the primary method of navigation in Cataglyphis is path

integration, it has been shown that the ant will also make use of landmark cues to

pinpoint the position of its nest if they are available (Wehner, Michel & Antonsen 1996).

It has been suggested that this is achieved by the ant memorising a panoramic 'snapshot'

of the layout of the landmarks surrounding its nest.  Homing is achieved by comparing

the visual snapshot to the current image viewed and moving to increase the similarity of

the two images (Cartwright & Collett 1983).  Roughly speaking, the homing animal

moves in a direction such that the features in the current image that are most similar to

those of the snapshot are brought closer to each other.  If the feature in the current image

is smaller in size the animal would move toward the feature.  Lambrinos et al. augmented

their robot with a modified snapshot algorithm.  When tested in a simple landscape

(where prominent landmark features could be segmented easily), the robot was shown to

be able to successfully navigate back to within 20-30cm of the its starting point following

short outbound trips of between 2-4m.  Möller et al. (2000) have started making the first

steps toward progressing the system to operate in more complex environments, though

proper tests have yet to be undertaken.  Although the homing accuracy of the robot as it

stands is impressive, the robot is not directly applicable to the simulation of this chapter
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in that the shadower is supplied sensory input that gives the exact relative positions of the

prey and fixed point (Lambrinos et al.s' algorithm would have relevance for a robotic

application of motion camouflage, where the robot was required to use path integration to

estimate the position of the fixed point).  What is required for the control systems of this

chapter is a method capable of learning a relationship between sensory input and motor

output.

Hafner (2000) presented a neural network for robot navigation attempting to explain

the formation of cognitive maps in mammals.  The network is inspired by the

identification of 'place' and 'head direction' neurons in rats.  These cells fire as the rat

moves around its environment (regardless of whether the rat can see where it is

currently).  The purpose of the network is to create a map of its environment as it is

explored such that each output node corresponds to a particular spatial location. Similar

to a conventional Kohonen map (section 3.4.6) the map is formed from two layers.  As

with the map of Rao & Fuentes described next, no assumption is made of the spatial

arrangement of nodes in the output layer.  The network is trained in two stages.  In the

first stage as the robot explores its environment the sensory inputs are self-organised.

The nodes in the output layer are fully interconnected in attempt to capture the spatial

relationship between places (represented by nodes) visited consecutively.  This is

modelled by increasing the strength of the connection between nodes that have been

adapted consecutively.  The direction that the robot has travelled between consecutive

adaptions is also recorded.  The second stage of training attempts to add metric

information to the map (so that the nodes relate to positions in the environment).

Positions are estimated using a force model previously used in graph drawing.  In this

physics based model all nodes are given repulsive charges, and nodes with strong

connection weights are connected with springs.  The repulsive and attractive forces are

based upon the distance between nodes and the angle between connected nodes (i.e. the

distance is small for nodes corresponding to similar sensory input vectors).  The spatial

organisation of the nodes follows an iterative technique.  At each iteration a randomly

selected node is moved according to the forces acting upon it.  The process is repeated

until the sum of the forces between nodes reaches a minimum (global or local).  In a
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simulated simple environment the network was shown to be able to generate a map

corresponding to the layout.  However problems with the technique were evident in that

nodes corresponding to distant spatial positions that were separated by an obstacle

became connected.  This was the result of the algorithms inability to disambiguate

between nodes representing similar sensory vectors. As with conventional Kohonen maps

this network is likely to require handcrafting to select the appropriate number of nodes

and learning rates for the task.  It faces additional difficulties, if the force model reaches a

local minimum.

The neural network of Rao & Fuentes (1995) borrows from the Kohonen approach

and the RBF network approach (section 3.4.6 and 3.4.4 respectively).  It was originally

applied to a robot guidance task.  The robot was trained to home via specific paths to a

location based upon its current perceptions.  An aspect of particular concern with this

approach, as with Hafner's network, is that it is liable to encounter difficulties in the

instance of replicate sensory inputs (i.e. the robot receives a similar  input in two different

places).  This is likely to have more serious consequences with Rao & Fuentes's network

in that it does not take into account the previous node that fired (i.e. previous place

visited).  This is not a cause for concern for the motion camouflage problem task of this

chapter where there is a single solution for each combination of inputs.

Rao & Fuentes's technique firstly involves the creation of a sparse look-up table of

mappings of sensory input to motor output, where sparse is used to indicate that the look-

up table only contains a small subset of the entire set of possible input/output mappings.

In the case of the homing application, this look up table was created as the robot was tele-

operated around its environment associating current sensory inputs to the motor output.

The look up table may be thought of as a network consisting of three layers of units, with

the first layer representing the current sensory input and the third layer the motor output.

In between these is a hidden layer that maps the input to the response.  The network is

fully connected such that the weight vector connecting the input to each hidden unit is of

the same dimensionality to that of the input vector.  Likewise the weight vector



4. FIRST STEPS, IMPLEMENTATION OF A RESPONSIVE CONTROLLER WITH A S.O.M

88

connecting each hidden unit to the output is of similar dimensionality to the output

vector.  Fig. 4.3 displays the structure of the network.

In training, the weights between input and hidden layer are adapted in a similar way

to a conventional Kohonen map (e.g. the weight that is closest to the current input is

brought closer to the current input). However the topographical arrangement of output

nodes characteristic of conventional Kohonen maps (see section 3.4.6) is not present in

the architecture examined here.  The subset of nodes closest to the input are adapted in

proportion to their Euclidian distance from the training input presented (i.e a weight that

is close to the input will be adapted less than one that is further away).  The

corresponding set are adapted in a similar fashion to bring them closer to the target output

(though for the output layer each of the weights is adapted by the same amount).

To enable the networks to generalise to novel situations, Rao & Fuentes advocate an

averaging scheme based on radial basis functions (in this case Gaussian).  The output of

the network is calculated based upon a weighted average of the response of the output

nodes.  As with RBF networks, therefore, the problem is modelled locally (i.e. only a

subset of the hidden nodes contribute to the output).  The network attempts to interpolate

between the response of a set of outputs that it has seen in similar situations.  Each node's

influence upon the network output is proportional to its distance from the current sensory

input.  Therefore a node whose input weights are very close to the input will have a high

Fig. 4.3.  Structure of Rao & Fuentess' self organising network.  In this diagram two nodes contribute to the ouput of
the network.  Connections responsible for the output of the network are highlighted in black.
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influence on the output.  It was the generalisation (potentially) afforded by the

interpolation of the RBF functions that made this technique appear attractive for

application to motion camouflage.  For the network to be regarded as an efficient solution

to motion camouflage, it would be necessary for the population averaging to yield an

accurate response from a hidden layer with few nodes.  The following two sections

formally describe the calculations involved in the training and operation of the network.

4.2.1 Training

This section defines the training method presented by Rao & Fuentes (1995).  The

terminology follows that of Rao & Fuentes.  The exact parameters used in the simulation

are described in section 4.3.

Letting:

s
r = the current sensory input vector consisting of n units.

iw
r  )1( mi ≤≤ = the vector of weights between hidden unit i and the sensory input layer.

im
r

=≤≤ )1( mi the vector of weights between hidden unit i and the motor output layer.

Then repeat over each trial:

1. Calculate the (euclidian) distance swd ii

rr
−=  between every iw

r and current input sr .

2. Select the hidden units *)(iN  that represent the )(tf smallest distances between

hidden unit and sensory input.  Where t represents the number of training iterations

and )(tf decreases as t increases.  In fact, for this application preliminary tests

suggested that it was most profitable to adapt a single unit at each iteration.

3. For each hidden unit in the set *)(iN  modify the weight vector using a Gaussian gain

function by:

)(),(: iiii wstdww
rrrr

−⋅+= γ  where *)(iNi∈ . (4.1)

)(/2),( td
i

ietd σγ −=  where the Gaussian spread term )(tσ (4.2)

decreases as t increases
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4. For each hidden unit in the set *)(iN  modify the vector of weights connected to

motor output using the current motor input vector mr (supplied by responsive training

algorithm) by:

)()(: iii mmtmm
rrrr

−⋅+= β   where *)(iNi∈ . (4.3)

)1)(0)(( << tt ββ  where )(tβ decreases as t increases. (4.4)

4.2.2 Operation

1. (as in training) Calculate the (euclidian) distance swd ii

rr
−=  between every iw

r
and

current input s
r

.

2. Select the hidden units *)(iN  that represent the f smallest distances between hidden

unit and sensory input where f is a constant.

3. Calculate the motor output.  The output of each motor unit ( jo , )1( kj ≤≤ ) is

calculated on the basis of a Gaussian weighted average of the weights ijm  between

motor output unit j and hidden unit i for *)(iNi∈ :

∑
∈

− ⋅=
*)(

/2

iNi
ij

d
j meo i σ (4.5)

As an experimental control included to allow investigation of the relative benefit of using

the Gaussian weighted averaging, the following linear average (i.e. mean) of the weights

ijm is also adopted:

∑
∈

=
*)(iNi

ij
j f

m
o (4.6)
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4.3 Methods

Three sensorimotor self-organising maps were trained using the algorithm described

in section 4.2.1 in the manner described in section 4.1.4 (multiple networks were

trained in order to investigate whether the training technique repeatedly gave networks of

similar quality).  The parameters used for training and configuration of the map are

displayed in Tables 4.1a&b, respectively.  The parameters were selected following a set

of preliminary pilot experiments.  In explanation of the tables, each trial lasted 100 steps

and the shadower and prey moved a constant distance per step.  The initial position of

shadower relative to the initial position of the prey was determined randomly within the

bearing and distance ranges shown.  At each step of the trial, the prey’s direction was

changed by a constant angle (determined randomly prior to the trial).  This meant that the

trajectory of the prey always resembled an arc (the radius of which is randomly

determined).  Training parameters for the self-organising map are self explanatory (Table

4.1b).  Weights connecting sensory layer to hidden layer and motor layer to hidden layer

were initialised with values calculated from running the responsive training algorithm on

the trials just described.  (i.e. the hidden layer comprises 2000 units, meaning that 20

trials (of 100 steps) were needed to generate the initial 2000 input output mappings).

In testing the performance of the maps three possibly interrelated areas were

identified as being of particular interest.

• whether the three different maps (trained in a similar manner) performed

differently;

• whether there was a difference between the Gaussian and linear output averages

(taking into account the number of units used in averaging);

• whether there was a difference in performance relating to different prey

trajectories.

In order to examine these factors a factorial experiment was designed.  Three prey

trajectories were selected for experimentation in each test undertaken.  The first,

(trajectory a) involved the prey travelling in a straight line.  During the second,
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(trajectory b), the prey turned 0.01 radians at each step and the final (trajectory c) the

prey turned 0.02 radians at each step.  As such the trajectories represent the minimum,

mid and maximum sharpness of turning that could be expected in the training set.  For

each of these trajectories 50 trials were run.  The initial positions of the shadower were

selected randomly for each trial within the ranges allowed by training (see Table 4.1a).

However the same set of 50 random starting positions were used for each prey trajectory.

A single test therefore consisted of 3 prey trajectories, each with 50 trials, leaving a total

of 150 trials per test.  Tests were undertaken on shadowers using every combination of

trained map (3 maps), with the Gaussian averaging method (using {2,3,4} units for

output, see also Table 4.1c) and the linear averaging method (using {1,2,3,4,5} units for

output, see also Table 4.1.d).  This gives a total of (5*3)+(3*3) = 24 tests.

4.4 Results

How well did the neural maps perform?  Figs 4.4a,b,c display shadower trajectories

obtained using one of the better configurations (using the linear average of three units for

output).  Casual inspection suggests that the performance for all three prey trajectories

and from each starting position is competent.  This is upheld by Figs 4.5 a & b which

display the mean visual error per trial (plotted against the initial bearing of the shadower

from the prey and the start distance of the shadower from the prey respectively.  There

are a few notable examples where the mean visual error is particularly high.  It is thought

that these are a direct result of the shadower over shooting the prey (e.g. the right most

Number of steps in trial

Initial distance range of shadower from prey (units)

Shadower step size (units)

Prey step size (units)

Prey direction change constant per step?

Prey direction change (per step) range (rad)

Initial bearing of shadower from prey (rad)

100

0.5

0.4

Yes

-0.02 ≤ x ≤ 0.02

50 ≤ x ≤ 90

0 ≤ x ≤ 2π

(a) Training procedure

Selected
randomly
before trial

f(t)

No units in hidden layer

σ(t)

β(t)

(b) SOM training

2000

0.0005

1

0.2

f

σ

(c) Gaussian averaging

{2,3,4}

0.01

f

(d) Linear averaging

{1,2,3,4,5}

Tables 4.1a,b Parameters defining the (a) training procedure and (b) self
organising map training configuration.  (c) and (d) identify parameters
used in averaging for motor output. See section 4.2.2 for terminology
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shadower in Fig 4.4c) which could easily result in maximum error (i.e. π radians).

Supporting this, the large errors tend to occur when the start position of the shadower is at

a bearing from the prey similar to the direction that the prey will move (i.e. shadower and

prey move toward one another).  Also there is a tendency for high error when the start

distance is small.  Finally, Fig 4.5c, a plot of the mean visual error against the mean

change in visual error from one step to the next, indicates that there was never an instance

of high mean error that was not paired with high deviation change.  High values of

deviation change would result from the shadower over stepping the prey.

           

Fig. 4.4a,b,c.  Performance of sensorimotor map using the
mean of three units for output.  6 shadowers and one prey
are shown in each diagram.  Each trial consists of 100
steps.  Shadower and prey positions are shown every 5
time steps. Shadower and prey positions are highlighted in
black every 20 time steps. The Shadower moves a distance
of 0.5 units per step, the prey 0.4 units.  A scale bar
representing a length of 10 units is shown in (a).  The
shadower can be seen to generalise to each starting
position and prey trajectory.

(a) the prey does not alter its course;
(b) the prey changes direction of movement by 0.01

radians every step;
(c) the prey changes direction of movement by 0.02

radians per step.

(a) (c)

(b)
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What were the differences in performance between the different network

configurations?  Figs 4.6a & b show the mean direction and rotation error per test (i.e.

the mean respective difference between actual output and responsive algorithm output).

The graphs indicate that whereas the number of units contributing to the linear average

had little influence upon performance, they affected Gaussian averaging dramatically.

