
Adding Function Arguments to Moded Guarded Definite Clauses
Huntbach, Matthew

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/5028

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queen Mary Research Online

https://core.ac.uk/display/30696816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/jspui/handle/123456789/5028

Adding Function Arguments to
Moded Guarded Definite Clauses
Matthew Huntbach

Department of Computer Science

Research Report No. RR-03-01 ISSN 1470-5559 April 2003

1

Adding Function Arguments to
Moded Guarded Definite Clauses

Matthew Huntbach

Department of Computer Science, Queen Mary University of London
mmh@dcs.qmul.ac.uk

Abstract. Guarded Definite Clauses is a simple programming language which originated
from attempts to introduce concurrency into the logic programming paradigm. Moded GDC
introduces a new syntax for GDC which ensures all programs are well-moded and makes
the moding visually apparent. A well-moded GDC program is one where a logic variable
can be considered a channel with a direction of data flow, ensuring variables are guaranteed
a single writer but may have multiple readers. We introduce a type system which
guarantees that some variables are linear (single reader as well as single writer), allowing
the polarity of data flow to be reversible and thus giving easy process interaction. We then
show how certain patterns of communication can be viewed as higher-order functions, and
introduce syntactic sugar which enable moded GDC programs to be written in a style which
resembles conventional functional programming.

29 April 2003

Guarded Definite Clauses
Guarded Definite Clauses [Hu&Ri 99], or GDC (also known as Flat Guarded Horn
Clauses, or Flat GHC [Ueda 01]) works as follows. We have a fixed global collection of
process descriptors, and a global set of variables to which new variables may be added.
The variables are single-assignment: once given a value, that value may never be changed
or withdrawn. However a variable will initially be unassigned. A variable may be
assigned a constant, or a tuple of values. The arguments to the tuple consist of constants,
variables or further tuples. When a variable is assigned a tuple containing variables, the
variables themselves need not have been assigned values.

A program consists of a set of processes, each of which has access to a subset of the
global collection of variables and a name which associates it with one of the global set of
process descriptors. A process descriptor consists of a parameter list and fixed set of rules
(or clauses). Each rule has a left-hand side (or guard) and a right-hand side (or body).
When a process is created, the variables in its parameter list are set to variables from the
global set, or to constants or to tuples. The left-hand side of each rule consists of
conditions on the variables the process has access to. The right-hand side consists of a
collection of new process creations and variables assignments.

At any point in the computation, a rule may either be applicable, inapplicable, or
undetermined for a process. A rule is applicable if the process’s variables are sufficiently
bound to be able to say that the conditions definitely hold. A rule is inapplicable if the
process’s variables are sufficiently bound to say that the conditions definitely do not hold.
A rule is undetermined if it would require further binding of the process’s variables to say
whether it was applicable or inapplicable. At any point in computation, if one of the rules
of a process is applicable, the process may rewrite to the collection of goals and

2

assignments on the rule's right-hand side. If all of a process's rules are inapplicable, the
process fails. If it has no applicable rule but at least one undetermined, a process will
suspend until assignments from other processes make either one rule applicable or all
rules inapplicable. If more than one rule is applicable, any of the applicable rules may be
chosen indeterminately to rewrite. When a process rewrites, any variables local to its
body are considered new variables, and are added to the global set of variables.

A more formal description of the operational semantics of GDC is given by Ueda in
[Ueda 01]. It can also be considered as a specialisation, using a Herbrand constraint
system, of Saraswat's concurrent constraint programming, whose semantic foundations
are described in [Sara 91]. The left-hand sides of rules are asks to the constraint handler
in Saraswat's model, while the assignments in the right-hand sides are tells. We refer to
the operation which tests whether a particular variable has a particular value (and
suspends if it is not sufficiently bound to tell) as an “ask”, and the operation which
assigns a value to a variable as a “tell”, to reflect the constraint programming nature of
GDC. A “comparison ask” tests whether two variables have values in a particular order
and suspends if either is unbound.

A Modified Syntax for GDC
The traditional syntax for GDC is Prolog-like, reflecting its origin in attempts to
parallelise the logic programming model pioneered by Prolog. Here, for example, is code
for a non-deterministic merge of two lists:

merge([H|T],L,M) :- M=[H|M1], merge(T,L,M1).
merge(L,[H|T],M) :- M=[H|M1], merge(L,T,M).
merge([],L,M) :- M=L.
merge(L,[],M) :- M=L.

