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Abstract

The visual analysis of human motion is receiving increasing attention from computer
vision researchers who are motivated by its wide spectrum of potential applications,
such as man-machine interfaces, video conferencing, and surveillance. An important
issue that arises in the automation of many security and surveillance tasks is that of
monitoring the movements of people. This thesis addresses the problem of tracking
people in an indoor environment.

The automatic tracking system developed in this thesis uses two static, widely sepa-
rated and un-calibrated cameras to monitor an indoor environment. The tracking task
starts with matching subjects’ images between successive frames of a single camera.
When a camera cannot track the subject well, the tracking information of another cam-
era is used to disambiguate the matching. Thus the system needs to match the subject
images across different camera images by establishing feature correspondence.

This thesis applies Bayesian Belief Networks (BBNs) to combine multiple visual
modalities for matching subjects’ images across camera images. These modalities are
based on multi-view geometry, sparse landmarks in the scene and the 2D image appear-
ance of the subject. Gaussian distributions are used to model the feature densities of
different modalities for matching subjects across camera images. We also address the
problem of lack of colour constancy in a multi-camera system that arises from variations
in apparent colour values brought about by different physical processes. To compensate
for these appearance variations, the Support Vector Regression (SVR) method is adopted
for learning the mapping of visual appearance between two camera images. The benefits
of applying BBNs to combine multiple modalities is verified by testing on a large set
of sequences and comparison with a naive Bayes method. Experimental results demon-
strate that the system can robustly track multiple people and maintain their identities

by using two widely separated and un-calibrated cameras cooperatively.
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Chapter 1

Introduction

The visual analysis of human motion is receiving increasing attention from computer
vision researchers. The research is critical to looking af people [123, 51], which covers
face recognition, gesture recognition, and human tracking motivated by a wide range of
applications, such as man-machine interfaces, video conferencing and surveillance. The
ability to understand human motion is required if a machine is to interact intelligently
and effortlessly with people. Due to the lack of computational power, there were few
robust real-time applications during the 1980s [123]. Recently, faster computers have
enabled researchers to consider more sophisticated algorithms for real-time human mo-
tion analysis. This thesis focuses on one specific problem in this growing field: tracking
multiple moving erect people {i.e. walking continuously without extreme motion such as
running) in an fixed indoor environment with artificial lighting using two static, widely
separated and un-calibrated cameras. An introduction to camera calibration (an process

to estimate camera parameters) is given in Appendix A.

1.1 Introduction

Visual tracking has long been studied in computer vision to allow seemingly straight-
forward human tasks to be carried out by automated systems. For example, many re-
searchers have studied mobile robots that visually locate landmarks, avoid obstacles [142]
and navigate within a known environment [143]. Other researchers have focused on per-
ception of vehicles, such as tracking multiple cars in a natural open scene {164] and
recognising different types of vehicles {157]. Recently, researchers have begun to ad-

dress human motion either involving the body parts [83] or the whole body of a moving

16



CHAPTER 1. INTRODUCTION 17

human without identifying specific parts of the body structure [42, 24].

Most methods for tracking humans use image sequences from a single-camera system
which can only cover a limited area from a restricted single viewing angle (camera
orientations relative to the object) {3]. Several different approaches have been proposed
to relax this limitation, such as use of active cameras [131], wide-angle cameras [68],
omni-directional camera systems [111], multiple static cameras [116] or combinations of
these different systems [158]. Different approaches have different advantages in terms
of tracking moving objects. Tracking using active cameras mounted on pan and tilt
platforms enables the system to actively follow moving objects and to provide continuous
visual information, whereas the wide angle and omni-directional camera can cover a
wider area. The use of several widely separated cameras provides a potential answer to
resolving the matching ambiguity by obtaining the scene image from different viewing
angles and offers a possible 3-Dimensional (3D} solution [92]. Moreover, a multi-camera
system can fuse data from different cameras for a possible interpretation which might not
be available from a single camera [15]. Although some researchers have been interested
in using multiple active cameras [163], the use of static cameras which do not require
ego-motion (i.e. camera motion) estimation can reduce the complexity of a system.
This research uses two static widely separated and un-calibrated cameras to track whole

bodies of multiple people.

1.2 Problem Domain

Intuitively, increasing the number of cameras might be an effective way to increase the
power of a system. However, the complexity of a multi-camera system also introduces
two nontrivial issues: (1) how to locate the cameras in a given scene, and (2) how to fuse
the data obtained from multiple cameras [129]. The first issue is related to the sensor
planning problem, namely determining the view-point of different cameras in order to
achieve the vision task {162]. One example is the art gallery problem, which determines
the minimum number of observers {or cameras) necessary to cover a room in an art
gallery such that every point in the room is seen by at least one observer [101}. Different
methods for locating the cameras influence the functionality and capability that the
system can provide. This thesis focuses on the second issue with the aim of fusing

multi-camera data in order to make tracking more robust.
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To investigate the full potential of using a multi-camera system to track multiple
people, this thesis addresses the following problem:

How can we effectively integrate visual modalities, or cues, across different
camera images in order to track multiple people using two cameras coopera-
tively?

By fusing multi-camera data in tracking, a system can reduce visual ambiguity due
to additional information provided by different cameras monitoring the same scene. In
general, tracking is performed by establishing motion correspondence of objects between
consecutive image frames from a single camera. By using multiple cameras to monitor
a given scene, the system can utilise the information from different cameras to disam-
biguate the matching if matching in one camera becomes ambiguous. The system can
communicate the tracking information among different cameras in order to maintain vi-
sual tracking cooperatively. To communicate tracking information, the system needs to
establish the correspondences of different subjects between different cameras. This pro-
cess of inter-camera subject correspondences can also be used for a system to track and
follow people as they move through a large area covered by different cameras [3] (such
an extension of monitoring a large area is beyond the scope of this thesis). Although
some researchers have proposed solutions to this inter-camera subject correspondences
problem, several key issues (discussed in Section 2.2.2) remain that are yet to be properly

considered.

1.3 Methodology

Typically, establishing correspondence between two images (also called the image regis-
tration problem [18]) can be achieved by three general approaches: feature-based, flow-
based and iconic-model-based matching {100, 4]. The feature-based approach involves
finding a match between the locations of points in two images. The underlying assump-
tion of this method is that the corresponding points can be derived from two images
using some low-level operators. The image structural components used by the opera-
tors to determine the locations of the points, together with the descriptive attributes,
are often referred to as fokens [4]. In this thesis, these image structural components
and descriptive attributes are called features. The flow-based method involves finding
a transformation between two images that maps corresponding points between the two

images onto one another and uses the brightness constancy assumption to compute the
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visual motion between two images. The iconic-model method uses correlation templates
for matching. It is generally suitable for any type of object, but only when the mo-
tion between images is small enough such that the appearances of the corresponding
objects in the two images are highly correlated. With two widely separated cameras,
a scene is captured from two largely different views. There are significant image vari-
ations. Therefore, we consider that the final two approaches are not suitable for our
inter-camera correspondence problems. This thesis essentially adopts a feature-based

approach to match subjects’ images across images from two widely separated cameras.

1.3.1 Feature-Based Matching

In general, feature-based matching includes two steps [100]:

1. extract a set of features from the images (e.g. point, edge, shape, length, orienta-

tion, region and colour) to represent the image data, and

2. find correspondences between features in different images which correspond to the

same entity in the world, usually called the correspondence problem.

Both steps in feature-based matching can be difficult [2]. In the first step, features ex-
tracted from different camera images in general correspond to different parts of an object
in the 3D world which makes matching difficult. Even if the features corresponding to
the same part of the 3D object, they are extracted from images taken from different
cameras with different physical processes (e.g. imaging process). The image features
from different imaging processes can have different appearances due to different camera
parameters (both optical and geometric), viewing geometry (orientation of the object
surface normal with respect to the camera and the distance between them) and illumi-
nation geometry (orientation of the object surface normal with respect to the illuminant
and the distance between them) [159]. The features in different camera images are ob-
tained using different camera coordinates. Therefore, matching features obtained from
different camers images would require transformation into a common coordinate system.
All these make the correspondence problem extremely difficult to solve and make it the

bottleneck of all multi-camera applications {100, 4].

1.3.2 Wide Baseline Stereo Matching

The work presented in this thesis uses two widely separated static cameras to track

people. Occlusion causes one of the main difficulties in tracking multiple people consis-
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tently over time. Occlusion results from other objects being situated between tracked
objects and the camera in such a way that parts or the whole of the target object are
not visible. However, by viewing the same scene from two widely-separated viewpoints,
occlusions are less likely to occur simultaneously in both camera images. To disam-
biguate the matching and resolve the occlusion problem, the system needs o establish
the correspondences of different subjects between different cameras. This inter-camera
correspondence problem is related to the so-called wide baseline stereo matching prob-
lem where the line between the optical centres of the two cameras (i.e. baseline) is
fairly wide, compared to the traditional stereo vision system. Therefore, there are large
image variations between the two images to be matched. Traditional correlation-based
methods fail to match due to the large differences in images [125]. On the other hand,
traditional stereo vision techniques use two cameras for recovering the depth of objects
in the scene (distance between the camera and the object), usually with two cameras
closely placed [6], leading to small variations between images (e.g. [88]). (A good survey
of range vision systems can be found in [69].) The matching techniques employed by
conventional stereo are not suitable for wide baseline matching.

Recently, a number of researchers have devised techniques to improve stereo match-
ing, e.g. multiple-baseline stereo methods [85] using several images from different viewing
angles simultaneously. Still, individual camera images must generally be close together.
In general, stereo with longer baseline yields better depth precision due to wide triangu-
lation, but also increases the likelihood of false matches due to larger image variations.
On the other hand, a shorter baseline suffers less precision, but has the advantage of a
smaller range of search for the best match [188]. Although wide baseline stereo matching
is difficult, it is not only desirable for visual tracking but also for many other applications,
guch as scene reconstruction with higher depth accuracy. In the context of this thesis,
the visual information of an object can be very different in two different camera images,
making the matching less reliable. The system therefore requires effective integration of

multiple visual modalities in order to make the matching more reliable.

1.4 The Contributions

The work presented in this thesis contributes to the field of visual tracking by developing
a multi-camera. system to track multiple moving people cooperatively using two widely

separated cameras. In particular, the main contributions are:
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e Using Bayesian Belief Networks (BBNs) for adaptively combining multiple visual

modalities to match subjects from two widely separated cameras.

e The use of multi-view geometry to match subjects across camera images with
explicit consideration of the fact that, in an indoor cluttered environment body

parts of people can be occluded.

e Using sparse landmarks to infer the spatial relationships of image positions of the
corresponding subjects in two camera images. (We define the “two camera im-
ages” as two images captured from two static, widely separated and un-calibrated

cameras, and use it throughout this thesis).

e Using sparse landmarks to obtain the 3D relative positions of people in a 3D scene

with respect to the positions of landmarks and cameras.

e Using the Support Vector Regression (SVR) technique for learning the mapping of
the visual information between two cameras in order to compensate for appearance
variation and thus make inter-camera matching more reliable. In particular, the

lack of colour constancy in a multi-camera system is addressed. .

1.5 Thesis Overview

This introduction has given an overview of the research presented in this thesis. The

rest of the thesis is organised as follows:

e Chapter 2 provides a review of the preprocessing, including detection and segmen-
tation of a person or a group of people, and human tracking methods, covering a

variety of tracking systems.

e Chapter 3 gives an overview of the two-camera tracking system, before describing
tracking using a single camera involving preprocessing tasks (such as detection,

segmentation, feature extraction) folowed by tracking based on motion continuity.

e Chapter 4 describes how to fuse multiple modalities and deal with data uncertainty
for matching subjects across two cameras. The BBN is applied to fuse multiple
modalities and thus makes matching more reliable. This framework is needed
because in practice, visual modalities are unreliable, conflict with each other or
only provide partial information. A system has to effectively combine different

modalities and cope with such uncertainty.
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e Chapter 5 and Chapter 6 present details of inter-camera matching techniques.
Chapter 5 focuses on the geometry-based modalities while Chapter 6 focuses on
the recognition-based modalities. Since the system consists of two static cameras,
multi-view geometry is adopted to address the inter-camera correspondence prob-
lem. Homography (planar projective transformation) and epipolar geometry are
used to geometrically constrain the image positions of the corresponding subjects
from two widely separated cameras. Since parts of a subject may not be seen
in the images in a cluttered indoor environment, the feature-selection problem is
explicitly considered in order to apply multi-view geometry effectively. Moreover,

scene knowledge, i.e. sparse landmarks, is also employed to aid this matching task.

e Chapter 6 describes recognition-based modalities to constrain inter-camera subject
matching. The appearances of the corresponding subjects in two camera images
can be very different, so matching based directly on visual appearance is less
reliable. To address this problem, this thesis proposes to learn the mapping of
apparent colour and apparent height of subjects’ images between the two camera
images and use this mapping to estimate the appearance of the corresponding

subject across cameras.

e Chapter 7 demonstrates the results of employing BBN to fuse these geometry-based
and recognition-based modalities for matching subjects across different camera

images in order to track people using two cameras cooperatively.

e Chapter 8 concludes the work presented in this thesis, and discusses the limitations

of the system and possible further extensions to this research.



Chapter 2

Background Review

This chapter gives an overview of related research for tracking people which includes pre-
processing and tracking tasks. The preprocessing task consists of performing detection
and segmentation of a person or a group of people in a single camera image and multiple
camera images. The tracking task concerns tracking people using a single camera and

multiple cameras.

2.1 Preprocessing

This section first discusses preprocessing related to human motion analysis before going
into tracking of people. The purpose of preprocessing is to find the Regions Of Interest
(ROT) in the image, determining if the regions contain people and segmenting individuals
from a group of people or other objects such that the system can perform tracking of

the selected regions.

2.1.1 Foreground Detection and Background Modelling

The main purpose of detection is to find selective attentiveness and capture essential
visual information in the image. The detected selective attentiveness is then tracked
over time based on establishment of correspondence of the selective attentiveness between
successive frames of an image sequence. This detection process is critical for a person-
tracking system as a system can fail if the subjects are not correctly detected at this
stage. Moreover, false alarms can cause a system not to function properly.

This thesis is interested in tracking moving people and their image motion is usually

significant enough to be detected [53]. Image motion is one of the most popular cues used

23
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to detect people for tracking. In most studies, it is assumed that there is no background
motion in the scene, namely the image brightness (intensity) and colour {(apparent colour)
only changes because of the motion of foreground objects. Thus, the temporal variation
in the intensity and colour values reveal the motion of the foreground objects. This
temporal change can be detected with a simple pixel-based frame differencing followed
by suitable thresholding.

The temporal differencing method is computationally inexpensive but has limita-
tions [156]. For example, it cannot deal with situations involving changes in the back-
ground (i.e. objects being introduced or removed from the background), slow mov-
ing objects and lighting changes. Some researchers have introduced extensions to the
method to alleviate these problems in dynamic scenes. For example, Cheng and Kehtar-
navaz [31] used block-wise frame differencing to lower the sensitivity so increasing the
system robustness to noise. Olson and Brill [115] used a pre-stored background image
without any moving objects as a reference émage in order to detect any non-background
objects. Thus, slow moving objects can be detected. However, without re-initialising
the background image, errors in the background image accumulate over time so that
the detection is only effective for short-term tracking or in a scene without significant
background changes.

To adapt the background image to the current image frames for increasing detection
accuracy, a simple method is to average the images over time to obtain a background
approximation which is similar to the current background [55]. However, this method
can only handle situations where objects move continuously and the background is visible
most of the time. It is not effective for scenes with many objects or slow moving objects.
Moreover, the rate of adaptation to the changes in the scene is slow and can only have
a single predetermined threshold for the whole image frame. Another method involves
the use of a linear Wiener filter to predict the intensity value for each pixel level based
on recent history [187].

Recently, more complex and robust models for real-time background analysis have
been proposed given the increased computational power available. The intensity or
colour of each pixel can be modelled as a Gaussian distribution which is adaptive to the
changes in the scene using a simple adaptive filter [181] or a Kalman filter [133]. This
basic adaptive model does have a pixel-wise automatic threshold using statigtical meth-

ods, but it cannot handle a background with many non-static objects, e.g. tree branches
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and leaves in an outdoor scene. In this case, the intensity value varies significantly so
that the intensity distribution of each pixel is multi-modal and thus the single Gaussian
distribution model usually fails.

In order to cope with the non-unimodal background problem, different approaches
have been used. One approach is to classify the image into different components and use
a single Gaussian distribution to model each component. Friedman-Russel [50] modelled
each pixel value as a weighted combination of three distributions corresponding to three
different scene components which are car, shadow and road. Although each pixel is
modelled with three different distributions, the scene background (i.e. road) is still
agsumed to be a unimodal distribution.

Another approach is to consider the background as multi-modal without explicitly
considering different scene components. Stauffer and Grimson [156] used a mixture of
Caussian distributions to model the recent history of each pixel. The number of Gaussian
distributions is small (in the range of 3 to 5) and is determined by the computational
power available. The threshold for background subtraction is determined by the standard
deviation of the background model. The pixel outside 2.5 standard deviation is marked
as a foreground pixel. This method, using a small number of distributions, cannot handle
the case where the background varies with high frequency, since more modes exist and
need to be covered in the wide range of variations. On the other hand, a background
modelled with a wide distribution can be less sensitive for detecting the foreground
object. To cope with this problem, Elgammal et al. [46] used a non-parametric method
to model the recent samples of the background. The density estimation with a Gaussian
kernel function enables each sample of each pixel in a frame to be considered as a single
Gaussian distribution. This method makes the estimation more accurate and quickly
adapts to scene changes but can be computationally very expensive.

Colour of human skin can also be used to focus attention on image regions corre-
sponding to the face or hands of a person [53], thus giving an indication of the existence
of people. Human face detection has always been an important problem for face, ex-
pression and gesture recognition. For example, McKenna et al. [104] built a real-time
face detection and tracking system. They have demonstrated that in a Hue-Saturation
(HS) colour space (see introduction to HS space in Appendix E}, human skin occupies
a relatively small cluster and can be used to segment a human head from a complex

noisy scene. Yow and Cipolla {186] have also used a colour-based approach to label each
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pixel according to its similarity to skin colour, and subsequently label each subregion
as a face if it contains a large blob of skin-like pixels. However, there are two main
limitations in using skin colour for detecting people: (1) there might be skin-like pixels
in the background image, and (2) the body parts with skin-colour might not be visible
in the image.

Recent studies suggest that data fusion is a promising approach to increasing detec-
tion accuracy. Some researchers fused different visual modalities to detect people. For
example, motion and colour are used for obtaining better person detection [148, 49].
Other researchers focused on fusing the data from different cameras (i.e. sensor fusion).
Tvanov et al. [72] used multiple cameras for static background subtraction (no moving
background objects). This method used prior knowledge of the pixel-to-pixel correspon-
dence between the background images of two cameras. Since corresponding pixels of
the background in two camera images ideally have the same or very similar colour and
intensity, the foreground pixels can then be extracted from the corresponding pixels in

two camera images with different colour and intensity.

2.1.2 Single Person Detection

Although a degree of selective attentiveness can be obtained by performing perceptual
grouping of motion-based and colour-based modalities at the pixel level, such attention
in the image is rather crude [53]. It provides a focus of attention without determining
whether people are really present in the selected regions of interest. The gystem needs
more knowledge for performing this task. Such knowledge would be used as a model to
perform perceptual search in the selective regions in order to decide whether the objects
in these regions are humans. This process is called “person detection” in this thesis. The
main challenge facing a vision-based human detector is the high degree of variability of
the appearance of subjects due to articulated motion, partial occlusion and variable
clothes texture.

In some applications, person detection might not be that important, such as tracking
people in an office environment where there are less likely to be non-humans around.
On the other hand, it might become essential in other applications. For example, to
monitor an outdoor scene, a surveillance system has to distinguish between humans and
non-humans. Cutler et al. [38, 37] applied time-frequency analysis.to characterise the

periodic motion of people, vehicles and running dogs from airborne video sequences.
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They then used the periodicity of motion learnt from the video sequences to classify and
track objects in an outdoor scene.

Structural properties of a subject’s image can also be used for person detection. A
shape-based method was used for this purpose by Cai and Aggarwal [23]. They used
multiple cameras to track people in an indoor environment. To distinguish the human
images from those of non-humans, they used moment invariants extracted from the sil-
houettes of subject images as shape features based on Principal Component Analysis
(PCA). Lipton et al. [96] extracted and tracked moving targets from a real-time video
stream. They first learned the shape properties of image-patches for different objects. In
the motion region obtained from temporal differencing, the learnt properties were used
to classify the objects into one of three pre-defined categories: human, vehicle or back-
ground clutter. Papageorgiou and Poggio [118] reported a pedestrian detection system.
They trained a Support Vector Machine (SVM) classifier with local wavelet features
derived from a set of training examples of object images (i.e. human and non-human).
Their system searched for pedestrians by shifting the detection window over an image
and classifying whether the window contained a pedestrian using the SVM classifier.
The system has to search the whole image at multiple scales for pedestrians and is com-
putationally extremely expensive, since it does not perform foreground detection to find
the regions of interest before detecting people. However, this could also be the advan-
tage of this approach. For example, when the sequence is broken (some image frames
missing), is obtained from a moving camera or is after occlusion, a system relying on
temporal-differencing does not possess the motion information to detect the foreground
whereas this approach can still succeed since it does not need temporal information for
detection. They also extended this static image detection technique to a system based
on dynamics in images [117]. Instead of learning from a static image pattern, SVM was
used to learn the wavelet features of 5 consecutive image frames containing a person.

These kinds of image-based person detection systems have been applied to some
practical applications. One example is an automatic airbag deployment system. Krumm
and Kirk [90] used visual information to prevent the airbag from operating when the seat
of a vehicle is empty or holds an infant. They learnt the images of the passenger seat,
taken from a video camera mounted inside the vehicle, based on PCA; and classified the
seat as either empty, containing a rear-facing infant seat, or occupied by a person using

the Jearnt eigen-images. One possible limitation of this type of image-based algorithms
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is the difficulty of generalising the algorithm to different imaging situations with varying
pose (i.e. position and orientation), illumination variations and partial occlusion.
Another approach based on multiple sensor modalities has been used to classify a
person in a scene [145]. The system performs person detection based on visual and
infrared modalities individually and then fuses the results from two sensors. The visual
images provide shape information but are difficult to segment due to intensity variations.
On the other hand, the thermal image tends to be noisy and the precise shape information
is hard to determine. By fusing redundant data of different modalities, the detection

accuracy is improved.

2.1.3 Segmentation of a Group of People

All the methods discussed in Section 2.1.2 focused on detection of a single person. Most
of the existing systems have assumed that there is only one person in the foreground [37].
However, people tend to interact with each other, and often appear to move as a group.
Recently, visual interpretation of groups of people and their motion has begun to attract
the attention of researchers in computer vision. However, this visual task is difficult
since each individual person in a group is not visually isolated, and usually is partially
or totally occluded. For example, Lipton et al. [96] found that their tracking system,
based on shape information, tends to mis-classify pedestrians walking together as a
vehicle. The difficulty in tracking a group of people lies in the occlusion problem and a
system needs to obtain the visual information of each individual in order to track people.

To handle this occlusion problem, different methods have been proposed. Researchers
at Carnegie Mellon University [192] developed a stereo-based real-time pedestrian de-
tection system. They used stereo-based segmentation to extract objects from the back-
ground and employed a neural network-based method to classify pedestrians in various
poses, shapes, sizes, clothing, and occlusion status. The segmentation is performed by
finding the discontinuities in the stereo disparity map, which usually should oceur af
object boundaries. The disparity is defined as the difference between the horizontal
coordinates of the two corresponding points in the images and is inversely proportional
to the depth. They tested the feasibility of their system on the crowded urban streets.
This stereo-based segmentation was also used by Darrell et al. [41] to segment a single

person from a group of people and background objects in an indoor environment.
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In contrast to the stereo-based method, Haritaoglu et al. [57, 58] used silhouette
information to segment a group of people into its constituent individuals. They then
used a motion model and a correlation-based template matching method to track people.
Their system can also classify whether or not a foreground region contains multiple
people and can count the number of people in the group by the nurnber of heads in the
foreground region.

Other researchers applied the motion-based approach to this problem. Cutler and
Davis [37] used the average image size of a person to coarsely segment the foreground to
different sub-regions based on the knowledge of the distance between the camera and the
people. The homogeneous periodicity of motion is then used to refine the sub-regions
in order to count the number of people in the image obtained from the airborne video

sequence.

2.2 Tracking People

Having discussed preprocessing in relation to human motion analysis, the work of track-
ing people is reviewed here. To this end, many criteria could be used to characterise
existing methods. For example, they can be based on the types of models used (stick
figures, 2D templates, or volumetric models), the dimensionality of the tracking space
(2D or 3D), and the sensor configurations (active vs static and single vs multiple). Since
this research focuses on tracking people using multiple cameras, the third criterion is
adopted to characterise previous work into two classes: (1) single camera based track-
ing and (2) multiple camera based tracking. Some good reviews based on the first two

criteria can be found in (3, 51].

2.2.1 Single Camera Based Tracking

Typically, the methods used for tracking with a single camera build correspondences of
the jmage structures between consecutive frames. This tracking process involves match-
ing pixels, points, lines, contours, and blobs of objects based on their motion, shape,
texture, colour and other visual information [4]. As mentioned in Chapter 1, this thesis
adopts a featured-based tracking approach which in general needs two steps: feature
extraction and feature correspondence. In the first step, image locations satisfying cer-
tain well-defined feature characteristics are identified in two consecutive images. This

step is very important for tracking because the following matching step is based on the
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properties of the chosen features. Generally, the criterion for selecting a good feature
is its robustness to both noise and appearance change, e.g. size, brightness, contrast.
Different types of features have different advantages and weaknesses. Low-level features,
such as edge points, are easier to extract but relatively more difficult to track than
high-level features, such as contour, region and colour. This is because a large number
of candidates for low-level features need to be considered. This can result in matching
ambiguity. On the other hand, high-level features are fewer in number and have rich
characteristics that can be used for matching, thus increasing matching accuracy. How-
ever, the positional ambiguity induced by region-based features can degrade matching,.
The commonly used geometric features for tracking people are points or blobs. The
notion of “blobs” as a representation for image features has a long history in computer
vision and has had many different mathematical definitions [113]. In the person tracking
context, it is usually obtained from a compact set of pixels that share a visual property
that is not shared by its surrounding pixels, e.g. motion, colour, texture. These blobs
are often called “motion blobs” or “colour blobs”, referring to its visual property.

Detection and analysis of human motion in real time from video imagery have only
recently become viable, such as the tracking system Pfinder [181] and W* [56, 58]. The
general philosophy behind these techniques involves the segmentation of an image, or
video stream, into foreground and background regions. After detection, the foreground
regions are then classified as human or non-human. The task of tracking people is
achieved by matching regions of interest (i.e. subjects’ images) between consecutive
frames. Most researchers building person tracking systems addressed the problems of
detection reliability and tracking despite shadowing and occlusion.

Pfinder (“person finder”) [181], the MIT Media Lab’s system, is capable of tracking
body parts of a person and interpreting their behaviour in real time with a single fixed
camera. It has been used as a real-time interface device for many applications, such as
video games and virtual reality assuming static background. Technically, the output of
Pfinder is the silhouette of a person in the scene obtained by masking out the background.
The system first performs temporal differencing by modelling each pixel of background
with a single Gaussian model and updating with a simple adaptive filter. The foreground
pixels are grouped, based on the spatial and colour similarity. The body parts are then
found by employing blob statistics and contour descriptions to roughly indicate the

positions of hands, feet, and torso. A feature vector of the blob corresponding to a body
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part is formulated as (z,y,Y,U, V), consisting of spatial, (z,y), and colour, (Y,U,V),
information. After initialisation, the body parts labelling relies on tracking blobs using
maximum a posteriori probability approach based on a 2D contour model. However,
this system can only track and analyse the motion of a single subject.

W* [56, 58], the University of Maryland’s system, is designed for real time detection
and tracking of multiple people using a single fixed camera. In order to tackle the oc-
clusion problem and maintain the identities of the tracked people, the system uses an
appearance template model of the whole body to match the subjects before and after
occlusion. However, it was reported that this view-based template does not always apply
because the system does not have a mechanisim to update the template during occlusion
when the appearance of the subject can change significantly [56]. To overcome this prob-
lem, the use of a multi-camera system to analyse the occlusion problem was suggested
in their previous work [56]. In order to cope with the occlusion problem, the previ-
ous system [56] was extended to incorporate sithouette information in order 1o segment
groups of people into individuals (58]. As discussed in Section 2.1.3, the system [58] then
tracks the head of each person in the group using correlation-based template matching.
However, the head of each individual might not always be visible and the template used
to track a person’s head can still have the same problem, namely appearance variation
during occlusion, at which time the system does not have a mechanism to update the
template.

The KidsRoom system [70] at the MIT Media Lab is another real-time person track-
ing example using a single camera. A notable difference of this system from Pfinder
and W* is its use of contextual information of the scene. The system tracks multiple
children in a play-space by taking advantage of the knowledge of a “closed-world”. A
closed-world is a space-time domain where the knowledge of all possible objects present in -
the image sequences is modelled. The system combines four different image features for
matching subjects between consecutive frames, i.e. estimated blob size, colour, position
and velocity. These modalities are combined assuming independence and with different
weights determined by the “closed-world” knowledge. In particular, they considered the
correspondence of subjects between consecutive frames globally, i.e. they evaluate the
matching for all subjects simultaneously. The reason for matching globally is that local
evaluation (i.e. consider the matching of each subject independently) can result in 2

conflicting match (see Figure 4.2). As in the case of W* [56], it was reported that the
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change of appearance and motion of the subjects during occlusion causes mis-tracking.
Moreover, it was also reported that the system has no mechanism for detecting a ques-
tionable match. Finally, it was suggested that a change to their system architecture (i.e.
a single camera) is required in order to overcome these problems.

Analysis of a dynamic and cluttered scene involves collection of visual evidence ex-
tracted from the imaging process, which is almost always subject to uncertainty and
incompleteness due to noise, occlusion, and the general ill-posed nature of the inverse-
perspective projection [21]. Based on a single modality of visual information to track
multiple people, it can be less reliable. For example, Rosales and Sclaroff [135] used an
extended Kalman flter to track multiple moving people and used the predicted positions
to resolve the occlusion problem. It was reported that the use of the motion modality
alone is insufficient for handling certain tracking scenarios, such as people changing di-
rection when they meet and the occlusion is present in the image. This is because the
motion of a walking human is difficult to model due to the potential instability of human
motion. Another relevant example is tracking based on the colour modality alone. Khan
and Shah [87] used a mixture of Gaussian distributions to model the colour of whole blob
and tracked people based on the colour. However, their system cannot reliably handle
situations where people’s clothes have the same or similar colour.

Although tracking can be made more robust by combining multiple visual modalities,
difficulties still remain due to occlusions or a cluttered background, as reporfed in the
KidsRoom system [70]. This difficulty is mainly due to no mechanism available for
updating the subject appearances during occlusion. Some researchers have tried to
overcome this limitation by using different types of cameras or a careful choice of camera
location. Naya [111] used an omni-directional camera composed of a parabolic mitror
and a video camera to obtain a panoramic image in order to track multiple people in a
room. There are, however, two limitations to this approach. First, the low resolution of
the image may not provide enough visual information for subsequent visual tasks, e.g.
face recognition. Second, the visual information is still limited to a single viewpoint.
Other researchers attempted to increase the mobility of the system by using an active
camera to track people [113]. In general, this type of architecture is designed to track
a single person by actively controlling the camera. Apgain, the visual information of the
system is obtained from only one viewpoint. Rossi and Bozzoli [138] mounted a camera

vertically to track and count people from the ceiling. Occlusion of multiple subjects
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was avoided due to the viewing angle of the camera. The system tracks people based
on position estimation. However, the monitoring area without occlusion in this case is
limited to the area not far from the camera. In short, a single-camera system has limited
access to useful visual information. The occlusion problem largely remains difficult to

resolve.

2.2.2 Maultiple Camera Based Tracking

Only recently have researchers begun to use multiple cameras for human motion anal-
ysis. There are different reasons to use a multi-camera system, such as increasing the
monitored area and /or obtaining visual information from different viewpoints. This the-
sis uses multiple cameras because simultaneous occlusions in both cameras are less likely
given occlusion in one camera. Figure 2.1 shows an example of a camera setup where
two cameras have an overlapping FOV and a person, shown as an ellipse, appears in
the overlapping FOV. When another person is in the shaded areas A, and A in the
diagram on the left, one or other person will be occluded from the point of view of the
Jeft camera. Given occlusion in the left camera, however, occlusion will only occurs in
the right camera image, if the second person appears in the areas A, or Ag (see the
diagram on the right). Assuming the probabilities that people appear at different places
in the overlapping FOV are equal, the probability of occlusion in the right camera given
occlusion in the left is equal to %ﬁ——%‘%. From these diagram, it can be seen that the
area (A, + Ag) are far smaller than (4, + Ap). Thus, the probability of simultaneous
occlusion in both cameras is small given occlusion in one camera. In the following, the

multi-camera systems containing active cameras are first reviewed before we look into

multiple static-camera systems.

Multi-Camera Systems Containing Active Cameras

The first option is to use two active cameras, often referred to as vergence stereo, to
track an object and keep the optical axes intersecting at the same surface point of the ob-
ject. This process of actively controlling camera, motion so that a 3-D point in the world
is constantly at the same point on the image plane is called camere fization [131]. This
type of binocular vision system is 2 modification of the conventional stereo approach [6].
The advantage of this type of configuration is that it can obtain the depth information
and also obtain the high resolution region of image points of interest. However, the

system needs some mechanisms for gaze control in order to aim both cameras at a given
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Left Camera Right Camera Left Camera Right Camera

Figure 2.1: Simultaneous occlusions in both cameras are less likely given occlusion in

one camera.

point of the object. The vergence stereo has applications in autonomous robots tracking
and navigation [163].

