View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Queen Mary Research Online

&
wQf Queen Mary
University of London

Quantified Interference for a While Language
Clarke, Dave; Hunt, Sebastian; Malacaria, Pasquale

For additional information about this publication click this link.
http://gmro.gmul.ac.uk/jspui/handle/123456789/5036

Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact scholarlycommunications@gmul.ac.uk

https://core.ac.uk/display/30696819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/jspui/handle/123456789/5036

b
W)

QUEEN MARY
Department of Computer Science
Research Report No. RR-03-04 ISSN 1470-5559 October 2003
Quantified Interference for a While

Language
David Clarke, Sebastian Hunt and

Pasquale Malicaria

Quantified Interference for a While Language

David Clark
Dept of Computer Science
Kings College, London

david@dcs.kcl.ac.uk

ABSTRACT

We show how an information theoretic approach can quan-
tify interference in a simple imperative language that in-
cludes a looping construct. In this paper we focus on a
particular case of this definition of interference: leakage of
information from private variables to public ones via a Tro-
jan Horse attack. We show how in our setting Shannon’s
Perfect Secrecy theorem provides sufficient conditions to de-
termine leakage of a program. The major result of the paper
is a quantitative analysis for this language that employs a
use-definition graph to calculate bounds on the leakage into
each variable. Some improvements to these bounds are de-
veloped via improved results for some classes of expressions
of the language.

1. INTRODUCTION

Mathematical quantitative tools (like probability theory
and statistics) have played an increasing role both in the
theory and practise of most sciences. However the theory
(and theory based analysis) of software systems largely relies
on logics and makes little use of quantitative mathematics.

Traditionally logic is a qualitative discipline, things are
true or false, provable or not, typable or not. It is our be-
lief however that some fundamental notions in theoretical
computer science might benefit from a quantitative study.

Take the notion of interference [4, 10] between program
variables, informally the capability of variables to affect the

value of other variables. Absence of interference (non-interference)

is often used in proving that a system is well-behaving,
whereas interference can lead to mysterious (mis-)behaviours.
However the misbehaviour in presence of interference will
generally happen only when there is enough interference.
Think in terms of electric current: non-interference between
variables X, Y is the absence of a circuit involving X, Y’; in-
terference is the existence of a circuit; this however doesn’t
imply that there is enough “current” in the circuit to affect
the behaviour of the system.

Concrete examples of this are provided by access control

Permissionto malke digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republishto poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

Copyright 200X ACM X-XXXXX-XX-XIXX/XX ..$5.00.

Sebastian Hunt
Dept of Computing
City University, London

seb@soi.city.ac.uk

Pasquale Malacaria
Dept of Computer Science
Queen Mary, London

pm@dcs.gmul.ac.uk

based software systems. To enter such a system the user
has to pass an identification stage; whatever the outcome
of this stage (authorisation or failure) some information has
been leaked (in the case of failure the search space for the
right key has now become smaller). Hence these systems
present interference [4] so they are not “secure” in a qual-
itative sense. However, common sense suggests to consider
them secure if the interference is very small.

The aim of this paper is to use Shannon’s information
theory [13] to define a quantified notion of interference for a
simple imperative language and to derive a program analysis
based on this notion.

The theoretical part of the paper investigates which of
Shannon’s measures (entropy, conditional entropy, mutual
information) is the right one for the task and proves results
relating interference of program variables, independence of
random variables and leakage of confidential information.

We then use the theory as the basis for a program anal-
ysis which can be used to derive bounds on the quantity of
confidential information leaked by a program.

In a previous paper [1] we sketched an information theory
based program analysis for a simple language without loops.
The achievements presented in this paper are:

theory: Formal relationships between non-interference, ran-
dom variable independence and leakage of confidential
data are established. Shannon’s Perfect Secrecy theo-
rem is revisited in light of these correspondences and
interpreted as providing sufficient conditions for a pro-
gram to be “secure”.

analysis: The analysis is now graph and not syntax based.
This allows us to handle loops (although crudely).

expressions: Improved bounds on general equality tests
and arithmetic expressions are presented.

1.1 Relatedwork

The work we describe in this paper is not the first at-
tempt to apply information theory to the analysis of confi-
dentiality properties. The earliest example of which we are
aware is in Denning’s book [3] where she gives some exam-
ples of how information theory may be used to calculate the
leakage of confidential data via some imperative language
program constructs. However she does not develop a sys-
tematic, formal approach to the question as we do in this
paper. Another early example is that of Jonathan Millen
[7] which points to the relevance of Shannon’s use of finite
state systems in the analysis of channel capacity. More re-
cent is the work of James W. Gray [15], which develops a

quite sophisticated operational model of computation and
relates non-interference properties to information theoretic
properties. However, neither of these deals with the analysis
of programming language syntax, as we do here. Contempo-
rary with our own work has been that of Di Pierro, Hankin
and Wiklicky. Their interest has been to measure interfer-
ence in the context of a probabilistic concurrent constraint
setting where the interference comes via probabilistic oper-
ators. In [8] they derive a quantitative measure of the sim-
ilarity between agents written in a probabilistic concurrent
constraint language. This can be interpreted as a measure
of how difficult a spy (agent) would find it to distinguish
between the two agents using probabilistic covert channels,
with a measure of 0 meaning the two agents were indistin-
guishable. Their approach does not deal with information
in an information theoretic sense although the implicit as-
sumption in example 4 in that paper is that the probability
distribution of the value space is uniform.

By contrast, much more has been done with regard to
syntax directed analysis of non-interference properties. See
particularly the work of Sands and Sabelfeld [11, 12]. How-
ever we aren’t aware of any graph based analysis using in-
formation theory.

2. INFORMATION THEORY AND
INTERFERENCE

2.1 Thelanguageand its semantics

In a semantics-based analysis of security properties, there
is a trade-off between tractability and accuracy. Any se-
mantic model is, necessarily, an abstraction of its physical
implementations and the limits of an analysis based on that
model are determined by the nature of the abstraction. Put
more concretely, a system which can be shown to be secure
with respect to a semantic model may still be vulnerable to
attacks which exploit precisely those aspects of its behaviour
which are not modelled.

In this paper we consider a programming language with
a simple operational semantics and we analyse confidential-
ity properties based purely on the input-output behaviour
which this semantics defines. The guarantees provided by
our analysis are correspondingly limited. In particular, our
analysis addresses the question of how much an attacker
may learn (about confidential information) by observing the
input-output behaviour of a program, but does not tell us
anything about how much can be learned from its running-
time. We also neglect to deal with any complications which
may arise due to termination behaviour, by assuming that
all programs terminate on all inputs.

The language contains just the following control constructs:

assignment, while-statements, if-statements, sequential com-

position. The left hand sides of assignments are variable
identifiers, the right hand sides are integer or boolean ex-
pressions; while loops and if-statements involve boolean
expressions in the standard way. We do not fully specify the
language of expressions but we make the assumption that all
expressions define total functions on stores. The language is
deterministic and so, for each program P, the semantics in-
duces (assuming termination) a total function [P] : X — %,
where X is the domain of stores. A store o € X is just a
finite map from variable names to k-bit integers (integers n
in the range —2F~' < n < 2¥7') and booleans.

