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Continuous Global Evidence-Based Bayesian Modality Fusion for Simultaneous
Tracking of Multiple Objects

Abstract

Robust, real-time tracking of objects from visual data re--

quires probabilistic fusion of multiple visual cues. Prevtous
approaches have either been ad hoe or relied on a Bayesian
network with discrete spatial variables which suffers from
discretisation and computational complexity problems. We
present a new Bayesian modality fusion network that uses
continuous domain variables. The network architecture dis-
tinguishes between cues that are necessary or URNECessary
for the object’s presence. Computationally expensive and
inexpensive modalities are also handled differently to min-
imise cost. The method provides a formal, tractable, exact
and robust probabilistic method for simultaneously rracking
multiple objects. \

1. Introduction

Robust tracking of a single object under occlusion from vi-
sual data is difficult due to ambiguity and noise in the sen-
sors, uncertainty in the trajectory of the object, and varia-
tions in the appearance of the object over time. The probiemn
of noisy. sensors, or sensors that generate ambiguous output
from distracting objects, can be addressed through a pro-
cess of Bayesian modality fusion [9, 10]. Bayesian modality
fusion (BMF) uses a Bayesian network to probabilistically
combine the outputs of several complementary modalities.
A reliability indicator for each modality is incorporated in
the network. The use of complementary modalities over-
~ comes the problem of ambiguity if a distracting object in
one modality is not present in another. The problems of
noisy or failing sensors are addressed through the use of
probabilities and reliabilities. Uncertainty in object trajec-
tory is generally an unsolvable problem since often we can-
not know the intentions of the object (if it is a person, for
example). All that can be done is to impose a general tem-
poral model, and use global searching of the spatial domain
for focusing cues rather than local searching. Unfortunately
local searching is often used because global ssarching is
necessarily computationally prohibitive. Finally the varying
appearance of the object must be approached by making the
chosen modalities invariant to these appearances. For exam-
ple, motion and colour are generally consistent over varying
appearance.

One difficuity with modality fusion is that the existing
implementation {9] uses discrete variabies to model the spa-
tial domain. Each spatial variable X can take the values
1,..., N, where N is the number of pixels in the image.

‘Hence marginalisation over conditional probability distribu-

tions involving spatial variables has an undesirable O(N?%)
complexity. The problem can be managed to some extent
by excessively sub-sampling the image domain. The con-
sequences are not as bad as one might first think since the
probability values in the sub-sampled domain are contin-
uous. However, Toyama and Horvitz {9] do not address
the problem of choosing a sufficiently accurate level of sub-
sampling. Furthermore, the discretisation of the spatial do-
main prohibits extensibility to larger spatial domains and
tracking of muitiple objects.

Another limitation of the BMF approach in [9] is that
observations of object positions are entered as specific lo-
calised evidence from an isolated tracker, ie: the observa-
tions are uni-modal. However, this is undesirable given that
the combination of uncertain object trajectory and ambigu-
ity in the modalities can resuilt in muitiple feasible obser-
vations. Much information is discarded at an early #age
that could have been valuable later. Contemporary track-
ing approaches such as CONDENSATION [3] suffer from
the same problem in a different way: only a sub-set of the
current observations are used for tracking, that sub-set be-
ing determined by a temporal model. This approach con-
travenes the recent wisdom that successful vision requires
both data-driven and model-driven processing simultane-
ously. To that end, the full set of observations needs to be
considered simultaneously, combined with prior informa-
tion, and the most likely joint hypothesis inferred, provided
it is computationally tractable.