The only difference between this and Prolog code is the separation of the ask and tell,
which in Prolog is combined in unification. The first clause above in Prolog would be:
merge([H|T],L,[H|M1]) :- merge(T,L,M1).

However, clause selection in GDC involves pattern matching but no assignment to
variables in the goal, so the variable assignment is made explicit in the body. Also,
Prolog tries the clauses in order, but there is neither clause order nor goal order in GDC.
In GDC, a goal merge(S1,[a|S2],S3) matches the head of the second clause above,
but S1 is insufficiently bound to match the head of the first clause. Prolog would bind
S1 to [H|T] and use the first clause, GDC would resolve using the second clause. The
result in GDC in this case is to pass the constant ‘a’ on the output list possibly before
anything else about the input lists is known: other processes may be producing them
concurrently. Thus the result is concurrent stream merger.

Prolog execution is a search for a set of constraints on the variables in an initial goal. If
an attempt is made to assign an inconsistent constraint, that is binding a variable to one
value when it has already been bound to another, execution backtracks and constraints are
removed. There is no such backtracking in GDC, execution consists of monotonically
binding the global set of variables. As a consequence of this execution model, the

3

arguments to a GDC process are almost always divided into those which are intended to
be used for input and those intended for use for output [Ueda 96].

Clauses in the Prolog-like representation of GDC take the form

Head :- Guard | Body.

where Guard and Body are a conjunction of goals. The guard must consist only of
system tests, and is often empty, the separating bar is not written if it is empty. In our
description, following Saraswat, the pattern matching of head arguments should be
considered part of the guard. So where a clause is written in Prolog-like representation
name(P1,…Pm) :- Guard | Body, we have a standard set of variable names for the
head arguments V1,…,Vm. For each clause, if Pi is a variable, we replace it by Vi in the
entire clause. Otherwise, we replace Pi by V i in the head and add V i=Pi to the guard,
asking whether the variable Vi refers to has been set to a value which matches Pi. Now
each clause has an identical head.

Much work has gone into analysing GDC programs (see [Ueda 01] and references
therein) to determine the modes of arguments to processes, but we propose to eliminate
the necessity for that by building in the modes as part of the syntax. We propose
therefore, that a process call should take the form name(A 1,…,A m)->(B 1,…,B n) ,
where A1,…,A m are the input arguments, and B1,…,B n the output arguments, with m,n≥0.
The second set of brackets is omitted if n is 1 or 0, and the -> is also omitted if n is 0.
The output arguments must be variables, but the input arguments may be variables,
constant or tuples. This makes the pattern of data flow in GDC code visually apparent.

Since each clause has an identical head in our representation, the head can be written just
once with the arguments divided into input and output, we write it as
#name(I 1,…,I m)->(O 1,…,O n) , where both input and output arguments must be
variables. The result is to reduce the verbosity of the code, making it clearer visually
what conditions are required for a rule to fire. We make a few other cosmetic changes.
This gives the following representation for the stream merger program above:

#merge(l1,l2)->m
{
 l1=h:t || m<-h:m1, merge(t,l2)->m1;
 l2=h:t || m<-h:m1, merge(l1,t)->m1;
 l1=[] || m<-l2;
 l2=[] || m<-l1
}

Rules are represented as a set with braces as delimiters, and semicolons as separators. A
double bar separates the two parts of a rule. We have abandoned the requirement,
inherited from Prolog, that variables must have an initial capital letter. If we want to
assign the constant 'b' to the variable a , a=b in the rule body does this, while a<-b
assigns the variable b to the variable a. We represent list patterns by h:t rather than
Prolog’s [H|T] .

The above is a legal program in the language Aldwych [Hunt 03] which we have devised.
Full Aldwych, however, involves more extensive syntactic sugar which enables stream
merger to be written in a much more concise way than above. We can regard the

4

relationship between GDC and Aldwych as similar to the relationship between lambda-
calculus and a functional programming language like Haskell.