This was confirmed statistically using two-way Analysis of Variance (ANOVA, see

Underwood (1997) for more details) with the different prey trajectories cross classified

against the number of units averaged.  Tables 4.2a & b show the ANOVA tables for the

directional and rotational error resulting from the linear average.  No significant

difference was found between performance on different prey trajectories with different

numbers of units.  Alternatively Tables 4.3a & b represent similar ANOVA tables

regarding the Gaussian average.  These show that whilst again there was no significant
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Fig. 4.5.  Performance of a sensory motor map using a
single unit for output.  (a) and (b) show the change in
mean +/- std. err visual error (angle subtended at the prey
eye by the shadower and fixed point, optimally this should
always be 0) with different initial bearings and distances of
shadower from prey, respectively.  Prey trajectories a, b
and c correspond to those shown in Fig 4.4.  Fig 4.5c
represents the relationship between the mean visual error
and the mean change in visual error from one step to the
next (inclusive of  all 3 prey trajectories).

Results are representative of 50 trials run for each prey
trajectory.  Each trial consists of 100 steps.  The set of
initial shadower positions is the same for each prey
trajectory.
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difference between camouflage performance on different prey trajectories, there was a

highly significant difference in both rotation and direction deviations between differing

number of units averaged.  These results have several implications.  The fact that there is

no significant difference between the number of units contributing to the linear average is

suggestive that a similar result could be obtained using a lesser number of units in the

hidden layer.  With respect to the Gaussian averaging, the difference in performance

resulting from the number of units averaged indicates that either parameters (especially

Gaussian spread values) were not set optimally, or that the technique is not appropriate

for this application.

The remaining points of interest are whether there was a difference in performance

between the different maps (initialised and trained in a similar manner) and whether there

was a difference in performance between the averaging types.  Figs 4.7 a & b display the

mean directional and rotational error per test using the linear and Gaussian average on

two units (results illustrated in Fig 4.6 had suggested that the Gaussian average was most

successful using two units).  Fig 4.7a implies a difference between the directional error of

the different maps using either method of averaging.  This is not apparent with the

rotational results shown in  Fig 4.7b.  The two graphs are also suggestive of a difference

in performance between averaging types.  Mean values for the linear average are always

lower and standard errors for the Gaussian average tend to be greater (especially

concerning the rotational data).  These differences in spread meant that the data did not

meet the homogeneity of variance assumption of analysis of variance (see also Tables

4.4a & b).  Regardless the tests were undertaken and results considered in light of the

inadequacy of the data.  Tables 4.4a & b show the results of two-way nested ANOVAs

conducted on directional and rotational errors.  Fixed main effects are the different

averaging methods and the different prey trajectories which are cross-classified, with

different maps (labelled as weights in the ANOVA table) nested within averaging

method.  The analysis indicated once again that there was no significant difference

between performances over different prey trajectories.  Conversely it showed a highly

significant difference between the different maps with respect to the directional deviation

and also a highly significant difference between the two averaging methods in relation to
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the rotational deviation.  Although the accuracy of these results should be treated

tentatively, the significance levels are very high.  The implication of the difference

between maps is that training has not resulted in convergence upon an optimal solution.

It can be expected that the situation could be improved through selection of more

appropriate training parameters.  On top of this there is no evidence that the Gaussian

weighted averaging technique provides any advantage over linear averaging when

applied to motion camouflage.  In fact, the drop in performance of Gaussian averaging

with the increase in number of units averaged (Figs 4.6a&b) and the significant

difference between Gaussian and linear average in rotational performance implies that the

Gaussian technique is the less suitable.

Source
df MS F P Source df MS F P

No. units averaged 4 0.1810 2.35 > 0.05 No. units averaged 4 0.0057 0.22 > 0.9

Prey trajectory 2 0.1493 1.94 > 0.10 Prey trajectory 2 0.0479 1.83 > 0.15

P. traj * no. units avgd 8 0.0072 0.09 > 0.99 P. traj * no. units avgd 8 0.0030 0.11 > 0.99

Residual 735 0.0770 Residual 735 0.0262

Total 749 Total 749

Source df MS F P Source df MS F P

No. units averaged 2 1.2364 70.83 < 0.00001 No. units averaged 2 18.997 50.46 <0.00001

Prey trajectory 2 0.0240 1.37 > 0.25 Prey trajectory 2 0.1049 0.28 > 0.75

P. traj * no. units avgd 4 0.0086 0.49 > 0.7 P. traj * no. units avgd 4 0.0208 0.06 > 0.99

Residual 441 0.0175 Residual 441 0.3765

Total 449 Total 449

Table. 4.2.  Two-way ANOVAs investigating the difference in directional (a) and rotational (b) error
between the different prey trajectories using the mean of {1,2..5} units for output.  Both main effects are
fixed.  Both mean errors were calculated from a total of trials per prey trajectory, 100 steps per trial.
Results indicate in both cases that there was no significant difference between the different prey trajectories
or between the number of units used for output (in the range).  Residuals for the rotational data were
positively skewed.  Otherwise Levene’s test showed that variances were suitably homogenous in both cases.
(a) (b)

Table. 4.3.  Two-way ANOVAs investigating the difference in directional (a) and rotational (b) error
between different prey trajectories using the Gaussian weighted average of {2,3,4} units for output.  Both
main effects are fixed.  Both mean errors were calculated from a total of 50 trials per prey trajectory, 100
steps per trial.  Results indicate in both cases that there was no significant difference between the different
prey trajectories.  However for both direction and rotational error there is a highly significant difference
between the number of units used for output (in the range).  Directional and rotational data were log-
transformed to resolve heteroscedasticity (confirmed using Levene’s test).  Residuals for the rotational data
were positively skewed, however this can be expected not to have unduly affected the results (Underwood,
1997).
(a)  (b)
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Fig. 4.7(a)  Difference in the mean +/- std err angle directional error between the three maps trained in a similar
manner.  Results are shown for both linear and Gaussian averaging methods.

(b) Difference in the mean +/- std err rotational error between the three maps trained in a similar manner.  Results
are shown for both linear and Gaussian averaging methods.

Mean values represent the mean error over 150 trials:  50 trials for each of the three prey trajectories (a, b and c
see Fig 4.4).  100 steps per trial.  Results suggest that there is no significant difference in performance between
different prey trajectories using any of the maps with either averaging method. (see Tables 4.2 & 4.3).
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Fig. 4.6.  (a) Difference in the mean +/- std err direction error between the number of output units contributing to
the average.  Results shown for both linear and Gaussian averaging methods.  (b) Difference in  the mean (+/-) std
err rotational error between the number of output units contributing to the average. Results shown for both linear
and Gaussian averaging methods.  Mean values represent the mean error over 150 trials:  50 trials for each of the
three prey trajectories (a, b and c see Fig 4.4).  100 steps per trial.  Results suggest that there is no significant
difference in performance between different prey trajectories using either averaging type with any number of units
(within range shown) contributing to output  (see Table 4.2, 4.3).

(a) (b)
     no. units contributing to output      no. units contributing to output
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Source df MS F P Source df MS F P

Averaging method 1 5.043 3.53 > 0.1 Averaging method 1 2.830 52.67 <0.0001

Weights (Av. method) 4 1.427 13.50 <0.0001 Weights (Av. method) 4 0.030 0.56 > 0.65

Prey trajectory 2 0.082 0.77 > 0.45 Prey trajectory 2 0.075 1.39 > 0.25

P. traj * Av. method 2 0.004 0.04 > 0.95 P. traj * Av. method 2 0.011 0.21 > 0.8

P. traj * Weights(Av. method) 8 0.009 0.08 > 0.99 P. traj *Weights(Av. method) 8 0.004 0.07 > 0.99

Residual 882 0.106 Residual 882 0.054

Total 899 Total 899

4.5 Discussion

This section has seen that it is possible to implement a system that will competently

perform motion camouflage in the conditions described using a self-organising map.

This result is not altogether surprising, since the map is effectively operating as a look-up

table (given a large enough table and sufficient input-output pairs it would be possible to

model the problem to any degree of accuracy).  Note that when a single node is used to

generate output with a linear average, this approach is equivalent to the state-space look-

up table discussed by Churchland & Sejnowski pp333-337 (1992).  However the purpose

of the implementation was not to laboriously create a large look up table.  The intention

of the averaging was to reduce the number of hidden units whilst maintaining accuracy.

The results show that there was no significant benefit afforded through averaging.  This is

possibly indicative that the number of hidden units in the hidden layer could be reduced.

What was of particular concern was the failure of the Gaussian weighted averaging.  It

can be confidently stated that this is not due to inadequacy in the network design.  On

closer inspection, the averaging scheme lacks normalisation and is quite capable of giving

averages that are outside the range of the data averaged.  Clearly this is unacceptable for

Table. 4.4.  Two-way nested ANOVAs investigating the difference in directional (a) and rotational (b)
error between linear and Gaussian averaging over 3 different prey trajectories, using 3 maps trained in a
similar manner.  Output averages use two units.  Averaging method and prey trajectory are treated as fixed
main effects.  Different maps (labelled in the table as Weights (Av. Method) ) are nested within averaging
method.  The mean error was calculated from a total of 50 trials per prey trajectory, 100 steps per trial.
Results indicate in both cases that there was no significant difference between the different prey trajectories.
Alternatively for both direction and rotation there is a highly significant difference between maps (within
averaging types).  There is also a highly significant difference in rotational error between linear and
Gaussian averaging methods.

However these results should be treated with caution.  Levene’s test indicated heteroscedasticity in both
directional and rotational data that could not be removed by transformation.  This is likely to have led to the
increased probability of incorrect rejection of the null hypotheses (so insignificant differences are still valid)
(Underwood, 1997) .  Rotational data showed heavy positive skewness.
(a)    (b)
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any interpolation method.  Notably the technique is later discarded by Rao & Fuentes

(1996) who move to a normalised weighted Gaussian averaging scheme, where the

multiplying term in eq 4.2 & 4.5 is replaced by:
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Preliminary pilot experiments have suggested that this method offers the potential to be

superior to either the linear average or the previous weighted averaging scheme.  It is

however heavily dependent upon the selection of appropriate parameters, which

theoretically could be found using genetic algorithms (at the expense of time).

It is likely that the self-organising map architecture can be significantly improved for

the responsive algorithm.  What is the potential for application to the predictive

algorithm?  The predictive controller must integrate the recent chase history with current

sensory input to provide the motor output (unless it is capable of accurately predicting the

prey's entire path in advance).  The most obvious method for achieving this would be to

feed previous sensory input information back into the system.  In order to avoid an

explosion in the number of units required by this self organising network it would be

necessary to reduce the previous sensory data to a lower dimensionality.  Rao & Fuentes

(1996) advocate an approach where the current output is based upon previous motor

outputs as well as the current sensory input.  Therefore, the current sensory input

indirectly contributes to future motor outputs.  As such depending upon the ratio of input

units to output units (in this case, there are less output units) this would reduce the data to

lower dimensionality and may relieve the need to feed back data as input to the system.

Further work on self-organising maps is discontinued in this thesis in light of the superior

performance of back-propagation discussed in the next chapter.
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5 IMPLEMENTATION OF THE RESPONSIVE ALGORITHM USING

BACKPROPAGATION

This chapter applies the Backpropagation training algorithm to the motion

camouflage task investigated in chapter 4.  Backpropagation is described in section

5.1.  The performance of Multilayer Perceptron camouflage control systems trained using

Backpropagation is examined throughout the rest of the chapter.  The accuracy of the

MLPs of this chapter is compared with the self organising networks of the previous

chapter in Section 5.3.

5.1 Backpropagation

Backpropagation is one of the most widely studied and used neural network training

algorithms.  The underlying concept has been proposed independently in various forms

(see Rojas 1996), however Rumelhart, Hinton & Williams (1986) are those most credited

for bringing Backpropagation to the artificial intelligence community.  The algorithm can

theoretically be used to train a Multilayer Perceptron network to approximate almost any

function to any level of accuracy.  A Multilayer Perceptron is formed from multiple

layers of nodes.  The first layer represents the inputs to the network.  The final layer gives

the network output.  The layers in between are referred to as hidden layers.

Excluding the input layer, in a standard (fully connected) network each node receives

input information from all nodes in the preceding layer.  The node, bearing similarities to

a biological neuron, acts to compute an output that is a function of the thresholded input

received.  Alike a biological system the input signals are modified by weighting factors

(analogous to synapses) before they reach the node.  It is through adapting these weights

that the network is able to learn.  The network is trained by supervised learning.  At the

start of training weights are randomised.  The network is given an input and the desired

output response.  The weights on all connections in the network are adapted in a manner

intended to make the actual output closer to this target.  Classically this process is
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repeated with different example inputs and targets until the actual network output

becomes sufficiently accurate, or the network converges and weight changes are zero.

Weight changes are determined through differentiation.  The error of the network (i.e.

difference between actual output and target output) is considered as a function of the

weights.  As it is not possible to directly calculate the set of weight values for which the

error is at its minimum, a search technique is used: the values of each weight are changed

in proportion to their likely influence upon the overall error.  In other words if the

magnitude of the rate of change of the error with respect to a particular weight is high,

then the weight change will be relatively large.  If it is low, the change will be relatively

small.  The weight change process is frequently likened to rolling a ball across the error

surface (the surface given by the error as a function of the weights).  The position of the

ball is given by the current combination of weights.  By rolling the ball down the steepest

slopes it is hoped that it will eventually descend to the point of least altitude (and error).

A more formal description is provided in the next section.

5.1.1 A formal description

In the following text, consecutive layers in the network are referred to using

uppercase bold script in alphabetical order.  If the final layer is K, the preceding layer is

J.  The number of nodes in a layer is indicated by uppercase italics corresponding to the

layer letter (layer J has J nodes).  Lowercase subscript is used to associate variables with

layers of corresponding uppercase script.  In accordance, jo  is used to refer to the output

of a node in layer J and ijw  refers to the weighting of the output of node i in layer I that

contributes to the input of node j in layer J.  A possible network structure illustrating the

connections between layers is shown in Fig.5.1.  Notice that the first layer of nodes is

represented as arrows (the inputs), stressing the difference between it and the other layers.

Typically the function to be trained is complex with many different input-output pairs

required to allow the error to be minimised.  The text below explains the calculation of all

weight changes for a single training iteration.  In practice many training iterations would

be required, with training pairs commonly selected at random from the training set.
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Initial weights are selected randomly.  The network is trained until it converges upon a

minimum (where the error slope is zero and consequently weight changes become zero)

or a desired accuracy level is reached.

Each training iteration consists of two stages:

• a feed-forward stage, where the input is received and propagated forward through

the network layer by layer to give the output;

• a back-propagation stage, where the output is compared to the target, and a signal

relating to the error passed back through the network layer by layer.  Weights are

changed according to this signal.

