&
wQf Queen Mary
University of London

Three-Dimensional Computer Metaporphosis Through Energy
Minimisation
Korfiatis, loannis

For additional information about this publication click this link.
http://gmro.gmul.ac.uk/jspui/handle/123456789/5019

Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact scholarlycommunications@qgmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/5019

QUEEN MA

RY

AMND WESTFIELD COLLEGE
UMIVERSITY OF LONDON

ience

Cemputér Sc

rtment of

Depa

October 2000

5559

155N 1470

RR-00-02

Research Report No

Three

ional"Computer'

Dimens

_«1
=
.2

h Energy

4

. oug

Metamorphos

sation
is Korfiat

foann

1sat

1m

M

in

is

E-I)IMENSZ{ONAL COMPUTER METAMORPHOSIS
THROUGH ENERGY MINIMISATION

Toannis Korfiatis

A Thesis submitted in fulfilment of the requirements
of the degree of goctor of Philosophy
in the University of London

Department of Computer Science
Queen Mary and Westfield College
University of London

2000

Abstract

This dissertation presents a methodology for the metamorphosis of polygonal shapes,

using a physically based approach.

A common approach in shape metamorphosis assumes a pair of objects represented as
a set of polygons. The vertices of the first object are then displaced over time, to
coincide in position with the comresponding vertices of the second object. There are
two steps in this approach: first establishing a desirable vertex corresi)ondence and
then interpolating the co-ordinates of the corresponding vertices in order to create the

intermediate objects.

Correspondence determination is a somewhat ambiguous process, related more to
subjecti\}e human judgements rather than well-understood, universally applicable
principals. The task of correspondence determination has two levels, the syntactic and
the semantic levels. In the syntactic level shapes are treated. as geometric entities and
the metamorphosis is concerned only with geometric properties of elements such as
sizes or distances while in the semantic level correspondence is established on the
basis of similarity in parts of the two objects.
. _

This dissertation presents a method proposed to solve the correspondence
determination problem in the semantic level. This approach assumes that two features
of the objects are assumed similar if one needs small changes to transform one to the
other. The measure to quantify these “small” or “big” changes is the energy needed to

perform them assuming that the objects are made of an elastic material.

Acknowledgements

I would like first to acknowledge the support and guidance of my supervisor Prof.

Yakup Paker during the course of this research work.

I am indebted to my friends Dr. Ali V. Sahiner for his helpful criticisms, Turgay
Altilar and Tasos Hamosfakidis for their help and support.

This work was supported by a scholarship of the Greek Institute of scholarships
(LK.Y) for which I am grateful. T am also grateful to my parents for their continual

backing as well as their financial support.

Dissertation Overview

Chapter 1 presents the background of this research. The applications of computer
assisted metamorphosis are discussed and an overview of methods that have been

developed is presented.

Chapter 2 discusses a physically-based method used for the blending of two-
dimensional polygonal contours. This algorithm will be the basis of the methods
described in the following chapters for the metamorphosis of 2D and 3D polygonal

shapes.

Chapter 3 presents a method for the morphing between simple two-dimensional
polygonal shapes. These shapes consist of a set of domains that can be geometrically
ordered on a plane. The method proposed reduces the problem of correspondence

determination for these domains to the shortest path problem in a directed graph.

Chapter 4 extends the method described in the previous chapter to the metamorphosis
of general two-dimensional polygonal objects. In order to apply the method presented
in the third chapter, a new representation of the two-dimensional shapes is considered,
this new representation preserves the same geometric information but assigns the

shapes a new connectivity structure.

Chapter 5 presents an extension of the 2D method developed to transform a

three-dimensional polygonal object to another three-dimensional polygonal object.

Chapter 6 deals with complexity related with the 3D metamorphosis method that is
described in chapter 5. There are also some performance measurements presented.
Finally at the end of the chapter there is a simplified method presented attempting to

solve the vertex correspondence determination problem in real time.

Chapter 7 discusses issues related to the parallelisation of Sederberg’s and

Greenwood’s algorithm and the 3D metamorphosis method.

Finally Chapter 8 concludes the dissertation with reflections on the research outcome

and implications for the future.