The other system option is the hierarchical structure where different cameras are
responsible for different stages or different parts of the system operation. A system uses
the data from some cameras to guide the operation of other cameras. For example, a
systemn can use some cameras for searching for targets in order to guide some others for
tracking these targets, called searching and fracking cameras respectively. The searching
cameras provide the system with only approximate and global information concerning
the environment which is then used to guide the tracking cameras to focus on a narrow
area of interest in the environment. This operation of sensor fusion is often referred to
as guiding or cuing [97]. The same mechanism is also used in other fields, e.g. military
surveillance system. Huang et al. {68} reported a tracking system with two calibrated
cameras, consisting of a wide-angle camera and a narrow-angle camera. The fixed wide-
angle camera is used to monitor a larger area in the scene and guide the narrow-angle
active camera to track a moving person and provide a high-resolution image of the
person’s face. This strategy was also adopted by Stillman et al. [158] and Peixoto
et al. [121] to track multiple people in an indoor environment, and by Kenneth and
Dawson-Howe [43] to track pedestrians on the street. Stillman et al. [158] used two fixed
searching cameras and two active tracking cameras to track people in a room. Peixoto
et al. [121] used one wide-angle static camera to guide a vergence stereo. Kenneth and

Dawson-Howe [43] used a wide angle camera to gnide an active camera.
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Multi-Camera Systems Containing Static Cameras

Another category of multi-camers system consists of multiple static cameras, which
independently provide information about the same scene and are in competition as to
which will be believed by the system. The sensors of this type of configuration are
often referred to as competitive sensors [15, 45]. The system configuration adopted in
this thesis belongs to this category. This type of system can interpret the scene more
reliably due to redundant information of the same scene which enables the system to have
the potential to remove uncertainty in the data. To integrate redundant information,
the system needs to determine what information from different cameras corresponds
to the same entity in the scene. This is the correspondence problem, also known as
sensor registration in the sensor fusion literature 198]. This inter-camera correspondence
problem is similar to the dafe association problem 9] in target-tracking which associates
the data between consecutive image frames from a single sensor over time. The difference
is the former needs to associate the data obtained from different sensors which can
be more difficult than the latter due to the data being obtained from different sensor
coordinates and different physical processes.

One of the earliest systems for tracking multiple people using multiple cameras was
reported by Rao and Durrant-Whyte (128, 129]. They used four fixed cameras to monitor
a room and used Kalman filters to track multiple people on the ground plane. The
subject image is first obtained by background subtraction. The image position of the
subject’s lowest point is transformed into floor coordinates which is fed to the tracker.
The tracking is then performed on the ground plane. The correspondence of subjects
between consecutive frames of a camera is determined by searching for the subject with
the closest distance between the observed position and the predicted position from a
Kalman filter. This matching criterion, known as the nearest neighbour approach (9], is
widely used for addressing data association and motion correspondence problems. To
match subjects across cameras, the system used the transformed position of the subject’s
lowest point on the ground floor based on the same method, i.e. nearest neighbour
approach. This constraint is often referred to as the ground plane constraint in the
literature [81, 92], which assumes that the 3D position of an object lies on the ground
plane and each 2D image point of the subject corresponds to a unique 3D point. This
ground plane constraint is widely used for inter-camera matching. For example, Jones

and Giaccone [81] used this constraint for matching subjects between cameras to track
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people in a car park, and Kelly et al. [86] used the same constraint for tracking people
on a campus courtyard with four cameras. Other researchers extended this constraint
to further incorporate a world model (i.e. model of the environments) to track multiple
people in a building with distributed cameras [140]. However, the assumption of a ground
plane constraint might not hold when a person’s feet are not in the camera images. This
situation is important especially for tracking people in an indoor environment with
clutter. Moreover, these systems can have limitations since only position information is
used for matching subjects between images from different cameras.

Instead of transforming the image positions to a common coordinate system (e.g.
ground plane), some researchers applied multi-view geometry to the inter-camera corre-
spondence problem. Multi-view geometry provides the geometric relations that exist be-
tween the object images in different views. This multi-view geometry-based approach has
progressed remarkably in the last decade [59]. Some multi-view geometry, e.g. epipolar
geometry and homography (planar projective transformation), can be recovered without
calibration and only needs the knowledge of a set of sparse corresponding points in dif-
ferent views. This simple requirement makes multi-view geometry a simpler algorithm
than traditional calibration-based methods [59]. More details relating fo multiple-view
geometry are discussed in Chapter 5.

To apply multiple-view geometry to match people in different camera images, dif-
ferent researchers used different features, Meyer et al. [105] applied the ground plane
constraint and used the homography to map the lowest point of the subject image from
one camera image to the other camera image in order to keep tracking people as they
walk along the FOVs of different cameras in an outdoor scene. Instead of using the
ground plane constraint and subjects’ lowest point for applying homography, Lee and
Stein [92] used sithouette centroids of objects and assumed these points all lie on a virtual
plane about one meter above the ground. The reason for using this feature point is to
avoid segmentation errors, caused by for example the shadow effect, seen when using the
lowest part of the subject image. They also used the knowledge of the intrinsic param-
eters and the homography between two images of two cameras to map the virtual plane
in each camera image into a single overhead image for global activity understanding.
However, they noted that the centroids in different camera images could correspond to

different 3D points and these points might not lie on the same plane in the world.
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Since homography only applies to 3D coplanar points in the scene, the subject’s
feature points used for matching across camera images must lie on the same plane.
However, this common plane for applying homography might not always be available
in the scene. Some researchers use other types of geometry regarding two perspective
views,

Cai and Aggarwal [22, 23] used epipolar geometry for matching people across cameras
in an indoor environment where most of the ground is not visible. Epipolar geometry
can simplify the correspondence problem by reducing the search space from a 2D image
plane to a 1D epipolar line [182]. The inter-camera correspondence of a 2D image point
in one camera image can be performed by searching along its corresponding epipolar
line in the other camera image. To apply the epipolar geometry, they used multiple
points extracted from the medial axis of the subject’s upper body as the feature points.
Their system can also perform camera switching in order to keep tracking people as
they walk through a large indoor environment covered by distributed cameras. This
switching consists of two steps: predicting when people leave the FOV and selecting a
camera for tracking people. For the same tracking scenario, other researchers [75] used
the geometric knowledge of the boundary of FOV to predict when people move out the
FOV of a camera. They also use the knowledge of the FOV boundary of one camera
in the other camera images to disambiguate the matching when people walk through
different FOVs.

Other researchers used modalities based on recognition to match subjects across
cameras. For example, Collins et al. [34] used a normalised colour histogram of ob-
jects’ images and their 3D trajectories on the ground plane to match vehicles and people
across camera images. They use a colour histogram generated from object images to
search for the closest match after occlusion in order to maintain tracking. Other re-
searchers [116, 158] used colour modality for inter-camera matching to track people with
multiple cameras in both outdoor and indoor environments. However, all these meth-
ods directly applied apparent colour of a subject’s image from one camera to match to
its corresponding subject’s image from the other camera. Not transforming the colour
obtained from one camera image to a suitable value for the other camera image causes
unreliable matching. This is because the apparent colour of an object can vary signifi-
cantly when captured by different cameras. In general, the apparent colour of an object

depends on the illuminants, the reflectance of the object, illumination geometry, viewing
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geometry and camera parameters [20]. Although human vision has the ability to adapt
to changes in colours, known as colour constancy, machine vision has yet to find a reliable
means t0 compensate for this shift in order to recognise objects by colour. Therefore,

the colour constancy problem of a multi-camera system needs {0 be addressed.

2.3 Summary

This thesis focuses on developing a methodology to track multiple people in the overlap-
ping FOVs of two widely separated and un-calibrated cameras. Based on our discussions
of existing techniques, it is clear that one of the main difficulties in tracking multiple
people is caused by the lack of continuous visual information for each individual under
occlusion or when people are moving as a group. Rosales and Sclaroff [135] reported that
the extended Kalman filter fails to correctly track multiple moving people when people
change walking direction during occlusion. The w4 [56, 58] and the KidsRoom [70]
system, systems discussed in Section 2.2.1, also reported that significant appearance
variations during occlusion results in the degradation of tracking accuracy due to the
lack of an update mechanism for the state of the subjects’ appearance and motion.

One possible solution for this occlusion problem is to segment merging blobs con-
taining multiple people into individuals as discussed in Section 2.1.3. However, the
assumption of this approach does not hold when the segmentation fails or people are not
visible from a certain viewpoint. Another possible solution to this occlusion problem is
to exploit multiple cameras. This approach is more promising because of the existence
of redundant information from multiple viewpoints., This multi-camera method assumes
that the system always has an unambiguous image of each individual in some cameras
when occlusions are present in others. Therefore, the multiple static cameras need to be
widely separated with significantly different viewing angles such that the occlusions are
unlikely to be present in all cameras at the same time.

The idea of using more cameras to disambiguate the matching ambiguity is not new.
For example the trinocular stereo [54] uses a third camera to solve the matching ambi-
guity between two camera images in the stereo matching problem. Ng et al. [112] also
extended this technique to N-Ocular Stereo in which four omni-directional cameras were
applied to track multiple people. However, the underlying problem of using multiple
widely separated cameras to cooperatively track people, i.e. wide baseline stereo match-

ing, is not addressed. Without knowing “who is who” between different cameras, the



CHAPTER 2. BACKGROUND REVIEW 39

system cannot disambiguate the matching in each single camera.

To match subjects across cameras, some researchers used the multi-view geometry
(e.g. homography and epipolar geometry) without considering the feature selection
problem, namely when the lower part of the subjects are not visible in the image. This
thesis will consider this problem, and investigate what other geometry-based modalities
can also be exploited. Other researchers used recognition-based modalities (such as
colour) without considering the variations in the subject appearances between different
cameras. This research will address the colour constancy problem in the multi-camera
system and explore what other image patterns of a subject can be used. Moreover, we
also address the problem reported in the KidsRoom system [70], that the system has no
mechanism for detecting a questionable match. Detecting this matching ambiguity will
be considered for both cases: (1) matching between consecutive images obtained from a
single camera and (2) matching across different cameras’ images. The methods used to
detect the ambiguity in these two matching tasks are given in Section 4.4.3.

Most existing multi-camera systems either use one single visual modality [128, 129,
68, 86, 81, 92, 105, 75, 116, 158] assume all modalities are independent [22, 23], or do
not explain how to fuse different modalities [140, 115]. As discussed in Chapter 1, the
inter-camera correspondence problem between widely separated cameras is difficult, and
a system should use multiple visual modalities and consider the correlation (or depen-
dency) between different modalities to make matching more reliable. Moreover, since
the data is always uncertain and different modalities might conflict with each other, a
framework is required to fuse all modalities to improve the inter-camera subject corre-
spondences. We use a BBN (Bayesian Belief Network, see Chapter 4) for fusing multiple
modalities, capturing the correlation between different modalities and handling data un-
certainty. This BBN is also used to obtain the global consistency in the correspondence
problem noted in the KidsRoom tracking system [70] (as discussed in Section 2.2.1),

where all modalities are assumed to be independent.



Chapter 3

System Overview and Single

Camera Tracking

3.1 The System Architecture

Considering the problem of tracking multiple people in an indoor office environment,
the background objects and lighting conditions are relatively stable. Since a single
static camera has a limited viewing angle, two widely separated cameras (see Figure 3.1)
positioned at the neighbouring corners of the room é,re used, so that the image variations
between two camera images are large and occlusions are less likely to happen in both
cameras simultaneously.

Figure 3.1 shows an example of such a setup where the cameras have an overlapping
FOV and the system aims to track people in this overlapping area. The room is about
6 meters long 4 meters wide and 2.8 meters high and both cameras are located 2.45
meters high at the neighbouring corners. In the overlapping area (3 by 4 meters), the
maximum number of people can be imaged in the room without occlusion in a camera
image is about 4 people.

The cameras are static and un-calibrated so that their parameters and relative po-
sitions are fixed but unknown. This is because calibration information may not be
practically available in some circumstances [59]. To relax reliance on the calibration
process, the stereo algorithm is not used in our system, though using depth information
can make tracking more reliable than 2D information alone. Moreover, if people are
close to each other in the scene, tracking reliant on depth alone might result in matching

ambiguity. To simplify the control problem, the image streams from the two cameras

40
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Left Right Left Camera | R}.g Camera

Figure 3.1: An ezample of o two-comera tracking system.

are not synchronised. Thus, the two images from two cameras are not captured at the
same time instant. Note that neither of the two cameras can cover the whole room.
As a consequence, the lower body parts of subjects might not always be visible in the
camera images so that the ground plane constraint cannot always apply {see Figure 3.1).
Moreover, occlusion can also often be present in a cluttered indoor environment. This
occlusion problem can make the tracking task difficult due to incomplete information
being available in the image.

Given such a camera setup, our goal is to segment the images of moving subjects from
the background and then to track moving people in the overlapping area over time from
an image sequence pair of two monocular cameras. (We define the “an image sequence
pair” as two sequences captured from two static, widely separated and un-calibrated
cameras, and use it throughout this thesis). The system first tracks the subjects in
each camera based on its own visual information. To track people using two cameras
cooperatively, the system assigns a label to each newly detected subject. This label is
referred to as the identity of a subject. The system aims to track people with the asgsigned
identities over time using two cameras cooperatively. If a newly detected subject in an

image of a camera I; has already been tracked and assigned an identity in the other
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camera image I;, the system then passes the identity to this subject in f; by matching
subjects across camera images. This process of matching subjects across camera images
can also be used to regain the identity of a subject from other cameras. Moreover, it can
be used to check whether different subjects with the same identity in different cameras

correspond to the same person. Thus, our system has two major tracking modes:

1. Single Camera Tracking (SCT) which matches the subject images between succes-

sive image frames of a camera over time, and

2. Multiple Camera Cooperative Tracking (MCCT) which matches subject images

across cameras to establish correspondence of subjects between two camera images.

The relationship between these tracking modes is shown in Figure 3.2. The system
performs SCT to track people as long as they are in the FOV. The MCCT mode matches

subjects’ images across cameras to pass the identities between cameras.

-

Left E
Camera SCT i =] SCT [——=
E MCCT : > MCCT —s
Camera ! ! :
; k ; k+1 ;
Time
S

Figure 3.2: The relationships between tracking modes.

The tracking scenarios are shown in Figure 3.3. The goal is to track people with

identities over time using two cameras cooperatively. The unshaded box represents the
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case when a camera captures and tracks people with identities. The unshaded box with a
question mark represents the case when a camera captures people without identities, e.g.
subjects re-appear in a camera image after occlusion and the subject identities are not
maintained. The shaded box indicates the case when the camera image is ambiguous,
e.g. occlusion is present in the camera image or the camera is subject to tracking failure.
Figure 3.3 shows two tracking cases where MCCT is needed. In case 1, people are initially
in the FOV of the left camera but not in the right camera. The system assigns identities
to each individual and passes these identities to the subjects in the right camera once
people enter the FOV of the right camera. In case 2, the system passes the identities
maintained in the left camera to the right camera in order to resolve the matching

ambiguity when the system has lost the subject identities in the right camera hmage.

Left e @
Camera

Case 1
Right ® o
Camera '
Left e ©
Camera

Case 2
Right e © p
Camera °

Time

Figure 3.3: An illustration of the proposed tracking problem for MCCT.

3.2 Single Camera Tracking

As discussed above, the system has two different tracking modes: Single Camera Track-
ing (SCT) and Multiple Camera Cooperative Tracking {MCCT). The rest of this chapter
describes the SCT in detail and the MCCT is presented in the following chapters. Track-

ing with a single static camera includes two major steps: preprocessing and matching
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of subjects between successive frames (Figure 3.4). Two stages of preprocessing are
performed: {1} segmenting the moving subjects from a still background (see Figures 3.5
and 3.6) and (2) extracting feature points from the segmented subjects’ images (see
Figure 3.7). After preprocessing, the system establishes the feature correspondences

between consecutive image frames for tracking people based on Kalman filtering.

Change De?ection - Feature | . Feature
& Grouping Extraction Correspondence
~——— Preprocessing - ' ~e=—— Tracking M.

Figure 3.4: Block diagram of tracking using o single camera.

3.2.1 Preprocessing

Change Detection and Grouping

To detect foreground objects, we take advantage of the fact that the camera is sta-
tionary. Therefore, moving objects can be segmented using a simple frame differencing
method assuming background objects and lighting condition are largely stable. The
intensity of the current image I(z,y,k) is subtracted from the pre-stored background
image B(z,y). If the intensity change at (z,v), ([{{(z,y, k) — B(z,y)|), is above a pre-
determined threshold, 7, it yields a foreground pixel. This background subtraction is
computationally inexpensive. However, it is sensitive to noise in the imaging process
and can be degraded by the effect of shadows and reflections so that a suitable threshold
is hard to find [563, 136]. The value of the threshold used in the experiment is set man-
ually. However, the limitation of this chosen threshold is that it typically only works
well for the environment where the experiments are conducted in a certain lighting con-
dition. For example, when the lighting condition changes the threshold might need to
be re-adjusted. The morphological operations, two times erosion followed by one time
dilation {both with 3x3 structuring element) [155}, are performed to alleviate the noise
problem. Figure 3.5 shows an example of applying background subtraction to detect the
foreground pixels. Each row contains two images from the left and the right cameras.

The top row shows the pre-recorded background images. The middle row shows two
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Figure 3.5: Moving object detection.

people walking in the scene and are observed in two camera images. The bottom row
shows the binary images after change detection by differencing, thresholding and noise
reduction. Note that the lower parts of the subjects may not be segmented well due
to shadow, occlusion by other objects in the scene and the improper threshold used for
differencing. The binary image (after noise reduction) containing the detected piﬁels is
called the foreground image, where the intensity value of each pixel, F'(z,y, k), is defined

as:

F(:c,y, k) _ I, |I($=y:k) - B(:v,y)l > T. (31)
0 3 II($7y1k)_B($3y)| <T.

Once the images of the non-background objects are separated from the background
image, the next step is to locate the images of foreground objects within different bound-
ing boxes to provide a focus of attention for further processing. The technique of equiv-
alence classes [124] is applied to group the foreground pixels into different blobs as

follows:
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1. The foreground image (400x300) is first divided into a coarse grid of 20x15 equal
size bins (i.e. small blocks) in order to reduce sensitivity to noise and computational
expense. Each bin is labelled with the number of foreground pixels contained within
it.

2. These labels (i.e. number of foreground pixels) are then thresholded to obtain a

set of bins considered to be regions of foreground pixels.

3. These regions are then grouped into equivalence classes which are the detected

foreground objects.
4. Each detected blob is then circumscribed by a bounding box.

Figure 3.6 shows the bounding boxes obtained by grouping the foreground pixels in the

binary images of Figure 3.5.

Figure 3.6: Two images from a sequence pair captured by two widely separately cameras

with bounding bozes for the moving objects.

Feature Extraction

Given the blobs that have been detected in the image, the next step is to extract
features from the subject image for establishing subject correspondences between consec-
utive frames. One possible method is to measure the optical flow and use it to guide the
matching process, such as in [183]). However, this method assumes constant brightness
between images. Thus it may not be appropriate for tracking a non-rigid human body
which can undergo significant appearance changes [135]. Alternatively, feature-based
method is used for tracking subjects. To match subject images, different features can
be selected, such as colour [87], a template of the subject image [57, 56], a feature point
of the bounding box [135], or feature points of the subject image [24]. Different features

have different advantages and weaknesses. For example, colour is robust with respect
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to common geometric distortions (e.g. rotation, translation, cropping, scaling) [14], but
cannot reliably handle the subjects’ images of similar colours for establishing subject cor-
respondences. Tracking can be made more robust by fusing different feature modalities.
Since this thesis focuses on matching subjects between two cameras, only one feature
modality (i.e. the highest point of the subject image) is used for matching subjects in
SOT and the colour modality is not used. Compared to other points, such as the centroid
or the lowest point, the highest point usually corresponds to the same 3D world point
and is more robust to the effect of shadow or reflection. This advantage enables the
system to track a subject more smoothly and robustly. An example of the extraction of
the highest points from two subject images is shown in Figure 3.7. Figure 3.8 shows an
example where the extracted lowest points in two camera images do not correspond to
the same point of a person in the 3D world. This is because the lower part of the person
is out of view of the left camera. Figure 3.9 shows an example where the lowest points
in two consecutive frames captured from the left camera do not correspond to the same
point of the person in 3D world. This is because the lower part of the person is occluded

by a table in the left camera view.

Figure 3.7: Two immages from a sequence pair captured by two widely separately cameras

with the extracted highest points of the subjects in the scene.

3.2.2 Feature Correspondence

Having discussed the preprocessing, the next task is to match the highest points extracted
from subject images from one frame to the next. The matching between consecutive
frames is generally achieved by searching for the closest match in the subsequent frame
based on certain visual features, such as motion (position or velocity) and appearance
(size or colour) of the subject. We use the second-order discrete Kalman filter to estimate

the motion vectors, z.(k) = [z, %, #]F and zy(k) = [y, 9, §]", of the subject’s highest point.
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Figure 3.8: The lowest points of the left subjects in two camera images do not correspond

to the same point of the person.

Figure 3.9: The lowest points of the left subjects in two image fromes from o camers do

not correspond to the same point of the person.

The correspondence of the subjects is established based on the predicted motion vectors.
This tracking method is related to feature point tracking. A good survey of feature point
tracking approaches can be found in [127] and a comparative study of several different
schemes with different linking strategies (ie. point correspondence between adjacent

image frames) and occlusion handling techniques can be found in [178].

Dynamical Models for Tracking

A Kalman filter is a recursive, linear, optimal data processing algorithm used to
estimate the states of a dynamic system in a noisy environment [102]. The estimation
algorithm consists of a state prediction stage followed by a correction stage using the
measurement. Its recursive nature removes the need to explicitly store a history of all
past measurements. This is of vital importance to a practical implementation. The
Kahnan filter uses a linear system model (Equations (3.2) and (3.3) explained below)
to represent the states of a dynamic system with Gaussian state space. Linear systems
are desirable in that they are more easily manipulated and stable. The linear system
theory is also much more complete and practical than its nonlinear counterpart [102].

However, if the linear models cannot provide satisfactory results, the extended nonlinear
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filter, extended Kalman filter [9}, can be used.

For a linear system with Gaussian distributed stochastic inputs, or noise sources, the
Kalman filter is optimal in two senses. First, it is an unbiased estimator, so the mean
value of the estimated state is equal to the true state. Second, it is an efficient estimator
(ie. no other unbiased estimator can have a smaller variance} which produces estimates
that minimise the mean-square estimation error between the estimated state and the
true state. From a Bayesian viewpoint, a Kalman filter propagates the conditional
probability density of the state conditional on the measurements such that the mean,
mode and the median of the estimated density all coincide. The Kalman filter has
applications throughout computer vision as a general method for tracking, estimation
and data fusion given the noise measurement. For example, Rosales and Sclaroff [135]
used extended Kalman filters to track multiple moving people. Zhang [191] applied a
Kalman filter to the parameter estimation problem for conic fitting. Brown et al. [17]
built a system in which object tracking is performed in each sensor node using a Kalman
filter to integrate information from all other sensor nodes.

Recently, Isard and Blake [71] have introduced the CONDENSATION algorithm to
probabilistically track curves in visual scenes. This algorithm, unlike Kalman filter-
ing which assumes a Gaussian distribution for its stochastic components, uses a set of
random samples to represent the propagation of an arbitrary probability density over
time. The strength of the CONDENSATION algorithm is its robustness to noise and
distractors (e.g. cluttered background) in the image. They have demonstrated that
the CONDENSATION algorithm succeeds in tracking the position of a person in agile
motion (e.g. dancing) whereas a Kalman filter fails. This is because the algorithm can
maintain multi-modal probability distributions, represented by multiple samples, such
that multiple hypotheses of the position can propagate over time and cover the agile
position. In this case, a uni-modal tracker (e.g. Kalman filter) may fail to track since
it can only maintain a single hypothesis of an object position. A multi-modal tracker
allows both distractors and the true object position to be represented simultaneously.
Once the distractor is found not to satisfy the target dynamics, the true object position
will re-assert itself as the probability distribution propagate through the object’s dy-
namic model. However, the CONDENSATION algorithm is computationally expensive
in comparison to the Kalman filter. As a consequence, the Kalman filter is used in this

thesis for tracking multiple people.
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The Kalman Filtering

As noted above, a Kalman filter estimates the true value of the system state vector
s(k) by combining the predicted state 8(k) and the measurement vector z{k}). In our
case, both the state s(k) and the measurement z{k) are the same, i.e. the motion
vectors [z,&,%]" and [y,9,9]". Two Kalman filters are used to update the = and y
coordinates of the motion vector for each subject assuming that the motion vectors in
z and y coordinates are independent of each other. Figure 3.10 shows a block diagram
of a Kalman filter. Note that in general the state, s(k), is not directly observable, so it
must be determined through an estimation process to obtain an estimated state §(k).
The linear dynamic system (a discrete form) for which the Kalman filter addresses the

estimation problem can be described by:

s(k + 1) = F(k)s(k) + G(k)w(k), (3.2)
z(k) = H(k)s(k) + v{k). (3.3)
Z(k+1) r(k+1) A
g B K @) S(k+1)
+ + ) i
. -+
Delay
H |- F |
S(k+11k) s (k)

Figure 3.10: Block diagram of o Kalman filter.

In the state transition equation (Equation (3.2)), F(k) is the system model which
propagates state over time, G (k) is the system noise model which accounts for the system
noise, w(k) is the system noise. In the measurement equation (Equation (3.3)), H is the
measurement model which transfers the system state to the measurement space and v{k)
is the measurement noise. The random noise of the system and the measurement are
assumed to be independent of each other and modelled as white noise (i.e. uncorrelated
over time) with Gaussian distributions:

E[w{k)v"(j)] =0, for every k and j, (3.4)
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E[w(k)] = 0, and Elw({k)w"(j)] = Q(k), (3.5)
Elv(k)] = 0, and E[v(E)v"(j)] = R(E). (3.6)

where E| | is the statistical expectation operator.

Equation (3.4) defines the zero cross-correlation between the two noises. Thus, these
two noise values are determined independently. The system noise covariance and mea-
surement noise covariance, Q(k) and R(k), are usually assumed to be known and deter-

mined on the basis of experience [191]. The estimation steps are as follows:

o Predict the states:

8(k + 1|k) = F(k)8(k). (3.7)

Predict the state covariance:

]

Pk + 1[k) = F(k)P (K)FT (k) + G(k)Q(k)G™ (k). (3.8)

Compute the Kalman Gain:

]

Kk + 1) = P{k + 1) H"(k + L)[H(E + )Pk + UERH™(k + 1) + Rk + )L

(3.9}
s Compute the innovation (i.e. measurement residual):
r(k+1) =z(k + 1) — H(k + 1)8(k + 1]k). {3.10)
e Update the state estimation:
§(k + 1) = §(k + 11k) + K(k + L)x(k + 1). (3.11)
e Update the state covariance:
P(k+1)=[I-K(k+DH(k+ 1Pk -+ 1]k). (3.12)

To estimate the state for time step k - 1, the filter first predicts the state 8(k + 1|k)
from the previous state §(k) based on the system model F(k). The previous state co-

variance matrix P (k) is used to predict the state covariance matrix P(k + 1|k). This
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predicted state covariance P(k + 1|k) is then used to compute the Kalman gain matrix
K(k + 1) and to update the state covariance matrix P(k + 1). From the measurement
matrix H(k + 1), the predicted state §{k + 1]k) is transformed to the predicted mea-
surement, z(k + 1|k} = H(k + 1)8(k + 1}k), for time step &k + 1. The real measurement
z(k + 1) is used to compute the innovation r(k -+ 1). Finally, the innovation is weighted
by the Kalman gain K(k + 1) to compute the correction term which is then added to
the predicted state §(k -+ 1|k) in order to obtain the estimated state 8(k + 1).

As has been seen, the purpose of Kalman filtering is to recursively estimate the value
of the state by predicting the state based on a system model and using the measurement
to correct the predicted state. However, the filter needs an initial estimate to start the
estimation process. This is a practical issue of using Kalman filter [16], since the system
needs to specify the initial state estimates 8(0]0) and state covariance P(0[0) to start with
these specifications in the estimation process. A good initial state estimate ensures fast
convergence whereas poor estimates may give rise to slow convergence or even divergence
in which case the filter must be re-initialised. Generally, the initial state can be set as
§(00) = E[s(0)] or is directly calculated from measurement [134]. The implementation
of the Kalman filter including the initialisation ig described in Appendix B.

In Kalman filtering, a divergence problem may occur when the system in not observ-
able. This problem is often referred to as the observability problem [19], Physically, this
means that from the measurements there are one or more state variables that are hidden
(unobserved). As a result, the corresponding estimation errors will be unstable. This
problem is due to the fact that sometimes the measurements do not provide enough
information to estimate all the state variables of the system. Some of the validation
tests of the Kalman filter regarding this observability problem can be found in [33]. In
this thesis, since the system state is designed as the same as the measurement in the
Kalman filter, the measurement matrix is a square regular matrix (see Equation (B.6)).
In this case, the solution to the observability problem is trivial as the state and the

measurement are the same {13].

Data Association with a Nearest Neighbour Approach

Another issue in applying Kalman filters for tracking multiple objects is the problem
of data association which is often known as the motion correspondence problem [35]. At
first sight, tracking might seem to be a special case of an estimation problem. However,

it is wider in scope, namely, in addition to the need to use the estimation tools it
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also requires the use of statistical decision methods when considering the issue of data
assoclation {9]. The process of data association is essential to link the measurements to
the estimation mechanism when tracking multiple objects [130}.

In our case, Kalman filters are used to predict the motion vector of each individ-
nal when tracking multiple people. These predictions are then matched to the actual
measurements (i.e. motion vectors of the subjects’ highest points) in the subsequent
frame. At this matching stage, ambiguity may arise. This ambiguity can be seen from
the state update (Equation (3.11)) and the innovation computation (Equation (3.10))
where a single measurement z(k + 1) is required to match each of the predicted states
§(k + 1}k) of different filters for updating the state estimate 8(k -+ 1). Since there are
multiple subjects to track, the system needs to perform data association for selecting a
candidate matching subject in the next frame to represent the subject being tracked.

To perform data association, one possible method is to use qualitative motion heuris-
tics to constrain the candidate matching object [177]. Such methods usually convert
qualitative descriptions (e.g. smoothness of motion and rigidity) into quantitative mea-
sures and define a distance term for the optimal motion. A threshold is used to identify
a valid candidate match (i.e. an object in one image is assigned an object in the other
image), whilst a zero distance makes a correspondence optimal. As mentioned at the
start of Section 3.2.2, the tracking in SCT is related to the feature point tracking; a good
survey of feature point association approaches based on the qualitative motion heuristics
can be found in [127].

The other alternative is to build the correspondence based on probability criteria.
This thesis uses the Mahalanobis Distance (MD) of the predicted motion vectors o es-
timate the likelihood of data originating from a specific subject. The simplest approach
to this problem of associating uncertainty is the nearest neighbour method. Although
this method is simple and computationally inexpensive, it has some drawbacks. Alter-
native approaches can be found in [35, 130]. From a set of candidate matching subjects,
the nearest neighbour method selects a single subject that has the closest feature vector.
The closest is usually defined using the MD. Furthermore, the nearest neighbour method
makes assignment decisions based solely on the current image frame. Better matching
results can be obtained by using information from multiple frames, e.g. a track-splitting
filter postpones the decision process for using information from multiple frames [35].

Alternative approaches include all-neighbours methods, such as the Joint Probabilistic
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Data Association Filter (JPDAF) and Multiple Hypotheses Tracking (MHT) methods.
In these all-neighbours methods, multiple measurements can be associated to a single
filter, and the match of all candidates are considered jointly [128]. These alternative
approaches can perform data association more reliably but have some drawbacks. For
example, a track-splitting filter and MHT have exponential complexity. On the other
hand, the JPDAF is only applicable to tracking scenarios where the number of targets to
be tracked is known [35]. Since this work focuses on matching subjects across cameras,
the nearest neighbour method is used in SCT for matching subjects between consecutive
frames. Related association problems in the matching for MCCT will be considered in
Chapter 4.

Now let us explain how a filter performs a nearest neighbour match to associate
subjects between two consecutive frame images. This method assumes that only one
measurement can be attached to a filter and a measurement cannot be matched with
more than one filter. This method is a likelihood method where the likelihood of &
point being the correct match for a filter is defined as the normalised innovation [130}.
The normalised innovation, My, is the MD between a measurement z(k + 1) and the

predicted measurement 2(k -+ 1|k) [128, 9]:
Mo =17k + 1)S7HE + Lir(k + 1), (3.13)
where the subscript, m, in My, is indicative of that it relates to a motion-based modality,
v(k+1) ==z(k + 1) - 2(k + 1|%) (3.14)

#(k +1k) = H(k + 1)8(k + 1]k), and S{k + 1) is the covariance of the innovation repre-

senting the uncertainty between the true measurement and the predicted measurement:
S(k+1) = H(k+ 1Pk + LUkHT(k+1) + R{k +1). (3.15)

In the feature space, the points of a given MD form the surface of a d-D ellipsoid
where d is the dimension of the measurement vector z(k) [35]. The diagram on the left
in Figure 3.11 shows an example of the points (as a ellipse) of a given MD in 2D feature
space where the shading represents the probability density of the measurements about
their predicted value. The darker the region, the more likely the correct measurement is
to be found. The probability distribution of measurements is highest about the predicted
mean value of the measurement and monotonically decreases with increasing distance

from the predicted mean value. The diagram on the right shows the measurement of
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Figure 3.11: Data association using the nearest neighbour method based on Mahalenobis

Distance (MD).

a target z(k) at time k and three measurements at time k -+ 1. The system associates
21 (k -+ 1), with the shortest MD with respect to the predicted measurements z(k+ 1|k},
to the (k).

To perform the nearest neighbour method, the filter selects the blob with the motion
vector which minimises the M,,. Thus, Equation (3.13) is evaluated for the highest
point of each blob in the subsequent frame and the blob whose highest point produces
the smallest normalised innovation is selected as the best match. The right diagram
in Figure 3.11 illustrates the association between the predicted measurements and the
true measurement using the nearest neighbour method. The assumption of the nearest
neighbour method is that the correct match is more likely to satisfy the nearest neighbour
test (i.e. with the smallest My,) in the feature space. The system then tracks the
subjects in each camera based on Kalman filters with the nearest neighbour association

method.

3.3 Tracking Results

Figures 3.12, 3.13 and 3.14 illustrate the measured motion vectors z.(k + 1) and the
predicted motion vectors 2,(k + 1|k) of a person’s highest point for a sequence where
the point is extracted from the left subject in the left camera image of Figure 3.7.
These measured motion vectors are computed from the extracted highest point of the
tracked subject’s image. The image sequence contains 590 frames and the subject is
visible beginning from the 327¢ frame. The prediction results are only shown for the

z coordinate since the results for y coordinate are similar. The bottom graph in each
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figure shows the prediction error of the filter. Note that the filter can follow the highest
point well for the scenario when people walk in the office. The mean square errors
of predicted position, velocity and acceleration over the whole sequence are 5.46, 1.37
and 1.65 respectively. The maximum prediction error occurs at around the 3337 frame
when the person change direction suddenly. This sudden change can result in the filter
following the wrong subject if there are other subjects around. The situation can be more
serious if there are no measurements (e.g. during occlusion) to correct the predicted
states. To handle this situation, this thesis uses two cameras to obtain unambiguous
visual information in one camera for solving the occlusion problem in the other camera
(see an example in Section 7.3).

Figure 3.15 shows an example of the tracking results in each camera. The system as-
signs a label as an identity to each detected subject in each camera and keep tracking the
subjects with their identities. The correspondence of the subjects between consecutive
frames of a camera is based on the predicted motion vectors using Kalman filters. To
track people with two cameras cooperatively, the system needs to determine the corre-
spondence of the subjects across camera images (e.g. subject 1 in the left camera image
corresponds to subject A or subject B in the right camera image). This inter-camera
subject correspondence problem will be addressed in the following chapters.