In the feed-forward stage the output of any node at time n (e.g. )(no j ) is given by the

sum of the weighted outputs from the previous layer and a weighted bias B (where the

bias weighting is denoted as W):
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B is a constant usually set at 1 or –1.  Classically the bias is the same for all nodes in the

network.  For ease of later explanation, the bias will be considered as a weighted constant

output from a node in the previous layer (note that the superscript on the summation has

been changed to accommodate this), so equ(5.1) becomes:

Fig. 5.1.  Abstract representation of the structure of a Multilayer Perceptron with 2 hidden layers.  Layer H is the
input layer, I and J are hidden layers and K is the output layer.  Theoretically the network could contain any
number of layers.
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which constrains the output to the range 0 < f(x) < 1.  The purpose of the bias is to speed

training by offsetting the weighted sum of inputs to a position where the rate of change of

equ(5.3) is higher.

Considering the back-propagation stage, if K is the output layer and )(ntk the target

output for the kth node in this layer, the error of the network )(nE may be considered to

be:
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(i.e. half of the squared Euclidian distance between target and output).

All weights are updated in proportion to the negative of the rate of change

of )(nE with respect to the weight.  Partially differentiating )(nE yields two general

formulae for weight changes:

• a formula for weights of the output layer, where the target is known explicitly;

• a formula for weights of the hidden layers, where the target is unknown.

At time )1( +n , the new value of any weight in the output layer, )1( +nwjk  is given

by:
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∂
⋅−=+ η (5.5)

where η  is a learning rate parameter in the range 10 <<η .  If )(nkδ is defined to be:

)))(1()(())()(()( nononontn kkkkk −⋅⋅−=δ (5.6)

then equ(5.5)may be rewritten as:



5. IMPLEMENTATION OF THE RESPONSIVE ALGORITHM USING BACKPROPAGATION

104

)()()()1( nonnwnw jkjkjk ⋅⋅+=+ δη (5.7)

If ijw  is the weight of any node from any hidden layer J, then at time )1( +n its new

value is given by:
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Defining )(njδ  to be:
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allows the new weight to be rewritten in a similar format to equ(5.7):

)()()()1( nonnwnw ijijij ⋅+=+ ηδ (5.10)

To calculate each δ in the hidden layers (equ (5.9)) it is necessary to have knowledge

of each δ  from the layer above.  The acquisition of this information may be likened to

the δ  terms being propagated back along the connections of the network (see Fig 5.1),

thus giving Backpropagation its name.

The error of the network for a single training pair was given in equ (5.4).  However

the purpose of training is to minimise the error over the whole set of possible input-

output pairs.  As equ (5.4) does not consider this whole set it means that the weight

change may not follow the direction of negative gradient.  This effect may be alleviated

by batch training.  Here weight updates would be suppressed at each training iteration and

the cumulative weight change applied periodically according to the following equation

(Rojas 1996), where there are N patterns in the training set:

∑
=

⋅+=+
N

n
ijijij nonNwNw

1

)()()()1( δη (5.11)

In practice batch training may not offer any real advantage.  Without batch training the

search direction is likely to follow the direction of negative gradient on average (as long

as training pairs are applied randomly).  Also the inherent noise added may be helpful in

escaping local minima (Rojas 1996).  Finally, a useful modification of the algorithm
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intended to reduce training time is the addition of momentum to the weight changes.

Here a term is added to the weight change that is proportional to the previous weight

change:

))1()1(())()(()()1( −⋅−⋅+⋅⋅+=+ nonnonnwnw ijijijij δηαδη (5.12)

where α is in the range 10 <<α .  It follows that all previous weight changes contribute

to the current weight change (in proportion to how recently they occurred) thus providing

a sort of inertia.  This can act to accelerate the initial convergence of the network and

reduce the chance of getting trapped in local error minima.

5.1.2 Preliminary investigation of different training techniques

Primarily an investigation was undertaken in order to give an impression of whether

it would be more profitable to use batch training or on-line training to train the MLPs.

Whereas early attempts to train motion camouflage using batch training yielded little

success, it was found possible to train the networks to a respectable degree of accuracy

on-line.  In order to gain confidence that this was not simply the result of an inadequate

choice of parameters a more formal comparison was undertaken.  Five networks were

trained on-line and five networks were batch trained on similar data sets.  The training

parameters of all networks were otherwise the same (adaption rate = 0.0001, momentum

= 0.1).  The parameters were set following a series of preliminary trials intended to

maximise the accuracy of the batch trained networks.  The parameters were not optimal

for the networks trained on-line.  All networks had a single hidden layer consisting of ten

nodes.  The training set consisted of 5000 input and target training pairs.  In each pair, the

shadower, prey and fixed point were arranged randomly according to the following

specification (see also Fig 5.2a).  The fixed point was translated to a random position

between 50 to 90 distance units from the prey.  The shadower was translated to a position

at a randomly selected distance from the prey that was less than the distance of the fixed

point.  The bearing of the shadower from the prey was randomly chosen to be within 0.01

radians of the bearing of the fixed point from the prey.  Similarly, the shadower was

orientated to face a randomly selected angle no more than 0.01 radians to the left or right

of the prey.
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The networks were all trained for exactly 106 training iterations.  In online training,

training pairs were selected at random from the training set.  Fig. 5.3 shows the mean of

the direction error of the networks when tested on the training set and also on the test set

used in chapter 4.  As can be seen from Fig 5.3, all networks trained on-line were more

accurate when tested on the training data set than the most accurate network trained using

batch training.  Every network (irrespective of the training method used) was less

accurate when tested on the test set.  However, the networks trained on line gave the two

most accurate performances on the test set.  As such these results give good evidence to

suggest that for this specific problem batch training is less suitable.  It is thought likely

that the failure of batch training may be the consequence of a large data set and redundant

data (i.e. the training set contains many similar training pairs) as suggested by  Haykin

(1999).

Fig 5.2.  Diagramatic representations of the procedures used to select shadower, prey and fixed point
positions for use in network training.  (a)  Selection procedure used to generate the training set for the
preliminary experiment described in section 5.1.2.  The light grey shaded area represents the set of
possible fixed point locations relative to the prey (the centre of the circle).  In this illustration the fixed
point lies at a distance f units from the prey at point x.  Given this location of fixed point, the set of
possible shadower locations is represented by the segment shaded dark grey (the shadower position is
chosen randomly).  The segment is defined in terms of its radius s (where 0>s<f), and the angle subtended
by the outer arc (0.02 radians).  This angle is bisected by the line connecting the fixed point to the prey.
The shadower would then be set to point in a randomly chosen direction no more than 0.01 radians to the
left or right of the prey.
(b) Selection procedure as adopted in section 5.3.  Variants of this procedure are applied throughout the
remainder of the thesis.  The fixed point, which is also the initial position of the shadower, is randomly
chosen to lie in the area shaded light grey.  In training, the shadower attempts a camouflaged approach on
the prey (the prey is moved along a predetermined trajectory).  After each move made by the shadower,
the control system is trained with the target motor output (i.e. the correct response for the previous time
step).  Each shadower approach lasts a fixed number of time steps (in the case of this chapter 100).  After
this, the procedure is repeated with a different prey trajectory and fixed point position.

Not to scale
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On the basis of these results on-line training is adopted throughout the remainder of

this thesis.  Given that in the simulation an unlimited number of (noiseless) training data

points could be generated, it was decided not to use a specific training set (as in the

example above).  Instead the networks were trained whilst they attempted to approach the

prey using motion camouflage (see also Fig. 5.2b).  Similar to the procedure described in

section 4.1.4, training was undertaken by running sets of trials.  Each trial lasted a fixed

number of time steps.  During each trial the shadower would attempt a camouflaged

approach on the prey.  The trajectory of the prey was predetermined prior to the trial.

The initial positions of shadower and prey were randomly selected.  At each training

iteration the network would estimate the appropriate camouflaged move and the

shadower would move accordingly.  The network would then be trained with the target

motor output that it ideally should have given.  This process was repeated until the end of

the trial.  From the perspective of Backpropagation training this approach is intuitively

attractive for two reasons:

• Each training example is directly relevant as the control system is responsible for

getting itself into that situation.  In the example above where a specific training

set was used, due to possible inadequacies in the technique used to position the

fixed point, shadower and prey, some of the training examples may have

represented situations that the control system is never likely to be in (it is

therefore less important that the control system knows how to respond in these
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Fig 5.3  The mean direction error of the ten networks trained on-line and off-line.
Black data points represent the results of tests on the training set, the grey data point
above represent the results of tests on the test set for the same network.
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situations).  More importantly, the training set may not have accounted for

situations that the control system is likely to encounter;

• The training data is adaptive in that it changes with the accuracy of the control

system (this relates to the point above).

In attempt to avoid the control system becoming too finely tuned to the most recent

training data (the relatively poor generalisation to the test set indicated by Fig. 5.3

suggests that the networks trained in the experiment had overfitted the training set) a

variant of cross validation is applied (see section 3.4.3).  Periodically training is halted,

the weights are held fixed and the system is tested on an alternative (validation) data set.

If the network's performance is better than previous validation results, the weights of the

network are recorded.  Training is undertaken for a fixed number of iterations.  Upon

completion of training, the network that gave the most accurate results in the validation

tests is selected to represent the final network state (employing this method for motion

camouflage networks were never found to converge on minima whether local or global).

Empirical tests suggested that this approach was more profitable than using a fixed

training set.  Throughout the thesis, it was always found to yield a network of respectable

accuracy.  Further details of the training procedure are described section 5.2.

5.2 Methods

Early experimentation showed that a motion camouflage controller could be

implemented (operating with the same inputs and outputs to section 4.1.2) using a

Multilayer perceptron network with a single hidden layer consisting of 10 hidden nodes.

It was speculated that performance could be improved through use of two networks

(receiving the same input, see Fig 5.4), one trained to output the motion camouflage

direction, the other the rotation.  Throughout the remainder of the chapter these networks

will be referred to as dual networks.  Also it was observed that the accuracy of the

networks was noticeably better when the networks were tested whilst still being trained

(i.e. after each time step during the test the controller was trained with the move it should

have made as would be the normal procedure in training).  This was thought a worthy

topic of further investigation (note that throughout the remainder of the chapter networks
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operating conventionally are referred to as operating with fixed weights and networks

undergoing constant training are referred to as operating under continuous training).  So,

the main questions posed by the chapter were:

• whether the Multilayer-Perceptrons performed differently to the self-organising

maps;

• whether there was a difference in performance between the different Multilayer-

Perceptron structures;

• whether there was a difference in performance between operation with fixed

weights or during training.

In attempt to answer these questions 60 Multilayer Perceptrons were trained to

perform the responsive algorithm.  20 of the networks had 10 nodes in the hidden layer,

20 of the networks had 20 nodes in the hidden layer and the final 20 were dual networks

(see Fig 5.4) with 10 nodes in each hidden layer.  Note that the overall number of

connections in the dual networks is less than that of the normal networks with 20 nodes in

the hidden layer (100 connections as opposed to 120).  The networks were trained in a

similar manner to section 4 on the responsive algorithm (section 4.1.2) with the

inputs and outputs described in section 4.1.3 in a similar fashion to section 4.1.4.

The only difference in the training procedure was that in training the shadower was left to

autonomously decide its own movement, rather than being led along the desired

trajectory (see also Fig. 5.2b).  This strategy had been observed to hasten the

Backpropagation training process and improve the final accuracy.  The parameters

Fig 5.4.  Abstract representation of the structure of the dual Multilayer Perceptrons.  Both
networks receive the same input but are otherwise independent.  They are trained
simultaneously.  The key is the same as for Fig 5.1.  Although the hidden layers in the
diagram have only three nodes each, the experiments were based on networks with 10 nodes
in each hidden layer.
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describing the training trials are redisplayed in Table 5.1b. For further explanation see

section 4.3.  The network training parameters are displayed in Table 5.1a.  The

networks were trained for a fixed number of training iterations and the best performing

network configuration during the training period selected as the final state to be tested.

More specifically each network underwent 2*108 training iterations.  Every 104 iterations

(i.e. after 10 prey trajectories of 100 steps had been trained from 10 different starting

positions) the network was tested on 10 randomly selected prey trajectories.  10 trials

were run against each prey trajectory from 10 random starting positions.  All testing

parameters were within the same ranges allowed in training (Table 5.1b).  Network

weights were fixed throughout the tests.  If the mean euclidian distance between the

actual output vector (direction and rotation) and the desired output vector over all 104

steps was less than the previous least mean, the network weight values were recorded.

After training each network, the weight record that had given the least mean error during

the tests in the training phase was selected for testing.  None of the networks were found

to converge on local or global minima.

Following training each network was tested.  All networks were tested on 100

randomly selected prey trajectories.  100 trials were run against each prey trajectory from

100 random starting positions.  The set of possible trial parameter values were the same

as for training.  Each network was tested with fixed weights and also under continuous

training.  The starting state of the networks tested during training was the same as when

operating with fixed weights.  The extra training time allowed during testing is not

thought to have confounded the results in any way (tests were run with fixed weights on 3

of the networks after this extra training and none was observed to perform better than it

Number of steps in trial

Initial distance range of shadower from prey (units)

Shadower step size (units)

Prey step size (units)

Prey direction change constant per step?

Prey direction change (per step) range (rad)

Initial bearing of shadower from prey (rad)

100

0.5

0.4

Yes

-0.02 ≤ c ≤ 0.02

50 ≤ d ≤ 90

0 ≤ b ≤ 2π

(b) Training procedure

Selected
randomly
before trial

Tables  5 .1a ,b  Parameters
defining the (a) Backpropagation
training parameters. and ( b )
training procedure.

(a) Backpropagation training

Initial weight range -1 ≤ w ≤ 1

α 0.5

η 0.1
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had previously).  To allow a graphical comparison with the self organising networks of

chapter 4 tests were also run on prey trajectories a, b and c (as shown in Fig 4.4).

5.3 Results (including comparison with self organising map)

The tests demonstrated a clear difference in performance between the self organising

networks of the previous chapter and the Multilayer Perceptron of this chapter.  Motion

camouflage trajectories generated from a Backpropagation trained controller are

displayed in Fig 5.5a-c.  These results were obtained from a network with 10 nodes in the

Fig. 5.5a,b, c .  Performance of a Multilayer
Perceptron controller with 10 hidden nodes.
Alike Figs.4.4a, b & c 6 shadowers and a single
prey are shown in each diagram.  Each trial
consists of 100 steps.  Shadower and prey
positions are shown every 5 time steps.
Shadower and prey positions are highlighted
in black every 20 time steps.  The shadower
moves a distance of 0.5 units per step, the prey
0.4.  Lines represent camouflage constraint lines.
The bold lines represent the constraint line at the
final time step.  The shadowers adopt accurate
motion camouflage trajectories for each starting
position and prey trajectory.

(a) prey does not alter its course;
(b) prey changes direction by 0.01 radians each

step;
(c) prey changes direction by 0.02 radians each

step.