Given a program P, a program point is either the special
node w (the exit point), or any occurrence in P of an as-
signment statement, if-statement or while-statement. We
call the top-most program point ¢ (the entry point). The
operational semantics is standard and defines a transition
relation — on configurations (n,o), where n is a program
point and o is a store. A trace is a sequence of configu-
rations (n1,01) -+ (nj,0;) such that (n;,05) = (nit1,0i41)
for 1 <i<j.

2.2 Degreesof interference

We suppose that the variables of a program are parti-
tioned into two sets, H (high) and L (low). High variables
may contain confidential information when the program is
run, but these variables cannot be examined by an attacker
at any point before, during or after the program’s execu-
tion. Low variables do not contain confidential information
before the program is run and can be freely examined by
an attacker before and after (but not during) the program’s
execution. This raises the question of what an attacker may
be able to learn about the confidential inputs by examining
the low variable outputs.

One approach to confidentiality, quite extensively studied
[4], is based on the notion of non-interference. This ap-
proach looks for conditions under which the values of the
high variables have no effect on (do not ‘interfere’ with) the
values of the low variables when the program is run. We can
formalise non-interference in the current setting as follows.
A program P is non-interfering if, whenever 01 X = 02 X
for all X in L, then [P]o1 = o7 and [P]o2 = o) with
01 X = ob X for all X in L. If this condition holds, an
attacker learns nothing about the confidential inputs by ex-
amining the low outputs.

Thus non-interference addresses the question of whether
or not a program leaks confidential information. In the cur-
rent work, by contrast, we address the question of how much
information may be leaked by a program.

To help explore the difference between the approaches,
consider the following two programs:

1. if (H==X) Y=0else Y =1 fi
2.if (H<X) Y=0else Y=1Fi

Here we specify that H is high while X and Y are low. Clearly,
neither of these programs has the non-interference property,
since the final value of Y is affected by the initial value of
h. But are the programs equally effective from an attacker’s
point of view? Suppose we allow the attacker not only to
examine but actually to choose the initial value of X. Sup-
pose further that the attacker can run the program many
times for a given choice of value for h. There are 2* possible
values which h may have and the attacker wishes to know
which one it is. It is easy to see (below) that the second
program is more effective than the first, but the significance
of this difference depends on the distribution of the values
taken by h.

At one extreme, all 2% values are equally likely. Using
the first program it will take the attacker, on average, 2k—1
runs, trying successive values for X, to learn the value of h.
Using the second program, the attacker can choose values
of X to effect a binary search, learning the value of h in at
most k runs.

At the other extreme, h may in fact only ever take a few
of the possible values. If the attacker knows what these few

values are, then both programs can clearly be used to find
the actual value quickly, since the search space is small.

2.3 Information and conditional information

‘We use Shannon’s information theory to quantify the amount

of information a program may leak and the way in which this
depends on the distribution of inputs. Shannon’s measures
are based on a logarithmic measure of the unexpectedness,
or surprise, inherent in a probabilistic event. An event which
occurs with some non-zero probability p is regarded as hav-
ing a ‘surprisal value’ of:

1
log —
gp

Intuitively, surprise is inversely proportional to likelihood.
The base for log may be chosen freely but it is conventional
to use base 2 (the rationale for using a logarithmic measure
is given in [13]). The total information carried by a set of n
events is then taken as the weighted sum of their surprisal
values:

- 1
H=ZP¢IOgE (1)

(if p; = 0 then p;log -1 o7 is defined to be 0). This quantity
is variously known as the self-information or entropy of the
set of events.

The events of interest for us are observations of the val-
ues of variables before and after the execution of (part of)
a program. Suppose that the inputs to a program take a
range of values according to some probability distribution.
In this case we may use a random variable to describe the
values taken (initially) by a program variable, or set of pro-
gram variables. In sect 2.5 we show how to extend this idea,
defining, for each program point, the random variable cor-
responding to a program variable at that point.

For our purposes, a random variable is a total function
X : D — R, where D and R are finite sets and D comes
with a probability distribution (D is the sample space). We
adopt the following conventions for random variables:

1. if X is a random variable we let x range over the set of
values which X may take; if necessary, we denote this
set explicitly by R(X); the domain of X is denoted
D(X)

2. we write p(z) to mean the probability that X takes the
value z; where any confusion might otherwise arise, we
write this more verbosely as P(X = z)

3. for a vector of (possibly dependent) random variables
(X1,...,X5), we write p(x1, . .., Zn) for the joint prob-
ability that the X; simultaneously take the values z;;
equivalently, we may view the vector as a single ran-
dom variable X with range R(X1) X --- x R(Xy)

4. when summing over the range of a random variable,
we write > f(z) to mean }: px f(2); again, we
use the more verbose form where necessary to avoid
confusion

The entropy of a random variables X is denoted H(X)
and is defined, in accordance with (1), as

X) =3 p(s)log 1% @)

Because of possible dependencies between random vari-
ables, knowledge of one may change the surprise (hence in-
formation) associated with another. This is of fundamental
importance in information theory and gives rise to the no-
tion of conditional entropy. Suppose that Y = y has been
observed. This induces a new random variable X | (Y = y)
(X restricted to those outcomes such that Y = y) with the
same range as X but with domain {d € D(X) : Y(d) = y}
and P((X | (Y =y)) =z) = P(X = z|Y =y), where

p(z,y)
P(X =z|]Y =y) = —==
| »(y)
The conditional entropy of X given knowledge of Y is then
defined as the expected value (ie, weighted average) of the
entropy of all the conditioned versions of X:

H(X|Y) = Zp YHX (Y =y)) (3)

A key property of conditional information is that H(X|Y") <
H(X), with equality iff X and Y are independent.

In particular, we are interested in how much of the in-
formation carried by the high inputs to a program can be
learned by observation of the low outputs, assuming that
the low inputs are known. Since our language is determin-
istic, any variation in the outputs is a result of variation in
the inputs. Once we account for knowledge of the program’s
low inputs, therefore, the only possible source of surprise in
an output is interference from the high inputs. Given a pro-
gram variable (or set of program variables) X, let X* and
X* be, respectively, the corresponding random variables on
entry to and exit from the program. We take as a measure
of the amount of leakage into X due to the program:

L(X) = H(X*|LY) (4)

(recall that L is the set of low variables, thus L* is the ran-
dom variable describing the distribution of the program’s
non-confidential inputs).

2.4 Mutual information

Information theory provides a more general way of mea-
suring the extent to which information may be shared be-
tween two sets of observations. Given two random variables
X and Y, the mutual information between X and Y, written
Z(X;Y) is defined as follows:

2XY) = 3 pla g Fe)

Routine manipulation of sums and logs yields three equiva-
lent ways of defining this quantity:

I(X;Y) = HX)+HY)-H(X,Y) (6)
I(X;Y) = HX)-HEX]Y) (7)
I(X;Y) = HY)-H(Y|X) (8)

As shown by (6), Z(X;Y) is symmetric in X and Y.