Table of Contents

CHAPTER 1
SHAPE METAMORPHOSIS TECHNIQUES ...c..osvsneencunanes creesnsms s s sran s nanas 14
1.1 Introduction....... eenbeesranssersstRSIs e ROsstRe SO RN RS SIS SRS ISR R RS RS S RO RSO P AS RS R bR SIS SER SRS SR EBOR 8 14
1.2 Metamorphosis techniques.......ccveeraessersssonsessrnsassssssssosesase benssasressesnsrassensrsnnsseses 16
1.2.1 Conventional Metamorphosis Techniques........ccoceverieevieriesie e 16
1.3 A classification of Computer Metamorphosis Techniques......cccconsuiesssssoscscnses 17
1.4 Classification according to the application.....c.c.creninicnisssinnsnsiisisossiconsssnss 18
1.5 Classification according to the graphical objects that are transformed......... 19
1.5.1 Tmage metamorPhoSiS: ...cvrreeeriererrirccsraseesenrrases et csseasersessssassssasesssesseeessnns 19
1.5.2 Volume MetamorphosiS. ... ueeriieerineroiericoriesiiaissteainesieasissssenssnesseesesesses 20
1.5.3 Contour MetamorphosiS......cocvciviiiviiiniiiressene st 23
1.5.4 Metamorphosis of three dimensional polygonal objectscovevvvecvcreicnnnne. 25
1.6 Classification according to the information used for correspondence
determination.c...... teessmerasiessssnsnneseastnasseseaser arbeeese b bt be et arasbas e bbresatne st sane s e st 30
1.7 INterPOolation cccccieriiecieicncsinciicsisrssssesssisseriosssssesssssresssssssssasssssssesssssarsssstsesssssass 30
1.7.1 General Animation Interpolation Methodscccvveiiiniiiiiiiniie i, 31
1.7.2 Other interpolation methods.......oooveieeiiiiinece e 34
1.8 Conclusions....cceeceicsascescsnssosssrssssssscsss ssssscoressssssasesessssartansssssasssssssssantassasas vees3S
CHAPTER 2
ENERGY MINIMISATION FOR COMPUTER METAMORPHOSIScovcimiimsrcisnnanannnen 37
2.1 TREEOGUCHON coreerccrecircrttcetcctsctnestsnesctienssstersseratsssesssssessssnsssssnarsssessstsessssessans 37
2.2 Sederberg’s and Greenwood’s Algorithm oVerviewc.civcceicvcsvescaresseossosess 38
2.3 Defining more pairs of corresponding vertices on the two contours.............. 43
2.4 Allowing varying stiffness for different parts of the Wire ... vrvecorniisssncocons 44
2.5 CODNCHISIONS 1.vevrverernsssrsssssasesaressnsrassasersnsasssssassnsasssessssasssarsasssnssssssssssassssssnssnasesons 47
CHAPTER 3
METAMORPHOSIS OF SIMPLE TWO-DIMENSIONAL POLYGONAL OBJECTS 48

3.1 ItrOdUCtION . ceveiceracrserrosisenessscarnarsscsesncnssssssrossaserssnssssssorsssassssosssssarasissnasessnanars 48
3.2 Basic concepts from Graph theoryccccevvrcnneccnansane sesasessosans sosesusanesen cesvosesse 48
3.3 Morphing of shapes consisting of parts that can be geometrically ordered...50

3.4 Expressing the polyline correspondence problem as the shortest path

problem in a directed Sraph. ...ccccicerccrerncsssrorcocsssnsasssssrsosssrnsssssssasssssssnsssssssssssasoscses 52
3.4.1 Representation of the energy as edge length.......ccoooieiiiniiiin 57
3.5 Extension to another category of polygonal shapes........cceeee. sroesossssosnessnsorasass 59
3.6 Implementation details.....cccveiceisiisscnssnssesssresssnessescsssssassssassassssasssssossassanssass 61
3.7 Application of a similar methodology to three-dimensional polygonal objects
.. srossessassssssssasassssssessessnressasarnssnssassonnsnssssssassass 04
3.8 CoOmMPLEXitY coccseerseveisscconscsssesasossororsssssrossssenssssanasnsssssssssssensansssnssnssssssasorsansossares .66
3.9 CONCIUSION covieroisricrarssssssorssssssssssssssssssssssssosassosossssssssssssesssssasosssrosssssssassansonasss 67