(a)

(b)

(c)
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hidden layer.  On casual inspection the shadower trajectories appear to be almost

faultless.  In fact, as shown later in this section this network structure is the least accurate

of the three investigated in the chapter.  However similar diagrams for networks with 20

and (2*10) nodes in the hidden layer are virtually indistinguishable.  These diagrams

alone suggest that the MLPs trained with Backpropagation have given more accurate

motion camouflage approaches than the self organising networks of the previous chapter

(see Fig. 4.4).  The MLP shadowers always maintain a course close to the constraint line

(unlike the shadower in the top left of Fig. 4.4a).  Also the MLP shadower trajectories

appear smoother and there are no instances of the shadower overshooting the prey (as

with the rightmost shadower of Fig 4.4b).  This difference is quantified by Figs 5.6a&b

which display the mean visual error per trial plotted against the initial bearing and the

initial distance of the shadower from the prey respectively.  In comparison with the

corresponding graphs for the self-organising networks (Fig 4.5a&b) the error range can

be seen to be far lesser.  Ultimately use of statistical tests is unnecessary to show the

superiority of the Multilayer Perceptrons over the networks of the previous chapter for

motion camouflage.  The worst performing network of the 60 trained in this chapter had a

mean directional error (~0.26 rad) less than half that of the best sensorimotor map (~0.7

Fig. 5.6.  Performance of a Multilayer Perceptron controller with 10 hidden nodes.  The graphs mirror Figs 4.5a, b.
(a) and (b) and show the change in mean +/- std. err visual error according to the initial bearing and initial distance of
shadower from prey respectively.  Prey trajectories a, b and c correspond to those shown in Fig. 5.4.  Results are
representative of 50 trials run for each prey trajectory.  The set of initial shadower positions was randomly chosen, but
the same for each prey trajectory.  Visual error values were not recorded after the shadower had reached a distance
within two units from the prey (when, due to geometry, small movement errors are likely to give large visual errors
that will have a disproportional effect on the average).
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rad).  The greatest mean rotational error of the MLP (~0.06rad) was also smaller than the

least SOM error (~0.08rad).

The next points of interest were the possibly inter-related differences in performance

between the different Multilayer Perceptron structures working with fixed weights or

undergoing continuous training.  Mean results for each of the 60 different networks

operating under both conditions are displayed in Fig 5.7.  Note that in graph legends dual

networks are indicated as having 2*10 hidden nodes.  This graph indicates the following:

Operating with fixed weights (black points):

• Overall the four best performing networks were dual networks.

• There is a stronger relationship between directional and rotational performance

with the dual networks (i.e. a network providing a good directional performance

is likely also to give a good rotational performance).  Correlations between

directional and rotational means are 0.78, 0.29 and 0.33 for networks with (2*10),

20 and 10 hidden nodes respectively.
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Fig 5.7.  Performance of the different network structures in the two operating conditions.  Mean directional error is
plotted against mean rotational error.  Results are shown for all 20 networks of each network structure (overall 60 nets)
running either with fixed weights (black) or under continuous training (grey).  Therefore in total 120 points are plotted.
Results are representative of 100 trials run against each of 100 prey trajectories (as described in section 5.3).  Each
trial consists of 100 steps.  At each step the prey altered its course by a constant angle chosen randomly at the start of
the trial (in the range – 0.02 rad ≤ b ≥ 0.02 rad).
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(a) Fixed weights (b) Fixed weights

(c) Continuous training (d) Continuous training

(e) Proportional improvement in directional mean
resulting from continuous training

(f) Proportional improvement in rotational mean
resulting from continuous training

Figs 5.8 a-f.  Difference in mean performance between operation with fixed weights or under continuous
training.  a &  b display the mean directional and rotational error of the different network structures
running with fixed weights (i.e. the points plotted in black in Fig 5.5).  The networks are numbered in
descending order according to their mean directional (a) or rotational (b) performance (i.e. 1 is best, and
net 1 in a is not necessarily the same as net 1 in b).  c & d display the mean directional and rotational
errors of the same networks running under continuous training (i.e. the points plotted in grey in Fig 5.5).
Net numbers in c correspond to a and in d correspond to b.  e & f show the proportional reduction in
mean error (labelled as proportional improvement) in direction and rotation respectively.  (If a  is the
mean deviation of a net operating with fixed weights and c  is the mean deviation of a network operating

under continuous training, the proportional improvement is given by aca /)( −  ).



5. IMPLEMENTATION OF THE RESPONSIVE ALGORITHM USING BACKPROPAGATION

115

Operating under continuous training (grey points):

• The overall best directional performance with fixed weights is surpassed by many

of the 10 hidden nodes networks undergoing continuous training.

• The least mean rotation error is slightly greater than the least with fixed weights.

• The range of mean directional errors is greatly reduced.  This is most prominent

with the networks having (2*10) and 20 nodes in the hidden layer.

In general:

• Continuous training markedly improves the directional performance of all

networks.

• Networks with ten nodes in the hidden layer tended to perform worse with respect

to both directional and rotational error.

For clarity the data displayed in Fig 5.7 is re-plotted in Figs 5.8a-d.  These graphs

help to illustrate:

• A significant difference in directional error means between the networks with 10

hidden nodes and the two other structures (confirmed statistically in Table 5.2a).

Significance holds for both operation with fixed weights or under continuous

training.

• Significant differences in rotational error means between each of the network

structures (confirmed statistically in Table 5.2b).  Significance holds for both

operation with fixed weights or under continuous training.

• A significant difference in the directional error means between each network

operating with fixed weights and under continuous training (confirmed

statistically in Table 5.2a).

• No significant difference in the rotational error means between each network

operating with fixed weights and under continuous training (confirmed

statistically in Table 5.2b).
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• No clear relationship between networks that perform well with fixed weights and

under continuous training.
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Fig. 5.9 a – c.  Difference in performance over the duration of individual trials resulting from continuous
training.  A dual network was used to generate the results.

Results show 3 trials run over the 3 different prey trajectories as shown and labelled in Fig 5.3.  The bearing
of the shadower from prey at the start of the trial (s.b.) was either 1, 3 or 5 radians.  The distance separating
shadower and prey at the start of the trial was always 85 units (As for all tests in this chapter shadower step
size = 0.5 units, prey step size = 0.4 units).  Therefore a, b & c each show a total of 9 trials.  Note that the
directional and rotational data are scaled on different axes and that the directional error scale differs between
a, b and c.

(a) Directional and rotational error with fixed weights.
(b) Directional and rotational error whilst training.
(c) Difference between a and c at each time step.
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Figs 5.8e-f display the reduction in the mean error afforded by continuous training

proportional to the mean error encountered with fixed weights for each network (for

directional and rotational data respectively).  Whilst continuous training reduced the

mean directional error mean for every network, it could either improve or degrade

rotational performance.  There was found to be a statistically significant difference in the

error reduction between the networks with 10 hidden nodes and both of the two

alternative structures (Table 5.3a).  No such significant differences were found with the

rotational data (Table 5.3b).

Having identified that continuous training reduced the mean directional error in the

tests, it became necessary to investigate how this reduction is manifested over the

duration of individual trials.  Fig. 5.9a-c illustrate the difference in accuracy between

operation with fixed weights and under continuous training over the duration of nine

trials for a double network.  The graphs are illustrative of 3 trials run from different

starting positions for each of prey trajectories a, b and c (as displayed in Figs. 5.5).  The

graphs show that when operating with fixed weights (Fig. 5.9a) the directional error

tended to be high during the first few steps of the trial, before abruptly dropping and then

increasing over the later stages. The rotational error tended to be worse at the start of the

trial, either increasing or decreasing over the later stages. Differences in the pattern of

error were evident between trials.  When the network was continuously trained (Fig.

5.9b), the patterns in directional and rotational error exhibited greater similarity to each

other.  Both directional and rotational errors were highest at the start of the trial, tending

to diminish towards the end.  It would appear to be over these later stages that continuous

training offers directional improvement (Fig. 5.9c).  At the start of the trial continuous

training often seems to slightly degrade directional performance.  In this example

rotational performance was almost always improved by continuous training, however

attention is drawn back to Fig. 5.8f which shows that this is not always the case.
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 (a)            (b)
Source df MS H P Source df MS H P

F or c.t. 1 92852 76.7372 < 0.00001 F or c.t. 1 128.13 0.1059 0.75

Net struct 2 8433.77 13.9401 < 0.001 Net struct 2 49315 81.513 < 0.00001

Interaction 2 1329.36 2.19729 0.33 Interaction 2 170.33 0.2815 0.85

Residual 114 277.296 Residual 114 393.78

Total 119 Total 119

(a)            (b)
Source df MS F P Source df MS F P

Net struct 2 0.113 7.634 0.001 Net struct 2 0.0821 1.712 0.19

Residual 57 0.01481 Residual 57 0.048

Total 59 Total 59

5.4  Discussion

The results obtained using Backpropagation were more accurate whilst requiring far

fewer computational units than the self-organising networks of chapter 4.  Therefore it

can be stated with confidence that Backpropagation is more suitable for application to

motion camouflage.  Furthermore the progression of the Backpropagation networks to the

Table 5.2.  Scheirer-Ray-Hare (non-parametric equivalent of two-way ANOVA) tests investigating the
difference in directional (a) and rotational (b) error between the three different network structures operating
with both fixed weights and under continuous training.  See also Figs 5.7 a – d.  The mean directional or
rotational error was calculated from a total of 10,000 trials per network (as described in section 5.3).
Each trial had 100 steps (20 networks for each network structure.  Therefore overall there were 6 samples
consisting of 20 replicates.
(a) results indicate a highly significant difference in directional error between the different network

structures and also between operation with fixed weights and under continuous training.  It was found
using Mann-Whitney tests that there was no significant difference between networks with  (2*10) and
20 hidden nodes.  Fixed weights P = 0.478, continuous training P = 0.086.  However both were
significantly different from the network with 10 hidden nodes.  Fixed weights (2*10) vs 10 hidden
nodes P = 0.005, 10 vs 20 hidden nodes P = 0.017.  With continuous training both P < 0.001).

(b) results indicate a highly significant difference in rotational error between the different network
structures.  There is no significant difference between operation with fixed weights or under continuous
training.   It was found using Mann-Whitney tests that all three network structures performed
significantly differently to one another (with both fixed weights and continuous training).  All P-values
< 0.002.

Table 5.3.  One-way ANOVAs investigating for a difference in proportional mean directional (a) and (b)
rotational improvement offered by continuous training for each of the three network structures.  See also
Fig 5.7e,f for a plot of the data and definition of proportional improvement.  Results generated from the
same trials as Table 5.2a,b.  Overall there were three samples consisting of 20 replicates.  Levene’s test
showed that the variances of the data were suitably homogenous in both cases.
(a) results indicate a highly significant difference in the proportional mean directional improvement for

different network structures.  Post hoc LSD tests showed that there was no significant difference
between networks with (2*10) hidden nodes and 20 hidden nodes (P = 0.153).  Both were significantly
different from networks with 10 hidden nodes.  (2*10) hidden nodes vs 10 hidden nodes P = 0.019.  20
hidden nodes vs 10 hidden nodes P < 0.001.

(b) there was no significant difference in proportional mean rotational improvement between any of the
network structures.
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more challenging problem of making predictions (addressed in chapter 6) is also likely

to be less computationally demanding than for the self organising networks.  In

explanation, to make predictions the control system is likely to require knowledge of the

recent chase history (see section 2.2.4).  The most simple method for supplying this

information would be to present previous sensory information as input.  As the self-

organising network has a far larger hidden layer, more additional connections would be

necessary, suggesting that the computation cost would be higher than for the MLPs.

The dual network architectures were found on average, to give the least rotation error

means.  Also in tests with fixed weights the dual networks produced the four least

direction error means (coupled with rotation error means less than any of those produced

from alternative network structures).  This suggests that there is a greater chance of

obtaining high motion camouflage accuracy with the dual networks than with the

alternative structures (using the training method and parameters described in section

5.2).  Also the test results suggested that a high direction accuracy was more likely to be

paired with high rotation accuracy with the dual networks controllers.

By continuously training the networks it was possible to dramatically reduce the

movement direction error but not the rotation error.  This poses two questions:

• Why did continuous training reduce the direction error?

• Why did continuous training not have the same effect on rotation?

With the regular prey trajectories used, each set of inputs were similar to the previous

set.  Likewise each set of consecutive target outputs were similar to the previous outputs.

(Fig. 5.9a shows the direction outputs and Fig. 5.9b the difference between consecutive

direction outputs over the motion camouflage trajectories shown in Fig. 5.9e).  It is

therefore thought that by always adapting to the immediate situation (i.e. the previous

step) the networks could have improved their performance.  This is consistent with the

general pattern of reduced directional error towards the end of the trials and the relatively

high error at the start of trials as seen in Fig. 5.9c.  The poor performance at the
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beginning of trials (excluding the first) could be explained by the network having adapted

to the different conditions at the end of the previous trial.  One possible reason that

continuous training gave this advantage is that the fixed weight networks contained too

few nodes to accurately model the problem.  Supporting this the performance of the 20

hidden node networks was markedly better than that of the 10 hidden nodes networks.

Alternatively, if in fact there were sufficient nodes, it is implied that the training

procedure and parameters were not conducive to finding the global error minimum.

If this explanation for improved direction performance is correct, then why was

rotational performance not improved?  The rotation outputs and differences between

Fig 5.10.  Outputs and change between consecutive
outputs generated by the responsive algorithm (using
trigonometry with exact distance information) over
the 6 trials shown and labelled in (e).

(a) Direction outputs.
(b) Difference between consecutive direction

outputs.
(c) Rotation outputs.
(d) Difference between consecutive rotation outputs;
(e) Corresponding shadower and prey trajectories.
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consecutive rotation outputs corresponding to the trajectories of Fig. 5.10e are shown in

Fig. 5.10c and d respectively.  Inspection of the output differences of Fig. 5.10c gives no

obvious reason to expect that rotation should behave any differently to direction.

However, it can be seen from Fig 5.10c that the rotation output over the duration of a trial

does not necessarily follow a similar pattern to the direction output.  This implies that the

rotation and direction error surfaces are different (as would be expected).  Therefore it is

suggested that this difference may involve the solutions to local direction problems being

closer to each other (or at least easier to reach from each other using on-line training)

than is the case for rotation.  Alternatively it is possible that the failure in rotational

improvement could result from choice of unsuitable training parameters.  However,

casual experimentation involving alterations of learning rate (η) and momentum (α)

terms failed to yield a rotation performance better than the best achieved with fixed

weights.