A Mode System for GDC
An ask may only ask the value of one of the input arguments to the process. Given a
process heading #name(I 1,…,I m)->(O 1,…,On) , an ask of the form I k=pat, where
1≤k≤m, may be used in a clause guard, but not of the form Ok=pat for 0≤k≤n. Here pat
is a pattern, which may either be a constant, or a tuple with a functor name and arguments
funct(I m+1,…,I m+p) p≥1, treating h:t as equivalent to :(h,t) with : the functor
name. A pattern may be considered as introducing additional input arguments to a clause.
Any input variable either from the header of the process or from a tuple in the guard may
not be used either in an output position of a new process creation in the body, or as a
variable which is assigned a value in the body. An input variable may be used any
number of times, including zero, in an input occurrence in the body of a clause. An input
occurrence is either an argument in an input position of a new process creation, a variable
which is assigned to an output variable, or an argument to a tuple which is assigned to an
output variable or used as an argument in a new process creation.

Each output variable must be used exactly once in an output occurrence in the body of
each clause. An output occurrence is either an output position as an argument in a new
process creation, or being assigned a value. An output variable may also be used any
number of times in an input occurrence.

A new variable is one that comes neither from the header of the process nor from a tuple
in an ask. It is used for local communication with the processes created in a rule body. It
must be in exactly one output occurrence in a rule body, and may be in any number of
input occurrences. This represents the actual creation of a new variable, which is added to
the global set of variables. Variables local to a clause through introduction in a tuple in an
ask, are not new variables, they are local names for existing variables. It can be seen from
this that although variables are conceptually global, in fact they are localised to a small
number of processes. Access to a local variable is only passed out if it is assigned directly
or through a tuple to another output variable. To illustrate this, consider:

#p(a,b)->c
{
 || r(a)->v, q(b,v)->c
}

Since the guard to the one clause for a p process is empty, the process will always
transform to a q process and an r process with v as a variable communicating between
them but not accessible by any other process. Now consider

#p(a,b)->c
{
 || r(a)->v, q(b,v)->u, c=f(u)
}

5

Although u is introduced as a local variable, the output variable c is bound to the one-
argument tuple f(u) , resulting in read access to u passing to whichever processes have
read access to c .

The effect of the moding is to give variables a single-writer multiple-reader property. The
firing of any rule will either create an assignment for variables it has write access to or
pass the write access to exactly one new process. In the first version of p above, write
access to c is passed to q, in the second version c is assigned a value and write access to
it disappears. Multiple read access to a variable is created when it has more than one read
occurrence in the body of a clause, for example in

#p(a,b)->c
{
 || r(a)->v, q(a,v)->c
}

Now both the r and q process have read access to a . This also shows how an input
variable need have no input occurrences, as that is the case with b here.

Above, we suggested the arguments to a tuple in an ask would be variables. These
variables may be used in further asks in the same guard. For example, we could have
I k=funct1(I m+1,…,I m+p),I m+j=funct2(I m+p+1,…,I m+p+q) . An alternative way of
writing this is to replace I m+j with funct2(I m+p+1,…,I m+p+q) in the argument list
I m+1,…,I m+p. Although these two representations are regarded as equivalent, the former
can be used if it is required to give a name in the clause body to the j th argument of the
functor variable I k has been assigned.

Back-communication through Linear Variables
An important aspect of GDC is back communication [Greg 87]. This means a process
binding a variable to a tuple, which is then read by another process which binds some of
the variables within that tuple. This enables easy two-way interaction between processes.
We could extend our syntax for moded GDC by separating arguments to a tuple in a
similar way to that we used to separate arguments for a process. So
v=funct(I m+1,…,I m+p)->(O n+1,…,On+q) with p,q≥0, in the guard is an ask which
tests whether v has been bound to a tuple with functor name funct and arguments
I m+1,…,I m+p,O n+1,…,On+q where On+1,…,On+q are reply variables. The reply variables
are treated as output variables in the body of the clause, that is, they must have exactly
one output occurrence, and can have any number of input occurrences. As previously, we
have assumed the input arguments are variables, they are then treated as input variables
for the rule, that is they may only be used in input occurrences. An input argument may,
however, be a pattern, it is then treated as if it were a variable with a separate ask for the
variable to be the given pattern. Note this means the input arguments may contain further
output variables. If p is 0, the above ask can be written v=funct->(O n+1,…,On+q) , if q
is 1, the brackets around the output variables can be omitted.