For the whole sequence, the mean values of the motion vector [z, %, #]T and [y, 9, §]™
in x and y coordinates are (216.3, 2.80, 1.67) and (200.20, 2.33, 1.75} with standard
deviations of (75.44, 3.20, 2.58) and (20.27, 2.38, 3.78) respectively. The covariance

matrix for the combined motion vector, [z, %, Z,y, ¥, #]7, is obtained as:

5691.8 —17.3 —4.90 401 ~1.40 —1.80 \
~ 1023 139 198 040 -0.36
_ ~ 665 —0.03 060 096

(3.16)
- ~  — 41080 11.99 —4.13
- - - ~ 560 313
\ - - - - ~ 1426

From this matrix, it can be seen that the covariances between the motion vectors in

x and y coordinates are small. For example, the covariance between & and {y, 9, §]" is (-

0.03, 0.60, 0.96) which indicates that % is largely independent of the motion components

T

in the y coordinate. ‘The independent relations between & and [y,9,%]" can also be

observed from the matrix where the covariances are small (i.e. (1.98, 0.40, -0.36)).
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Comparison of covariance in the matrix also indicates that x is less independent from
[v,7,§]" than & and & where the covariances are (4.01, -1.40, -1.80). For convenience,
this thesis assumes that the motion vectors in z and y coordinates are independent of
each other. Two Kalman filters are used to update the z and y coordinates of the motion

vector for tracking the highest point of each person.

3.4 Summary

This chapter described tracking using a single camera. Since this research focuses on
matching subjects across cameras for tracking people using two cameras cooperatively,
only the motion modality is used for tracking in each camera. The method for detecting
tracking ambiguity (i.e. questionable matches) and handling the complexity problem
in correspondence (i.e. to reduce the number of candidate matches before matching is
performed) in SCT (Single Camera Tracking) will be discussed in Section 4.4.3. The
following Chapters (4, 5 and 6) present the methodology for matching subjects across
cameras in order to perform MCCT (Multiple Camera Cooperative Tracking). The
experimental results are given in Chapter 7. The next chapter describes a statistical
framework that is used to adaptively fuse all modalities in order to improve the inter-

camera subject correspondences.
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person’s highest point in o sequence.



CHAPTER 3. SYSTEM OVERVIEW AND SINGLE CAMERA TRACKING 59

Measured and Predicted X Velotity
30 s v . . .

—  megsured X volocity
e e) " A predicted X valocity i

10F

X Veloeity
©

_SD i L Il 1 H
0 140 200 300 408 500 60C

Frame Number

Error in Pradicted X Velocity
1D i 3 Ll ¥ i3

* Velocity

_8 i [} 1 £
0 1600 200 300 400 500 600
Frame Mumber

Figure 3.13: Measured X velocity and predicted (using ¢ Kalman filter) X velocity of a

person’s highest point in a sequence.



CHAPTER 3. SYSTEM OVERVIEW AND SINGLE CAMERA TRACKING 60

Measured and Predicted X Acceleration

1 1 H i T

Ay w——  mpasured X acceleration
vvvvvv predicted X acceleration

20k .

10 .

' v '
' i ]
¢ 1 r v a1 . ' i

! : A HES il
€ [ R QU IR v] v, el Eaf it i AR 4L
g 1 | N1 I T

. g nl 1oy
Sndiohaly - $HE b Ias,
18 Ml G

¥ Acceleration
fam )

A0k
J0F g
"‘38 1 3 1 1 i

100 200 300 400 &00 BO0
Frame Mumber
Error in Predicied X Accelsration
2 l L 1 Ll T
1t J
OF A
ol
e
®
5 -1F :
8
o
»
Ik i
2k N
_4 1, 1. 1 i 1
g 100 200 300 400 500 800

Frame Number

Figure 3.14: Measured X acceleration and predicted (using a Kalman filter) X accelera-

tion of a person’s highest point in o sequence.



CHAPTER 3. SYSTEM OVERVIEW AND SINGLE CAMERA TRACKING 61

Figure 3.15: The goal of MCCT is to determine the correspondence of the subjects’

images between two camera images.



Chapter 4

Bayesian Modality Fusion for

Correspondence

4.1 Introduction

The previous chapter has described how the system tracks multiple people using a single
camera. This chapter focuses on the development of a framework to adaptively fuse
multiple visual modalities for matching subjects across cameras in order to perform
MCCT (Multiple Camera Cooperative Tracking). The aim of MCCT mode is to pass
subject identities (i.e. assigned labels) between cameras in order to track multiple people
using two cameras cooperatively. Figure 4.1 shows the block diagram for matching
subjects across cameras. This involves two steps: preprocessing and matching the subject
jmages in two camera images. The two-camera system used in this thesis is different
from the traditional stereo vision techniques which usually with two cameras closely
placed [6]. Since the cameras used in this thesis are widely separated, the images from
two cameras have large variation.

Two stages of preprocessing are performed before the matching starts: (1) segment-
ing moving subjects from a still background and (2) extracting features from the seg-
mented subjects’ images in both cameras. The first stage is described in Section 3.2.1
(see Figures 3.5 and 3.6) and the second stage will be explained in Chapter 5 and Chap-
ter 6 where different features modalities (e.g. apparent colour) are used for inter-camera
correspondences. After preprocessing, the system begins the matching process by es-
tablishing the feature correspondence between two camera images. Instead of tracking

with a single camera, the system can pass the subject identities between cameras to keep

62
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Figure 4.1: Block diagram of matching the subjects’ images between two camera images.

tracking people even when occlusion occurs in a camera. To pass the subject information
across cameras is achieved by matching subjects across cameras. Thus, tracking people
using two cameras cooperatively can be more reliable. This chapter will focus on the
development of a framework for the matching task in order to effectively fuse multiple
feature modalities. These different modalities used for matching subjects across camera
images will be described in the following two Chapters b and 6.

The major difference between the feature correspondence in SCT (Single Camera
Tracking) and MCCT is that in MCCT the image features to be matched are obtained
from different cameras’ images whereas in SCT the image features are obtained from a
single camera. The matching process in MCCT is related to the stereo correspondence
problem while SCT is related to the motion correspondence problem. From the geometric
point of view, if two identical cameras are used in MCCT, the matching problem in
MCCT is the same as the problem in matching images from a moving camera. However,
as discussed in Chapter 1, compared to the SCT, the features to be matched in MCCT are
extracted from different camera coordinate systemns and from different physical processes
which make the matching more difficult. Furthermore, the two cameras used are not
calibrated so the 3D world coordinates of the subjects are unknown thus making the
matching more difficult.

The novelty and main purpose of this chapter is to apply a discrete BBN (Bayesian
Belief Network) to fuse multiple modalities based on different features for solving the

inter-camera correspondence problem [27, 26]. Previous researchers either have not
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explained how to fuse [140, 115] or have assumed different modalities are indepen-
dent [22, 23] (as discussed in Section 2.3). This chapter first discusses the inter-camera
correspondence problem in Section 4.2, then introduces the theory of probabilistic infer-
ence in the BBN (i.e. computing the probability distributions over a particular subset of
random variables given the states of some other variables in the network) in Section 4.3,
Finally, the explanation of the use of a BBN to fuse multiple modalities for solving the

inter-camera correspondence problem is given in Section 4.4.

4.2 Inter-Camera Correspondence Problem

This section reviews the constraints used for the correspondence problem and explains
some of the general issues as well as the approaches taken towards solution in this
thesis. The problem of establishing subject correspondences between two camera images
is then defined. The task of establishing correspondence is performed by searching for
the features in different images which correspond to the same entity in the world. In
the literature, a large number of algorithms have been implemented with different types
of features, match constraints and search algorithms. Some good reviews can be found

in [100, 80, 18].

4.2.1 Feature-Based Constraints for Correspondence Problem

To establish feature correspondence between two images, different constraints based on
different features can be used to limit the number of candidate matching features, The
constraints for correspondence can be generally divided into two forms: local and global
constraints [100]. Local constraints are specific to each individual match (i.e. assigning
one feature in an image to another feature in the other image) whereas global constraints
are related to the global consistency of multiple or all matches. The normal strategy is
to apply the local constraints in the first stage for each feature in an image to identify
a set of candidate matching features in the other image. The global consistency (or
compatibility) of the local matches is then used to test these local matches to see if each
pair of matches is mutually compatible.

Figure 4.2 illustrates an example where global constraint is necessary for evaluating
all local matches in order to obtain global consistency. Considering on the 2D image
plane, the total number of subjects in both camera images is assumed to be known as

three. The features extracted from subjects’ images are used to determine the subject
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Figure 4.2: A global constraint is necessary to avoid the conflicting matches.

correspondences between two images. A match between subjects (i.e. to assign a subject
1, Sy, in one image to another subject, Sg, in the other image) is denoted by 81 ¢ S,.
Subjects 81, So, and S3 in the first camera image, [;, need to be matched to subjects
Sy, Sp, and S, in the second image, [;. Among S, Sp, and S, 57 corresponds to 5, as a
match S ¢ S,, where the maich is determined based on the Euclidean metric distance
measures in the feature space. If matching independently, the best match for both S
and S; is Sp. Obviously, this pair of matches (i.e. Sz ¢~ S, and 53 ¢ Sy} conflict
with each other. Evaluating globally by considering this pair of matches jointly, the best
match for S is S, since the combination of assignments {S3 + 5. and 53 + Sy} is better
than {Ss & S; and Sy + S} based on the Euclidean metric distance. This problem
of consistency in matching subjects in two images was also considered by the authors
of the KidsRoom tracking system [70], as discussed in Section 2.2.1. In the following, a
brief review of these two forms of constraints (see Table 4.1) and the explanation of how

to apply these constraints to the subject correspondence problem in MCCT are given.

Table 4.1: Constraints for feature correspondence (see text for explanation .

Local Constraints

Global Constraints

similarity

epipolar

disparity gradient limit

unigueness

continuity

topological

Local Constraints

A straightforward local constraint for identifying correct matches is to test the sim-

flarity of the attributes of the features, often referred to as a similarity constraint [100].
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The similarity constraint calculates the disparity (difference between the attributes of the
features) and compares the calculated value with a pre-defined threshold. If the value of
disparity is smaller than the threshold, they are treated as similar or compatible features.

The other local constraint between two stereo images of the same scene is based on
the epipolar geometry. This geometry is the only geometry between two stereo images
without further assumption, e.g. the homography assuming all points are coplanar (more
details in Section 5.2). It is obtained as a result of the imaging geometry of a two-camera
system and can be used to limit the search space from 2D (i.e. image plane) to 1D (i.e.
the epipolar line). This geometry is widely used in traditional stereo vision for finding
the corresponding image features. More discussion of the epipolar constraint is given in
Chapter 5.

Another local constraint is the disparity gradient limit constraint. In this constraint,
the disparity of matched points is usually defined as the difference in their pixel positions.
The idea is to use the disparity gradient rather than the disparity magnitude to constrain
the candidate matching features. For any pair of matches (each match consists of one
feature in each of the two images), the disparity gradient is defined as the ratio of the
difference in disparity of the two matches to the average disparity of the matches between
two images. Thus the limit on the disparity gradient between neighbouring matches can
be used to constrain the correspondence. This type of constraint is also used in stereo
vision, e.g. matching points along line segments [179]. However, this type of constraint
may be computationally expensive due to the need to calculate average disparity of the
matches between the two images. The aim of inter-camera subject correspondences is
for tracking people using two cameras cooperatively. The tracking should be performed
in real-time or at least as quickly as possible. As a consequence, the constraint used for
determining subject correspondences needs to be less computationally expensive. For
example, in applying this constraint to match a person’s highest point in two cameras,
the calculation of average disparity would have to take account of a greater number of

points. Thus, the disparity gradient limit constraint is not considered in this research.

Global Constraints

Among different global constraints, the unigueness constraint is the most straightfor-
ward but also the most general [100]. This constraint requires each item in an image to
be assigned to one and only one matching candidate in the other image. It is simple but

widely used in many matching strategies, e.g. [166]. This global constraint is adopted
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for inter-camera subject correspondence, assuming people are in the overlapping FOVs
of two cameras. Note that when not all of the people in the office are in the overlapping
FOVs of two cameras, this uniqueness constraint may result in incorrect matches. In
this case, this is because subjects in two camera images do not necessarily correspond
to the same people in the 3D world.

Continuity constraint is another global constraint which depends on the observation
that points adjacent in 3D space remain adjacent in each image projection. This con-
gstraint can be applied in different ways. For example, neighbouring edge points should
have “similar” disparity values, or the connected edge points in one image must match
to connected edge points in the other image. However, the inter-camera correspondence
problem considered in this thesis requires people to be matched across cameras. The
image structures to be matched are different separated blobs in two camera images.
The suitable image structures for applying continuity constraint are in general adjacent
points in 3D space. As a consequence, this constraint may be more applicable to match-
ing geometric features (e.g. points) of a single object. Since our goal is to match multiple
different subjects, this constraint is not suitable for our problem.

Another popular global constraint is the fopological constraint, such as the relative
position constraint, which is based on the assumption that 3D structure viewed in both
images being identical. However, this constraint may only hold for stereo cameras with
a short baseline. In MCCT using two widely separated cameras, the relative positions
of people with different depth in different camera images can be dissimilar due to the
parallax (induced when parts of the scenes have differences in depth which can be caused
by camera translation) [80]. Figure 4.3 shows an example of this case where the relative
positions of subjects’ images in two camera images are different. Thus, topological

constraint is not considered in this thesis.

Approach to Adopting the Constraints

For solving the inter-camera subject correspondences in MCCT, the uniqueness
global constraint is used to first limit the number of possible matches based on the
global consistency. The details are explained in Section 4.2.3. The local constraints of
all visual modalities used for matching subjects across cameras are formulated using a
Bayesian framework. Instead of comparing the attribute values of features directly, we
adopt two methods to compensate for the feature variations for making the inter-camera

subject correspondences more reliable. These two methods are related to two categories
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Figure 4.3: The relative positions of two subjects are very different in two camera images.

of modalities for matching subjects across cameras, which are:

e geometry-based modalities
using multi-view geometry (i.e. homography and epipolar geometry) and the scene
landmarks to estimate the geometric positional relationship of the corresponding

subjects between two camera images (Chapter 5), and

e recognition-based modalities
using the learnt mapping of the visual information (apparent height and apparent
colour) between two camera images to estimate the subject appearances across

camera images (Chapter 6).

4.2.2 Searching for the Unique Correspondences

An important issue in matching subjects in two camera images is data uncertainty.
Besides the inherent uncertainty in the data provided by sensors, a dynamic scene may be
complex and cluttered. Moreover, due to the ambiguous positions of extracted features,
the features used for matching can be unreliable (see an example in Figure 5.10). As
a consequence, the multiple modalities of different features can be less reliable or even
conflict with each other. This phenomenon subsequently results in inconsistent matches.
A single constraint is usually not powerful enough to locate all the matches uniquely and
correctly. Therefore, the use of multiple modalities of different constraints is necessary
{0 make matching more robust.

Since different modalities can have different reliability, different modalities should
be combined with adaptive weights according to image context information in order

to efficiently fuse different information. On the other hand, these different modalities
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regarding different constraints are usually highly correlated since they are all related to
the same visual scene. Simply assuming that all modalities are independent ignores such

correlation and subsequently causes the scene to be interpreted less reliably.

Searching Approach

In order to reliably infer a unique correspondence for each subject in two images (i.e.
a final set of matches between subjects in two images), a framework is required to handle
data uncertainty, adaptively fuse multiple modalities and capture the correlation between
different modalities and the feature correspondence in two camera images. Bayesian
Belief Networks (BBNs) [120, 76] are adopted for these purposes. A BBN is used to
model dependencies between modalities and subject correspondences between the two
camera images. BBNs also enable the full set of possible matching assignments to be
simultaneously considered in a consistent and probabilistic manner in order. to infer a
unique correspondence for each subject in two camera images. This method of adaptively
fusing multiple modalities using BBNs was introduced as Bayesian modality fusion [171],
where the task was to match a single object (i.e. tracking a hwman head) between image
frames from a single camera. This thesis extends this method for matching multiple

subjects between image sequences from two widely separated cameras.

Alternative Searching Approaches
There are alternative approaches for searching for a unique correspondence between
two images in the stereo matching literature. In general, these searching algorithms can

be classified into two categories as follows [100].

e Relaxation labelling methods which group the information of the neighbouring fea-
tures iteratively to update the match probability.
From the iteration computation, this algorithm incorporates the total visual ev-
idence provided by all labelled features. However, the use of a recursive search

methods can be computationally very expensive [80].

e Hierarchical schemes which usually perform matching at different levels.
Coarse features are first matched, and the results are then used to guide the match-
ing of finer features. These methods are generally more appropriate for the struc-
tural matching problem. For our problem, the image structure of the positions of
multiple subjects in two widely separated cameras are not necessarily the same.

Therefore, this type of matching strategy is not considered.
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Moreover, the correspondence problem can also be cast as an optimisation problem by
minimising a cost function that measures the matching error. The disadvantage to this
method is that it generally requires a very high computational cost [80]. In summary,
these alternative methods cannot effectively handle data uncertainty and capture the
correlation between variables in the application presented in this thesis.

Another important issue in the correspondence problem is computational complexity
which cannot be ignored in tracking [127]. In order to cope with this problem, the system
needs to reduce the number of candidate matches before matching is performed. For
the case where there are m subjects in two images, the unigueness constraint is used
to reduce the complexity from O(m™) to O(ml) (explained below) before applying a
BBN to infer a unique correspondence for each subject in two images. Other methods

to address this complexity issue are discussed in Section 4.4.3.

4.2.3 Problem Definition

Let us now define formally the inter-camera subject correspondences problem. Firstly,
the maximum number of subjects in each camera image is constrained to be m. Note
that the number of subjects in two images are unknown and not necessarily the same. In
order to handle the consistency issue in matching (i.e. for avoiding conflicting matches,
as discussed in Section 2.2.1), the matching problem is considered as follows. To match m
subjects in two images, I; and I, instead of matching each single subject independently
with the possibility of conflicting results, all matches are evaluated globally. To globally
consider matches for all subjects, a combination of assignments is defined as a union of
m matches. Each match assigns a subject in I; to a subject in J;. Thus, in a combination
of assignments A,, all m subjects in I; are assigned to a subject in I; respectively. After
the theory of BBNs is introduced in Section 4.3, the situations when the subject numbers
in two camera images are unequal and less than m will be discussed in Section 4.4.1.
For mn subjects in each of the two images, there are totally m™ possible assignment
combinations. After applying the uniqueness constraint (i.e. in A,, a subject in I; is
allowed to be assigned to one and only one subject in I;}, there could be m! possible
assignment combinations, Ay = {41, -+ , Apu}. Given the visual evidence e of different
modalities from two cameras, which might be uncertain and incomplete, our goal is to

find the most likely assignment combination which maximises the posterior:

2proax, p(Aale). (4.1)
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4.3 Bayesian Belief Networks

Tn order to search for a unique correspondence between two images this thesis applies
a BBN (Bayesian Belief Network) to probabilistically infer the feature correspondence
between two camera images to obtain the most likely assignment combination. This
section is organised as follows. Section 4.3.1 discusses different approaches to data
uncertainty. Section 4.3.2 describes BBNs and their limitations. Section 4.3.3 introduces
the graphical model of BBNs. Section 4.3.4 provides the secondary structure of BBNs
for dealing with multi-connected networks (see Figure 4.6) which stops messages cycling

forever in the original BBNs.

4.3.1 Data Uncertainty

Information gathered from different sensors is often uncertain, incomplete, or even con-
flicting [1]. To match subject across cameras based on different image features, a system
is required not only to extract reliable features but also to deal with the uncertainty in
the data from two cameras. The simplest way is to average all modalities for building cor-
respondence without considering the uncertainty problem. However, this procedure may
not be suitable for integration of data with extreme dispute [1}. There have been vari-
ous methods proposed for fusing data from different knowledge sources by representing
and propagating uncertainty in expert systems. These methods include non-numerical
techniques (e.g. rule-based methods which use a set of logical rules) and numerical tech-
niques [76]. Numerical methods (e.g. Bayesian approach, Dempster-Shafer theory and
fuzzy set theory) have a different perspective on uncertainty and manipulate uncertain
information quantitatively [63]. Each method has advantages and limitations.

In the Bayesian approach, uncertainty is viewed probabilistically. Probability can be
interpreted as a relative frequency ranging between never occurring to always occurring.
The Dempster-Shafer method is based on the theory of belief {or evidence) where uncer-
tainty is viewed as a degree of belief and the belief ranging between total belief and lack
of belief with intermediate values corresponding to partial belief. In fuzzy set theory,
uncertainty is viewed as a degree of set membership. This degree ranges between g mem-
ber and not a member. The advantage of Dempster-Shafer theory is that the evidence
supporting one hypothesis does not necessarily decrease the belief in others, as opposed
to probability theory [8]. However, unlike Bayesian theory, the theory of belief does not

allow a priori knowledge to dominate the inference process. Also, the belief strength can
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be sensitive to the numerical values of input information [1]. Tuzzy set theory is well
suited to applications where the evidence is itself fuzzy in nature. However, although
fuzzy set approaches seem to have more flexibility than those in probability and belief
theories, their performance for fusing contradictory information is generally unsatisfac-
tory [1]. This is due to the general lack of formal definitions in fuzzy set theory [8].
By comparing these methods, Henkind and Harrison [63] concluded that the Bayesian
approach is well suited for applications where some prior probabilities are known, and
is an attractive approach because of its strong theoretical foundation.

Most classical inferential models do not permit the introduction of prior knowledge
into the evaluation process. For the rigours of a scientific method, this is an appropri-
ate response in order to prevent the introduction of extraneous data that might skew
experimental results. However, there are cases where prior knowledge provides a useful
contribution to inference. For example, the goal of this thesis is to track people in an
indoor environment where the background scene is fairly static and cameras are fixed.
Prior knowledge of the scene and system architecture can be used to make scene in-
terpretation more reliable. Therefore, the Bayesian approach is more appropriate for
the problem. This thesis adopts a BBN to handle data uncertainty in order to make
matching subjects across cameras more reliable. Also, compared to non-numerical tech-
niques, BBNs can more efficiently and correctly represent data uncertainty [120]. This
is because BBNs can capture dependencies between different visual modalities and the

subject correspondences between two camera images.

4.3.2 Bayesian Belief Network

Bayesian belief networks (also known as Bayesian nets, belief networks or causal prob-
abilistic nefworks) are graphical models that represent the dependencies embedded in
probabilistic models [120]. Graphical models are a marriage of probability theory and
graph theory [82]. Fundamental to the idea of a graphical model is the notion of modu-
Jarity where a complex system is built from a combination of simple parts. Probability
theory provides the connection that combines the parts, ensuring that the whole system
is consistent. It also provides ways to interface models and deal with data uncertainty.
The graph theoretic side of graphical models provides an interface by which humans can
model highly-correlated sets of variables and a data structure that lends itself naturally

to the design of efficient general-purpose algorithms.
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BBNs in Computer Vision

BBNs are attractive for computer vision applications for two reasons. First, BBNs
offer the ability to deal with the inherent uncertainty in data provided by sensors sam-
pling a dynamic and complex scene. Second, BBNs combine a natural mechanism for
expressing domain knowledge, with efficient algorithms for probabilistic inference and
learning [132] (e.g. learning the causal relationships between different variables in order
to gain a more reliable interpretation of a problem}. From the late 1980s, BBNs began
to draw the attention of researchers in computer vision, e.g. geometric modelling [30],
perceptual integration [139] and scene surveillance [21]. Lately, BBNs have become a
popular tool in computer vision and pattern recognition applications, such as object
recognition [126], learning dynamic scenes [110], vision-based speaker detection [132]
and visual tracking [149]. Researchers have also examined conceptual links between
BBNs, Hidden Markov Models (HMMs) and Kalman filters. Both HMMs and Kalman
filters can be represented by BBNs with specific prototypical independencies and repet-
itive structures over time. This temporally repetitive structure is usually referred to as
dynamic Bayesion Belief Networks [40]. An example is given by the Lumiere project
which considers temporal dependencies between a user’s goals at different times and the
user’s behaviour [65].

Bayesian reasoning and inference procedure have been used in a number of research
areas for a long time but have only recently gained popularity in multi-sensor fusion [151].
Kortenkamp [89] was one of the first to propose the use of & BBN for multi-sensor
fusion. They used BBNs to build a topological map for guiding a robot to explore its
environment. This thesis uses a BBN to fuse multiple modalities from two cameras and
probabilistically infer the subject correspondences between two cameras in order to track

people using the cameras cooperatively.

The Limitations of BBNs

Although BBNs have remarkable power and potential in addressing inferential pro-
cesses, they have some inherent limitations. One potential problem was evident from
the Microsoft’s Lumiere project [65], which uses a BBN to understand users actions and
questions. The BBN is used to infer and provide intelligent assistance based on the
model of user behaviour pre-defined by a human expert. However, the system ignored
the possibility that the users might wish to violate the probability distribution (i.e. user

behaviour model} upon which the system was built. The possibility of a user making a
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novel request for information in a previously unanticipated way must be accommodated.
This problem results from the heavy reliance of the system on prior knowledge such
that it cannot handle some previously unforeseen events. However, this may equally be
regarded as an advantage of BBNs since prior or domain knowledge is important for
some real-world problems, especially when data is scarce, expensive or incomplete [61].
Another problem is that to calculate the probability of any branch of the network, all
branches may also need to be calculated. Also, a BBN is only useful when the prior
knowledge is reliable. As a consequence, selecting the proper distribution model to de-
scribe the system has a notable effect on the quality of the resulting network. In the
following, Section 4.3.3 and Section 4.3.4 introduce the theory of BBNs. The readers
familiar with the theory of BBNs are advised to proceed to Section 4.4.

4.3.3 Bayesian Graphical Model

Representation of BBNs

A BBN ijs a Directed Acyclic Graph (DAG) in which each variable is represented
by one node. A causal relationship is indicated by each edge represented as a directed
link between variables. Mathematically, this type of structure is called a directed graph.
Figure 4.4 shows an example of a directed graph where “X is the cause of Y (X — Y').
This causal relationship indicates that the variable ¥ is conditionally dependent on X.
Node X is called a parent node of node Y, and Y is called a child node of X. Both ¥V
and Z are the descendants of X.

Figure 4.4: A directed graph.

Given a set of n variables V = {Vi,...,V,}, without knowing the dependencies
among variables, one can apply the chain rule of basic probability theory and decompose

the joint probability distribution over the variables {V1,... ,Va} as:

By exploiting the causal relationships between variables, a BBN represents the fac-

torisation of the joint distribution via a sparse set of conditional probabilities [120]:

Py =[] P(villly;), (4.3)

i=1
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where Ily; is the set of parent nodes of node V;. If V; has no parent nodes, P(V;iIly;)
degenerates to the prior P{I@-). Figure 4.5 shows an example of a BBN with the set of
variables V = {A, B,C, D, E, F, G, H}. The joint probability distribution is decomposed

as:

P(V) = P(A)P(B|A)P(C|A)P(D|B)P(E|CYP(F|C)P(G|D,E)P(H|E, F). (4.4

Figure 4.5: A Bayesian belief network.

Structure of BBNs

A strength of BBNs is in their representation of probability distributions which can
efficiently encode both the independence and dependence relationships among random
variables. The independencies can be exploited to provide savings in the representation
of a distribution and in computation of the probabilistic inference [12]. In BBNs, a
variable is independent from its non-descendants in the network, given the state of its
parents and children [120]. Further independent statements that follow from these local
statements can be read from the network structure using a graph-theoretic criterion
called d-separation [120]. Other independence based on context information can be
exploited based on the fact that some variables are only relevant in certain contexts [12].

In general, networks can be constructed with continuous or discrete variables. In
this thesis, discrete random variables are adopted, where each variable may take on
values from a finite set. To construct a discrete BBN, one needs to define both the
network topology and the Conditional Probability Tables (CPTs) for each node. The
CPT describes the conditional distribution given different assignments of values (or
states) on its parent nodes. By specifying the graphical and numerical components of the

network, the prior and domain knowledge can be encoded. Some good surveys of learning
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both structure and parameters (ie. CPTs) of a network can be found in [61, 119].
Although algorithms exist for automatically structuring a network from training data,
BBNs are often constructed by hand. This is the approach adopted in this thesis.
For many applications, this should be seen as an advantage rather than a drawback.
Since BBNs provide a rich and principled framework for embedding domain knowledge,
users may often prefer to specify the network structure and estimate the conditional

probabilities associated with the graph edges, P(V;|Ily;).

Probabilistic Inference in Discrete BBNs

By exploiting the encoded independence between variables, an accurate and globally
consistent representation of P(V) can be obtained through exact probability propaga-
tion in networks. Basically the revision of the global probability distribution (for new
observed data in some variables) is decomposed into a sequence of local computations by
exploiting the independence properties implied by the model. In the last decade, different
exact computations have been proposed to solve probabilistic inference problems formu-
lated by discrete BBNs. Three general approaches are the arc reversal/node reduction
technique of Shachter [144], the message passing algorithm introduced by Pear! [120],
and the “clique tree” approach of Lauritzen and Spiegelhalter {91]. The Lauritzen and
Spiegelhalter algorithm was further developed by Jensen and others to form the basis of
the HUGIN expert system shell. Jensen et al. {78] extended earlier work restricted to
singly connected trees to cover multi-connected trees (where there may be more than one
undirected path between any two nodes, see Figure 4.6) by introducing a junction tree,
involving a compilation step that transforms a BBN into a secondary structure. This
computational approach is adopted in this thesis to handle the multi-connected trees.
Previous approaches are not appropriate for multi-connected trees, where messages can
cycle forever in the loop. For large BBNs, there are some approximate inference methods

(based on the stochastic simulations, e.g. [39]) that provide a better run time.

4.3.4 The Secondary Structure of Bayesian Belief Network

As noted above, this thesis uses a secondary structure of BBNs to handle multi-connected
trees in a network. Let us now explain how to obtain P(V|e) in the context of visual
evidence, e, in the secondary structure. Note that the goal of apply BBNs is to obtain
posterior P(V]e) (see Equation (4.1)) given the evidence e = {e1," -+ , n} in the observed

variables. In briefly reviewing the basics of inference algorithms for computing belief
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Singly Connected Multi-Connected

Figure 4.6: Examples of a singly connected and a malti-connected network structure.

in the context of observed evidence, a description of the notational conventions and
fundamental operations is first given before an introduction to the secondary structures
of the BBNs is provided. Finally, inference procedures in the secondary structure for
integrating observed evidence are described. We follow Jensen’s definitions [76] and

Huang and Darwiche’s procedural guide [66] to inference in BBNs.

Notation and Algebra

A variable denoted with italic uppercase V can have variable values v; and a set of
variables is denoted with bold uppercase P = {P,, -+, P,}. By assigning a value v to
a variable V, v is called an instontiation of V. To instantiate a set of variables P, a
value is assigned to each variable in P with the assignment p = {p1, -+ ,pn} (le. aset

of values) called an instentiation of P.

e Potential: A potential ¢p is a function over P which maps its instantiation p
into a non-negative real number. ¢p(p) is called an element. A potential can be

viewed as a matrix and implemented as a CPT (Conditional Probability Table).

o Multiplication: Let P and Q be both a set of variables with potentials ¢p and qbQ
respectively. The multiplication of ¢p and qbQ is a potential ¢ defined as:

bz, = dpPQ (4.5)
where Z = P U Q and each ¢ () is computed as follows:

1. Identify the instantiations p and q that are consistent with .

2. Assign to ¢z (z) the product ¢p (p)qi)Q (q).
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For example, let P = (4, B), Q = (B, (), p, = (a;, ;) be an instantiation of P
and g, = (bj, ;) be an instantiation of Q. If ¢z = ¢P¢Q= Z = (A,B,C) and

(a3, bjs c) = ¢p (Pu)dQ(Q0)- (4.6)

o Marginalisation: Let P and Q be both a set of variables where P ¢ @, and QQ has
the instantiation q. The marginalisation of ng into P is a potential ¢p denoted

as follows:

¢p =y dq (4.7)
QP

where each element ¢p(p) is computed as follows:

1. Identify the instantiations q;, ¢, -+ - that are consistent with p.
2. Assign to ¢p(p) the sum ¢Q(q1) + ¢Q(q2) e,

For example, let P = (4, B), Q = (4, B, C) and p;, = {as, bj) be an instantiation of
P, and there are exactly m different instantiations in Q for which A is instantiated
as a; and B is instantiated as b;, namely the mutually exclusive instantiations

(as,bj,¢1)y (@i, b5, €m)- 1f ¢p is defined as Equation (4.7},

¢P (pk:) = d)Q(ai: bj: Cl) + -+ qu(ai) bj) Cm)' (48)

The Secondary Structure

The secondary structure of a BBN is an undirected tree 7 where a node represents
a set of variables called a cluster C (instead of a single variable which is the case in
the original BBNs). Each edge is labelled with a set of variables which are the inter-
sections of adjacent clusters. This set is called a separator S. TFigure 4.7 shows the
secondary structure obtained from the original BBN in Figure 4.5. Tt contains clusters
{ABD,ADE,DEG,ACE,CEF,EFH} and separators {AD,DE,AE,CE,EF}. The
construction of this secondary structure is given in Appendix C.

The joint distribution in Equation (4.3) can also be encoded in the secondary struc-
ture of a BBN (see Equation {D.5) in Appendix D) with P(V) defined as:

3 T3

(4.9)



CHAPTER 4. BAYESIAN MODALITY FUSION FOR CORRESPONDENCE 79

G
Figure 4.7: The secondary structure of the BBN in Figure {.5.

An important property of the secondary structure is that for each cluster C and each

separator S, it holds that

¢c = P(C), (4.10)
and -

¢g = P(8). (4.11)
From this property, the probability distribution of any variable V' can be computed from
any cluster C (or separator S) that contains V as:

P(V)= Y éc. (4.12)
O\w

Probabilistic Inference in the Secondary Structure

Having described the structure of the junction tree, we are now concerned with
computing the probability distribution of a variable V' given evidence e, p(Vlie), in a
secondary structure. Figure 4.8 illustrates the overall control for the inference proce-
dures. The BBN (including structure and the CPTs) is designed off-line. AT run time,
the BBN is then transformed to the secondary structure and initialised to make the BBN
to represent the joint distribution of all variables (see Equation (D.5)). After initialisa-
tion, the BBN is ready to enter the observations. The dotted path indicates the control
of inference procedures with dynamic observations. From this dynamic observations, the
previous observations can be considered in the inference process. After marginalisation

and normalisation, the network is then re-initialised to incorporate new observations.
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The BBN used in this thesis, the posterior of the subject correspondences inferred in
the last frame is used as the prior probability in the correspondence node in the current

frame. The details of inference are described in Appendix D.