To track multiple objects, an exclusion principle must be
applied on the observations so that multiple object trackers
do not continually claim responsibility for the same obser-
vation [5]. There is generally a combinatorial explosion in
the number of matching possibilities over time. Previous
approaches at explicitly tracking multiple objects [6, 2, §, 4]
have generally used heuristic approaches to deal with this
complexity,

We propose a new Bayesian modality fusion, Contin-
uous Global Evidence-Based Bayesian Modality Fusion
(CBMHE), that makes four novel contributions but is also




computationaily tractable: 1) Continuous sampling: the for-
merly suggested discrete domain spatial variables [9] are
turned into coatinuous variables to assuage the complexity
of inference. 2) Global evidence: all observations from a
single modality are considered during inference rather than
a single position decided upon at an early and premature
stage. 3) Distinct Modality Types: a distinction is made
between modalities that are necessary for the presence of
an object and those that only hint at its presence. 4) Se-
lective Computation: computationally expensive modali-
ties are treated differently from inexpensive modalities to
improve performance. The network architecture is modu-
larly expanded to simuitaneously track multiple objects and
impose an exclusion principle in a theoretically principled
manner that exploits Bayesian “explaining away” {7].

2. CBMF for a Single Object

Rather than entering observations of a 2-dimensional spatial
variable Z = [z1, 22] as a specific value, evidence is entered
as a likelihood over variable values. The likelihood of the
observational evidence ez on the variable Z is modelled as
a mixture of K Gaussians:

K K
plezl?) =Y Gz, 00); D ox=1 (1)

k=1 k==l

Clearly evidence must be discarded as irrelevant at some
stage in the process to avoid high computational cost. How-
ever we allow this discarding process to be driven by
the observations rather than some prior and possibly mis-
conceived hypothesis. Gaussian mixtures are only defined
for spatial regions in which the modality yields a non-zero
response. Therefore in general, K will vary from observa-
tion to observation.

Conditional probabilities between continuous variables
X and ¥ are modelled using a continuous 2-dimensional
Gaussian distribution:
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Therefore marginalisation over large tables of discretised
Gaussian distributions is avoided through the simplified an-
alytical form of Gaussian convolution.

The general architecture of the CBMF network is shown
in Figure 1. The chief inferred node X represents the po-
sition of the object. It is 2 continuous variable whose dis-
rribution is generally a mixture of Gaussians. X nodes are
conditionally dependent over time to allow for a temporal
dynamic model. Modalities are divided into two classes:
necessary and contingent. Necessary modalities, Y7, must

U1n this paper, all 2D Gaussians have diagonal covariance, and the func-
tionai parameters z, ¢ and o are 2-vectors.

be present when an object is present, and these nodes form
the set of child nodes of X. Contingeni modalities are rep-
resented by Uy and may or may not be present when X is
present. They form the set of parents of X. Each modal-
ity has a continuous spatial variable which is a mixture of
Gaussians. Bach modality also has an associated reliability
node and sub-network that measures the reliability of the
modality. Each reliability variable has a set of child indi-
cator variables which serve as external information alluding
to the current reliability of the modality. For example, for a
motion-based modality, a suitable indicator may be the in-
siantaneous motion energy in the image. If the energy were
to drop o zero, this would indicate that the motion modality
is unreliable. The reliability B), and associated indicators
Iw1, ooy dgn, are all discrete variables, Virtual evidence
is entered into each modality node using a dummy child
node e;. We exploit the global independence of variables
by applying local propagation rules to determine the belief
distribution for X given the observations, P{X|e).
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Figure I: Continuous Global Evidence-based Modality fu-
sion network. Only one necessary modality Y}, and one con-
tingent medality Uy are shown for simplicity.

In the remainder of this section, we derive a
tractable solution to the proposed CBMF network for
tracking. Given M necessary modalities Y1,..., Yy
and N contingent modalities, U7},...,Uy in a net-
work %, evidence ey = {ey,,en ...
€Y s €Iy 1 €Iy niicy } (similarly for eyr) is entered via
specific values ej,, ; for the indicators I, and likelihoods ey,
for the Y} (see Eqn.(1)). The posterior distribution for X is:

,611‘1‘“),...,

P(Xle) Pe| X)P(X)/P(e)

BP(ex|X)P(X|ek) 3

INote that only one necessary modality Y}, and one contingent modal-
ity Uy, are shown in Figure 1 for simplicity.