The assignment which causes a variable to be bound so that the ask
v = f u n c t (I m + 1, … , I m + p) - > (O n + 1 , … , O n + q) becomes applicable is
u=funct(A 1,…,A p)->(B 1,…,B q) , This counts as an input occurrence of the variable

6

for any Ai which is a variable, and an output occurrence for each Bj which must be a
variable. For any Ai which is not a pattern, it is equivalent to the i th input argument
being a new variable, and that variable assigned the pattern Ai separately.

There is a problem with this: it leads to the guarantee that every variable has a single
writer being broken. We have shown how an input argument to a process may be
duplicated, leading to multiple readers of the variable which the argument represents, or
may not occur at all in the body of a clause. Suppose we have r(a)->v,q(b,v)-> c
where r binds v to a tuple with reply variables. Then a clause for q which causes its
second argument to occur in more than one read occurrence would provide multiple
writers to the reply variables, since any process that has read access to v could ask for its
value and hence have write access to its reply variables. A clause for q which does not
pass its second argument to any read occurrence would mean the reply variables to v
would lose their writer and would never get assigned values.

We resolve this problem by having two types for variables, linear and non-linear. A linear
variable is guaranteed to have exactly one reader and one writer. Non-linear variables
may only be assigned tuples that have no reply variables, and no linear variables or tuples
containing linear variables as arguments. A linear variable which is an input to a clause,
either as one of the arguments to the process, or as an argument to a tuple in an ask, must
occur just once in the clause either to have its value asked in the guard, or in an input
occurrence in the body. A linear variable which is an output to a clause, either as one of
the arguments to the process or as a reply variable to a tuple in an ask, must occur exactly
once in an output occurrence only in the clause. A linear variable which is local to a
clause body must be in exactly one read occurrence and one write occurrence only.
Process headers will indicate which arguments must be non-linear variables, and patterns
in asks will indicate which arguments to tuples must be non-linear. An argument
indicated as non-linear will fail to match with a tuple that contains linear arguments or
reply variables when asks are made.

Here is an example of a simple GDC process which involves back-communication:

#vendingMachine(cost, in)
{
 in=pay(n)->(item,change), n>=cost ||
 item=chocolate, change<-n-cost;
 in=pay(n)->(item,change), n<cost ||
 item=nothing, change<-n
}

A process created by vendingMachine(c, link) will suspend until both c and
link have become bound. Italics are used to indicate linear variables. The variable
link needs to be bound to a tuple with functor name pay and three arguments. The
second and third arguments are reply arguments. This is indicated by the pattern
pay(n)->(item,change) . The first argument of the tuple link and the second
argument of the process need to be bound to numerical values which can be compared
using a comparison ask.

7

Higher Order Functions in GDC
One of the main arguments given in favour of functional programming, for example in
Hughes’ influential paper [Hugh 89], is that higher order functions, which they provide
with ease, are a good way to modularise and develop programs. GDC handles interaction
between components with ease due to back-communication, and it handles indeterminacy
with ease. Both of these may be handled only awkwardly in functional programming, the
monadic approach [Peyt 00] being favoured as a way of handling them without
compromising the purity of functional programming. However GDC does not give a way
of passing process descriptors as arguments, and constructing new ones and binding
variables to refer to them, so it seems to lack the crucial tool of higher order
programming.

Higher-order logic programming has been considered, at one end of the scale in terms of
a formal extension to logic programming theory [Na&Mi 98], at the other in terms of
various ad hoc extensions for practical programming [War 82]. We believe, however, that
back-communication in concurrent logic programming can be used for much of what
requires higher-order functional programming in functional programming.

