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Abstract

To create a computer vision program that provides a visual interpretation of the
motion of human bodies is a challenging problem. Effective solutions to the prob-
lem can potentially benefit areas such as motion capture, visnally mediated human
computer interaction and security applications concerned with understanding the
intentions of human actions. However, interpretation of the motion patterns of any
dynamical object inevitably requires an understanding of its underlying dynamics.
Moreover, the complexity of the problem greatly increases when we consider the
highly articulated object of a human body.

This thesis describes a framework for computationally learning the visual dy-
pamics of human motions. Firstly, an analysis of appropriate representations for
modelling the human body configurations is made. Issues arising from the repre-
sentation’s characteristics and complexity are identified and addressed. Important
consideration is given to the reliability of such a representation when used in a
visually driven system. Together, these enable an appropriate representation to
be quantified. The motion of a human body is treated as an ordered sequence of
instances of this representation.

Secondly, learning the dynamics of body motions is treated as a problem of
computationally modelling a set of such ordered sequences. To this end, we pro-
pose a method whereby such a set is represented by a number of different proto-
typical example vectors. These example vectors can then be linearly combined to
represent novel and valid body poses. Moreover, constraints on the possible com-
binations of examples are determined through learning. The mechanism developed
was integrated into a dynamic tracking framework used for visually tracking ones’

body motions.
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Chapter 1

Introduction

1.1 Interpreting Human Body Motion Patterns

The human body is capable of undertaking a range of different tasks with ease
due to its articulated structure. An important use of the human body’s versatility
is for communication. In this instance, the motions of different body parts or
biological motion are often combined together to convey one’s intemtions [23].
Motion perception serves as an important component of the hurnan visual system.
This is supported by observations that specific areas of the human cortex are
devoted to the detection of different motion types [19]. Motion is often used as a
cue for focusing one’s attention. Conversely, motionless objects are usually given
less scrutiny than those in motion, implying that our visual system is well adapted
to time-varying or temporal information [12]. For the human body, psychological
studies by Johansson’s moving light displays (MLD) [23] discovered the ability of
humans to interpret various activities of other humans by observing spots attached
to one’s body parts. In particular, the gender of a person, or even the identity of
a friend can be deduced by observing the motion of such spots [9].

Crucially, the first step in the interpretation of human body motion patterns
is the recovery of motion information. Here, computational models for the human
bodies (e.g. shape or 3-D skeletons) are used to explicitly predict and recover the

motion performed by a person. In other words, motion is defined as variations
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in the parameters of a computational model (e.g. shape vertices}). The process
of recovering and predicting such model parameters can be defined as tracking.
Furthermore, when the model is used in conjunction with visual images to perform
tracking, this term can be conveniently extended to visual tracking.
Computationally, the human body is a complex and dynamic assemblage. In
attempting to track the body pose, one needs to account for the visual and struc-
tural features which are time varying and susceptible to noise. The aim of this
research is to develop a robust and generic approach for the visual tracking of the
human body motion patterns. To this end, the more specific problem of tracking
the human body 3-D pose information or body configuration, via a vision-based
medium needs to be tackled. Furthermore, one needs to account for the dynamic
nature of motion patterns that manifests itself through a continuously changing

sequence of human body configurations.

1.2 Approach

In order to ﬁisual]y track one’s body configuration, we have adopted an approach
that differs from typical approaches detailed in Chapter 2 in three key areas. The
first is the form of information for representing the body configuration, which
involves the unification of the visual appearance and body structure information
into a hybrid vector. The second area revolves around the type of model chosen
for computationally capturing the variations inherent in a human body’s visual
and structural information. This takes the form of an example-based framework,
whereby prototypical examples are combined together to generate the informa-
tion of a human body configuration. Finally, in order to determine the various
parameters (i.e. prototypical examples and combination constraints), a learning

based approach was adopted.
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1.2.1 Unifying Different Modalities in a Single Represen-
tation

The human body, like any articulated object, contains a number of parts that
are moveable. At any one time, a human body will consist of these parts all
in a particular configuration. One can identify such a configuration of human
body parts with the notion human body configuration. However, computationaily,
such a term is rather imprecise since it does not provide a clear and consistent
description as to what a “body part configuration” really consists of. Therefore,
a computational representation for the human body configuration is needed.

There are many choices for representing the information of the human body
configuration. One can designate an individual type of representation as a modal-
ity. These modalities can take the form of visual appearances (e.g. contours or
relative body parts positions). Alternatively, they can take the form of a 3-D
virtual model consisting of 3-D vertices and constrained by an underlying 3-D
skeleton.

Traditionally, these modalities were used individually [28]. An example would
be to use only contours for tracking the body configurations of subjects [45,
3, 4, 55]. Alternatively, when 3-D models are used, computer graphics render-
ing methods are used to synthesise the visual appearance of the human body
[16, 17, 32, 27, 70]. This in turn can be used for comparisons against an input
jimage for correctness. However, we will see in this thesis that individually, these
modalities have their own disadvantages. Visual appearances suffer from ambi-
guities in uniquely describing the body configuration due to the lack of depth
information and self- occlusions. Three dimensional models require the synthesis
of a realistic human body shape information, a necessarily complex task. How-
ever, the individual modalities have their advantages as well. 3-D based models

have the advantage of being able to unambiguously represent human body config-
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urations while 2-DD based modalities already capture realistic visual appearances
of the human body. Therefore, in order to exploit both such advantages, different
modalities can be combined into a unified hybrid-vector form.

In an attempt to use the hybrid vector form to represent a human body’s
configuration, a number of issues must be addressed. Inevitably, ambiguities in the
visual appearance components of the hybrid vector exist. It is therefore important
to know how such visual ambiguities will affect a hybrid vector representation.
To this end, this thesis will provide a study into the different aspects of how
visual ambiguities will affect a representation (hybrid vector) that also contains
3-D structural information. An additional issue needs to be addressed. Having
selected the representation, we have a form that can capture the information of
different body parts at a time instance. However, it does not provide us with any
knowledge about the dynamic characteristics of the body parts, that is, it does
not tell us anything about the kinematics of the human body. To address this
issue, we again adopted a different approach from the norm (32, 90, 89, 38], in the

form of ezample-based kinematics.

1.2.2 Example-Based Kinematics

A kinematics-based approach is essentially a higher-level description of a model
that captures the motion and other changes an object can undergo. With a
hybrid vector, the kinematics model essentially accounts for the variations and
constraints of the visual appearance and structural parameters of a human body.
The kinematics approach however does not explicitly account for the causes of such
variations in the human body information. Instead, such dynamics are implicitly
captured, so that the end result (i.e. the positions and movements of parts) is the
same as if we did have an accurate physical model that simulates the interactions
between the muscular and skeletal structure.

Traditionally, kinematics-based approaches were used in 3-D based representa-
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tions [32, 90, 89, 38]. In such cases, equations that determined the different values
of the various 3-D components were defined a priori. This allows one to clearly
define the dynamics of the 3-D structure. The kinematics parameters are then
defined by the pre-determined constants in the equations. Such copstants may,
for example be used to constrain the possible movements of different body parts.
Unfortunately, it is not clear as to how one can similarly model the dynamics of
2-D visual appearance components (e.g. contour components).

In this work, a set of prototypical hybrid vector examples, which captures a
significant range of motion and variations of the human body, is used. Originally
proposed for the recognition of rigid 3-D objects [76], this approach was extended
to model the kinematics of faces [87, 78] and shapes of people [3, 4i. Since such
an approach only requires the availability of & representation in a single vector
form, it is suitable for the adopted hybrid vector. In place of the explicitly de-
fined equations, the kinematics were instead defined as linear combinations of the
prototypical examples.

In this example-based approach, the prototypical examples and the constraints
on the possible combinations define the kinematics parameters. To make use
of such a model, one then needs to determine these parameters. To this end,
three key issues need to be dealt with; the number and contents of necessary and
sufficient examples, defining the example combination constraints and determining
its parameters. We will see in Chapter 6 how the constraints are defined. We find
that it is not clear, analytically or intuitively, what the values of the kinematics
parameters are. However, it is possible to automatically adapt the kinematics
parameters to an acquired training set of hybrid vectors representing valid human
body configurations. Such a process of adaptation can alternatively be thought

of as automating the discovery of the necessary parameter values.
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1.2.3 Learning the Kinematics Parameters

As there are many opinions on the meaning of the term “learning” [57], it would
be advantageous to provide a more specific notion of “learning” used in this thesis.
Our definition of learning will draw from works on neural networks [73]:

Learning is a process by which the parameters of a computational model are
adapted to fit a given set of known ezamples.

Here, the computational model is the example-based kinematics model de-
scribed above. The parameters are the kinematics parameters, such as joint angles
or vertex 3-D co-ordinates. The set of known examples is a collection of hybrid
vectors representing different human body configurations.

The task of learning achieves more than mere memorisation of the training
set. We not only require the learnt model to reproduce consistent approximations
with the training set, but it must also generate novel and valid examples. That
is, the learning process is required to perform both memory recall and inference.

In this work, one needs to consider the spatial characteristics of the represen-
tation used. It is possible that a hybrid vector, essentially a high dimensional
point, represents a body configuration. A complete training set can be thought of
as a cloud of high dimensional points. Intuitively, a model that covers all possible
body configurations would be the equivalent of an “enclosing shell” around such
a cloud of points. However, in the domain of modelling the human body motion
patterns, such a model alone is insufficient. One also needs to consider its tem-
poral nature. The dynamics of the motion patterns are in essence the possible

trajectories within the enclosing shell.

1.3 Applications

The ability to visually retrieve representations for interpreting buman body mo-

tions cap open up many promising applications. An important domain that can
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directly benefit from this is intelligent surveillance systems. Knowledge on hu-
man body motion patterns can also provide additional cues for contents of video
sequences. This can be used to aid in the process of information retrieval, where
image sequences can be indexed according to the motion patterns of subjects.
Additionally, the representation will undoubtedly contain some information on
the posture of a human body. This in turn could benefit applications such as
human motion capture, novel user interfaces and telecommunications. The rest
of this section will provide details on the application domains mentioned abaove

along with descriptions of how they will benefit from this research.

1.3.1 Intelligent Surveillance Systems

The body configuration usually provides information about one’s intentions. For
example, two people meeting each other may both have one of their arms raised,
undergoing a waving gesture. Existing systems typically use statistical models of
image templates for recognising simple interactions between two individuals [63,
88]. Having a more detailed but compact representation of the body configuration

can allow more detailed interactions to be modelled.

1.3.2 Human Motion Capture

At present, there are many different methods for performing motion capture.
Generally, there are two main approaches to the problem. The first involves
attaching electronic sensors to the joints of a subject. Examples of such system
include the Flock of Birds system from Ascension or the Isotrak II and Fastrak
systems from Polhemus. These sensors help by relaying back joint positions and
angles. The other approach involves an optical based system where special markers
are used in place of sensors. A calibrated system of multiple cameras is then used
to visually track the 3-D position of these markers. Recent systems marketed

by Vicon Motion Systems have provided platforms for real-time optical motion
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capture. However, the cost of the system is rather high, and the required space for
using them large. Both methods are, to some extent invasive, therefore requiring
the subject to wear special equipment, which restricts one’s possible moverments.
Being able to visually track the body configuration without the need of special

attachments can lift this restriction.

1.3.3 Novel User Interfaces

Virtual reality applications can benefit directly from a user-friendly method which
can recover the body configuration information of a person without requiring one
to wear specific attachments. The system can be trained to recognise and interpret

the different configurations of the user and take appropriate actions.

1.3.4 Low Bandwidth Telecommunications

In telecommunication applications, such as video conferencing, it is often necessary
to send the entire image of a person. This can require a high network bandwidth,
making its widespread use difficult. However, if the body configuration of the
person can be recovered, it can be used to drive a pre-constructed virtual model
of the person. Here, only the virtual model parameters need to be transmitted,
which are significantly smaller in size than that of visual images. Additionally, this
can be a complement to existing systems for reconstructing virtual face models

[14, 87, 24] to provide a more realistic reconstruction of the subject.

1.4 Contributions

The novel contributions of this thesis are as follows:

e A method for analysing the degree of ambiguities of visual information has
been developed. The configuration of a human body was depicted by a
representation that combined information on the body’s visnal appearance

and structure into a hybrid vector. The ambiguities of the hybrid vectors’
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visual appearance components were quantified. This provided a relative
measure of the degree of ambiguity in each hybrid vector instance. The
usage of such a measure was then demonstrated in the selection of more

reliable camera viewpoints.

e An example-based Linear Combinations framework was proposed for learn-
ing the kinematics of the human body. The kinematics of the human body
was captured through a collection of prototypical hybrid vector examples.
These prototypical examples essentially define a feature space. The ex-
amples were learnt through statistical analysis of a training set of hybrid
vectors. Information on instances of novel body configurations was possible
through the linear combinations of the prototypical examples. Furthermore,
kinematics constraints were imposed in the form of piecewise clusters in the
feature space that restricted the possible linear combinations. The param-
eters of the constraints were learnt using an entropic framework that was

aimed at discovering the model with the simplest structure.

e The use of transition matrices for learning the dynamics of human body
motion in the feature space was proposed. It was discovered that the hybrid
vectors exhibited discontinuous dynamics. These discontinuities were then
treated as transitions between subspaces in the feature space. A model for
the subspaces was provided by the kinematics constraints. These transitions
were then captured with a transition matrix that was learnt from known

sequences of continuous human body movements.

e The use of a stochastic framework based on guided sampling was developed
for visually tracking the motion of human bodies. The uncertain nature of
the motion patterns were addressed in the use of multiple hypothesis {or

samples) for predicting possible body configurations. The evolution process
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of each hypothesis was guided by the learnt spatio-temporal models. Specifi-
cally, different hypotheses were generated from an example-based kinematics
model. The dynamic mode] aided the prediction of the future state of each

hypothesis (i.e. future body configurations).

1.5 Overview of the Thesis

The remaining chapters of this thesis are structured as follows. The next chapter
will consider relevant and related research on various approaches for tackling the
tasks deﬁne& in the previous section. The rest of the thesis will describe the
research undertaken, along with the necessary experimental results, analysis and
conclusions.

The definition of the representation used for modelling 3-D human body config-
urations is described in Chapter 3. However, in order to recover this representation
from visual images, a hybrid representation that fuses observable visual cues with
3-D components of the representation is also described.

In using visual cues for inferring the representation components, the issue of
ambiguities inevitably arises. One common cause of these ambiguities is the loss
of depth information when projecting 3D objects onto 2D planes. This projection
often reduces the robustness in visual tracking. To address this issue, we introduce
a method for quantifying the ambiguities of different types of visual information in
Chapter 4. Additionally, we introduce a hybrid representation for learning visual
mformation ambiguities.

Chapter 5 introduces a method for learning the hybrid representation defined
in Chapter 3. The result of this learning process includes a model for generating
novel instances of the hybrid representation. Furthermore, a set of constraints is
also learnt to allow only valid instances to be generated. This will be given in

Chapter 6.
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The model defined in Chapter 5 and Chapter 6 only provides knowledge on
spatial attributes of the hybrid representation. The dynamies capturing the tem-
poral nature of the representation are yet to be taken into account. In Chapter
7, the methods for learning and modelling the dynamics of the representation are
described. A novel use of a stochastic CONDENSATION [52] framework based
for utilising the learnt spatio-ternporal models to track the hybrid representation
using visual images from a single camera is described in Chapter 8.

Finally, a summary of the work undertaken is provided, conclusions are drawn,
the limitations of the existing approach are given along with possible enhance-

ments in Chapter 9.



Chapter 2

Background Review

2.1 Introduction

In this chapter, a review on related work is given. The contents of the rest of this
chapter are divided into three sections, each representing one of the tasks that
need to be undertaken. Fach section will begin with the description of the issues
that arises when attempting to solve its respective task. A review of existing work
on tackling the task will then be given, along with the issues already resolved.
Firstly, the task of selecting a representation for learning the human body
motion patterns is considered in Section 2.2. Next, existing methods on modelling
these representations are presented in Section 2.3. Methods on visually tracking a
representation are then reviewed in Section 2.4. Finally, a conclusion is provided
in Section 2.5 where various issues related to learning the dynamics of human
motion were identified. An overview of the subsequent chapters that addresses

each of these issues is also given.

2.2 Human Body Representation

There are generally three considerations in selecting a representation. The first in-
volves the contents of the representation and what it will capture. In this research,
representations that are capable of capturing human motion are of particular in-

terest. Second, the plausibility of visually recovering this representation with a

13
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certain degree of robustness and accuracy has to be considered. That is, is there
any available visual information in the input image that can allow us to recon-
struct the representation contents? Are they consistent across different object
instances? Are these visual information often corrupted by noise? Finally, but
crucially, whether the representation is ambiguous. That is, can the representation
uniquely capture each different object configuration? The issue of ambiguity also
apply to visual information used to reconstruct this representation. 2-D visual
information will unavoidably have certain degrees of ambiguities. This is due to
the loss of depth in 2-D images of 3-D objects. However, to what degree will the
visual ambiguities affect a representation? There are broadly three different kinds
of representations and schemes: image based, 2-D) model based and 3-D model

based representations. Let us now consider in more detail each of these schemes.

2.2.1 Pixel Based Representations

One of the most straightforward methods for a representation is to use purely low-
level features of an image, namely to use pixel information from the 2-D visual
images of a subject. The body configuration of a subject is captured in terms of
texture information present in the form of a unique ordering of pixel values (grey-
scale or colour triplets). Polana and Nelson [69] described such a representation
as a means of “getting the man without finding his body parts”. This refers to
the fact that in using the image of a subject, some of its pixels would inevitably
contain information about different body parts. The direct use of the image pixel
information was adopted by Darell and Pentland [80} for recognising gestures.
The temporal aspects of the human motion are handled by grouping a continuous
series of images into a set.

One of the motivations for adopting this low level form of representation comes
from its usage in applications involving face detection [46, 74] as well as face

recognition [72, 71]. However, it was noted by Oren et al[84] that the use of
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image based representation on human bodies differs considerably from its original
usage on faces. Here, additional difficulties originate from the flexible shape of a
human body. Additionally, these shapes are rarely, if ever, rectangular. Thus, a
set of pixels in the image are rendered distracting, in that they do not contain any
information useful for interpreting the body configuration of a subject. Moreover,
different clothing worn by different individuals adds an additional variability to
the colour and texture of the image and thus its pixels.

As a result, filtering methods are usually carried out to detect and remove
such distracting pixels. Often, the resulting filtered image pixels will only contain
information about the shape of the sithouette. Here, the colour and texture infor-
mation resulting from the clothing is discarded. In a controlled environment, for
example the Kids Room systera[5] or the Virtual PAT system [31], a method [30]
involving the use of infrared lights and cameras for illuminating and subsequently
detecting the subject is adopted. However, in the more unpredictable setting of
an outdoor environment, a commonly used processing method involves the sub-
traction of a background image followed by morphological operations for noise
removal, An example of such a method being adopted can be seen in the W4 sys-
tem {26]. Here, the background scene is modelled by observing an empty scene for
a period. The subject in a novel image is detected by subtracting the background
scene from it. A combination of thresholding and morphological operators was

then used to remove spurious noise.

2.2.2 2D Model Based Representations

In filtering out the unnecessary information, only a small set of pixels will convey
any meaningful information. For example, in the cases above where only pixels
provide information about the shape of a subject, we find that the majority of
the other pixels are often unnecessary. This implies that pixel based representa-

tions can be wasteful (i.e. the inactive pixels convey no meaningful information}.
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It would be advantageous to only retain and represent the active pixels’ infor-
mation and discard the rest. Whilst one can iteratively detect and remove such
redundancies through learning (see Section 2.3), one can also make this removal

explicit.
Shape Based Models

One such a model is known as shape based models with which the shape of a
subject is represented as a set of vertices defining its outline. Usually, this takes
the form where all the coordinates of the vertices are concatenated into a high
dimensional vector. One of the earliest work that adopted this approach for
tracking persons was presented by Baumberg and Hogg {3, 4]. The vertices were
placed uniformly around the silhouette of the body of a subject, resulting in a
representation called the Point Distributed Model (PDM). Subsequently, these
vertices were more efficiently estimated using B-spline curves [33]. Ultimately,
the shape is represented as a set of B-spline control points. Similar use of this
representation was presented by Xu et ol.[47] and Sulivan et al.[43] for tracking
human motion. Recently, shape models were also used by Broggi et al. 16] for
detecting pedestrians. A closely related use of the PDM model was adopted by
Cootes [77] and Heap {81] for modelling and tracking the shape of hands. This
form of representation was also used to track the shapes of the shoulders and head
by MacCormick [34].

In using shape to track a subject, at any point in time, a vertex on the shape
vector will correspond to a certain part of the body. However, as with the PDM
approach by Heap[81], such a vertex-body correspondence is inconsistent across
the different configurations of a 3-D object. This phenomenon arises from the fact
that the vertices usually defined evenly along the curve. Therefore, their positions
are dependent on the length of the sithouette of an object at a certain configu-

rations. This in turn introduces yet another degree of variation and sometimes
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discontinuity as the shape vertices “slide around” the shape of the object as its
configuration changes, making the learning process for this form of representation
more complex [8]. A solution to the problem is to establish a consistent correspon-
dence between the vertices and object parts (or body parts in particular) across
a range of different configurations. However, it was noted by Cootes [77] that
establishing such correspondences is not always possible due to self occlusion. In
effect, establishing a consistent vertex-object correspondence in a shape with V
number of vertices would be equivalent to tracking N parts of the object. Instead,

a more viable approach would be to track a small number of body parts positions.
Body Parts Positions

1t has been known in psychology from Johansson’s study of moving lights display
(MLDs) that it is possible to extract meaningful interpretations about a subject
simply by observing a set of points attached to one’s body parts (22, 23]. An
interpretation for the findings by Johansson suggests the possibility of the human
brain interpreting the intentions of a subject solely by recognising one’s body
parts motion patterns. This suggests that, it is not necessary to recover the 3D
structural information of the human body, or that of the body parts in order to
model and interpret human body motions effectively. The following will provide a
survey of the representations aimed for such an interpretation. The remaining in-
terpretation follows the argument that the 3-D positions of body parts are initially
recovered from the motions of the markers. Using these 3-D body parts positions,
one can then recognise the actions of a subject. We review representations that
follow such an argument in Section 2.2.3.

The work by J ohaHSSOH was approached purely from a psychological point of
view. As such, a specialised setup where bright spots were attached to the joints of
an actor dressed in black moving against a dark background was used. However,

computer vision systems have to deal with a more unrestricted environment where
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specialised markers on body joints may not be available and desirable.

Recent advances in colour tracking [75] has allowed for fast and robust tracking
of certain body parts. For example, Wren et ol. explored the notion of tracking
body parts as blob features in the Pfinder system [13]. A subject was located
using background subtraction. A probabilistic model for a subject’s different
parts’ colours was then estimated and used to extract the positions of the body
parts in subsequent images. Such an approach was extended by Sherrah and Gong
[42, 41] in using Bayesian networks to deduce the positions of the hands and head
by fusing colour, motion and coarse intensity measurements along with contextual

semantics.