CHAPTER 4

A METHOD FOR THE METAMORPHOSIS OF GENERAL TWO-DIMENSIONAL

POLYGONAL OBUJECTS 1ronivirntrnrrasarasesastarasasessinstassissntsssssssusnssnssaisnssansnsnssnsaussssas 63
4.1 INErOAUCHION ccuvercoseisssnsssosossissssssssssssrassnsssssssssnsassasssssssnssassssssonsennsssssssnasanssssssonns 68
4.2 Tree structured ShAPES e nsesrseisorsonensissnisssnssossesrsssstssssssssssrssssssssssssssssssssssnss 68
4.3 General two dimensional polygonal 0bjectsuiieercnreericnncrsssncseronrnccnane 71
4.4 Algorithm for finding a directed graph. ...cccveerannere. O —— N
4.5 Correction of the final animation SEQUENCe....ciimieicniricnsireossssissisnsssasssans 78
4.6 CONCIUSIONS coivirinicessnssisnsssssssssssssssssssrsssssassssssssssssassssssssssossansnsasas sorasorssasansas a8l
CHAPTER 5

METAMORPHOSIS OF THREE-DIMENSIONAL POLYGONAL OBJECTS ...ccovinernermnranas 83
5.1 Introduction.........eeueenes T — besessamsnsresssssttestessassatasussasassassaseesassst 83
5.2 Approximation of 3D objects with a set of parallel planar contours......... eenn 34

5.3 The contour correspondence problem is expressed as the shortest path
probiem in a directed graph. ...ccnninniieninrersnnne sorsesssessssssssrsansressssnsas 87

5.4 EXATNPILS.crccririssrcrrossonsossensossssossorssssssssassssassasssssssas vrestesssnsesosssesssassssssssassnanessanas 88
5.5 Methods for selecting the number and spacing of sliCescceceeeracasnscssncssanes 96
5.6 An automated contour slicing algorithin.....coccconeeense sessessssssssssssstsansassassessasstas 97

5.7 Using the method for the calculation of the contours as a method for shape
SIMPHIICATION cooveeenrnnencseracsieinisscrsssssnsessonnsssssosnsssssssssssrossosnasssssssasssssasssssasasssssassss 103

5.8 Application of the 3D metamorphosis method to general polygonal objects106

5.9 Conclusions......ceeiencssiccssies tesnssessannssssnnnnssasnanasssstusassrosssesnsoenssssssntes vasessesess 168
CHAPTER 6
PERFORMANCE AND COMPLEXITY OF THE 3D METAMORPHOSIS ALGORITHM..... 110
6.1 IRErOQUCHION coveerereerrercasssoiosonssocsssosssssasosssssasssssssrosssnsosssssnsssssssnssssssessssssnsasorass A10
6.2 Steps of the 3D metamorphosis Method....cccrmseierecrssrnsserssssssnssosssssscassasssosss 110
6.3 Defining the CONTOUTS cciiiiiinmsiniimisiimsioissssismesssmssssissstsssssssssssssssssssssssen 111
6.4 Correspondence determination....eesseecsssiccososserssrcssosscosaasssassesssosssasossessssssose 118
6.5 Complexity of the intermediate objects of the metamorphosis......oeveecvenenne 125
6.6 Interpolation of corresponding vVertiCes....c.ceiirrcicercsresicsrnsverosacescssanns . 127
6.7 Reconstruction of the intermediate objects. ..ccccovsscsossonsssosses svensossessssossnsnasnans 127
6.7.1 Alternative methods for visualising the intermediate contour sets 128
6.7.2 Volume rendering teChniques.......ccieevieriirnerieeccrre e ese s eene e ssaees 130
6.8 A simple heuristic method for the metamorphosis of closed planar contours
... 131
6.9 Extension to 3D object metamorphosis.....cirininrciniiniciiecesssmsosssssses 133
6.9.1 Number of polygons of the intermediate objectscccccoveiiiciiinrcnicennenn. 134
6.9.2 EXAIMPLES ..oeivveiiiiiie ittt ettt e e et et e s et a e e e e e e e ene s 135
6.10 Conclusionseovcvecscnsnresscrsssonses sesnsiessassessnstesssnnsasarasassssratessreseasrrasstesasosons 136
CHAPTER 7
PARALLELISATION AND BENCHMARKING ..cocvcerrrcrrerssssnssissnsrsncssessssassensaassanis 137
7.1 Introduction......ccieescessssasssanessssasses essssssssesssnsrsattssarsassesasotsttetosssissitstisostish 137
7.2 The ML-PVA Accelerator............. brrestisesseisesssnsssastssesetasssbbrrsanarans sessssasessonsosse 137