where e7; is all evidence contained in the parent sub-irees
of X, ey is evidence contained in child sub-trees of X, and
8 = P(ef}/P(e), an imelevant constant. We have ex-
ploited the independence of the parent and child evidences.
Now we can determine the two contributions separately:

M
Plex|z) = [] Plexylz) (4)

ta=]

where ey, is the evidence down the ith sub-tree only. Con-
sidering ¥; and dropping the ¢ subscript for simplicity:

Plezyls) = / Pley ) e ) Pl 2)ptr) i dy

where we have exploited the conditional independence of
€4y from X and Y given R and of ey from X and R given
Y, and the marginal independence of R and X,

Plezyl) = ~ [ p(rlety) ] ple; ) plyir, z) dr dy

where y = p(ek, ) and p(ey|y) is our entered evidence at
Y. efy is all evidence in R and its child sub-trees excluding
Y. By further exploiting the independence of the reliability
indicator evidences e L

n
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Note that ¢ can be calculated by nomalising p(rlefy ) over
7 to sum to one. Each indicator contributes:

pergl) = [ pleslin) plsin) diy

where p{e;, [1;) is our entered evidence. If discrete indicator
evidence e;; is entered, and defining a reliability weighting
function F(-) for convenience yields:

F(ry=plrlefy) = o) [ oG =eslr)

g=1

Applying the observational mixture of Gaussians Eqa. (1)
and the continuous conditional probability Eqn. (2) gives:

K
Plexyls) =7 F{r) [y 3" axGly; pry 0% )G y; 2, 0,)dy
7 k=1

where o, is the standard deviation corresponding to
the given level of reliability, fe; low reliability needs
high standard deviation in position for this modal-
ity. Given the 2-dimensional Gaussian functions
on the domain [zy,zs] with mean vector {ui,p:s)

and diagonal covariance diaglo?,,03,], we ap-
ply the identty: [ Glzjp,01) G(@ipe,00)dr =
G (,u.z —u1;0,/0 + ag)which yields a mixture of

Gaussians:
K
Plexyla) =73 F(r) 3 owGle: s Vor? + o,°)
r k=1
(6)

At the X node, these necessary nodes result in a product
of mixtures of Gaussians. Now we address incorporation of

the contingent modalities. Letus define U = {Uh,..., Uy}
and R = {Ry,:..,Rn}. Then:
Plef) = [ plolura-opalel, )
1A T -1
N
H plusley v, )JP(T: lex r,)dudrdz;, (N
t=]

Since the modalities are not necessarily present at the
object location, we need a noisy-OR type rule. Given the
modality locations, an object could really be anywhere, but
is more likely to be found where the modalities occur. As
modalities are superimposed, the likelihood of finding the
object at a given location should increase since we have
more evidence to that effect. These considerations can be
represented as:

N
pl@lu, ¥, 3een) = 6-+wp(sl@r.) +w Y plelus,rs) (8)
i1
where § is a constant signifying that the object could beany-
where, w = (1 ~ §)/{N + 1) is a weighting giving equal
favour to all modalities, and p(ziz;—1) represents the tem-
poral model for evoluticn of object position. Note that the
distribution’s expectation over X must equal one, hence the
weightings w. § represents the extent to which no contin-
gent modality can give indication as to the object’s where-
abouts. For example, for & motion-based modatity, § would
represent the proportion of image frames in which no mo-
tion occurs. For a face detection modality, § would repre-
sent the on-line failure rate of the face detector in a typical
sequence, Such a parameter can be estimated off-line from
data. Substituting Egn. (8) into Eqn. (7) gives:

- Plalex) =
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Now through nested integration, many of these terms in-
tegrate to unity. Assuming uniform priors on U, defining




:Aa:t 1. and @s—1 t0 be the position offset and dispersion
“specified by the temnporal model, and considering the prior
chsmbutaon of X as a mixture of Gaussians:

P(zle}) = 6+
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The final result is cbtained by substituting Egns. (4)
and (9) into (3}, and is a product of mixtures of Gaussians.
The consequent exponential growth in the number of Gaus-
sian terms is characteristic of a method that evaluates mul-
tiple joint hypotheses.