2.2.3 3-D model Based Representations

2-D based methods can be ambiguous. Objects at different 3-D configurations
can sometimes yield similar 2-D model instantiations. Additionally, self-occlusion
can remove the avajlability of the visual information of different object parts
at different configuratioins. Moreover, these representations are 2-D projections,
therefore changes in viewpoints would contribute yet another factor of variations
in the representation contents. To overcome these difficulties, some work has

instead used three dimensional object representations.
3-D Body Parts Positions

Let us now review a representation model which adopts the second standpoint of
the results by Johansson in the MLD system [22, 23]. That is, one’s ability to
interpret the visual motions of moving human body parts (e.g. joint positions)
requires an initial recovery of some three dimensional structure.

One representation that contains such 3-D structural information is the exten-
sion of the criginal 2-D MLD to a full 3-D version by Jenkin[53]. In this model,

the 3-D location of the body parts was located using stereo vision. Similarly,
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Azarbayejani et al. extended the Pfinder system into the Spfinder system to re-
cover three dimensional positions of the hands and heads by using stereo camera
setups [1, 2].

However, the sole use of three dimensional points or blobs does not fully take
the advantage of available knowledge of the articulation constraints of a human
body [15]. In fact, one can directly incorporate such prior knowledge about body

articulation constraints.
Exploiting Known Structure: Internal 3D Skeleton

The simplest method for exploiting our knowledge about the human body is to
define a representation of the underlying 3D skeleton. As with the previous body
parts representation, 3D vertices are used for representing the positions of various
body parts {usually joints and body endpoints). These vertices are then connected
with other vertices in a manner which resembles the way that the joints and
endpoints of a human body is connected to each other. One can then think of
a pair of vertices which are connected to each other as the bone of a body pazt.
A further comstraint can be imposed by requiring the length of the bone to be
constant.

Optical motion capture systems typically adopt such a representation for mod-
elling the human body configuration [59]. The body joint positions are indicated
by specialised markers and its 3-D co-ordinates recovered using a multiple camera
system. Work on the use of 3D skeletons in less restricted setups where no mark-
ers are used was carried out by Moeslund and Granum [84]. With this approach,
the arm was represented by a 3-D skeleton as described above. A more complete
model of the entire body’s skeleton was applied and visually tracked by Leventon
[56]. |

The sole use of 3-D skeletons is not common due to the fact that they only

resemble stick figures, albeit in three dimensions. This makes the 3-D skeletons
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difficult to verify against available visual information, owing to the vast dissim-
ilarity between 2-D projections of 3-D stick figures and visual images of human
figures. As a result, a method for tackling this problem involves the attachments

of 3-D objects onto the bones of the skeletons.
Visually Realistic 3-D Models

In order to attach objects to each bone, one first associates each bone with a
co-ordinate system. Thus, the entire body can be represented by a set of un-
derlying co-ordinate systems. Furthermore, these co-ordinate systems are usually
hierarchically arranged to have the same structure as the human body. That is, a
3-D representation of the human body would then consist of a set of co-ordinate
systems for capturing the orientation and position of each limb.

While the co-ordinate system gives the information on the location and ori-
entation of the limb, no information about the shape of the corresponding object
part is given. This is where the difference in various existing 3D representations
of objects lies. Each type of 3-D representation usually has its own set of objects
attached to each coordinate system. These objects would in turn have their own
set of parameters (e.g. length and size).

One may start by attaching primitive shapes onto each limb’s coordinate 8ys-
tem. For example, O'Rourke and Badler [40] chose to model the body parts with
a set of overlapping sphere primitives. Alternatively, Hogg [17] chose to replace
the overlapping sphere primitives with simpler elliptical cylinders, in order to re-
duce the number of parameters for each body part. The model was then used for
tracking a walking person. Recent work by Sidenbladh et al. [25] and Brand (51]
also used 3-D cylindrical models for representing body parts of human subjects. A
similar representation was used by Regh [38] for tracking the 3-D model of hands.

However, the shape of the cylinder may be too rigid and specific to model body

parts.
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A more flexible primitive in the form of tapered super-quadrics was proposed
by Gavrila and Davis [16] for tracking 3-D human models. Work by Kakadiaris
and Metaxas [27] extended the use of super-quadrics into providing a means of
. generating a more realistic synthesis of the human body. This was achieved by
modelling the physics of the body parts which was then used for recovering the
parameters of deform-able models for each limb from noisy data [20].

However, the task of synthesising a realistic image of the human body is a
complex task. One needs to accurately account for the different geometrical de-
formations each body part can undergo. Subsequently, these deformations depend
on the physical interaction between the muscles and bones of a body part. In order
to reconstruct each body parts’ visual appearance these interactions would have
to be simulated. On the other hand, such “realistic images” of a human body
are already available to computer vision systems. These take the form of the 2-D
visual images acquired from a camera. Therefore, one would ask, if it is feasible
to employ the simpler model of a 3-D skeleton that captures the underlying dy-
namics of the human body, while simultaneously exploiting the available visual
information of the human body from the input images. One possible approach for
this lies in combining the wvisually observed information with the underlying 3D

skeleton information in order to form a unified hybrid representation.

2.2.4 Hybrid Representations

The hybrid representation derives its name from the fact that different types
of information are combined together into a single vectorised form. As noted
above, this would firstly allow one to have 3-D structural information (e.g. 3D
skeleton) of a human body. Secondly, the task of synthesising a realistic image
of the human body is byi)assed by exploiting the available visual information
(e.g. shape information) from the images of a human body. However, such a

form of representation for human bodies is still relatively new. To date, only
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Bowden et al. [67) has used such a method for yepresenting and tracking the
upper torso of the human body. A greater exploration into the various aspects
and characteristics of such a representation will be given in Chapter 3. There
we will see how the combinations of different forms of information into a unified
hybrid vector provides a representation which will allow us o extract hidden 3D
skeletons of human bodies using available visual contours and body parts positions

from image sequences.

2.3 Learning the Representation

After having selected the appropriate representation, the next task is to mathe-
matically model the representation. To this end, two aspects need to be consid-

ered: spatial and temporal models of the representation.

2.3.1 Spatially modelling a representation

Any representation would consist of a number of parameters (e.g. 3-D joint an-
gles), essentially making it a high dimensional vector. The space in whiéh these
high dimensional vectors exist is defined as a parameter space. In order to capture
all different possible configurations of this representation, a model would have to
capture the regions occupied by the representation in the parameter space. In

attempting to do this, the following issues need to be considered:
e Can the model cope with the complexity of the representation?

e s it possible to impose constraints on the model such that unrealistic in-

stances of the representation will not be constructed?

In most of the existing approaches where a 3-D model was used, the spatial
model for the representation is the representation itself (17, 16, 66, 61, 18, 38, 25].
For the purpose of visually tracking or recognising the 3-D object, given the

underlying 3-D model parameters, the visual appearance of the model can be
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reconstructed using computer graphics techniques. This visual reconstruction can
then be compared against the visual information of an input image to measure the
accuracy of our model in representing the configuration of the real world object.

Instead of having an explicit 3-D model and using computer graphics to syn-
thesise the model at different poses or configurations, example based methods
provide an attractive alternative. Ullman and Basri [76] suggested to select a
subset of the training examples and linearly combining them to generate novel
representation instances. However, this was only done for rigid 3-D objects. It is
not clear how many and what examples are needed for a more complex articulated
object of flexible shapes. Furthermore, to guarantee that only valid examples are
generated, constraints on the linear combinations of examples were explicitly de-
fined through analytically derived equations. However, it will be shown that in
Chapter 6, this becomes an intractable task when the object has more complex
dynamics (e.g. a highly articulated object).

Alternatively, Baumberg and Hogg [3] used Principal Component Analysis
(PCA) to statistically model the variations of the contours of walking people.
Each contour is represented by a fixed number of 2-D vertices and is then con-
sidered as a high dimensional vector, constructed by concatenating all its 2-D
vertices together. To perform PCA, a set of represeniation eigenvectors, which
inherently captures the subspace spanned by the training examples, is obtained.
This subspace is usually defined as the eigenspace. These eigenvectors can then
be linearly combined to generate novel contours of walking people. Interestingly,
we will show in Chapter 5 that PCA can be a way of obtaining the sufficient
examples for linear combinations introduced by Ullman and Basri[76].

However, in the case of a more complex representation, PCA alone is insuffi-
cient to accurately capture all the characteristics of a representation. This is es-
pecially true if the representation spans a non-linear high dimensional space. This

can cause certain combinations of the eigenvectors to yield invalid representation
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examples. To address this, constraints can be placed to restrict the combinations,
as proposed by Heap and Hogg[83] for learning 2-D hand shapes. This was then
extended by Bowden et al. [67] for learning a hybrid representation of 2-D and
3-D cues for tracking 3-D human body skeletons. We will show in Chapter 6 that
the method for obtaining these constraints is also a general method for learning
the constraints for the linear combinations method by Ullman and Basri[76].

A recent approach described by Rosales and Sclaroff [70] uses a multi-layer
perceptron neural network to learn the mapping of 2-D visual cues to the corre-
sponding 3-D skeletons. The multi-layer perceptron architecture was chosen for

its ability to capture non-linear variations in the training data.

2.3.2 Temporal Dynamics of Human Body Motion Pat-
terns

Since the representation concerned was geared towards learning human motion
patterns, it will inherently be dynamical in nature. These dynamics possibiy
include discontinuities along with other forms of nonlinearities. Therefore, it
would be advantageous to have a model for the dynamics of the representation.
This could later be used as constraints for the tracking process.

One of the simplest method for modelling the motions of a human body is to
use a passive physics-based model. This usually takes the form of a dynamical
model that constrains the variations of each parameter of the human model. For
example, Deutscher ef al. [32] modelled the dynamics of a 3-D human body
representation as a critically damped second order Gaussian linear model. In other
words, the displacements of the 3-D representation components are obtained by
sampling from a second order Gaussian distribution. These displacements were
then used in a stochastic framework for generating multiple hypotheses of the
3-D representations. However, such models do not directly exploit known and

available patterns in the motions of a human subject.
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An interesting alternative was described by Iwai et al. [89}], where a collection
of known representation trajectories is used to model its dynamics. With this
approach, the representation consists of the 3-D parameters of a 3-D human model.
The current configuration of the model is then used to index the appropriate preset
representation trajectory. This is then used to predict the parameters of the 3D
human model. One concern with this method lies when the model undertakes
novel trajectories.

Example based methods are usually adopted for capturing the terﬂpora} dy-
namics of human visual appearances in image based representations. This in turn
usually takes the form of temporal templates. Davis and Bobick [29] proposed
such a method by encoding history information into the value of the pixel. This
was done by firstly extracting motion regions of an image sequence resulting in a
motion-energy image (MEI). Following this, a motion-history image (MHI) is con-
structed whereby the motion recency at a point is set at its corresponding pixel.
This results in a pair of images which both captures the spatial information of a
body motion while simultaneously its temporal signature in the MHI. Therefore,
to encode a set of different body motions, a set of such MEI/MHI templates (one
for each motion pattern) was generated and stored. However, a disadvantage in
these methods arises from the shortcomings of the representation itself. As the
templates are two dimensional motion images, they too are susceptible to self oc-
clusions. When this happens, the motion information of the occluded part will
be unavailable. Additionally, only the motion information captured by each tem-
plate is view dependent. Should the subject be viewed at a different angle, new
templates would need to be acquired.

Another method was proposed by Heap {81] whereby the dynamics of the
tracked representation was modelled as a transition matrix. To obtain the transi-
tion matrix, a set of training examples was first partitioned into different sets using

a fixed number of clusters. The transition matrix was then built by observing the
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cluster transitions of individual examples in training sequences. However, this was
only used to represent the dynamics of a single type of information, namely the
dynamics of the shapes of a hand. We will explore further the use of this method

for modelling the visual and underlying dynamics of a human body in Chapter 7.

2.4 Visually Tracking the Representation

With a model for both the spatial and temporal aspects of a representation, the
next task is use the model for visual tracking. In doing so, a number of issues have
to be dealt with. The first involves having to cope with possible non-deterministic
and non-linear dynamics in tracking a human body. The non-linear aspect can
he addressed to a certain extent by the model itself. However, in the case of
non-deterministic representation over time, the model can only provide choices as
to possible valid configurations of the representation.

The next issue involves the ambiguities in the representation and the model.
For example in tracking 3D skeletons, there are some body configurations that are
ambiguous, since different 3D skeletons can give similar 2D visual projections.

The visual tracking of an articulated object can be considered as a form of
a model fitting task. Computationally, this is equivalent to a cost function min-
imisation problem. The cost function to be minimised is usually defined by 2
matching function between the representation states with the visual features in
an image. Thus, an important element of visually tracking an object lies in the
minimisation of this matching function.

In the case where the representation is a 3D virtual model of the object of
interest, the matching function will measure the discrepancy between the projec-
tions of 31 model against different visual information extracted from the input
image. Following this, there exist several different methods for minimising the

matching function. This usually involves adjusting the 3D parameters of the vir-
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tual model. For example, Regh [38] minimises the matching function numerically
using the Gauss-Newton method. Additionally, motion constraints on the model
parameters can be used to further guide the optimisation process as described by
Yamamoto et al. [61, 62]. Alternatively, the minimisation problem can be solved
by a high dimensional search method as described by Gavrila and Davis [16]. In
attempting to address the problem of ambiguities, all these methods employ a
multi-camera setup. In addition, they all require the cameras to be calibrated.

Another method for tracking articulated object uses learnt statistical models
of the representation. An example of this is described by Baumberg et al. [3]. Here,
2D contour models of people walking are learnt statistically using PCA. The PCA
model was then used to reconstruct novel instances of the 2D contour models for
matching against image features of walking people.

Recently, stochastic frameworks were also used for visually tracking articulated
objects. For example, Heap [81] used the CONDENSATION framework for track-
ing 2D hand shapes. Alternatively, a similar framework was used by Deutscher ef
al.[32] and Sidenbladh ef.al [25] for tracking the 3D parameters of human mod-
els. However, such methods were only used to track one form of information, the
shape of a hand (as with Heap) or the underlying parameters of the human sub-
ject (as with Sidenbladh and Deutscher). We exploit this approach in Chapter &

to robustly track both the visual and underlying parameters of a human subject.

2.5 Conclusions

In this chapter, existing work on issues raised whilst atterapting to learn human
body motion patterns were reviewed. To sum up, three issues were identified,

each of which will be given further consideration in the following chapters:

e Selecting a representation and analysing its suitability for modelling human

body motion patterns (Chapters 3 and 4).
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e Learning the spatial constraints of the human body via such a representation

(Chapters 5, 6 and 7).

e Visually tracking the human body motion patterns {Chapter 8}.
Human Body Configuration Representation

In Section 2.2.2 it was found that two dimensional representations (e.g., shape and
body parts positions) provides measurable information. However, one shortcoming
of such a form comes from the fact that visual projections of three dimensional
objects are ambiguous. Conversely, three dimensional representations (e.g. 3-D
human body models) do not suffer from such ambiguities. However, there is the
disadvantage that such a form cannot be directly verified against available visual
images that are only two dimensional. In order to address such a shortcoming, one
needs to construct a virtual model that can synthesise a realistic visual projection
of the human body. To achieve such a goal, one requires the modelling of both the
underlying structure (3D skeleton) and its surrounding flesh. This may not be a
trivial task due to the fact that the flesh surrounding the underlying skeleton is
fairly deform-able in nature, adding many parameters to the model. Additionally,
one notes that in a vision system, information on the visual projections of a
human subject are already available. Therefore, one would suspect that a more
superior representation would be the one that can exploit the advantages of both
the visual and underlying structure aspects of a human body. We explore this
in greater depth in the next chapter where both visual and underlying structural
information are unified into a single representation. Additionally, we will also
see how the ambiguities of two dimensional information affects the uncertainty of

three dimensional information when they are both unified together in Chapter 4.
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Learning the Representation

In Section 2.3, the issues regarding the learning of motion patterns of a human
body using a selected representation were identified. These issues can be grouped

into two major areas:
o Learning the spatial constraints of the human body
e Learning the dynamics of the body motions

As the human body is a highly articulated object, it posses a vast amount of pos-
sible configurations and a complicated constraint surface for the underlying struc-
ture parameters. Additionally, the resulting visual information too contributes to
other forms of variations. Thus, analytically modelling such spatial constraints
for the visual and underlying information of a human body may be very complex.
As a result, a simpler alternative would be to learn such constraint information
from available example data of a human body at varicus configurations. We show
in Chapter 5 and Chapter 6 how one can go about achieving such a learning task
using an example-based method called linear combinations of examples.
Information on the spatial constraints of a human body only provides knowl-
edge on which body configurations are valid and which are not. However, it does
not contain any form of information on how different parameters of a human
body changes. In other words, it does not contain the temporal information on
the motion patterns of human bodies. One finds that the motion patterns of
human bodies are governed by a subject’s intentions. Such a trait introduces a
great uncertainty into any process that aims to predict future configurations of a
human body. However, this does not happen in all cases. There are similarities
in methods for performing certain tasks. That is, different subjects move their
bodies in similar fashions to achieve and identical goal. Furthermore, constraints

are also imposed by the muscular mechanisms that allow movements of the body.
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In Chapter 7, we will see how the unpredictable nature of human motion patterns
can be tackled using a passive dynamics model. On the other hand, the pre-
dictable nature is exploited by using models of previously observed human body

motion patterns.
Visual Tracking using the Representation

In order to gather more information of human motion patterns, it would be ad-
vantageous to have a mechanism whereby one can efficiently gather useful obser-
vations. In a vision system, this requires the ability to visually track the repre-
sentation of the human body. It was found in the process of identifying relevant
issues for learning human motion patterns that a number of factors have to be

considered:

e Constraints to allow the representation to represent only realistic human

body configurations.

o Nonlinearity in the variations of the human body representation compo-

nents.
e Ambiguities in using visual information.

e Robustness in identifying the actual body configuration, given visual images

which may contain corrupting noise.

The first factor on tracking plausible body configurations is resolved using a learnt
spatial-constraint model. The next factor of nonlinear dynamics is addressed
using a passive dynamics model. The third factor which involves the arbiguities
in visual information is tackled using a framework for identifying the degrees of
ambiguities of visual information given in Chapter 4. We will see in Chapter 8
how these learnt spatial and temporal models along with the ambiguity framework
can be simultaneously exploited in a probabilistic framework for visually tracking

a human subject.



Chapter 3

Representing Human Body
Configurations

To model the human body motion patterns, we need a suitable computational
representation for the human body configurations. To this end, this chapter will
define the information available for learning about possible motion patterns of a
human body. We begin in Section 3.1 by describing a representation that will be
used to capture the body configurations of a human. This representation will take
the form of a 3-D skeleton and we discuss different methods for representing its
parameters. Also, since this 3-D form is not visible in 2-D images, we use observ-
able visual information of the human body to indirectly infer the underlying 3-D
skeleton parameters. Section 3.2 will then introduce and define available visual
information that can be separated into two types: positions of the body parts
and their shape. As a result, we have three different modalities (3-D skeleton pa-
rameters, body part positions and shape). Additionally, one can categorise these
three modalities into hidden information (3-D skeleton) and observable informa-
tion (body part positions and shape).

Furthermore, we describe in Section 3.3 how the availability of observable vari-
ables can be used to infer possible values of the corresponding hidden variables.
Computationally, we adopted a hybrid vector form introduced by Bowden[67],

where observable information and hidden information are combined into a single

31
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representation. We will also see how hybrid vectors allow one to exploit the cor-
relations between the different modalities (hidden and observable) for inferring
hidden information. Following this, a description of a training set of different hy-
brid vectors and its acquisition system and process is described in Section 3.4. We
then discuss the characteristics of such a representation when applied to motion

patterns of human bodies in Section 3.5 and conclude this chapter in Section 3.6.

3.1 Capturing the Underlying Body Configura-
tion Information

In order to capture information on the human body configuration, one requires a
representation that can capture the variations exhibited by the individual body
parts. A straightforward method of tackling such a task is to adopt a model
similar to the underlying structure of a human body. For this reason, a 3-D
skeleton model is adopted. A 3-I) skeleton is modelled as a set of hierarchically
linked rigid bones (i.e. fixed length). For example, in the skeleton of a human
body, the lower arm is hierarchically linked to the upper arm. Any changes to
the orientation or position of the upper arm affects the lower arm as well. A
bone on the 3-D skeleton can also be thought of as a body part of a human body.
Therefore, the parameters of the bones capture the information of the individual
body parts. Two such means of representing 3-D skeleton bone parameters will
be described next. The first representation uses the end points of bones in the
form of 3-D vertices. The second uses the angles of the bones relative to a fixed

plane in 3-D space.
3-D Vertices

Formally, the number of joints in a skeleton is defined to be (Nr). A single
parameter of the skeleton is then defined by its joint position in 3-D space (z, ¥, z).

We then represent a 3-D skeleton’s configuration as a vector of (N) joint positions
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concatenated together, (Vg = T1, Y1, 21, T2, Y2, 22, -y Tl YNps zny ) An example of
this representing the 3-D skeleton of the upper torso of a human body can be seen

in Figure 3.1.
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Figure 3.1: Skeleton 3-D vertices.

3-D Joint Angles

An alternative to using the 3-D positions of skeleton joints is to use the spherical
angles of the joints with respect to the X — Y plane. One advantage of using
the joint angles lies in the availability of results from extensive gtudies in physical
medicine [68]. Additionally, it does not require one to model the variations due
to the size and lengths of the bones. Consequently, the representation will have
simpler dynamics. The 3-D skeleton’s configuration is then represented as a vector
of {N7) bone joint angles concatenated together, v = (61, ¢1, 62, b2, -, Oy, P )-

An illustration of the bone joint angles can be seen in Figure 3.2.
3-D Skeletons Cannot be Observed Directly

Both of these representations suffer from the disadvantage of not being able to be
measured directly from visual images. In other words, the 3-D skeleton parameters
can only be inferred. Visual cues that can be directly and reliably measured from

an input image are used to indirectly recover the 3-D skeleton information.
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Bone's local coordinate system

31 Skeleton

Figure 3.2: Skeleton joint angles.

3.2 Visual Observations of the Human Body

This section will describe two forms of 2-D visual information that can be used
to retrieve the body configuration. In particular, the positions of various parts
of the object were first used. With a 3-D skeleton model, cne would know the
connectivity between the vertices (i.e. bone endpoints) and the 3-D lengths (bone
length) between each pair of connected vertices. Using them, one can recover the
3D co-ordinates of the skeleton vertices in conjunction with the 2-D positions
of different body part joints. One assumes that the 3-D length between two
connected vertices does not change. Since the z and y co-ordinates are already
known, one can use the distance formula between the two vertices to recover the
depth (z) co-ordinate. However, this is based on the assumption that it is possible
to reliably track all different joints of a subject. In reality, only a small subset of
the required body parts can be tracked in a reliable manner, which include the
hands and head of a subject. Using such a reduced set of body parts would result
in ambiguous estimations of the 3-D skeleton parameters (see Chapter 4). By
adding shape information for capturing the overall configuration of the subject,
as shown in Chapter 4 such ambiguities will be decreased. Let us now give the

formal definitions of the body parts positions and shape.
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3.2.1 Spatial Information: Body Parts Positions

A number (Np} of trackable object parts with a vector of 2-D positions is defined
as, vp = (Z1,¥1,- TNp, Ynp). For example, in a tracking human body, three
parts can be tracked, the head and the two hands. Here, Np is three. The first
two components of vy would be the position of the-head. The second and third
components the position of the left hand and finally the last two components

represent the position of the right hand.