This quantity is a direct measure of the amount of infor-
mation carried by X which can be learned by observing Y
(or vice versa). As with entropy, there are conditional ver-
sions of mutual information. The mutual information be-
tween X and Y given knowledge of Z, written Z(X;Y|Z),
may be defined in a variety of ways. In particular, (6)—(8)

give rise to three equivalent definitions for Z(X;Y|Z):

I(X;Y|2) = H(X|Z2)+H(Y|Z)-H(X,Y|Z) (9)
I(X;Y|2) = H(X|Z)-HX]Y,2) (10)
I(X;Y|Z) H(Y|Z) - H(Y|X, Z) (11)

A natural definition of the leakage into X, alternative to
(4), is thus:

£'(X) = I(H" X¥|L") (12)

This definition is essentially the one used by [15]. In the
current semantic setting, where a program defines a function
from inputs to outputs, (4) and (12) are actually equivalent:

ProPOSITION 2.1. Let X,Y, Z be random variables such
that, Z = f(X,Y), where f is any function. Then H(Z|Y') =
I(X; Z|Y).

PROOF. Rewrite Z(X; Z|Y) as H(X|Y)+H(Z|Y)—H(X, Z|Y).

Then rewrite H(X|Y) as H(X,Y) — H(Y), and H(X, Z|Y)
as H(X,Z,Y) — H(Y). Now H(X,Z,Y) = H(X,Y), since
Z is a function of (X,Y), and the result follows. [

COROLLARY 2.2. L and L' are equivalent for a determin-
istic language (let X = H', Y = L', then Z = L” is a
function of (X,Y)).

The advantage of (12) as a definition of leakage is that it
is appropriate even for a language with an inherently proba-
bilistic semantics, whereas (4) is not. Suppose, for example,
that our language contained a ‘fair coin’ as one of its con-
structs, allowing us to write:

X := coin;

Clearly, this program does not leak any information into X,
since the final value of X is independent of the program’s
initial state. This is confirmed using (12), which gives a
leakage of

I(H*;X“|LY) < ZI(H'X")
= H(H) — H(H|X¥)
H(H') — H(H") = 0
(where we have used (7) and H(Y'|Z) = H(Y') for indepen-

dent Y, Z). By contrast, applying (4) would give a leakage
of

H(XY|LY) = H(X") = %10g2 n %log2 -1

Another striking difference between the current ‘functional’
setting and the more general probabilistic setting, is that
in the functional case it is safe (conservative) to calculate
a program’s overall input-output leakage by considering its
outputs separately:

PROPOSITION 2.3. Let X be a vector of program variables
X1,...,Xn in our simple (non-probabilistic) language. Then
L(X) < L(X1) + -+ L(Xn)

PROOF. It suffices to show #H(Y1,...,Y,|Z) < H(V1|Z) +
-+ +H(Y,|Z) for arbitrary random variables. Consider n =
2. Then H(Y1,Y2|Z) = H(Y1|Z) + H(Y2|Z) — Z(Y1;Y2|2)
(by Venn diagram). Since Z(Y7;Y2|Z) is non-negative, the
inequality holds for n = 2. The result follows by induction
onn. [

This does not hold for £’ in the setting of a probabilistic
language.

2.5 Randomvariablesand program points

Above, we used the idea that, given some distribution over
the space of initial stores, the values taken by a variable X
at a program’s entry and exit points could be described by
the pair of random variables, X* and X“.

To generalise this idea, we essentially define the random
variable for X at a program point n to be such that P(X™ =
x) is the probability that X takes the value x given that con-
trol passes through program point n. To make this precise,
we need to take account of two facts: firstly, n may be un-
reachable; secondly, for a given input store o, control may
actually pass through n many times, with X taking differ-
ent values at different times. For these reasons, X" is only
defined for a subset of the program points.

Let ¢t be a trace (ni,01) - (nj,0;) with n; = ¢ (recall
that ¢ is the program’s entry point). We say that the trace
t decides m; if, for all traces which extend ¢, n; = n; im-
plies ¢ < j. Given a program point n, let A(n) be the set
{(o,")|(¢,0) - (n,0’) decides n}. Note that A(n) is a par-
tial function on stores (since the language is deterministic)
and A(n) will be empty if either n is unreachable, or if all
execution paths which pass through n do so infinitely often.
We write p(n) for the sum of the probabilities of the domain
of A(n):

p)= Y p(o)

(o,0")EA(n)

A(n) can be interpreted as a random variable on its domain
but, in general, we are interested in particular projections of
A(n). In particular, the random variable X™ has the same
domain as A(n) and is defined just when p(n) > 0:

Lo otream) .o ()= P(7)

p(n)
(X may be a vector of variables, in which case ¢’ (X) means
the elementwise application of o to its elements). Note that
X"™ describes the values taken by X immediately before ex-
ecution of any instruction at n.

We make one further generalisation. Since we have as-
sumed that expressions in the language define total func-
tions on stores, and since the value of any expression is a
function of the variables it contains, the definition of the
random variable X™ corresponding to program variable X,
automatically extends to an analogous definition of the ran-
dom variable E™, where E is any expression in the language
(E™ is the random variable describing the values which E
takes if evaluated at n).

2.6 Leakageat a program point

We generalise the definition of leakage above as follows.
Let n be any program point; then the leakage into E at n is
L"(E) = p(n)H(E"™|L"), taking L™ (E) to be 0 when p(n) =
0. Note that, for programs which always terminate, p(w) =
1, so this generalises the previous definition with £(X) =
LY(X). From sect 3.1 onwards, this paper is devoted to
showing how bounds on £"(E) may be calculated for each
E and each n.

2.7 Perfect Secrecy, non-interferenceand
leakage
Before detailing the analysis we show how the classical
notions of non-interference can be characterised by random
variable independence.

P(X"=z)=

Also, although our goal is to use information theory to
perform a quantitative analysis of leakage it is possible to
use our definition of leakage to get qualitative results (like
“the program is leaking”).

We begin with a well known result by Shannon, the Per-
fect Secrecy theorem:

THEOREM 2.4. Let XY, Z be random variables such that
L(Z; X) =0 and H(Z|X,Y) =0. Then H(Y) > H(Z).

The result is usually interpreted in cryptography terms as
saying (Z is the plain text, X the cypher text and Y the key
in a secret key cryptosystem) that if the plain text and the
cypher are independent (Z(Z;X) = 0) and the plain text
can be recovered by key and cypher (H(Z|X,Y) = 0) then
the key has to have at least as much entropy as the plain
text.

For a deterministic programming language (Z is the out-
put, X the high input and Y low input of the program)
the result says that if the output has strictly higher entropy
(more information) than the low input then Z(Z; X) # 0,
i.e. the output and the high input are not independent (in
the sense of random variables).

We can think of independence of these random variables
as non-interference of the corresponding program variables.

Given two program variables X,Y at program points p <
P’ we say that X and Y interfere if exists an assignment of
values for all remaining program variables and two values
v # v for X at p such that the evaluation of the program at
p’ has Y taking the value w if X = v at p and has Y taking
the value w' Zwif X =v at p L.

It is easy to see (the set of values for) Y as a function of
the denotational semantics of the program fragment starting
at p and ending at p'; interference means then that this map
is non constant on the X component.

The m-ary definition of interference is a generalisation:
Xi,...,Xm at program points p and Y at program point
p (p < p') are interfering if the map (extracted from the
denotational semantics as above) is non constant on the
Xi1,...,Xm components.