Regardless, to be able to benefit from continuous training a controller would have to

have the ability to teach itself autonomously.  Although this requirement is somewhat

contradictory to a supervised learning technique, it is thought that it may be possible to

train an external network to act as teacher.  After each movement this teaching network

would be required to recognise what would have been the appropriate move and use this

to train the motion camouflage network.  In this case measures of self error (the input to

the teaching network) could be the degree to which the prey and fixed point are non

central in the shadowers front and behind view (ideally if the prey were directly ahead

and the fixed point directly behind each of the shadower’s four visual input angles would

be equal).  However, in later chapters where the shadowers vision of the fixed point is

removed the only error measure would be the direction of the prey and the shadower

would have to assume that it is facing directly away from the fixed point.  It is unclear

whether this 'unsupervised-supervised' approach would offer any real advantage over

supplying the motion camouflage network with the additional computational power

required for the teaching network.  Due to the improvements in performance observed

from increasing the network size (see chapter 6) continuous training is not further

investigated in the remainder of this thesis.
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6 TOWARDS AN AUTONOMOUS MOTION CAMOUFLAGE
CONTROL SYSTEM

In the previous chapters the sensory input received by the control system explicitly

gave it its exact position relative to the prey and the fixed point.  In a real situation the

shadower would be unlikely to have access to such accurate information.  It is also

unlikely that the shadower would be able to see both prey and fixed point simultaneously

(especially if the fixed point does not physically exist, see chapter 2).  As the shadower

must concentrate on viewing the prey, it has no alternative but to use dead reckoning to

estimate the position of the fixed point.  Also, the binocular vision previously afforded

the shadower gave it more accurate depth information than would be expected in a real

world situation (as discussed in section 3.2.2 binocular vision tends to be inaccurate for

judging the depth of distant objects).  Beyond this, if the shadower could have such

accurate depth vision, then so could the prey.  The prey would consequently be less likely

to be fooled by camouflaged approaches as it would be able to spot looming.

In this chapter the amount of spatial information provided by vision is reduced to a

level resembling that which an insect or robot could retrieve.  Additionally, the control

systems are trained to perform the predictive algorithm, tracking prey moving along real

hoverfly flight paths as well as the regular trajectories of previous chapters.  Again the

chapter is organised in the form of an experimental write-up.

6.1 Methods

This section lists the control system inputs, outlines the design of the control systems,

describes the prey trajectories used in training and testing and finally details the

experimental procedure where it differs from that of previous chapters.

6.1.1 Control system inputs and outputs

As previously discussed, for motion camouflage to be successful, the prey must not

be able to sense any difference in shadower range as the shadower approaches.  This

implies that the shadower must be at such a distance that the prey can not make use of
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binocular depth cues (e.g. binocular stereopsis, convergence, accommodation see

section 3.2.2) to judge the distance of the shadower.  Equally the shadower would be

unlikely to be able to use these techniques to estimate prey distance.  Therefore in this

chapter the shadower’s sensory input is reduced to:

• the direction of the prey;

• the image motion of the prey (i.e. the angle subtended at the shadower’s retina by

the present and previous prey position).

To enable prediction the shadower is also afforded a short memory of recent prey

image motion and in order to interpret this a memory of its own recent movement.  The

shadower is expected to estimate the distance to the fixed point based on the memory of

its movement (section 3.1.2 saw that this task is not beyond the wandering spider

Cupiennius which is capable of dead reckoning based entirely upon signals from

mechanical stress sensors located on its legs).

Similar to chapters 4 and 5 the controller outputs the direction to move and the

rotation about which to turn.  As before the shadower is trained to rotate so as always to

view the prey frontally and keep the fixed point directly behind.  As the shadower no

longer receives any external input giving the direction of the fixed point, the accuracy of

the rotation becomes more important.  If the shadower rotates accurately it can assume

that the fixed point is directly behind it, leaving only the distance to be estimated.  The

shadower step size is held constant and modelled implicitly by the system.

6.1.2  Control system architecture

In light of the results of chapter 5 where it was found advantageous to split the

control system into separate networks corresponding to the outputs, it was decided to

form the control system from three Multilayer Perceptrons (Fig. 6.1).  The first network

is trained to output the distance to the fixed point.  The second to output the direction in

which to move and the third the rotation about which to turn.
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Before making a movement, the controller is provided with the direction to and

image motion of the prey.  This information, combined with:

• a memory of the prey image motion over the previous two time steps;

• a memory of the previous three movements made by the shadower;

• and the previous estimate of fixed point distance

is given to the distance network.  This network estimates the distance to the fixed point.

The new distance estimate is passed to the direction and rotation networks (and fed back

to form part of the next input to the distance network).  Otherwise their input is identical

to that of the distance network.  The direction and rotation of movement are then decided

and output.  These are also stored in memory and subsequently fed back as input to all

networks.

Chapter 5 has seen that the larger 20 node networks were more accurate than the

smaller nets and preliminary empirical tests suggested that it would be beneficial to

increase the number of layers in the networks.  In accordance, in this chapter, each

network was comprised of two hidden layers, the first consisting of 20 nodes, the second

10.  The networks were trained with an adaption rate of 0.1 and a momentum term of 0.5.

Multilayer
Perceptron

Memory

External Input/output

Internal signals

Prey motion

Prey direction

Fig. 6.1.  Control system architecture.  See text for explanation.

Direction
to move

Rotation
Rot

Dir

Dist
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6.1.3 Prey trajectories

Two types of prey trajectory were used to train and test the networks.  The first (as in

the previous chapters) were automatically generated regular arcs.  Here the prey moved a

constant distance and changed direction by a constant angle within the range –0.4 to 0.4

radians at each time step. These trajectories were therefore totally predictable.  In training

the direction change of the prey was selected randomly at the start of each trial.  In testing

the direction changes were selected to span the range uniformly (i.e. if 5 trajectories were

selected for testing the corresponding set of direction changes would be {-0.04, -0.02, 0,

0.02, 0.04}).   To enable the shadower to get closer to the prey with each step, the

distance moved by the prey at each time step was set to 9/10 that of the shadower.

The second set of trajectories were the digitised flight paths of real hoverflies.  3

hoverflies of species Episyrphus balteatus (see Fig 1.1) were captured and used to

generate the experimental trajectories.  The hoverflies were individually placed in a box

(1m * 1m * 30cm (height)) covered with perspex and filmed from above.  The camera

was located approximately 70 cm above the box.  The camera recorded 24 frames per

second.  The footage was digitised and the positions of the hoverflies over their flights

manually segmented and transformed in to sequences of 2D co-ordinates.  In total the

footage yielded 91 sequences, each consisting of 40 frames.

The step sizes of shadower and prey were increased to 5 and 4.5 units respectively

(from values of 0.5 and 0.4 units in previous chapters).  The reason for this was to

exaggerate the difference in visual error between a shadower following a responsive

approach and a shadower following a totally camouflaged trajectory.  In explanation, it

was assumed that the best camouflaged approach a shadower incapable of prediction

could adopt would be a responsive approach.  As such a shadower capable of prediction

would be expected to have a visual error less than that of a responsive shadower.

However the smaller the shadower's step size, the closer a responsive approach to perfect

camouflage and the less the difference between the two approaches in visual error (and

the less the benefit from making predictions).  Therefore increasing the step size not only
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served to increase the importance of prediction to maintaining camouflage but also made

it easier to distinguish whether or not the shadowers were making accurate predictions.

6.1.4 Experimental procedure

Beyond successfully training a controller, the following areas were identified as

being of particular interest:

• Whether it is possible to improve motion camouflage through prediction.

• Whether the control systems are able to perform on the alternative trajectory type

to those used in training.

Overall, 6 controllers were trained with the predictive algorithm (in the manner

described in section 4.1.4, parameters used in training and testing are displayed in

Table. 6.1).  Three were trained on the hoverfly training data and the remaining three on

automatically generated regular trajectories.

Similar to section 5.2 each control system was trained for a fixed number of

iterations.  The training algorithm resembled that of section 4.1.2 except that the

shadower was trained to move to the future constraint line (the position of which was

calculated aposteriori).  During training, tests were performed and a record kept of the

weight configuration of the best performing state of the controller.  Specifically, trials

were run from 10 randomly selected starting positions on ten different prey trajectories

(in the training set).  Accuracy was measured by the mean directional error.  On

completion of training, the best performing state of the controller found during training

was selected as the final state (it had been found that the state of the control system after

the last training iteration was not necessarily the best).

Number of steps moved per trial

Shadower step size (units)

Prey step size (units)

39

5

4.5

Initial distance of shadower from prey (units)

Initial bearing of shadower from prey (rad)

200 ≤ d ≤ 400

0 ≤ b ≤ 2π

Table. 6.1. Training and testing parameters
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Following training, each control system was more extensively tested.  100 trials were

run from randomly selected starting positions on each of 16 prey trajectories.  For both

trajectory types, the controllers with the least mean directional error were selected for

further testing.  These two also gave the least rotational and visual error means

(respective to test trajectory type).  These were then tested on the alternative trajectory

type to those trained (i.e. the controller trained on hoverfly flight paths was tested on

regular trajectories and vice versa).  Performance was compared to that obtained with the

responsive algorithm (calculated using trigonometry from exact distances).

6.2 Results

Motion camouflage trajectories generated from the controllers are displayed in Fig.

6.2.  The performance appears to be very accurate, with the shadower able to successfully

approach from different starting positions.  Camouflage is almost perfect on the regular

trajectories, and although the shadower has more difficulty with the erratic movement of

Mean +/- stdev (rad)
Dir error = 0.10 +/- 0.14
Rot error = 0.05 +/- 0.005
Vis error = 0.003 +/- 0.003

Mean +/- stdev (rad)
Dir error = 0.20 +/- 0.21
Rot error = 0.009 +/- 0.01
Vis error = 0.01 +/- 0.02

Mean +/- stdev (rad)
Dir error = 0.18 +/- 0.16
Rot error = 0.009 +/- 0.007
Vis error = 0.006 +/- 0.003

Mean +/- stdev (rad)
Dir error = 0.29 +/- 0.33
Rot error = 0.03 +/- 0.04
Vis error = 0.05 +/- 0.06 Mean +/- stdev (rad)

Dir error = 0.03 +/- 0.06
Rot error = 0.005 +/- 0.006
Vis error = 0.002 +/- 0.002

Mean +/- stdev (rad)
Dir error = 0.18 +/- 0.19
Rot error = 0.014 +/- 0.01
Vis error = 0.01 +/- 0.01

(b)

(c)

(a)

Fig. 6.2a, b, c.  Performance of controllers.  Shadower
and prey are plotted at every second time-step along the
pursuit.  The final constraint line is drawn in black.  (a)
& (b) show the paths given by the controller trained on
hoverfly trajectories, tested on hoverfly test trajectories.
In (b) the shadower encounters difficulties around the
mid-point of the pursuit when the prey moves so fast that
the shadower can not ‘physically’ reach the next
constraint line.  However as the prey slows it soon
recovers so as to be camouflaged at the final step.  (c)
illustrates the controller trained on regular trajectories
approaching and catching a prey moving along a regular
path (direction change –0.003 rad per step).  Here the
camouflaged trajectory is almost perfect.
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the hoverfly, it is able to keep to the constraint line remarkably well (especially

considering that the hoverfly occasionally moves so fast that it is impossible for the

shadower to actually reach the constraint line e.g. Fig. 6.2b).

Fig. 6.3 compares the (a) visual, (b) directional and (c) rotational errors of each

controller on each test.  The mean errors are reduced from those recorded in section 5,

suggesting that the increase in network size has improved performance.  As might be

expected, for each test trajectory type the least errors were given by the controller trained

on similar data (i.e. the controller trained on hoverfly trajectories performed better than

anything else on the hoverfly test data).  Notably, the errors were also less than those

encountered from use of the responsive algorithm, indicating that prediction had

improved camouflage in all respects. All differences mentioned in this section are

supported statistically (Table. 6.2).
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Fig. 6.3a-c.  Comparison of the mean +/ stdev (a) directional, (b) rotational and (c) visual errors of the
different controllers.  Standard deviations are scaled by (a) 0.2, (b) 0.2, (c) 0.1 for the purposes of
presentation.  Each result is representative  of 100 trials of 39 steps run against each of 16 prey trajectories.
The high rotational errors of  the responsive algorithm were incurred when the shadower was very close to
the prey (and rotated to view the previous prey position).  This happened more frequently with the regular
trajectories when shadower and prey were more likely to move directly toward one another and meet.  In (c)
the visual error was not recorded after the shadower was ≤ 10 units distance from the prey.  Beyond this
distance, any slight directional error could incur a very large visual error, exerting a disproportionate
influence on the mean and standard deviation.  (d) shows the relationship between the distance separating
shadower and prey and visual error for the controller trained on regular trajectories, tested on regular
trajectories.  As can be seen, there are only large errors when the shadower is close to the prey.  (e) shows
the frequency distribution of visual errors for (d).  The vast majority of errors are below 0.005 rad.  3427 (of
a total of 62400) entries are above 0.01 rad and not shown on the plot.
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The other area of interest was how well the control systems performed on the

alternative data type to that on which they had been trained.  It was found that the

hoverfly trained control system performed well on the regular test set.  The performance

was better in all respects than the responsive algorithm, indicating that the controller was

capable of making accurate predictions.  The opposite was not true.  The control system

trained on regular data performed poorly on the hoverfly trajectories and far less

accurately than the responsive algorithm.  The success of the hoverfly trained controller

suggests that many of the predictable characteristics of the regular trajectories were also

present in the hoverfly trajectories.  It was thought that the  poor performance of the

regular control system on hoverfly data could be indicative of a difference in dependency

on inputs between controller types.  For instance, in the regular trajectories the prey never

changed speed or abruptly changed direction.  Subsequent camouflaged moves were

therefore always very similar.  It is possible that the shadower could have become too

reliant on its previous moves to determine its next to reliably track the hoverfly.

6.3 Discussion

In this chapter it has been seen that accurate camouflaged approaches can be

calculated with simple inputs and that performance can be improved through prediction.

Table.6.2 a, b, c.  Scheirer-Ray-Hare (non-parametric equivalent
of two-way ANOVA) tests investigating the difference in (a)
directional, (b) rotational and (c) visual errors (recorded only
when the shadower was at a distance ≥ 10 units from the prey.
See Fig 6.3 for explanation) between the different controllers
(and responsive algorithm).  Replicates were the mean error per
trial (16 prey trajectories with 100 trials per prey trajectory).  In
each case highly significant differences were found between
controllers and between test trajectory types.  There was also a
highly significant interaction, a consequence of the poor
performance on hoverfly test data of the controller trained with
regular trajectories, contrasting to the improved performance of
the hoverfly trained controller on regular trajectories.

It was found through exhaustive use of Mann Whitney-tests (and
z -tests in the cases of  testing for a difference between each test
trajectory type in directional  and visual errors incurred by the
responsive algorithm, where variances met test assumptions) that
there were highly significant differences (all P ≤ 0.0001) between
each possible combination of main effects but one:  There was no
significant difference between test trajectory types in the visual
error of the responsive algorithm (P = 0.75).