{ Vi } Bayesain Belief Network

Graph
Transformation

i Second Stfucture

Initialisation <

L

€ = Ohservation Global Marginalisation
Evidence Eniry =1 Propagation =1 Normalisation p(Vlie)

Figure 4.8: Block diagram of probabilistic inference in o secondary structure.

After transforming the DAG of a BBN to a secondary structure and initialising the
junction tree with potentials representing the joint distribution in Equation (4.9), the
structure is ready for inference based on observed evidence. After entering the evidence
e for those clusters with evidence, the potentials ¢ which represent P(C) (see Equa-
tion {4.10)) are modified to contain the evidence and represent P{C,e). The subsequent
probability derivation includes evidence e. Note that if some evidential voriables are
not observed, a BBN can still handle this situation (i.e. incomplete information) by ex-
ploiting the built-in causal relations and numerical parameters. After performing global
propagation, the potentials of all clusters and separators, ¢y and ¢g, are modified to
P(C,e) and P(S,e). Thus, P(V,e) can be obtained from any cluster C {or separator

8) that contains V' by marginalisation:

P(Vie)= > dc. (4.13)
O\

From P(V,e) of all variables, the posterior P(V|e) can be obtained by normalising
P(V,e) as follows:

P(V,e) __P(Vie)

Pl) ~ 5, P(Vie) (4.14)

P(Vl]e) =
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Civen visual evidence e of different modalities from two cameras which might be
uncertain and incomplete, the goal is to find the most likely assignment combination (i.e.
a union of m matches between two camera images as defined in Section 4.2.3). Thus, the
matching problem defined by Equation (4.1) can now be probabilistically inferred using
the secondary structure of a BBN to obtain a probability distribution over the assignment
combinations, A, == {43, - , Am}. The most likely combination between A, with the
maximum posterior can then be obtained. After marginalisation and normalisation to
obtain the probability distribution over the assignment combinations, the network is

then re-initialised to incorporate new observations for the next frame.

4.4 A Bayesian Belief Network for Inter-Camera Subject

Correspondences

Having introduced the theory of network construction and probability inference in the
secondary structure of BBNs, this section describes the design of a BBN for inferring
subject correspondences between two camera images. This BBN can effectively fuse
multiple visual modalities of different features for matching subjects across cameras. The
use of a BBN at a time instant based on a single modality is first described and then the
generalisation of the network to fuse multiple modalities over time ig explained. Finally,
the process of feature validation in both SCT and MCCT for reducing correspondence

complexity and defining matching ambiguity is explained.

4.4.1 Feature Correspondence Based on a Single Modality

To infer subject correspondences based on a single modality, the BBN shown in Fig-
ure 4.9 is used. As mentioned earlier in this chapter, this method of adaptively fusing
multiple modalities based on BBNs was introduced as Bayesian modality fusion [171],
where the task was to match a single object (i.e. tracking a human head) between image
frames from a single camera. This thesis extends this method for matching multiple
subjects between image sequences from two widely separated cameras. The nodes of
the graph represent the variables of interest. In this network there is one correspon-
dence, one modality confidence, m comparison and k confidence indicator nodes. The
true correspondence of multiple subjects between two camera images is represented as

a random variable, called the correspondence variable, ;. This unobserved “ground
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Cotrespondence
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Figure 4.9: The BBN (Boyesion Belief Network) for inferring the correspondence of

subjects between two camera images based on a single modality.

truth” determines the state of all the comparison variables which represent the similar-
ity between the subjects to be matched in two camera images. In order to efficiently fuse
all modalities, the confidence of a modality, which represents how reliably the modality
reflects the correspondence between two images, is modelled as a modality confidence
variable. However, this modality confidence variable cannot be directly observed. The
evidence regarding the modality observed from the dynamic scene is used to indicate
the modality confidence, modelled as confidence indicator variables. This unobserved (or
hidden) modality confidence variable can be dynamically influenced from the confidence
indicator variables. It also influences the comparison variable for adaptively determin-
ing the confidence (i.e. weight} of the results of the comparison variables on the subject
correspondénces. Directed edges with arrows from the unobserved variables (i.e. cor-
respondence and modality confidence) to the evidential variables (i.e. comparison and
confidence indicator) capture the probability dependence between these variables. Dur-
ing tracking, the evidential variables are observed from the monitored scene. Then, the
observed evidence is set to a discrete state of variable e. This given evidence is then
used to infer the probability distribution of the correspondence variable PV |e) for de-
termining the most likely combination of assignments. The four different types of nodes

are described as follows:
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1. A correspondence node represents a multi-value variable where each value (or state)
corresponds to a possible assignment combination 4, € {41, , A} where m is
the maximum number of subjects in an image. From the computed probability dis-
tribution over {A;,--- , Am}, given evidence, the correspondence problem defined
in Section 4.2.3 is probabilistically inferred. An example of the states represented
by the correspondence variable is given in Table 7.3. The prior for correspondence
variable is set as all states with equal probability, %, for the initial condition (i.e.

no observation in the network, more discussed in Section 4.4.2}).

2. Comparison nodes: There are m comparison nodes and each node compares one
subject in image I; against all m subjects in image I; where m is the maximum
number of subjects in an image. Thus, all m subjects in I; are compared to all
m subjects in I; in order to determine the best match. To compare the subjects,
the constraints of different modalities for matching are formulated in a statistical
framework by defining a similarity measure to guantify the confidence of a possi-
ble match. The attribute disparity of the corresponding features is modelled as a
Gaussian variable for determining the likelihood of a candidate match. (as described
in Chapter 5 and Chapter 6, see an example in Figure 5.5 in Section 5.2.2). The
experimental results of obtaining Gaussian variable parameters for different modal-
ities are given in Section 7.1. The comparison is based on the MD (Mahalanobis
Distance) defined by the Gaussian distribution. The exception is the landmark
modality where the matching probability is modelled with uniform distribution

(described in Section 5.4.2).

The comparison nodes are influenced not only by the correspondence variable
but also the modality confidence variable, since these variables are represented as
parent nodes of comparison nodes. Note that the comparison results in each node
allow multiple hypotheses (e.g. two subjects in image I; are equally similar to a
subject in image I;) which are encoded as the states of a CPT attached to the
comparison variable (see an example in Table 7.4). An example of the CPT of
a comparison node is given in Table 7.7. The final unique assignment for each
subject in I; to a subject in I; is determined by using the BBN to fuse multiple
modalities and to probabilistically infer the most likely combination of assignments

Ag (i-e. a state of correspondence variable).

3. A modality confidence node represents the confidence of the modality in the cor-
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respondence dependent on context information. It constrains the influence of this
modality on the correspondence variable. This modality confidence variable cannot
be directly observed in the image but can be inferred from observed evidence in
confidence indicators. An example of the states of a modality confidence variable
(i.e. { high confidence, low confidence }) is given in Section 7.3.1. The prior for
modality confidence node is set as all states with equal probability for every frame

during tracking.

4. Confidence indicator nodes indicate the modality confidence. The notion of con-
fidence indicator nodes is used to reflect that the modality confidence and the
estimate of the confidence both vary over time according to the structure of the
dynamic scene. To build a coherent framework for adaptively fusing multiple
modalities, the unobserved modality confidence is dynamically and probabilisti-
cally inferred from visual evidence in the confidence indicator nodes. The vi-
sual evidence represented as k nodes in the network enables the BBN model to
context-sensitively infer the modality confidence. This makes the correspondence
adaptively reflect the time-varying confidence of the modality (see an example
in Figure 5.6). An example of the states represented by a confidence indicator
variable (i.e. { high confidence, medium confidence, low confidence }) is given in
Section 7.3.1. An example of the CPT of a confidence indicator node is given in

Table 7.8.

In this network, both correspondence node and modality confidence node represent
variables to be inferred. From the observed evidence in indicator nodes, the modality
confidence is probabilistically inferred. This inferred modality confidence and the com-
puted comparison results are both considered in inferring the probability distribution
over the m! assignment combinations. At run-time, the actual number of subjects, n, in
both camera images can be less than m. The distribution over n! assignment combina-
tions can be marginalised from the inferred probability distribution over m! assignment
combinations. When the numbers of subjects are unequal in the two images (e.g. m
subjects in I; and n subjects in I; with m > n, without loss of generality), the inferred
assignment combination has m matches (each match assigns a subject in I; to a subject
in I;). Thus, each of the m subjects in I; is assigned one subject in I;. Those (m ~ n)
subjects in I;, which are not assigned to any of the n subjects in I;, are interpreted as

not visible in J;. In other words, only those matches which assign subjects in I; to one
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of the n subjects in I; are valid matches. An example of how to obtain the distribution
over the assignment combinations when the subject numbers in either or both camera
images are not equal or less than m is given in Section 7.3.1. In order to generalise the
BBN for multiple modalities, a Matching Unit (MU) (see Figure 4.9) is defined as the
union of all comparison nodes, a modality confidence node and all confidence indicator

nodes.

4.4.2 Feature Correspondence Based on Multiple Modalities

After having described the use of the BBN for MCCT at a time instant based on a single
modality, the use of a BBN for MCCT over time based on multiple modalities is given
here. Figure 4.10 illustrates a BBN for this purpose. The diagram shows how the model
fuges n modalities to infer the subject correspondences between two camera images,
where each modality is represented with a MU. In the network, there is one correspon-
dence node which represents the subject correspondence between two camera images.
The subject correspondences are determined based on n modalities. Each modality has
its own modality confidence node. The modality confidence node in each MU defines the
relative influence of the comparison results (in the comparison nodes of this MU) on the
subject correspondences for this modality. Thus, the modality confidence nodes in dif-
ferent MUs constrain the relative influence on the subject correspondences for different
modalities based on the observed evidence in confidence indicator of different modalities.

Figure 4.10 also displays the generalisation of the network to consider the status
of variables over time. The representation of temporal dynamics with regard to scene
structure in both cameré. images {e.g. images of subjects and landmarks) provides a tem-
poral pattern of visnal evidence for matching subjects across cameras over time. This
Bayesian model can capture dependencies between variables at different time instants
as well as amongst variables within a time slice. To obtain correspondence consistency,
the network is coupled indirectly over time through the specification of prior probability
for correspondence node using the posterior of the correspondence inferred in the last
frame. As a consequence, the correspondence at each time instant is influenced by the
previous matching history. Moreover, to make the maftching more reliable and smooth
(e.g. less sensitive to noise), the system uses the accumulated evidence in the com-
parison nodes which compare the subject images to determine the inter-camera subject

correspondences. This accumulated evidence is defined as:
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Figure 4.10: The BBN (Bayesian Belief Network) for inferring the correspondence of

subjects between two camerg images based on multiple modalities over timne.

Eq 1 @ zz(;

where g is the number of frames of the accumulated evidence, [ is the frame index, o; is
the weight to set more recent evidence with higher weights and 7 is a function estimating
the likelihood of the candidate match (discussed in Chapter 5 and Chapter 6). Thus,
the visual evidence accumulated over time is integrated into the current network model
(see an example in Section 7.3.2). These weights are manually selected in this thesis
based on domain knowledge. Note that estimation techniques (e.g. maximum likelihood
method) can be used to learn these weights from the experimental data.

Note that if a visual modality becomes less reliable, the comparison can be based

on the less reliable evidence in multiple frames due to the accumulated information
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used for comparison. In such a case, the confidence indicator will lower the influence
of the comparison results on the correspondence. On the other hand, if the previous
correspondence results are Jess reliable, the correspondence node can have an unreliable
prior. Therefore, the system needs a mechanism to define the maitching ambiguity be-
tween two camera images in order to avoid using the unreliable correspondence results

in the previous frames.

Relationships between Tracking Modes and the BBN

As discussed in Section 3.1, the system first tracks the subjects in each camera (see
Figures 4.11) based on its own visual information. In this SCT (Single Camera Tracking)
mode, the system matches the subject images (i.e the highest points based on motion
vector defined in Section 3.2.2) between successive image frames of a camera over time
based on Kalman filtering. To track people using two cameras cooperatively, the system
assigns a label (i.e. an identity) to each newly detected subject. If a newly detected
subject in an image of a camera I; has already been tracked and assigned an identity in
the other camera image I;, the system then passes the identity to this subject in I; by
matching subjects across camera images. This MCCT (Multiple Camera Cooperative
Tracking) process of matching subjects across camera images can also be used to regain
the identity of a subject from other cameras when the identity has been lost and tracking
becomes ambiguous in a camera. Moreover, it can be used to check whether different
subjects with the same identity in different cameras correspond to the same person.

Figure 4.11 shows the relationships between tracking modes and the BBN used to
fuse multiple modalities for MCCT. The system performs SCT in each camera based
on its own visual information. The visual information from each of the two cameras
is also entered in the BBN at each frame in order to perform MCCT. These different
visual modalities are fused by the BBN for determining the inter-camera subject cor-
respondences (i.e. matching each of S, Sp and S¢ in the left camera image to their
corresponding subject, either S}, S2 or §s, in the right). As discussed above, to ob-
tain correspondence consistency, the network is coupled indirectly over time through the
specification of prior probability for correspondence node using the posterior of the cor-
respondence inferred in the last frame. Once matching ambiguity is present in a camera,
the system then passes subject identities between cameras to resolve the ambiguity in

order to track people using two camera cooperatively.
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Figure 4.11: The relationships between tracking modes and the BBN.

4.4.3 Feature Validation

As discussed above, the system needs to define the matching ambiguity in the inter-
camera subject correspondences in order to determine the data collection in the BBN
(e.g. stop using the accumulated evidence in the comparison nodes, and the posterior of
the correspondence results inferred in the last frame as the prior in the correspondence
node). The matching ambiguity in inter-camera subject matching for MCCT and that in
SCT (Single Camera Tracking) will be defined in this section. The matching ambiguity
is defined in terms of validation of image features. This validation step also relates to
the process of handling the complexity problem in correspondence of both MCCT and
SCT.
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The issue of feature validation is related to the matching process in both SCT and
MCCT modes. The features to be considered in SCT are from fwo successive image
frames, I;(t) and I;(t + 1), of a camera C; while in the case of MCCT, they are from
images I;(t) and I;{t) of two cameras C; and Cj. The goals of this validation process

are twofold:

1. to eliminate less likely matches before matching and thus reduce the computational

complexity in the correspondence process, and

2. to define the matching ambiguity in order to determine the system operations by

testing the matches of the established subject correspondences between two images.

Note that the main difference in the feature validation between SCT and MCCT,
as discussed in Chapter 1, is that the features extracted from two cameras for MCCT
are from different camera coordinates and different physical processes, thus increasing
the matching difficulty and ambiguity. This thesis copes with this problem in MCCT
not only by using the BBN to fuse multiple modalities and probabilistically infer the
correspondence, but also by explicitly considering the variations of the corresponding
features in two camera images (discussed in Chapter 5 and 6). This section focuses on
discussing the approach to the complexity problem and defining the matching ambiguities
in MCCT as well as those in SCT.

As mentioned earlier in this chapter (Section 4.2.2), the computational complexity
problem is an important issue that cannot be ignored in tracking [127]. For the case
where there are m subjects in two images, m™ possible assignment combinations need to
be considered and the correspondence complexity is exponential. Moreover, the match-
ing in both modes (SCT and MCCT) is based on a comparison of the MD {Mahalanobis
Distance). For example, M, (i.e. normalised innovation related to the motion vec-
tor, see Equation (3.13)) is used in SCT and M, (based on homography modality, see
Equation {5.7)) is used in MCCT. The computation of the MD, which involves ma-
trix inversion, can also be computationally expensive. Without eliminating some of the
less likely matches, the matching process involving computation of MD can slow down

significantly.

Validation Gate
Before introducing our methods for feature validation and defining the matching am-

biguity, it is useful first to introduce the notion of a validation gate [9] (see Figure 4.12},
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which relates to validation in both SCT and MCCT modes. This validation gate ap-
proach places a constraint {shown as a ellipse on which all point are with a given MD
in 2D feature space) on the feature value, M (MD), that candidate matching features

might take, for determining valid matches, i.e. only those features for which:
M < XF, (4.16)

are valid, where the subscript, 7, in X7 is indicative of that it is a threshold, and X2
is a threshold limit based on the X? (chi-square) statistical test. Figure 4.12 illustrates
the validation gate of predicted feature and measured features. The predicted feature
is marked with *+’, the validated measured features with ‘e’ and the measured features
failing the validation test with ‘2. This validation of candidate matching features,
based on MD, is extensively utilised in robotics and data-association [107}. Since this
test can be time-consuming, e.g. matrix inversion, Montiel and Montano [107] proposed
to compute MD in a progressive manner. The MD is computed as a non-decreasing

quantity. If the MD exceeds X2, the computation stops.

A

Figure 4.12: A velidation gate.

This X2 statistical test leads to the decision of acceptance or rejection of candidate
matching features. Since the MD is chi-square distributed with the number of degrees
of freedom equal to the dimensionality ny of the feature vector [108], the probability of
the candidate match with respect to the MD between the two features can be obtained
from a A2 distribution table [93]. Thus, one can obtain a value (i.e. X%) corresponding
to a pre-defined upper bound of the acceptance MD of the candidate matching features.
For example, if the feature vector is one dimensional, ny = 1, and the validation or
search range is set so that there is a 95% probability of finding the true feature, the
table [93] indicates that the corresponding MD is 3.84. So X? is set to 3.84 (see an

example in Figure 7.7 in Section 7.1.4). Conversely, if a feature fails the inequality test
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of Equation (4.16), there is a chance < 5% that this feature is the correct corresponding

feature.

Feature Validation for SCT

There are some methods available to handle the complexity problem in SCT 27,
such as small velocity change, smooth motion constraints [64] and the bucket method [190].
Zhang and Faugeras [190] partitioned the search image space into buckets (square blocks,
see Figure 4.13). A disc is defined by setting its centre to coincide with the predicted
feature point on the image plane. Only those feature points located in the buckets which
the disc intersects are valid feature points. Figure 4.13 shows that §; and Sy are the
valid feature points which are in the buckets intersected by the disc, and Sy and 53 are
not valid. This bucket method is similar to the validation gate method discussed above,

but constraint is placed on the image distance instead of the MD in the feature space.

| s Disc

53 o §2

Bucket

Figure 4.13: The bucket method.

The bucket method is adopted in this thesis for feature validation in SCT. This
method is used to compare the predicted highest point of a subject from the previous
frame and the extracted highest points of subjects in the current frame. Only those
highest points inside the disc on the image are valid. Only for these valid features,
the system needs to further compute the M, (see Equation (3.13)). By computing
the M,, for different highest points, the system can determine which subject is to be
associated to a Kalman filter in order to keep tracking the subject. Note that the
predicted highest point (z,y) of a subject is obtained from the predicted motion vectors
(5 (k + LE) = [z, &, 17 and gy (k + 1]k} = [y,9,9]", (defined in Section 3.2.2). These
are predicted based on Kalman filtering (described in Section 3.2.2).

In applying the bucket method for feature validation, there could be no features inside

the disk, e.g. as a result of a sudden change in motion. In such cases, the acceptance
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region is enlarged. On the other hand, when more than one candidate matching feature
falls inside the validation region, a decision must be made as to which of the features
in I; is to be assigned the feature in I;. In SCT, the simple nearest neighbour method
(described in Section 3.2.2} is used to compare the related My, of different subjects.
In order to detect a questionable match during SCT (as discussed in Section 2.2.1},
the X2 test is used to test the M, (see Equation (3.13)) of the matched corresponding
subjects in two contiguous image frames, I;(£) and I;(t + 1). In this case, ny = 3 (i.e.
dimensionality of the motion vector defined in Section 3.2.2) and the validation is set
so that there is a 95% probability of finding the true feature, the table {93] indicates
that the corresponding MD is 7.81. So X7 is set to 7.81. Once a match between two
corresponding subjects fails the test, the system performs MCCT to obtain the correct
identities from the other camera in order to resolve the matching ambiguity. Moreover,
the system can also detect a questionable match in SCT by performing MCCT to test

if the matching in one camera is compatible with the other.

Feature Validation for MCCT

In general, methods for reducing complexity in SCT cannot be applied to MCCT us-
ing widely separated cameras. In SCT, constraints (e.g. velocity change, smooth motion
constraints) are used to reduce the number of candidate matches between consecutive
frames where the image variations are assumed to be relatively small. In MCCT, the
two camera itnages I;{t) and I;{t} are obtained using different camera coordinates. To
apply these constraints, the image positions of objects in two camera images need to be
transformed to a common coordinate system. Moreover, the image variations between
the two widely separated cameras generally cannot be ignored.

To handle the complexity problem in MCCT, it is necessary to use some global con-
straints. One possibility is to apply homography as a global constraint (see Section 5.2)
and use the ground plane constraint (see Section 2.2.2) which assumes the lowest parts
of the subjects to be matched are visible in both images. This validation can be done
by comparing the estimated image position of a subject’s lowest point in [; with the
observed lowest points of the subjects in J;. Thus, by applying the bucked method, only
those subjects’ lowest points located in the buckets which the disc (its centre is set as the
estimated subject’s lowest point) intersects are valid subjects. However, in a cluttered
environment, the lowest points of subjects may not be visible. Therefore, in this thesis,

the validation gate method is performed by using homography related to the virtual
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plane of a subject’s highest points. To reduce the complexity, the less likely matches are
eliminated by testing their M, (defined in Section 5.2.2). Only those subjects with M,
smaller than the threshold value X2 are valid.

In each comparison node, m subjects in I; need to be compared to one subject in I;.
To avoid computing the MD for all m subjects for all modalities, only those subjects in I;
which are validated by the homography modality need have their MD computed further.
"This is because in comparison with other modalities, homography is a more powerful
constraint which can ideally find a corresponding point befween two camera images (591
Thus, it is used as a global constraint in our inter-camera, correspondence problem. In
applying the validation gate method based on homography, similar to SCT, when there
are not any subjects inside the gate, the acceptance region is enlarged. On the other
hand, when more than one candidate matching feature falls inside the validation region
based on the homography modality, all are compared in the comparison nodes of other
modalities. Note that, as mentioned earlier, the comparison results of the subjects in each
comparison node allow multiple hypotheses to be made (see an example in Table 7.4).
The unique correspondence of each subject in two images is probabilistically inferred
in the BBN. Another method for reducing the number of candidate matches is fo use
domain knowledge such as the landmark method [28] (see Chapter 5) or the spatial
relationship between FOVs of different cameras to constrain the matching [75]. This
knowledge-based method can constrain the image positions of corresponding subjects in
both camera images and serve as a validation tool.

To define the matching ambiguity in MCCT, the X 2 test is used to test each match
in the assignment combination obtained in the previous frame. If any match has mére
than one modality larger than the threshold, X7 (see an example in Figure 7.7 in Sec-
tion 7.1.4), the system does not use previous matching results as a prior in the corre-
spondence node. Moreover, the number of frames of accumulated evidence used in the
comparison node is set as ¢ = 0 for all modalities to prevent using less reliable evidence.
Thus, Equation {4.15) becomes F({) and the system compares subjects based on the

information in the current frame images.

4.5 Summary

This chapter has developed a framework based on the BBN for integrating multiple

modalities over time in order to match subjects across camera images when perform-
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ing MCCT. The complexity problem in establishing correspondence for both SCT and
MOCCT is handled by applying some global constraints. The questionable match in both
SCT and MCCT is defined and used during tracking for making the matching more
reliable. The theory for inferring the subject correspondences in the BBN has been
given in Section 4.3.4. The BBN (see Figure 4.10) used for fusing multiple modalities
in order to infer the subject correspondences has been described in Section 4.4.2. To
infer the subject correspondences using the BBN, each modality, used as a constraint on
the inter-camera subject correspondences, is constructed with a single MU. Chapters 5
and 6 describe the details of the data collection in the evidential nodes (i.e. compari-
son and confidence indicator) in the BBN for different modalities (see Table 4.2). The
collected evidence from different modalities is then used to probabilistically infer the
subject correspondences between two camera images. The next chapter introduces the

geometry-based modalities.

Table 4.2: Modalities for inter-camera feature correspondence.

Geomet%‘%—Based Modalities | Recognition-Based Modalities

hapter 5) (Chapter 6)
homography apparent colour
epipolar apparent height

landmark




Chapter 5

Geometry-Based Modalities

5.1 Introduction

The previous chapter described the use of a BBN to adaptively fuse multiple visual
modalities for matching subjects across camera images over time in order to perform
MCCT. This chapter describes the geometry-based modalities used in the BBN as local
constraints for matching subjects across cameras in MCCT and explains the details of
the data collection in the evidential nodes of the BBN (see Figure 4.10). Note that each
modality corresponds to a MU in the BBN for inferring the subject correspondences by
fusing multiple modalities. Since the subject features used for determining inter-camera
subject correspondences are obtained from two widely separated cameras with different
camera coordinates, the image variations can be significant. Direct use of the image
coordinates for feature correspondence between two camera images does not always
make a correct match (see Figure 5.3). The main purpose of using geometric modalities
is to handle this problem by finding the geometric positional relationships between the
corresponding subjects in two camera images. With these geometric constraints, the
search space can be reduced so that the feature correspondence can be established more
reliably.

The work presented in this chapter uses multi-view geometry (including homography
and epipolar geometry) and landmarks for solving inter-camera subject correspondences.
The novelties are twofold. The first lies in the use of multi-view geometry with an
explicit consideration that in a cluttered indoor environment, the lower part of a person
can be invisible (see Figure 6.3). This thesis proposes to use the highest point of the

subject image to overcomes this problem [27]. The second is the use of knowledge-based

95



CHAPTER 5. GEOMETRY-BASED MODALITIES 96

natural landmarks in the scene to reason about the spatial positional relationships of

the corresponding subjects in two camera images [28].

Gleometry and Computer Vision

Computer vision is concerned with the development of machines that can automati-
cally analyse and interpret the images of scenes. Most problems in computer vision can
be couched in geometric terms, and geometric methods constitute one of the most useful
tools for this analysis [170]. Though Euclidean geometry describes our 3D world well, it
is insufficient in the context of the imaging process of a camera (e.g. lengths and angles
are no longer preserved, and parallel lines may intersect). Projective geometry deals
elegantly with the general case of perspective projection and therefore provides under-
standing of the geometric aspect of image formation and 3D vision [106, 48] , e.g. it can
deal with projections and objects at infinity, though it lacks the notations of angles or
distances (due to distortion). The adoption of projective geometry, as a supplement to
Euclidean geometry, provides a useful approach to many computer vision problems and
has led to improved recognition methods and a better understanding of the geometry
of multiple views, particularly in the case of un-calibrated cameras. This chapter uses
some modalities based on multi-view geometry which do not require camera calibration.
A good introduction to the subject of multi-view geometry can be found in the book
by Hartley and Zisserman {59]. Note that one major characteristic of computer vision
problems, in contrast with projective geometry as pure mathematics, is that data is not
necessarily accurate [84]. For example, the positional ambiguity of the highest point that
is used for representing subject position can degrade the matching reliability. Therefore,
a combination of geometry and statistics (i.e. a BBN) is adopted in this thesis in order to

handle data uncertainty for making inter-camera subject correspondences more robust.

Multi-View Geometry

Multi-view geometry involves analysis of the geometric relations that exist between
the images of objects from different views. These relations are important to be under-
stood not only for providing explanations of appearances in different views, but also
because their understanding is important for a range of applications [59], such as self
calibration {7} (computing the intrinsic camera parameters using only information in the
images), scene reconstruction [165] (reconstructing the 3D structure of the objects in

the scene) and structure from motion [67] (analysis of image motion caused by relative
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motion between objects and cameras). One of the advantages of applying multi-view
geometry is that some of the relationships between multiple views can be obtained from
un-calibrated cameras. For example, both homography and epipolar geometry relate to
the geometry between two views, and trifocal tensor relates to the geometry between
three views [169]. The advantage of multi-view geometry is that it avoids computation

of camera parameters and hence results in a simpler algorithm [59].

Scene Knowledge

The other geometric modality used in this thesis is based on the knowledge of land-
marks in the scene. Scene knowledge uses spatial context information about the scene
structure for image understanding and interpretation [150]. This high-level knowledge
can be used for various problems in computer vision. Scene knowledge is often referred
to as a model. For example, the knowledge of an object model can be used to inter-
pret the contours of the object image. The landmark modality used for inferring the
spatial relationships of the corresponding subjects in two cameras images is a type of
3D world model. A world model is generally used to store information concerning the
state of the environment in which the system is operating [98). Depending on the needs
of particular applications, information stored in the world model can take many differ-
ent formats. High level reasoning processes can incorporate the world model to make
inferences in order to direct the processing and/or operation of the system, such as to
navigate a robot [143] or to guide a tracking system to follow people in a building {140].
Qur method [28] uses the world model to geometrically reason about the subject corre-
spondences between two un=calibrated camera images and obtain the relative positions
of people in the scene, This type of geometry reasoning method is a knowledge-based

vision technique combining domain knowledge and image processing [180]

The Approach
The problem that this chapter aims to solve is that given a point p in the first camera
image, I;, how does one use geometric methods to constrain its corresponding point p’

in the second camera image I5. This question will be answered for three cases as follows:
1. For images of points on a common plane in the 3D world, the corresponding point

is uniquely determined by applying homography (Section 5.2).

2. For arbitrary image points, the corresponding point is constrained to lie on a line

(an epipolar line} by applying epipolar geometry (Section 5.3).
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3. For images of points viewed in front of landmarks, the corresponding point is
constrained to lie in an limited area by using the knowledge based on the vertical

line landmarks (Section 5.4).

In all three cases, constraints can be computed from prior knowledge of image corre-
spondences, and do not require camera calibration {i.e. the process to estimate camera
parameters, an introduction to camera calibration is given in Appendix A). The first two
cases need prior knowledge of point correspondences and the third needs the knowledge
of correspondence of the line landmarks between the two camera images. To reduce the
computational cost, a single feature point (the highest point) is extracted from each sub-
ject image and used for representing the subject’s image position. The preprocessing step
of feature extraction of the highest point is described in Section 3.2.1 (see Figure 3.7).
Note that the prior knowledge of the correspondence required for these modalities only
needs to be obtained once off-line, although it needs to be re-established if the cameras

are moved.

5.2 Homography Modality

This section explores homography as a constraint on point correspondence between
two camera images. Given a set of corresponding points in two images which lie on
a scene plane in the world, the correspondence of image points on this scene plane can
be uniquely determined by applying homography. 'This section first introduces the theory
of homography regarding a scene plane and estimation of homography, then describes

how to apply homography to the subject correspondence problem.

5.2.1 A Scene Plane and Homography

As mentioned above, if a scene point P lies on a plane (see Figure 5.1}, then the image
point p in the first image I1, corresponding to P, determines the image position of p’ in
the second image I, which also corresponds to P. This planar projective transformation
is called homography and the homography between two images is said to be induced by
the scene plane [59]. The image points relationship is expressed as p’ = Hp where H is
the 3x3 homography matrix. Figure 5.1 illustrates the concept of homography. The ray
corresponding to a point p in the first image I; is extended to meet the scene plane at

a point P. This point is projected to a point p' in the second image I5. The projective
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Figure b.1: Ilustration of homography induced by o scene plane n between two camera
images with camera cenires Cy and Cy. The camera centre is defined as the centre of

projection.

transformation between two images induced by a scene plane is called homography, H.
The homography His transfers points from I; to I» while Hy; transfers points from Iy
to I, with Hyz = H;il. The derivation of homography is described as follows.

In homogeneous coordinates, a point is represented as p = (z1, z2,z3)” which corre-
sponds to the point (z1/z3,72/z3) in the image coordinates; p’ and Hp have the same
direction but may differ by a non-zero scale factor [59]. The equation may be expressed
in terms of a vector cross product as p; x Hp; = 0 for a set of given corresponding
points, p; ¢+ p}, in two images I) and I. By denoting the jth row of the matrix H as

h?*, then one may write

hl'rpi
Hp; = | b*'p; |, (5.1)
h*"p;
where
h; hy hs h!7
H=|hy hy hs | =| b** |. (5.2)
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With p’ = (2, &b, z5)7, the cross product may then be written as

#ph°p; — 23h?Tp;
p; x Hp; = | 24h'"p; — 2/b%p; | - (5.3)

14,27 1. 1T
z1h*'p; — zhh T p;

Because p} x Hp; = 0 and h’"p; = prh?, Equation (5.3) can be re-written as

07 -ahpf ahpf || B
opf 07 —gipf | | B? | =0 (5.4)
—atp? ehpr 07 ||

Equation (5.4) corresponds to a linear system where the unknown {h'} are the row
vectors of the homography matrix H. Although there are three equations in Equa-
tion (5.4), only two of them are linearly independent. It is usual to omit the third

equation. The set of equations in Equation (5.4) then becomes:

hl
0T —zipT  zHpf w2 | =0 (5.5)
zpf 0" -mpl |

Each point correspondence gives rise to two independent equations in Equation (5.5).
Given 4 point correspondences, H can be determined up to a scale factor. However, since
the points may not be correctly extracted from the image due to noise or system error,
more corresponding points can be used to estimate H more accurately. If more than
four point correspondences are given, then the set of equations from Equation (5.5) is
over-determined. The Singular Value Decomposition (SVD) method [124] is used to
obtain a better estimation of H with more than 4 corresponding points. There are also
some optimisation methods which can be used for estimating H by minimising a cost
function based on image distance {59]. On the other hand, homography can also be
obtained from the geometric relationship between the scene plane and the relative pose
(position and orientation) of two cameras if the two cameras are calibrated [59].

Homography is used in a range of computer vision problems, e.g. motion estima-
tion [173] and stereo matching [125]. However, this relation holds only when the points
in two camera images lie on the same scene plane, or the two images are from a rotated
camera [167]. Conversely, if the scene plane contains one (or both) of the camera cen-
tres, then the homography degenerates {59]. For example, if the scene plane contains

the second camera centre Cb, all points in the first image which are on the scene plane
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are mapped to points on a line (where the scene plane intersects the image plane) in the

second image Is.

5.2.2 Using Homography for Inter-Camera Subject Correspondences

In general, when homography is applied to the problem of matching subjects across
different cameras, the ground plane constraint (see Section 2.2.2) is used (assuming the
lowest points are visible in the images of all cameras [92]). However, as previously
mentioned, the lower parts of subjects may not always be visible. Instead, the highest
point of a subject is used here for applying homography, with the assumption that the
highest points lie on a virtual plane, which is parallel to the ground plane, as a person
is moving (see Figure 5.2). The map from p to ¢’ is the homography induced by the

virtual plane 7 which contains the highest point P of the person.

. Virtual
Plane ©

e c,

Figure 5.2: The homography induced by the virtual plane of o person’s highest point.