The concepts of independence (of random variables) and
non-interference are not straightforwardly related as the fol-
lowing example shows:

Example: Consider the exclusive boolean or Z = X Xor Y
(true when only one of the arguments is true) with X, Y in-
dependent random variables uniformly distributed over the
booleans; we have:

I(X;2) = H(X)+H(Z) —H(X,Z) =1+1-2=0

So although there is a clear interference between X and
Z, this is not shown in Z(X; Z). However if we take Y into
account then interference will show:

I(X; Z]Y) = H(X|Y)+H(Z|]Y)—H(X, Z|]Y) = 0+1-0 =1

The problem is that in the same way as the definition of
interference refers to all (relevant) program variables (not
just X and Y) we need an equivalent in the context of ran-
dom variables.

The correct characterisation of non-interference for pro-
grams with multiple variables is via conditional mutual in-
formation:

!The definition of interference given previously in the paper
is a particular case of this one.

PropoSITION 2.5. LetY, Xi,..., X, be random variables

representing program wvariables with Y = f(X1,...,X»).
Assume a probability distribution such that, for all (z1,...,Ty),
p(X1 =21,...,Xn =2,) #0. Then Y, X1,...,X; are non-

interfering iff Z(Y; X1, ..., Xi|Xit1,...,Xn) =0.

PrOOF. The constraints on all input having non zero prob-
ability (i.e. p(z1,...,z,) # 0) is to avoid f being a “con-
stant in disguise” i.e. f could assume theoretically more
than one value but in practice only one value is possible as
the inputs for the other values have probability 0.

In the following we use X (resp. Z) for Xi,...,X; (resp.
Xit1,.., Xn)

From proposition 2.1 we know that Z(Y; X|Z) = H(Y|Z)
so all we have to prove is that Y, X are not-interfering iff
H(Y|Z)=0

(=) : Y, X are not-interfering means the set of values for
Y is a function of X, Z (i.e.H(Y'|X, Z) = 0) constant on the
X component which implies H(Y'|X, Z) = H(Y|Z).

(«=) : Assume Y, X are interfering, i.e. f(X,Z) is non
constant on the X component. Then given only the Z com-
ponent we will not know the value Y will assume, i.e. we
will have uncertainty in Y given Z, i.e. H(Y|Z) >0 O

COROLLARY 2.6. o The definition of leakage is just a
particular case of this general notion of non-interference
where X and Z are the high and the low inputs.

e Whenn =1 we have Y, X are non-interfering iff Z(Y; X) =
0. i.e. iff Y and X are independent random variables.

We can now generalise Shannon result to state that if the
output has strictly higher entropy (more information) than
the low input then the program leaks, i.e:

THEOREM 2.7. Let X,Y,Z random wvariables such that
I(X;Y|Z) =0 and H(X|Y,Z) =0. Then H(Z) > H(X).

PrOOF. The proof use the fact that Information Theory
is a measure [16] where sum, intersection and difference are
given by joint entropy, mutual information and conditional
(entropy or mutual information) respectively. To view infor-
mation theory as a measure allow us to reason using Venn
diagrams. Consider the figure 1. The zeros correspond to
H(X|Y,Z) =0and Z(X;Y|Z) =0 and a+b = Z(X; Z). To
prove that H(Z) > H(X) it is hence enough to prove that
Z(Z;Y|X) > 0 and H(Z|Y, X) > 0; both these inequalities
are well known basic results in information theory. [

For example consider a program whose output is a 16
bit variable and whose low input is a 8 bit variable and
assume that all outputs are roughly equiprobable. Then the
program leaks.

We can see from this example that the Perfect Secrecy
theorem has a simple intuitive explanation: All information
in the output of a deterministic program has to come from
the input and if it cannot be provided by the low input then
it has to be provided by the high input.

Notice that the result doesn’t rely on any knowledge of the
internal structure of the program; it is not possible, at this
level of generality, to determine how and where the leakage
occurs.

3. ANALYSING PROGRAMS FOR
LEAKA GE

\/

Figure 1:

This section presents the analysis, which has two main
parts:

e A qualitative one (3.1-3.3): where we associate to the
syntax of the program a particular graph which will
summarize the information flow connections of the pro-
gram.

e A quantitative one (3.4-3.7): where we provide bounds
on the amount of bits leaked along this graph.

The section ends with the correctness result.

The graphs we use are Use Definition Graphs. We pre-
fer these to the syntax because it allows us eliminate re-
dundancy when computing leakage in loops: consider the
following statements inside a loop where high is a leaking
variable:

X=high; Y=Y+high;

In general, an assignment ¥ = Y + Z may increase the confi-
dential information content of Y, depending on the content
of Z. In the current case, since Y=Y+high may be iterated,
the confidential information content of Y may increase in a
way which depends on the number of iterations. However,
if high is not defined inside the loop, then clearly the leak-
age calculated for high should be added to that calculated
for Y only once, since, although the assignment may be re-
peated, it is the same information which is flowing into Y
each time. Furthermore, even if high is defined inside the
loop, all the information which might flow through high
must ultimately come from some collection of assignments
outside the loop, allowing us to bound the maximum pos-
sible information flowing into Y if only we can identify the
relevant set of external assignments.

It should be noted that loops are a significant hurdle in
reasoning about leakage. Consider for example the Java
program from sect 3.1. Assume that, at the beginning of
the program, the variable high contains confidential infor-
mation. It is easy to check that there is no direct leakage
through assignments; nevertheless at each iteration one bit
is leaked from high to low via an indirect flow, resulting in
low, at the end of the loop, being a copy of high.

3.1 UseDefinition Graphs
Given a program, the use-definition graph (UDG) is a di-
rected graph whose nodes are program points.

If n is an occurrence of an assignment X = FE we call n a
definition node and say that n defines X. A node n is called
a use for the variable Y if Y appears in the expression at
n (that is, the boolean expression of a control construct or
the right hand side of an assignment).

There are two types of edges:

1. data edges (n — p): there is a data edge from n to p
iff there is a non-empty path in the flowchart for the
program starting from n and reaching p without any
definition of X intervening and n is a definition of X
or n =1, and p is a use of X or p = w;

2. control edges (n --+ p): there is a control edge from n
to p, an occurrence of X = E, iff n is either a while
or an if-statement and p occurs inside n.

We write == for — U —-+ and =" for its transitive-
reflexive closure.

3.2 UDG example

Consider the following example Java program:

public class Loopl {
public static void main(String[] args) {
int high = Integer.parselnt(args[0]);
int n = 16, low = 0;
while (n >= 0) {
int m = (int)Math.pow(2,n);
if (high >= m) {
low = low + m;
high = high - m;
}
n=n-1;
}
System.out.println(low);

}

In figure 2, (a) shows the data edges and (b) shows the con-
trol edges for the essential parts of this program (we have
modelled input/output as assignments from/to the distin-
guished variables in/out).

3.3 Sourcenodes

When calculating the quantity of information which has
flowed into a variable at a particular program point, we use
the UDG to identify the other parts of the program which
make an immediate contribution; we call these the source
nodes for the given occurrence of the variable. In defining
these source nodes, we need to distinguish between those
program points which lie inside a while-statement and those
which don’t; we write n € W to mean that n does not lie
within any while-statement. We need to make this distinc-
tion because of the way our analysis abstracts away from
the intricacies of possible cyclic flows of information within
loops: the approach within a loop (roughly speaking) is to
treat a UDG path in the same way as an edge is treated
outside.

To understand the following definitions it will help to bear
in mind that @ —-» b iff b lies within the control structure a
(if or while).