3.2.2 Shape Information: Body Silhouette

The contour of a person’s sithouette is represented by a Point Distribution Model
(PDM) commonly used for modelling and tracking 2-D shapes {77). It consists
of a number (Ng) of 2-D vertices, vs = (Z1,%1, ey TNgy YNg ), distributed evenly
across the entire contour. An example of a contour of the human body upper
torso can be seen in Figure 3.3 illustrating how the contour vertices are evenly

spaced.
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Figure 3.3: An observable 2-D contour. The contour is centred at the head’s centre.
The horizontal and vertical axes represent the x and y pixel co-ordinates respectively.



CHAPTER 3. REPRESENTING HUMAN BODY CONFIGURATIONS 36

3.3 Unifying Visual and Hidden Information: A
Hybrid Vector

Intuitively, one would expect there to be a “common-ground” between the visual
appearance of the human body and its underlying 3-D skeleton structure. After
all, changes in the underlying skeletal parameters would inevitably cause certain
changes in the body’s visual appearance. Such appearance changes are captured
by its visual image. If one could learn the correlation between the dynamics of
the underlying 3-D structure and its 2-D visual appearance, this would provide a
possible mechanism that allows us to infer the underlying 3-D body skeleton from

the observable visual cues.

3.3.1 Advantages of Observable-Hidden Variable Correla-
tions

Let us now illustrate how the correlation between different modalities can lead
to a modality that can be used to disambiguate the possible values for the other
modalities.

Initially, consider the case where we have one hidden variable that can take
on any real value, but no observable variables are available. Furthermore, prior
knowledge about its occurrence in the form of a probability distribution is avail-
able. In Figure 3.4, we show & simulated probability distribution for a single
hidden variable. Without any other information available, this distribution would
be the only information that can be used for predicting the possible values of the
hidden variable. However, given a new observable variable that has some form of
correlation with the hidden variable, s constraint surface capturing the correlation
between the hidden and observable variables can be constructed (see the Figure
3.52). Note that after knowing a value for the observation variable, we now have
a more precise probability distribution for the possible hidden variable values (see

Figure 3.5b).
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Figure 3.4: A probability distribution of a simulated hidden variable. The horizontal
axis shows the value of the hidden variable. The vertical axis shows the probability of
the hidden variable taking a value. Without any other measurements, at any point in
time, this graph is all we have for inferring the value of the hidden variable.
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Figure 3.5: The probability of the simulated hidden variable becomes more precise
when an additional correlated observation is available. We define the hidden-observable
variable probability distribution to bave the shape indicated with ellipses (iso-contours
for probability of 0.3) in (a). The hidden variable here has the same characteristics
to that in Figure 3.4, that is, if we were to marginalise across the different observable
variables, we would get the probability distribution shown in Figure 3.4. We can build
a move precise hidden variable probability distribution, as shown in (b), given a value
for the observation variable (for example 15, as shown in (a)). Also shown is the hidden
variable probability graph from Figure 3.4 in (b) for comparison with the case where
no observable variables were available.
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Figure 3.6: The probability of possible hidden variable values is further made more
precise when the number of types of observations is increased. Following Figure 3.5,
another observable variable was added. The probability distribution is again indicated
using the iso-contour ellipses seen in {a). Similarly with Figure 3.5, a constraint sur-
face can be built by defining valid hidden-observation triplets to only those within the
ellipses. When two observable variables are available, a probability distribution (shown
in (b)) for the possible hidden variables can be built along the line shown in ().
Furthermore, suppose we add in another observable variable, one can also unify
it with the already formed hidden-observable variable. Similarly, a constraint sur-
face capturing the correlation between the two observable and hidden variables
can be formed (see Figure 3.6a). This would allow us to exploit any new cor-
relation between the new observable variable and the hidden variable to provide
an inference with greater precision, as can be seen in the probability distribution
graph in Figure 3.6b. Here, a comparison is made between the three probability
distributions; without observables, with one observable and two observables. We
find that the high probability peaks are narrower and thus it is clearer what may
be the possible values for the hidden variable. However, since the number of prob-
ability peaks are more than one, it is unclear as to which represents the correct

value for the hidden variable, hence making the distribution ambiguous.

In a more complex context where the observable variables are made of the
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components of the shape and body part position modalities, while the hidden
variables are the 3-D skeleton components, one will find that similar ambiguities
exists, as will be shown in Chapter 4 . For example, there may be many different 3-
D skeleton models that are associated with a single shape and body part positions.
In other words, there are some visual information which cannot provide us with a
precise inference of the underlying 3-D skeleton (these visual data are ambiguous
when used to infer hidden underlying parameters). One of the causes of such
a ﬁhenomenon is the lack of depth information. Consequently, multiple body
configurations with different underlying skeletons can result in the same contour
and body parts positions. Further investigation of the ambiguity issue and means

of addressing this problem is given in Chapter 4.

3.3.2 Hybrid Vector Definition

Both the 3-D skeletal information and its corresponding visual cues can be fused
by combining them into a unified hybrid-vector representation. Given a vector
(vp) representing an object’s underlying 3-D skeleton, the object’s 2-D informa-
tion represented by its contour (vs) and when possible, positions of its different
parts (vp), the skeleton-hybrid-vector representation can then be defined as the
concatenation of all 3 vectors; hg = (vs, Ve, vp), as shown in Figure 3.7.

This brings about the issue of how to model this set of information-fused data
based on learning. Tackling such a learning task requires one to understand and
subsequently cope with the underlying dynamic mechanisms of the representation.
More precisely, there would be a need to cope with the dynamics of the human
body and its visual projections. The mechanisms for performing such a learning
task will be detailed in Chapters 5 and 6. However, we will first study into
the characteristics of this representation across a range of different human body

configurations.
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Figure 3.7: Different instances of the hybrid vector for the human body is illustrated
here. The top row corresponds to the input images. The middle row corresponds to the
contours, vg, and body parts positions, vp. The bottom row shows the corresponding
skeleton, vp.

3.4 Acquiring the Hybrid Vector Training Set

For studying the characteristics of the human body configurations, the underlying
body configuration of the subject was represented by a skeleton that consisted of
13 3-I) vertices so that, the dimensionality of the skeleton vector is 36 as shown
in Figure 3.1.

For the shape vector, a contour where 100 points distributed evenly across the
silhouette of the subject was selected, resulting in a dimensionality contribution
of 200 to the hybrid vector.

Finally, the positions of the left and right hands were chosen from the body
parts. The reason for using the hands as opposed to other parts of the body
is that, in most cases, we can have consistently extractable hands’ positions by
tracking the colour of skin in the image. We can benefit from the fact that there
exists reliable and robust methods for tracking colour information [75]. The hands’
position data contributes to a four dimensional sub-vector. In all, the resulting
hybrid vector, consisting of shape, hand positions and skeleton vectors, has a

dimensionality of 240.
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In order to acquire a training set of hybrid vectors for a broad range of different
body configurations, a Pentium 200 system configured with a Matrox Meteor
frame-grabber was used. The training images were captured at a resolution of
320 by 240 pixels. Training image sequences at a fairly high frame-rate (20-25fps)
by saving all the images initially to memory instead of directly to a disk store.
Instead, the acquired images were saved to disk storage only after the entire motion
sequence was performed. However, the capture frame-rate was also dependent
somewhat on other factors, for example, the operating system and processing
loads due to other users. Consequently, some frames in a motion sequence may
have been skipped urintentionally during the acquisition process. We will see in
Chapter 7 how such missing frames can affect our methods and experiments.

Using such a system, a total of 20 different body motion colour sequences
were recorded. Additionally, a short colour sequence of the background scene
without the subject being present was also acquired for each motion sequence.
This resulted in a total of 1021 image frames of a subject with different body
configurations. From each frame, the hybrid vector components were extracted

with the following procedures:

3.4.1 Extracting the Skeleton 3-D Vertices

In order to determine the 3-D vertices of the skeleton, the length of the bones of
each body part in the pixel metric was initially determined. This was done by
requiring the subject to assume a body configuration where all ones body parts
are oriented to be parallel to the image plane (e.g. the starfish pose (13]). This
was performed for each motion sequence. Following this, for each of the motion
sequence frames, the 2-D positions of the joints were located manually. Using the
manually located joints’ 2-D positions, and the length of the bones which links
them, the remaining depth value of the joint was retrieved using the Euclidean

distance formula.
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3.4.2 Extracting the Visual Information (Contour and Body
Parts)

In order to extract both the contour and body parts positions, the background
pixels were initially removed using background subtraction. To achieve this,
a simple background model was first built by determining the maximum and
minimum (red,green,blue) values for each background image pixel. Thus, for
each background pixel (b,,) at position (z,y) would contain a range of red,
green and blue values, whose maximum and minimum values are defined as
redys®, redyy, bluely®, blueit, greenl’y” and greenTi" respectively.

Next, the non-background pixels were roughly located by determining if pixel
on the image has red, green or blue components that lie outside the corresponding
background pixel’s colour range. Formally, an image pixel (img, ) with colour

components Ty, oy boy, for the red, green and blue values respectively, is a

foreground pixel if it violates any of the following constraints:

redyy =Ty S redyy’ (3.1)
greenyy’ <oy < greenga (3.2)
blueg,” <bgy < bluely" (3.3)

Following this, a dilation operation [60} is performed, whereby, if the surround-
ing 3x3 neighbourhood of a foreground pixel are not all foreground pixels, it is

removed.
Extracting the Body Parts Positions

To obtain the hands and head positions, a colour classification method using
Gaussian mixture models for skin colour was used [75]. This allowed us to identify
the foreground pixels that were skin coloured. Following this, K-means clustering
[10] was performed on the skin colour foreground pixels to determine the centres

of three skin coloured blobs.
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Extracting the Contour

To obtain the comtour, a binary image containing pixels lying on the subject’s
sithouette edge was first extracted. This was achieved by subtracting a dilated
foreground pixel image from the original foreground image [60]. Next, the inner
boundary tracing algorithm [60] was used to extract an ordered list of pixels
that traced out a curve originating from the lower left extreme to the lower right
extreme of the subject’s silhouette. To acquire a set of contours with a consistent
number of components, only a predefined number (N) of 2D points were chosen
from the extracted ordered list of contour pixels. Additionally, these N points
were spreaded out across the contour by evenly sampling from the ordered list.
Specifically, every pixel at the list position that was a multiple of (N/100) would
be chosen. For the purpose of our experiments, the value of N was heuristically
set to 100.

Such an approach allows a set of contours with a consistent number of com-
ponents to be extracted easily and automatically. However, one disadvantageous
lies in the lack of correspondence between the components of different contours.
1t is shown in Chapter 7 that such a lack of correspondence introduces non-linear
and discontinuous characteristics into any representation that incorperates this

contour information.

3.4.3 Combining the Different Acquired Components

To determine which of the two of the three colour blob centres belong to the
hands, the 3-D skeleton’s hand vertices were used. The two centres which are
closest o the 3-D skeleton’s hand vertices (only the (z,y) co-ordinates of the 3-D
hand vertices are used) are selected as the hand positions, whilst the remaining
centre is set as the head position.

Finally, all the components are made relative to the head position. To achieve
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this for the 3-D skeleton, the head’s position was subtracted from the 2-D co-
ordinates (z,y) of all its vertices. Similarly, the head position is also subtracted

from the contour points and hand positions.

3.5 Characteristics of Human Body Kinematics
using Hybrid Vectors

3.5.1 Nonlinearity: Movements of an Articulated Object

~50¢

T e o 50 o
Figure 3.8: Constraint area of the left hand vertex. Hlustrated is the shaded area that
is bound by the locus of the most extended positions of the left hand from the body.
We find that the positional parameters for possible human body movements
are often bounded by non-linear surfaces, reflecting bones and muscles that restrict
the movements & human can make. While a degree of non-linearity can be avoided
by using the skeleton joint angles instead of the 3-D positions of the joints, other
forms of non-linearity will inevitably manifest itself in the visual information. As
an example, Figure 3.8 shows the area covered by the 2-D projection of the left
hand vertex of the 3-D skeleton. The shaded section illustrates the constraint area
for the possible 2-D positions of the left hand vertex of the skeleton shown, with
all other points attached to this body part also constrained to a similar shape. As

a result, we would expect the visual components of the hybrid vector to have some
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degree of non-linearity associated with it. However, it is difficult to see such an
aspect by just observing the individual components of the visual modalities. An

alternative approach is to treat this as a high dimensional visualisation problem.

3.5.2 Visualising the Characteristics

4
: 4
2

s

Figure 3.9: Nonlinear subspaces spanned by a range of human body configurations.
Shown here is the visualisation of the hybrid vectors using Principal Component Anal-
ysis. The projections of the hybrid vectors onto the first three largest eigemvectors are
shown.

Due to the high dimensionality of the hybrid vectors, it is not helpful to vi-
sualise all its contents simultaneously. However, one could still gain insights into
the salient characteristics of this representation by employing methods that can
capture such features. One simple but effective method for this is Principal Com-
ponent Analysis (PCA). One of the characteristics of PCA is its ability to extract
out the salient information by recovering example hybrid vectors that capture the
largest variation across the different information types (i.e., skeleton, body part

positions and shape). The structural characteristics of the represéntation can be

visualised by projecting available training hybrid vectors onto this PCA space.



CHAPTER 3. REPRESENTING HUMAN BODY CONFIGURATIONS 46

Nonlinear Subspaces

We can see the results of such projections in Figure 3.9 which makes apparent
the non-linearities due to both the underlying 3-D skeleton vertex movement con-
straints and subsequently shape components. As noted previously, the hybrid
vectors altogether occupy non-linear regions. Further analysis and methods into

dealing with such a non-linear distribution will be provided in Chapter 6.
Nonlinear Trajectories

In addition to the fact that the structure of the valid hybrid vectors space is highly
non-linear, there is yet another aspect of nonlinearity. to deal with. This takes the
form of nonlinearities in the temporal patterns of typical human body motions.
As an example, the Figure 3.10b shows the movement of a 3-D skeleton between
two body configurations shown in Figure 3.10a. It is clear that the 3-D trajectory
of the 3-D vertices concerned is highly non-linear. While the 3-D vertices can be
replaced by a more linearly varying joint angle pair, the visual projection of the
body parts will still yield non-linear trajectories (see Figure 3.11). We describe in
Chapter 7 how such nonlinear trajectories can be learnt and the resulting models

further exploited in Chapter 8 to aid the tracking of human motion patterns.
Discontinuities in Visual Representation

In addition to the non-linear trajectories caused by non-linear human body mo-
tions, we find that discontinuities in the dynamics of the visual representation
introduce yet another form of nonlinearity. As a result, we find that the dynamics
of the entire hybrid vectors is discontinuous as well. This issue will be the main

topic of discussion in Chapter 7.



CHAPTER 3. REPRESENTING HUMAN BODY CONFIGURATIONS 47

(a)

Figure 3.10: Nonlinearities of a human body illustrated by the changes a 3-D skeleton
undergoes shown in (b) between the two configurations shown in {(a).
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Figure 3.11: The trajectories of visual projections of the 3-D skeleton. Shown here are
the {z,y) co-ordinates of the hand and elbow joint for the motion shown in Figure 3.10.
Tt can be seen that the resulting 2-D trajectory is non-linear as well.
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3.6 Conclusions

In this chapter, we have shown how 3-I) skeleton models combined with skape and
hand positions can be used to represent the configuration of a human body. Each
bone in the skeleton model essentially accounts for a single body part. However,
the parameters of the 3-D skeleton model are not directly observable from 2-
D visual images. Therefore, 2-D information from the visual appearance of a
human body is used to indirectly infer the 3-D skeletal parameters. To this end,
hand positions and body shape 2-D information were used to represent the visual
appearance of the human body. This results in the availability of three different
types of information or modalities (3-D skeletal parameters, hand positions and
shape information).

Since all three types of information were derived from the human body, there
exists a correlation between the 3-D skeleton and human body visual appearance.
In order to exploit such correlation, the three different modalities were firstly
combined into a single representation known as a hybrid vector. This was achieved
by concatenating the contents of the individual modalities together into a single
high dimensional vector feature.

A constraint surface can be formed over the space occupied by the valid hybrid
vectors. Essentially, such a surface provides a mechanism for identifying only the
valid combinations of observable (2-D visual appearance) and hidden 3-D skele-
ton parameters. Where there are correlations between different information types,
such a constraint surface spans across both the hidden and observable informa-
tion components. Thus, in situations where only the observable components are
available, one can use the observations in conjunction with the constraint surface
to infer the hidden parameters.

In order to build such a constraint surface, one firstly needs an understanding

of the characteristics of the valid hybrid vectors. To this end, PCA was chosen
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to visualise the structure of the hybrid vectors. Since a hybrid vector contains
data on the visual appearance and underlying structure of the human body, it is
interesting to note how the characteristics of these modalities contribute to the
overall structure of the hybrid vectors. In particular, constraints on the possible
body configurations due to the muscular and bone mechanisms were found to have
caused non-linearities in both the visual and structural components of a human
body. Consequently, the valid hybrid vectors were also found to occupy a non-
linear subspace. Such non-linearities manifest themselves in the dynamics of the
hybrid vectors within this non-linear subspace. Furthermore, it was also found
that the shape components adopted contained inherent discontinuities. The issues
concerning the construction of the constraint surface will be further dealt with in
a learning framework in Chapters 5 to 8.

Finally, one observes that, the 2-D information that results from 3-1) objects
will inevitably contain ambiguities. Different configurations of a 3-D object can
result in the same 2-D projection. Such ambiguities can cause problems to the
consistency of the inference process. Therefore, it is important to know the degree
of ambiguities present in the data. The next chapter will deal with understanding
more about the ambiguities inherent in the 2-D visual appearance of a human

body when used to infer its corresponding underlying 3-D skeleton.



Chapter 4

Visual Ambiguities of 3-D
Objects

4.1 Introduction

Ambiguities are a constant cause of many problems in computer vision. This is
especially true when tracking 3-D articulated objects, which is one of our crucial
tasks: the recovery of the underlying 3-D articulated object parameters from
measurable 2-D) features in images. Examples include the 3-D measurements
for both location and orientation of different 3-D object parts. In general, 3-D
model parameters cannot be obtained directly from input images since they are of
different forms. That is, images are pixels while 3-D parameters are for example
joint angles. However, it is known that a 3-D object does generate certain visual
features which can be extracted directly from an input image (e.g. its shape
information given by edges). The task is to recover the underlying 3-D object
parameters using meagurable visual features.

However, the lack of depth information in visual images can cause serious
problems. One such problem is that of self occlusion, where parts of an object are
obscured by other parts, causing important visual features to be lost. Another
problem lies in the inadequacy of 2-D projections to uniquely represent 3-I) objects
at certain poses. Here, the underlying 3-D model at different poses generates very

similar visual features.

50
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4.1.1 Previous Work

Previously, Regh [39] predicted the presence of occlusions of parts of a hand using
layers of image templates fixed onto a 3-D kinematics model. This work is related
to work on tracking and motion coding [44, 79]. Each template here consists of an
image of a particular hand segment. These image templates are then oriented in
accordance to its corresponding part in the kinematics model. Additionally, since
the kinematics model is 3-D, it also allows one to retrieve the depth ordering of
the image templates. From this, one can detect the overlap between different
templates. The greater the overlap, the larger the occlusion of a part. One
limitation in such a method lies in the use of image templates. We find that the
templates can only be rotated parallel to the image plane. Thus, should a part
undergo rotations in depth, the image template would have to be reacquired. This
was acceptable when a hand that does not change its orientation is being tracked
fromn the side view, since at such a viewpoint, transformations that human fingers
can undergo will be mostly parallel to the image plane. However this is not the
case in the context of a human body where the body parts are capable of far more
fexible movements, including large amounts of rotations in depth.

An alternative to image templates comes from adopting deformable curves to
track the shape of the object of interest. In particular, MacCormick and Blake
[34] used a deformable B-spline curve to track the shape a subject’s head and
shoulders. To handle the issue of multiple subjects and the possibility of subjects
occluding other subjects, an integer “pseudo-depth” label was assigned to each
subject. For example, the smaller the value of the label assigned to a subject,
the closer this subject is to the camera. This label can then be used to predict
the degree of overlap between different subjects. Consequently, this allows one to
predict those segments of contours of a subject that will be visible. The correctness

of the label value assignments are verified using a likelthood calculation. To use
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such an approach in the context of tracking human body parts, a subject’s head
contour can be replaced by contours of other body parts. One disadvantage in
such an approach lies with the fact that the amount of label combinations would
greatly increase as the number of subjects to be tracked is increased.

Finally, another approach was adopted by Kakadiaris and Metaxas [27] where
a 3-D human model was used to predict the degree of occlusions of different body
parts. Here, from a particular viewpoint, a visibility index is assigned to each
body part. Thus, the visibility index represents the degree of visibility of a body
part at a specific viewpoint. The process where the visibility index value of a

body part is calculated includes three steps:

e Computing the visible area of a body part with the possibility of occlusions
by other body parts: The entire 3-D model is firstly projected onto the
camera image plane with hidden surface removal. From this, the visible

area of a body part (Vo) in the image plane was calculated.

e Determining the projection area of the entire unoceluded body part: Only
the body part of interest is projected onto the camera’s image plane. Fol-

lowing this, the area of this projection (Van) is calculated.
o Calculate the occlusion ratio, Ryis = Van/Voce-

Therefore, the degree of occlusion a body part is under is indicated by the value
of the ratio (Ryys). For example, should the body part be highly occluded, the
ratio would be small. However, such a method requires the existence of a 3-D
model of the human body. In this context, the 3-D skeleton is inadequate, since
the projection of the bones would only yield lines.

In this chapter, we provide an alternative method for quantifying the ambigui-
ties when using visual information to infer unobservable information (3-D skeleton

parameters).
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The next section will define formally the notion of visual ambiguity in the
context of the 3-D skeleton hybrid vectors representation. Section 4.3 provides
a method for quantitatively measuring ambiguities and a general algorithm is
introduced for extracting ambiguity measurements from existing training data.

In Section 4.4, a more specific algorithm for extracting ambiguities of estimated
3-D skeleton parameters using the visual features described in the previous chapter
is given. Experimental results are provided in Section 4.5. In Section 4.6, we then
see how visual information from different viewpoints can have varying ambiguities

before concluding in Section 4.7.

4.2 Definition of Ambiguity

Observable and Hidden Information

First, a set of (A) different types of visual features (v, ..., V) is defined as mea-
surable data because it can be directly extracted from images. The vector, v,
with w; number of components, contains information about the visual feature it
represents: v; = {¥i1, ..., Vi, }- For example if v; represents a point distribution
model (PDM) of a contour, its components would consist of the {x,y) coordinates
of its points. All the visual vectors are concatenated into a measurement-dota
Vector, W = {U11, s Viugy - VAL, -0 VAsua |

Second, a hidden-data vector is defined as () for storing the (B) underlying
3-D model parameters: m = {rma, ..., mp}. The 3-D model parameters could take
the form of joint angles for the 3-D skeleton. We will see in Section 4.4 where the
3-D model parameters are defined by the spherical angles of the skeleton bones to
the z — y plane. An illustration of this can be seen in Figure 4.6.

Finally, the hybrid vector (y) is defined by the concatenation of the measurements-
data along with its corresponding hidden-data: y = (w, m).