3. Querying Expensive Modalities

Modalities such as frame differencing and skin colour clas-
sification are inexpensive to compute and can be acquired
for each pixel in the image. Other modalities, such as face
detection and ellipse fitting, are not only expensive to com-
pute, but rely on a size parameter that adds a search to
the computation. It would be computationally infeasible to
compute these expensive cues at each pixel for real-time ap-
plications. The modality fusion approach here can be used
to selectively calculate the more expensive modalities. It
is a property of Bayesian networks that evidence need only
be entered in a sub-set of variable nodes at any given time.
We can begin by entering evidence e¢ for the inexpensive
modalities, resulting in a posterior Pz|ec). Now if there
is a clear maximum in the distribution, no further compu-
tation is required. However if there is some ambiguity as
to the maximum of P(z|ec), evidence ep can be gathered
from the expensive modalities at the candidate locations.
Propagation of this evidence should disambiguate the result.
The criterion used in this work to query expensive modai-
ities is to calculate at the set of local optima on P(zles).
The new expensive evidence ep is then propagated to yield
P(zler) = P{z|ec,er), where e is the total evidence.

4. CBMF for Multiple Objects

Now consider the case in which there are L objects to be
tracked in the scene. Here we present an Extended CBMEF
network to track multiple objects simuitaneously, When
tracking the objects from visual stimulus there will gen-
erally be two types of modalities: those that indicate the

presence of all objects {gg; motion), and those that iden-
tify a single object (eg: appearance). The architecture is
shown in Figure 2. The variable X is taken from the single-
object network discussed previously, and represents modal-
ities that are common to ail objects. The posterior distribu-
tion obtained from the CBMF, P{X|ey), is treated as the
observation for this network. It is a simplifying assumption
to treat X as an isolated variable in this case. X has a set
of parents A = {4,,..., A, } which are continuous vari-
ables each representing the position of an object. The figure
shows the relevant variables for A;, the position of the ith
object. In similar fashion to the previous CBMF network,
each A; has a set Y4, = {Yi,l,.. ,}’g,n{m)} of object-
specific modalities and associated reliabilities that are in-
stantiated with mixtures of Gaussians and reltability indi-
cator observations. The conditionat probabilities associated.
with these object-specific modalities are the same as in the
previous network. However, to facilitate explaining away
by the object variables, the conditional probability table for
X is different, using a Noisy-OR rule {7]:

L
p(={A) = n(A) (z - Tl -z af))) (10)

i=1

where 7{A) is a normalising constant ensuring that the dis-
tribution integrates to unity for a specific configuration of
A, and §(=z; y) is the unit delta function:

w1 Hz=y
O(@;y) = { 0 otherwise

%
For now, we ignore the normalising constant and let (A} =
1. The constant will only be different from 1/L for config-
urations of A in which a; = a; for some ¢ and j in [1, L].
Ignoring these cases means that hypotheses regarding oc-
cluding objects are incorrectly weighted. However, ignor-
ing n greatly simpiifies the analysis.
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Figure 2: Unit of multi-object tracking BBN. In general
there are L objects, 4,,...,Ar, and each object i has
n(A;) associated modality sub-networks. For simplicity
only ore object and one associated modality are shown here.