Test traj 1 0.04 14.69 < 0.0001
Interaction 2 0.21 154.29 < 0.0001
Residual 9594 0.003
Total 9599

Source

df

MS H PContr 2 0.08 58.78 < 0.0001

(c) Visual  error

Test traj 1 0.44 76.86 < 0.0001
Interaction 2 0.91 158.96 < 0.0001
Residual 9594 0.005
Total 9599

Source

df

MS H PContr 2 0.7 122.28 < 0.0001

(b) Rotational error

Test traj 1 64.78 2175.93 < 0.0001
Interaction 2 39.62 2657.98 < 0.0001
Residual 9594 0.011
Total 9599

Source

df

MS H PContr 2 16.91 1134.42 < 0.0001

(a) Directional error
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What is especially interesting is that the control system has been able to gain an adequate

concept of prey depth from its inputs (see also Fig 2.4c).  There are a variety of clues that

the control system has available for this estimation:

• It knows that it will be starting its approach from within a certain distance range of

the prey (similarly as discussed in section 3.1.1 it has been suggested that male

hoverflies computing interception courses make the assumption that they will spot

the female at a given distance (Collett & Land 1978).

• The further it is from the fixed point the closer it is likely to be to the prey.

• The difference between the previous rotation and prey image motion may provide

distance information in a manner similar to that in which peering enables animals

such as praying mantids to estimate target distances (see section 3.2.2).  Praying

mantids are able to accurately estimate the depth of stationary targets from the

motion of the target’s image encountered as they move their heads from side to

side (Kral 1998).  Ideally as the shadower always faces its prey there will be no

image motion.  But the corrective yaw necessary to keep the shadower facing the

prey (as the shadower itself moves) will be identical to the image motion should

the shadower not have rotated (any prey image motion is therefore indicative of

error).  However, in contrast to the praying mantis, whose target is normally

stationary, both shadower and prey are moving, consequently making depth

estimation more approximate.  Image motion alone can only reveal whether the

prey is moving to the left or right.  In practice, at large distances knowing this may

be sufficient.  The lateral component of shadower movement will always be

relatively small and as long as the shadower moves in roughly the right direction,

the prey is unlikely to notice.  As the shadower approaches, its movement must be

increasingly accurate to maintain camouflage.  Then, to be useful, image motion

must be combined with additional knowledge.

• Lastly, the shadower’s mistakes may even be helpful in allowing it to infer its

distance from the prey.  The control system’s only measure of its error is the extent

to which the prey is non-central in its viewpoint (which is useful if the shadower is

indeed facing away from the fixed point).  Geometry dictates that the magnitude of
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this error measure will on average be greater for a similar mistake in movement the

closer the shadower is to the prey.  Therefore in general, the greater the error, the

closer the shadower to the prey.

That the control systems tended to specialise in tracking similar prey movement

patterns to those on which they had been trained was not especially surprising.  It is

noteworthy that the control systems trained on the hoverfly trajectories should be able to

generalise so well to tracking the artificial trajectories.  This suggests that many of the

predictable characteristics of the artificial trajectories were present (on occasion) in the

hoverfly flight paths.  The implications of this specialisation are:

• in nature, if motion camouflage shadowers do exist, they are likely to be specialist

in certain prey;

• artificially speaking, motion camouflage control systems are likely to have to be

tailored to particular prey.

Conversely, returning to a point raised by Srinivasan & Davey (1995) of what counter

strategies a prey could use to combat the shadowers camouflage, the prey also may need

to be specialist in the avoidance of its potential predators.
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7 3D CONTROL SYSTEMS WITH MINIMAL SENSORY INPUT

Chapter 6 demonstrated that it was possible to implement a predictive motion

camouflage control system operating using realistic levels of input in a 2D simulation.

This chapter extends the simulation to 3-Dimensions.  As a secondary area of interest

control systems are trained and tested with and without knowledge of prey image motion

in order to assess its value to correct calculation of outputs.  The format of this chapter

reflects recent chapters and takes the form of an experimental report.

7.1 Methods

7.1.1 3D Control system design

The design of the control systems follows that of section 6.1.2.  Each controller

comprises three Multilayer Perceptrons.  As before the first of these networks is

responsible for estimating the distance to the fixed point.  The second, the direction to

move and the third, the rotation.  The control system receives the following sensory input

(as described in section 7.4 half of the control systems do not receive image motion, the

architecture of the non-image motion system is shown in Fig 7.1).

• The direction of the prey, represented as two angles in a spherical coordinate

system relative to the shadower as origin (see Fig. 7.2);

• The image motion of the prey over the previous 3 time steps, represented as the

difference in the azimuth and difference in elevation of the prey between

consecutive time steps.

And the following internally generated signals:

• Feedback of the previous direction and rotation output, each represented using

two angles as for the prey direction.
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• An estimate of the distance from the fixed point.  At each time step the distance is

estimated prior to the movement, and the new distance estimate fed directly to the

direction and rotation networks, as well as back to the distance network, for the

next distance estimate (the initial input to the distance network is 0).

As in chapter 6, each of the networks is formed from 2 hidden layers, this time the

first hidden layer consisting of 40 nodes, the second 25.  Each node uses the logistic

activation function.  Training was undertaken on line using the standard Backpropagation

algorithm, with a momentum term of 0.1 and a learning rate of 0.05.  All parameters were

selected empirically.  There was not observed to be any noticeable improvement in

performance or training time, through use of alternative activation functions (e.g.

hyperbolic tangent, arc tangent, natural log).

7.1.2 Prey trajectories

Control systems were trained and tested on two types of prey trajectory, both

artificially generated:

Regular trajectories (resembling the 2D regular trajectories), where the prey changed

direction by a constant angle at each step.  The change in the azimuth and elevation of

Fig. 7.2.  Representation of prey direction, using
azimuth θ  and elevation φ .   Direction of
movement and rotations are similarly represented
using azimuth and elevation.

θ

φ

Multilayer
Perceptron

Memory

Sensory input/output

Internal signals

Dist

Rot

Dir
Prey direction

Fig. 7.1.  Non-image motion control system architecture.

Direction
to move

Rotation
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movement direction were independent and randomly determined before the trial.  Step

size was held constant at 4.5 units as in chapter 6.

Stochastic trajectories, generated as a three dimensional substitute for the hoverfly

trajectories (which could only be filmed in 2D). The movement direction change at each

step was controlled by a fraction of the previous direction change plus a random

component.  Step size was dependant upon the current direction change.  Equations (7.1)

and (7.2) below formally define the direction change and step, where Δθt and Δφt are the

change in azimuth and elevation respectively (spherical coordinate system with prey as

origin) at time t and rt is the step size.

t
t

t zm
p

⋅+
Δ

=Δ −1θ
θ , t

t
t zm

p
⋅+

Δ
=Δ −1φ

φ  (7.1)

zt is a random deviate (measured in radians) picked from a normal distribution with mean

0 and variance 1.  zt is selected independently for Δθt and .Δφt (i.e. the random component

is not the same for azimuth and elevation).  p and m are terms included to modify the

influence of the previous direction, and randomly chosen component on the new

direction.  In the simulation p = 2 and m = 1/5.












Δ+Δ+
⋅+=
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m
r

θφ
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Thus rt is limited to lie within the range 2.5 to 7.5 units, with a mean of approximately 4.5

units (in keeping with the other prey trajectories in this chapter and chapter 6).  All prey

trajectories were limited to 40 steps and in both cases the step size of the shadower was

held constant at 5 units (just greater than that of the prey).

7.1.3 Experimental procedure

The experimental procedure was designed to investigate the following areas:
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• Whether provision of image motion as input offers any advantages;

• Whether the 3D control systems were able to make successful predictions;

• Whether the 3D control systems were able to generalise to the alternative prey

trajectory type to those used in training.

In total, 12 control systems were trained.  6 were trained on regular prey trajectories

and 6 on stochastic trajectories.  In order to investigate the value of prey image motion to

the calculation, half of the control systems in each group were trained with image motion

as input and half without.  From each group a single control system was selected for

further testing.  The training process and selection procedure are similar to those of

section 6.1.4 and are described below.  Note that in the 3D tests, direction error was

measured in terms of azimuth and elevation components.

The controllers were trained according to the procedure described in section 4.1.4.

The control systems were trained for a fixed number of iterations (5*108).  Throughout

training their performance was tested, and a record kept of the best performing control

system over the training period.  The tests consisted of 100 trials, 10 trials run against

each of 10 different prey trajectories.  Testing parameters (e.g. initial distances and

bearings of shadower from prey) were selected randomly before each test.  Performance

was measured using the mean azimuth movement direction error.  If the current state of

the control system gave a lesser error than any of the previous, a second test was

undertaken.  If the error was still smaller, the record of the previous best controller was

replaced with the current.  On completion of training this record was selected to be the

final state of the control system.

In order to determine which control system from each group to retain, more rigorous

testing was undertaken.  Each control system was tested on 10,000 trials, 100 trials run

against 100 prey trajectories (of similar type to those used in training).  From each group,

the control system yielding the least error was then tested on the alternative prey

trajectory type to that on which it had been trained.  To allow testing for evidence of
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prediction, corresponding results for both prey trajectory types were generated using the

responsive algorithm (calculated from exact positions using trigonometry).

7.2 Results

Camouflaged trajectories generated by the 3D-control systems are shown in Fig. 7.3.

In Fig 7.3a, b and c the shadowers are tracking prey moving according to the stochastic

algorithm, in 7.3d the prey moves regularly.  As can be seen, the shadowers approach

accurately in each diagram regardless of prey movement or starting positions.  The

average errors resulting from the tests described in section 7.1.3 are displayed in Fig.

7.4.  The results of statistical analyses performed on the error data are displayed in Table.

Fig 7.3.  Example camouflaged trajectories generated by the 3D shadower control systems shown from different
viewpoints and rendered in 3D perspective:  (a), (b)  and (c) show shadowers tracking prey moving
stochastically,  (d) shows two shadowers simultaneously approaching a prey moving in a regular pattern.

(a)

(b)

(c)

(d)
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7.1.

Table 7.1a displays the results of an analysis of the system trained on stochastic

trajectories.  It identifies a highly significant difference in visual error between tests on

regular and stochastic prey trajectories.  This difference can be seen in Fig. 7.4, where the

error is always lesser on tests of the same prey trajectory type to those trained.  There was

also observed to be a significant difference in azimuth and elevation error (but not visual

error) between systems operating with and without image motion.  The significant

azimuth interaction results from the comparatively low error of the image motion system

tested on stochastic trajectories contrasting with the slightly higher comparative error on

regular prey trajectories

All tests performed on the system trained on regular prey trajectories (Table 7.1b)

indicated highly significant differences.  Conversely, this time it was the image motion

system that yielded comparatively greater errors when tested on the trained trajectory

type (regular) and far lesser on the alternative (stochastic).
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Fig. 7.4. Comparison of mean +/- std error visual, azimuth and elevation error per trial for
each of the control systems and the responsive algorithm (calculated from exact locations
using trigonometry) when tested against both stochastic and regular prey trajectories.
Similar to [2] visual error was not recorded after the shadower was within 15 units of the
prey.  Within this distance any slight error in choice of direction could have an extreme
effect on the average visual error, thus reducing its usefulness as a comparative error
measure for the different control systems.
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The interaction in Table 7.1c and d again highlights the superior performance of the

controllers when tested on the trained prey trajectory type.  The insignificant difference in

visual error between training trajectory types in Table 7.1d suggest that the image motion

networks were better able to generalise to the alternative prey trajectory type (stochastic)

to that trained.  As such, no evidence was found to say that knowledge of image motion

increases the maximum attainable accuracy of the control systems, only that it may

enhance the system’s ability to generalise to new prey movement patterns (when trained

on regular movement).

Finally, Table 7.1e compares the error of the two non-image motion systems to that

of the responsive algorithm on tests against both trajectory types (the control systems

were tested on the same prey trajectory types to those trained).  Again the test indicated

that all differences were highly significant.  In accordance Fig. 7.4 shows that the average

errors from the relevant controllers were lower than those of the responsive algorithm.

The significant interaction is a result of the comparatively lower error of the responsive

Table 1a-e.  Scheirer-Ray-Hare tests (non-parametric equivalent of two-way ANOVA based on ranked variates), testing for differences in errorresulting from the tests described in Section 6.  e investigates thedifference between the responsive algorithm and control system output.Contr sys trained on reg prey trajStochastic vs Regular test trajectoriesImage motion  vs withoutInteractionContr sys trained on stoch prey trajStochastic vs Regular test trajectoriesImage motion  vs withoutInteractionTrained without image motionStochastic vs Regular test trajectoriesStoch vs Reg training trajectoriesInteractionTrained with image motionStochastic vs Regular test trajectoriesStoch vs Reg training trajectoriesInteraction
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algorithm on the stochastic prey trajectory test to the comparatively higher error given by

the control systems.  These results show that the performance of the control systems was

on average closer to perfect camouflage than the responsive algorithm.  However the

corresponding higher standard error (see Fig. 7.4) suggests a more erratic performance.

(i.e. when mistakes were made, they were greater than those of the responsive algorithm).

In summary:

• There is no clear evidence that provision of image motion improves performance;

• There is evidence that the control systems (especially the regular control system)

were capable of predicting future camouflaged positions;

• Again each control systems outperforms the others when tested on the prey

trajectory type that it had been trained with.  Control systems trained on stochastic

prey were better able to generalise to regular prey trajectories than vice versa.

7.3 Discussion

This chapter has shown that it is possible for a shadower to calculate motion

camouflaged approaches to track prey moving in 3D space given only basic input.  The

greater difficulty encountered with the task is reflected by the increased error in

comparison to the 2D simulations.  However the control systems were still able to

outperform the non-predictive approaches given by the responsive algorithm (calculated

using trigonometry).

As was expected from the results of chapter 6, the shadowers were found to

specialise in tracking prey moving in the manner on which they had been trained.  Again

the shadowers trained on the predictable regular trajectories were less capable of

generalising to the alternative prey movement type.  This adds support to the suggestion

made in chapter 6 that camouflage control systems are likely to have to be tailored to

approach specific prey.
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It has been shown that the shadower has been able to perform effectively, using a

single basic sensory input (the direction of the prey).  This suggests that the performance

of the network is sufficiently accurate for prey image motion not to be a necessity in self

error measurement (as mentioned in the third bullet point of section 6.3) and shows that

image motion is not essential for the training process.  The simplicity of input found to be

necessary for camouflage in the simulation is an encouraging result for engineers who

may have an interest in designing real world motion camouflage control systems.  From

the point of view of biologists, the simulation has shown that the behaviour can be learnt

by a system that works in a manner reminiscent of a biological nervous system.  This

result provides further evidence that the computation of camouflage trajectories is not

beyond insects such as hoverflies.  As such this increases confidence of conclusively

identifying the existence of the behaviour in nature.  What remains is to demonstrate that

motion camouflage has a practical application.  The next chapter tests whether humans

are susceptible to camouflaged approaches calculated by the control systems.
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8 MOTION CAMOUFLAGE APPLIED: MISSILE DEFENCE

So far this thesis has shown that it is possible to implement an accurate predictive

camouflage control system that can track prey moving in a 3-Dimensional simulation.