Let n be a use of the variable X; there are two types of
source node, the control source nodes for X at n, denoted
con,(X), and the data source nodes for X at n, denoted

high=in high=in

n=16 low=0
n=16 low=0

while (n>=0)
/ I L -
m=pow(2,n) /) m=pow(2,n)

if (high>=m)

low=low+m

high=high-m N

‘4)
n=n-1 n=n-1
out=low out=low

(a) data edges (b) control edges

Figure 2: UDG for a simple Java program

dat,(X). Wherever n occurs in the program, con,(X) is
the set

U {m' ¢ W:m' —+ m and m'-/» n}
meEdaty (X)

The definition of dat, (X)) varies according to whether or not
n lies within a while-statement:

1. if n lies within a while-statement, let w be the outer-
most while containing n, then dat,(X) is the set:

{m:w-/» m,3Im' . w -+ m' Am — m' =" n}

2. if n does not lie within a while-statement, then dat, (X)
is the set:

{m : m defines X, m — n}

In the definition of con,(X), note that the restriction of
m' to points not in any while-statement has the consequence
that all control source nodes are if-statements and that no
control source node lies within a while-statement.

Thus, the data source nodes for X at n are the assign-
ments immediately prior to n (or to the outermost while

containing n); the control source nodes are those if-statements

which determine which (if any) of those assignments actually
occur (assuming that control passes through n).

Where it is not necessary to distinguish between data and
control source nodes, we consider the union: src,(X) =
dat,, (X) U con, (X).

Each internal node in the UDG (that is, every node ex-
cept and w) has an associated expression: the right hand
side for an assignment, the boolean condition for a control
statement; we call this the erpression at n, written E(n).
It is often necessary to consider the set of all source nodes
for all the variables occurring in the expression at a node or

(I “ if (hlgh>:m) --=

high=in

n=16 low=0

|

,while (n>=0)

m=pow(2,n)

" if (high>=m)

~ £
= low=low+m
high=high—-m

n=n-1

out=low
(@) ()
Figure 3: Calculating source nodes within loops

one of its sub-expressions; given any such expression E, we
denote this set src, (E):

sre,(E) = U{srcn(X) : X occurs in E}

Fig 3(a) shows a typical set of source nodes for the rhs of
an assignment X=E at a program point p inside a loop.

From figure 3(b) we can see that the rhs of the assign-
ment low=low+m inside the loop from sect 3.2 has associated
the set of source nodes {high=Integer.parseInt (args[0]),
n=16, low=0}.

3.4 Demonicattackers

Until now we have (implicitly) assumed a probability dis-
tribution on the space of initial stores which is independent
of the choice of program. There are two potential problems
with this assumption:

1. while it is reasonable to assume that some knowledge
will be available as to the distribution of the high in-
puts, it is likely that little or no knowledge will be
available about the low inputs;

2. the distribution for low inputs may actually be in the
control of the attacker; in this case it would be con-
servative to assume that the attacker chooses L to
maximise leakage.

We deal with both of these problems by constructing our
analysis to give results which are safe for all possible distri-
butions on the low inputs. The approach is, essentially, to
suppose that the low inputs take some fixed (but unknown)
value A. The safety of this approach is verified by proposi-
tion 3.1.

For each possible choice L* = A, we define py(n) to be the
probability that program point n is eventually decided (see

sect 2.5) given that L* = A. Formally:

)= > pe)/P(L =N,

(o,0")€AN(R)

where Ax(n) ¥ {(0,0") € A(n) : o(L) = A}. Now we
can define the random variables at a program point given
n def

that L' = A: just when px(n) > 0, we define X) = X" |
(L* = A). Finally, we can define the leakage into X at n

def

given that L' = X: LY(X) = pa(n)H(XY), taking £} (X) =
0 when px(n) = 0.

From here on, we assume that A is fixed but make no as-
sumption as to its identity. This is conservative with respect
to L™(X), as shown by the following:

PROPOSITION 3.1. (VALY(X) <a)=>L"(X)<a

PROOF. By definition, £*(X) = p(n)H(X"|L") and, by
definition of conditional entropy, H(X™|L") is the sum over
all A of P(L* = Ao € D(X™")H(X"|L* = A). The result
follows simply because a weighted average is bounded by
the smallest and greatest terms. [

Note that, for all X € L and for all A\, £5(X) = L(X) =
0. Furthermore, when the high-security and low-security
inputs are independent, £5(Y) = L(Y) = H(Y"), for all
YeH.

3.5 Total versuspartial random variables

The rules we present below are intended to derive bounds
on the leakage into a variable at a program point, given only
assumptions on the entropy of the confidential variables at
the entry point. Such assumptions actually give very limited
knowledge of the distribution of input values and this means
that a direct calculation of the leakage at a program point is
usually not possible. To illustrate, suppose program point
n is the assignment L = H in the following program:

if (H < 0) thenL =HelseL =1 fi

Now suppose that H and L are independent 32 bit variables
and #H(H) = 16. To calculate directly the leakage into L
we need to calculate £3(H), but this in turn requires us to
calculate both p(n), which is just the probability that the
condition (H < 0) evaluates to true, and the entropy of H
given that (H < 0) evaluates to true. But knowing only
H(H) = 16 we cannot calculate either quantity. In particu-
lar, H(H | H < 0) can take essentially any value between 0
(suppose p(h) = 0 when h < 0, p(h) = 1/2'° otherwise) and
32 (as before but with the condition inverted).

We deal with this difficulty by calculating bounds on the
entropy of a hypothetical random variable X} which is de-
fined everywhere (not just at point n) and is such that
X? = XP | D(X}). The X} are defined in the proof of
correctness (3.2).

3.6 Analysisrules
The basic analysis is given by the rules shown in table 1.
For ease of exposition, we assume the following:

1. high variables (Hi, Hs,...) are only ever used as the
rhs of assignments of the form X = H;, and then at
most once

2. no high variable is ever assigned

Note that these assumptions are of presentational signifi-
cance only, since once H; has been copied into X, the copy
can be used and assigned freely.

A judgement n F [E] ~ a (where ~ is one of <, >, =) is to
be read as asserting that #(E}) ~ a. In all such judgements,
two things are implicit:

1. E is either E(n) or a sub-expression of E(n)
2. E is not a high variable H;

The initial assumptions for an analysis will be given as spe-
cial instialisation azioms for the high variables, each of the
form:

nl—[fh]Aaa

where n is the first and only use of H;.

In rule [Max], bits(E) means the number of bits of storage
determined by the type of the expression E (for example, if
E is boolean then bits(E) is 1, whereas if E is of Java’s int
type, then bits(E) is 32).

Note that, unlike the other rules, the conclusion of rule
[Low] applies only to variables, not arbitrary expressions,
and applies only to program points which do not lie inside
any while-statement. Rule [DP] is so named because it is es-
sentially justified by the so-called Data Processing theorem
([2]) of information theory: the quantity of information out-
put by a function cannot exceed the quantity input. Rule
[Const] is really a special case of rule [DP] but is stated
separately for emphasis: constant expressions transmit zero
information.

As an example, consider how these rules can be applied
at the statement low=1low+m inside the loop from sect 3.1. Is
is easy to see, using the rules, that we get a leakage of 16
bits (coming from high).

3.7 Correctness

THEOREM 3.2. Suppose, for each initialisation aziom de-
riving n - [H] ~ a and for all \, that H(HS) ~ a.