Inference using Eqn. (10} is now somewhat more com-
piex because to infer the distribution of object 4;, informa-
tion must be gathered from all A;.; through X In this way
objects are abie to claim evidence at X through the Noisy-
OR rule. Let the evidence entered into the multi-object net-
work be eg. We can determine the posterior P(a:ler, eg)
for each A; as:

n{Ai)

Plaler, es) = aplas) pleg, xlas) 1] nleg, ,las)
F=1

where o = 1/p(eT, eg). The evidences P(ei,,- |a;) from the
object-specific modalities are computed in analogous man-
per to Eqn. (6). The prior p(a;} is important and can be
taken as the posterior position distribution from the previ-
ous time frame, which may be a single Gaussian for exam-
ple. The difficult term is p(ej;, yia;) which relies on the
other objects being tracked:

pleg.xla) =
o],

where 3 = p(ejj: jz4) 15 2 normalising constant, p(e |) =
p(z|er) is the posterior from the CBMF network, treated
here as evidence and generally a mixture of Gaussians, and
p(aﬁejj 1 is the evidential support provided by object j:

Plexla) plata ) [ 1 p(asled, ) d4; dz
Jst

n A,- —
o) [T plez, v, las)

11
Pl x) ah

plajlel x) =

Substituting Eqn. (10) into the above expression and sim-
plifying yields:

L . .
Bl = [1 s = Tz

-/ sy =@ ]

(i)

where m;{(z) = 1~ pla; = zle} x) is the object map for
object 5.

5. The Issue of Tractability

Although the general theory for fusing quantities proba-
bilistically has been presented, there are several issues that
must be considered for computational tractability. The ob-
servations must be presented as a mixture of Gaussians. In
the simplest case, the cbservation could be a single Gaus-
sian, as was the case in [9]. A more general method could
use individual modality trackers to obtain an economical

mixture of Gaussians using traditional techniques such as
K-means clustering or the EM algorithm [1}. In the ex-
amples presented here, observations are represented as a
dense mixture of Gaussians to overcome the problems of
fitting mixtures of Gaussians to data. The given modality is
thresholded to remove pixels with low probability. The re-
maining pixels are each instantiated as the mean of a single
Gaussian, with variance arbitrarily set to 1 in the x- and y-
directions, and a weighting coefficient in proportion t¢ the
modality strength. The weightings are normalised to sum to
1 so that the observation likelihood is a true distribution.
Possibly the most significant issue is interpretation and
manipulation of the posterior distribution of X. The fi-
nal distribution on X is the product of mixtures of Gaus-
sians, resulting in a combinatorial explosion in the total
number of Gaussians. For example, the contingent modal-
ities result in R.N.K Gaussians, where K is the average
number of observation Gaussians per modality, and R is
the number of discrete reliability values. The necessary
modalities produce the product of M mixtures each con-
taining RK Gaussians. Therefore the overall complexity is
O(N.(R.K)¥+1). For our chosen observations, K may be
on the order of 1000. In implementation, we circumvent this
problem by discretising the belief distribution of X and ac-
cumulating the products over the Gaussian mixtures. Hence
the complexity is reduced to O{(NV + M).R.K). The price
paid is that the analytical Gaussian mixture representation is
lost. The most plausible use of P{Xe) is to find the value

of X that maximises the distribution: z* =" o5 P(zle).
However, there is no straight-forward way to maximise a
superposition of Gaussians.® Given the discretised funggion,
however, ™ can be sasily determined.

The propagaticn of evidence over time through the tem-
poral connection between X nodes would result in the end-
less proliferation of Gaussians. To assuage this problem,
each optimum in the posterior distribution of X at time
t is used as a centre in a Gaussian mixture to represent
p(ze—1let _ ) atthe next time instant.

It is worth noting the comparison in computational ex-
pense between our approach and other approaches. Let D
be a measure of the extent of the spatial domain being mod-
elled. For instance, DD = w x h would be the number of pix-
els in an image. In the case of tracking a single object, the
complexity is G(M K DR), where M is the total number of
modalities. Therefore computation is linear in the number
of modalities, observation units and domain size. Compare
this with the original BMF framework which used discrete
spatial variables. In this case, K = 1 because only one
observation hypothesis was used per modality. The com-

*In general the local maxima of the superposition will occur when the
sums of derivatives of terms equals zero:

aF@) o G, 0)
dx _Q_Za, dx
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plexity of inference is Q(M K D?R), which is quadratic in
domain size! The saving has come about through exploita-
tion of the simple analytic form of the convolution of two
Gaussians. The other improvement is that our method al-
lows K > 1 so that valuable low-level information is not
discarded during high-level inference. Here we have as-
sumed that the implementation uses discretised forms of the
mixtures of Gaussians. The computational complexity may
be reduced further in special cases. In particular, if the ob-
servations consist of only one or a few Gaussians, then the
analytical form can be tractably used throughout inference.