7.2.1 The Programming model of ML-PVA : SAPS (..o 139

7.2.2 Developing an application for ML-PVA ... 141
7.2.3 Implementing a Client Server program on ML-PVAccociniiinniiinnnins 142
7.3 Parallelisation of Sederberg's and Greenwood’s Algorithm.....cccvrseeencsrvnseass 144
7.3.1 Benchmark Resultscuciiviiiiiiiiieecsie e e sen e e e sere e s 145
7.4 Parallelisation of the 3D metamorphosis method.....ccuieiiisenisincscicsnesnassacnns 148
7.4.1 Benchmarking reSULS ..oo.eiiiiiiniiiiiecic et e n e 150
7.5 Conclusions ... bessrsssnessnsararansarastaseeseetessassessbensrentnntsnianassens casensmsnsasassstsstesases 152
CHAPTER 8
CONCLUSIONS AND FUTURE WORK i.iceiniscianesmsiasisnsmmssmsisssnssnsnsansnsnsusrenrennnas 153
8.1 Overview of the disSertation........ccciciiioicossossssonsossoosssssssssscosssssossssssassossorsorsasas 153
8.2 Summary of Contributions ...c..ccccocvecossessssssosssssssersssssasaacansasassasersasssssssnasasasans 153
8.3 Discussion of the 3D metamorphosis method in relation with other methods
.. seseosssserassssnssassssnrassarnase L DD
8.4 FUITIET WOIK ceceveceorrorcaeoncassscarsasasassossansssonesssasancasoasasssnsssssssssansassassssasansassossann 156

List of Figures

Figure 2.1: Simple example ‘Solution” 1 ..o 40
Figure 2.2: Simple example 'SOIHON' 2oooiiiiiiiiecri e 41
Figure 2.3: An animation obtained by Sederberg's and Greenwood's algorithm 43

Figure 2.4: k pairs of corresponding vertices have been defined on the two contours.

... 43
Figure 2.5: Morphing two contours using the Sederberg’s and Greenwood’s

ALZOTITRML ..ottt et r et s e e st e nt e rr e e a e ennesanranenesaneen 45
Figure 2.6: Varying the wire stiffness.......cccoociieiieiiiciieie e e 45
Figure 2.7: Specifying more than one pair of corresponding verticescceevennn. 46

Figure 3.1: Two shapes consisting of two primary vertices and a set of primary paths
FOIMNE EHBIIL ...ttt ettt et e s e s tb e e et b ee e e eabaee et as e e ata e maeennnsas 51

Figure 3.2: Two shapes, the first one consists of four polylines and the second of

Figure 3.3: The graph constructed for the metamorphosis of a shape consisting of four

polylines transformed to a shape consisting of three.coccovvvrriniiiniiiinin e 53
Figure 3.4: Angle between two polylines.........ccovoviiiiiiienn e 59
Figure 3.5: An animation example. The initial shape consists of four polylines while
the final shape O threecoii i et 59
Figure 3.6: A pair Of SHAPES.....eocvevieeieei ettt e eae e an e 60
Figure 3.7: Two consecutive polylines and the angle between them...........cccocneee. 60
Figure 3.8: Algorithm for filling the matiiXocoeiieriie e 63
Figure 3.9: Pseudocode for backtracking the stored pointers........ccoceniciiniicnnnnne. 63
Figure 3.10: A convex object and its intersection with a straight line..........cccooeein. 64
Figure 3.11: Intersection of the object with a set of rotating planes.............ccccovee 65
Figure 4.1: A Tree-structured Shape.........ccooiiiiiiiiiiiiicecie e 69
Figure 4.2: The new representation we consider for the shape of Figure 4.1. 69
Figure 4.3: Two animations of Tree-structured shapes.........cococvviiiiiiniiiiiinnccninenn, 70
Figure 4.4: Representing the shape as a set of paths.......cooniiiiiiiine, 72
Figure 4.5: Calculating the contour 0f 2 shape ..o 73
Figure 4.6: Algorithm for the directing the graph.......cccooveeiviiiiiniri e 75
Figure 4.7: Algorithm for finding the pathsccocoorriiiiniiiee e 76
Figure 4.8: Two animation SEQUENCES. ...ovueeriirrerieiaeiierrerenteestreeieseenresensaesresssaeeses 77