To establish the homography for the virtual plane containing a person’s highest
point, the gystem has to obtain the point correspondences on the virtual plane between
two camera images. The point correspondences are obtained from the extracted highest
points of the person’s images in two cameras. However, before the system maiches a
subject in two cameras, the point correspondences on the virtual plane are not available.
The system has to match subjects based on other modalities first in order to obtain

the corresponding highest points in two camera images. Thus, for different people with
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different heights, the system estimates different homographies induced by different vir-
tual planes of these people. Once the identity of a subject is lost in Iy, but people are
tracked with identities in ;. The system can track subjects with identities in I» after
occlusion by passing subject identities from Iy to Iy. Thus, the system needs to mabch
subjects in two camera images in order to pass subject identities. From the established
H,, for people tracked in Iy, the highest points p of subjects in I are transformed to Iy
as p! = Hyop. The transformed points in I3 can be used for matching subjects to regain
the identity of the subject in I;. Although this modality might be less reliable when
a person changes attitude (e.g. kneels down) dramatically such that the highest point
does not lie on the virtual plane, it works well for matching walking people. To handle
this problem, the node of confidence indicator in the BBN (see section 4.4.1) is used to
adaptively reduce the modality confidence (explained later in this section) in order to
reduce the relative influence of the homography modality on the subject correspondences
between two camera images.

Figure 5.3 illustrates an example where homography is necessary to estimate the
subject position across camera images. Two subjects are seen in both camera images.
The image positions of subjects are represented by their extracted highest points marked
with ‘+’. In searching for the subject corresponding to subject A (54) in the left image,
the established homography induced by the virtual plane containing his highest point
(see Figure 5.2) is used to transfer S4’s highest point ‘+’ to ‘¢’. This point, ‘p’, can
be used to correctly match S; to Sa, based on image distance. One cannot use the
same (z,y) image position of the feature point (without transformation) to search for
the corresponding subject across camera images. For example, directly applying the
coordinates of S4’s highest point ‘+° to the left image (marked with ‘o’} in order to
gearch for the corresponding subject results in an incorrect match: §; is matched to
S4. Without this homography transformation, the direct use of the image position in
the other camera image for matching can result in a incorrect match due to large image
variations between two images from widely separated cameras.

Figure 5.4 shows an example of the transferred highest point across camera images
by homography for 40 frames. The observed highest point (white cross) of the subject
in the right camera image is transferred to the left camera image (white cross) based on
the on-line established homography. The observed and transferred trajectories of these

two feature points over 40 frames are plotted in both camera images. One limitation
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Figure 5.3: An example of o case where homography is necessary for inter-camera subject

correspondences.

Figure 5.4: An ezample of applying the homography induced by the virtual plane (con-

taining the person’s highest points) to transfer points across cameras.
g

of this method is that the position of the camera must be high enough such that the
homography does not degenerate as the virtual plane projected as a line on the image.
This is because the homography induced by a virtual plane can be used to transfer points,
on this virtual plane, between two camera images. When the camera is not high enough,
the virtual plane can be projected as a line, instead of a region, in the camera image.
Thus, all the transferred points in a camera image lie on this line and the positions of

these points may not be far from each other to make a correct correspondence.

Kinematic Vector for Matching

To match the subjects in two camera images, I1 and Iy, the highest point p{z, y)
of a subject in Iy is first transferred to a point p/(z’,y') in fo. The transferred points
are used to compute x = (z/,7/,2',7’) (called the kinematic vector) for searching for
the corresponding subjects in I, where (z',) is the spatial displacement of the trans-
ferred point between consecutive frames. This kinematic vector is similar to the motion
trajectory [25], where speed, direction and curvature of the trajectory are used to iden-

tify different motion events, e.g. a sudden change of direction or stopping. Since it is
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assumed here that the homography is correctly estimated, the inter-camera transferred
highest point ideally coincides with the observed highest point of the corresponding
subject. Thus, the likelihood of a subject S, in I> being the subject Si in I; can be
computed from the disparity between the estimated kinematic vector x' (computed from
the highest point of S1) and the observed kinematic vect-or x of S,;. The likelihood of a
candidate matching subject should be a decreasing function of this disparity value. Such
attribute disparity, Ax = (x — x'), is assumed to be a Gaussian distribution with a zero
mean. Thus, the matching likelihood of a subject with observed kinematic vector x in

I is given by the probability density function:

F(ox) = mew(—éum)w-lwmn. (5.6)

Figure 5.5 shows an example of using a 1D Gaussian variable modelling the matching
likelihood. Since disparity | A z2] < | & 1], the matching candidate with Azy is more

likely to be the correct match than the other candidate with Azy.

f(ax)

AX

AXy AX g

Figure 5.5: An example of applying o 1D Gaussian variable with zero mean to model the

matching likelihood given the ottribute disparity, Az,
To compare the candidate matching points of different subjects based on homography,
My = [(Ax)TDHAx)] (5.7)

is used. This MD (Mahalanobis Distance), Mp, is used for comparing the subjects in
the comparison nodes in the BBN (Figure 4.10). The distribution of the distance is
learnt from a set of examples {see an example in Section 7.1.1). Since the accumulated

information is used for the comparison of subjects in the comparison node (as discussed
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in Section 4.4.2, see Equation (4.15)), comparison of the homography modality is based

on:
M= g ) aaMu(l — ), (5.8)
23‘-‘:& O 4mp

where g is the number of frames of accumulated evidences, [ is the frame index and o; is
the weight used for setting more recent evidence with higher weights. Thus, the compar-
ison is based on the accumulated kinematic vectors of g frames (i.e. a trajectory) which

can be described by a list of motions, including position and velocity information [94]:

[(.’L‘, Y, 3;',: ?j’)la Tty (maya a;'ra y,)l——(q—i}]' (59)

To define the comparison results of two subject based on homography modality, the
X2 (chi-square) statistical test is used again. As mentioned in Section 4.4.3, the MD is
chi-square distributed with the number of degrees of freedom equal to the dimensionality
ny of the feature vector [108]. In this case, ny = 4 for Kinematic vector and X%
corresponding to a 95% probability of finding the true feature is 9.49 [93]. So X% is
set t0 9.49. In the comparison node, the comparison result between each pair of subjects
is defined such that it has two relationships which are similar and not similar (see an

example in Table 7.4). The comparison result is determined by:

similar , M < XL
Cp(l) = o =T (5.10)
not similar , M > X%

where [ is the frame index. Note that the results in comparison nodes in different MUs
of different modalities have the same two relationships. These comparison relationships
for all modalities are determined by the same methods (i.e. Equation (5.10)) with the
exception of landmark modality.

Although there are general algorithms for continuous variables {e.g. Gaussian vari-
ables or non-parametric density variable [79]), there are some constraints on the archi-
tecture. For example, a discrete node cannot be a child of a continuous node. Also, the
conditional probability function for a continuous node (a regression-style function) may
not always be appropriate. Therefore, this thesis adopts discrete random variables in
the BBN and all observations are discretised.

After describing data collection in the comparison node, two confidence indicators,
which indicate the modality confidence on the inter-camera correspondence, are defined

for the homography modality in the BBN (Figure 4.10). Experiments performed show
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that the reliability of the homography modality degrades when the feature points are
not extracted accurately. When the highest points vary significantly between consecutive
frames, it may be the result of image noise or a sudden change in subject pose, and so
the modality reliability might be lower (see Figure 5.6). This is because in this case the
established homography might be less reliable in transferring points. To indicate the
significance of the variation in the highest point, the segmentation status of the highest
point of subjects is used and defined as follows. Figure 5.6 shows two consecutive frames
from two cameras. The top row is the 50%" frame and the bottom the 51%. The right-
hand side graph in the bottom row shows the related image distance in the right camera
image used to indicate modality confidence (discussed below). Two subjects are seen in
both camera images. The image positions of subjects are represented by their highest
points ‘+’. To search for the subject corresponding to subject A (S4) in the left camera
image, the homography (see Figure 5.2) is used to transfer ‘+’ to ‘o’. The transferred
points ‘o’ can correctly determine the correspondence for the 50" frame but can be
less reliable for 51 due to an incorrect extracted highest point. In the 51t frame, the
transferred poinﬁ ‘0? is further from the highest point of S; than in the case where the
highest point of S4 is correctly extracted. In order to dynamically adjust the modality
confidence of the correspondence, the distance, d. (see the right-hand side graph in
the bottom row in Figure 5.6), between the highest points of a tracked subject in fwo
consecutive frames is used. For S4, the d, between the extracted highest point ‘“+in
the 51°¢ frame and the extracted highest point in the 50%" frame (which is also shown
as ‘O’ in the 51°t frame) is significant. Thus, the modality confidence is reduced. The
image distance between the highest points (z,y) of a tracked subject in two consecutive

frames is used to indicate modality confidence and defined as:

de = /(z() — =l - 1) + () -y - 1)), (5.11)

where 1 is the frame index. The segmentation status of the highest point is defined as
the mean distance, D = L Z;’;l d,; (pixels), of m subjects’ highest points in a camera
image. This value D is used as a confidence indicator to reduce the confidence when this

distance is large. The state of this confidence indicator is defined as:

high confidence , D<20
Ci(1) = ¢ medium confidence , 2.0<D <40 (5.12)
low confidence , D>4.0
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Figure 5.6: An example of the confidence indicator.

Note that the range for determining the state of confidence indicator is based on do-
main knowledge and may only suitable for the camera setup used in this thesis. Moreover,
experiments performed also show that when the image positions of subjects are close, the

reliability of homography degrades. Therefore, the mean distance of the highest points

1

between all m subjects in a camera image, defined as D = 2 317, E}T_‘:l,#i d; ; (pixels),

where a = zg;l i and d is the distance between the highest points of two subjects in an
image. This value D is used as the other confidence indicator to reduce the confidence

when this distance is small. The state of this confidence indicator is determined by:

high confidence , D>80.0
Ci(l) = { medium confidence , 50.0 <D <80.0 (5.13)
low confidence , D <500

5.3 Epipolar-Geometry Modality

This section describes the use of epipolar geometry for constraining the feature corre-
spondence between two camera images. Given a set of corresponding feature points
between two camersa images, a point in one camera image defines an epipolar line in the
other camera image on which the corresponding point lies. Epipolar geometry is an im-
portant concept when working with un-calibrated images and multiple viewpoints {59].
It has been widely used in structure and motion applications, such as scene reconstruc-
tion [167], motion recovery [147] and feature mapping for tracking [23]. In the following,
firstly, an introduction to the theory of epipolar geometry is given in Section 5.3.1. Next,

the application of epipolar geometry to the correspondence problem in matching subjects
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across cameras is presented in Section 5.3.2.

5.3.1 Epipolar Geometry

Perspective Epipolar Geometry

Figure 5.7 shows the epipolar geometry for two perspective cameras (ideal pinhole
cameras). An introduction to the camera models is given in Appendix A. Figure 5.7
shows the two cameras indicated by their centres C; and Cy. The baseline connecting
¢ and C, intersects the image planes at the epipoles e and e'. The 3D world point P,
Oy and C, define an epipolar plane which intersects the image planes in the epipolar
lines v and v'. An image point p in image Iy back-projects to a ray in the world defined
by the image point p and camera centre C;. This ray is imaged as the epipolar line v/

in I» where the image point p’, corresponding to the world point P, must lie.

epipolar
plane

Cs

Figure 5.7: Epipolar geometry for perspective cameras.

For an arbitrary point P in the world, the image point p, corresponding to P, in
the first image I} constrains the image position of p’, corresponding to P, in the second
camera image I» on the epipolar line v'. This line is namely the intersection of epipolar
plane and I;. Note that for epipolar geometry the image point p back-projects to a
ray in the 3D world and there is no constraint on this point and the world point could
possibly lie at any point along this ray. Whereas in the case of homography, the ray is
constrained on a scene plane where the intersection of this ray and the scene plane is

the world point P.

Affine Epipolar Geometry

The affine camera model provides a good approximation of the perspective model
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when the FOV (Field Of View) is siall and the variation in depth of the scene along the
line of sight is small compared to its average distance from the camera [146]. Figure 5.8
shows the epipolar geometry of two affine cameras. The diagram on the Jefi shows that
all projection rays are parallel and perpendicular to the image plane since the optical
centre of an affine camera lies at infinity. An image point p in image I; back-projects
to a ray in the world defined by the camera centre C; and p. This ray is imaged as the
epipolar line v/ in Iz, so the image of world point P in I3 must lie on v'. The diagram on
the right shows that all epipolar planes are parallel and hence so are the epipolar lines.
"This is because the optical centre of an affine camera lies at infinity, all projection rays

are parallel. Thus, the affine camera preserves parallelism.

epipolar

parallel
plane

epipolar
plane

Iz

Figure 5.8: Epipolar geometry for affine cameras.

This work has used the affine camera model rather than the more familiar perspective
model. The use of this model allows the system to use the distance between parallel
epipolar lines as a modality confidence indicator {discussed in Section 5.3.2). Since
the affine camera model only provides a good approximation of the perspective model
when the FOV is small and the variation in depth of the scene along the line of sight is
small compared to its average distance from the camera [146]. In the office where the
experiment conducted, the modality may become less reliable when the depth variation
is large compare to the average distance to the camera (see an example in Figure 5.11).
The success or failure of applying this affine epipolar geometry modality for inter-camera
subjects correspondences depends on the distance between the epipolar lines and the
number of people in the scene. For example, when people (of about the same height
and depth) are close to each other, the computed epipolar lines will also be close to each
other. This can result in incorrect matches, if the affine camera assumption does not

hold (e.g. people are close to the cameras).



CHAPTER 5. GEOMETRY-BASED MODALITIES 110

Fundamental Matrix

The fundamentel matriz, F, needs to be estimated in order to compute the epipolar
line across camera images. The fundamental matrix contains the geometric information
of epipolar geometry between two views. It satisfies the condition that for any pair of

corresponding points p > p’ in the two images [59]:
p'TFp = 0. (5.14)

This is because if point p’ corresponds to p, then p’ lies on the epipolar line v/ = Fp.
Since in a homogeneous coordinate system, the inner product of a point and a line,
containing that point, is equal to null. In other words, 0 = p'™v = p"Fp. The
fundamental matrix depends only on the relative pose (i.e. position and orientation)
between two cameras and does not depend on the scene structure [99]. Note that this
fundamental matrix can be obtained from point correspondences alone. The fundamental
matrix can also be computed based on camera calibration. In this case, the fundamental
matrix reduces to the essential matriz [99]. For the affine camera model, Equation (5.14)

can be expressed as [146, 59]:

0 0 «a x;
pFap=[af o 1]|0 0 6| |u|=0 (5.15)
¢ d e 1

where the subscript, 4, in Fy, is indicative of the use of affine camera model, F, is
the affine fundamental matrix, (z],y},1) and (z;,¥i,1) are the corresponding points in
homogeneous coordinates related to p; = {¢;, ;) and p; = (z},%}) in the two images,
a, b, ¢, d and e are the elements in F,. From Equation (5.15), each point match in
two images (i.e. a point in I; and its corresponding point in I} gives rise to one linear

equation:
axl + by} + ez +dy; +e=0. (5.16)

This equation, called the affine epipolar constraint [146}, is defined up to a scale factor, so
F, can be computed uniquely from only 4 point correspondences, provided the 3D points
are in general positions which do not violate the conditions where epipolar geometry is
undefined (discussed below). To estimate F,, more than 4 points are used with the SVD
method {124]. Some optimisation methods can be found in {146, 59] that minimise a
cost function based on image distance. Given the fundamental matrix F, the epipolar

line in I, corresponding to image point p = (;,9:) in I1, can be represented as
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v/ =F.p = (a,b, cz; + dyi +e)7, (5.17)

where the vector (ki, kg, k3)T is the representation of a line bz + koy + k3 = 0 in a
homogeneous coordinate system. Note that there are two conditions where epipolar

geometry is undefined [167]:
1. when all scene points are coplanar, and

2. when two images are from a rotated camera or from two cameras with a common

camera cenfre.

However, in both conditions, the image correspondences are defined by homography.

5.3.2 Using Epipolar Geometry for Inter-Camera Subject Correspon-

dences

To obtain the epipolar geometry for our two-camera MCCT setup, a set of corresponding
3D points in two camera images are required to estimate the affine fundamental matrix
F,. A set of corresponding points is obtained by extracting the feature points from
multiple pairs of image sequences from two cameras. In each pair of image sequences, a
single person is seen walking around the office, and the highest points of this person are
extracted from two camera images. From multiple pairs of sequences with different
people of different heights, a set of corresponding points is obtained for computing
F,. To apply affine epipolar geometry for matching, the highest point of the subject
is used as the feature point to represent the image position of a subject. Given the
estimated fundamental matrix F, (see Equation (5.15)), the highest point p = {(w:, i)
of a subject in a camera image, Iy, is used to compute its associating epipolar line as
az + by + (cx; + dy; + ) = 0 (see Equation (5.17)) in the other camera image, I. The
computed epipolar line is then used to search for the corresponding subject in L.
Figure 5.9 shows an example of the computed epipolar lines across camera images.
The highest points, marked with ‘4, of two subjects in the right camera image are used
to compute the epipolar lines v, and vy in the left camera image. The corresponding
points should lie on these lines. Therefore, the distance between the computed epipolar
line and highest point of the candidate matching subject is used as a match score.

Based on a comparison of the distance between the highest points (marked with ‘o’) of
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Figure 5.%: An ezample of the use of epipolar geometry for matching subjects across

COTRETD 1MAGES.

the subjects and the epipolar lines, subject 1 (S7) is matched o S4 and Sy to Sp. In
this example, the subjects in two camera images are correctly matched. However, the
epipolar-geometry modality can be less reliable.

Figure 5.10 shows an example of incorrect matches caused by the ambiguous position
of extracted feature point. T'wo people are visible in both camera images. The highest
points, marked with ‘+’, of two subjects in the right camera image are used to compute
the epipolar lines v, and vy in the left camera image. The highest points, marked with
‘o’, of the corresponding subjects should lie on these lines. Based on a comparison of the
distance between the highest points and the epipolar lines, the subject correspondences
between two camera images can be determined. Due to an incorrect segmentation of
the highest point of subject A, S4, the related epipolar line v, is closer to the highest
point of 3. Consequently, the ambiguous position of the extracted feature point results
in incorrect matches: S4 is matched to Sz and Sp to S1. In such a case, the BBN
can adaptively reduce the modality confidence (see Section 5.3.2) in order to reduce
the relative influence on the subject correspondences between two camera images. This
adaptive adjustment of modality confidence is achieved by using the modality confidence
indicator based on the segmentation status of the highest point. Note that the orientation
of the epipolar line is determined by the relative motion between cameras [180].

Figure 5.11 shows an example of the case where the computed epipolar line is less
reliable. The highest point, marked with ‘4, of the subject in the right camera image
is used to compute the epipolar line in the right camera image. The computed epipolar
line does not pass through the extracted highest point, marked with ‘o’ of the subject
in the left camera image. This is because the affine camera model only provides an

good approximation of the perspective model when the FOV is small and the variation
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in depth of the scene along the line of sight is small compared to its average distance
from the camera [146]. In this case, the person just enter the overlapping FOVs of two
cameras and are close to the right cameras. The depth of this person is smaller compares
to the average distance from the right cameras such that the assumption of the camera

model does not hold.

Figure 5.10: An ezample of incorrect matches coused by the ambiguous position of an

extracted feature point.

Figure 5.11: An ezample of the case where the affine epipolar geometry modality is less

reliable when the assumption of the affine camera model does not hold.

Ideally, in one camera image, the highest point of the corresponding subject should
Jie on the epipolar line which was computed from the highest point of the subject in
the other camera image. Therefore, the likelihood of a candidate match should be
a decreasing function of one’s related distance z between the highest point and the

epipolar line. Such a distance is assumed, again, as a Gaussian variable with zero mean
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and defined as a probability density function:
72

f(ﬂ?) = ﬂi’r'&gemp(—“z_o_—g)

(5.18)

The likelihood of a subject in I3, with a distance z, being the corresponding subject
in I is determined by the value of the above density function. The comparison between
subjects is based on the MD, M, = % Similar to the homography modality (see
Equation (5.8)), the accumulated information:

Z = }:ame (I —1), (5.19)
f= 0 ? =0

is used in the comparison node of epipolar modality for determining the inter-camera
subject correspondences, where g is the number of frames of accumulated evidences, [ is
the frame index and ¢ is the weight used for setting more recent evidence with higher
weights.

To determine the comparison result (i.e. similar or not similar) between each pair
of subjects based on epipolar geometry, Equation (5.10) is used again. In this case, PL’%
is set to 3.84 corresponding to a 95% probability of finding the true feature for ns = 1
(i.e. dimensionality of the feature vector).

The modality confidence indicator for the epipolar-geometry modality is defined as
the mean distance, D (pixels), between each pair of affine epipolar lines in an image.
These lines are computed from the highest points of all subjects in the other image. When
the mean distance is shorter, the confidence is:set lower. The state of this confidence

indicator is determined by:

high confidence , D >20.0
Ci(l) = < medium confidence , 10.0 <D <20.0 (5.20)
low confidence , D<100

Moreover, the segmentation status of the highest point is also used to indicate the
confidence (as defined in 5.2.2). The confidence is set lower when the positions of the
highest points between consecutive frames change suddenly. This is because the image
position of the highest point is used to determine the subject correspondences in the
modality of epipolar geometry. When the position of the highest point is less reliable,

the subject correspondences can also be less reliable.
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5.4 Landmark Modality

The main reasons for using landmarks (easily recognisable scene structures) in computer
vision are the low hardware costs and simple computation [184]. There are a lot of
landmark-based position estimation techniques used in computer vision, e.g. using an
angle measurement plus range data for determining the position of a robot. Landmarks
are also widely used in autonomous robot navigation, e.g. [142, 143]. A good review of
position estimation techniques based on landmarks can be found in [161].

Most of these methods focus on self-localisation for determining the position directly
based on sensor measurements, such as camera, sonar, laser and infrared sensor. Since
the correspondence of subjects between two camera images is defined by the 3D scene
structure, this work aims to use prior knowledge of sparse scene landmarks relative to
the cameras to constrain the correspondence. This is achieved by using the position
of a subject relative to the lancimaxks in one camera image to geometrically reason
about the position of corresponding subject in the other camera image. This constraint
based on landmark modality is computationally a very efficient algorithm. However,
the people tracked in the environment must be viewed in front of the landmarks and -
in the overlapping area of FOVs. Prior knowledge of the image positions of the line
landmarks in two camera images is necessary, but only needs to be obtained once off-
line. To build the correspondence of these lines between two camera images, the method
proposed by Schmid and Zisserman {141} can be used which applies epipolar geometry to
reduce the matching complexity. The correspondences of the line landmarks is built by
hand in this work. The following description of how to determine inter-camera subject
correspondences based on the landmark modality is a novel approach proposed in this

thesis [28].

5.4.1 Multiple Camera Images and Landmarks
The goals of using the spatial reasoning method based on landmarks are twofold:

1. To determine the relative world position (cell, as discussed later) of a subject by
using visual information from two camera images together.
The idea behind this position estimation is that in general, even though the range
data is not available from un-calibrated cameras (where the range data can be
used to locate an object and obtain an absolute position, e.g. (x,y) coordinates in

the world), the relative world position of a subject with respect to the landmarks
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and static cameras can still be determined. This relative position is captured by
finding the image positions of the object with respect to the landmarks in both

camera images.

2. To use the correlation of the relative positions of subjects between two camera

images as a constraint on the inter-camera subject correspondences.

In the following, the capture of the relative position with respect to the cameras and
landmarks in a single camera image is described, before an explanation is given of how

to use information from two camera images for achieving these two goals.

Landmarks in One Camera Image

Figure 5.12 illustrates multiple vertical line landmarks on the wall. A line landmark
in the world is projected onto an image plane as a line. The projected image line is
defined by a projection plane through the line landmark in the world and the camera
centre. The space circumscribed by the four projection planes, which are defined by the
two neighbouring line landmarks, the top and the bottom boundary of a camera image
and its camera centre, is called a Vertical Volume (VV) of a camera. The area on an
image plane, corresponding to a VV, is called a Vertical Area (VA) of a camera. For
example, the VV, marked with bold lines on its boundary, corresponds to the 3rd VA
in the right camera image. The number of the VA (shown as numbers on top of the
camera images in Figures 5.12-5.14) is defined such that it increases from left to right
and begins at 1. Through the imaging process, a subject in a VV is projected to the
corresponding VA on the image. This process creates potential ambiguity due to the
fact that one dimension is lost in the 3D to 2D projections of the spatial scene. As a
consequence, for a person viewed in a VA, one can only infer the world position of this

person in the whole corresponding VV, without knowing the absolute position.

Landmarks in Two Camera Images

Figure 5.13 shows two cameras with their overlapping FOV partitioned by the pro-
jection planes into different small subspaces. Each subspace is the intersection of two
VVs of different cameras. These subspaces are called cells. By back-projecting a VA
in both camera images, two corresponding VVs (see Figure 5.12) intersect in the 3D
space and the intersection defines a cell in the scene. Due to the ambiguity mentioned
above, Figure 5.14 shows that the person appearing in the second VA, I, of the lefi

camera image may correspond to a subject in the first VA, r1, or the second, rz, in the
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Figure 5.12: The vertical line landmarks in the scene.

Vertical
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Figure 5.13: The cells in the overlapping FOVs of two cameras.
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Figure 5.14: An ezample of the ambiguity of the world position of a person.

right camera image, or may not even appear. Based on this knowledge, we define the
following two rules for reasoning about the image positions of corresponding subjects
across cameras assuming the subjects are in the overlapping FOVs [28]:

Rule 1. For a subject S; imaged in the left camera image within the ith VA, [;, and a

subject S4 in the right camera image with the j'* VA, r;,
o if §4 corresponds to Sy, then j <iand Vo =r U+ Umry.

V, is the constrained area of the corresponding subject of S} in the right camera image
and this area is called valid area. Note that the reverse of the rule is not necessarily
true, so any subject in the valid area in the right camera image could correspond to Si.
Rule 2. For a subject S4 imaged in the right camera image within the 7t VA, r;, and

a subject Sy in the left camera image with the :** VA, ;,

e if S corresponds to S4, then i > j and Vo =1; U+« Ulinga.

V,, is the valid area of the corresponding subject of S4 in the left camera image and
the lnae is the right-most VA in the left camera image.
5.4.2 Using Landmarks for Inter-Camera Subject Correspondences

To apply landmarks for the purpose of matching subjects across cameras, the highest

point is again used to represent the image positions of subjects. From the relative
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position of the highest points with respect to the landmarks, the subject correspondences
between two camera images can be reasoned about by applying the rules defined above.

Figure 5.15 shows an example where the correspondence of two subjects between two
camera images can be built correctly based on landmark modality. Two subjects with
their highest points marked with ‘4’ are seen in both camera images with different VAs
{Vertical Areas) indicated on top of the images. By Rule 1, subject B, Sp, with VA r;
is matched to Sy with VA Is since the valid area in the right camera image for matching
S is the union of VA r; and r2. Both S4 and Sp can correspond to S since both are
in the valid area. Similarly, by Rule 2, 51 is matched to S4, and both 57 and 53 could
correspond to Sp. Consequently, by considering both rules S4 is matched to S;, and

Sp to Ss.

1 23 4 5 1 2 3 45

Figure 5.15: An ezample of the use of line landmarks for matching subjects across camera

images.

Figure 5.16 shows an example where the landmark modality cannot be used to find a
unique matching subject across camera images. Two subjects with their highest points
marked with -+’ are seen in both camera images and with different VAs (Vertical Areas)
indicated on top of the images. By Rule I, the valid area in the right camera image
for matching S» is the union of r; and 5. Since both Sy and Sy are in this valid
area, no unique subject can be matched to S2. A similar situation arises in determining
the corresponding subject in the right camera image for S;. This situation also occurs
when applying Rule 2. Therefore, in this example, no match can be made based on the
landmark modality. Such a matching ambiguity exists because there is more than one
subject in the valid area. However, those subjects which are not in the valid area can
be ruled out from being the corresponding subjects.

After explaining the use of the landmark modality for determining the correspondence
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1 23 4 5 1 2 345

Figure 5.16: An ezample of foilure in using line landmarks for matching subjects across

camere tmages.

of subjects between two camera images, let us now consider the problem of data collection
for landmark modality in the BBN. This landmark modality is modelled with two MUs
(see Figure 4.10) to encode Rule I and Rule 2 respectively. Each MU compares
all subjects in one camera image against all subjects in the other camera image. For
. example, each comparison node in the MU related to Rule I compares a subject in
the left camera image against all m subjects in the right camera image. Thus; this
MU compares each subject in the left camera image against all subjects in the right
camera image in m different comparison nodes based on Rule 1. Since for a subject in
one camera image, the subjects meeting the condition of the rule (i.e. within the valid
area, V) in the other camera image, are all valid candidates, they should have the same
probability of being the corresponding subject. Therefore, the matching probability of

a subject with a VA number, z = r; (or l;), is modelled with a uniform distribution:

ifn , z€V,.

fml(z, 1) = {5.21)

0 , otherwise.

where [ is the frame index and n is the number of subjects in the valid area of a camera
image.

To compare subjects based on accumulated information, we define g(I) = % for every
frame and
Z " ;{; o g(l — i) (5.22)
where ¢ is the number of frames of the accumulated evidences, ! is the frame index and

o is the weight to set more recent evidence with higher weights.
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The data collected in the comparison nodes and confidence indicator nodes for different
modalities was explained. The collected visual evidence is fused by the BBN in order
to probabilistically infer the correspondence of subjects between the two camera im-
ages. However, geometric modalities alone may not always provide enough constraints
to match subjects across cameras. The next chapter will describe recognition-based

modalities.



Chapter 6

Recognition-Based Modalities

6.1 Introduction

The previous chapter described the use of geometry-based modalities for matching sub-
jects across camera images in order to perform MCCT. These modalities which used as
local constraints on matching subjects across cameras are integrated over time by the
 BBN (Bayesian Belief Network, as described in Chapter 4). Since the use of geometry-
based modalities alone may not provide enough constraints, a set of recognition-based
modalities (i.e. apparent colour and apparent height) is also used. This chapter describes
the recognition-based modalities including details of data collection for the evidential
nodes of the BBN (i.e. the comparison node and confidence indicator node).

Since image variations between two widely-separated cameras can be highly signif-
icant (e.g. colour variations in two cameras, see an example in Figure 6.4), direct use
of the extracted image features for building correspondence between two camera images
does not always work. The novelty of the work presented in this chapter lies in the
application of the Support Vector Regression (SVR) technique for learning the mapping -
of the visual information (i.e. apparent colour and apparent height) between two cam-
eras [28]. The learnt mapping, encoding the correlation of subject appearance between
two cameras is used to estimate subject appearance across cameras to compensate for.
the image variations for making inter-camera subject correspondences more reliable.

Figure 6.1 shows the block diagram of two phases for applying recognition-based
modalities. The idea is to use the learnt mapping in the training phase to estimate the
subject appearances for matching subjects across cameras during the tracking phase.

The preprocessing in both training and tracking phases are the same. The preprocessing

123
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Change Detection Feature Extraction
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Figure 6.1: Block diagram of matching the subjects’ images across two camera images

based on the learnt mappings of subject appearances.

step includes two stages:
1. change detection and grouping, and
2. feature extraction.

The first stage was discussed in Section 3.2.1. The second stage will be discussed in this
chapter.

This chapter is arranged as follows. First, the remainder of this section discusses
general recognition problems and reviews some previous work related to the recognition-
based modalities proposed in this thesis. Next, an explanation of feature extraction and
appearance variations between two camera images is given in Section 6.2, and followed by
Section 6.3 which gives a description of mapping learning and estimation of the subject
appearances between two camera images, (the experimental results of mapping learning
and appearance estimation will be given in Chapter 7). Finally, the data collection in
BBN during the tracking phase for these recognition-based modalities is explained in

Section 6.4.
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Pattern Recognition

To match subjects between camera images, the image patterns extracted from the
subjects in one camera can be used as a model to recognise (or search for) the corre-
sponding subject in the other camera. Generally, recognition techniques focus on finding
some distinctive patterns of interest and making decisions about the categories of the
patterns. A good survey can be found in [73]. One of the main difficulties of image pat-
tern recognition lies in the wide variation in the object’s appearance due to changes in
pose, scale and lighting condition such that the object appears differently from different
viewpoints [159, 73].

To recognise objects in the images, different methods can be used, such as template
matching [11], structural matching [32], statistical classification [73] and extraction of
invariant features [5, 52). Template matching uses a template (i.e. points, curves or
shapes) to search for objects based on the similarity between two entities, while the
structural matching method adopts a hierarchical perspective where a pattern is com-
posed of simple sub-patterns. Statistical methods establish decision boundaries in the
feature space to separate patterns belonging to different classes. Thus, an object class
can be decided based on the probability distributions of the patterns belonging to the
class. Invariant-feature methods attempt to extract object descriptions that remain con-
stant under different geometric transformations or different illuminations [109], but may
be only applicable to limited classes of objects, such as industrial parts [47]. Overall,
the general problem of recognising complex patterns with arbitrary orientation, location

and scale remains unsolved [73L

Previcus Work

This thesis uses apparent colour and apparent height to match subjects in two camera
images. Based on the learnt mapping, the extracted appearances of a subject in oﬁe
camera image are used to estimate the appearances of the corresponding subject in the
other camera image. In the literature, different features have been proposed to match
people between images. For example, the apparent height ratio between consecutive
frames is used to match subjects between consecutive images from a single camera, [23].
The apparent colour is used for matching subjects in a single camera image [181] or
multiple camera images [116, 158]. However, these different types of visual information
cannot reliably be used for directly matching between multiple camera images without

considering image variations. This is due to the colour shift between images, called
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the colour constancy problem, which can cause colour-based recognition to become less
reliable [62]. On the other hand, the apparent height ratio between consecutive frames
generally may not hold between multiple camera images due to the complex correlation
of the apparent height between two camera images (e.g. lower part of a person is not
visible in one image but visible in the other).

To match subjects in two camera images based on colour, one possible method is
called colour indexing [160]. This colour-based recognition method computes the sim-
ilarity between an image and a model colour histogram. As reviewed in Section 2.2.2,
Stillman et al. [158] adopted this method to match subjects between the images from
multiple cameras. The colour extracted from the subject image of one camera is directly
used as a model to search for the corresponding subject in the image of the other camera.
However, since illumination changes alter the observed image colours, colour indexing
may not perform well enough under varying illuminations because it has no mechanism
to handle colour shift [62]. Therefore, colour indexing may not be applicable for the
purpose of matching subjects across cameras due to the significant colour shift between
two camera images (see Figure 6.4).

To deal with this colour constancy problem, the colour constancy methods can be
used. Since the image appearance can be affected by the reflectance of the surface, these
methods aim to match objects colours under varying illumination by assigning some
ilumination-invariant descriptors to each object surface [20] (e.g. colour calibration
method [29] and gamut mapping method [10}]). Some good reviews of these algorithms
can be found in [62, 20]. However, most of these colour constancy methods perform
only on highly restricted images [20] and require some undesirable assumptions [62]. For
example, the colour calibration method needs a standardised colour device (i.e. colour
chart), and the gamut mapping method makes assumptions about image gamuts thus
limits the possible number of illuminants in the scene [20].