For example, suppose we are interested in only part of a body, the left arm,
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Body Part Components
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Figure 4.1: Components of a body part.

as illustrated in Figure 4.1. Furthermore, the only visible information is the z-
coordinate (z) of a joint. The hidden information is the angle (6) between the
two bones which makes up the body part. The ambiguity vector is then defined

as (z,6).
Measurable-Hidden Information Constraint Model

A constraint model (volume or surface) can be constructed to capture valid in-
stances of the measurable data (visual features) and its corresponding underlying
3-D model components.

Recovering the missing 3-D model parameters, given only 2-D visual features,

can be achieved by finding the point on the constraint model whose visual fea-
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Figure 4.2: Valid body part poses which are allowed.

ture components are closest to the given input data. This yields a vector which
represents the visual features closest to those recovered from the input image and
which also contains the corresponding “hidden” 3-D model parameters.

Expanding on the previous example, the body part configurations are re-
stricted to those shown in Figure 4.2. Given these restrictions a plot of the valid
ambiguity vectors can be made (see Figure 4.3). The measurable information
(joint = coordinate) takes the horizontal axis of the graph, while the hidden pa-
rameter (joint angle ) takes the vertical axis of the graph. It can be seen that
the hybrid vectors for valid left arm configurations falls onto a curve.

To make use of such the curve described above as a constraint model, firstly
suppose we were given a novel measurement (Znoy). The goal is now to infer the
hidden parameter (fpo0) uéing this constraint curve. In order to do that, the point
on the constraint surface whose measurable data (x co-ordinate) is closest or equal

to that of Z,,., is located. From there, the corresponding hidden parameter (0,0v)
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Body Part Hybrid Vector (x§) Constraint Curve
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Figure 4.3: Body part hybrid vector constraint curve used to infer the hidden param-
eter.

can be located and thus inferred (see Figure 4.3). However, one notes that towards
the end of the constraint graph, the constraint curve turns back on itgelf. Such a
phenomenon occurs due to ambiguities present in using measurable information

to infer hidden parameters.
Ambiguities in Measurable Features

Ambiguous and self-occluded visual features can cause multiple points on the
constraint surface and have measurement-data equally similar to those extracted
from the input image, but each with significantly different corresponding hidden-
data components [21]. As a result, it is not possible to decide which 3-D model
parameters can be selected for the given visual features. In other words, a hybrid
vector has ambiguous measurable components when there exists many hybrid
vectors with similar measurable components but dis-similar inferred components.

To illustrate this problem, we return to the previous example. As was noted,
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the end of the constraint graph showed the constraint curve turning back on itself.
Therefore, if we were to receive observations (Znow) in that region, we would have
two points on the constraint surface with similar measurements (see Figure 4.4).
In this case, it is not clear which is the correct hidden parameter {0,00). Should
we have three potentially correct parameters, we would have a more difficult time
choosing. Therefore, one can calculate the degree of ambiguity of the measurable
data by counting the number of such potentially valid hidden parameter.

The process for recovering such a measurement-ambiguity-degree can be fairly
straightforward. For example, one draws a vertical line snd count the number
of intersections with the constraint curve. However, in general, the constraint '
surface will in most cases not be a curve. Instead, it will take the form of a
complex nonlinear hyper-surface. We will discuss more about such a constraint
surface in Chapter 5 and Chapter 6. An equivalent process of “drawing a vertical

line and counting intersections” would take the form of integrating across the
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hidden parameters for each of the valid measurement data configurations. For
complex hyper-surfaces or hyper-volumes, this is often intractable. However, one
can approximate such a process when an existing set of training data containing
both measurable data and its corresponding hidden parameters is available. In
the next section, a framework is presented for performing such an approximation,

i.e., extracting the ambiguity values of measurable data.
4.3 Quantifying Ambiguity: A Framework

This section describes a method for extracting the ambiguity values of each hid-
den component in the representation using its corresponding measurement com-
ponents. As illustrated in the diagram given in Figure 4.5, the method consists
of two components: a measurements similarity function and a hidden components

ambiguity function.

4.3.1 The Measurement Similarity Function

A measurement similarity function is defined to compare visual features. As
defined in Section 4.2, a measurement vector consists of a number (4} of visual
feature vectors (vy,...,v4). In order to compare two sets of visual features, a set
of functions {fi, ..., fa) for measuring the similarities between two instances of a
set of (A) visual features is introduced. The 4" visual feature similarity function
(f(v},v?) is a mapping f : R% x R% — {0,1}, where u; is the number of
components in v;. This mapping is responsible for comparing two visual feature
instances (v}, v?). Each similarity function depends on the visual features being
compared, returning the value 1 when the visual feature instances (v}, v2) being
compared are deemed similar and the value 0 otherwise. An example can be seen
in Section 4.4.1 for comparing the similarities of an articulated object’s silhouette

contours.

These individual visual feature similarity functions together define a measurement-
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Figure 4.5: An overview diagram of the ambiguity extraction method described in
Section 4.3.

stmilarity funetion,
A .
Flw',w?) = 1] f(v,v}) (4.1)
FE
where the o' measurement vector is defined as w® = (v?,...,v¢) and a € {1,2}.
F returns 1 if all visual features in two instances of the measurement vector are

similar enough.

4.3.2 The Hidden Components Ambiguity Function

A hidden component ambiguity function is defined for measuring the ambigui-
ties of the hidden components given the measurements. In the case where the
measurements are similar, as determined by, F, a check for significant differences

between its corresponding hidden components (m',m?) is made. To do this, a
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function G(m', m?) where G : R? x R¥ — R¥ is introduced. This function pro-
vides a vector that indicates to what degree each of the hidden components differ
from one another, given the corresponding measurements (w’, w?). Function G,
depends on what the hidden components represent. An example of this function
is given in Section 4.4.2 for comparing two instances of 3-D skeleton joint angles
and determining to what degree they differ and thus to what degree they are
ambiguous.

Now, an algorithm is introduced for extracting the hidden components’ ambi-

guity values from examples in a set of N training hybrid-vectors (vt ., ¥y,

Initialisation Step
- Create N number of B-dimensional vectors ({ci,...,cn}) for storing
the ambiguity values for the hidden-data components for each training
example.

- Initialise all the components of ¢ ; to 0, where & € {0,..., N} and

j€i{l,..,B}L

Ambiguities Extraction Loop
- For each training example y* = (w®,m%), where ¢ € {1,..., N},
- For each of the other training examples, y* = (w® m°),
where b € {1,..,a~1,a+1,.., N},
- if( F(we, wh) e 1),
- Evaluate ambiguity values (y) between hidden
components, m® and m®,
y = G(m*, m")
- Updaté the ambiguity values for example a,

Coj = Yy, if y; > €5, where j € {1,..,B}
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This extraction process results in a set of vectors containing the ambiguity mea-
sures for the hidden components in each example. Having associated all the train-
ing data with their appropriate ambiguity measures, we next describe a method

for modelling such ambiguities and labelling novel visual measurements.

4.4 Extracting the 3-D Skeleton Ambiguities

In order to extract the ambiguities of a 3-D skeleton, the visual information de-
scribed in Chapter 3 is used. Following the terminology introduced in Section 4.2,
we have a set of visual feature vectors, vy, vy (i.e. A = 2). These vectors represent
the visual measurements that can be directly extracted from the image.

The PDM of the object’s silhouette contour is defined to be a vector (vi)
containing the coordinates of a number {u;) of evenly distributed 2-D points; vi =
(1, Y1, s Tuy > Yuy )- Next, we define the vector containing the positions of the left

hand (z;, 4;), right hand (z,,y,) and the head (zy,¥n) as, v2 = (21, U1, Tr, Yr, Th, Un)-

Bone's local coordinale system.

3D Skeleton

e f)%e
F‘?‘“}L\

Figure 4.6: An illustration of the 3-D skeleton joint angles, § and ¢ in the local (z,y,2)
coordinate system of a joint.

The hidden components vector is defined as (m) and contains 2uy number of
joint angles for a 3-D skeleton with ue number of joints; m = (61, @1y ey Oys Py )-
Fach joint contains two angles, f and ¢, which represents the angles of the joint

off its local = and z axes respectively (see Fig 4.6).

In order to use the framework for learning the ambiguities described in the
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previous section, we introduce a similarity function for the measurable data (2-D
components) of the hybrid vector (Section 4.4.1} and a ambiguity function for
the hidden components, i.e., the underlying 3-D skeleton’s joint angles, in Section

4.4.2.

4.4.1 Similarity Functions for 2-D Measurements

Let us now see how two PDMs (v] and v¥) representing the body contours can
be compared for similarity. Suppose vi and v? are both vectors with 2u; number
of components (i.e. u; number of 2-D points). Additionally, we define the nt
components of the k%* PDM vector (e.g. k is either 1 or 0 here) is defined as,

vk .. In order to decide if v{ and v{ are similar or not, the following function was

introduced:
oy
fl (V;J Vf) B H dl (U%,2i> vi?i-{-l’ Ui%? 7}%727:+1) (42)
I
) — —
bie foh) = {1 Eyle—gPH(F-nPsr s
0 otherwise

Based on equation (4.3), two PDMs are similar only if all the 2-D points of a PDM
are within a vicinity (r) of the corresponding 2-D points on the other PDM on
the image. In other words, r represents the variations in the PDMs’ components
due to errors and noise in the contour acquisition process.

A disadvantage of this method lies in the similarity comparison being local.
That is, should all that is required for two contours to be considered dissimilar is
for one component in the two different contours to have a distance greater than r
(e.g. when one contour component is highly corrupted by noise). This is regardless
of the fact that all the other points on both the contours may be very close.

For the purpose of our experiments, the value of r was set heuristically. This
was achieved by observing the 2-D points on PDMs extracted from a sequence

containing a subject at a static pose. Here, the position variance in the 2D points
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on the contour due to image noise (since the body pose was kept static) was
observed. This value was found to be about 5 pixels.

Next, we define two sets of body part positions to be similar if each body
part’s location is within a predefined vicinity, or “near enough” to a body part
in the other set. Formally, if we are given two sets of body parts positions,
vi = (z1,y},a},93) and vZ = (22,42, 2}, v2), we define the similarity function for

the sets of body parts positions to be:

2
fo(vi,v3 = [l dalal,vi ol uf) (4.4)
[
: PRy Y
dole, f1g.h) = {é if /(e —g)* +(f —hf <7 (4.5)
otherwise

where 7 represents the vicinity distance.

The size of the vicinity can be calculated for example by measuring the variance
of the noise of the estimated body parts position. For our experiments however,
a heuristic estimation of 5 pixels was chosen for the hand positions comparison
function parameter, r = 5%2 = 10. Similarly a heuristic value of 5 pixel tolerance
was chosen for the contour comparison parameter, giving ¢t = u; # 5. Both of
these were achieved by visually observing the amount of movements of extracted

contour points and a hand positions when the body configuration was kept static.

4.4.2 Ambiguity function for the skeleton joint angles

Given two joint angles of an articulated object’s 3-D skeleton, they are defined to
be similar if both are within a preset range () of each other. This preset range
determines the coarseness of the 3-D skeleton’s joint angles estimation. Formally,
the similarity function for comparing two corresponding 3-D skeleton joint angles

sets, x! and x?, is given as

G(my,mg) = (da(my,ml), .., ds(mip, m%)) (4.6)

{ t91w~921 if91+’)f>92>91“")f

0 otherwise (4.7)

il

ds (04, 02)
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where, m' = (m},..,m}), m* = (m?,...,m%) and B is the number of joint
angles of the two skeletons compared. An ambiguity vector is also defined as
(va = G(my, mz)).

Additionally, an overall measure of an example’s ambiguity values (4,) can be

obtained by summing together the values of the ambiguities:
2B
Aq) = ZV-‘L@' (48)
faz]

4.5 Experiments

For the experiments, a set of hybrid vectors containing the contour, body part
positions and underlying 3-D skeleton joint angles was obtained. In particular, the
contour is a PDM curve, with 100 points distributed evenly across the silhouette
of the subject. The body part positions consists of the hand positions as described
in Section 4.4.1. Finally, the underlying 3-D skeleton consisting of 13 vertices was
firstly obtained. The joint angles of the skeleton were then extracted, resulting in

9 pairs of joint angles. A total of 1021 examples of different poses were obtained.

4.5.1 Body Parts Positions versus Contours

Using the set of training data described above, two experiments on the inherent
ambiguities of the individual measurable-data (contour and body parts positions)
were first carried out. In the first experiment, the contour information was re-
moved, resulting in a set of hybrid vectors consisting of only the body parts
positions and the corresponding 3-D skeleton. The ambiguities of the individual
parts were then extracted. However, in order to understand the overall ambiguity
of each example, the ambiguities of the individual parts were added together. This
provides a single ambiguity measurement for each example.

A graph of the sorted examples’ ambiguity values is shown in Figure 4.7. The

graph with O marks represents the ambiguity of examples, which consist of the
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Comparisch of Ambiguities of Hybrig Vectors with Different Visual Components
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Figure 4.7: The tesults comparing the different ambiguity degrees for hybrid vectors
which contain only the contour information and those which only contain the body parts
position information as the measurable information.

contour and underlying 3-D skeleton. The other graph with + marks shows the
ambiguity values of examples which instead, contain the body parts position and
underlying 3-D skeleton.

As can be seen, it is clear that overall, the ambiguity values of the examples
with the body part positions as the measurable information has a larger ambiguity
value than those with the contour as the measurable information. Thus, one can
conclude that the body part positions is inherently a more ambiguous measurable
information when used to infer the 3-D skeleton.

One reason for such a result lies in the fact that only hands have been used
to generate the body parts positions. Given the immense flexibility of the human
body arms, there are many arm poses that can result in the same set of hand

positions. Conversely, the contour has a larger number of points, which follow the

outline of the body.
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On the other hand, from a computational point of view, available methods for
visually tracking body part positions like the hands are more robust than methods
for tracking contours. Existing methods for tracking body parts positions usually
rely on colour information [75]. This requires the colour of the body part to posses
some form of similarity across different subjects. It is for this reason that usually
only hands and heads are tracked. Other parts of the body are usually covered
by clothing, which can have different colours across different subjects. Therefore,
if one were to track those parts, individual colour models will need to be built
for each subject. However, being able to retrieve such a colour model that is
associated with the body part is not necessarily a trivial task. It requires being
able to locate the body part in the first place to obtain its colour information.
This brings about a circular argument for tracking body parts that are covered by
clothing; one needs the colour models to obtain the body parts position, however,
one needs the body parts positions to build the colour models.

Most contours can only be reliably extracted in a controlled background (e.g., a
blue screen environment or a static background}. Background clutter and moving
background objects can often cause immense difficulties. Alternatively, as will
be shown in Chapter 8, one can attempt to synthesise a contour, and check its
correctness with respect to the input image. However, this too is susceptible to
background clutter.

One therefore concludes that using visual information from body parts posi-
tions is inherently more ambiguous, but computationally more robust. Conversely,
the contour has inherently less ambiguities, but is computationally a less reliable
form of visual information for inferring its associated 3-D skeleton. In order to
exploit the existing advantages of both types of information (contour and body

part positions), a hybrid vector that contains both forms of information is used.
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Comparisen of Ambiguities of Hybrid Vectors with Different Visual Components
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Figure 4.8: The results comparing the different ambiguity degrees for hybrid vectors
which contain only the contour information, only the body parts position information
and that which contains both contour and body parts positions as the measurable
information.

4.5.2 Hybrid Vectors Give the Best of Both Worlds

From the previous two experiments described above, it was shown that the contour
was less ambiguous but also computationally less reliable visual information. The
body part positions had the opposite characteristics, being more ambiguous but
also more computationally reliable. Therefore, it would be advantageous if one
could exploit the less ambiguous nature of the contour and yet also have the
computational reliability of the body parts position. To this end, the hybrid
vector that uses both the body parts positions and body contour as the visual
information is used. This form is consistent with that of the original data set,
as was described at the start of this section. Therefore, the entire hybrid vector
consists of the body part positions, body contour and the associated 3-D skeleton.

Similar to the previous two experiments, the body parts ambiguity values
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of each example was first extracted and added together to provide an overall
ambiguity measure. One can then visualise the extent of the ambiguities present
in the hybrid vector examples by plotting the ambiguity values. In Figure 4.8, we
compare the ambiguity values of the new hybrid vector to the other two hybrid
vectors which consisted of individual visual information {(i.e. contour only or body
parts position only). As can be seen, the ambiguity values of the new hybrid vector
are at least as low as that of the contour-only hybrid vector.

However, there remain many examples that have high ambiguity values. Such
phenomena illustrate the insufficiency in using a single image from a single view
for inferring the underlying 3-D skeleton at certain poses. In such a situation, a
solution would be to provide visual information from a different viewpoint, such

that the new view helps resolve the ambiguity.

4.6 Selecting Visual Information from Different
Views

Figure 4.9: A multi view sequence. A subject’s visual information was captured from
different view points (front and three quarter view). The subject was told to extend
and retract his arm over the entire sequence. The frames 1, 21 and 40 are shown to
illustrate the different poses across the sequence.

To illustrate the ambiguities inherent in visual information obtained from dif-
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ferent camera views, a multiple viewpoint example sequence of a subject uncder-
going body pose changes is shown in Figure 4.9. Two views were chosen, the
front view and the 3/4 view. Images of both views were acquired simultaneously.
Subsequently, the contour and body parts positions were extracted using simi-
lar methods for acquiring the training hybrid vectors as used in the experiments
described in Section 4.5.1 and Section 4.5.2. The underlying 3-D skeleton was
extracted by hand from the frontal view. It has to be noted that the 3/4 view
hybrid vectors share the same underlying 3-D skeleton as the frontal view. This is
due to the fact that they both represent the same body pose, although the visual
information of such a body pose is obtained from different camera viewpoints.
The hybrid vector sets for the sequences from both views was obtained by con-
catenating the contour, body part positions and 3-D skeleton vectors into a single
hybrid vector.

The overall ambiguities of the sequence were analysed by firstly extracting
the degree of ambiguities of the hidden parameters of each individual example.
Again, an overall ambiguity measurement was obtained by summing all the hidden
parameters’ ambiguities together. This allows one to then compare the differences
in ambiguities caused by the visual information obtained from different viewpoints
(see Figure 4.10). One can see that in the majority of cases, one view (frontal)
has more reliable visual information in comparison to the other viewpoint (3/4

view).

4.7 Conclusions

In this chapter, a method has been provided for quantifying the ambiguities of a
human body’s visual information. This was achieved by dividing the information
that represents a body configuration into two categories: the measurable infor-

mation and the hidden information. The measurable information consists of the
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Figure 4.10: A comparison of the difference in the overall ambiguities in the visual
information obtained between the front and three quarter view. It clearly shows that
in the majority of the cases throughout this example sequence, the visual information
from the front view is less ambiguous than that provided from the 3/4 viewpoint.
contour and body part positions of the human body. The hidden information
consists of the underlying 3-D skeleton’s joint angles. The degree of ambiguity
of the hidden information (joint angles) can be extracted by detecting instances
where different examples have similar measurable information but different hidden
information. The degree of the ambiguities is then the magnitude of the variation
in the hidden information.

With such a method, it was found that certain visual information is inherently
ambiguous. In particular, it was found that the body part positions were more
ambiguous than the contour information. Furthermore, combining both of these
information sources into a hybrid vector resulted in a representation that was no
more ambiguous than the least ambiguous visual modality.

Additionally, the limitation of the visual information of body configurations at
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certain points was also discovered. Evidence of such a phenomenon can be seen at
certain body configurations, where all the visual information gives a high degree
of ambiguity. It can be seen that visual information acquired from a different
viewpoint about such body configurations can be less ambiguous.

The ambiguity measurements only provide us with a means for estimating the
ambiguities of different hidden parameters. Such a measurement only indicates
how unreliable the inferred hidden parameters will be. However, the actual values
of these parameters are not estimated. In order to do this, one needs to deal with
both the spatial and temporal dynamics of the human body’s underlying kinemat-
ics model. In the next chapter, we will describe how different characteristics of
the human body’s spatial kinematics can be revealed and learnt using an example

based framework.



Chapter 5

Learning Human Body
Configurations

5.1 Introduction

A human body like any articulated object is capable of many possible configura-
tions. In order to computationally capture these body configurations, a represen-
tation of the human body was introduced in Chapter 3. This representation is
constructed as a hybrid vector containing information on both the visual appear-
ance and underlying 3-D structure of the human body. The visual appearance
takes the form of shape data and the positions of the hands. Meanwhile, a 3-D
skeleton model represents the human body’s underlying structure. Adopting the
hybrid representation, the differences in body configurations will manifest as vari-
ations in both the visual appearance and structural information. The nature and
complexity of such variations result from the muscular and joint constraints which
restricts the possible body configurations for the individual body parts. Conse-
quently, only a limited set of body configurations will be valid. With an objective
of modelling such a set of valid body configurations, a greater understanding into
the complexity of its variations would be advantageous. This chapter presents a
method that can be used to not only analyse the complexity of different human
body configurations but also build a computational model for it.

In general, the complexity of the human body can be expressed as the amount

72
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of “information” that is required to capture all of its valid body configurations.
One then needs a more specific definition for this "body pose information”. ‘To
this end, the method of linear combination of examples provides a suitable frame-
work. Intuitively, the linear combination framework revolves around the linear
combination of prototypical examples, or prototypes for generating novel exam-
ples of a similar form. Thus, one can treat the prototypes, as the information

needed to capture different body configurations.

5.1.1 Linear Combination of Examples

The method of linear combination of examples was initially exploited by Ullman
and Basri [76] for the recognition of 3-D objects using linear combinations of 2-D
images of the object. This approach was also explored by Poggio and Vetter [86]
in the case where only one prototype image was available. It was shown that the
visual changes caused by transformations on an object could be captured by a
small set of images depicting the object at different viewpoints. These images
can be regarded as prototypes. Therefore, any novel images of the object at
different viewpoints can be reconstructed by a linear combination of these proto-
type images. Computationally, this involves a sum of weighted prototype images.
The constraints for these weights or coefficients of the linear combinations were
analytically derived the object’s 3-D transformation equations.

However, such an approach has the limitation that only rigid 3-D transfor-
mations were accounted for. This is insufficient when dealing with articulated
or deformable objects. Examples of such objects are faces or human bodies. To
tackle such an issue, correspondence between the components of two examples
has to be established initially [54, 86, 87, 85]. Such a task involves recovering the
mapping of each component on an example image to a corresponding component
on the other example. For example, such a mapping would involve establishing

pixelwise correspondence between two example images. However, in the case of
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certain model-based examples (e.g. 3-D hand model [82]), such component corre-
spondences would already have been established. This is because each component
consistently represents the same point on the object (e.g. each vertex represents
the same point on a 3-I) hand model, regardless of the hand pose). However,
there are other model based representations where correspondences between dif-
ferent example components have not been established (e.g. Point Distribution
Model shape [3, 81]). In such cases, a method for establishing correspondences
between the components of two different examples is required. We will see in
Chapter 7 how a dynamical model can be used to indirectly learn such required
correspondences.