Then, for each program point n, each sub-ezpression E of
E(n), and each A, there exists a random variable EY such
that:

1. B§ = B} | D(EY)

2. whenever the rules in table 1 derive n & [E] ~ a, then
H(ER) ~a

COROLLARY 3.3. nt [E] < b implies L™(E) < b.

To see why the corollary follows, first apply proposition 3.1,
giving H(E™|L") < b, let B be the characteristic function for
D(E") and let ¢ = P(B =t). Then we have H(E"|L*, B)
qH(E"|LY) + (1 — @yH(E™ | (B = f)|L'). Thus L™(E)
qH(E"|L') < H(E"|L', B) < H(E"|L') < b.

The rest of this section sketches a proof of the theorem.

First we must explain how E™ can be constructed. The
key observation is that these functions actually arise nat-
urally in a denotational semantics. Consider the program
P:

A=B; if (B) then X=Y;M=N; else Z=W fi

[Min] nt[E] >0

ni - [E(nl)] S b1, .

ax|

n F [E] < bits(E)

., N F [E(nk)] S bk

[DP]

[Const]

n - [E]

pH[EP)]2a

[Low]
nk[X]>a

nk B <Y b

srcn(E) = {n1,...,nt}

src,(E) =0

n & W,srcea(X) = {p}

Table 1: Analysis rules

Denotationally, we have
[P] = (Ao.cond([B]o, [X = Y; M = N]o, [Z = W]o)) o [A = B].
Note that this is equivalent to

Ao.cond([B]o, [A =B;X = Y;M = N]o, [A =B; Z = W]o).

Now let n be the program point M=N. In this example, N™
is the total function [A = B;X = Y] whereas N" is the par-
tial function [A = B;X = Y] restricted to those o such that
[A = B]o = t. Clearly it is not quite straightforward to gen-
eralise this idea to while-statements. However, our analysis
treats loops in such a way that it is only necessary to estab-
lish the existence of a total function for each point p inside
a loop which extends the partial function EP. This is easily
seen to be the case.

The remaining work of the proof is to establish that the
UDG structure safely over approximates all possible depen-
dencies among the En. It is then possible to show that each
EP can be expressed as a function of the E™ corresponding
to the source nodes for p. Then we can apply the following
lemma:

LeEMMA 3.4 (DATA PROCESSING). Let X1,...,Xn, Z be
random variables with a common domain D and such that
Z = f(Xi,...,Xy), where f is any total function on D.
Then H(Z) < H(X1,...,Xn).

As an immediate corollary, H(Z) < H(X1) + - + H(Xn),
since H(X1,...,Xn) <H(X1) + -+ H(Xn).

In particular, the E™ for the control source nodes play the
role of B in the following results:

LEMMA 3.5 (DOMAIN PARTITION). Let X be any ran-
dom variable and let B be a boolean-valued random variable
(range {t, f}) and let ¢ = P(B =t). Writing XB to mean
X | (B=t) and X-p to mean X [(B = false):

H(X) < gH(XB)+ (1 — q)H(X-B) + H(B)
PROOF. Note that H(X) < H(H, B) = H(X|B) + H(B).
The result is then immediate by definition of conditional
entropy (equation 3). [

Now, given two random variables X, X» with range R, and
a boolean-valued random variable B, we write X1 ®p X2
to mean the random variable with range R and defined as
follows:

X1 when B=t

X> when B=f

It is easily seen that P((X1®9pX32) =z) = P(B =t)P(X; =
z|B=t)+ P(B = f)P(X2 = z|B = f).

X1®BX2={

PROPOSITION 3.6. H(X: @B X2) < P(B = t)H(X1 |
B=1t)+P(B=f)YH(X2 | B=f)+H(B)

PROOF. Note that (X1 DB .X2) I (B = t) =X3 0 (B = t)
and (X1 ®p X2) [(B=f) = X3 | (B = f), then apply the
Domain Partition lemma. []

4. REFINING THE ANALYSIS OF
EXPRESSIONS

The rules in table 1 allow us to measure flows of infor-
mation through the program but in a crude way, analogous
to plumbing pipes together. The utility of an implemented
analysis based on our approach will depend on its sensitiv-
ity, i.e. on being able to establish tight as opposed to loose
bounds on the leakage of information. Although we are lim-
ited to the basic analysis rules inside loops, outside loops
it is sometimes possible to improve the sensitivity by sub-
stituting a more refined rule which uses knowledge of the
expression being analysed.

The discovery of these refined rules is an on-going project.
In the remainder of this section we present some results for
a more refined analysis of equality tests and some arithmetic
operations. The resulting rules may be found in table 2.

4.1 Analysis of equality tests

In this section we develop a refined rule for analysis of
tests of the form E;==F,. Our development is motivated
by a simple observation: when the distribution of values for
E; is close to uniform (high entropy) and the distribution
for E; is concentrated on just a few values (low entropy),
then most of the time, E1 and E» will not be equal.

We can quantify the implications of this observation by
considering the following question: suppose that X is a k-
bit random variable and suppose that P(X = z) = g, for
some ¢; what is the maximum possible value for #(X)? We
call this maximum the upper entropy for q in k bits, denoted
Ur(q). Since entropy is maximised by uniform distributions,
the maximum value possible for #(V) is obtained in the
case that P(X = z') is uniformly distributed for all 2’ # z.
There are 2¥ — 1 such ' and applying the definition of H
(eqn. 1) immediately gives:

2k 1
1-gq

def

1
Ur(q) = qlogg +(1—q)log

(13)

As the following proposition shows, if P(X =Y) = ¢, then
Ur(g) is an upper bound for the difference between H(X)
and H(Y).

i (a—b)=3.75 Mkﬁq; —_—

35 Blq

3 |-
2.5

2 |-

g=1/2k ¢g=1/2

15 -

1 |-
0.5 -

0 1 1 1 1

0 0.2 0.4 0.6 0.8 1

Figure 4: the upper entropy for g in 4 bits

PROPOSITION 4.1. Given a k-bit random variable X and
any other random variable Y, let g = P(X =Y) (by P(X =
Y) we mean 3, _, p(z,y)). Then

H(X|Y) < Ur(q)
Proor. []

As an immediate corollary we have H(X) — H(Y) < Ux(q),
since H(X|Y) = H(X,Y) — H(Y) > H(X) — H(Y).

Now the quantity of interest (H(X==Y)) is just B(q),
where

def

1
B(q) = qlog 2 +(1—q)log

— (14)
It is easily seen that B(g) is an increasing function of ¢ in
the region 0 < ¢ < 0.5 and this is sufficient to justify the
refined rule [Eq] for equality tests (see table 2).

(We leave unstated the companion rule, justified by com-
mutativity of +, which reverses the roles of E1 and E>.) We
note that [Eq] will give useful results in the case that a is
high and b is low, that is, when E; is known to contain a
large amount of confidential information and Es is known
to contain very little.

The way in which rule [Eq] can be applied is illustrated
by the example shown in fig. 4. This plots Ux(q) and B(q)
against ¢ for k = 4 and shows that for a lower bound of
(a — b) = 3.75, g is bounded by 0 < ¢ < 0.25 (the precise
upper bound is slightly lower than this). To find a maximum
for g, we need to solve equations of the form U}, (q) —(a—b) =
0 and, for this, simple numerical techniques suffice [6]. (Note
also that B(q) + (1 — q)k is an upper bound for Ux(q) and
that this bound is very tight unless k is small.)