In order to compensate for the colour shift for object recognition, an alternative
approach is the sample-based method which learns the colour variation from a set of
training samples. For example, Buluswar and Draper [20] learnt the colour variations of
objects in outdoor scenes to make colour recognition more robust. This thesis applies
the sample-based method to learn the colour mapping between two camera images. This
mapping is then used to estimate the apparent colour of corresponding subjects across

two camera images in order to compensate for the colour shift.
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The other image feature used in this thesis for matching subjects across camera
images is the apparent height. An alternative feature related to the height of human
body is the true height of the subject [36]. The true heights can be extracted from each
camera image used for inter-camera subject correspondences. However, this method,
based on projective geometry, requires some assumptions to be made about the scene (i.e.
parallel lines in the scene). Furthermore, the lens distortion can degrade the accuracy.
The other method is to obtain the estimated true height from a camera image [115].
This technique compares the measured apparent height with a height histogram with
respect to the image position of the subject. However, this method, similar to the
previous method, cannot handle the situation where some body parts are not visible in

the camera image.

The Approach: Sample-Based Method

To recognise an object in an image, one must have an internal model of how that
object may appear [174]. There are a number of often difficult factors which can affect
object appearances that must be considered in object recognition, e.g. camera parame-
ters (including lens distortion and colour sensing characteristics), viewing geometry and
illumination conditions. However, the underlying problem of maiching subjects across
cameras based on the image patterns is different from that of the recognition problem.
The recognition problem needs a model to search for a certain object in an image where
the imaging parameters are generally unknown. As such, the difficult factors mentioned
above need to be considered explicitly in order to handle the image variations between
the model and the object image. However, the task of matching subjects across cam-
eras only involves finding the corresponding subjects in two camera images. In other
words, if one can compensate for the subject appearance variation between two camera
images, the subject correspondences can be established more reliably. The tracking task
in this work is performed in an office environment where the factors are unknown but
not entirely arbitrary (e.g. the cameras and the lighting conditions are fixed). As a con-
sequence, the correlation of the subject appearances is also fairly stable. To compensate
for the variations in subject appearances between two camera images, this thesis pro-
poses to learn the correlation of the subject appearance between two camera images, and
uses the learnt mapping to estimate the subjects’ appearances across cameras. Thus,
the difficult factors are implicitly handled in the learning process. Since the subject

appearances generally vary with the world positions in the scene (see Figure 6.6 and
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Figure 6.7), this correlation is learnt with respect to different sub-spaces (i.e. cells, see
Figure 5.13) in the scene. By using the learnt mapping, one can estimate the visual
appearances of different subjects across two camera images in order to obtain a suitable
model for matching subjects. In this thesis, the mapping estimation of the subject ap-
pearances between two camera images is formulated as a regression problem (discussed

in Section 6.3).

6.2 Appearance Variation between Two Camera Images

First, in Section 6.2.1, the feature extraction and representation is discussed, before a
description of the representations of subject appearances used in this thesis is provided.
Then, illustrations of the variations in appearance between the different images from the

two cameras are given in Section 6.2.2.

6.2.1 Appearance Representation

The general effectiveness of an appearance representation lies in its robustness of iden-
tifying subjects in the images. The appearance of a subject’s image depends on many
imaging factors such as lighting conditions, viewpoint, articulation and geometric de-
formations of the object, and whether it is partially occluded by other objects [47]. It
is therefore necessary to design subject representations which are robust to all image
variations caused by these factors. Such representations can then be used for subject
recognition in different camera images. Because colour, as mentioned in Section 3.2.1,
is robust to common geometric distortions (such as rotation, translation, cropping, scal-
ing) [14], it can be used as a reliable representation of subject appearance. Moreover,
colour-based tracking complements spatial tracking and can be used for matching sub-
jects in multiple cameras [116], though it cannot reliably handle the case when subject
images are of a similar colour.

Oxn the other hand, geometric descriptions can be used for identifying subjects and
are generally robust with respect to illumination variations. However, most geometric
feature-based recognition methods can only handle simple, flat, and rigid man-made ob-
jects [52]. For example, shape features are rarely adequate for discriminative recognition
of 3D objects from arbitrary viewpoints in complex scenes [52], because natural objects
viewed under realistic conditions do not have uniform shapes [159]. A simple geometric

feature, apparent height [27], is used in this thesis to represent the subjects in the image
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for matching subjects across cameras. This is because a subject’s apparent height is in
general not affected by a person’s orientation and holds a one-to-one relation between
two camera images for a certain world position where the person is located.

Applying recognition-based modalities involves two stages of preprocessing (see Fig-
ure 6.1). The second stage is the feature extraction of the subject appearance (i.e.
apparent colour and apparent height). In the following, the exiraction and representa-
tion of subject appearance feature to be used for matching subjects across cameras are

described.

Feature Extraction and Representation of Apparent Colour

The left image in Figure 6.2 shows the apparent colour extracted from the subject
image. Certain domain knowledge (i.e. clothing is at a certain distance below the
highest point of a person) is used to extract the sub-image from the segmented blob.
This extracted sub-image may not correspond to the clothing of the subjects due to
the ambiguous nature of the feature position (e.g. incorrect segmentation of the highest
point). Some model-based methods can be used to analyse human motion and determine
the pose of the subject in order to reliably extract the colour data from the blob (such
as the carboard model used in the W* system [56] and the star skeleton model in [34]).
To handle this problem, the confidence indicators in the BBN (see section 4.4.1) are
used to adaptively reduce modality confidence in order to reduce the relative influence
on the subject correspondences when the segmentation is less reliable (discussed further

in Section 6.4.1).

Figure 6.2: An ezample of the extracted colour data from the subject’s image and its
Gaussian mizture model in HS-space. (Note that for convenience the polar coordinates

of hue and saturation are drawn in Carfesian coordinates)
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To represent the colour, hue and saturation (HS) space is used for obtaining a limited
level of intensity and robustness towards illumination changes by dropping the intensity
component (i.e. value {V)). An introduction to Hue, Saturation and Value (HSV) colour
space is given in Appendix E. The Gaussian mixture components used to mode] the
colour distributions [185] are shown as elliptical contours of equal probability in HS

space in the right graph of Figure 6.2.

Feature Extraction and Representation of Apparent Height

Figure 6.3 shows an example of the apparent heights of subjects in the two camera
images. The top row shows two people viewed in both camera images. The bottom row
shows the related binary foreground images of the segmented blobs and the apparent
heights of the two subjects. The apparent height of a subject is defined as the image
distance between the highest and the lowest points along the vertical direction of a
segmented blob. Tt can be seen that the apparent height can be affected by the image
boundary (e.g. subject 2 in the left camera image) and the objects in the scene due to

body parts not being visible (e.g. subject 1 in the right camera image).

Figure 6.3: An example of the apparent heights of subjects.
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Joint Features for Subject Representation

To represent subjects in our two-camera tracking system, a combination of different
visual modalities from two cameras is used. We call this combined representation a joini
feature [28]. A subject is represented with both spatial and appearance components
(i.e. apparent colour and apparent height). This is because subject appearances are
strongly correlated to their world positions (as illustrated in Section 6.2.2), the world
position is incorporated in the subject representation for robust scene interpretation and
understanding. Since the apparent colour and apparent height are generally independent,
these two features are not further combined. Thus, both joint colour feature and joint
height feature are used to represent a subject. Similar representations {incorporating
spatial information) can be found in {122] where they are used to extract a meaningful
description from satellite imagery. The author applied this joint representation further
to represent subject images [181]. However, the spatial information which is used in their
representation is the image position and the information used is from a single camera.
Whereas in this thesis, the representation consists of the world position and uses the

information from both cameras. The joint features are defined as:

e joint colour feature:

Ve = (2?1,932,G1,G2), (61)

o joint height feature:

Vp, = (21, %2, b1, ha), (6.2)

where z; is the VA position in the image I;, (21, z2) is the cell position (see Figure 5.13),
G; is the 2D Gaussian variable used to model the apparent colour of subject image, and

G = (, ) with the mean on the HS plane u = (up, us) and a covariance 2.

6.2.2 Appearance Variation

Here, for both apparent colour and apparent height, an illustration of the variations in
subject appearances between two camera images is given. This variation can make any
direct use of apparent model for the purpose of matching subjects across cameras less
reliable. These appearance variations are shown to be highly correlated to the world
positions of subjects. As a consequence, one has to incorporate the world position for

faithful estimation of the subject appearance across camera images.
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Apparent Colour

To illustrate the colour variation between two camera images, a colour (red) sampled
from the person’s clothes, as shown previously in Figure 6.2, is shown in Figure 6.4 for
the images from both cameras. The colour samples are from 400 frames of a sequence
pair from two cameras where the person walks around an office. In each frame, only the
mean of the colour samples in HS (Hue Saturation) space is plotted (see introduction
to HS space in Appendix E). Bach of the two clusters corresponds to the means of the
colour distributions of 400 frames in a camera image. It can be seen that the colour
shift in each camera image is significant. More significantly is the colour shift between
the two camera images, with the two clusters being well separated. Therefore, direct use
of the colour model obtained from one camera o search for the corresponding subject
in the other camera image may be less reliable. This colour constancy problem in a
multiple camera system must be considered in order to make the inter-camera subject

correspondences more reliable.
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Figure 6.4: An ezample of variations in apparent colours sampled from the images of a

person in two cameras over 400 frames.

Figure 6.5 illustrates a subset of the means of the colour distributions shown in
Figure 6.4. This subset corresponds to the colour samples in two camera images when
the person is in a given cell in the scene. The top row shows the means of the colour
distributions in HS space in both images. The central graph in the bottom row illustrates
the cell position (top view) where the person is located. The two side images in the
bottom row show the related two VA positions in both images. These two VA positions
define the cell position in the scene (see Figure 5.13). Compared to the colour samples

corresponding to all the cells (as shown in Figure 6.4), it can be seen that the two clusters
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Figure 6.5: An ezample of apparent colours sampled from a subject in two camera images
over 12 frames when the subject is in the shaded cell’s position. (Note that for conve-

nience the polar coordinates of hue and saturation are drawn in Cartesian coordinates)

{corresponding to the means of the colours in the two camera images when the person
is in a certain cell) are much more compact. This indicates that the colour is highly
correlated to the world position in the scene. Therefore, incorporation of the world
position for learning the mapping of apparent colour in two camera images can make
the mapping more reliable. Note that the areas of the cells in the central illustrative
graph of the bottom row are not proportional to the actual areas in the 3D world. For
example, the cell position defined by the 5" VA in the left camera image and the 15 in
the right is much larger than other cells in the 3D world. This is because the 1#t VA
in the right is much larger than other VAs. However, this cell position is shown in the
central graph in the bottom row to be the smallest. Thus, the chances of the person
in different cells during the sequence might not necessarily correspond to the cell areas
in the central graph in the bottom row. Moreover, the person walks around the office

randomly.
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Figure 6.6 illustrates a subset of the means of the colour distributions of Figure 6.4.
This subset corresponds to colour samples taken from images in the left camera image
when the person is in different cells of the scene. The top row shows the means of the
colour distributions in HS space of different frames. The bottom row illustrates the cell
positions where the person is located. The arrows indicate the correspondence between
the colour samples and the cells. The upper left graph shows the colour samples for three
different cells and the upper right for four cells (by adding one to the three cells in the
lower left graph). It can be seen that in the upper left graph, corresponding to the person
positioned in three different cells, the colours for different cells are quite separated. This
colour shift is caused by multiple illuminants in the scene and difference in viewing
geometry (orientation of the subject surface normal with respect to the camera and the
distance between them) and illumination geometry (orientation of the subject surface
normal with respect to the illuminant and the distance between them) for these three
cells. Now let us see the effect on the colour distributions if the cells (3D world positions
where the person is located) are not as separated as the three in the lower left graph.
The upper right graph corresponds to the addition of colour samples where the person
is in the fourth cell. In such a case, the means of the colour distributions, corresponding
to the fourth cell, can overlap with the means corresponding to the previous cells. This
is because the fourth cell neighbours two of the three cells (as shown in the lower right
graph). This indicates that if the cells are more separated, the colour distribution

corresponding to different cells will be more separated.

Apparent Height

Figure 6.7 illustrates an example of variations in the apparent heights of a subject
in two camera images. The upper left graph shows the apparent heights extracted from
the subject in two images of two sequences captured from two cameras. The disparity
between the apparent heights in two images is also shown. The apparent heights are
extracted from the subject and shown over 380 frames from a sequence pair from two
cameras where a person walks around the office. The apparent height drops significantly
(at the 290 frame) when the subject is in the cell position (shown in the upper right
graph) defined by the two VAs in two images (see Figure 5.13) as shown in the bottom
row. The apparent heights drop significantly in the right camera image due to the lower

part of the subject not being visible.
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Figure 6.6: An example of apparent colours sampled from the left camera image when

the person is in different cells. (Note that for convenience the polar coordinates of hue

and saturation are drawn in Cartesian coordinates)
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Figure 6.7: An ezample of the variations in apparent height of a subject.
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The apparent height of a subject is not related to a person’s orientation and generally
depends on a person’s height, viewing geometry (orientation of the object surface normal
with respect to the camera and the distance between them)}, and camera parameters (e.g.
lens distortion). One of the attractive characteristics of apparent height is that even
with people of the same real height, their apparent heights in each camera image are not
necessarily identical. This is because of perspective distortion and different depths of
subjects. Figure 6.8 shows an example of the variations in apparent heights of subjects
between two camera images. Two subjects are visible in both camera images. The
real heights of both people are similar (about 178 ¢m). In the left camera image, the
apparent heights of the two subjects are almost the same since the depth of these two
subjects are almost identical. However, the apparent heights of the two corresponding
subjects in the right camera image are not the same, because the depths of these two
people are different with respect to the right camera. Thus, apparent heights can still
be used for matching subjects across cameras even with people of the same real height.
This phenomenon, and the one previously discussed (as shown Figure 6.7), indicate that
the apparent height taken from both camera images together can be a strong cue to the
world position of the subject. In fact, the apparent heights in two camera images are

highly correlated to the world position of the subject.

Figure 6.8: An ezample of the variations in opparent heights of subjects between two

camnera images.

6.3 Estimating Appearance Across Camera Images

After introducing the appearance-based representation and their variations, this section
describes the training phase for learning the mapping of subject appearances between two

cameras (see Figure 6.1). The learnt mapping is used to estimate subject appearances
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across camera images for matching subjects across cameras during tracking. Firstly,the
selection of a set of training examples for different recognition-based modalities is de-
scribed in Section 6.3.1. Next, the application of SVR (Support Vector Regression) for

estimation of the mapping is performed in Section 6.3.2.

6.3.1 Training Joint Appearance Features

Since the cameras in our system are static, the illumination conditions, illuminafion ge-
ometry and viewing geometry are fairly constant. Therefore, the correlations of both the
apparent colour and apparent height of subjects between two cameras are also relatively
constant. This thesis attempts to learn the mapping for these two modalities to capture -
the correlation of the appearance between two images [28]. The joint features including
the appearances of a person in both camera images are used for representing a person.
By incorporating the world position (i.e. cell) in the joint feature, the learnt mapping
can encode the appearance variances between two images with respect to 3D positions.
To estimate the mapping of a person’s appearance between two camera images, the
joint features are extracted from the subjects’ images of a sequence pair from two cameras
where a person is walking around an office. To obtain the training set of joint colour
features {V .}, each person wears clothes of a single colour and different persons wear
different colours. A single Gaussian variable G; is used to model the apparent colour
of the person’s clothes in each image I; of the two cameras to obtain (Gj,G32). The
3D position (i.e. cell position, (z1,z2)) is obtained from extracting the VA z; in each
of the images I; from the two cameras. From these two components, the joint colour
features, V. = (21, 22, G1, G2), are found. From different sequences of a person wearing
different colour clothes, the training set {V,.} is obtained. Similarly, a training set of
{Vy = (21,22, 1, he)} from different sequences of different people with different real

heights is obtained.

6.3.2 Mapping Using Support Vector Regression

In order to estimate the nonlinear mapping of the appearance of a subject between two
camera images, the mapping estimation is formulated as a regression problem and the
SVR (Support Vector Regression) method [44] is used. A brief introduction to SVR is
given in Appendix F. Unlike some other regression techniques, SVR has some desirable

properties including:
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e It is not necessary to determine the model structure before training [154]. The
final regression function can be expressed by using a set of “important examples”

called Support Vectors (SVs).

e The regression estimation problem can be solved as a guadratic optimisation prob-

lem. It is guaranteed to converge to the global optimum of the given training set.

¢ By introducing a kernel function, the nonlinear regression function is implicitly de-
fined by a linear combination of training examples (i.e. SVs) in a high-dimensional

feature space.

The task of learning a nonlinear mapping function is described as follows. Given a
set of training examples {(x;,1;)}_, with input patterns x; € R™ and interpretation
y; € R, our goal is to find the function, f(x), that has the most ¢ tolerance from the
actual iﬁterpretation, y;, for all the training data. For the mapping of apparent colours
(G and Gs) of the same entity in two camera images, I; and I, our experiments show
that the estimated covariance X is less reliable. Therefore, only the mean position,
@ = (i, ps), of the apparent colour of the corresponding subject in one camera image
is estimated. This is based on the observed colour model in the other camera image.
For example, for the mapping of apparent colour from image I; to Iy, two mappings
are learnt by setting the input patterns to x; = (z1, 2, G1), and the interpretations to
y; = pp, and y; = 15 respectively. Similarly, for mapping the apparent height from I; to
I», a mapping is learnt by setting x; = (21,22, h1) and y; = ha.

The SVR problem can be formulated as a quadratic programming problem by max-

imising [44, 154]:

Wiata) = —5 Ximi(of = 00)(e] - ag)K (xi, )
—e iy (0 + ) + Sl wilof — ), (6.3)
subject to S (of — o) =0, (6.4)
0<al,0; <C, (6.5)

which provides the solution
Flx) = Ticalof — ) K(x,x1) + b, (6.6)

where o; and o represent the parameters of the learning machine, K is the kernel

function and C is a penalty factor and b is a threshold.
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Two SVR-based apparent colour mappings (one for pp and the other for p,) are
constructed to estimate the apparent colour in one camera image from the other camera
image, and another one mapping constructed for apparent height (k). These mapping
are learnt from different apparent colours and different people with different real heights
(see Section 7.2.1). One drawback of this SVR method is that it may be computationally

very expensive [153].

6.4 Using Estimated Appearance for Inter-Camera Sub-

ject Correspondences

Having described how to learn the mapping of subject appearances between two camera
images, the use of the estimated appearance for constraining subject correspondences

between two camera images is explained in this section.

6.4.1 Using Estimated Apparent Colour for Correspondences

To match subjects in two camera images based on apparent colour, the learnt mapping
is used to estimate the apparent colour of the corresponding subjects across cameras.
For a subject with a VA (Vertical Area, see Figure 5.12) z; and apparent colour Gy in
image I, the goal is to search for the corresponding subject in image I>. In doing so, the
learnt mapping is used to estimate ph = (ph, ithy) for each subject in Iy (with a VA, =3,
and observed apparent colour Go = (g, £2)), based on the observations (z1, 2, G1).
Combination of estimated mean, p), and covariance, B, (i.e. (ph, o)) is used as a
colour model to compute the likelihood of a candidate matching subject in f;. Thus,
the conditional probability of a pixel A in a subject image in I3 being the subject, S in
I; {(modelled as a mixture with u components}, is given as:
u
p(NIS) = Y p(Ai)P(3), (6.7)
i=1
where P(i) is the prior probability that the pixel A was generated by the it component,
%, P(é) = L. Each component is a Gaussian with mean j5, and covariance matrix s,

and:

; 1 1 -
p(Ali) = W%P(Wi(»\ — p) BTN — ). (6.8)

To compare the candidate matching subjects in the BBN for matching subjects across

cameras, the MD is defined as:
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v u

Me= % > 2 [0 = pa ) B3 (8 — pa )] (i) (6.9)

j=t i=1
is used, where v is the number of pixels sampled from a subject’s image. To compare the

candidate matches in the comparison node of apparent colour modality, the accumulated

information

1 .
M= m ; s M(l — i) (6.10)

is used, where ¢ is the number of frames of accumulated evidence, [ is the frame index
and o is the weight to set more recent evidence with higher weights (as discussed in
Section 4.4.2).

To determine the comparison result (i.e. similar or not similar) between each pair of
subjects based on apparent colour, Equation (5.10) is used again. In this case, X2 is set
to 5.99 corresponding to a 95% probability of finding the true feature for ny = 2 (ie.
dimensionality of the colour vector).

To adjust the modality confidence of apparent colour during tracking, the confidence
indicator is defined in terms of the segmentation status of the highest point of the
subjects, defined in Section 5.2.2. This is because the position of the sub-image, where
colour samples are taken, depends on the position of the highest point (as discussed in
Section 6.2.1). When the position of the sub-image is not reliable, the apparent colour
modality is also less.reliable. On the other hand, the experiments performed (e.g. the
4" test sequence pair in Table 7.1 in Section 7.2.3) indicate that the colour distribution
can vary significantly when clothes reflects the illuminants. The distance between the
means of the dominant Gaussian variables modelling the colour of a subject’s images
in two consecutive frames is used as the other indicator. This mean distance is defined
as [ = % ST, di, where m is the number of subjects in a camera image, and d is the
distance on HS plane between the means of the dominant Gaussian variables in two

consecutive frames. The state of this confidence indicator is defined as:

high confidence , D <0.02
Ci(l) =< medium confidence , 0.02 < D <0.04 (6.11)
low confidence , D>0.04

where [ is the frame index. When this distance is large, the confidence is set lower. This
is because the reflection may result in a significant colour shift so that the estimated

colour may be less reliable.
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1 7 m . T
Moreover, D = 23700, 3770 ;4 di,; is used to indicate the confidence, where a =
;1_11 i, m is the number of subjects in a camera image, and d is the distance on HS

plane between means, g, of the dominant Gaussian variables of each pair of subjects in

an image. The state of this confidence indicator is defined as:

high confidence , D>0.1
Ci(l) = ¢ medium confidence , 0.05 < D <0.1 (6.12)
low confidence , D <0.05

This value is used to make the system rely less on colour information when the colours

between different subjecis are similar (i.e. when the distance shorter).

6.4.2 Using Estimated Apparent Height for Correspondences

To match subjects in two camera images based on apparent height, the learnt mapping is
used to estimate the apparent height of the corresponding subject across camera images.
The goal is, for a subject in image I with a VA, z;, and apparent height, hj, to search
for the corresponding subject in image I. In doing so, the learnt mapping is used to
estimate the apparent height, »', for each subject in Iy with a VA, z3, based on the
observations (21, 3, h1). Even though the corresponding subject in I3 is not known, the
observed apparent height & of the corresponding subject in I should ideally be equal to
the estimated apparent height A’ (assuming the learnt mapping can correctly estimate
the apparent height). Therefore, the likelihood of a subject in I with apparent height
h, being the subject in I; can be evaluated based on the value of Ah = h — h'. Again,
this difference is modelled as a Gaussian variable with a zero mean. Thus, the matching
likelihood of a subject in Iy with Ah is given by:

1 (AR)?
Varor P 502

To compare the candidate matching subjects, the MD, defined as My, = 5%’;3, is

f(AR) = ). (6.13)

used in the comparison node of the BBN. Thus, the accumulated information of the

apparent height used in the comparison node is:

1 ,
M= e Z Ct’iMht(l - 'l'-), (614)
i=0 % =g

where ¢ is the number of frames of accumulated evidences, [ is the frame index and o

is the weight used for setting more recent evidence with higher weights.
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To determine the comparison result (i.e. similar or not similar) between each pair of
subjects based on apparent height, Equation (5.10) is used again. In this case, X2 is set
to 3.84 corresponding to a 95% probability of finding the true feature for ny =1 (ie.
dimensionality of the apparent height vector).

To indicate the modality confidence, the confidence indicator is defined in terms of
the segmentation status of both the highest (defined in Equation (5.12)) and the lowest
points of the subjects, which are used for computing apparent height. The segmentation
status of the lowest point is defined as the mean distance, D = ;;— ;-nzl dc; (pixels),
of m subjects’ lowest points in a camera image where d, is the image distance between
the lowest points (z,y) of a tracked subject in two consecutive frames. D is used as a
confidence indicator to reduce the confidence when this distance is large. The state of

this confidence indicator is defined as:

high confidence , D<4.0
Ci(l) = { medium confidence , 4.0 <D <10.0 (6.15)
low confidence , D >1008

On the other hand, the mean difference of apparent heights between all m subjects
in an image is also used as a confidence indicator. The mean difference is computed
based on D = 2300, 377, 4 di; (pixels), where a = S 714 and d is the difference
between the apparent heights of two subjects. When the mean difference of subjects’
apparent heights is small, the modality confidence is reduced. The state of this confidence

indicator is defined as:

high confidence , D >200
Ci{l) = ¢ medium confidence , 10.0 < D <20.0 (6.16)
low confidence , D <100

6.4.3 Discussion

This learning approach can be generalised to different space-partitioned methods, where
the mapping can be learnt with respect to these sub-spaces. It can also be generalised
$0 other image features as long as the corresponding features in the two camera images
hold the one-to-one relation. Figure 6.9 illustrates that the apparent width of a subject
may not be applicable as a constraint for matching subjects across cameras due to its
potential ambiguity. Two frames in two sequences captured from two cameras are shown.

The top row shows the 30** frame and the bottom the 130", The apparent widths of
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Figure 6.9: An ezample demonstrating that the relation of apparent widths of a person

in two camera images is not one-to-one.

the person in the two frames from the left camera are virtually the same, but are very
dissimilar to each other in the right camera. Thus, the apparent width of a person in

two camera images does not hold the one-to-one relation.

In this approach, the mappings for different colours and heights are learnt, assuming
that the mappings of a certain appearance value are the same for all world points in a
cell. Although the learnt mapping of the apparent colour applies well to the scenario
with the learnt illumination, it may not apply to un-learnt illumination conditions. On
the other hand, the mapping of subjects’ apparent heights between two camera images
may not apply to conditions where background objects have been removed or added,
since this can change the correlation of the apparent height between two camera images.
However, this modality does apply to subjects with different heights and different poses
since the mapping is learned for different apparent heights. It is also applicable even

when the lower body parts of subjects are not visible in either or both camera images.
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6.5 Summary

This chapter has described the recognition-based modalities, apparent colour and ap-
parent height, used for matching subjects across cameras. As discussed in Chapter 1,
the system views the same scene from very different viewing angles. There are signifi-
cant image variations which can cause incorrect matches when directly using the subject
appearance in one camera image to search for the corresponding subject in the other
camera image. In order to compensate for the image variation in subject appearance
between two camera images, SVR (Support Vector Regression) is used to learn the map-
ping in order to estimate subject appearance across cameras. Since subject appearances
in two camera images are highly correlated with actual world positions, the mappings
are learnt for different cells in the scene. The data collected in the comparison nodes
and confidence indicator nodes for different modalities were explained. The collected
visual evidence is fused by the BBN in order to probabilistically infer the subject cor-
respondences between two camera images. The parameters used and the experimental
results regarding the methodology for MCCT (Multiple Camera Cooperative Tracking)

are given in the next chapter.



Chapter 7

Multi-Camera Cooperative

Tracking

The tracking system proposed in this thesis has two tracking modes: SCT (Single Cam-
era Tracking) and MCCT (Multiple Camera Cooperative Tracking). The experimental
results of SOT were given in Chapter 3. This chapter demonstrates the experimental re-
sults of MCCT, which matches subjects images across cameras in order to track multiple

people using two widely separated cameras cooperatively.

A Tracking System

The goal of the work presented in this thesis is to coordinate multiple un-calibrated
cameras for the purpose of tracking multiple people. To fuse multi-camera data for
tracking people, the system needs to match subjects between different cameras. This
process of inter-camera subject correspondences allows the system to track people using
multiple cameras cooperatively. The main difficulty of matching subjects across cameras
lies in the correspondence process. For widely separated cameras, the correspondence is
more challenging due to large image variations. In order to test our system developed
for MCCT, two different types of cameras are deliberately used as hmage variations are
larger due to different camera parameters. These two Charge-Coupled Device (CCD)
cameras {a SGI digital camera and a SONY EVI-D31 camera) are connected to a SGI
Octane workstation running the IRIX 6.5 operation system. The images were captured
with an Octane video board with a frame rate of 25 Hz and handled off line on a SGI
workstation using the clipped image frame format (400x 300}.

145
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Experiments on MCCT

To perform feature correspondence for MCCT (see Figure 4.1), the system needs to
perform two steps: preprocessing and matching. The preprocessing step includes two
stages: (1) change detection and grouping and (2) feature extraction. The first stage,
change detection and grouping, was illustrated in Section 3.2.1 (see Figures 3.5 and 3.6).
The second stage is to extract the features fror the subject image. The feature used
for applying geometry-based modalities is the highest point of the subjects. Feature
extraction of this point was demonstrated in Section 3.2.1 (see Figure 3.7). The features
used for recognition-based modalities are apparent colour and apparent height of the
subject. Extraction of these two appearance features was illustrated in Chapter 6 (see
Figures 6.2 and 6.3).

The second step of performing MCCT is to match subjects across cameras. The
task of matching subject’s images across cameras is achieved by establishing feature
correspondence based on multiple features. The following sections describe three exper-
iments related o this matching task. The first experiment, described in Section 7.1,
involves selection of Gaussian variable parameters for different modalities. These Gaus-
sian variables are used to model the matching likelihood given the attribute disparity
of features extracted from the subjects in two camera images. Section 7.2 describes the
second experiment, which focuses on the estimation of subject appearance across two
camera images for recognition-based modalities. As mentioned in Chapter 6, the central
aim of mapping is to compensate for the image variation between two camera images
in order to make inter-camera subject correspondences more reliable. The results of the
estimated subject appearance based on the learnt mapping will show how close we are to
this objective. Also, the robustness of appearance estimation using the learnt mapping
between two cameras based on SVR is demonstrated through comparison with a second
method. This second method was used to test the theory of mapping learning during
research, and is an un-supervised learning method, Hierarchical Principal Component
Analysis (HPCA). The third experiment, given in Section 7.3, investigates the appli-
cation of Bayesain modality fusion for matching subjects across cameras. Since large
image variations between camera images, as well as data uncertainty, can result in less
reliable matches, the system fuses multiple modalities, deals with data uncertainty and
captures correlation between modalities by using a BBN. An example of tracking mul-

tiple people using two widely separated cameras is illustrated. The identities of people
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are maintained by matching subjects in two camera images based on Bayesian modality
fusion of multiple modalities. To highlight the strength of Bayesian modality fusion for
combining multiple modalities, it is compared with a popular fusion method, often called

naive Bayes method, which assumes all modalities are independent.

7.1 Experiments on Modelling the Matching Likelihood

To match subjects across camera images, different features from a subject’s image are
extracted and used. The Gaussian variables are used to model the matching likelihood
for applying the modalities of homography, epipolar geometry and apparent height. The
matching likelihood values between subjects are computed from the attribute disparities
between the features of the two subjects in two cameras. These attribute disparities
are assumed to be Gaussian distributions with means of zero. The parameters of the
Gaussian variables are obtained from experiments described in the following. An exam-
ple is also given to illustrate detection of matching ambiguity in MCCT (discussed in
Section 4.4.3), based on the MD (Mahalanobis Distance), using the obtained Gaussian

parameter of apparent height modality.

7.1.1 Homography

As explained in Section 5.2.2, to apply homography for matching subjects across cameras,
the highest point of a subject in image I; is transferred to I to compute the kinematic
vector, x' = {«',y/,2',y'), in order to search for the corresponding subject in 3. The
matching likelihood of a subject with observed kinematic vector x in I is given by a

probability density function. For convenience, the function is given here:
FO%) = e~ {62 () (7.1
2m|3j1/2 2 ’

where Ax = (x — x').

Figures 7.1, 7.2, 7.3 and 7.4 show the experimental results of the measured and
estimated kinematic vector of the subject in Figure 5.4 for 600 frames of a sequence
pair. This sequence pair is taken from two cameras where the person walks around
the office. Throughout the whole sequence, there is only one person moving around in
a room. The highest points of the person in two camera images are extracted. The
highest point of the subject in the right camera image is transferred to the left camera

image. This transferred point is used to compute the estimated kinematic vector, x/, for
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frame) (based on homography) of a person’s highest point in the left camera image for a
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the subject in the left camera image. The highest point of the subject in the left camera
image is used to compute the measured kinematic vector, x. Ideally, the error value,
Ax = (x — x'), between the measured and estimate kinematic vector should be equal
to zero. For the whole sequence, the mean values of error between the measured and
estimated kinematic vector, E[Ax], are (0.636, 0.267, 0.005, 0} with standard deviations
(4.823, 0.900, 3.561, 0.751). Finally, the covariance matrix, ¥ is obtained as:

23.262 —0.679 6.346 —0.409
COV () - 0.809 —0.331 0.282 (7.2)
x) = . .
- - 12.683 —0.739

- - - 0.564

These learnt parameters are then used in Equation (7.1) in order to compute the match-

ing likelihood of two subjects in two camera images based on homography modality.

7.1.2 Epipolar Geometry

To apply epipolar geometry for matching subjects across cameras, the highest point is
used as a feature point to represent the image position of a subject. The highest point
of a subject in one camera image, Iy, is used to compute its associating epipolar line in
the other camera image, I1 (see Figure 5.9). The matching likelihood of a subject in Iy
(with a distance z between one’s highest point and the epipolar line) being the subject

in Iy is given by the probability density function:

@) = ———eap(— ) (7.3)
Torar 357 '

Figure 7.5 shows the distance between the epipolar line and the highest point of
subject 2 (in the left camera image in Figure 5.9) for 600 frames of a sequence pair from
two cameras. The epipolar line is computed using the highest point of subject B in the
right camera image. The sudden change in the distance, at the 40t frame, is due to
incorrect position of the extracted highest point. The mean distance value for the whole

sequence is -0.249 (pixels), with a standard deviation ¢ = 1.810.

7.1.3 Apparent Height

To match subjects in two camera images based on apparent height, the mapping of
apparent heights is learnt using SVR (see Section 6.3.2). Based on the learnt mapping,

the apparent height of a subject in image I; is used to estimate the apparent height,
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Figure 7.5: Distance between the highest point of a subject and the epipolar line.

k', to search for the corresponding subject in image I5. The likelihood of a subject in
I, with observed apparent height, A, being the subject in [; is evaluated based on the
value of Ah = (h — k'}. The matching likelihood of a subject in I with Ah is given by:
1 (ORY?
—eon(—5)

Figure 7.6 shows the observed and estimated heights of the subject in the left camera

floh) = (7.4)

image of Figure 6.7 for 380 frames of a sequence pair from two cameras. The estimated
height is computed based on the observed apparent height of the subject in the right
camera image. The mean value of the estimation error for the whole sequence is 1.564
(pixels), with a standard deviation ¢ = 11.659. It is important to point out that com-
pared to the standard deviation, the mean estimation errors for all three modalities are
relatively small and close to zero. Thus, the assumption that using Gaussian variables
with zero means to model the matching likelihood for these modalities based on the

attribute disparity is largely valid.