What remains is to demonstrate that the networks have a practical application.  To this

end this final chapter presents the implementation and results of a psychophysical

experiment that masqueraded as a first person perspective computer game competition.

The game (Missile Defence) is used to show that humans are susceptible to the

camouflaged approaches of the control systems.

8.1 Methods

Specifically, the aim of this chapter was to show that motion camouflage approaches

would allow a predator to travel closer to their prey before being identified than other

plausible approach strategies.  The challenge was seen as to provide a simple,

understandable and in order to attract subject participation, entertaining task that would

allow comparison of the different approach strategies.  A 3D computer game

incorporating motion camouflage seemed a perfect solution which not only fulfils these

criteria but also demonstrates a potential application for motion camouflage.

8.1.1 Missile Defence, game design

In the game, the player takes the role of the prey who moves in a straight line down

the centre of a tunnel.  The player is given the freedom to look and shoot in any direction

(controlled by moving the mouse and clicking the mouse button) as is conventional in

contemporary first person perspective computer games such as Quake 3

(www.quake.com.br).  In the centre of the screen are crosshairs acting as sights for the

player.  Floating in the tunnel are stationary missile launchers which may or may not fire

a missile at the prey (i.e. the player).  Missiles and missile launchers are identical in

appearance.  Both are represented as bright yellow spheres.  The player’s purpose in the

game is to gain a high score by shooting the approaching missiles as fast as possible (so

as to avoid being hit).  One point is awarded for each missile shot and a speed bonus is

awarded for fast shooting (the calculation of which is discussed later in the section).  The
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player loses two points each time they are hit by a missile and loses three points for

shooting a missile launcher.  The missiles have a limited lifespan and self destruct a fixed

time after launch (if they have not hit the prey).  Whether the player has successfully hit a

missile, shot a missile launcher or been hit is indicated by one of three explosion types as

shown in Fig 8.1.

Fig 8.1.  Missile Defence screen shots.  (a) Explosion indicating when a missile has been shot.  The explosion lasts 5
frames.  The view is from the player’s perspective.  (b) Explosion indicating when a missile launcher has been shot.
The explosion lasts 10 frames.  The view is from the player’s perspective.  (c) Two examples of the explosion
indicating when the player has been hit by a missile or when a missile self-destructs. The explosion lasts 5 frames.
The view is from third person perspective (behind the prey).  The player (prey) is shown in green in the centre of the
image.  The missiles are exposed.  The light blue sphere with a tail in the top left of the image is a Straight missile.
The pink missile to the right of the prey is a Trig-MC missile.  See text for a description of missile types.  The blue
lines are camouflage constraint lines.  (d)  Instruction screen.  The background is shown at normal luminance (without
explosion lighting).

(a) (b)

(c) (d)
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From the experimental point of view, the missile launchers are the fixed points and

the missiles represent predators employing different strategies to approach the prey

(including motion camouflage).  The speed bonus and negative scores were included to

encourage the player to fire as soon as they think they see a missile but not to recklessly

shoot at anything (i.e. attempting to shoot missiles before they have been fired).  The

speed bonus was calculated as the ratio of the mean life-span of the missiles to the

maximum possible life-span multiplied by 10 points.  The different types of explosion

give covert feedback to the subjects about their success.  The tunnel was included to

enhance the player’s perception of movement in the virtual environment so as to give

realistic cues of positions through relative motion.  The contrast between the bright

yellow missiles and dark background was high to ensure that missiles and launchers were

clearly visible.  Use of more complex patterns of prey movement such as the curved or

stochastic trajectories of previous chapters was dismissed to avoid confusing the player

(in preliminary trials of the game, players had expressed that they were confused as to

their course of movement when moved along more complex paths).

There are four types of missiles, categorised according to their approach strategy:

• NN-MC (Neural Network Motion Camouflage), NN-MC missiles are controlled

by the regular camouflage control system trained in chapter 7.

• Trig-MC, Trig-MC missiles employ perfect predictive camouflaged approaches

calculated from exact distance information and knowledge of future prey

positions.

• Homing , at each time step Homing missiles move in the direction of the

forthcoming prey position (see Fig 8.2).

• Straight, Straight missiles move in a straight line so as to intercept the prey as

quickly as possible or to get as close to the prey before they reach their maximum

range and explode (see Fig 8.2).
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Notice that the NN-MC missiles are the only missiles that do not have access to

knowledge of future prey positions.  Also that it was necessary to use a predetermined

prey trajectory to allow calculation of the appropriate paths for the Trig-MC, Homing and

Straight missiles.

In each game there are 80 missile launchers, 40 of which fire a missile.  During a

game 10 missiles of each of the four types are fired (in a random order).  The positions of

the missile launchers, missile types and launch times are determined randomly from the

following specification before the start of each game.  Missile launchers are placed so

that their position at launch time is within the prey’s field of view as shown in Fig 8.3

(launch times are chosen at random throughout the duration of a game). The radius of

missiles and launchers is 2 units and the distance of any launcher at launch time is

between 200 and 400 units from the prey reflecting the parameters of chapters 6 and 7.

Similarly the prey moves a distance of 4.5 units per step, whilst missiles move 5 units.

During each game the prey moves 1200 steps and each missile moves a maximum of 40

steps before self destructing.  In order to smooth the animation 10 extra frames were

inserted between each pair of consecutive steps (positions of prey and missiles were

calculated by linearly interpolating between steps). The game was set at a speed

estimated slow enough to give the player a fair chance of shooting the missiles, but fast

enough so as not to be boring.  Each game takes approximately 5 minutes to complete.

Fig. 8.2.  Example approach paths of Homing and Straight missiles (shown in 2D).  Grey lines are camouflage
constraint lines.

Homing missile

Prey

  Straight missile

Prey
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The effectiveness of the four approach strategies was measured in terms of the

distance from the prey at which the missiles exploded (either through being shot, hitting

the prey or self destructing after reaching the end of their life).

8.1.2 Experimental procedure

The experiment was conducted in the guise of a one week long games competition.

Players were invited to compete for a prize for the best Missile Defence score.  The 30

experimental subjects were all members of staff or students at the Department of

Computer Science at Queen Mary’s University who competed voluntarily (age range 18-

40 years).  Competitors were allowed multiple attempts to beat the high score, though to

ensure equal representation of each competitor, only the results from the competitor’s

best scoring game were selected for analysis (a mean of 4 games were played per player).

Subjects were unaware of the purpose of the experiment.

During each game the player sat at a desk with a computer and mouse set up in

conventional arrangement.  The screen was approximately 50 cm from the player and the

game was played within a square 19cm*19cm window.  The subjects all had normal, or

corrected to normal vision.  At the onset of each game the player was shown a screen

listing the following instructions (see also Fig. 8.1d):

You will fly through a straight tunnel.

200

200

Prey  θ

φ
Prey

Missile launcher

Fig. 8.3.  Selection of missile launcher locations.  (a) The azimuth θ and elevation φ  of a launcher’s
position at firing relative to the prey were selected randomly from the respective ranges –!/4 >θ < !/4 and
–!/8 >φ< !/8 (if both angles are 0 the launcher is directly ahead of the prey).  The distance between prey
and launcher at firing was randomly selected from the range 200 to 400 distance units.  (b) shows a plan
view of the 3D area (shaded grey) in which a missile launcher could be positioned relative to the prey.

(a) (b)



8. MOTION CAMOUFLAGE APPLIED: MISSILE DEFENCE

146

Floating in the tunnel are stationary missile launchers.

Each may fire a single missile at you.

Missiles are identical in appearance to missile launchers.

They detonate when they hit you or run out of fuel.

Missiles will not be fired after you have passed the launcher.

You SCORE 1 point for shooting the missiles.

You LOSE 3 points for shooting the missile launchers.

You LOSE 2 points each time you are hit.

You will be awarded a speed bonus for quick shooting (Max 10 points).

In short shoot anything that moves immediately.

Don’t shoot anything that doesn’t move.

During the instructions an automatic demonstration was given showing missiles and

missile launchers being shot (see also Figs 8.1a&b).  The players were then left to

complete the task.

8.2 Results

The results show that in general the motion camouflaged missiles approached closer

than the other missile types before being detected and shot.  Fig 8.4a displays frequency

distributions of all missile explosion distances (300 of each missile type, 10 per subject

per missile type).  The distance distributions corresponding to both motion camouflage

missile types (NN-MC and Trig-MC) are very similar.  These missiles were

predominantly shot within 100 units distance from the prey and rarely shot beyond 150

units.  In contrast the range over which homing and straight missiles were shot was far

greater, with homing missiles occasionally shot at distances in excess of 200 units and

straight missiles often shot between 200 and 300 units.  Fig 8.4b displays the mean +/-

standard error of the mean distance per player at which missiles exploded.  The mean

distance at which NN-MC missiles exploded was 0.63 times that at which the homing

missiles exploded and 0.48 times that of the straight missiles.  The data shown in Fig
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8.4b was log transformed to reduce heteroscedasticity and analysed using a One-Way

ANOVA (df 119).  The analysis indicated a highly statistically significant difference

between missile types.  Post hoc LSD tests indicated that there was no significant

difference between Trig-MC and NN-MC approaches (p = 0.43).  That there was a highly

significant difference between any combination of motion camouflaged approach and

non-motion camouflaged approach (p < 0.0001).  Finally that there was a significant

difference between the Homing and Straight approach strategies (p = 0.02).  The lowest

mean explosion distance per player was given by a motion camouflaged approach in all

but four cases (see Appendix 2).  In two of these the mean distance was similar for all

missile types (the straight missiles were most successful against one player).  This

suggests that these two players were basing their decision to shoot solely on the missiles’

looming.  In the third case, the NN-MC missiles were shot comparatively early whereas

the mean explosion distance for Trig-MC and Homing approaches was identical.  Straight

missiles were shot at the furthest distance.  The fourth player shot the motion camouflage

missiles at a mean distance approximately 18 units further away than the homing missiles

and again straight missiles were shot at the greatest distance.

8.3 Discussion

This chapter has shown motion camouflage to be effective at allowing the missiles to

travel closer to their target before identification than the other approach strategies.
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Therefore it may be stated with confidence that the majority of the experimental subjects

were susceptible to motion camouflaged approaches, demonstrating for the first time that

humans are susceptible to motion camouflage.  The chapter has also further validated the

control system architecture of chapter 7 by showing there to be no recognisable

difference between the camouflaged approaches made by the neural control systems and

the ideal predictive camouflaged approaches (in terms of the distance that the shadowers

were able to approach to before being shot).

It was seen that the Homing missiles were able, on average, to approach closer to the

prey than the Straight missiles.  It is thought that this was due to the greater similarity

between homing and motion camouflaged approaches than between straight approaches

and camouflaged approaches.  For example in Fig 8.2 it can be seen that the homing

approach resembles a camouflaged approach more closely than the straight approach.

This is an interesting result in itself, in that in the instance that a motion camouflaged

approach can not be calculated, homing may prove a valuable stealth alternative.

The experiment presented in this chapter was carefully designed to be a fair test of

human susceptibility to motion camouflage.  However there are many factors that are

likely to influence the effectiveness of motion camouflage relative to the other approach

strategies that were not investigated (the study of which is beyond the scope of the

thesis).  The remainder of this section identifies some of the factors judged to be

important and discusses their implications in light of real world situations.

In the experiment the missiles were represented as plain spheres, identical in

appearance to the stationary missile launchers (this ensured that the only way that the two

could be differentiated was their pattern of motion).  As such the results of the

experiment may be considered to be representative of real world situations where the

shadower is largely structureless or is at such a distance that it appears to the prey as

structureless.  The obvious question posed is whether shadowers with complex structures

and/or moving appendages (e.g. wings or limbs) would be spotted significantly earlier

than those of this chapter.  In the experiment the shadowers were exposed by their
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looming (which seemingly became apparent at a distance of around 100 units, see Fig

8.4a).  Therefore further investigation would be necessary to identify the relationship

between the distance at which the prey notices the shadower’s appearance and body part

motion and the distance at which the shadower is exposed by looming.

When designing the game, the missiles’ approach speed was observed to be a factor

influencing the ease with which the missiles could be detected.  The author perceived

non-motion camouflaged approaches to be comparatively more obvious when the game

was run at higher speeds than in the experiment.  However at high speed it was difficult

to shoot the missiles.  Also the player’s reaction time was proportionally greater relative

to the life-span of the missiles so acting to conceal the difference between missile types

(i.e. potentially confounding measurements of perception with a subject’s motor ability).

Relating to this it should also be recognised that in emulating a stationary point the

motion camouflage missiles were the easiest to aim at.  The game was not set at a slower

speed (where non-camouflaged missiles) as it became less exciting (i.e. less likely to

attract volunteers).

The complexity of the background is thought likely to influence the comparative

success of the different approach strategies, though the relationship is difficult to predict.

A complex background could serve to disguise the movement of the non-motion

camouflaged predators or alternatively provide reference points that help to expose their

relative movement.  Similarly the level of background motion is a factor that could

conceivably bias results either way.  If the prey is familiar with the background, or has

some understanding of the objects in the background, the shadower is likely to benefit

from the use of an existing landmark as fixed point.  For instance in a barren landscape

with a single tree, a non-camouflaged predator commencing its approach from the tree

would soon be evident as a second object in the environment.  In the same situation a

motion camouflage predator may benefit if the prey has an understanding that the tree is a

static object.  In this case, the prey may not expect any motion from the tree and could

discount the shadower’s looming as visual noise.  It is also suggested that a shadower

could use a strategic choice of fixed point to its advantage.  For instance as suggested in
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section 2.2.1, if the prey were able to find a large fixed point against which it is

camouflaged in appearance, looming cues would be likely to be hidden longer.

Alternatively the shadower could even employ motion camouflage to approach against

the sun in a similar manner to fighter pilots.  Lastly, in the experiment the contrast

between the missiles and the background was high.  In low contrast conditions, when the

prey has difficulty distinguishing the shadower from the background looming is likely to

be less evident. However with no contrast motion camouflage would be redundant.