For the case of tracking L objects, the complexity 1s
O(LMKDR) where M is the average number of object-
specific modalities. Therefore the complexity is the same as
for our single-object case, but scales linearly with L. This is
a profoundly important property for simultaneous tracking
of multiple objects: the usual combinatorial explosion in
joint object location hypotheses is avoided by communica-
tion through the X node. By comparison, other approaches
such as [4] retain the L? complexity and assume tractability
due to a small number of objects. Our approach can be com-
pared with the partitioned sampling method of [5], in which
a hierarchical model of object independence is exploited to
avoid L2 complexity. However, our approach is determinis-
tic, does not suffer from sparse sampling problems and has
fixed computational complexity.

For multi-object tracking, note that the last term in
Eqn.(12) is a constant over a,;. Therefore a discretised ob-
ject map can be calculated for each object. A combined
map [];, m;(x) for X can then be computed. For a spe-
cific object, the maps are combined with the observation at
X to determine ple ;. xlai).

6. Experimental Results

We tested the CBMF approach on the problem of tracking
an individual’s head in a video sequence. Three modali-
ties were used: skin colour (necessary), frame differencing
(contingent), and ellipse fitting (necessary). While skin and
motion are cheap to compute, the fiting of an ellipse to an
edge image is expensive since the head position and size
must be first hypothesised. Therefore the network used had
Y = {¥1,Ys} where ¥} is skin colour and Y; is the ellipse
fit, and U = {U;} where U, is the motion estimate. The
ellipse fitting modality was queried as an expensive modal-
ity. We used a broad Gaussian distribution for the temporal
model to specify the object’s expected position at the next
time step, with Ax;q = 0. Three discrete reliability val-
ues, low, medium and high, are used in the network. Sim-
ilarly all reliability indicators are discretised to one of the
three values low, medium and high.

The cues were calculated as follows. The frame dif-
ference is the absolute difference between consecutive

greyscale images. The skin image was computed using a
single multi-dimensional Gaussian for classification in nor-
malised RG-colourspace, where R = r/N, G = g/N, and
N = r+g+b. The Gaussian parameters were estimated
off-line using user-selected image regions. In the cases of
motion and skin colour, these real-valued images were then
thresholded to obtain a binary classification. At the queried
image locations, the ellipse fit was obtained on a blurred
edge image at multiple sizes on the range of 20 to 60 pix-
els in width. An ellipse aspectratio of z:y = 1:1.2 was
assumed. The criterion used is f = g/n, where ¢ is the
number of non-zero edge pixels under the ellipse perimeter,
and n is the total number of pixels along the perimeter. The
ellipse size with the highest criterion value at that position
was used,

The reliability indicator for the motion cue was the num-
ber of moving pixels in the image, the rationale being that
when there is either virtually zero or a great deal of motion
present, that cue is unreliable for identifying the head. For
skin, two indicators were used. The number of skin pixels
was used in similar manner to the number of motion pixels.
The second indicator is here termed pearling, or patchiness
of the skin image. It is computed as the average variance of
the binary skin image in 3 x 3 tiles. The more patchy the
skin image is, the less reliable this modality. No reliabil-
ity indicator was used for the ellipse fitting modality. 4 in
Eqn. (8) was arbitrarily set to 0.1,

A sample frame from results on a test sequence is shown
in Figure 3. The figure shows (from [eft to right, top to bot-
tom} the original image, the motion image, the skin image,
the motion modality observation as a mixiure of Gausgians,
the skin modality observation, the prior distribution of X,
the intermediate posterior P(Xec), the expensive ellipse
fitting modality observation instantiated at the appropriate
locations, and the final fused distribution £(X|e). It can be
seen that many hypotheses for the position of the head are
considered by the tracker. In the initial fusion result there
are two competing peaks, one corresponding to the hand
and the other to the head, The expensive ellipse fit modal-
ity is queried at the local maxima of the fused distribution
and propagated to yield the final fused posterior. The ex-
pensive modality has successfully disambiguated the head
with a clear peak at the proper location.