4.1.1 Example
Consider the program P:

Y = H; if (Y == 0) then X = 0 else X =1 fi; Z = X!

with H high-security. Let program points p,no and ni be
the if-statement, the assignment X = 0, the assignment X
= 1, and the assignment Z = X, respectively. Suppose that
k = 32 and the input distribution makes H uniform over
its 232 possible values. Thus we can analyse the program
starting with the assumption ¢ F [H] > 32. The basic rules
plus [Eq] are then easily seen to derive:

pF[Y==0]<e

where € = B(1/2%?) ~ 7.8 x 10~7. Thus, using [Const] and
[DP], we derive

nk[X]<e

5. ANALYSIS OF ARITHMETIC
EXPRESSIONS

We can improve the analysis of leakage via arithmetic
expressions by exploiting algebraic knowledge of the op-
erations together with information about the operands ac-
quired through supplementary analyses such as parity anal-
ysis, constant propagation analysis etc. The (binary) oper-
ations we consider are addition, subtraction, multiplication
(+,—,*) on the twos-complement representations of k bit
integers with overflow.

We use © for the binary operator while the random vari-
ables X, Y and Z range over the first and second inputs and
the output of the operator respectively. They are related by

P(Z=2)=),

(z,9)€071(2)

P(X=an=y)

We assume we know bounds on the entropy of the input
space, H(X,Y), and entropy of the projected input spaces,
H(X) and H(Y') and we aim to find bounds on the entropy
of the output space, H(Z).

Since a binary arithmetic operation on twos complement
integers is a function from X X Y to Z and since functions
can only reduce entropy or leave it the same we have

0 <H(Z) SH(X,Y)

In general we will not know #(X,Y) but only H(X) and
H(Y). Since H(X,Y) < H(X) +H(Y) we can use this sum
as an upper bound but we can then only deduce as much
as can be discovered using two of the default rules for the
analysis, [Min] and [DP]. The rule [Min] always applies. The
upper bound observation is captured for an operation ® in
the rule [Opmax] in table 2.

Further improvements to either the upper or the lower
bound depend on knowledge more specific to the operation
and/or the expressions.

Before examining individual operations there is something
we can say about the relationship between H(Z) and H(X,Y)
that holds for all operations which we exploit directly in
proposition 5.3.

We can use the functional relationship between inputs and
outputs to show that the entropy of the output space is the
entropy of the input space less the entropy of the input space
given knowledge of the output space. This latter quantity is
a measure of the entropy of the input space destroyed by the
function ©®. The idea is expressed formally in the following
proposition:

PROPOSITION b5.1. Let Z = O(X,Y) then H(Z) = H(X,Y)—

H(X,Y|Z)

ProOOF. Using conditional entropy expressions we have
this relationship between H(X,Y) and H(Z): H(X,Y,Z) =
H(Z) +H(X,Y|Z). However we also have

p(z,y,2) = p(x,y)if (z,y) € 07" (2)
= 0 otherwise

nk[Ei]>a nk[E]<b

[Eq] n |_ [E1::E2] S B(Q)

q < 0.5,Ux(q) 2 (a —b), k = bits(E1)

nk[E1] <bink[E] <bs

[Opmax]

nt[E1©E] <bi +b2

F[El]zal nF[Ez]Zaz nl-[El]Sbl nF[Ez]sz

[AddMin]

n t [E1 + E2] > max(a1,az) — min(by, b2)

nkEEiis0OV nkEEsis 0

[Zeromult]

n}_[El*EQ]ZO

n - E is odd constant n & [E3] > bs

[Oddmult]

Table 2: Some Refined Analysis rules

Hence

H(X,KZ) = —Zp(m,y,z)log(p(x,y,z))

z,Y,2

= =) plx,y)log(p(z,y))

z,y
= H(z,y)

Then we have H(X,Y) = H(Z)+H(X,Y|Z) and so H(Z) =
H(X,Y)-H(X,Y|Z) O

5.1 Addition and subtraction

Addition and subtraction are the same operation in twos
complement arithmetic so we restrict our attention to addi-
tion.

Bitwise addition (+) makes the set of numbers repre-
sentable in twos-complement using k bits a cyclic additive
group with identity 0 and generator 1 (so a + 1 has its
usual meaning except when a = 2¥~' — 1, in which case
a+1 = —2¥'). The inverse —a is given by the twos-
complement operation (so —a has its usual meaning except
for a = —2F~', which is its own inverse).

PROPOSITION 5.2. Let Ty = {—2*"1,... 25" — 1}, the
set of integers representable by k bits in twos complement.
Bitwise addition (+) makes T a cyclic additive group with
tdentity 0 and generator 1.

We don’t include a proof here but the proposition is straight-

forward to verify.

The advantage of this knowledge of the operation struc-
ture is that it allows us to show, for addition, either operand
is a function of both the other operand and the result of
the operation. This in turn allows us to establish a tighter
lower bound for this operation: The entropy of the out-
come, H(Z), is bigger than or equal to the entropy of the
input space, H(X,Y") less the smaller of the two projected
entropies for that space, #(X) and H(Y).

PROPOSITION 5.3. Let Z = +(X,Y), then

H(Z) > H(X,Y) — min(H(X), H(Y))
PROOF. First we establish that H(Z) > H(X,Y)—H(X).
We can make arguments similar to the one employed to

justify proposition 5.1 and demonstrate that H(X,Y,Z) =
H(X, Z) .

By proposition 5.1 we have H(Z) = H(X,Y)
so it suffices to show that H(X,Y|Z) < H(X)

—H(X,Y|Z)

H((X,Y]|Z)
H(X,Y, Z) — H(Z)
H(X, Z) - H(Z)
= H(XIZ)
< H(X)

By a similar argument we can also establish #H(Z) >
H(X,Y)—H(Y). These two inequalities establish the propo-
sition. [

Since H(X,Y) > max(H(X), H(Y')) we can safely replace
H(X,Y) with that quantity. This provides the rule [Ad-
dMin] in table 2 for calculating an improved lower bound
for addition.

5.2 Multiplication

Multiplication is less straightforward to analyse than ad-
dition as the algebraic structure of the operation is more
complex. We are not currently able to provide any general
result for the operation. However, in the event that some
subsidiary prior analysis is able to identify a useful property
of one of the operands of the operation, we can get very good
bounds on the entropy of the output, in particular when one
of the operands is odd or when one of the operands is zero.

Multiplication by zero always has zero as the result, i.e. Z
has value space singleton set {0} whose element has prob-
ability 1, so knowing that one operand is zero guarantees
that #(Z) = 0. This observation is captured in the rule
[Zeromult] in table 2. .

To understand why it is useful to learn that one operand
for multiplication is odd, consider the following. For a in
T, and n > 0, we can write n.a to mean a + --- +a (n
times), taking 0.a = 0. Multiplication in twos-complement
arithmetic is defined such that it distributes over addition
and a * 1 = a. It follows that a * (n.1) = n.a. Note that
every b in T} can be written as n.1 for some (unique) n,
0 < n < 2%, and thus a*b can be understood instead as n.a.