In concluding, this chapter has demonstrated the effectiveness of motion camouflage

as a stealth approach strategy and that the approaches of the control systems are accurate

enough to deceive humans in a practical task.  This section has identified factors thought

likely to influence the advantage over the other approach strategies given by motion

camouflage.  It is suggested that insight into the effects of many of these factors could be

gained through the use of simulations similar to that presented in this chapter.  Finally,

through showing that the experimental subjects were susceptible to motion camouflage,

this chapter has also demonstrated a potential application of motion camouflage as an

approach strategy for predatory agents in computer games.
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9 SUMMARY, CONCLUSIONS AND FUTURE DIRECTIONS

In chapter 2 an overview of different camouflage strategies was provided and

motion camouflage was introduced as a stealth behaviour that would allow one moving

body (a shadower) to conceal its motion from another moving body (the prey).  The basis

of the strategy is that the shadower should travel along a path such that its image

projected onto the retina of the prey emulates that of a distant stationary object in the

environment (the fixed point).  It was seen that motion camouflage could be employed as

either an offensive or defensive strategy (e.g. to approach or retreat from the prey, though

this thesis concentrates on the use of motion camouflage as a predatory approach

strategy).  It was suggested that motion camouflage has potential military applications

(e.g. as an automatic control strategy for missiles).  Alternatively motion camouflage

could be employed as a stealth tactic for 'bot' AI in computer games.  Two general

algorithms for motion camouflage were proposed (the responsive and predictive

algorithms) and the advantages and disadvantages of each were identified.  Both

algorithms require the shadower to estimate the position of the prey and fixed point.

Investigation of the format and amount of input information necessary to adequately

estimate these positions was identified as a subject of particular interest for the remainder

of the thesis.  Shadower looming (the increase in the size of the shadower's image

perceived by the prey as the shadower approaches) was recognised as a factor likely to

influence the success of camouflage and methods to minimise looming were suggested.

Finally it was shown that the location of the fixed point relative to the prey's movement

direction would influence the level of constraint on the shadower's path (e.g. the

shadower would not have to move laterally if the prey is heading straight towards the

fixed point).

Chapter 3 looked to biological literature for inspiration in designing a motion

camouflage controller.  Firstly several sensorimotor behaviours were examined.  It was

seen that male hoverflies move in a manner consistent with motion camouflage to track

females.  Also that the homing ability of various animals demonstrates that they can

accurately estimate their current position relative to their location at the start of their
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outbound journey without need of an explicit visual reference.  This ability was identified

as being useful to a shadower for estimating the position of the fixed point.  Different

methods for extracting the information likely to be helpful for calculating camouflaged

movements from the senses were described.  Following this sensorimotor integration was

considered.  A background to control systems theory was given and possible motion

camouflage control systems were proposed.  In introducing the operation of biological

sensorimotor controllers a brief account of the vestibulo-ocular-reflex was provided.

This was used to highlight the complexity of neural solutions to sensorimotor problems.

Finally an overview of the field of artificial intelligence was provided.  This introduced

and contrasted the symbolic and connectionist approaches to artificial intelligence.  The

connectionist approach was seen as being most relevant to the design of a camouflage

control system (in that it was not obvious how to derive a symbolic solution to the motion

camouflage problem, therefore it was thought most profitable to train a connectionist

network that is likely to be able to learn the answer).  Four connectionist network models

were discussed and the choice of networks on which to base studies in the forthcoming

chapters was explained.

Chapter 4 covered the first steps made towards designing an autonomous motion

camouflage control system.  A controller for the responsive algorithm was implemented

using a self-organising network.  The controller was provided with external input

information that was known to be sufficient to allow calculation of camouflaged

movements (accurate binocular vision of both prey and fixed point).  The input was

however more explicit and more complete than would be expected in a real world

scenario.  The control system's motor output was represented in terms of two values, the

direction to move and the rotation.  The controller performed camouflaged approaches

competently, generalising between different prey trajectories and approaching accurately

from different start positions.  However this performance was at the cost of a large

number of artificial neurons and training was highly reliant on the appropriate setting of

parameters.  Methods thought likely to improve upon the system’s performance and

efficiency were suggested.  However study of this self organising technique was
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discontinued in light of the superior accuracy obtained by training Multilayer Perceptrons

using Backpropagation.

Chapter 5 described the implementation of controllers for the responsive algorithm

built from Multilayer Perceptrons trained using Backpropagation.  All networks trained

were found to give a superior performance to the most accurate self-organising network

of chapter 4.  On the basis of this success Backpropagation was used to train networks

throughout the remainder of the thesis.  During preliminary investigations of the

application of Backpropagation, it was observed that the networks tended to be more

accurate when they were tested during training (i.e. when the weights were adapted after

each time step of the test) as opposed to after training (when the weights were held

constant, as is conventional).  Further investigation showed that this continuous training

technique yielded an improved camouflage performance with respect to the motor output

controlling the movement direction but not the motor output controlling rotation.

However for the networks to continually operate under training conditions they would

require an external teacher.  Aside from the difficulties in providing this, it was not clear

whether any practical advantage would be offered over concentrating the extra

computational resources required for this external teacher on the original control system

itself.  This topic was therefore not investigated further.  The test results also suggested

that it was profitable to train two separate networks (corresponding to each of the two

motor outputs) rather than train a single large network to estimate both outputs.

In chapter 6, MLP control systems given (arguably) realistic levels of sensory input

information (the direction and image motion of the prey) were trained to perform the

predictive algorithm.  Each control system was provided with feedback of its recent

outputs rather than any external reference with which to estimate the position of the fixed

point.  The shadowers’ camouflaged approaches showed evidence of an ability to predict

the prey's motion, both when the prey moved along regular flight paths and when the prey

moved along flight paths filmed of real hoverflies.  It was seen that control systems

trained on hoverfly trajectories were capable of predicting the motion of prey following

regular trajectories, whereas controllers trained on regular trajectories could not predict
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hoverfly flight paths.  Suggestions were made as to how the control system may have

extracted the information necessary to calculate camouflaged approaches from its inputs

(section 6.3).

Chapter 7 extended the simulation of chapter 6 to 3-Dimensions and investigated

the effects of removing an input (prey image motion) that had previously been given to

the control systems of chapter 6.  The 3D control systems were trained and tested on

two types of artificial prey trajectory: regular trajectories (where prey motion could

always be reliably predicted) and 'stochastic trajectories' generated by an algorithm

involving a random component (the stochastic trajectories were generated as a 3D

substitute for the hoverfly trajectories that could only be filmed in 2D).  Again the control

systems were shown to be able to accurately adopt camouflaged approaches

demonstrating their ability to predict prey motion.  No evidence was found to suggest that

knowledge of prey image motion offered any clear advantage.

Finally chapter 8 incorporated the control systems of chapter 7 in a computer

game that formed the basis of a psychophysical experiment.  In the game the player took

the role of the prey whose purpose was to identify and shoot missiles fired (at the player)

from stationary missile launchers.  The game was used to show that missiles following

motion camouflaged approaches were on average able to approach closer to the player

before being detected and shot than other plausible approach strategies.  Also that there

was not a significant difference between the average distance at which missiles controlled

by the control systems and missiles following perfect predictive camouflaged approaches

were identified and shot.  As such this further validated the control system architecture

through use of a real task and provided the first evidence that humans are susceptible to

motion camouflage.

In conclusion:

• This thesis has provided the first artificial motion camouflage control systems

known to the authors.
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• It has been shown, through simulation, that camouflaged movements may be

computed from basic input information: if the shadower is aware of its own recent

movement and the direction of the prey (assuming that the shadower continually

rotates to face away from its initial position) it is possible to calculate a

camouflaged movement.  That the system has been implemented in a manner

reminiscent of biological nervous systems adds weight to the conjecture that the

calculation of motion camouflaged approaches is not beyond the computational

power of insects (and also not beyond the processing capabilities of autonomous

robots).

• Evidence has been found to show for the first time that humans are susceptible to

motion camouflage approaches (including those made by the control systems).

This result may be of interest to computer games developers and military

tacticians.

Five possible areas for future investigation are suggested:

• Implementation of a motion camouflage control system for an autonomous robot.

This thesis has shown in theory that the information necessary for calculation of

camouflaged approaches could be retrieved by contemporary robotic sensors.

Added difficulties would be introduced as the system inevitably would have to

cope with noisy sensor inputs and differences between intended and actual motor

outputs.

• Use of the control systems as predatory stealth agents in computer games for

entertainment.  The potential for this has already been demonstrated in the game

used in the experiments of chapter 8.

• Investigation of the effect on the success of motion camouflage brought by

change in factors such as: how well the shadower's appearance is camouflaged

against the background (the shadower's appearance could for example be

camouflaged using military or artificially generated patterns); the background

complexity (e.g. the difference between a desert and a jungle, this relates to the

preceding point); the relative movement speed of shadower and prey and finally
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the prey's trajectories (see also next bullet point).  These factors could be tested

using psychophysical experiments based on simulations of a similar nature to the

game Missile Defence in chapter 8.

• Investigation of possible prey counter strategies to combat camouflaged

approaches (as originally suggested by Srinivasan & Davey (1995)).  One

approach to this problem would be for the prey to be controlled by neural

networks that are trained or artificially evolved (or both) using the level of the

shadower’s error as a cost function.  If both shadower and prey were to be

trained/evolved simultaneously it is thought likely that interesting co-evolutionary

effects would emerge.  Such effects were observed in pursuit-evasion studies of

Cliff & Miller (1996), where pursuers and evaders tended to be adapted to each

other’s current counter strategies.

• Simulation of camouflaged approaches to particular destinations rather than

towards the prey (as suggested by Srinivasan & Davey (1995), and discussed in

chapter 2).  This task would be more difficult than simply approaching the prey

as the shadower would additionally have to estimate the relative position of its

intended destination.  In this case it is suggested that the image motion of the

destination, perceived by the shadower could be of importance to estimating the

distance to the destination (bearing in mind that the shadower would continue to

counteract prey image motion by rotating to face the prey, see also section 6.3).

• Use of motion camouflage to conceal multiple shadowers approaching the same

prey from the same fixed point (as described in section 2.1.1).  If a set of

shadowers were to approach the prey along the same constraint line (behind one

another) only the foremost shadower would be visible to the prey (note that this

technique would be effective against radar and thermal imaging).  This task

would not require the shadowers to have any additional computational abilities to

those required for normal motion camouflage.  Each shadower would consider the

shadower in front to be the prey (except for the first shadower who would base its

movement on the real prey).  However it is suggested that it would be

advantageous for coordination if the shadowers were able to communicate their

intended movements to each other.
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APPENDIX 1: CALCULATION OF CAMOUFLAGED MOVEMENTS

This appendix describes how to calculate camouflaged movements when given the

exact locations of shadower, prey and fixed point.  In the following description, the

shadower lies at point S, the future position of the prey at point P and the fixed point at

point F (see diagram below).  The shadower will move a distance of r units in the next

time step.  The camouflage constraint line is therefore the line FP.  In the following

description ba
vv
. is used to indicate the scalar (dot product) of vectors av  and b

v
 and

ba
vv

× is used to indicate the vector product (cross product).

Given this, if the shadower wishes to approach the prey, it must travel to the

intersection point closest to P of the line FP and the surface of the sphere with centre

s
v and radius r.

The unit vector in direction FP is:

fp

fp
d vv

vv

−

−
=ˆ

Therefore the equation of camouflage constraint line FP may be expressed as:

dlfx ˆ+=
vv

To find the camouflaged position it is necessary to find the appropriate value of l.

sxr
vv

−=

S  = ),,( 321 ssss =
v

r

r

F = ),,( 321 ffff =
v

P  = ),,( 321 pppp =
v

d̂
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)).((2 sxsxr
vvvv

−−=

)ˆ).(ˆ(2 sdlfsdlfr
vvvv

−+−+=∴

ssdslsfdslddldflsfdflffr
vvvvvvvvvvvv
.ˆ..ˆ.ˆ.ˆˆ..ˆ.. 22 +−−−++−+=∴

0)..2.()ˆ.ˆ.(2 22 =−+−+−+∴ rsssfffdsdfll
vvvvvvvv

which is a quadratic equation in l.

If )ˆ.ˆ.(2 dsdfP
vv

−=  and 2..2. rsssfffQ −+−=
vvvvvv

 and 042 ≥− QP  then

 
2

42 QP
Pl

−
±−=

Then the camouflaged point can be found by inserting l into the equation for xv  (i.e. the

equation for the constraint line).

But if 042 <− QP  it is not possible for the shadower to reach the constraint line.  In

this case it is necessary to find the point N closest to the constraint line FP (see diagram

below).

First find the direction ev perpendicular to FP in the plane FSP:

)(ˆ fsde
vvv

−×=

Then find the direction gv perpendicular to both ev  and FP:

efpg
vvvv

×−= )(

Fe
v

d̂
g
v

S

r

P

N
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Finally find the line SN:

 glsx ˆ+=
vv ,

where 
g

g
g

v
=ˆ  and point N is a distance r from S, so:

N = grs
vv

+
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APPENDIX 2: MISSILE DEFENCE MEAN RESULTS

Mean explosion distance per Missile Defence player for each missile type.  Each row

represents a different player.  The last four results are those discussed in section 8.2

where motion camouflage missiles were not the most successful missiles in that they did

not on average approach closest to the prey.

NN-MC Trig-MC Homing Straight
61.22714 28.25051 91.62026 72.14626
38.16898 52.83723 104.1525 175.8024
52.48377 32.80767 68.53529 54.01627
44.68245 25.85055 46.74302 92.26877
43.75534 37.72294 63.30008 82.85799
54.02676 47.82116 113.3156 193.1908
55.45364 38.19605 98.60089 98.45228
34.20582 45.82734 111.2292 78.36102
87.08997 89.92067 140.1615 167.4511
69.15591 63.07029 110.9253 164.015
67.94329 86.28791 105.1528 168.9456
30.45446 41.42283 101.2756 86.7762
51.60777 48.73421 79.09258 180.3726
58.27308 66.72043 95.468 156.1156
70.07994 80.88847 79.33345 175.1887
60.1408 56.89022 94.58003 86.31877
35.30092 31.98484 53.30488 52.32194
58.25572 53.06086 118.7129 109.7683
68.20377 63.26802 91.00293 106.9648
28.9242 26.30161 71.2027 117.9562
42.74572 38.07779 52.11973 88.7012
39.98546 43.97199 101.8809 125.7271
43.45176 62.2387 103.3664 81.32336
57.46436 81.23375 129.7738 160.9046
89.17827 65.68062 94.26495 66.25488
51.28434 30.85753 81.70093 74.50488

1 55.269 66.3583 44.01796 63.47268
2 45.7716 49.00914 42.416 40.36272
3 80.62451 45.34233 45.08126 149.6668
4 54.69307 53.38253 36.81891 102.1604