In the second example, CBMF is used to simuitaneousty
track the heads of three people in the scene under occlu-
sion. The same experimental configuration as the first ex-
ample was used to obtain a distribution on X, based on
skin colour classification, frame differencing and ellipse fit-
ting. The skin colour model used was based on training
pixels from ali three individuals. The single object-specific
modality for each object was a skin classification based on
a person-specific colour model. Reliabilities were used for
the object-specific colour models as in the previous exper-
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Figure 3: Continuous Global Evidence-Based Bayesian Modality Fusion results from a sample frame in a sequence. The
figure shows from left to right, top to bottom: the original image, the motion image, the skin image, the motion modality
observation as a mixture of Gaussians, the skin modality observation, the prior distribution of X, the intermediate posterior
P(Xleq), the expensive ellipse fitting modality observation,and the final fused distribution P(X|er).

iment. The sample frame is shown in Figure 4, and the
CBMF sesults are shown in Figure 5. The figure shows the
object-specific skin colour modalities as mixtures of Gaus-
sians on the first row, and the final posterior distribution
for each object position on the second row. The resulis
are quite startling. The modes in the posterior distributions
match the positions of the correct faces for the respective
skin colour model. However examining the figure it can be
seen that only the modality distribution for the first object
is very distinctive for that object. Nevertheless, the mech-
anism of Bayesian “explaining away” has ensured that the
second and third objects cannot be found at the distinctive
position of the first object.

7. Conclusion

We have presented a theoretically sound, computation-
ally tractable, comprehensive probabilistic framework for
continuous-valued, global evidence-dependent Bayesian
modality fusion to track multiple objects in space. For
tracking multiple objects simultaneously, the model com-

)

plexity grows linearly with the number of objects rather
than quadratically as for some existing techniques. The
method uses exact inference, is deterministic, and combines
information globally from all observations with prior infor-

Figure 4: Sample frame from multi-object tracking exam-
ple. Crosses show positions of local optima in P{X|er),
and labelled circles show estimated object positions.
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Figure 5;: CBMF tracking three heads simultaneously; results from a sample frame out of a sequence. The top row shows
these observations as mixtures of Gaussians. The bottom row shows the posterior distribution of position for each object after

inference. The corresponding image frame is shown in Figure 4.

mation propagated over time. The method can distinguish
between necessary and contingent modalities, and between
computationally expensive and cheap visual cues,

This method is a recent development and can be im-
proved in a number of ways. A more efficient implemen-
tation may be developed that is able to quickly find the lo-
cal maxima of a mixture of Gaussians, This would remove
the reliance of the computational complexity on the spatial
domain size. Certain parameters in experiments have been
selected in an ad hoc manner, but could be estimated from
data. Currently the CBMF network does not explicitly han-
dle the case that the object leaves the field of view. The
architecture will need to be modified to handle this case,

The temporal dependence between object location dis-
tributions in the multi-object tracker has been simplified
by copying the posterior at time t to be the prior at time
t + 1 because inclusion of these connections would over-
complicate inference. It remains to be seen whether proper
inclusion of these dependencies can improve tracking. An-
other issue with the multi-object tracker is that the number
of objects being wacked is currently fixed over time. We
are experimenting with the following solution to this prob-
lem. Tracking begins with a single object. Using Bayesian
model selection techniques, the addition or removal of an
object can be hypothesised periodically. Three networks are
periodically tested: one with L objects, one with L — 1 and
one with L 4+ 1. A difficult issue occurs with removal of an
object, since knowing which object to remove may require
consideration of L new networks.
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