In the remaining sections of this chapter, a description and definition for the
LC method is given in Section 5.2. A learning method for extracting the required
examples will be described in Section 5.3. An interesting consequence of such a
Jearning process in achieving information fusion will be described as well. Having
defined the characteristics of the examples, they are then used to investigate the
degree of complexity of the human body motions in Section 5.4. Additionally, an
insight into the salient human body kinematics and visual ambiguities captured
by different examples is provided. Finally, a summary is given and conclusions

are drawn in Section 5.5

5.2 Linear Combinations: A General Definition

Linear combinations of examples allows one to recover novel vector-based repre-
sentations by linearly combining prototypes of other vector instances (see Figure
5.1). The significance of this method is its ability to “encode” a generative repre-

sentation into coefficients of linear combinations of such prototypes.
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5.2.1 Definition

Formally, a linear combination of examples is defined as follows. Given an arbi-
trary N-dimensional representation (e.g., a system with N variables for tracking),
suppose there exists a set of (E) example instances, {e;, ez, ..., € g}, of this repre-

sentation, a novel instance (n) can be reconstructed by the linear combination:
E
n = Z 0 (51)
tml

where the set of coefficients for the linear combination is {ay, as,..., @5}

Example Objects

Linear Combination
result

Figure 5.1: An illustration of the linear combinations concept. The objects initially
weighted (e.g. a, b, ¢ are the weigths in the figure) before combined together through
the addition operation.

An immediate issue that comes to mind is the question of how the required
examples are to be extracted. To address this, the next section will define a

computational method that will be used to learn the prototypes from an available

training set.
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5.3 Learning the Prototypes by Information Fu-
sion

Two computational issues in learning the prototypes are considered: determining

the number of prototypes and the contents of these prototypes.

5.3.1 Example Learning and Information Fusion

Our hybrid vector consists of a number of different types of information. Cor-
relation between and within the different information can be calculated using a
correlation matrix of available examples of such vectors. Formally, given a set of

hybrid vectors, X = Xy, ..., Xy, its correlation matrix (8) can be recovered by
1 ¥ T
8= N Z(Xi bl Xm)(X;.; - Xm) (52)
I
where x,,, is the hybrid vectors global mean given by:
Ko, = o z X4 (53)

Having recovered the correlation matrix, one can now represent it instead
using a set of examples, ey,...,ex. To this end, Principal Component Analysis
(PCA} provides us with just the appropriate means for recovering such examples.

Formally, each example (e;) is required to satisfy the following:

That is, the examples take the form of eigenvectors of the correlation matrix.
Additionally, each example (e;) is also associated with an eigenvalue ();) denoting
the significance of the correlation between the different components along this
example’s direction. We also sort the examples in descending significance. That
is, the first example (e;) is associated with the largest eigenvalue, the second

example with the second largest eigenvalue and so on.
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The contents of the examples are therefore given by the eigenvectors. Since
the examples that are the eigenvectors altogether represent the correlation matrix,
they can also be thought of as modelling the correlation between the information.
Therefore, it can be thought of as revealing the common traits between different

modalities.

5.3.2 Effects of Noise on Determining Example Sufficiency

One can then select the required number of prototypes by observing the number
of non-zero eigenvalues. However, this assumes that the available hybrid vector
components are not corrupted by any noise, which in most real world cases, tends
not to be true. As a result, such noise will cause certain redundant eigenvectors
to take on non-zero eigenvalues. It is then common to introduce a heuristic to
“prune” insignificant eigenvectors by cutting off eigenvectors which contribute less

than o predefined amount to the total eigenspace. That is,

o Ai ¢ Zg‘:l )\j > L
’\““{ 0 @ S A <=L (5:5)

However, this requires one to define the “percentage of significant eigenspace”
value (L.). A more general alternative to this is to use the Bayesian methods for

performing example-set-model selection.

5.3.3 Bayesian PCA: The most probable examples

Here, we use a method introduced by Kass and Raftery [68]. We can compute
the number of required prototypes by evaluating the probability of modelling the

data (X) with k prototypes:

k ~N/2
p(X|k) =~ (ﬂ )\j) p~N=E)/2 N —mE)/2 (5.6)
j=1

where the the number of training data is given by NV, the dimensionality of

the data is d, m = d{d — 1)/2 — (d — k){(d — k — 1) and the average variances of
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the discarded prototypes (v) is given by

. E:?r:k—!-l )\.’f
V= {5.7)

Using this, the dimensionality (k) which yields the highest probability value
will be chosen as the value for the number of prototypes. Having provided a
method for computationally extracting both the number of required prototypes
and their contents, we now move on to applying these methods to analysing the

complexity of human body motions.

5.4 Salient Human Body Kinematics

Here, we will see the outcome of the process for extracting the prototypes of the
upper torso of a human body. The data set used was that of the hybrid vector set
described in Chapter 3. Each hybrid vector consists of three different modalities;
the 3-I) skeleton vertices, the contour of the body silhouette and the positions of

the hands.

5.4.1 Number of Sufficient Prototypes

Thus, in order to recover the sufficient prototypes for modelling the kinematics
of the upper torso, the eigenvalues ();) of the hybrid vector examples covariance
matrix was recovered using Equation 5.4. The eigenvalues and its cumulative
graph can be seen in Figure 5.2. The presence of noise in the skeleton hybrid
vectors has allowed some eigenvalues to be non-zero, when they should in fact be
zero. In order to determine the appropriate number of prototypes, the probability
of using different numbers of examples to capture the data set was evaluated using
the Bayesian PCA method described in Section 5.3.3. Based on Equation 5.6, the
graph showing the probabilities is obtained and shown in Figure 5.2¢. From this,
it was found that the required number of prototypes for capturing the variations

of both the visual and hidden modalities of the human body’s upper torso is 67.
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Figure 5.2: The eigenvalues of the extracted examples. The eigenvalues is shown in
(a) while its corresponding contribution in percentage to the capturing of the hybrid
vectors variations is shown in (b). Additionally, the log probability of modelling the
skeleton hybrid vectors using different number of prototypes is shown in (c). The highest
probability is highlighted with a circle.
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5.4.2 Analysis of Variations Captured by the Prototypes

Having decided the sufficient number of prototypes, we now move on to inspect
the properties of these prototypes themselves. The mean hybrid vector can be
seen in Figure 5.3. As each example has the same dimensionality of the hybrid
vector, it can be split into the appropriate modality vectors, each of which can
be separately displayed. Therefore, for each example, we can view the first 200
dimensions as a shape vector, the next 36 dimensions as the 3D vertices of the

skeleton and the last 4 dimensions as the positions of the hands.
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Figure 5.3: The skeleton hybrid vectors mean vector. Shown here are the visual ap-
pearance information on the top consisting of the contour and hand positions (crosses).
The 3-1 skeleton is shown at the bottom as a collection of connected 3-D vertices in the
3-D space. The scale of the 3-I) skeleton space is made similar to the visual information
such that all the components of the hybrid vector have the same variance scale.

We can therefore visualise each of this component. However, in displaying the
components of the prototypes, we find that they do not directly convey any mean-

ingful information (see Figure 5.4). One of the reasons is that the components of
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the prototypes represent the variations in the hybrid vectors. As such, it would
perhaps be more meaningful to visualise their properties in terms of deviations
from the mean skeleton hybrid vector. In doing so, we find that the first few
examples captures the large variations of all the three different modalities, as can
be seen by its extent in the enclosed regions in Figure 5.5. As we progress further
into the latter examples, we find that they contribute less and less to capturing
any variations in the dynamics of the visual observations (shape and body parts
positions) variations as well as the skeleton variations (see Figure 5.6). Towards
the end of the required number of prototypes, we start to see negligible variations
in different modalities. This can be observed in Figure 5.7 which shows prototypes

680 to examples 67.

5.5 Conclusion

In this chapter, investigation was given to the task of modelling the valid human
body configurations. It was also required that the resulting model can be used to
reconstruct any valid body configurations at will. Tackling such a task requires
one to deal with the complexities of a body pose. In using a hybrid vector basged
representation for modelling the body pose, such a task would require one to be
able to handle the variations present in the visual appearance and the structural
information of a human body. To this end, the linear combinations of examples
framework was used. There, prototypes are used to capture the above mentioned
variability in the visual and structural information of a human body. Reconstruc-
tion of an example representing a novel body pose can be carried out by linearly
combining the prototypes.

Tt was found that the required prototypes could be recovered by using the sta-
tistical method of PCA. There, eigenvectors representing salient variations across

the different components of the hybrid vector are used as the prototypes. Ad-
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Figure 5.4: Visualisation of the extracted example components. FEach example is di-
vided into two parts, the top part which shows the contour components and body parts
positions. The body parts positions are shown as crosses. Meanwhile, the lower part
shows the skeleton components.
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Figure 5.5: Visualisation of the first 8 extracted example components as deviations
from the mean vector. For the contours, the extreme deviations are shown as thick dark
sithouettes. The lighter contours represent those in between the extremes. Along with
the contours, the right and left hand positions are indicated by crosses. The bottom
part shows the different 3-D skeletons the example captures.
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100
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Figure 5.6: Visualisation of the 10th to 17th extracted example components as devi-
ations from the mean vector. For the contours, the extreme deviations are shown as
thick dark silhouettes. The lighter contours represent those in between the extremes.
On the same section as the contour, crosses indicate the positions of the left and right
hand. The bottom part shows the different 3-D skeletons the example captures.
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Figure 5.7: Visualisation of the 60th to 67th extracted example components as devi-
ations from the mean vector. For the contours, the extreme deviations are shown as
thick dark silhouettes. The lighter contours represent those in between the extremes.
Along with the contour, the left and right hand position are indicated by crosses. The
bottom part shows the different 3-D skeletons the example captures.
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ditionally, the contribution in capturing different variations in the human body
configurations is indicated by the prototype’s associated eigenvalue. Such eigen-
values can be used to compute the number of prototypes as well as identifying
and discarding redundant ones. To this end, PCA was extended into a probabilis-
tic framework to identify the necessary number of examples for capturing all the
possible human body configurations. There, a probability measurement of a set
of examples modelling the hybrid vector training data is given. The number of
prototypes that gave the highest probability value can be found. Insight into the
degree of complexity of the human body motions can be gained from the number
of required prototypes. The larger the degree of freedom the entire set of body
parts is capable of, the larger the number of required prototypes.

We find that information fusion was achieved in the use of the prototypes for
reconstructing a hybrid vector consisting of different types of information (visual
and structural). This is because the prototypes are the eigenvectors of the hybrid
vector correlation matrix. In other words, the prototypes set is a model for the
correlation between the structural and visual appearance of the human body.

In using only a small set of prototypes to represent the valid bady configura-
tions, dimensionality reduction has also been .achieved. Through a probabilistic
PCA method, the number of prototypes necessary for reconstructing all the valid
human body motions was found to be much less than the hybrid vector dimen-
sionality. Specifically, the dimensionality of the hybrid vector was 240 while the
necessary number of prototypes only amounted to 67 in the case considered. As
such, each body configuration can be represented instead, by linear combination
of coefficients instead of the entire hybrid vector. Here, this would amount to
a fourfold reduction in the dimensionality of the hybrid vector. Furthermore,
the original hybrid vector can be reconstructed by performing linear combination
when necessary. Simultaneously, one can think of having indirectly learnt the

kinematics parameters of the human body in the form of prototypes. The effects
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of the body kinematics itself can be reproduced by the linear combination of the
prototypical hybrid vector examples. However, there remains a missing part for
completely reproducing the effects of the human body kinematics.

The prototypes only capture the salient lineas variations across all the body
configurations. Consequently, the non-linear nature of the human body motions
is not addressed. This is because certain combinations of the prototypes can yield
representations of unrealistic body configurations. Therefore, there is a need for
constraining the possible linear combinations. The next chapter will concentrate
on learning the constraints on the linear combinations such that only valid human

body configurations can be generated.



Chapter 6

Learning the Body Kinematics
Constraints

In the previous chapter, we discussed how to model different human body con-
figurations using the example-based approach called Linear Combinations was
discussed. Prototypical examples were used to capture the spatial dimensions
spanned by the body configuration representation. Additionally, by linearly com-
bining the prototypical examples, information on novel body configurations can
be generated. Following this, it is natural to ask whether there is a need for
constraints to be imposed on the possible prototypical example combinations?
In Ullman and Basri's [76] pioneering work on the linear combinations method,
constraints on the valid coefficients were derived explicitly from the transformation
equations applied to an object. However, these constraints were only considered
for rigid transformation of a non-articulated object. Vetter and Poggio 187} later
used such a method for modelling the human face in 3-D. Nevertheless, no con-
straints were imposed on the linear combination coefficients. This was due to the
proposition that faces, whilst being flexible models and undergoes non-rigid trans-
formations, still falls into the linear object class. It was proposed by Vetter and
Poggio [86] that models which belong to the linear object class can be correctly
described by a set of prototypical examples. This assumes that all possible com-

binations of the prototypical examples would yield reasonable results. Although

88
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this may be true for rigid objects and even faces, we have seen in the previous
chapter that this does not apply to representations of the human body. The aim of
this chapter is therefore to investigate the causes of this shortcoming and propose

a solution for it.

6.1 Chapter Overview

One cause for the generation of bad linearly combined examples lies in the viola-
tion of the underlying constraints that restrict human body motions. The space
spanned by representations for human body motions ought to be constrained by
this restriction.

Analysis of the structural restraints upon modelling the linear combinations is
detailed in Section 6.2. We will see that explicitly modelling such constraints is
often difficult. This is because the constraint model needs to account for highly
non-linear characteristics, even for simple articulated objects with few degrees of
freedom. We will also see an analogous investigation for the more complex case of
the human body by analysing the linear combination coefficients of a set of training
hybrid vectors. From this, we will see that the constraint model for the human
body configurations would have to cope with highly non-linear characteristics.

Instead of explicitly defining the kinematics equations for the human body
configurations, an alternative approach using a learnt generic cluster based model
was used to represent the constraint surface. The details are given in Section 6.3.
Following this, Section 6.4 describes the method chosen for learning the necessary
non-linear kinematics constraints for human body configurations. Next, results
on the learnt kinematics constraints are shown in Section 6.5. A comparison
of the tesults of using different cluster models for reconstructing missing hidden
information (3-D skeletons) is given in Section 6.6. Finally, Section 6.7 concludes

the chapter.
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6.2 Nonlinearity: Coping with Articulation Re-
strictions

6.2.1 Motivating Example

Let us now consider the problem of learning the constraints on the linear combi-
nation coefficients. First, the need for learning the coefficients constraints using
the example of a 2D hierarchical articulated object (see Figure 6.1) is discussed.

Supposed that the articulated object has three 2D vertices, py, p2 and ps.

Figure 6.1: An illustration of a simple articulated object with 3 vertices. It consists of
two fixed length parts {(from p; to pp and from pz to p3).

A hierarchical structure is imposed on the vertices of this object. The ver-
tex, pi, is the parent of all the other vertices. The second vertex, ps, is linked
to p1, and the third vertex ps, is linked to po. Therefore, both ps and p; are
affected by any transformations on p;. Additionally, any transformation on p;
affects p;. That is, the object consists of two fixed length parts (see Figure
6.1). Second, a “transformation-unified” representation can be made for the
articulated object by concatenating all its vertices into a 6-dimensional vector
0 == (pl,m,p1,y,Pz,azapz,y;pa,m,ﬁs,y). The movement constraints of this articulated

object are defined by the following kinematics equations:

H(0,¢) = @ (6.1)
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f(6,8) = 4 (6.2)
f3(6,0) = racos(f) — rysin(f) + ¢ (63)
£100,8) = rosin(8) +rycos(d) + g (6.4)
f5(8,8) = salcos(¢)cos(d) —sin(¢) sin(f)) — sy (sin(¢) cos(f) +

cos(¢) sin(6)) + 15 cos(d) — rysin(f) + ¢ (6.5)
fo(8,) = so{cos(¢)sin(8) + sin(p) cos(F)) + sy(cos(¢) cos(6) —
sin(g) sin(6)) + ro sin(8) -+ ry cos(9) + g (6.6)

where the kinematics functions {f1(0, ¢), ..., f¢(¢, #)} produces the values for the
components (p1 .z, Piy» P2.os Doy Pacr P3y) Tespectively, r and s are the original Jocal
co-ordinates for p, and pa. The position of the object in the world is given by g¢.
The kinematics parameters § and ¢ are the angle of rotation on p, relative to py

and the Totation angle on pj relative to p, respectively (see Fig.6.1).
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Figure 6.2: Four examples capturing the variations in the articulated object’s three
vertices. It can be observed that the examples themselves do not represent valid con-
figurations of the articulated objects. For example, for all the examples, the lengths of
the joints are different, violating the fact that the parts of the articulated object each
have a fixed length. However, Figure 6.3 will show that certain linear combinations of
these examples will generate valid configurations of the articulated object.

Suppose a set of trainmg data that has been generated by different combi-
nations of the kinematics parameters (f,¢) exists. Using PCA as described in
Chapter 5, the prototypes {e;,es,...,eg}, where £ < 6, can be obtained, as il-
lustrated in Figure 6.2. These examples will be the axes of the E-dimensional

coefficient space. The equations that all the coefficients must satisfy can be found

AT e
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by projecting the kinematics equations into the normalised eigenspace, giving

congtraints:
¢ = %(ei,lfl(ga $) + eiofal, ¢) + €isf3(8,6) + eiafslf, ) +
eisfs(0, ) + eisfe(0,¢)) (6.7)

where i € {1,..., E}, & = {ei1, €2, €6} and A; is the eigenvalue of ;. For all
values of @ and @, the i coefficient must satisfy Eq.(6.7) to reconstruct a valid
form of the articulated object. The constraint surface for all the valid coeflicient

sets is visualised in Figure 6.3.

6.2.2 The Nonlinearity of Kinematics Constraints

It can be seen in Figure 6.3 that an articulated object’s valid configurations can
only be reconstructed by choosing coeflicient sets that lie on & non-linear volume
or surface in the coefficient space. The shape of this constraint surface (or high
dimensional volume for a more complex representation type) is determined by the
constraint equations, Eq. 6.7 in this case. Often, these constraint equations can
be very complex. Consequently, it may not be realistic to explicitly model the

constraint equations.
The Nature of Human Body Linear Combinations Coeflicients

Tn the case where the constraint equations are not explicitly known, training data
can be used to gain some insights into the characteristics of the valid coefficients.
This requires the ability to recover the necessary coeflicients for reconstructing
each training example. In the previous chapter, we note that the examples are
all orthogonal. Therefore, recovering the coefficients (s; = (8i1, - Sinp)) for
reconstructing a training example (t;) can be achieved by projecting it onto the
example vectors {ey, ..., eng ):

5 =t.E (6.8)

)
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Figure 6.3: Visualisation of the constraint surface for Eq.(6.1) to Eq. (6.6). Displayed
here are points with co-ordinates, (c1,¢z,¢3), produced using different parameters g
and ¢ for the articulated object shown in Fig.6.1. The topmost figure shows the 3
instances of the articulated object. They were reconstructed by using points on the
valid coefficients surface for linearly combining the examples shown in Figure 6.2. The
middle and bottom part shows the surface at different viewpoints, allowing one to note
the surface’s non-linear characteristics.
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where the example matrix is given by E = (e, ...,en;).

Thus, we can now use this method to obtain the coeflicients for reconstructing
the data as possible human body configurations. This is given by the training
hybrid vector set (T = (t1,...,tx)), which was described in Section 3.4. Each
exarple is a hybrid vector of 240 dimensions, whilst 200 dimensions are con-
tributed by shape information, 36 by the 3-D skeleton and 4 by the positions of
both hands. A total of 1021 (i.e. N = 1021) training examples were obtained.
Thus, with the 67 (i.e. Np = 67) human body prototypical examples extracted
in the previous chapter, we can apply Eq. 6.8 to recover the linear combination
coefficients (sy,...,sy) for reconstructing the entire training data set. Since these
coefficients represent instances of valid body configurations, we can also identify
them as valid coefficients. As shown in Figure 6.4 the examples were sorted in
descending order based on their magnitudes or the amount of linear variation in
the hybrid vectors they account for. Consequently, the scale of the coefficient
values decreases for the latter examples’ coefficients.

The first few coefficient sets occupy a highly non-linear form. Any attempt
to model the valid coefficients will therefore have to account for such a complex
structure. Instead of attempting to explicitly model the constraints for the linear
combinations based on explicit kinematics equations, the alternative of fitting a

generic model onto the regions occupied by the valid coefficients has been adopted.

6.3 Cluster-Based Human Body Kinematics Con-
straints

As noted in the previous section, any coefficient constraints for valid body configu-
rations would have to deal with subspaces of a non-linear structure. One powerful
tool for tackling with this problem is a cluster model [10]. Here, a set of piecewise

clusters is used to approximate the valid coeflicient values, as illustrated in Figure
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Figure 6.4: An illustration of the valid coefficients used for reconstructing the training
hybrid vectors by linearly combining the prototypical examples.
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Figure 6.5: A cluster model for the linear combination coefficients

6.5.

Each cluster captures a subset of the linear combinations coefficients that can
be used to reconstruct information on a body configuration. As each individual
cluster only captures a linear portion of the coefficient space, it can be thought of
as a model for a restricted range of linear human body motions, as illustrated in
Figure 6.6.

Additionally, the more non-linear the motions a body is capable of, the more
non-linear the shape valid coefficients will have to take. This would in turn in-
crease the mumber of required linear clusters. Therefore, it can be reasoned that
the required number of clusters can be used to indicate the degree of nonlinearities
of the human body.

Formally, we can define a cluster model (C) as a set of clusters, (€1,...,Cn,),
where Ng denotes the number of clusters. Since they are constraints for the
coefficients of the linear combinations, the dimensionality of the space in which

the clusters exist is equal to the number of prototypical examples (Ng) used.
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Figure 6.6: An illustration of the different sets of linear motions captured by a single
cluster in the coefficient space.

Individually, each cluster (c;), where ¢ is the index of the cluster, contains a

number of parameters:

The mean position of the cluster is defined by a Ny dimensional vector (1)
Additionally, the cluster-shape is parameterised by a number (Npg,) of Ng dimen-
sional normalised principal axes vectors (py, ..., Pz), arranged column wise into a

matrix P;. The corresponding axes variances are given by vector A;:

P; = (D1, s PNp,) (6.10)

Ai = (Nids e AN, (6.11)
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By setting the cluster shape covariance matrix to different forms, three types
of chusters can be created: radial, diagonal covariance and full covariance clusters.
In particular, the radial clusters’ covariance matrix takes the form of a scaled
identity matrix, sI. In a high dimensional space, the scale can be very large, as
the cluster extends across different dimensions. This causes the cluster to span
too large an area when the data is not spherical. Next a, diagonal covariance
cluster derives its name from having a diagonal covariance matrix, where only
the diagonal elements are non-zero. This allows the cluster to have different sizes
along the different dimensions it exists in. However, its axes are restricted to
be in the same directions as the major axes of the co-ordinate space in which it
exists. Finally, the cluster with the most flexibility is that with a full covariance
matrix, where all the elements are non-zero. However, for a high dimensional
space, a full covariance cluster suffers from the need to determine a great number
of parameters (i.e., all the elements of the covariance matris).

Commonly, a diagonal covariance cluster is adopted, as it provides enough
flexibility to account for non-spherically distributed data, while not containing as
many parameters as the full covariance cluster. Consequently, all the axes of the
clusters (ps, ..., P2} are unit vectors aligned with the major axes of the coeflicient
space (e.g. p1 = 1,0,0,...,0, p = 0,1,0,...,0 and so on).