We represent a function by a linear variable with write access. Assigning to that variable
a tuple with one input argument and one output argument causes the output argument to
be bound to the function of the input argument. Using an empty functor name, we can
write the function square as:

#square(in)
{
 in=(arg)->result || result<-arg*arg
}

The simplest higher order function just takes a function and an argument and gives the
result of applying the function to the argument, so:

#apply(arg)->(func,result)
{
 || func=(arg)->result
}

So the conjunction of calls square(f),apply(x)->(f,y) will assign the square of
x to y . The first reply argument to apply could be set to a linear variable which is
linked to a process representing any function, so long as the function does not return a
linear variable. For example, we could have:

#addOne(in)
{
 in=(arg)->result || result<-arg+1
}

Then the call apply(x)->(f,y) will assign to y the sum of x and 1, providing the
single reader of f is addone(f) . We have shown that reference to a particular function
can be abstracted out, to give a general process descriptor which can be specialised to
refer to a particular function through an argument.

The following process will gives the effect of function composition:

8

#compose(h)->(f, g)
{
 h=(arg)->res || f=(arg)->res1, g=(res1)->res
}

Now

square(sq),addOne(inc),compose(h)->(sq, inc),apply(x)->(h,y)

will cause y to be assigned the value of x 2+1.

We can also show currying, for example, in an addition function:

#add(in)
{
 in=(arg, res) || addn(arg, res)
}

#addn(n, in)
{
 in=(arg)->res || res<-n+arg
}

We need a different form of apply to give the effect of a function which returns a
function when applied to an argument:

#applyf(arg, result)-> func
{
 || func=(arg, result)
}

Now add(f1),applyf(x, f2)-> f1 means that f2 represents the function of
adding x to its argument. We could have

square(f3),compose(f4)->(f2, f3),apply(y)->(f4,z)

to set z to (x+y) 2.

There are two big objections to the above. Firstly, the moding is counterintuitive. To give
the effect of a process taking a function as an argument, it has to give a variable
representing that function as one of its outputs, while a process which is thought of as
producing a function takes a variable representing it as one of its inputs. Secondly, each
function can only be used once. We might want

square(sq),apply(x)->(sq,z),apply(z)->(sq,y)

to set y to x 4, but it would be rejected as illegal due to the variable sq having more than
one output occurrences.

Let us deal with the second problem first. A simple solution would be just to create a
separate variable for each time we want to use the function:

square(sq),square(sq2),apply(x)->(sq1,z),apply(z)->(sq2,y)

But this cannot be done if the function variable is a parameter, say:

9

#twice(t)-> f
{
 t=(arg)->res || apply(arg)->(f,b), apply(b)->(f,res)
}

where we would want

square(sq), twice(f)-> sq, apply(x)->(f,y)

to set y to x 4, but the body of the clause for twice is illegal.

A solution to this is to modify the way we represent functions so that a function call
“returns” a variable which may be used to continue applications of the function. Given
the reverse polarity of modes for linear variables used for functions this would actually be
an input variable. Here is code for square using this convention:

#square(in)
{
 in=(arg, next)->result || result<-arg*arg, square(next);
 in=halt ||
}

The convention is that the function continuation variable is assigned the constant
'halt' if it is not to be used. We change apply so that an application gives us a
function continuation variable:

#apply(arg, cont)->(func,result)
{
 || func=(arg, cont)->result
}

We might also have a version of apply for when we know we do not need to use the
function again:

#applyOnce(arg)->(func,result)
{
 || func=(arg,'halt')->result
}

a l though the same wou ld be ach ieved by the ca l l
apply(arg,'halt')->(func,result) . So this gives us a version of twice
where we don't want continued use of the function:

#twice(t)-> f
{
 t=(arg)->res ||
 apply(arg, cont)->(f,b), apply(b,'halt')->(cont,res)
}

Similarly, the following gives us a process which maps a function onto a list:

10

#map(list)->(func,result)
{
 list=[] || func=halt;
 list=h:t ||
 apply(h, cont)->(func,h1),map(t)->(cont,t1),result=h1:t1
}

Consider also mapping a function onto a tree, where a tree is either the tuple
tree(l,r) where l and r are trees, or the tuple leaf(n) :

#mapTree(tree)->(func,result)
{
 || map1(tree,'halt')->(func,result)
}

#map1(tree, cont)->(func,result)
{
 tree=leaf(n) || apply(n, cont)->(func,n1), result=leaf(n1);
 tree=tree(l,r) ||
 map1(l, func1)->(func,l1),
 map1(r, cont)->(func1,r1),
 result=tree(l1,r1)
}