7.1.4 Matching Ambiguity in MCCT

To illustrate an example of detecting matching ambiguity in MCCT (see Section 4.4.3),
the modality of apparent height is used. Figure 7.7 shows the computed MD, Mp,
= (_-’—\-C?f;)i, for apparent height of the subject in the left camera image in Figure 6.7 for
380 frames of a sequence pair from two cameras. The error Ah is computed by (h — h')
where h and h' are the observed and estimated apparent heights in the left camera image,
respectively (see Section 6.4.2). The estimated apparent height, A, of the subject in the

left camera image is computed from the apparent height of the subject in the right camera
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estimate the apparent height. This may result from the fact that the cell volume (sce
Figure 5.13), used to learn the mapping of apparent height between two camera images
(as discussed in Section 6.4.2), is too large. So, the assumption made in appearance
estimation that the mappings of apparent height for the whole cell are the same is no

longer valid when incorrect ambiguity detection occurs.

7.2 Experiments on Appearance Mapping across Cameras

To apply recognition-based modalities, the mapping learnt in the training phase is used
to estimate subject appearance for matching subjects across cameras during tracking
(see Figure 6.1). Firstly, the experimental training phase results are illustrated, before
the results of estimation of subject appearance are given. Also, the estimation of subject

appearance based on SVR is compared to the estimation based on HPCA.

7.2.1 Training Phase

As discussed in Section 6.3.2, in order to compensate for colour shift between two camera
images, the apparent colour of a subject in one camera image is used to estimate the
mean position of the colour distribution, (pn, 145), of the corresponding subject image in
the other camera. T'wo SVR-based apparent colour mappings (one for pp, and the other
for s) are constructed to estimate the apparent colour from one camera image to the
other camera image and another one mapping constructed for the mapping of apparent
height. In the experiments, a Gaussian kernel was used to build the SVR function (see
Appendix F). It has been found that the kernel usually provides an acceptable per-
formance when its parameter 26 = 1 (see Equation (F.7)) and the input patterns were
normalised to unit vectors. The regularisation penalty factor, C (see Equation (F.5)),
is set to 1000. The tolerance coefficient £ defined in the loss function (defined in Equa-
tion (F.8) of Appendix F) for mapping of yin, ps and apparent height were set to 3° and
0.06 and 3 pixels, respectively.

Figures 7.8, 7.9, and 7.10 show the number of support vectors obtained and the
training times for different numbers of sequence pairs the system was trained with. FEach
sequence pair was recorded with a single person in both camera images and with 550
frames. Different sequence pairs are recorded with different people at different heights
and wearing different coloured clothes. Notice the smooth relationship between the

number of support vectors and the training time with respect to the number of sequence
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pairs. In general, the number of support vectors and the training time increase with
the number of sequence pairs. However, the increaging rate of both number of support

vectors and the training time decrease as the number of sequence pairs increases.

7.2.2 Estimation of Subject Appearance

In the experiment, it was found that the mapping trained with 14 different sequence pairs
provided acceptable performance and was used for estimation of subject appearance
across cameras. Figure 7.11 shows two examples of the sequence pair that used for
training. The top row shows two images from the sequence pair with the highest person
among these sequences and the bottom row shows two images with the shortest person.
In each pair of these sequences, a person walks around in the room. The joint colour
features and joint height features are extracted from two camera image for learning the
mapping of joint features. Although more sequences can be used , it will increases the
number of SVs required to construct the mapping function. To investigate the success
of estimation of subject apparent colour across camera images, a pair of test sequence
captured from two cameras are used. The results obtained from more test sequence pairs
are given later, when a comparison is made with estimation using HPCA. In this pair
of test sequences, a person walks around the office. The colour samples were taken from
the person’s clothes (see Figure 7.12). The mean of colour samples at each frame in two
cameras, and the estimated colour mean at each frame are shown in Figure 7.13. The
left graph shows the observed colour sample means in two cameras which is also shown
in Figure 6.4 (in Figure 6.4, it can be seen that the apparent colour is highly correlated
to the world position). The right graph shows the estimated colour means (using the
learnt mapping based on SVR) together with the observed colour sample means. The
estimated colours for the left camera are in general closer to the observed colours in the
left camera than the observed colours in the right camera.

The central aim of appearance estimation is to compensate for image variation be-
tween two camera images so as to make inter-camera subject correspondences more
reliable. This example (Figure 7.13) provides an qualitative measure of the accuracy of
estimated apparent colour across cameras. In order to compare estimated colour with
observed colour, the mean of all colour means for all frames was computed. The distance
between the means of all the estimated and observed colour in the left camera is 14%

of the distance between the means of observed colours in two camera images. This im-
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Figure 7.11: Two example of the training sequence pairs.

plies that on average, the estimated colour for the left camera is closer to the observed -
colour in the left than the observed colour in the right camera. Therefore, using the

estimated colour to search for the corresponding subject across cameras is more reliable

than directly using the observed colour (i.e. without estimation) as a model. On the

other hand, the estimation of colour means corresponding to a person in a certain cell in

the scene is also shown in Figure 7.14. The left graph shows the observed colour sample

means from a person’s clothes in two camera images which is also shown in Figure 6.5,

(In Figure 6.5 it is used to show that the colour is highly correlated to the world position

in the scene). The right graph shows the estimation results (using the learnt mapping

based on SVR).

To illustrate the results of estimation of subject apparent height across cameras, a
pair of test sequences are used where a person walks around the office and the apparent
heights are extracted from two camera images. Figure 7.15 shows the observed apparent
height in the two camera images and the estimated apparent height for the left camera
image. The apparent height of a person in the two camera images is also shown in
Figure 6.7 (in Figure 6.7, it can be seen that the apparent height is highly correlated to
the world position). The apparent height in the right camera image drops significantly

when the lower part of the subject is not visible due to partial occlusion by the image
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boundary and objects in the room. The estimated apparent height in the left camera
is based on the observed apparent height in the right. Note that the estiraated height
for the left camera is not affected by the sudden change of the observed apparent height
in the right camera. Over the whole sequence, the absolute estimate error, [hy — Af[, is
about 35.17% of the absolute height disparity, |h1 — hz|, between the two cameras, where
h; is the measured apparent height in image I; and b is the estimated apparent height

based on hs.

7.2.3 Comparative Evaluation

To highlight the strength of using SVR for learning the mapping between subject ap-
pearance in two camera images, the estimation results are compared to results obtained
using HPCA [60], which we used to test mapping learning during the research [28].
The training examples are formed as (z1, z2, G1, G2} (ie. joint colour feature, see Sec-
tion 6.2.1) and (1,2, h1,he) (ie. joint height feature). The steps to perform HPCA

for estimating subject appearance across camera images are as follows:

1. Perform PCA on all the training examples and transform all training examples to
the PCA space, called the parameter space. The eigenvectors found are referred to

as global eigenvectors of the parameter space.
2. Perform k-means cluster on the transformed data to obtain & clusters.

3. Perform PCA on each cluster to obtain the eigen-vectors, referred to as local eigen-
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vectors, for representing each cluster.

4. For an observation, (zi, 22, Gq) and (31,22, h1), the missing part of the example
(ie. Gy and hy, the appearance of the corresponding subject in the other camera

image) is initially replaced with the most recent observation.

5. Project this synthesised vector into the parameter space and constrain this pro-
jected point to the nearest cluster in order to find the most probable point in the

learnt distribution in the parameter space.

Figure 7.16 illustrates the learnt distribution of the parameter space using the 14
sequence pairs that were also used to train the SVR mappings. Figure 7.17 illustrates
the three largest global eigenvectors which joint feature vectors are projected to. Training
example vectors are shown with the local eigenvectors of different clusters. The missing
part of the example can then be found from the most probable point. Tables 7.1 and
7.2 illustrate the estimation results for 5 test sequence pairs, each of 550 frames, based
on SVR and HPCA, where the colour sample in each frame is modelled with 2 Gaussian
variables. The overall mean of the dominant colour models in all frames of each sequence
pair is listed in Table 7.1, together with the standard deviation. Table 7.2 presents the
absolute relative disparity (between the observed apparent heights in two camera images)
and absolute estimation relative error {for SVR and HPCA) of the apparent height. The
absolute relative disparity is computed by ’h‘h: k2l and the absolute estimation relative
error is computed by !ﬁ%ﬁu, where h; and ho are the observed heights of a person in
the left and right camera respectively, and A} is the estimated apparent height for the
subject in the left camera based on ha using SVR and HPCA. These experimental results

indicate that:

e Based on subject appearance in the camera image I;, both methods can obtain
an estimated appearance for the corresponding subject in I; which is closer to
the observed appearance of the subject in I; than the observed appearance of the

subject in 1.

e SVR outperforms HPCA for both apparent colour and apparent height in the
experiments performed. For all 5 test sequence pairs, the distance between the
means of the estimated colour, based on SVR, and observed colour in the left
camera is 19.28% of the distance between the means of observed colours in two

camera images, while for HPCA this value is 56.66%. For apparent height over b
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test sequence pairs, the absolute estimation relative error, for SVR, is 15.78% of

the absolute relative disparity, while it is 18.16% for HPCA.

e For the 4t* test sequence pair (see Table 7.1), the high deviation in the values of hue
results from strong reflections from the clothes, which cause the colour distribution

to vary significantly.

Based on the analysis above, the system can make subject correspondences more
relizble based on SVR mapping than directly applying the appearance in I; as a model to
search for the corresponding subject in I;. The experiments also suggest that the colour
modality is less reliable when the colour distribution varies significantly. Therefore,
when the colour shifts significantly between consecutive frames, the modality confidence

should be reduced, as discussed in Section 6.4.1.
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Table 7.1: Estimated apparent colours for § sequence pairs.

Right Left Lefs (SVR) Left (HPCA)

mean {std} mean (std) mean (std) mean (std)
hue (1) 16.23° (5.01°)  7.16° (5.04°) 7.72° (5.16°) 10.74° (8.33°)
saturation(1) 0.54 (0.05) 0.66 (0.06) 0.64 (0.06) 0.60 (0.09)
hue (2) 27.26° (10.53°) 11.49° (6.43°)  13.81° (5.87°)  18.61° (13.92°)
saturation(2) 0.31 (0.06) 0.51 (0.06) 0.50 (0.08) 0.50 (0.08)
hue (3) 52.66° (8.73°)  44.51° (1.63°)  41.56° (5.51°)  40.09° (6.64°)
saturation(3) 0.32 (0.04} 0.42 (0.06) 0.39 (0.05) 0.41 {0.03)
hue (4) 164.36° (86.37°) 130.96° (37.02°) 124.95° (36.45°) 163.47° (51.7°)
saturation{4) 0.45 (0.05) 0.36 (0.07) 0.33 (0.08) 0.39 (0.03)
hue (5) 915.62° (3.24°)  218.78° (2.53°)  216.56° (2.48°)  229.82° (4.96°)
saturation(5) 0.12 (0.03) 0.06 (0.03) 0.06 (0.05) 0.22 (0.08)

Table 7.2: Absolute estimation relative error in apparent height for 5 sequence pairs.

Disparity SVR HPCA
sequence 1 (550 frames) 43.76 % 5.51 % 7.05 %
sequence 2 (550 frames) 44.32 % 7.34 % 8.08 %
sequence 3 (550 frames) 46.84 % 6.28 % 7.11 %
sequence 4 (550 frames) 31.75 % 8.41 % 8.65 %
sequence 5 (550 frames) 38.47 % 4.84 % 6.36 %

7.3 Experiments on Matching People across Cameras

7.3.1 Tracking People Using Two Cameras Cooperatively

Figure 7.18 demonstrates Multiple Camera Cooperative Tracking (MCCT) by showing
a sequence pair from two cameras with three people interacting with one another. The
system matches subject images across cameras in order to track people with the assigned
identities over time. In order to test the system, all three people wear red clothes so
that the algorithm cannot distinguish them based on colour alone. The label on top of
a bounding box is the identity assigned by the system when the person first appears
in either camera image. The white cross is the highest point of a subject. The system
maintained identities consistently by performing MCCT throughout the whole sequence

based on Bayesian modality fusion, even when occlusion is present in a camera image.
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Note that if the computational power is limited, the system can perform MCCT only
when matching ambiguity (i.e. occlusion) occurs in a camera in order to obtain subject

identities from the other camera.

left camera.  (a)  right camera left camera (b}  right camera

left camera c) " right camera " left camera () N right camera

left camera (f) right camera

(g left camera {h) m right caanera

left camera right camera

Pigure 7.18: A tracking example.

To illustrate the working of the Bayesian modality fusion approach, a section of the
sequences is highlighted when person 1 is visible in both camera images, and as person 2
enters the room, imaged by the right camera but not the left (Figure 7.18(a)). As person
2 enters the left FOV, both people are in the overlapping FOVs (Figure 7.18(b)), and
from MCCT the system obtains the identity (for this newly detected subject in the left
camera) from the right camera, assuming the subjects in two camera images are both in
the overlapping FOVs. Based on the highest points of two subjects in the right camera
image (I3), the epipolar line (black) is computed and used to search for corresponding

subjects in the left camera image (I1). The highest point of person 1 is transferred to
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I; {(blue dots on top of person 1 for most recent 5 frames) based on the on-line learnt
homography (induced by a virtual plane, see Figure 5.2). This transferred point is
used for comparing with the observed kinematic vector (defined in Section 5.2.2) of two
subjects in I;. The system cannot use homography induced by person 2 for matching,
since person 2 had just entered the room and his related homography was yet to be
established. Tt is important to point out that even though the homography related to
person 2 had not been established, BBNs can still infer the subject correspondences
based on partial information (i.e. the evidence based on the homography related to
person 1 and other modalities). It can also be seen that the highest point of person 2 is
incorrectly segmented in the right camera image due to noise, as shown in Figure 7.18(b).
Although the information is incomplete and less reliable, the BBN can still effectively
collect the evidence and make a correct match to pass subject identity across cameras.

After entering, person 2 continues to walk towards the room centre and person 1
keeps walking towards the door. These two subjects meet in Iy and are segmented
as one single blob, but not in I (Figure 7.18(c)). The system interprets that I, is
ambiguous and relies on the tracking results from I» to disambiguate. The blue dots in
I, are the transferred points from the highest points (white dots) of two subjects in Ip
based on the stored established homography. From the results of modality fusion, the
merged blob in I is matched to and interpreted as person 1 due to the top point of this

blob corresponding to person 1.

Occlusion Resolved by MCCT

In this occlusion case, the system maintained the identities after occlusion by coop-
eratively using two cameras. When the merged blob splits into two blobs, the system
detects that the number of blobs changes Figure 7.18(d). From the matching in MCCT,
the system passes identities of two people from Iy to I;. Person 2 keeps walking to the
right corner and person 1 turns and faces person 2. At this moment, another person
enters the room and is assigned a new identity (i.e. person 3 in Jo, see Figure 7.18(e)).
‘Person 1 then turns around and walks toward person 3 (Figure 7.18(f)). Similar to
Figure 7.18(c), occlusion occurs in I in Figure 7.18(g), but here the two people change
direction during occlusion. To resolve this occlusion by MCCT, the homography modal-
ity is more reliable than the other modalities. It can be seen that in Figure 7.18(h), the
transferred points in I; can be reliably used to search for the corresponding people in

I; (based on the kinematic vector). The epipolar geometry is less reliable because the
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epipolar lines are close (see Section 5.3.2).

Kalman Filtering Failure

Note that tracking with a single camera based on Kalman filtering can resolve the
ambiguity in the event of occlusion as shown in Figure 7.18(c), but cannot maintain
correct identities for occlusion with direction change, as in Figure 7.18(g). Figure 7.19
illustrates the tracking failure with a single camera based on motion continuity using a
Kalman filter for the latter event shown in Figure 7.18(g). It shows the measured and
the predicted positions of the blob centroids of person 1 and person 3 in I;. Occlusion
is present during frames 343-395, and some example images taken before, during and
after the occlusion event are shown in Figures 7.18(f-h). During occlusion, the position
estimation is based on a constant velocity assumption and the acceleration is not used
because it is unreliable. The Kalman filters can follow people before occlusion, but
fail to estimate correct positions of people after occlusion where people change walking
directions.

Predicted and Measured Position
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a0 predicted person 3
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Frame Namber (Lefl Camera}

Figure 7.19: The measured and predicted (using a Kalman filter) blob centroids of persons

1 and 3 in the left camera image of the tracking example (Figure 7.18).

The Bayesian Belief Network

Network structure: Figure 7.20 shows the BBN used for the tracking example de-
scribed above. It only shows the structure in a MU (Matching Unit, see Figures 4.9 and
4.10) for apparent height modality. The structures and parameters of the network for
the other modalities use the same MUs, as described in Section 4.4.1. Since there are
three people in the tracking example, the BBN is designed with m = 3, where m is the

maximiun number of subjects in two camera images. Thus, there are 3 comparison nodes
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Figure 7.20: The BBN (Bayesian Belief Network) for inferring the correspondence of

subjects between two camera images based on the modality of apparent height.

in the MU. Note that once the network has been designed, it can only handle the track-
ing scenario where the number of people are equal or less than m. Both the structure
and the CPTs of the BBN can not be changed dynamically. If the computational power
is available, a large network could be designed to handle more people. To indicate the
modality confidence for apparent height (as described in Section 6.4.2), three confidence
indicators are used, represented as three confidence indicator nodes. These indicators
are the segmentation status of both the highest and the lowest points of the subjects,
and the mean difference of m subjects’ apparent heights.
States of variables: Table 7.3 lists the states of the variable represented by the corre-
spondence node. For m subjects in each of the two images, there could be m! possible
assignment combinations. Thus, in total there are 6 assignment combinations, A;-Ag.
Each state shown in the state fable corresponds to an assignment combination. Each
assignment combination is defined as a union of 3 matches. Each match assigns one of
the 3 subjects (S1, S2 and S3) in the right camera to one of the 3 subjects (54, Sp and
S¢) in the left camera.

In the network, each comparison node compares one of the 3 subjects in the left
camera image with all 3 subjects in the right image. Table 7.4 shows the states of the

variable represented by a comparison node which compares 54 with 51, Sz and S3. Each
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Table 7.3: States of the variable represented by the correspondence node.

States | Combination of Assignments
Ay T4 < D1, OB ¥ 92, So + O3
A 4 D1, 9 & 53, 9 £ 92
Ag 5S4 — 53, 8 « 57, O¢ +— 95
Ag S4 & S99, Op ¢ 51, OS¢ + 53
As 5S4+ 82,898 < 53, Sc =5
Ag G4 83, Bp ¢ S, S 51

Table 7.4: States of the variable represented by the comparison node.

States | 54 and 51 | 54 and Sy [ 54 and 53
1] not similar | not sumilar | not sumilar
1 not similar | not sumilar similar
2 not sunilar simzilar not similar
3 not similar similar similar
4 similar not similar | not similar
b similar not similar similar
b similar similar not simiiar
7 similar simlar similar

_state encodes the comparison results with the 3 subjects. Note that the comparison
results encoded in a state allow multiple hypotheses (i.e. multiple subjects in image
I; can be equally similar to a subject in I;). The variables represented by all other
comparison nodes have the same states table. Table 7.5 shows the thresholds (i.e. XZ)
used to determine the states (similar or not similar) of comparison results for different
modalities.

On the other hand, the variable represented by the modality confidence node has
only two states, i.e. high and low confidence. All the variables represented by confidence
indicator nodes have three states, i.e. high, medium and low confidence. Table 7.6 shows
the thresholds used to determine the states (high, medium or low confidence} for different

confidence indicators.

Conditional probability tables of variables: As described in Section 4.3.3, each vari-
able, V;, is represented by a node, and has a set of conditional probabilities, P(V;|y;),
which is a function of its parent nodes ITy,. For the node with no parent node, this
P(Vi|Ily;) degenerates to the prior P(V;). In the BBN used for fusing multiple modali-

ties for MCCT (see Figure 4.9), the nodes have parent nodes are comparison and con-
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Table 7.5: Thresholds used for determining the states of the comparison results for dif-

ferent modalities.

Modality X2
Homography 9.49
Epipolar geometry | 3.84
Apparent colour | 5.99
Apparent height | 3.84

Table 7.6: Thresholds used for determining the states of the different confidence indica-
tors. (D=distance).

Confidence indicator High Medium Low
Segmentation of highest pomts D<20 200D <40 D >40
Mean D between highest points D>B0T300< D <80.01 D<a0.0
Mean D between epipolar lines D>2001100< <2007 D<10.0

Mean D between subjects and landmarks | D > 0.0 20< D <bh0 D<20
Mean D between Gaussians In two frames | J<0.02 [ 002 <D <0041 D> 0.04
Mean D between Gaussians of all subjects | D>0.1 | 006 <D <01 | D<0.05
Segmentation of lowest points D<40 | 40<D<I0.0 T D >10.0
Mean D between apparent heights D>2001100< D <200 D<10.0

fidence indicator nodes. Table 7.7 illustrates the CPT (Conditional Probability Table)
of the comparison node which compares S4 with S1, Sy and S3. It lists the belief of
each state in the comparison node. This belief describes the probability distribution
over the states, given the states of the parents nodes, i.e. the correspondence node
and modality confidence node. For example, given the state A; in correspondence node
and low confidence in modality confidence node, the probability distribution over the
states of this comparison node are (4%, 4%, 4%, 4%, 40%, 20%, 20%, 4%). The state
4 of the comparison node corresponds to the comparison results of 54 similar to Sy but
not similar to either S2 or Ss (see Table 7.4). The reason for state 4 with the highest
probability (i.e. 40%) is that this evidence (i.e. state 4) strongly supports state A (i.e.
S4 « Si) in correspondence node, compared to other states of comparison node. For
example, state 5 corresponds to the comparison results of 54 similar to S7 and 53, but
not similar to S (see Table 7.4). State 5 equally supports S4 < 51 and S4 + 53
Thus, the probability is half that of state 4 and is set to 20%. This is because state 4
corresponds to the comparison results of S similar to Si, but not similar to Sz and 8.
All other comparison nodes have similar CPTs, but based on a similar principle.

If all the modalities give conflicting results, it is possible that the inferred probability

distribution over m! possible assignment combinations are equal. For example, S5 + 51
P g Pie,



CHAPTER 7. MULTIPLE CAMERA COOPERATIVE TRACKING 168

Table 7.7: Conditional probability table of o comparison node given the states of iis

parent nodes. (M.C. = Modality Confidence).

Correspondence [ M. C. | 0 1 2 3 4 5 6 7
Ay fow | 4% | 4% | 4% | 4% | 40% | 20% | 20% | 4%
Ay high | 2% | 2% | 2% | 2% | 60% | 15% | 16% | 2%.
As Tow | 4% | 4% | 4% | 4% | 40% | 20% [ 20% | 4%
As high | 2% | 2% | 2% | 2% | 60% | 15% | 1% | 2%
As Tow | 4% | 40% | 4% | 20% | 4% | 20% | 4% | 4%
As high | 2% | 60% | 2% | 15% | 2% | 16% | 2% | 2%
Ay Jow | 4% | 4% | 40% | 20% | 4% | 4% | 20% | 4%
Ay high [ 2% | 2% | 60% | 16% | 2% | 2% | 15% | 2%
As Tow | 4% | 4% | 40% | 20% | 4% | 4% | 20% | 4%
As high | 2% | 2% | 60% | 15% | 2% | 2% | 16% | 2%
Ag low | 4% | 40% | 4% | 20% | 4% [ 20% | 4% | 4%
Ag high | 2% | 60% | 2% | 15% | 2% | 15% | 2% | 2%

in the first comparison node, §4 + S2 in the second and S4 ¢ S3 in the third. This
situation can only occurs when the observed states (0-7) in 3 comparison nodes are the
same and the inferred states (high and low)} of the modality confidence nodes in all
MUs (6 in total as landmark modality is implemented with 2 MUs) are the same. The
probability of this situation occurring is ((3)® x (3))® (i.e. 8.67e-19). Moreover, this
situation can only happen when the prior over all states {A;-Ag) in the correspondence
node are the same. In the experiment, this situation was not seen.

Table 7.8 illustrates the CPT of the confidence indicator of the segmentation status
of the highest point of the subjects. All other confidence indicator nodes have the same
CPTs. Note that these tables (i.e. Tables 7.7 and 7.8) are manually generated based
on the domain knowledge. The choice of the values are manually selected based on the
performance when tested with different values. More appropriate values can be obtained
based on estimation techniques (e.g. maximum likelihood estimation). The values used
may be imperfect, but have acceptable results for the experiments conducted. They
might need to be changed for other environments and different lighting conditions in

order to make the results more reliable.

Observed states in the evidential nodes: Figures 7.21 and 7.22 show the observed
states in the three comparison nodes and the three confidence indicator nodes respec-
tively. These observations are obtained from the apparent height modality obtained

from the two sequences taken by the two cameras in the tracking example (Figure 7.18).
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Table 7.8: Conditional probability table of o confidence indicator node given the stafes

of its parent nodes. (M.C. = Modality Confidence).

M. C. { low | medium [ high
low | 60% 30% 10%
high | 10% 30% 60%
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Figure 7.21: The observed states in the comparison nodes.
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Figures 7.21(a-c) depict the observed states (see Table 7.4) in the three comparison
nodes, comparing S4, Sp, and S¢ in the left camera image with all 3 subjects in the
right camera image respectively. For example, Figure 7.21(a) depicts the observed states
based on the comparison results of §4 with all 3 subjects. Note that the states remain
0 {as the subject in the left camera is not similar to any of the subjects in the right,
see Table 7.4) in a comparison node until evidence is observed. For example, the state
shown in Figure' 7.21(c) remains 0 until the 269t* frame, when person 3 (i.e. Sg) first
appears in the left camera image.

Figures 7.22(a-c) depict the stétes in the three confidence indicator nodes. These
three indicators are (a) the segmentation status of the highest points {b) the segmenta-
tion status of the lowest points of the subjects, and (c) the mean difference of subjects’
apparent heights. The states 0, 1 and 2 represent low, medium and high confidence
respectively. From the whole sequence pair, it can be seen that the confidence level
indicated by the highest point is in general higher than that of the lowest point. The
less reliable segmentation of the lowest point may arise from the subject’s shadow. This
also suggests that the highest point can be more accurately extracted, and is thus better
for use as a feature point to represent the image position of subjects for establishing
correspondence,

Inferred probability distributions of the unobserved nodes: The observed visual

evidence in the evidential nodes (i.e. comparison nodes and confidence indicator nodes)
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Figure 7.22: The observed states in the confidence indicator nodes.

is used to infer the unobserved variables represented by the modality confidence node
and the correspondence node. Figures 7.23 and 7.24 show the inferred probability dis-
tributions over the states of the modality confidence node and the correspondence node.
Figures 7.23(a-b) show the inferred probability of the states (i.e. high confidence state in
Figures 7.23(a) and low confidence state in Figures 7.23(b)) in the modality confidence
node of the apparent height modality. Figures 7.24(a-f) show the inferred probability for
the states of A;-Ag (see Table 7.3) in the correspondence node based on all modalities.
Note that before the 38" frame, the probabilities are 16.67% for all states, since there
are no subjects visible in either camera image before this frame. Therefore, the system
does not need to begin matching subjects between two camera images. The probabilities
of all states were set equally (i.e. % as discussed in Section 4.4.1) by the system for this
initial condition.

Obtaining the probability distribution over assignment combinations: Here,
we explain how to obtain the results of subject correspondences when the numbers of
subjects in both camera images are less than m (i.e. the maximum number of subjects
in two camera images built in the BBN), and the number of subjects are different in the
two images. For example, before the 120%" frame of the tracking example, there are two
subjects, person 1 and person 2, in both camera images (see an example of 110" frame
in Figure 7.18(b)). After the 120" frame, these two subjects meet in the left camera
image, Iy, and are segmented as one single blob, but not in the right camera image, Io
(see an example of the 130% frame in Figure 7.18(c}). Since the number of subjects in
Ii has changed, the system interprets that there is matching ambiguity and the subject
identity may be incorrect. From the MCCT, the system matches subjects across cameras
in order to obtain the identity, i.e. “1” (of 1) or “2”(of Sa), from I5. Since the system
does not rely on any occlusion reasoning technigues to resolve the ambiguity, it continues

to match subjects across cameras (this ambiguity is resolved when the merged blob splits
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Figure 7.24: The inferred probability distribution in the correspondence node.

by passing of the identity from the camera where no ambiguity is present, and will be
discussed later). The system needs to match the one subject (54, i.e. merger blob} in Iy
and two subjects (S; and Sz) in I in order to determine whether 54 corresponds to S
or Sy, i.e. two matches: Sy « 81 and 5S4 + So. The inferred probability distributions
over the assignment combinations, Aj-Ag, at the 1215 frame are (0.519323 0.301932
0.022947 0.030193 0.102657 0.022947), as shown in Figure 7.24. The probability of the
match S4 < S) can be marginalised (see Equation (4.7)) from Ay ({Sa ¢ 51, SB < 52,
Sc + S3}) and Ay ({Sa + S1, Sp « 53, Sc + Sy1}), while the match S4 + 52 can be
marginalised from A ({S4 « S2, Sp « 51, Sc + S3}) and As ({S4 + 52, Sg « 5,
S¢ + S1}). Thus, the probability of S4 « 57 is 0.821265 (i.e. 0.519323 -+ 0.301932),
and that of 4 « So is 0.13285 (i.e. 0.030193 + 0.102657). The system then assigns
identity “1” (of S1) to Sa (the merged blob), as can be seen in the left camera image in

Figure 7.18(c).
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After the 1427¢ frame, the merged blob in Iy splits into two blobs (see Figure 7.18(d)).
The system assigns the label 4 to the left subject and Sp to the right subject in I. Since
the number of subjects in I) has changed, the system matches subjects across cameras to
obtain the identity (i.e. “1” or “2”) from the subjects in Jp for assigning to Sa and Sp,
i.e. two assignment combinations: {S4 ¢+ S1, Sp ¢+ S2} and {S4 + S2,Sp « S1}. The
inferred probability distribution over the assignment combinations, Ay-Ag, are (0.474634
0.298221 0.033602 0.036870 0.021002 0.135670), as shown in Figure 7.24. The probability
of the matches {S4 « S1, Sp + S2} can be obtained from 4; ({Sa + 51, Sp ¢ S,
S¢ + S3}), while that of the matches {S4 « Sz, Sp S1} can be obtained from 44
({S4a ¢ So, Sp ¢ 81, Sc « S3}). Thus the probability of {S4 « S, Sp « Sa} is
0.474634, and that of {S4 ¢ Su, Sp « Si} is 0.036870. Therefore, the left subject,
S4, in I is assigned the identity “1” (of S1), and the right subject, Sp, is assigned the

identity “2” (of S3), as can be seen in the left camera image in Figure 7.18(d).

7.3.2 Performance Evaluation

To highlight the strength of Bayesian modality fusion for combining multiple cues, it is
compared with a popular fusion method adopted by some tracking systems, e.g. [70, 23]
as reviewed in Chapter 2. This method assumes all modalities are independent, and
is often called the naive Bayes method. The matching result is based on similarity
measurement computed by M(S,8") = [z, Plax|a}), where 8 and 8’ represent two
subjects to be matched with n different features ag and a), respectively. In order to
compare the robustness of these two methods, 20 sequence pairs (each sequence contains
500 frames) are collected with two people interacting with each other in the overlapping
FOV. Figures 7.25, 7.26 and 7.27show some sample images of the sequence pairs that used
for evaluating the matching results. Each row shows 2 images frames from a sequence
pair.

The main aim of this experiment is to compare the performance of inter-camera sub-
ject correspondences based on two different methods (i.e BBNs and naive Bayes). When
subjects are not visually isolated, there is no ground truth of the subject correspondence.
For example, two subjects are imaged as one single blob in the left camera image (due to
occlusion), and two blobs in the right. The single blob in the left camera might belong
to either or both of the two subjects. Thus, no ground truth of subject correspondences

exists when occlusion occurs. To evaluate the results of matching subjects in two cam-
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Figure 7.25: A tracking ezample.

eras, when the subjects are visually isolated, the matching results are counted. Since
the space of the room where the experiments were conducted is limited, only two people
are used so as to limit the number of occluded frames. The tracking of two people is
achieved by matching subjects across cameras in order to resolve the oeclusion prob-
lem. The people (including man, women and children) had a wide range of heights,
wore different coloured clothes and walked around the room randomly. Among people
in these 20 sequences, the tallest is 193 cm and the shortest 124cm. The sequences were
captured under a range of lighting conditions including day light with/without blinds,
with/without artificial lights, and with /without daylight (t.e. at nightj. These 20 se-
quences were found cover acceptable different variations of subjects appearance and the

lighting conditions in the room where the experiments were conducted. The comparison
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Figure 7.26: A tracking ezample.

of these two methods is based on these 20 seguences.

To compare subjects’ features based on the accumulated evidence {(as discussed in
Section 4.4.2, see Equation (4.15)), -fgz_lofa 4= ey F(1 — ) is used in the comparison
nodes for all modalities, where ¢ is set to 3, and oy is set to 3, o to 2 for and a3 to L
Thus, the information from 3 consecutive frames are used to compare subjects’ images.

Figure 7.28 illustrates the results of matching two people between two camera images.
The accuracy rate of each sequence pair is the overall maiching accuracy over all frames.
Both methods use the matching results (i.e. a probability distribution over a combination
of assignments) from previous frames as a prior in the current frame. Both methods also
use the accumulated evidence {as discussed above) for comparison. The ground truth of

matching (subject correspondences between iwo camera images) was generated by hand.
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Figure 7.27: A tracking ezample.

When occlusion occurs in either or both camera images, the matching results are not
counted. The average accuracy over all 20 sequence pairs is about 99.1% with standard
deviation 1.2% for the Bayesian modality fusion method and 96.5 % with standard
deviation 2.4% for the naive Bayes method. The accuracy range is between (96.3%,
100%) (i.e. (minimal, maximal)) for the Bayesian modality fusion method and (92.4%,
100%) for the naive Bayes method.
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Figure 7.28: The accuracy rate of matching subjects between two camera images based

on Bayesian modality fusion and a naive Bayes method for 20 image sequence pairs.

Incorrect matches can result from image noise, a less reliable estimated subject ap-
pearance (due to a different illumination condition from that used during mapping learn-

ing in training phase) and positional ambiguity of the extracted features. It was found
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that colour modality became less reliable in strong daylight. The reason for this is
twofold. First, the learnt mapping used for estimation of subject appearances across
cameras was obtained at night (without daylight). The estimate subject colour for
inter-camera subject correspondences became less reliable under strong daylight. Sec-
ond, the strong daylight can be reflected by clothes causing significant changes in colour
distribution. This is because hue and saturation are in polar coordinates. When colour
distribution change significantly can cause hue changes of up to 180 degrees in polar
coordinates.