The usefulness of a collection of clusters comes from the ability of individual
components (the clusters) to adopt independent positions and capture different
sized regions. This allows even very highly non-linear spaces to be captured.
However, this flexibility has disadvantages. For instance the complexity (number
of clusters) and the structure (cluster parameters) of the LC coeflicient constraint
model must be determined. The next section will describe the method for learning

the parameters of the clusters.
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6.4 Learning the Linear Body Motions

To determine the parameters of clusters (mean and principal axes), a two stage
procedure is adopted. The first step involves initialising the cluster with the
K-means algorithm. Following this, the parameters are then refined using Expec-

tation Maximisation (EM).
6.4.1 Initialising Cluster Parameters

Ie order to seed the initial parameters of a cluster model, a simple but effective
method called K-means [35, 36] is adopted. This method allows one to iteratively
calculate the mean and shape parameters of the clusters given a set of training
data, (T = {t1, ..., t2)). At every iteration, each cluster is assigned a set of points
that are nearer to it than any other clusters. Such a procedure is repeated until
convergence, that is, the centres of the clusters do not deviate with more iterations.
Having located the centres of each cluster, its shape can be estimated from the
covariance matrix of the data the cluster accounts for. The algorithm is given

below:
1) Assign the mean of each cluster randomly to a particular training example.

2) Assign each cluster (c;) the set of N; training examples {t;1, ..., tin, } that
satisfies the minimum Euclidean distance rule (i.e. these N training exam-

ples are closer to this cluster than any others).

3) Compute the new mean position g, for each cluster (c;) based on the training

examples assigned to it.

’i =5 > i (6.12)
4) If the mean positions of any clusters have changed, go to step 2 again.

5) Finally, compute the ciuster variances along each of the coeflicient space
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dimensions using the cluster’s final set of assigned training data:
1 & N
Aij = N1 zk:(tz',j,k ~ Qi) (6.13)
where j = {1,...Np} and Ng is coefficient space dimensionality.

6.4.2 Refining the Parameters: Expectation Maximisation
(EM)

An alternative approach to determining the parameters of the clusters can be

achieved by treating each cluster as a probability function. Formally, one can

think of a cluster {c;) in an N dimensional space, at position p;, and covariance

matrix C;, as a Gaussian distribution function (p;):

p(th) = ey (3t~ IO 6 - m) (1)

The determination of its parameter can then be treated as a maximum like-
lihood problem, modelled by a mixture of probabilistic clusters. Maximum like-
lihood can be computed iteratively using the Expectation Maximisation (EM)
algorithm [7, 10]. This approach was developed for handling conditions when the
observed data (i.e. training data) is incomplete. Haykin [73] defines “incomplete”

as follows:

o The existance of two sample spaces X and Y represented by the observed

data vector x and the complete data vetor y, respectively.
e There is a one-to-many mapping from space ¥ to space X.

For completeness, a description of the EM algorithm will now be given. The
algorithm consists of two major steps, the Expectation step and the Maximisa-
tion step, leading to the name of the algorithm. Generally, the purpose of the
Expectation step is to compute probabilistically, how well a model fits the ob-

served data. Here, the cluster set defines the model. The fitness is quantified by
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the log likelihood of the cluster model, given the training data. Meanwhile, the
Maximisation step is responsible for maximising the fitness of the cluster model
by adjusting its parameters. Specifically, the EM algorithm can be described as

follows:

Expectation
Calculate the posterior probabilities of each cluster for each training example

using the cluster’s current parameters:

Py = 20 )(j ) (6.15)

where P(j) is the prior of the cluster given in the next step, p(t™) is:
Neg
p(t"™) = p(t" )P () (6.16)
i
The cluster density p(t*]j) is given in Eq. (6.14).

Maximisation :
The maximisation step is performed by evaluating the following three equa-
tions, which aims to adjust the parameters of a cluster (c;) to maximise the

model’s fit to the training data set (T) of Ny training examples:

S o)t

w = D) (6.17)
wew L T PG| - )
Cil o= Ny SV pald(j]in) (6.18)
Ny
Py = %ZP"”(@'It”) (6.19)

6.5 Learning Human Body Kinematics Constraints

Tn order to learn the human body kinematics constraints, cluster models were built
to capture the valid linear combination coefficients. To determine the positional

and size parameters of the clusters, the K-means and EM method described in
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Figure 6.7: A visualisation of different cluster models capturing the valid linear com-
bination coefficient values for the first three examples.
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the previous section were used. However, the required number of clusters is not
determined by this method. It is therefore not clear how the accuracy of the
constraint model differs when different numbers of clusters are used. Consequently,
a number of cluster models, each with a different number of clusters were built.
Specifically, 10 different cluster models with 10, 20, 30, 40, 50, 60, 70, 80, 90 and
100 clusters were built, as shown in Figure 6.7 and Figure 6.7. These figures show
the cluster models in the space of the coefficients for the three largest examples.
Additionally, the valid set of coefficients (P) described in Section 6.2.2 is shown
as dots in each cluster model, indicating the regions of valid coefficients.

The average size of clusters in each cluster model can be estimated by calcu-
lating the covariance diagonals average of all the clusters for a model. Formally,
for a cluster model with a number of clusters, Ng, where each cluster C; has a set
of covariance diagonals {d;1,...d; n,}, the average cluster size (S) for the cluster
model can be calculated by:

N, Ng
- E:'r, Czjﬂdi,j

§ == (6.20)

where, Ni = 67, is the number of prototypical examples determined in Chapter
5. The results of the average cluster sizes (S) for cluster models with different
numbers of clusters are shown in Figure 6.9.

It can be clearly seen from the cluster diagrams that as the number of clusters
increases, the size of the individual clusters decreases. The effects the decrement
in cluster sizes can be seen by visualising the variations captured by a single
cluster. Tn order to accomplish this, hybrid vectors that can be reconstructed
from coefficients encompassed within a typical cluster are shown (see Figures 6.10
and 6.11). In this figure, it can be seen that as the number of clusters increases, the
hybrid vector variations captured by each cluster becomes increasingly specific.

It can also be observed that as the number of clusters increases, the shape of

the space encompassed by the cluster model starts to resemble more accurately
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Figure 6.9: This graph shows the average of the cluster variances {S) as defined in
Eq. (6.20) for cluster models of different sizes. The vertical axes shows the values of
(8) while the horizontal axes shows the number of clusters. As the number of clusters
increases, the variance of each cluster generally decreases.

the regions traced out by the valid coefficients. To provide a quantification of the
accuracy of the cluster models in modelling the valid coefficients as the number
of clusters increases, experiments aimed at quantifying the reconstruction from
hybrid vectors with missing information were carried out. In real situations, the
visual appearance information will be available, therefore, to make the experi-
ments useful, the missing information was set as the 3-D skeletons. The next

section will describe the process by which 3-D skeletal information can be recon-

structed from available visual information and cluster models.

6.6 Reconstructing the 3-D Skeletal Information

The cluster models can also be used for reconstructing “missing” information in
the hybrid vector. Intuitively, a hybrid vector containing incorrect information
(e.g. inconsistent visual and 3-D skeleton information) will result in a set of
linear combination coefficients which is also invalid. Since each cluster is assumed

to model a region of valid coefficients, any invalid hybrid vectors will contain
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Figure 6.10: The magnitude of variations captured by the cluster based constraints as
the number of clusters increases. The hybrid vector variations captured by a cluster
picked randomly in each cluster model are shown.
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Figure 6.11: Further illustrations of the maguitude of variations captured by the cluster
based constraints as the number of clusters increases. Again, the hybrid vector variations
captured by a cluster picked randomly in each cluster model are shown.
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coefficients which fall outside the cluster space. In order to find the closest valid
coefficient set, it is advantageous to think of a set of linear combination coefficients
as a coefficient vector in a coefficient space (i.e. the coefficient values are the co-
ordinates of the coefficient vector). The dimensionality of the coefficient space is
equal to the number of exampleé. The closest valid coefficient vector (pv) can
then be found by choosing a point on a cluster that is closest to the original invalid
coefficient vector (px) [81].

In order to do this, it is necessary to obtain a closest coeflicient vector (pvs)
which Hes on a given cluster (C;). This can be achieved by firstly projecting
px onto the principal axes (P;) of the cluster with the centre, p;, to obtain the
projection vector, r;:

r; = (px — ;) P1 (6.21)

Each element of the projection vector (r;;) is limited to lie within the range
of —Ai; to Aij, where A;; is the variance for the j* principal axes on the ¢
cluster. Any element outside the bounds of this range is set to —Xi; or Ay
respectively. The closest coefficient vector (py;) for the it" cluster can be obtained

by reconstructing from the projection vector:
pv; = P+ py (6.22)

Finally, the closest coefficient vector (py) on the entire cluster can be obtained
by choosing the cluster coefficient vector (pv,;) that minimises the distance to the
original invalid point (px):

D; = min(py, -~ Px)’ (6.23)
Pv = Py (6.24)

where D; is the distance between the new coefficient vector and the original coef-

ficient vector.
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Using Eq. (6.21) to Eq. (6.24), an experiment for analysing the reconstruction
or “correction” capability of different cluster models was carried out. First, a new
hybrid training data set was constructed from the original training data set. In
the new set, the 3-D skeleton components were set to 0, while the contour and
hand positions components were not modified. The linear combination coeflicients
of the new training set was then acquired by projecting the training data to
the prototypical examples (see Eq. {6.8}), yielding an invalid training coefficient
sel. Second, using a cluster model, the invalid training coeflicient vectors were
corrected by obtaining py for each training coefficient set. The corrected hybrid
vectors were then regenerated by linearly combining the prototypical examples
using the corrected coefficients. The sum of all the distances between the corrected
hybrid vectors and the original training set (i.e. with the 3-D skeleton) was
obtained for the cluster models with different number of clusters. The resulting
reconstruction distance or reconstruction error graph can be seen in Figure 6.12.
Tt is clear that as the number of clusters increases, the reconstruction capability’s

accuracy increases.

6.7 Conclusions

In this chapter, it was discovered that a constraint model for restricting the linear
combination coefficients of articulated objects must cope with non-linear sub-
spaces. This observation initially came from analysis of the linear combinations
coefficients for a simple articulated object. A set of linear combination coefficients
for generating a single object example was defined as a coefficient vector in a coef-
ficient space. A coefficient vector that generates a valid instance of the articulated
object can be defined as a valid coeflicient vector. Visualisation of the coefficients
revealed that the articulated object’s valid coeficient vectors fall on a non-linear

constraint surface.
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Reconstruction Errer

Number of clusters

Figure 6.12: The graph shows the error in reconstructing the 3-I skeleton component
of a hybrid vector given only the contour and body part positions using cluster-based
constraints with increasing complexity (number of clusters).

Consequently, the structure of the valid coefficients for the human body hybrid
vectors was similarly investigated. Visualisation of the hybrid vectors’ valid coef-
ficients similarly revealed a highly non-linear subspace. In order to model such a
non-linear structure, a model composed of a set of clusters in the coefficient space
was chosen. Each cluster accounted for a subset of linear combination coefficients,
or alternatively, a subset of body configurations. The subset of body configura-
tions assigned to each cluster was determined by the Expectation Maximisation
(EM) clustering algorithm.

This cluster model can be used to reconstruct hybrid vectors containing miss-
ing information (e.g. the 3-D skeleton components are all 0, instead of 3-D vertex
co-ordinate values). This was because, firstly, an incomplete hybrid vector does
not constitute a valid instance of such a representation. Therefore, it would subse-

quently not yield a valid set of linear combination coefficients, or a valid coefficient
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vector. An invalid coefficient vector would then fall outside the space occupied by
the cluster model. Secondly, it is assumed that all the subspaces occupied by the
clusters are valid. Therefore, a valid coefficient vector can instead be obtained by
finding a point on the cluster model that is closest to the original invalid coefficient
vector.

It was found that as the number of clusters was increased, the size of the
clusters decreased (i.e., each cluster modelling an increasingly specific set of body
configurations). The increasing specificity of the clusters was found to be advanta-
geous when cluster constraints were used to recover missing information in hybrid
vectors. This was empirically supported by an experiment performed to test the
reconstruction accuracy of models with differing mumber of clusters. It was found
that the larger the number of clusters, the lower the reconstruction error.

However, it has to be noted that such an experiment is not a good method
for determining the optimal number of clusters required for capturing the body
configurations’ kinematics constraints. This is because only the training data was
used for the reconstruction experiment. Consequently, it does not provide any
indication on the gencralisation capability of the clusters to capture valid body
configurations that are not in the training set. This issue will instead be dealt in
detail in Chapter 8.

Additionally, the reconstructions were performed on the assumption that the
body contour information and hand positions were both available and reliable.
Such an assumption may not be valid in most circumstances where it is not pos-
sibie to obtain the contour or hand positions reliably (e.g. in a cluttered back-
ground). Therefore, in the next two chapters, we will deal with tracking the body
configurations without explicit knowledge of the contour or hand positions. To
this end, Chapter 8 will develop a dynamic platform which can be used to vi-
sually track body configurations using the prototypical examples and the cluster

based constraints described here. One notes that the prototypical examples and
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its cluster constraints only account for possible body configurations. It does not,
however, account for the dynamics of the body configurations, or the way the
coefficients evolve over time as the body configuration changes. Such dynami-
cal knowledge would be necessary in a visual tracking platform as it allows for
the prediction of future body configurations. To address this problem, the next
chapter will be concerned with learning the dynamics of the hybrid vectors from

available data.



Chapter 7

Learning Human Body Dynamics

In the previous chapters, a representation for the human body configuration in
the form of a hybrid vector has been adopted. The spatial characteristics of
the human body configurations were learnt by modelling a training set of the
hybrid vectors in terms of prototypical examples. The prototypical examples
accounted for variations in the visual and structural parameters of the human
body. Information on novel body configurations can be generated by linearly
combining the prototypical examples. Thus, a body configuration is described
using a set of linear combination coefficients instead of the entire hybrid vector
form.

Nevertheless, the linear combinations framework in itself does not provide con-
straints on the possible linear combinations. Therefore, hybrid vectors represent-
ing invalid body configurations can be generated. One solution for this problem
is to impose kinematics constraints on the allowed human body configurations.
To this end, cluster based constraints were exploited to restrict the possible linear
combination coefficients.

This resulted in a constrained linear combinations framework as a computa-
tional model for reconstructing the visual and structural information of the human
body. However, this constrained linear combinations framework still does not ac-

count for the dynamics of the human body motion patterns. Specifically, there is
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no information on how the linear combination coefficients transform as the body
configuration changes. Knowing the dynamics of coefficients transformation can
add further constraints to reduce ambiguities when the coefficients are visually
tracked from images.

There is the need to have a model for representing our knowledge on the body
motion pattern dynamics. Such an undertaking would firstly require a computa-
tional quantification of such “knowledge”. Additionally, a method for learning its
parameters is also necessary. Therefore, this chapter will deal with learning more
about the dynamics of the hybrid vectors when it is used to represent the config-
uration of the human body. The nature of the dynamical characteristics of the
hybrid vector is firstly given in Section 7.1. We show how the visual information
of & human body can sometimes exhibit discontinuous dynamics. An example of
such a phenomenon is when the configuration of the body changes slightly while
the visual information undergoes large deviations.

Next, with an understanding of the hybrid vector dynamics’ characteristics, a
computational model can be defined. A straightforward but effective method of
a transition matrix is employed as is described in Section 7.2. Since the hybrid
vector represents the body configuration, the transition matrix can be thought
of a mechanism for computationally capturing the dynamics of the human body
motion patterns. Following this, experimental results on the recovered global
transition matrix along with a visualisation of different discontinuous behaviours
modelled will be shown in Section 7.3. Finally, a summary is given and are

conclusions drawn in Section 7.4.

7 1 Discontinuities in the Visual Observations

In order to understand the dynamical nature of the linear combination coeflicients,

an analysis on the dynamics of a hybrid vector sequence is performed. This se-
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Figure 7.1: The images of a human body undergoing a continuous gesture.

quence follows a human body undergoing a continuous gesture (see Figure 7.1).
The coefficients of the hybrid vectors were obtained by projecting the training
data onto the prototypical examples extracted in Chapter 5. As the human body
is undergoing a continuous change, it would be natural to assume that the coefli-
cients would change smoothly as well. However, contradictions to this smoothness
assumption was found when the acceleration in the coefficient vectors’ magnitudes
were plotted (see Figure 7.2). It can be seen that at various points on the graph,
there is a large change in the speed magnitude. These points indicate the possible

existence of discontinuous dynamics in the linear combination coefficients.

7.1.1 Ruling Out Skipped Frames

It may be that sudden Jarge changes detected in the linear combination coeflicients
can be due to large changes in the body configuration. One common cause for
such large changes is the skipping of a few frames during the sequence acquisition
process. In order to rule out the effect of discontinuities caused by skipped frames,
the magnitudes of the difference vectors between successive 3-D skeletons were first
analysed. The effects of frames being skipped can be detected in regions where
the 3-D skeleton difference vectors’ magnitude is large. Following this, we only
use segments of the sequence analysed where the difference vector’s magnitude is

not very large (see Figure 7.3).
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Figure 7.2: A graph showing the acceleration of the linear combination coefficient vector
speed in a continuous gesture sequence. Where the coefficients suddenly changes, a large
zero crossing will occur. Circles on the graph indicate these.
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7.1.2 Discontinuities in the Body Contour

Evidence for discontinuous dynamics in the linear combination coefficients can be
found by combining results of the analysis of both the 3-D skeleton accelerations
and the coefficient vectors’ acceleration. In Figure 7.2, it can be seen that there
are points in the sequence where the skeleton changes slightly but the coeflicients
undergo large variations. In order to determine the cause of these discontinuities,
the different components of the hybrid vectors with large speed change in the
linear combination coefficients were shown. In Figure 7.4, it can be seen that the
contour components at regions where the linear combination coefficients exhibit
large speed variations was found to have changed significantly. A similar phe-
nomenon was reported by Heap [81}, where PDM contours were used to represent
the shape of hands. There, it was found that at certain hand poses, a small de-
viation in the hand rotation or finger movements respectively would cause large
changes in the contour.

The large shape variations were caused by the lack of correspondence between
the contour vertices across different object shapes. This causes the position of the
contour vertices to be dependent on the contour’s length. It was found that there
exist two situations where the length of the contour is likely to change drastically.
The first situation involves the nature of the sithouette of the human body. Since
the silhouette only follows the outline of the body shape, it only accounts for the
outermost parts. The shapes from different parts previously responsible for the
outline overlap, resulted in a silhouette changing considerably (see Figure 7.5a).
The second situation for a large change in the shape’s length originates from
occlusions on the contour. This in turn resulted from the nature of the contour
acquisition process. Since the contour is only acquired from a certain region of
the image upwards, any shape contribution below is discarded, causing a large

change in the contour shape (see Figure 7.5b).
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Figure 7.4: An illustration of the hybrid vectors which can cause discontinuous dynam-
ics in the linear combination coefficients.

7.2 Global Dynamics: Transition Matrices

We have shown the problem and cause of discontinuous dynamics in the linear
combination coefficients. The discontinuities occurred when the body configura-
tion undergoes small changes, while the respective representing linear combination
coefficients undergo a large deviation. Alternatively, one can think of such large
linear combination coefficient deviations as a “jump” between two coefficient sub-
spaces. Then, there is the need for consistently identifying the subspaces to which
o linear combination coefficient set belongs in. For this purpose, the cluster-based
constraints (see Chapter 6) can be used, since each cluster effectively models a
subspace. The between subspace jumps can then be viewed as transitions between
different clusters (see Figure 7.6). Consequently, to model the transitions between

different clusters (or linear combination coefficient subspaces), a transition matrix
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Figure 7.5: An illustration of a contour undergoing sudden changes due to: a) the

overlapping of body parts on the image plane, b) nature of the acquisition process.
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Figure 7.6: An illustration of the discontinuous nature of the hybrid representation.

modelling the probability of a transition from one cluster to another can be used
i81].

It is worth pointing out that, the use of a transition matrix is also equivalent to
modelling the dynamics of the coefficient space with a Markov model. The states
of the Markov model are the piecewise clusters from the cluster-based constraints.
To account for potential large discontinuous behaviours in the dynamics, each
state is fully connected to all the other states.

Next, a formal definition for the transition matrix will be given. Following
this, the method for learning the transition matrix from available training data

will be developed.

7.2.1 Definition: Transition Matrix

Formally, a transition matrix (U) can be defined as a two dimensional square array
of transition probabilities. The number of rows and vectors of the transition
matrix is equal to the number of clusters in the linear combinations coefficient
constraint model. Each element in the transition matrix can be identified as U ;,
where # is the row index while 7 is the column index of the element (see Figure

7.7). The it row vector of the transition matrix (U) consists of the transitional
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Figure 7.7: The transition matrix is illustrated in this diagram. The left image illus-
trates the clusters and the tramnsition probabilities to other clusters.

probabilities of the 5% cluster. That is, the transition matrix element with the
row index i and column index j would be the transition probability of jumping

from cluster 7 to cluster § at the next time step.

7.2.2 Learning the Transition Matrix

The transition matrix can be constructed with the following algorithm:
1) Initialise all the elements of the transition matrix to 0.
2) For all the training sequences,

3) For every frame of a training sequence, the linear combination coeflicients
of its hybrid vector is recovered. Next, the memberships of the current and
next frames’ hybrid vector’s cluster are found by determining the closest

cluster.

4) If the current frame belongs to 7" cluster and the next frame to the Fo
cluster, the element of the $* row and 7 column of the transition matrix

is incremented, Ug; = U ; + 1.

5) Finally, the values in each row vector of the transition matrix are normalised

with respect to only that row.
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7.3 Transition Matrices for Human Body Dy-
namics

In attempting to carry out the experiments on learning the transition matrix using
the algorithm given in Section 7.2.2, the prototypical examples (Chapter 5} and its
cluster-based coefficient constraints (Chapter 6) were used. Each example has the
form of a hybrid vector given in Chapter 3, and therefore a dimensionality of 240.
In total, 69 prototypical examples were found sufficient to model the variations
in the available training hybrid vectors. This resulted in a 69 dimensicnal linear
combinations coefficient space.

The cluster based constraint models from Chapter 6 were used to model the
different valid coefficient subspaces. In total, 10 different cluster models, consisting
of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 clusters respectively were used. For
each cluster model of No number clusters, a N by Ng transition matrix was
built. To build the tramsition matrix probability values, a total of 20 hybrid
vector sequences were used. Each sequence represented a continuous human body
motion pattern. The total contents of all the sequences were also used to learn
the prototypical examples and the cluster-based constraints.

An illustration of the transition probability values captured by the matrix
using different cluster models can be seen in Figure 7.8. It can be seen that for
the transition matrix built from a small number of clusters, the diagonal elements
tend to contain high probabilities. This implies that many generally hybrid vectors
in a sequence will stay within this cluster due to its size. The transition to other
clusters only happen occasionally. However, as the number of clusters increases,
the transitions to other cluster become more apparent. This is because each cluster

encompasses a smaller and more specific range of body configurations.
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(a) 20 clusters transition matrix {b) 30 clusters transition matrix

{c)100 clusters transition matrix

Figure 7.8: Three transition matrices for the cluster models with 10, 60 and 100 clusters
respectively. The bar on the right side of the picture shows the intensity scale. The
colour white indicates a transition probability of one while a colour of black indicates

the transition probability of 0.
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7.4 Conclusions

In this chapter, we have seen how linear combination coefficients for the hybrid
vectors can have discontinuous dynamics. Analysis of the variations in the 3-D
skeleton and coefficients allowed us to identify instances of hybrid vectors that
exhibit discontinuous behaviour. By examining the components of these hybrid
vectors, it was found that the cause of discontinuities result largely from the
contour components. It was discovered that the discontinuities were due to the
lack of correspondences between the contour vertices. Thus, the contour vertex
positions were dependent on the length of the contour. As a consequence, sudden
modification to the contour lengths would result in rapid shifts in all the contour’s
vertices.