Note that apply(n, cont)->(func,n1) in the first clause could be written as just
func=(n, cont)->n1 . But suppose we write it as func=(n)->n1: cont and use
[] instead of 'halt' where : is the infix list functor and has lower precedence than
-> . This gives us:

#mapTree(tree)->(func,result)
{
 || map1(tree,[])->(func,result)
}

#map1(tree, cont)->(func,result)
{
 tree=leaf(n) || func=(n)->n1: cont, result=leaf(n1);
 tree=tree(l,r) ||
 map1(l, func1)->(func,l1),
 map1(r, cont)->(func1,r1),
 result=tree(l1,r1)
}

Then, for example, the function square would be represented by:

#square(in)
{
 in=(arg)->result: next || result<-arg*arg, square(next);
 in=[] ||

}

11

Now it can be seen that in map1(t, cont)->(func,t1) , the linear variables cont
and func form a difference list [Cl&Ta 77], where components of the difference list are
tuples of the form (n)->n1 . The difference list would conventionally be written
func- cont.

The logic programming convention of the difference list L1-L2 is that L2 is a suffix of
L1, and the list represents the conventional list of those elements in the list L1 is bound
to up to the start of L2. It is a useful convention because given two difference lists
L1-L2 and L2-L3, the two lists appended are L1-L3, there is no overhead of an append
operation. If L2 is unassigned, it enables items to be added to the end of the list. Binding
L2 to [x|L3] means the difference list L1-L3 represents the list represented by L1-L2
with x added to the end. If L1 is unassigned, binding L1 to [x|L3] can be considered as
adding x to the front of the difference list L1-L2 and making L3 a new insertion point,
further items can be added into the list is closed off by binding the insertion point
variable to L2.

In a concurrent setting, if we have n processes with access to difference lists L1-L2,
L2-L3, …, Ln-[], we can consider this as the processes creating an ordered list L1
without any ordering required on when an individual process adds an item to the list. A
process with difference list La-Lb adds nothing to the overall list by binding La to Lb It
adds x to the overall list by binding La to [x|Lc] and passing the difference list Lc-Lb
for further insertions. If it passes La-Lc to process p and Lc-Lb to process q it joins p
and q in the chain of processes adding to the list, with p's additions coming before q's.

This is in effect how we are representing the function in the tree map above and how
functions can be represented generally. The process which outputs a function actually
inputs a list of calls l of the form (arg)->result . It is guaranteed sole access to this
list due to linearity, so it can always write result to the appropriate value with respect
to arg . What is considered as the input of a function actually involved the input of a
linear variable cont and the output of a linear variable func, with func-cont being a
portion of the chain of difference lists which together form l.

We could introduce syntactic sugar for this into our moded GDC which would give a
syntax which appears to have functions as arguments. This is done as follows. We
introduce a separate function type of variable and argument, indicated by an initial capital
letter. A function variable must have a single writer, but may have multiple readers.
Assume for now this means in any process which has write access to a function variable,
exactly one output occurrence of the function variable must occur in each clause. In any
process which has read access to a function variable, the variable may only occur in input
occurrences in the clauses, and may occur any number of times including zero. A new
function variable may be introduced in a clause body, in which case it must have one
writer and may have any number of readers. A function variable may not be an argument
to a tuple which is assigned to a non-linear variable, and its value may not be asked in a
guard.

12

A process heading with functional variable inputs is converted to one without by
changing each input functional variable F to a pair of linear variable, f as output and c as
input. Thus

#proc(I 1,…,F,…,I m)->(O 1,…,On)

becomes

#proc(I 1,…, c,…,I m)->(O 1,…,On, f)

In any clause where F is not used in the body, the assignment f<- c is added to the body.
If F is passed as an input argument once in the body, but not called as a function, it is
replaced by c and f added to the output arguments, the equivalent of the difference list
f-c. If F is passed twice as an argument but not called as a function, the first occurrence
of F is replaced by the equivalent of the difference list f-f1, the second by f1-c. And
so on for more occurrences of F.