Recall that the order of a group is the number of its ele-
ments, hence the order of T} is 2k, Furthermore, the order
of any element a is defined to be the order of the cyclic sub-

group <a> which it generates (with elements {n.a : n > 0}).
We denote the order of an element a by o(a). We can then
state the following

PROPOSITION 5.4. For a € Ty where a is odd, o(a) = 2,
i.e. any odd element is a generator for Ty.

This can be demonstrated using some elementary group
theory since every odd number does not divide the order of
T,.

Because odd elements are generators for the whole set,
multiplication by an odd constant (i.e. zero entropy in one
component) can be viewed as an injective function from Ty
to T3 and so the entropy of the output space can never be
less than the entropy of the other operand.

PROPOSITION 5.5. Let Z = *(X,Y) where Ve € X. x is
an odd constant, then

H(Z) 2 H(Y)

The implication of this result for propagation of lower
bounds during multiplication is captured in the rule [Odd-
mult] in table 2. The rule is also intended to represent its
equivalent rule after applying commutivity of multiplication.

Although we don’t have anything we can say in general
about leakage via multiplication we do have a theoretical
result which may prove useful in future work: we know the
size of the inverse image of an element of T%.

THEOREM 5.6. For c in Ty,

k—1
ERCIER A Sl

ifc#0
ifc=0

6. IMPROVEMENTS TO THE ANALYSIS

Our analysis of if-statements is effectively distributed be-
tween the definition of the UDG structure and the rule [DP].
As shown by the proof of correctness (theorem 3.2), the es-
sential principle is that, at a point n immediately following
an if-statement in which X may be defined, X;ambda™ can
be viewed as function of B, Y and Z, corresponding to the
condition and the values of X at the end of the true and
false branches, respectively.s The DP lemma then implies
that H(XT) < H(B) + H(Y) + H(Z). The weakness of this
approach is that it takes no account of the relative probabil-
ities of either branch being chosen. Bounds on the probabil-
ities will in many cases be available (provided, for example,
by the analysis of equality tests). As an example let P’ be
the program

Y = H; if (Y==0) then X = Y else X =1 fi; Z = X

This is semantically equivalent to P in sect. 4.1.1 but the
best we can derive for P’ is the totally uninformative:

nt[2] < 32

The problem is caused by the statement X = Y. In isolation
this would leak all the information from Y into X but, in the
context of this if-statement, it actually leaks no informa-
tion.

We can improve on such examples by using what we know
about g, where g is the probability that the condition eval-
uates to true. For equality tests (see sect 4.1) we may have

an explicit bound on ¢ as a result of applying the [Eq] rule.
More generally, given n - [B] < b for a boolean expression
B, we can invert B(q) to find an upper bound on g or 1 — g
(though in this case, we don’t know which). Proposition 3.6
can then be used to tighten the upper bound derived in
some cases. In the example above, application of the [Eq]
rule provides a bound on g of 1/23%. Since we know that
H(X | (B =1t)) < k for any k-bit variable X, proposi-
tion 3.6 allows us to derive the much improved:

nt[z] <32/2° + B(1/2*) = 1.5 x 107

7. CONCLUSIONS AND FUTURE WORK

The work presented in this paper is the first time Informa-
tion Theory has been used to measure interference between
variables in a simple imperative language. An obvious and
very desirable extension of the work would be to a language
with probabilistic operators.

Incremental improvement of the analysis could be given
by a subtler treatment of loops and by improved bounds
on a wider range of expressions. A similar syntax based,
security related analysis might be applied to queries on a
secure database. Denning [3] did work on information flow
in database queries.

It would be also interesting to be able to provide a” backward”

analysis where given an interference property that we want
a particular program point to satisfy we are able to deduce
constraints on the interference of the input. A simple exam-
ple of this scenario is provided by Shannon’s perfect secrecy
theorem where the property of non-interference on the out-
put implies the inequality (L) > #H(0Out)

Timing issues like “rate of interference” could also be anal-
ysed by our theory allowing for a quantitative analysis of
“timing attacks” [14]..

On a more speculative level we hope that quantified inter-
ference could play a role in fields where modularity is an is-
sue (for example model checking or information hiding). At
the present modular reasoning seems to break down when-
ever modules interfere by means other than their interfaces.
However if once quantified the interference is shown to be
below the threshold that affects the desired behaviour of
the modules, it could be possible to still use modular rea-
soning. An interesting development in this respect could be
to investigate the integration of quantified interference with
non-interference based logic [9, 5].

The authors would like to thank Peter O’Hearn for helpful
comments on this work.

8. REFERENCES

[1] D. Clark, S. Hunt, and P. Malacaria. Quantitative
analysis of the leakage of confidential data. In A. D.
Pierro and H. Wiklicky, editors, Electronic Notes in
Theoretical Computer Science, volume 59. Elsevier,
2002.

[2] T. M. Cover and J. A. Thomas. Elements of
Information Theory. Wiley Interscience, 1991.

[3] D. E. R. Denning. Cryptography and Data Security.
Addison-Wesley, 1982.

[4] J. Goguen and J. Meseguer. Security policies and
security models. In IEEE Symposium on Security and
Privacy, pages 11-20. IEEE Computer Society Press,
1982.

[5]

[6]
[7]

(8]

[10]

[12

[13]

[14]

[15]

[16]

S. Isthiaq and P. O’Hearn. BI as an assertion language
for mutable data structures. In 28th POPL, pages
14-26, London, January 2001.

R. L.Burden and J. D. Faires. Numerical Analysis.
PWS-KENT, 1989. ISBN 0-534-93219-3.

J. Millen. Covert channel capacity. In Proc. 1987
IEEE Symposium on Research in Security and
Privacy. IEEE Computer Society Press, 1987.

A. D. Pierro, C. Hankin, and H. Wiklicky.
Approximate non-interference. In I. Cervesato, editor,
CSFW’02 — 15th IEEE Computer Security Foundation
Workshop. IEEE Computer Society Press, June 2002.
J. Reynolds. Separation logic: a logic for shared
mutable data structures. Invited Paper, LICS’02,
2002.

J. C. Reynolds. Syntactic control of interference. In
Conf. Record 5th ACM Symp. on Principles of
Programming Languages, pages 39-46, Tucson,
Arizona, 1978. ACM, New York.

A. Sabelfeld and D. Sands. A per model of secure
information flow in sequential programs. In Proc.
European Symposium on Programming, Amsterdam,
The Netherlands, March 1999. ACM Press.

A. Sabelfeld and D. Sands. Probabilistic
noninterference for multi-threaded programs. In Proc.
18th IEEE Computer Security Foundations Workshop,
Cambridge, England, July 2000. IEEE Computer
Society Press.

C. Shannon. A mathematical theory of
communication. The Bell System Technical Journal,
27:379-423 and 623-656, July and October 1948.
Available on-line at http://cm.bell-
labs.com/cm/ms/what/shannonday/paper.html.

D. Volpano. Safety versus secrecy. In Proc. 6th Int’l
Symposium on Static Analysis, LNCS, pages 303-311,
Sep 1999.

J. W. Gray, III. Toward a mathematical foundation
for information flow security. In Proc. 1991 IEEE
Symposium on Security and Privacy, pages 21-34,
Oakland, CA, May 1991.

R. W. Yeung. A new outlook on shannon’s
information measures. IEEE Transactions on
Information Theory, 37(3), May 1991.