To further evaluate the improvement when using colour modality for inter-camera
subject correspoﬁdences, the experiments were performed without using colour modality.
Over 20 sequence pairs, the accuracy rate of matching subjects is about 95.4% with a
standard deviation of 1.8% for the Bayesian modality fusion method when not using
colour modality. Compared to the use of all modalities (the accuracy is about 99.1%),
the difference (between 95.4% and 99.1%) indicates that the system achieves a 3.7%
higher accuracy when using colour modality. The reason this improvement is not that
high is probably because about half the people wore black and/or grey clothes. This
causes the colour distribution unstable in the HS plane (such as hue changes up to 180
degree). This suggests that the use of other colour representations might result in a
better accuracy.

The modalities of epipolar geometry is less reliable when the actual heights of people
are similar. This is because epipolar lines are almost horizontal for the system camera
setup. Therefore, the epipolar lines are close to each other when two people are of about
the same heights and at the same depths. Since the distance between the computed
epipolar line and highest point of the candidate matching subject is used as a maich
score, the system may not make a correct match due to the distance between the highest
point of a subject and different epipolar lines are similar.

It was found that the line landmark modality was less reliable, when people are in the
same VA in a camera image. This is because the rules (see Section 5.4.1) do not apply
in this case. This suggests that the distance between two neighbouring line landmarks
should be designed to be approximately equal to the widih of a human body. Thus the
system has more chance to view people in different VAs.

The results indicate that the BBN method is better in combining multiple visual

modalities for matching subjects across cameras. This can be seen from the fact that
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the average accuracy of the BBN method is 2.6% higher than the naive Bayes method.
Although the average accuracy is not much higher than the naive Bayes method, BBN
method is also more stable than the naive Bayes method, as seen with the smaller
standard deviation and smaller range.

To further evaluate the performance of these two methods, the third of the 20 se-
quence pairs, discussed above, is used. In this sequence pair, there are two people in both
camera images. The goal is to match two subjects, S4 and Sp, in one camera image to S
and S5 in the other image. The possible combination of assignments are Ag € {4, Ao},
where A1 = {S4 + 51 and Sp + S2} and Ag = {54 < S» and 5p « S1}. The ground
truth (i.e. subject correspondences between two camera images) is A; assignments. Fig-
ure 7.20 shows the inferred probability of A; based on BBN and naive Bayes. Since
summation of probability of A1 and As is equal to one, the probability of A; being less
than 0.5 represents an incorrect match. In this sequence pair, occlusion is present from

the 155t* to the 196" frame, where both 4; and Ay are set to 0.5.
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Figure 7.29: The inferred probability of combination of assignments Ay using Bayesian

modality fusion and naive Bayes.

Figure 7.30 shows the false rate (i.e. ratio of the number of frames of false matching
to the total number of frames) at every frame instants across the whole sequence. Over
the whole sequence pair, the false rate is less than 1% for BBN and about 8% for naive
Bayes. To estimate the computational cost, the time consumption (in seconds) of both
methods was recorded and is shown in Figure 7.31. Throughout the whole sequence, the

computational time of the BBN method is 17% higher than that of the naive Bayes.
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Figure 7.30: The false rate of matching subjects between two camers images using

Bayesian modality fusion and naive Bayes.
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Figure 7.31: The processing time for Bayesian modality fusion and naive Bayes.

7.4 Summary

This chapter has discussed the experiments carried out regarding the matching task in
MCCT. The first experiment involves selection of parameters of Gaussian variables for
different modalities. Based on the obtained Gaussian parameter of apparent height
modality, an example is also given to illustrate detection of mafching ambiguity in
MCCT. The second experiment focuses on the estimation of subject appearance across
two camera images for recognition-based modalities. The third experiment investigates
the application of Bayesain modality fusion for matching subjects across cameras. The
discussion and conclusion of the work presented in this thesis will be given in the next

chapter.



Chapter 8

Conclusion

8.1 Summary of Work

This thesis has developed a system for tracking multiple moving people in an indoor
environment using two static, widely separated and un-calibrated cameras. The tracking
system consists of two tracking modes: SCT (Single Camera Tracking) and MCCT
(Multiple Camera Cooperative Tracking). In the MCCT mode, the system matches
subjects’ images across cameras to establish subject correspondences between the two
camera images. Fxperimental results show that when performing MCCT, the system
can track people with identities over time using two cameras cooperatively.

The SCT tracking mode was first discussed which includes two major steps: prepro-
cessing and matching subjects between successive frames from a camera. Two stages
of preprocessing are performed before the matching task: (1) segmentation of the mov-
ing subjects from the still background and (2) extraction of feature points from the
segmented subjects’ images. After preprocessing, the system establishes the feature cor-
respondences between consecutive image frames using Kalman filters for tracking people.

In MCCT, a Bayesian belief network is used to.adaptively fuse multiple modalities
for matching subjects across cameras. Compared to SCT, the features used for subject
correspondences in MCCT are extracted from different camera coordinate systems and
from different physical processes, making matching more difficult. On the other hand,
these different modalities regarding different constraints are highly correlated, since they
are all related to the same scene. A framework, based on Bayesian modality fusion, is
used to probabilistically infer subject correspondences between two camera images in

order to handle data uncertainty and capture dependencies between different modalities.

179
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Geometry-based modalities are used to handle significant image variations resulting
from the features being obtained from two widely separated cameras. This problem
is overcome by finding the geometric relationship between the highest points of corre-
sponding subjects in two camera images. The homography induced by the virtual plane
of a person is used to transfer a subject’s highest point from one camera image to the
other camera image in order to search for the corresponding subject. Epipolar geometry
is used to constrain the highest point of corresponding subject across camera images
on the epipolar line. Scene knowledge based on landmarks is also used for geometric
reasoning about subject correspondences for MCCT.

To match subjects between camera images based on recognition-based modalities,
the image patterns extracted from the subjects in one camera are used as a model for
recognition of the corresponding subject in the other camera. The main difficulty of
applying recognition-based modalities lies in wide variations in subject appearance due
to changes in pose, scale and lighting condition, such that subjects appear different
from different viewpoints. To compensate for the appearance variation, so as to make
inter-camera subject correspondences more reliable, the mapping of subject appearance
between two camera images is learnt using SVR (Support Vector Regression). By using
the learnt mapping, one can estimate the appearance of the subject across camera im-
ages in order to obtain a “camera-dependent” model for matching subjects, though the
mapping needs to be re-learnt if the camera is moved.

Finally, the accuracy of appearance estimation based on SVR, and the tracking sys-
tem based on Bayesian modality fusion are both compared to different methods in order
to demonstrate their robustness. The SVR method can estimate the subject appearance
across cameras with a smaller error than the disparity in the appearance (i.e. without
estimation) of corresponding subjects in two camera images. For b test sequence pairs,
the error between estimated and observed apparent colour is 19.28% of the disparity
of the apparent colour in two camera images, and for apparent height, the error be-
tween estimated and observed apparent height is 15.78% of the disparity of the apparent
height in two camera images. Bayesian modality fusion achieved a 99.1% accuracy rate
of matching subjects across camera images, 2.6% higher than the naive Bayes method
(which assumes all modalities are independent). The tracking system presented in this
thesis has been demonstrated to handle occlusion and maintain identities of multiple

people consistently by using two cameras cooperatively.
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8.2 Limitations

The methodology and different techniques for inter-camera subject correspondences pro-
posed in this thesis are not free of caveats. Care must be taken in how they are applied.
Tt is important for these limitations to be understood when building similar systems.

The limitations discovered are listed below.

o In the geometry-based modalities, the highest point of a subject is used for rep-
resenting the subject position in an image. Different modalities are then used fo
constraint the position of the corresponding points across camera images in or-
der to match subjects between camera images. Similarly, in the recognition-based
modalities, the highest point is used to determine the image position where the
apparent colour of a subject’s image is to be sampled; the highest and lowest points
are used to determine the apparent height of a subject. Positional ambiguity in
extracted features for representing a subject can degrade the matching reliability.
This limitation is due to the inherent difficulty in feature extraction, as discussed in
Chapter 1, that the features extracted from different camera images are in general
corresponding to different parts of an object in the 3D world. To handle this is-
sue, this thesis uses the segmentation status of the feature position between image
frames in order to dynamically adjust the modality confidence. However, when the
ambiguity in feature position exists for longer than two frames, the system may
not detect this positional ambiguity. One possible remedy is the incorporation of
a human shape model to segment the motion blob, in order to extract accurate

feature points from a subject’s image.

e The homography induced by the virtual plane of a person is used to transfer a
subject’s highest point from one camera image to the other camera image in order
to search for the corresponding subject. However, homography only applies to the
points lying on a scene plane. The homography modality may be less reliable for
inter-camera subject correspondence when people change their poses significantly
or when the ground is not a plane such that the subject’s highest points do not
lie on the same virtual plane. To improve subject correspondences based on this
modality, the system can be made to recognise people’s poses and hence make this

method more reliable.

e The affine camera model is adopted to compute the epipolar geometry for searching
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for corresponding subjects between two camera images. This model only provides
good approximation of the perspective model when the FOV is small and the
variation in depth of the scene along the line of sight is small compared to its
average distance from the camera. The assumption may not hold when people
first enter the FOV. This is because the distance between the person and the
camera is longer than the average distance from the camera when a person enters
the room through the door . A similar situation could happen when a person enters
the FOV from the corner where the camera is located. In this case, the distance
between the person and the camera is shorter than the average distance from the

camera.

e The landmark modality is used to geometrically reason the positions of corre-
sponding subjects in two camera images. This constraint is a very computation-
ally efficient algorithm. However, the people tracked in the environment must be
viewed in front of the landmarks and in the overlapping area of FOVs. Moreover,
the distance between two neighbouring line landmarks should be designed to be
approximately equal to the width of a human body. Thus, the system has more
chance to view people in different VAs in order to reason the position of corre-
sponding subjects in two camera images. This is because more than one person
could be in the same VA if the distance between two neighbouring line landmarks

is too wide.

¢ A key issue in appearance estimation based on learnt mapping is that it may not
handle different illumination conditions well. This could cause the estimation of
subject appearances to be less reliable and result in incorrect matches. This issue
is particularly serious in the modality of apparent colour, e.g. outdoor lighting
can change colour significantly. As a result, the learnt mapping becomes less
reliable. It might be useful to learn the correlation between the mappings for
different illumination conditions in order to use different mappings for different

illuminations.

o BBNs are well-established as representations of domains involving uncertain rela-
tions among several random variables. This thesis uses a BBN to fuse different
visual modalities from two cameras for establishing inter-camera subject corre-

spondences. The structure and the parameters (i.e. CPTs) of the network are
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designed from domain knowledge, and is only suitable for the camera setup used
in this thesis. For different camera setups and different environments, different

networks need to be designed.

s The goal of this thesis is to segment the images of moving subjects from the back-
ground and then to track moving (walking) people in the overlapping area over time
from an image sequence pair of two monocular cameras. The system can handle
the occlusion problem by using two widely separated cameras cooperatively. When
occluded people are separated as two single blobs, the system passes subject iden-
tities across cameras by establishing inter-camera subject correspondences. Thus,
the system can continuously track people by using two cameras cooperatively. The
underlying assumption of the system is twofold. First, people are walking in the
overlapping FOVs of two cameras. Second, the system always has one camera

image where occlusion does not occur.

8.3 Future Work

There remain several avenues of interest to explore. The framework based on Bayesian
modality fusion is quite general and as such it might be useful for different applications,
such as tracking people walking in a large area monitored by multiple cameras (i.e. more
than two cameras). The identities can then be maintained by matching subjects across
cameras when people are in overlapping FOVs. The system could also be extended to
recognise the activities of multiple people by taking advantage of consistent maintenance
of identities. In order to coordinate all cameras to track multiple people, the communi-
cation protocols for multiple camera cooperative tracking require further study to make
communication between cameras more reliable.

As pointed out in Chapter 2, the difficulty in tracking a group of people lies in the
occlusion problem, where the system has no mechanism to update the visual informa-
tion in order to track people. Individual camera can only cover a limited space and is
subject to failure and/or measurement inconsistencies. The work presented in this thesis
uses two cameras to track people and assumes that there is an unambiguous image of
each individual in at least one camera at all times, However, an individual may be oc-
cluded in both cameras simultaneously. A larger scale cooperating multi-camera system

potentially has more visual information than a two-camera system. Investigation into
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sensor fusion mechanisms to obtain global measurements for resolving the occlusion in
all cameras might lead to some success and would be extremely useful.

Automatic tracking of people based on video cameras has now become important in
many applications, especially in surveillance, e.g. detect police-designed “target faces”,
public areas and even inside the home to monitor domestic violence. Sophisticated
software can automatically track people and detect some activities. To perform these
visual tasks, the detection stage is critical in that incorrect detection can cause the system
to fail to track people and recognise activities. For example, the occlusion problem can
cause a visual surveillance system to have ambiguous information from all cameras. One
possible method to interpret and understand a scene more robustly is to incorporate other
types of sensors or mount cameras at different places in order to detect people without
ambiguity. Once people are detected in different sensors independently or cooperatively,
the system can then track them by fusing data from all sensors to make the tracking

more robust.



Appendix A

Camera Models and Calibration

This appendix gives an introduction to the camera model and the concept of camera
calibration. A camera is a mapping between the 3D world (scene space) and a 2D image.
All cameras modelling central (perspective) projection (see Figure A1), including the
perspective camera and affine camera, are specialisations of the projective camera [591.
Firstly a description of the most general model, the projective camera, and camera

calibration are given. Then, the perspective camera and the affine camera are described.

A.1 The Projective Camera and Camera Calibration

A camera projects a 3D world point P = (X,Y, Z)" onto a 2D image point p = (z,¥).
"The mapping from R? to R? can be written in terms of a projective matrix T = [T};]

in the homogeneous coordinates:

Z
To =
T3

where (z1,29,%3) and (X1, X2, X3, X4) are homogeneous coordinates related to p and

P, as {z,y) = (z1/23,22/23) and (X,Y,Z) = (X1/X4, X2/ X4, X3/X4). This camera

Ty T Ty T %;
Toy Tog Toz Tig X | (A.1)
Ty Tie Ta3 Tse X,

model is termed a projective camera [109]. A projective camera places no constraint on
the projection matrix T and the coordinated systems where p and P are measured, e.g.
the world coordinate frame and the camera coordinate frame need not be orthogonal
to the optical axis and these two frames need not be aligned [146]. This projective
matrix can be computed directly from calibration [172] (i.e. computed from a set of
world to image correspondences) and indirectly by computing a multiple view relation

(e.. fundamental matrix or trifocal tensor) [59]. This projective matrix T can be
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_
Image
Plane
(a) The perspective (central) projection. (b) The parallel projection.
Figure A.l: The camera projections.
decomposed as follows [146, 48]:

Cy Ciz O 100 0 f;:ll gm §13 gm

T=CEF=1 Co1 O 23 01 0 0 le ng F23 F'24 . (A.2)
0 60 Cs 00 1 0 31 32 33 1434
Fy Fip Fiz Fy

The 3 x 3 matrix C represents a 2D affine transformation (hence C31 = Uz = 0)
and accounts for intrinsic camera parameters (i.e. geometric and optical characteristics).
This matrix has a variable number of unknowns (usually up to 6) depending on the
sophistication of the camera model. If there is no shearing {i.e. non-uniform scaling in
some directions) in the camera axes and four parameters are used in C:

fe 0 Cy

Cz{g 5 Cly}, (A.3)
where f is the focal length (i.e. the distance between the image plane and the optical
centre) ¢ is the camera aspect ratio (i.e. ratio of the horizontal and vertical pixel sizes)
and (Cy,Cy) is the principal point (where the optical axis meets the image plane).
These intrinsic parameters do not change as the position and orientation of the camera
in space are changed. Knowledge of the intrinsic parameters allows one to perform metric
measurements with a camera, i.e. to compute the angle between the rays determined by
two pixels and the optical centre [48].

The 3 % 4 matrix B performs the projection operation. The 4 X 4 matrix F ac-
counts for extrinsic camera parameters and encodes the relative position and orientation
between the 3D world and 3D camera coordinate systems centred at the optical centre.
In the linear projective equation (Equation (A.1)), the world point P (X1, X2, X3, X4)
is first transformed to P, in the 3D camera coordinate by F and then projected to the
ideal (undistorted) 2D image coordinate by E. Finally, it is transformed to the real

image point (21, T2, z3) by the matrix C.
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To calibrate a single camera, one needs to determine the intrinsic and/or extrinsic
parameters. From calibration, one can infer 3D information from the image coordinates
(or vice versa) [172]. Calibration of multiple cameras requires the calibration objects
for each camera to be measured in the same 3D world coordinate system in order to

determine the relative positions and orientation [114}.

A.2 The Perspective Camera

The perspective camera model is a specialisation of the projective camera. Figure A.1(a)
shows the perspective projection onto an image plane where all projection rays converge
at the camera centre C. This camera models the ideal perspective projection (i.e. no
distortion) and is the familiar pinhole camera in which the 3D camera and 3D world

coordinate frames are related by a rigid transformation [146]:
P.=RP +1t, {A.4)

where P is a point in the 3D world coordinate, P, is a point in the 3D camera co-
ordinate, R is a 3 x 3 rotation matrix (with rows {RI*,R?¥* R37}) representing the
orientation of the camera coordinate frame, and t = (tz,1,,%,)" is 2 3 x 1 translation

vector representing the origin of the world coordinate frame. As a consequence,
R t

Using Equation (A.3) the projective matrix T of the perspective camera can be
written as:

FeRM + C,R®T  fety + Cyt,
T,=| fR*™+CR*™ fi,+Cyt, |. (A.6)
R3T tz

A.3 The Affine Camera

An affine camera has a camera projective matrix T in which the last row has the form
(0,0,0,T54), i.e.
Ty Ty Thz Tw
Toff=| Ton To2 Toz Toa |. (A7)
0 0 0 Ty
This affine camera model corresponds to a projective camera with its optical centre

on the plane at infinity. As a consequence, all projection rays are parallel. Figure A.1(b)
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shows this parallel projection onto an image plane where all projection rays are parallel.

In terms of image and world coordinates, the afline camera can be written as:
p = MP +d, (A.8)

where M is a 2 x 3 matrix with elements M;; = T;;/T34 and d = (Tha/Ts4,Toa/T34)" 18
a 9D vector. The affine projection preserves the parallelism, i.e. lines that are parallel

in the world remain parallel in the image.



Appendix B

Implementing Kalman filters

The parameters given in this appendix are used in this thesis and are adopted from
McKenna et al. [103] which provide satisfactory results given in Section 3.3. The filter
can follow the highest point well in the scenario when people walk in the office. The
parameters selected in the model might need to be changed for different environments
and people with different motions (e.g. running). The state vectors of the system
represent the position, velocity and acceleration, in x and y coordinates, of the target’s

highest point respectively:

so(k} = [z, 4, ], (B.1)

sy(k) = [y, 9,9]". (B.2)

where # is defined as dz/6t, % is defined as 6%/t and 6t is the time step which is
set to 1 between two consecutive frames. The dz is the difference between a tracked
subject’s highest points in two consecutive frames and the 0% is the difference between
the velocities of a tracked subject’s highest point in two consecutive frames.

For both coordinates, the system dynamic of the target uses a second order model

with constant acceleration [168}:

1 8t 6t%/2
Fk)y=10 1 4t . (B.3)
0 0 1
The system noise model G(k) for both x and y coordinates is defined as:
1 0 0
Gk)y=10 1/2 0 }. B4
(k) g (/) 0 (B.4)
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The system noise covariance Q(k) for both x and y coordinates is set as:

41
Q(k)_(e 2 2)- (B.5)

The system states sg(k) and s,(k) are defined as the same as the system measurement

7:(k) and z, (k). Thus, the measurement model H for both x and y coordinates is defined

as:
1 00
H(k)=(8 (1] g) (B.6)
and the measurement noise covariance R(k) for both x and y coordinates is set as:
10 0 0
R(k) = ( 8 é 092 ) . (B.7)

The initial state of the x coordinate is set as the initial measurement:
s, (0i0) = [z, 2, Z]", (B.8)
and for the y coordinate it is set as:
s4(010) = [y, 9, 91" (B.9)
The initial state covariances P(0j0) are set as:

P =(02 0 ), (B.10)
0 0 1.5

5 0
P,{0|0} = ( 8 2.3 ? ) . (B.11)



Appendix C

Building the Secondary Structure

This appendix provides a method to build the secondary structure, i.e. junction tree,
from the DAG (Directed Acyclic Graph) of the BBN (Bayesain Belief Network). This
graph transformation includes building a nu‘l‘nber of intermediate structures which are
known as a moral graph and a triengulated graph. The next step is to build the junc-
tion tree from the triangulated graph by identifying subsets of nodes {cliques) in the

triangulated graph and inserting separators [76, 66].

C.1 Junction Tree Properties

The graphical and numerical properties of the secondary structure [78] of a BBN, defined

over a set of n variables V = {V1,...,Va}, are described as follows.

e The clusters satisfy the junction tree properties, which are

1. given two clusters P and Q in T (i.e. the secondary structure of a BBN) all
clusters on the path between P and Q contain the variables of PNQ, and
9. for each variable V; € V, the family of V; (i.e. Fy; = V;UTly;) is included in

at least one of the clusters, where ITy, are the parent node(s) of Vi.

o Bach cluster C (and each separator S) is associated with a potential ¢¢ (¢g) that

maps each instantiation of ¢ (8} to a real number.

e For each cluster C and neighbouring separator 8, it holds that:

3 ¢ =g (C.1)
C\5

191



APPENDIX C. BUILDING THE SECONDARY STRUCTURE 192

When a cluster C and a neighbouring separator S satisfy Equation (C.1), ¢g is said
to be consistent with ¢y. When all pairs of clusters and neighbouring separators

are consistent, the secondary structure is said to be locally consistent.

C.2 The Moral Graph

In building the secondary structure of the BBN, the network is first moralised. Given a

DAG of a BBN, G, the moral graph, Gm, that corresponds to G is constructed by:

1. constructing an undirected graph G, by dropping the directions of the edges in G,

and

2. constructing a moral graph G by adding undirected edges between each pair of

nodes in ITy; (i.e. parent nodes of V' in G} for each variable V.

The right diagram in Figure C.1 shows the moral graph G, of the DAG G in Figure 4.5
(shown in Section 4.3.3 and also plotted on the left side of the Figure C.1 for convenience)
constructed by adding the undirected edges in G. Added undirected edges are shown as

dashed lines,

Bayesian Belief Network Moral Graph

Figure C.1: The moral graph constructed from the Bayesain belief network.

C.3 The Triangulated Graph

After building the moral graph, the next step is to construct the triangulated graph.
An undirected graph triangulated is a triangulated graph, Gy, if and only if every cycle
of length (i.e. number of edges in a cycle) > 3 contains an edge that connects two

non-adjacent nodes in the cycle. Figure C.2 shows the triangulated graph Gy of DAG G,
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constructed by adding the edges in G, of Figure C.1. The triangulated graph G; that

corresponds to G is constructed from the following rules.
1. Make a copy of G, as Gj,.

9. Perform the following steps repeatedly until there is no node left in G, (see Ta-

ble C.1):

e Select a node V in GJ,.

o Form a cluster composed of V and its neighbouring nodes in G, Add an
edge between any pair of nodes in this cluster if this edge is not in G,,,.

o Add an edge in Gy, corresponding to the new edge in G/, added in last step.

e Remove the node V from Gy,.

The resulting Gy, in now a triangulated graph G;. The dashed lines in Figure C.2
indicate the edges added to triangulate the moral graph. In general, there is more than
one way to obtain the triangulated graph G; of a DAG. The node-elimination carried
out to remove the variables in the moral graph, according to step 2 above, is shown in

Table C.1. The added edges and the induced clusters are also given.

Figure C.2: The triangulated graph constructed from the moral graph in Figure C.1.

C.4 Identify the Cliques

After constructing the triangulated graph, the next step is to identify the cliques in
the triangulated graph [91]. A clique is a subset of V in the DAG §. Cliques can
be extracted from the triangulation process by saving each induced cluster that is not a
subset of any previously saved cluster. The cliques in G can be identified from Figure C.2

and Table C.1 as {DEG, EFH, CEF, ACE, ABD, ADE}.
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Table C.1: Elimination steps in triangulation of the moral graph in Figure C.1.

Ellminated variables’ Added edges Induced clusters

G none DEG
H none EFH
F none CEY
C AE ACE
B AD ABD
D none ADE
E none AE
A none A

C.5 The Secondary Structure

The first step in building the secondary structure of the DAG, G, is to set the cliques as
clusters. The clusters are then connected to form an undirected tree and the appropriate
separators are inserted. Separators are intersections of adjacent clusters, i.e. C;NGC; .-

The secondary structure of the BBN is shown in Figure C.3.

ABD

DEG

Figure C.3: The secondary siructure of the Bayesian belief network on the left side of

Figure C.1.

Note that in general there are several ways to triangulate the moralised graph. Find-
ing the triangulation with the smallest number of cliques, for saving the representation
and computation, is NP-hard [77]. However, the graph transformation process only
needs to be performed once off-line. Jensen and Jensen [77] have shown that any exact
inference algorithm based on local computations is at Jeast as hard as the junction tree

algorithm, and thus also N P-hard.



Appendix D

Inference in Bayesian Belief

Networks

This appendix provides the inference procedures for computing p(Vie) for sets of evi-
dences e in the secondary structure of a BBN {76, 66]. The BBN is defined over a set
of variables {V1,...,V,}. The related definitions of notation and algebra are given in
Section 4.3.4. For convenience, Figure 4.8 is shown in Figure D.1 again, where the dotted

path indicates the control of the inference procedures with the dynamic observations.

D.1 Initialisation

After transforming the DAG of a BBN to a secondary structure (see Appendix C}, the
next step is to quantify the junction tree with potentials ¢¢y and ¢g. The following
procedure assigns the initial potential of each cluster and separator in the secondary
structure using the given CPTs (Conditional Probability Tables} which are the P(V;|Iy;)
defined in a BBN.

1. Set each element ¢¢y(c) in the potential of each cluster, and each element ¢g(s)

in the potential of each separator to 1:

pole) « 1, (D.1)
¢g(s) « 1. (D.2)

2. Assign to each variable V' a cluster C which contains the family of V (i.e. VUIly).
This cluster is called the parent cluster of Fy. Then multiply ¢ by P(V|ly):

P le) « do(c)P(V Iy ). (D.3)
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{ Vi } Bayesain Belief Network

Graph
Transformation

& Second Struciure

Initialisation |<=

l

€ = Observation = Global > Marginalisation
Evidence Entry Propagation Normalisation P ( VI e)

Figure D.1: Block diagram of probabilistic inference in the secondary structure.

3. Assign to each variable V a likelifood, denoted as 1y, which is a potential of {V}
and is used for entering the observations. This likelihood v maps each value v to

a real number. Set each likelihood element ¥y (v) to L:
ty (v} + L (D.4)

After initialisation, the P(V|I[ly) of each variable V' has been multiplied into the
potential of a cluster, and all separator potentials remain as ¢g « i, such that the

probability distribution represented by the tree is:

Hi qbc Hic Vk|HVk
I;ds, 1

From this equation, it can be seen that after initialisation the joint distribution

P(V) = (D.5)

(Equation (4.9)) represented by the secondary structure is the same as that in Equa-
tion (4.3) represented by the BBN. Since after initialisation of potentials the structure

does not meet Equation (C.1), the result is a locally inconsistent structure.

D.2 Observation Entry

When collections of evidences e are received from some evidential variables {V'} with

evidence values {v}, the incorporation of each evidence V' = v is achieved by encoding
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the evidence as a likelihood and entering this likelihood into the tree. This is explained

as follows:

1. Incorporate the evidence V = v (if V' € E) as likelihood Pl

* [ 1 , when v is the observed state of V.
»y (v) _{ 0 , otherwise. (D.6)

9. Update the potential of a cluster that contains V:

$c  doiv- (D.7)

After entering the evidence, e, for those clusters with evidences, the potentials ¢¢
(which represent P(C) as Equation (4.10)) have been modified to contain the evidences

representing P(C, e}

D.3 Global Propagation

Having entered the observations, the next step is to perform global propagation in or-
der to make the structure locally consistent. Global propagation consists of a series of
local computations, called message passes, on the tree potentials that occur between
two neighbouring clusters. A message passing from C; to C; forces the potential of the
intervening separator, ¢g, to be consistent with ¢, (see Equation (C.1)). Global prop-
agation causes each cluster to pass a message to each of its neighbours and makes each
cluster-separator pair consistent. Thus, the tree is locally consistent. In the following,
firstly a description of a single message pass between two neighbouring clusters is given

before multiple messages in the tree are considered.

D.3.1 Single Message Pass

Given two clusters C; and C; together with their intervening separator S, a single

message pass from C; to Cj is achieved by performing:

1. Message projection: Save the old potential as ¢g and assign a new potential ¢g:

$g — D o, (D.9)
CiS
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9. Message absorption: Assign a new potential to cluster C; using both the new and

old potentials of separator S:

¢, + qécj%f. (D.10)
S

D.3.2 Multiple Message Pass

Given a junction tree, global propagation begins by arbitrarily choosing a cluster C; and
then performing message passes, including the use of two algorithms, CollectBvidence
and Distribute Evidence. In the CollectEvidence phase, each cluster passes messages to its
neighbouring clusters in C;’s direction. These passes begin from the cluster farthest from
C;. In the DistributeEvidence phase, each cluster passes messages to its neighbouring
clusters starting from C; and moving away.

In the global propagation, each cluster passes its information to all other clusters in
the tree. Thus, the encoded evidences in the potentials of some clusters (which include
evidential variables) are passed throughout the tree.

After global propagation, the potentials of all clusters and separators will have been
modified as P(C,e) and P(8,e). Then from the marginalisation (Eguation (4.13)) and

normalisation (Equation (4.14)), one can obtain p(Vle), as described in Section 4.3.4.



Appendix E

Hue, Saturation and Value

Colour Model

This appendix provides an introduction to the HSV colour model. There are many
colour spaces which can be used to describe the colours, such as the red, green, and blue
(RGB), hue, saturation and value (HSV), cyan, yellow and megenta (CYM), and hue,
lightness and saturation (HLS).

The best known model is the RGB. It is used by most image acquisition hardware,
with R, G and B being real numbers from the interval [0,1], representing the red, green
and blue components, respectively. In order to represent the colour of an object with
less sensitivity to intensity (brightness), it is advantageous that the representation of
colour tone is separated from the intensity. The HSV model proposed in [152] meets
this requirement, since the value defines the intensity. The hue is associated with the
dominant wavelength in a mixture of light waves and defines the object colour {e.g. red
or blue). Saturation describes the purity of the colour; the more the light reflected from
an object is diluted by white light, the lower the saturation. For example, pink (red and
white) is less saturated than pure red. A description of transformations between RGB
and HSV colour space can be found in {74].

Figure E.1 shows the HSV colour space. The graph on the right side is the HS space
obtained by dropping the Value component. The vertices of the hexagon at the top level
represent red, yellow, green, cyan, blue and magenta. The root of the hexcone is defined
by vs=0 (corresponding to black) at the bottom and v==1 (corresponding to white) at the
top level. The hue is measured by the angle around the root vertical axis. The saturation

is measured as the ratio ranging from 0 on the root axis to 1 on the triangular sides of
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Value (V)
| Yellow

Green

Cyan

Figure B.1: Hue Saturation and Value (HSV) colour space.

the hexcone. By dropping the intensity component (i.e. V) $o obtain a limited level of

intensity invariance, the HS space is equivalent to a level of the hexagon.



Appendix F

Support Vector Regression

Support Vector Regression (SVR) was recently developed by Vapunik and co-workers
[176, 44, 154, 153]. This statistical learning algorithm has been of great interest in
the research areas of machine learning and pattern recognition, and has found many
applications, such as head pose estimation [95] and signal detection [137].

The goal of the SVR algorithm is to achieve the nonlinear regression estimate in
the input space by constructing a linear regression function in a high dimension feature
space, where the input pattern x is mapped to the feature space via . Thus, given a
training set {(xi,%)}\.=y, with input patterns x; € R™ and interpretation y; € R, the
SVR problem can be defined as the determination of a function f(x) which approximates

an unknown desired function. It has the following form [176]:
f(x) =w-8(x)+b, (F.1)

where w € R™ is an unknown, “” denotes the dot product, and b is the unknown
threshold. If the interpretation y only takes values —1 and +1, the learning problem
is referred to as support vector classification. Otherwise, if the domain of y includes
continuous real values, it is SVR.

By introducing a kernel function
K(x,y) = 2(x}- 2(y), (F.2)

the SVR problem can then be formulated as maximising the quadratic form defined
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as [44, 154]:
1
W(a"a) = -3 So4 e (0 — i@ — a) K (xi,%5)
e Vios(of + i) + Xic wilof — a), (F.3)
subject to ézl(a;?‘ — ;) =0, (F.4)
0<al,0q <C, (E.5)

where «; and o} represent the parameters of the learning machine and C is a regular-
isation penalty factor to control the trade-off between the model complexity and the
accuracy of the function. By maximising W(e*, «), one can obtain the coefficients {o;
af b

Additionally, from the derivatives of the Lagrange function {154], one can obtain
w = 2ﬂi(a§ — ¢;)®(x;). Then, by substituting this result into FEquation (F.1) and

from Equation (F.2) we can obtain:
f(x) = Sohs(0f — o) K (3, x:) +b. (F.6)

where b is a threshold.

1t is interesting to note that only a few parameters, o and o*, take non-zero values,
ie. oﬁiy those “important” examples, known as Support Vectors (SVs), are selected to
construct the optimal approximation function (F.6), which is a linear combination of
the SVs in high-dimensional feature space. However, instead of computing the map ®
explicitly, one only needs to compute the kernel function (F.2), done with greater ease.

In the experiment, the quadratic optimisation problem is solved by a decomposition
algorithm based on the LOQO algorithm {175]. A Gaussian kernel

Zv — o2
Ko, ) = eap(—12L_ 2200 ®7)

is used to build the SVR. The tolerance coefficient & is used to define the e-insensitive
loss function [176] in SVR problems, such that the regression function has at most &

deviation from the actual interpretation:

If(x) —y| = { £ 0, if | f(x) ~y[<e (F.8)

x) —y|, otherwise

where [ is the regression function, and y is the interpretation of input pattern x. Nor-
mally, € can be used to control the accuracy of a SVM regressor. A large value of € may

lead to a regression function with poor accuracy and good real-time performance since
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a large error is acceptable by the loss function (Equation (F.8)) and a small number
of SVs can be obtained from training. However, a small value of £ can result in over-

fitting to the training set. The related parameters selected in the experiment are given

in Section 7.2.
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