We use juxtaposition for function calling, as in languages like Haskell. So F x represents
a call of the function represented by F with argument x . It is used as a value in the code,
so could be an argument to a process creation or assigned to an output variable. To give
ordinary moded GDC, F x is replaced by y , and f in the difference lists above is
replaced by f0, with the additional assignment f<-(x)->(y): f0 added to the body.
If there are two calls to the function, F x1 and F x2 , they are replaced by y1 and y2 ,
with the extra assignment f<-(x1)->(y1):(x2)->(y2): f0 and so on.

In any clause where a function variable is local to the clause, occurrences of the function
are converted into difference lists as above with the empty list [] used in the place of c.

This enables us to write mapTree as follows:

#mapTree(tree,Func)->result
{
 tree=leaf(n) || result=leaf(Func n);
 tree=tree(l,r) ||
 mapTree(l,Func)->l1,
 mapTree(r,Func)->r1,
 result=tree(l1,r1)
}

As some additional syntactic sugar, if a process has just one output, we allow it to be
anonymous. This is indicated by < in the header rather than -> followed by a name.
Assignment to the anonymous output is indicated by > followed by the value rather than
the output variable name, followed by -> followed by the value. Also, f(a 1,…,a n) in
an input occurrence is treated as r in that occurrence with an additional process
f(a 1,…,a n)->r added to the clause body. If we want the tuple f(a 1,…,a n) in the
input occurrence, we write that =f(a 1,…,a n) . This cuts down on the verbosity by
removing superfluous variable names. It results in following more compact version of
mapTree being possible:

13

#mapTree(tree,Func)<
{
 tree=leaf(n) ||>=leaf(Func n);
 tree=tree(l,r) ||>=tree(mapTree(l,Func),mapTree(r,Func))
}

We now need to consider how to write the processes that output function variables. These
must be converted to processes that input a stream of tuples with reply variables. In our
sugared syntax, we write the header of a process that produces a function variable
representing function f with argument x as #f[x]< followed by a set of clauses S
which have input variable x and assign to the anonymous output variable. This is
translated into:

#f(s)
{
 s=[] || ;
 s=(x)->r || r<-f1(x)
}

#f1(x)<
S

Thus we would write the process which produces the variable representing the square
function as:

#square[x]<
{
 ||>x*x
}

As more syntactic sugar, { || body } (that is a single clause with an empty guard)
may be written == body , giving us the compact representation

#square[x] <==> x*x

Higher order functions using stream merger
The difference list representation of function calls has the convenience of a minimal
overhead. However, it does enforce a fixed order in which calls are listed, which can be a
source of deadlock. For example, consider

p(F,a)->b, q(F,b)->(a,c)

This will become

p(f1,a)->(f,b), q(f2,b)->(f1,a,c)

where f is the stream of messages to the process providing the function. The difference
list f-f1 represents the function calls from p, and f1-f2 the function calls from q.
Calls from q will not be passed on until p has produced its complete list of calls, but that
completion may depend on knowing the value of a, computed by q. To overcome this,
first consider how the list of calls would be handled using list append rather than
difference lists:

14

p(a)->(f1,b),q(b)->(f2,a,c), append(f1, f2)-> f.

This maintains the same ordering of calls as previously, but if we replace list append with
indeterminate stream merger:

p(a)->(f1,b), q(b)->(f2,a,c), merge(f1, f2)-> f

calls will now be passed into the stream f in the order in which they are generated.

So the input of a function can be represented by the output of a stream of tuples
representing calls to that function. Each reference to the function can be represented by a
separate output stream, with the streams being merged together to form the one stream
that is passed to the process that handles the function calls. An individual function call
can be represented by putting a tuple for it on the front of the output stream, so, for
example:

p(F,a)->b, q(F,b)->(a,c), r(F c)->d

is represented by:

p(a)->(f1,b), q(b)->(f2,a,c), r(c1)->d, merge(f1, f2)-> f0,
f<-(c)->c1: f0

If a function is not passed to any processes, it is represented by just the list of calls made
to it. So:

p(F a)->b, q(F b)->(a,c), r(F c)->d

is represented by:

p(a1)->(b), q(b1)->(a,c), r(c1)->d,
f<-(a)->a1:(b)->b1:(c)->c1:[]

This means that streams are eventually closed off. When the stream to the process
handling function calls becomes the empty stream, the process can be terminated, a form
of garbage collection.