Two factors that result in the sudden change of the contour length were iden-
tified. The first factor originates from the contour being a representation of the
human body silhouette or shape outline. The second factor arises from the nature
of the contour’s acquisition process. It was shown that both these factors could
significantly alter the contour of certain body configurations.

Tt was also shown that, the discontinuities in the linear combination coefli-
cients could be treated as transitions between subspaces in the coéfﬁcient space.
Furthermore, such a transition would allow us to exploit the coefficients’ cluster-
based constraints described in Chapter 6. This is becanse each cluster effectively
encapsulates a coefficient subspace. The transitions between subspaces can be
treated as transitions between clusters. It was shown that a transition matrix
could be used to model the transition probabilities between the clusters. In the
next chapter, we show how the transition matrix can be used in conjunction with
the prototypical examples and its constraints to aid in predicting the human body

configurations, despite the presence of discontinuous dynamics.



Chapter 8

Visual Tracking of Human
Motions

In previous chapters, consideration was given to the task of learning a model that
captures a broad range of human body configurations. A hybrid representation
which combined the visual appearance and structural information was employed to
represent body configuration information, as described in Chapter 3. Variationsin
the hybrid representation’s components were captured using a set of prototypical
hybrid vector examples or prototypes. Subsequently, hybrid vectors representing
novel body poses (i.e., not prototypes) can be generated by linearly combining the
prototypes. In order to increase the linear combinations model’s accuracy, cluster
based constraints were introduced to restrict the possible linear combinations,
generating examples that represented valid body poses (Chapter 6. The dynamics
of the linear combination coefficients were captured using transition matrices, as
was described in Chapter 7. In this chapter, we will be concerned with the issue
of how to generate novel hybrid vectors based on images for visually tracking a
human body.

First, in Section 8.1, the problem of visually reconstructing the human body
pose information is computationally defined as an optimisation task. Our ap-
proach to solving this problem uses a stochastic tracking framework called CON-

DENSATION, and is given in Section 8.2. Experimental results obtained using
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the algorithm for visually tracking a subject from an image sequence are described

in Section 8.4, before conclusions are drawn in Section 8.5.

8.1 Visually Reconstructing the Human Body
Configuration

Tn representing the human body as an N-dimensional hybrid vector, one needs to
estimate the coefficients ({a,, ag, ..., ag}) for the linear combination of the known
examples ({ey, ..., ex}) such that a body pose (n) can be reconstructed accurately.
In practice though, one usually does not know the actual values of the subject’s
body pose (n).

However, an approximation (A) acquired by use of visual observations (e.g.
by deforming an initial model to some visual observations representing the ob-
ject) may be available. This approximation (fi) may be corrupted by noise in
the data and ambiguities in the deformation process. Therefore, corrupting el-
ements from the deformed object must be removed. This entails reconstructing
the closest object to (f1) using linear combinations. Mathematically, this involves
obtaining the coefficient set {{ai, 02, ...,ap}), which minimises the magnitude of

the “approximation residuals” vector (resy, .., Tesy),

res; = My — 01811+ Gpea + - OpeE (8.1)
res, = Mg - 0ye19+ Gpego + -+ GpeER (8.2)

(8.3)
resy = Ny — Q€N + Geean v+ OpeE N (8.4)

where n = (ny, N, ..., ny) and represents the object’s current state. The i ex-

ample vector’s components are denoted by (€i1,€i2 -1 €1, N)-
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8.2 Dynamic Linear Combinations: CONDEN-
SATION

Typical methods for minimising Eq. 8.4 (i.e. obtaining the appropriate coeffi-
cients) involve a least-squares minimisation [76, 86] or some other optimisation
procedures [77, 48]. Here, the CONDENSATION [52] framework was adopted
for estimation of coefficients by tracking them over time. Hence, this algorithm
allows spatio-temporal knowledge to be used, allowing for a more robust track-
ing. Spatial knowledge consists of learnt coeflicient space (global eigenspace) and
constraints (piecewise clusters) as described in the previous chapter. The tem-
poral knowledge is modelled using two methods. For modelling the coefficient
“stru.ctural—dynamics”, a Markov model of transitional probabilities between dif-
ferent subspaces modelled with clusters is employed, as described in the previous
chapter. For the finer scale of movements within the clusters, a Brownian motion

model (random displacements) is used {52].

8.2.1 CONDENSATION algorithm

In this context, the CONDENSATION framework consists of an algorithm work-
ing on a set of samples. We define the number of samples as, Ns. Here, a sample
is a coefficient set for a single linear combination. The algorithm propagates the
samples in the coefficient space based on learnt dynamics of the coefficients. The
samples are rated according to how well they fit the observable data that is used
in the next iteration’s propagation step.

A sample is defined as a point in the coefficient space (i.e. a coefficient set).
Associated with each sample (s%) at a time instance (t), is a fitness measure (f,)
indicating its accuracy in representing the actual coefficient point. Initially, all
the samples are assigned equal fitness values and their components are randomly |

distributed within their constraints. The algorithm then iterates over the following
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steps:

1) The first step involves the selection of future samples based on their fitness.
This can be done by firstly constructing a normalised cumulative histogram
(h) of the samples’ fitness values. Each of the histogram’s values (h,¢ =
{1, ..., Ns}) can be determined as follows:

' E;’:S(fk 4+ fmm)

(8.5)

where i is the smallest fitness value across all the samples. A new popu-
lation of samples can be selected using the following procedure [52]: At the

time step t -+ 1, for the n®* sample of the N samples,

a) Generate a random number 7 between 0 and 1 from a uniform distri-

bution.

b) Find the smallest m for which hn, 2 7.

¢) Set the n'* sample at time ¢+ 1 as the m™ sample at time ¢, st = sl .

2) The selected samples are then propagated based on a model of their dy-
namics. This propagation step effectively predicts the future state of the

samples. Further details of the propagation step is given in 8.2.2.

3) The accuracy of the prediction step is then determined by measuring how
well each sample “fts” with the observation data. The fitness values of the
samples are replaced by this new fitness value. We describe this step in

greater detail in Section 8.2.3.

4) The sample vector with the highest fitness value is selected and its recon-
struction used. This has the effect of selecting the state vector that contains
the tracked 2-D measurements most similar to those extracted from a given

image. This state vector also contains the corresponding valid 3-D skeleton.
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This is because all the points are constrained to the space covered by the

clusters.
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Figure 8.1: The tracking of a population of samples by CONDENSATION is
illustrated here. The bottom row shows the coefficient space of the first three
examples with the clusters’ local principal components. The points in the image
represent the propagated samples. The middle row illustrates the reconstruction
of 10 out of 100 samples. The top row shows the input images.

For completeness, we will describe next the CONDENSATION propagation
step originally developed for tracking hand contours [81]. Following this, it s
shown how we modified this method for tracking the human body configurations.
Thﬁs was done by adapting the algorithm for estimating the linear combinations
coeficients, the sample prediction step is modified to make use of the transitional
probability matrix (U) as described in Section 7 and the set of Ng number of
coefficients cluster constraints (C = {¢y, ..., Cn, }) as described in Chapter 6. This
allows the tracker to propagate samples across different subspaces, thus allowing
it to cope with any discontinuities in coefficient space. An illustration of the

CONDENSATION tracker can be seen in Fig.8.1.
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8.2.2 Propagating the samples

The sample prediction stage is split into two steps:

1)

2)

The first step involves finding out the new cluster membership, labelled as
b, for a sample at time ¢, sf,, based on the transitional probabilities given by

the at* row vector of the transition matrix, where o is the sample’s current

chuster membership.

The new position of the sample, s+, is determined by displacing it linearly

in the directions of the principal components of the clusters:

s¢H) = { ) + Polofl, 0 =0 (5.6)

l"'b + PbAbQ, a % b

where as described in Section 6.3, f1,, Py and A, are the mean, the matrix of
the principal axes, and the eigenvalues of the b cluster (cs) respectively. €
consists of the vector whose elements are unit Gaussian distributed random

values [81].

The position of the new sample, s§f+1}, is then constrained to lie within the

bounds of its newly assigned cluster ¢;. This is achieved by projecting the sample

as follows:

r= (i — p) TPpA (8.7)

The restriction is made to obtain a plausible reconstruction of this sample. All the

elements of r are then limited to lie within the range of —1 to +1. Any element

outside the bounds of this range is set to 1 or -1 respectively.

The sample’s elements are then reconstructed by taking a linear combination

of the principal components of cluster ¢y

sl = AP{T + gy (8.8)
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The estimated state vector (v) is reconstructed from the components of a given

sample in the same manner, by taking a linear combination of Nz number of

prototypes (ei, ..., eny ):

Ng
V=3 8,18 (8.9}
i

8.2.3 Measuring the Samples’ Fitness

In the original work by Heap, the reconstructed vector (v} consisted of only con-
tour vertices. In order to adapt this method to suit our needs, we replaced the
reconstructed vector (v) with the hybrid vector, v = (vs,vg, vr). The accuracy
of both contour (vg) and the body parts (v¢) are measured individually and then
combined to yield the final fitness value. In this section, we first describe how
the samples’ fitness is measured. In the next section, details of the process for
obtaining the observation information used for the measurement process will be
described.

A prediction accuracy value (fg) for the contour can then be computed as

follows:

1) Assign the prediction accuracy value, fs = 0.

2) For all the N¢ number of vertices of contour: (a) Find the distance, s, from
the vertex position to the pixel of greatest intensity gradient by searching

along its normal, (b) add this to fs; fs = fs + 5.

We now deal with measuring the accuracy of the state vector’s prediction
of the body parts positions, (Zp1,¥m) and (Zyp,Ype), is. For each frame, three
skin coloured regions of interests were tracked using colour models composed of
(laussian mixtures [75]. These positions correspond to the positions of both hands
and the face.

A combinatorial operation is then performed to determine which two out of

the three positions are the hand positions. To achieve this, two out of these three
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positions are chosen. Suppose we denote the index of the two positions chosen
as, m1 and m2, and that they can each take the values of 1, 2 or 3. Additionally,
we also require that, ml # m2. The two positions can then be ordered into a
4 dimensional vector my = (Zynl, Y1, Tm2, Yma) Where (%1, Ym1) and (Zma2, Yma2)
are the co-ordinates of the first and second position respectively. We now define
the accuracy of the prediction of the body parts’ positions as fe whose value is

determined as follows:

fo= %?%12{\/(-’%1 = Zm1)? + (U1 — Yu1)* + \/(%2 ~ Zm2)? + (Yp2 ~ Ym2)? H8.10)

The final fitness value, (f,), for v of the n** sample, (sé+1)), combines both

the individual fitness measurements in the following manner:

fo=—0fc — Rfs (8.11)

where O and R are the constants used to even out differences in scale between the
two weighted fitness measurements of fo and fs. T herefore, a less negative value
of f, would represent a higher fitness. Furthermore, since the values of fo and fs
are sums of a number of Fuclidean distances, their scales can be normalised by

dividing by the number of contour points (N¢) and hands (2) respectively:

0 = (8.12)

R = (8.13)

1\33?——‘(‘)2!?_‘

8.3 Acquiring the Measurement Data

8.3.1 Acquiring the Contour Observations

To increase the accuracy of the contour measurement process, a binary image
containing mainly the silhouette of the subject was first extracted. This was
achieved in a similar fashion to the training data acquisition process described in

Section 3.4. In particular, background subtraction was used to recover an image
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containing mainly foreground pixels. The colour of the background pixels was
set to black. In order to clean up spurious foreground pixels (e.g. due to image
noise), a single step of the morphological dilation operation was performed on the
foreground image.

However it has to be noted that the use of background subtraction only works
in limited environments. In particular, in environments where the lighting con-
ditions and background objects can be fairly well controlled. Nevertheless, there
have been recent developments on more robust background and foreground detec-

tion methods that can be used in a more general setting [30, 37, 65].

8.3.2 Acquiring the Body Parts Positions Observations

In order to obtain the observed body parts positions, a skin colour model using
a mixture of Gaussians [75] was initially built prior to the tracking process. Re-
cent advancements in colour modelling for tracking has also allowed for one to
dynamically build the colour models whilst tracking [65].

This model was then used to determine which of the foreground pixels are skin
coloured, Subsequently, k-means clustering was performed on the positions of the
skin coloured pixels. Here, the number of clusters was set as 3, two for the hands’
positions and one for the position of the head.

However, there exist problems with adopting such a method for detecting
the positions of any body parts positions. Perhaps the most prominent amongst
these issues lies in the existence other parts of the body that have a similar colour.
For example, should a subject decide to wear clothing that are skin coloured, the
resulting pixels corresponding to the skin coloured clothing would be incorporated
into the k-means process for detecting the positions of the hands and head. This
in turn would yield an inaccurate estimation of the true image positions of the
required body parts positions. Moreover, the use of k-means clustering makes the

acquisition process susceptible to self occlusions, since it always assumes a fixed
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number of objects. However, there does exist more robust alternative methods for
tracking certain body parts positions, for example as shown by Sherrah and Gong
{42]. There, Bayesian networks are adopted to infer the most probable position of

the hands based on colour and motion image features.

8.4 Experiments and Analysis

A tracker utilising CONDENSATION was implemented. The tracking processing
time was roughly between 1 to 3 seconds for each frame.

A series of different experiments on tracking the 3-D skeletons using a single
view was performed. Due to the lack of sufficient training examples, the tran-
sitional probability matrix built was not an accurate representation of its real
yalues. This has slowed down the transition of the samples across different clus-
ters. It was found that iterating the CONDENSATION process for a number of
times over the same frame (5 iterations were sufficient for the experiments carried

out here) allowed the samples to converge on the correct subspace.

8.4.1 Tracking Known Motion Sequences

Initially, to determine how accurately the training poses were learnt when the ex-
ample based kinematics model (i.e. prototypical examples and cluster constraints)
was used, the tracker was made to track the 3-D skeleton of the subject in the
training sequences. In all, a total of 9 continuous training motion sequences whose
data were used for building the cluster models, examples and transition matrices
were used. Each of the 9 sequences contains a different motion sequence. This
resulted in a total of 502 frames of different body configurations.

Using the 9 training sequences, a set of experiments whereby the tracker was
set with different cluster models, transition matrices and number of samples were
performed. In particular, different cluster models with 10, 20, 30, 40, 50, 60,

70, 80, 90 and 100 clusters were used, along with their tramsition matrices. For
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Figure 8.2: The error surfaces of the tracking experiments carried out on training data
when different number of samples and cluster models are used.
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Figure 8.3: This figure shows the tracking of 3-D skeletons using the CONDEN-
SATION algorithm on the training sequences. Every 10th frame is shown. For
each frame, the left part shows the 3-D skeleton while the right shows the input
image. Additionally, the 3-D skeleton projected on the image plane is overlaid on

the input image.
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each of the cluster models, an attempt to track the training sequences’ body
configurations (represented by 3-D skeletons) with 10 to 90 samples (increments
of 10 samples) was initially made. The results of the different combinations of
cluster models and rumber of samples can be seen in Figure 8.2a. In order to
investigate the effects of further increasing the number of samples, an additional
set of experiments were carried out, where 100, 150, 200, 250 and 300 samples
were used. The resulting tracking error surface can be seen in Figure 82b. A
visual illustration of an example of the tracking results can be seen in Figure 8.3.

Tt was found that as the number of clusters and samples increased, there was
also a general trend for improvement in the tracking accuracy. The increasing
number of cluster allowed more accurate and realistic body configuration infor-
mation to be produced. However, as only training sequences are used for this
experiment. Therefore, it is not clear as to how well the tracker can generalise to

novel body motions using the different parameters and cluster models.

8.4.2 Tracking Novel Motion Sequences

The subsequent experiments were aimed at evaluating the tracker’s ability to
generalise and track novel body motions using different cluster models and sample
numbers. The test motion sequences used are novel in that they contain different
segments of body motions of different training motion sequences.

The first experiment studies the case of tracking in fairly controlled condi-
tions. A blue screen was placed behind the subject to provide a homogeneous
background. A visual illustration of some tracking results is shown in Figure 8.4.
Having a homogeneous background allowed for a fairly accurate segmentation
of the subject in the input image. This allowed the tracker to more accurately
compare the contour components of its samples to the edges of the segmented
image.

The second experiment investigated a subject being tracked in the presence of
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Figure 8.4: Single view tracking using the CONDENSATION algorithm. This
shows the tracking of a novel gesture in a controlled environment. The 10th,
17th, 30th, 40th and 50th frame is shown from top to bottom respectively. Again,
the left part shows the tracked 3-D skeleton while the right shows the input image.
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Figure 8.5: This figure illustrates the tracker working in the presence of a cluttered
background. The 3rd, 10th, 14th, 25th and 30th frame of the continuous sequence
is shown, from top to bottom respectively. Again for each frame, the 3-D skeleton
is on the left while the input image is shown on the right.
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Figure 8.6: This figure illustrates the tracker working on a novel subject that is not
present in any of the training sequences. The 3rd, 16th, 29th, 50th and 61st frame
of the continuous sequence is shown from top to bottom respectively. Similar to
the previous figures showing the tracking results, the tracked 3-D skeleton is shown
on the left while the input image is shown on the right.
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a cluttered background. Again, the subject performed motions that were combi-
nations of different training movement segments. In such situations, it was found
that the positions of the hands were important in disambiguating the poses in the
presence of contours matched inaccurately to spurious edges. The results can be
seen in Figure 8.5.

Finally, to evaluate the tracker’s performance in generalising to novel subjects,
the third experiment was performed with a subject that was not present in any
training sequences. The results can be seen in Figure 8.6. The overall error
surfaces for the three experiments are shown in Figure 8.7. From the results,
it was observed that the tracking performance deteriorates and becomes more
unpredictable as the number of clusters increase. Such results bear the implication
that cluster models with too large a number of clusters have overfitted the data.
The resulting transition matrix for the cluster models would account only for
the training motion patterns. A novel sequence may contain transitions between

clusters that were not modelled using the training data.

8.4.3 Recovering from Tracking Failure

Finally, it was observed in some experiments the ability for the tracker to recover
from failure in tracking. Figure 8.8 shows an example of a sequence where the
initial body pose was wrongly initialised. However, the subsequent frames showed
the tracker having recovered and the estimation of the body configuration close
to the known configuration.

Additionally, there are instances where the tracker does fail in estimating the
body configuration in the middle of a motion sequence, as shown in Figure 8.9.

However, again, the tracker was shown to have recovered from such a failure.
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Figure 8.8: An example where the tracker recovered from failure in tracking the
subject’s body configuration. The graph shows a bad initial estimate of the body
configuration. However, the error measurements for the subsequent frames show
the tracker recovering from this initial error.

8.5 Conclusions

In this chapter, the stochastic algorithm of CONDENSATION was chosen to vi-
sually track the human motions (i.e., continuously changing body configurations).
In the context of the linear combinations method, it was shown that the CON-
DENSATION algorithm is equivalent to a method for estimating the coeflicients
to reproduce a novel hybrid vector that represents the configuration of the object
in the image. Alternatively, the CONDENSATION algorithm has also provided
means of inferring the body configuration represented by 3-D skeletons from im-
ages.

It was shown that the CONDENSATION algorithm provided a generative
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Figure 8.9: Another example of the tracker recovering from failure during the tracking
process. The graph shows a number of occasions where the tracker failed to track
the body configuration. However, the tracker managed to regain track of the body
configuration after a period of time, as indicated by the error graph.
mechanism combining both the example-based kinematics model and the dy-
namics model for the purpose of tracking the human body configurations. The
kinematics model was used to generate valid information on the human body
configuration. The dynamics model in turn allowed one to predict the future con-
figuration of the human body. This was achieved in the presence of discontinuous
and non-linear dynamics in the human body’s hybrid vector representation.
Tracking using the CONDENSATION algorithm involved the propagafeioﬁ of
a set, of human body configuration “samples”. Each sample is represented by a set

of linear combinations coefficients. In order to determine the accuracy of a sample,

the original hybrid vector was regenerated using linear combinations. The contour
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and hands positions components of the hybrid vector was then compared to the
input image. It was also shown that the CONDENSATION method provided a
robust tracking mechanism that can recover from failure in estimating the correct

body configuration.



Chapter 9

Conclusion

The previous chapters have described the issues involved in attempting to visually
track the motions of the human body. This chapter summarises the discoveries
and work covered in the previous chapters and suggests areas of interests for future

work.
Hybrid Vector Representation

Firstly, Chapter 3 considered the usage of a hybrid representation that combined
a human body’s visual appearance and structural information to represent the
different configurations of body parts. Specifically, two types of information or
modalities defined the visual appearance of the human body. These two modalities
were the hand positions and contour surrounding the silhouette. The structural
information was defined as a skeleton consisting of a set of 3-D vertices. The
utilisation of both 2-D and 3-D based modalities allowed us to account for the 3-D
nature of the human body while exploiting available visual information from input
images. The latter element allowed avoidance of the complex task of synthesising
the visual appearance of a human body using computer graphics methods.
However, it is inevitable that there would be ambiguities in the visual ap-
pearance modalities since it is 2-D hased while the human body is a 3-D entity.
Therefore, issues pertaining to using a hybrid vector for representing a human

body configuration in the presence of these ambiguous 2-D information were ad-
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dressed in Chapter 4. This led to the discovery that contours are a less ambiguous
2.D based modality than hand positions. However, hand positions were found to
have an important use, owing to its computational reliability when recovered from

input images.
Example-Based Kinematics Framework

Chapter 5 described an example-based kinematics framework that was employed
as a generative mechanism for the hybrid vectors. More specifically, the linear
combinations of examples framework was adopted. A small number of prototypi-
cal hybrid vectors were combined using different weights or coefficients to generate
new hybrid vectors that represented novel body configurations (i.e., not the pro-
totypes). It was found that when a set of training hybrid vectors was available,
Principal Component Analysis (PCA) could be used to recover of the contents of
the prototypes. Furthermore, a Bayesian method was employed for determining
the probability that the training set could be modelled when given a number of
prototypical examples. The number of required prototypes was determined by
selecting the number that gave the highest probability. It was also found that
some prototypes account for a more significant or larger range of human body

configurations than other examples.
Learnt Cluster-Based Kinematics Constraints

T+ was found that certain linear combinations could yield hybrid vectors that
represented implausible human body configurations. Thus, in Chapter 6 we ad-
dressed the need for constraining the linear combinations coeflicients to generate
only plausible body configurations. This was achieved by firstly treating the set
of coefficients for generating a single hybrid vector as a high dimensional coeffi-
cient vector. A coefficient vector that generated a valid body configuration hybrid

vector was defined as a valid coefficient vector. Also, the space of the coefficient
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vector was defined as the coefficient space. The valid coefficient vectors for all valid
body configurations must span a region within the coeficient space. Modelling
the constraints for the plausible linear combinations can be achieved by modelling
only this valid coefficient region.