Stream merger could in practice be replaced by ports as suggested by Janson et al
[Jans 93]. Ports can be considered as a lower level and hence more efficient way of
implementing what can be considered in the abstract as stream merger. Some of the
overhead associated with the explicit use of streams may also be removed by partial
evaluation [Hunt 89].

Conclusions
We have identified a simple but inherently concurrent operational model of computing.
The model is implemented by the programming language Guarded Definite Clauses, but
has to some extent been hidden by that language's origin from attempts to introduce
parallelism into logic programming, and consequent Prolog-like syntax. In particular, in
GDC there is almost always a direction of flow of data in a variable from a single source
to possibly several destinations, but in the traditional syntax this is implicit. We introduce
a syntax which makes it explicit, and which also rules out the possibility of programs that
can fail due to attempts to bind variables to contradictory values.

15

Although GDC loses much of logic programming's inheritance, particularly backtracking,
it remains based on the logic variable. The logic variable has been recognised as a key
concept for easy programming of concurrency and interaction, hence many attempts,
such as [Hanu 99], to incorporate it into other programming paradigms. A logic variable
can not only be passed as part of a structure while being bound elsewhere, it can be
passed as part of a structure and bound by a process that inputs that structure. Our syntax
keeps this power through annotating some variables as linear and hence suitable for
reversing the input-output polarity.

Finally, we show how we can use this back-communication of logic variables to
overcome one of the deficits of logic programming as compared to functional
programming, its lack of a higher order function capacity.

References
[Cl&Ta 77] K.L.Clark and S-A.Tärnlund. A first order theory of data and programs. In
Information Processing 77 (IFIP 77), B.Gilchrist (ed), Elsevier/North-Holland, 939-944.
[Greg 87]. S.Gregory. Parallel Logic Programming in PARLOG. Addison-Wesley.
[Hanu 99] M.Hanus. Distributed programming in a multi-paradigm declarative language.
Proc. Int. Conf. on Principles and Practice of Declarative Programming (PPDP'99)
LNCS 1702, Springer, 376-395.
[Hugh 89] J.Hughes. Why functional programming matters. Computer Journal 32 (2)
98-107.
[Hunt 89] M.Huntbach. Meta-interpreters and partial evaluation in Parlog. Formal
Aspects of Computing 1 193-211.
[Hunt 03] M.Huntbach. Features of the concurrent language Aldwych. ACM Symposium
on Applied Computing (SAC’03), 1048-1054.
[Hu&Ri 99] M.Huntbach and G.Ringwood. Agent-Oriented Programming: from Prolog
to Guarded Definite Clauses. LNCS 1630 Springer.
[Jans 93] S.Janson, J.Montelius, and S.Haridi. Ports for objects in concurrent logic
programs. In Research Directions in Concurrent Object-Oriented Programming, G.Agha,
P.Wegner, and A.Yonezawa (eds.). MIT Press.
[Na&Mi 98] G.Nadathur and D.Miller. Higher order logic programming. In Handbook of
Logic in AI and Logic Programming, Volume 5, Oxford University Press, D.M.Gabbay,
C.J.Hogger and J.A.Robinson (eds), Oxford University Press, 499-590.
[Peyt 00] S. Peyton Jones. Tackling the awkward squad: monadic input/output,
concurrency, exceptions and foreign-language calls in Haskell. In Engineering Theories
of Software Construction, C.A.R.Hoare, M.Broy, and R.Steinbruggen (eds) IOS Press.
[Sara91] V.A.Saraswat, M.Rinard and P.Panangaden. Semantic foundations of concurrent
constraint programming. Principles of Prog. Lang. Conf. (POPL'91), 333-352.
[Ueda 96] K.Ueda. Experiences with strong moding in concurrent logic/constraint
programming. In Proc. Int. Workshop on Parallel Symbolic Languages and Systems
(PSLS'95), LNCS 1068, Springer, 134-153..
[Ueda 01] K.Ueda. Resource-passing concurrent programming. In 4th Int. Symp. on
Theoretical Aspects of Computer Science (TACS'01), LNCS 2215, Springer, 95-126.
[Warr 82] D.H.D.Warren. Higher order extensions to Prolog: are they needed? Machine
Intelligence 10, 441-454.