To this end, a study of the valid coefficient vectors’ characteristics was carried
out by visualising the coeflicients of different prototypes. It was found that the co-
efficient vectors occupied a highly non-linear region in the coefficient space. ‘This
made clear the necessity for a model that can cope with non-linear regions. For
this, a model consisting of a set of clusters was chosen. Each cluster was allowed
to occupy any position and encompass a hyper-cubic region. The clusters’ param-
eters (i.e., position and region shape) were then estimated using the Expectation
Maximisation {EM) algorithm.

Since each cluster occupied a limited region of the coefficient space, a cluster
accounted for a limited range of valid body configurations. Provided the number
of clusters was sufficient, the entire set of clusters could account for the different
known valid body configurations. It was found that as the overall number of
clusters was increased, each cluster accounted for an increasingly specific range
of body configurations. Also, the ability for one to use the cluster constraints to

reconstruct missing information in a hybrid vector was improved.
Learnt Human Body Dynamics using Transition Matrices

In Chapter 7, the dynamical characteristics of the human'body were investigated
by considering how the coefficient vector evolves under different human body
motions. It was found that certain human body motions caused the coefficient
vectors to exhibit discontinuous dynamics. The discontinuities were found to orig-
inate from the lack of correspondence between the vertices of different contours.
This caused the vertices to “slide around” in the case of a sudden change to the

contour length. As a result, there would be a large change in the hybrid vec-
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tor’s contour components. Consequently, the linear combination coeflicients for
generating the hybrid vector would undergo a large change. To deal with the
discontinuities, an occurrence of a discontinuity was treated as a transition be-
tween different subspaces. The cluster model could then be exploited as a model
of coefficient subspaces. Transitions between subspaces could then be treated as
transitions between clusters. Finally, to model the cluster transitions, a transition

matrix was employed.
Visual Tracking of Body Conﬁgurations‘

Finally, Chapter 8 described a stochastic framework which could be used fo visu-
ally track different patterns of body movements.- The {ramework proposed follows
the CONDENSATION framework originally developed by Isard and Blake [52]. In
this framework, a coeflicient vector or sample was used to represent the system’s
hypotheses for the actual body configuration in an input image. To determine
the accuracy of a sample at representing the actual body pose, & hybrid vector
was generated from the sample using the linear combinations method. Subse-
quently, a fitness measurement was obtained by comparing the visual appearance
components of the hybrid vector with the image information. Specifically, the
hand positions were compared against tracked skin coloured regions and the con-
tour against the image’s edge information. To ensure that the sample represented
valid body configurations, the coefficient space cluster model was used. All sam-
ples were then restricted to fall within the cluster space.

To account for human body motion, a sample must be displaced or propagated
accordingly. This can be thought of as an attempt at predicting the human body’s
next configuration. To this end, random noise was used to propagate the sample
within a cluster subspace. Furthermore, the transition maftrix was used to guide
the propagation of the sample across the different cluster subspaces. The use of the

transition matrix has the advantage of being able to cope with the discontinuous
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nature of the coefficient vectors.

Finally, in order to cope with unexpected moveruents in the body motions or
to aid recovery from tracking failure, a set of samples were used. Each sample was
associated with its fitness value. Initially the samples were assigned equal fitness
and distributed randomly in the coefficient cluster space. The process of visually
tracking a human body in motion then consisted of repeating the following steps:
1) A new set of samples were selected according to their fitness values such that,
samples with low fitness values are more likely to be discarded and vice versa. 2)
Each sample was then propagated as described above using the transition matrix
or random noise. 3) Next, the fitness values of the samples were recovered. 4) The
sample with the best fitness value was then chosen as the approximation of the
current body counfiguration. In the experiments carried out, it was found that an
increase in the number of clusters and samples decreased the body configuration

estimation’s error.

9.1 Future Work
9.1.1 Training Data Acquisition Process

Since the parameters of the models for the human body configurations were all ac-
quired through learning processes, it is inevitable that their accuracy is dependent
on the training data that was available. Should the training data be insufficient
or inaccurate, the resulting models would have accordingly contained errors or
inaccuracies. For example, should the training set have omitted a range of body
configurations, the resulting cluster models too would not cover them. Therefore,
a set of body configurations would have wrongly been labelled as invalid body
poses.

Currently, the existing hybrid vector acquisition system requires a subject

performing a gesture to sit in front of a camera set in a blue screen background.
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A video sequence of the gesture is first recorded. The contour and hand positions
are then extracted using background subtraction and colour tracking respectively.
The 3-D skeleton vertices are then hand labelled by manually locating various joint
positions on the body. Such a method lends to inaccuracies due to image noise for
the 2-D information and human error for the 3-D skeleton vertices. Additionally,
delays in the video recording process may cause certain body configurations to be
discarded unnecessarily.

A possible solution for overcoming such problems would be to synthesise the
training data. Advances in computer graphics techniques by now make this a
valid option. In the learning stage where time and computing resources are more
abundant, the components of the hybrid vector could be synthesised using com-
puter graphics. There, the 3-D skeletal information could be made available from
the 3-D virtual model of a human body. Subsequently, the contour and posi-
tions of the hands can be obtained from the projection of the 3-D model onto
the virtual camera plane. There would be no image noise affecting the contour or
body parts positions’ accuracy. Additionally, the rendering system could be con-
figured to automatically synthesise as many different possible body configurations

as possible.

9.1.2 Kinematics Constraints Learning Methods

The EM algorithm used for determining the parameters of the coefficient space
cluster-based constraints suffers two shortcomings. Firstly, there are no mecha-
nisms in the algorithm that allow the estimation of the required number of clus-
ters. Secondly, since the parameters are updated locally, the algorithm suffers
from convergence into local minima. Both of these factors can transpire to a sub-
optimal cluster model for capturing the valid coefficient vectors. In other words,
the constraints of the valid body configurations were modeiled inaccurately. Con-

sequently, this results in the possible generation of information for implausible
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body configurations during the visual tracking process. An indication of this was
found when increasing the number of clusters was seen to improve the tracking
accuracy.

A potential solution for overcoming these shortcomings may be the method
of Entropic Minimisation (Brand [50, 49]). There, the entropy of the cluster
model is minimised such that the resulting model has the simplest structure with
the best fit to available training data. Another possible solution could lie in
the method by Bishop and Winn [11}, where variational inference methods are
exploited for determining the parameters of a cluster model, including the number
of clusters. Their framework comprises of a mixture of sub-space components
where both the number of components and their subspace dimensionality are
determined automatically as part of the Bayesian inference procedure. Therefore,
this framework has the advantage of not requiring the user to set any significant
adjustable parameters. Additionally, the number of clusters is inferred from the
data, without the need for performing model optimisation using computationally

expensive cross validation methods.

9.1.3 Integration with Inverse Kinematics

While performing visual tracking, multiple hypotheses of different body config-
urations or samples were used. It was found that an increase in the number of
samples improved the accuracy of the tracking process. However, certain samples
were wasted, in that they contained visual information that was inconsistent with
that extracted from the image. For example, the visually tracked hand positions
may be totally different to the hand positions of the samples.

One can potentially improve this situation by integrating the invérse kinemat-
ics process into the propagation process of the samples. Using the hand positions
extracted from the image, inverse kinematics could be used to infer possible 3-D

skeleton configurations that have their hand positions. The clusters could then
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be used to “complete” the contour information such that it is consistent with the

3.1 skeleton.



Bibliography

1]

14]

[5]

A.Azarbayejani and A.Pentland. Real-time self-calibrating stereo person
tracking using 3-D shape estimation from blob features. Technical Report
363, Perceptual Computing Section, MIT Media Lab, Cambridge, MA, USA,
1996.

A.Azarbayejani, C. Wren, and A. Pentland. Real-Time 3-D Tracking of the
Human Body. In Proc. of IMAGE'COM 96, Bordeaux, France, May 1996.

A.Baumberg and D.Hogg. An Efficient Method for Contour Tracking using
Active Shape Models. Technical report, School of Computer Science, Univer-

sity of Leeds, April 1994.

A.Baumberg and D.Hogg. Learning flexible models from image sequences. In

European Conference on Computer Vision, May 1994.

A Bobick, S.Intille, J.Davis, F.Baird, C.Pinhanez, L.Campbell, Y.Ivanov,
A.Schtte, and A.Wilson. The kidsroom: A perceptually-based interactive
and immersive story environment. In Presence: Teleoperators and Virtual

Environments, pages 367-391, 1999.

A.Broggi, M.Bertozzi, A.Fascioli, and M.Sechi. Shape-based Pedestrian De-
tection. In Proc. of the IEEE I'V-2000, Intelligent Vehicles Symposium, pages
215-220, October 2000.

154



BIBLIOGRAPHY 155

[7]

[10]

[11]

[12]

[13]

[14]

[15]

A.Dempster, N.Laird, and D.Rubin. Maximum Likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, 39(1):1-
38, 1977.

A.Heap and D.Hogg. Wormbholes in shape space: Tracking through discontin-
vous changes in shape. In Proc. of the International Conference on Computer

Vision ’98, Bombay, 1998. IEEE Computer Society Press.

C.Barclay, J.Cutting, and L.Kozlowski. Temporal and Spatial factors in Gait
Perception that Influence Gender Recognition. Perception and Psychophysics,

23(2):145-152, 1978.

C.Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
1996.

C.Bishop and J.Winn. Non-linear Bayesian Image Modelling. In Proc. of the
ECCYV, 2000.

C.Cedras and M.Shah. Motion-based recognition: A survey. Image and
Vision Computing, 13(2):129-155, 1995.

C.Wren, A.Azarbayejani, T.Darrell, and A.Pentland. Pfinder: Real-Time
Tracking of the Human Body. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(7):780-785, July 1997.

D.Decarlo and D.Metaxas. The integration of optical flow and deformable-
models with applications to human face shape and motion estimation. In
Proceedings of the IEEE Computer Society on Computer Vision and Pattern

Recognition, June 1996.

D.Gavrila. The Visual Analysis of Human Movements: A Survey. Computer

Vision and Image Understanding, 73(1):82-98, January 1999.



BIBLIOGRAPHY 156

[16] D.Gavrila and L.Davis. Towards 3-d model based tracking and recognition

of human movement:a multi-view approach. In FG’95, Zurich, 1995.

[17] D.Hogg. Model based vision: A program to see a walking person. Image
Vision Computing, 1(1):5-20, 1983.

[18] D.Lowe. Fitting Parameterized Three-Dimensional Models to Images. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(5):441-450,
May 1991.

i19] D.Marr and S.Ullman. Directional selectivity and its use in early visual

processing. Proceedings of the Royal society of London, pages 151-180, 1981.

[20] D.Metaxas and D.Terzopoulos. Shape and Nonrigid Motion Estimation
Through Physics-Based Synthesis. IEEE Trans. Patlern Analysis and Ma-
chine Intelligence, 15(6):580-591, June 1993.

[21] E.Ong and S.Gong. A Dynamic 3D Human Model from Multiple Views. In
British Machine Vision Conference, pages 33-42. BMVA, September 1999.

[22] G.Johansson. Visual perception of biological motion and a model for its

analysis. Perception and Psychophysics, 14(2):210-211, 1973.
(23] G.Johansson. Visual motion perception. Sci. Am, 6(232):76-88, 1975.

[24] H.Graf, E.Casatto, and T.Ezzat. Face Analysis for the synthesis of Photo-
Realistic Talking Heads. In Proceedings of the {th Internation Conference on

Automatic Face and Gesture Recognition, pages 189-194, March 2000.

[25] H.Sidenbladh, F.D.Toerre, and M.J. Black. A Framework for Modelling the
Appearance of 3D Articulated Figures. In Proceedings of the 4th Interna-

tional Conference on Automatic Face and Gesture Recognition, pages 368

375. IEEE, March 2000.



BIBLIOGRAPHY 157

[26]

(27]

[28]

[29]

[30]

LHaritaogly, D.Harwood, and L.Davis. W4: Who? when? where? what?
a real time system for detecting and tracking people. In Proc. of IEEE
International Conference on Automatic Face and Gesture Recognition, pages

999-227, 1998.

I1.Kakadiaris and D.Metaxas. Model-Based Estimation of 3D Human Motion
with Qcclusion Based on Active Multi-Viewpoint Selection. In CVPR, San

Francisco, June 1996.

J.Aggarwal and Q.Cai. Human Motion Analysis: A Review. Computer Vision

and Image Understanding, 73(3):428-440, March 1999.

J.Davis and A.Bobick. The Representation and Recognition of Action Using
Temporal Templates. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’97), 1997.

J.Davis and A.Bobick. A Robust Human-Silhoutte Extraction Technique for
Interactive Virtual Environments. In Modelling and Motion Capture Tech-

niques for Virtual Environments, Geneva, Switzerland, November 1998.

J.Davis and A.Bobick. Virtual PAT: A Virtual Personal Aerobics Trainer. In

Proc. of the Workshop on Perceptual User Interfaces, Novemnber 1998,

J.Deutscher, B.North, B.Bascle, and A.Blake. Tracking through singulari-
ties and discontinuities by random sampling. In Proceedings of the Seventh

International Conference on Computer Vision, pages 1144-1149, September

1999.

J.Foley, A.Damm, S.Feiner, and J.Hughes. Computer Graphics: Principles
and Practice. Addison Wesley, 1991.



BIBLIOGRAPHY 158

[34] J.MacCormick and A.Blake. A probabilistic exclusion principle for track-
ing multiple objects. In Proc. of the International Conference on Computer

Vision 39, pages 572-578, September 1999.

(35] J.MacQueen. Some methods for classification and analysis of multivariate ob-
servation. In Proc. of the 5th Berkeley Symposium on Mathematical Statistics

and Probability, volume 1, pages 281-297, 1967.

136] J.Moody and C.Darken. Fast learning in networks of locally tuned processing
units. Neural Computation, 1(2):281-294, 1989,

[37] J.Ng and S.Gong. Learning pixelwise signal energy for understanding pixel
semantics. In BMVC, September 2001.

138] J.Regh. Visual Analysis of High DOF Articulated Objects with Application
to Hand Tracking. PhD thesis, School of Computer Science, Carnegie Mellon
University, April 1995.

[39] J.Regh and T.Kanade. Model-Based Tracking of Self-Occluding Articulated
Objects. In Proc. of the 5th International Conference on Computer Vision,

pages 612-617, Cambridge, MA, June 1995.

[40] J.Rourke and N.Badler. Model-based image analysis of human motion using

constraint propagation. [EEE Trans. PAMI, 2:522-536, 1980.

[41] J.Sherrah and S.Gong. Fusion of Perceptual Cues for Robust Tracking of
Head Pose and Position. In Pattern Recognition: Special Issue on Data and

Information Fusion in Image Processing and Computer Vision, 2000.

[42] J.Sherrah and S.Gong. Tracking Discontinuous Motion using Bayesian Infer-
ence. In Proc. of the Sizth Buropean Conference on Computer Vision, Dublin,

Ireland, June 2000.



BIBLIOGRAPRHY 159

[43]

[44]

[45]

[46]

[49]

(50]

[51]

J.Sullivan, A.Blake, M.Isard, and J.MacCormick. Object Localization by
Bayesian Correlation. In Proc. of the International Conference on Computer

Vision, pages 1068-1075, September 1999.

J.Wang and E.Adelson. Layered representation for motion analysis. In Proc.
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
361-366, 1993.

K.Akita. Image sequence analysis of real world human motion. Fatlern

Recognition, 17(1):73-83, 1984.

K.Sung and T.Poggio. Example-based learning for view-based human face
detection. Technical report, Artificial Intelligence Laboratory, Massachusetts

Institute of Technology, December 1994,

L.Xu and D.Hogg. Neural Networks in Human Motion Tracking. Image and

Vision Computing, 1997.

M.Black and A.Jepson. EigenTracking: Robust matching and tracking of ar-
ticulated objects using a view based representation. Int. J. Computer Vision,

1(29):5-28, 1998.

M.Brand. Structure learning in conditional probability models via an en-
tropic prior and parameter extinction. Technical report, Mitsubishi Elec-
tric Research Laboratory, Mitsubishi Electric Information Technology Center

America, August 1998.

M.Brand. Pattern discovery via entropy minimization. In Proceedings of

Uncertainty '99 (A and Statistics), 1999.

M.Brand. Shadow Puppetry. In Proc. of the Seventh Internation Conference

on Computer Vision, pages 12371244, Kerkyra, Greece, September 1999.



BIBLIOGRAPHY 160

[52]

[53]

[54]

[55]

[56]

[60]

[61]

M.Isard and A.Blake. Condensation - conditional density propogation for

visual tracking. Int. J. Computer Vision, 1998,

M.Jenkin. Tracking Three Dimensional Moving Light Displays. In Proc.
of the International Workshop on Motion: Representation and Perception,

pages 171-175. Elsevier, 1986.

M.Jones and T.Poggio. Model-Based Matching of Line Drawings by Linear
Combination of Prototypes. Technical report, M.I.T. A.L. Lab, 1995.

M.Leung and Y.Yang. First sight: A human body outline labelling system.
IEEE Trans. PAMI, 17(4):359-377, 1995.

M.Leventon. Bayesian estimation of 3-dhuman motion from an image se-
quence. Technical report, Massachusetts Institute of Technology, Cambridge,

MA 02139, July 1998.

M.Minsky. Steps towards artificial intelligence. In Proceedings of the Institute

of Radio Engineers, pages 8-30, 1961,

M.Murray. Gait as a Total Pattern of Movement. American Journal of

Physical medicine, 46{1):290-333, 1967.

M.Silaghi, R.Plankers, R.Boulic, P.Fua, and D.Thalmann. Local and Global
Skeleton Fitting Techniques for Optical Motion Capture. In N. Magnenat-
Thalmann and D. Thalmamm, editors, Modelling and Motion Copture Tech-
nigues for Virtual Environment, CAPTECH’98. Springer-Verlag, 1998.

M.Sonka, V.Hlavac, and R.Boyle. Image Processing, Analysis and Machine

Vision. Thomson computer press, 1993,

M.Yamamoto, A.Sato, and S.Kawada. Incremental Tracking of Human Ac-

tions from Multiple Views. In CVPE, 1998,



BIBLIOGRAPHY 161

[62] M.Yamamoto, Y.Ohta, T.Yamagiwa, and K.Yagishita. Human Action Track-
ing Guided by Key-Frames. In Proceedings of the 4th International Con-
ference on Automatic Face and Gesture Recognition, pages 354-361. IEEE,
March 2000.

[63] N.Oliver, B.Rosario, and A.Pentland. A Bayesian computer vision system
for modelling human interactions. In Proceedings of the Ist International

Conference on Computer Vision Systems, pages 255-272, January 1999.

[64] M. Oren, C.Papageorgiou, P.Sinha, E.Osuna, and T.Poggio. Pedestrian De-
tection Using Wavelet Templates. In Proc. of IEEE Conference on Computer

Vision and Pattern Recognition, Puerto Rico, June 1997,

[65] P.KaewTraKulTong and R.Bowden. Adaptive visual system for tracking low

resolution colour targets. In BMVC, September 2001.

[66] Q.Delamarre and O.Faugeras. 3-D articulated models and multi-view track-
ing with silhouettes. In Proc. of the IEEE International Conference on Com-

puter Vision, pages 716-721, September 1999.

[67] R.Bowden, T.Mitchell, and M.Sarhadi. Reconstructing 3D Pose and Motion
from a Single Camera View. In BMVC, pages 904-913, Southhampton, 1998.

[68] R.Kass and A.Raftery. Bayes factors and model uncertainty. Technical Re-
port 264, University of Washington, 1993.

[69] R.Polana and R.Nelson. Low level recognition of human motion (or how to
get your man without finding his body parts. In Proc. of IEEE Workshop on
Motion of Non-Rigid and Articulated Objects, pages 77-82, Austin, 1994.

[70] R.Rosales and S.Sclaroff. Learning and synthesizing human body motion
and posture. In Proceedings of the 4th International Conference on Face and

Gesture Recognition, pages 506-511. IEEE, March 2000.



BIBLIOGRAPHY 162

i71]

[72]

(73]

[74]

[75]

[76]

[77}

[78]

[79]

S.Gong, E.Ong, and S.McKenna. Learning to associate faces across views in
vector space of similarities to prototypes. In Proc. British Machine Vision

Conference, Southampton, September 1998.

S.Cong, E. Ong, and P. Loft. Appearance-based face recognition under large
rotations in depth. In Proc. Asian Conference on Computer Vision, Hong

Kong, January 1998.

S.Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall

International Editions, 1994.

S.McKenna and S.Gong. Tracking Faces. In Proc. IEEE International Con-
ference on Automatic Face and Gesture Recognition, pages 271-277, Vermont,

US, October 1996.

S.McKenna, Y.Raja, and S.Gong. Tracking colour objects using adaptive

mixture models. Image and Vision Computing, 17:225-231, 1999.

S.Ullman and R.Basri. Recognition by linear combinations of models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(10):992-1005,
October 1991.

T.Cootes, C.Taylor, D.Cooper, and J.Graham. Active Shape Models-their
training and applications. Computer Vision and Image Understanding,

1(61):38-59, 1995.

T.Cootes, G.Edwards, and C.Taylor. Active Appearance Models. In Proc. of
ECCYV 98, pages 485-498, 1998.

T.Darrell and A.Pentland. Robust estimation of a multi-layered motion rep- -
resentation. In Proc of the IEEE Workshop on Visual Motion, pages 173-178,
1991.



BIBLIOQGRAPHY 163

[80] T.Darrell and A.Pentland. Space-time gestures. In Proc. of IEEE Conference
on Comgputer Vision and Pattern Recognition, pages 335-340, New York,
1993.

[81] T.Heap. Learning Deformable Shape Models for Object Tracking. PhD thesis,
School of Computer Studies, University of Leeds, UK, September 1997.

[82] T.Heap and D.Hogg. Towards 3-D hand tracking using a deformable model.
In FG’96, pages 140~145, 1996.

[83] T.Heap and D.Hogg. Improving specificity in pdms using a hierarchical ap-
proach. In BMVC, pages 80-89, Essex, UK, September 1997.

[84] T.Moeslund and E.Granum. Multiple Cues used in Model-Based Human
Motion Capture. In Proceedings of the 4th Internatinoal Conference on Au-

tomatic Face and Gesture Recognition, pages 362-367. IEEE, March 2000.

[85] T.Vetter. Synthesis of novel views from a single face image. Infernational

Journal of Computer Vision, 28(2):103-116, 1998.

[86] T.Vetter and T.Poggio. Linear Object Classes and Image Synthesis From
a Single Example Image. Pattern Analysis and Machine Intelligence,

19(7):733-741, July 1997.

[87] T.Vetter and V.Blanz. Estimating coloured 3-D face models from single im-
ages: An example based approach. In Proceedings of the ECCV’98, Freiburg,
Germany, 1998.

[88] Y.Ivanov, C.Stauffer, A.Bobick, and W.Grimson. Video surveillance of inter-

actions. In IEEE Workshop on Visual Surveilance, Ft. Collins, CO, 1999.

[89] Y.Iwai, K.OGaki, and M.Yachida. Posture Estimation using Structure and
Motion Models. In Proceedings of the 7th International Conference on Com-

puter Vision. IEEE, March 1999.



BIBLIOGRAPHY 164

[90] Y.Wu and T.Huang. Capturing Articulated Human Hand Motion: A Divide-
and-Conquer Approach. Proc. of ICCV’99, pages 606-611, 1999.