10

Figure 4.9: A sifuation of overlappingccccciiiiiiiiainn e e eee e sreresesesae s 78

Figure 4.10: A possible situation of overlapping........cccccvieveiiiiiniiecniiccciiieein, 79
Figure 4.11: The polygon we consider for each polyline.......cc.cocociiin, 79
Figure 4.12: Two pairs of corresponding paths ..o 80
Figure 4.13: Two shapes and an intermediate frame of their blending.........cccoevmnne 81
Figure 4.14: The corrected intermediate framecccooviviveiviinincniseeeceeecies 81
Figure 5.1: Two polygonal 0bJECTS. ..ocuiiiiiiiiiiecincieceir et 85
Figure 5.2: The objects approximated with a set of parallel planar contours............. 86
Figure 5.3: The original objects ‘banana’, ‘glove’, ‘teapot’, ‘plane’, ‘face’, 90
Figure 5.4: Metamorphosis from ‘banana’ to ‘glove’ccoooiiniiiiiiiiciiins 91
Figure 5.5: Metamorphosis from ‘teapot’ to ‘biplane’ ... 92
Figure 5.6: Morphing between three 0bjectscovevviviiniiicin s 94
Figure 5.7: Adding a rotational effect to the metamorphosis.......ccccvviviiiiiiiinn 95
Figure 5.8: Two different animations depending on the orientation of the original
0011 - S O U S OOSUOUUUTO U OO OO ORTN 95
Figure 5.9: Breaking the object into parts across the axis used for slicingc...... 97
Figure 5.10: Possible anomaly on the contour selectioncococviviiiniiiniiiiinnne. 98
Figure 5.11: Angle formed by three SUCCESSIVE CONLOULS ..ovvvvvverriineiiirienireiciee e 99
Figure 5.12: Algorithm for the selection of CORtOUTS......cccovirierrriiicieeceecces 100
Figure 5.13: An example of an object approximated by a set of contours................ 101
Figure 5.14: The same object represented in different levels of precision................ 101
Figure 5.15; An animation eXample. ..ot 103
Figure 5.16: Algorithm for the selection of vertices.........ccoceeiiriimniiiiiiiiiincee 104
Figure 5.17: The object 'face’ represented in a different degree of precision............ 105
Figure 5.18: A view of two 3D ODJECES 1.voruiiiiiieiei e 106
Figure 5.19: Morphing of shapes ‘solution” 1 ..ot 106
Figure 5.20: Morphing of shapes "solution’ 2ot 107
Figure 5.21: Morphing of shapes 'solution’ 3 ...t 107
Figure 5.22: Breaking the objects into parts........cooeviiiiiiiicinieceerece e 108
Figure 6.1: Calculating the contour created by the intersection of the object with a
PLATIE <.t bbb s s s aa s sas s s 114
Figure 6.2 Algorithm for the calculation of & CORLOULociviiiiiiircicecccee. 115
Figure 6.3: The procedure FINDEDGE ... 117
Figure 6.4: Slicing time versus number of polygons ..., 118

11

Figure 6.5: Correspondence time versus number of vertices in the contour set........ 122
Figure 6.6: Number of vertices vs contours for the object ‘teapot’.ccoeeeveeenvnnen. 123
Figure 6.7: Correspondence determination time, varying the number of contours
describing the tWo 0BJECES. ...cuiiiiiiciieceee et 124
Figure 6.8: Percentage of the total execution time spent for correspondence
determination and triangulation when both objects are represented by 11 contours. 129
Figure 6.9: Percentage of the total execution time spent for correspondence
determination and triangulation when both objects are represented by 11 contours. 129
Figure 6.10: Percentage of the total execution time spent for correspondence
determination and triangulation when both objects are represented by 23 contours. 130
Figure 6.11: Percentage of the total execution time spent for correspondence

determination and triangulation when both objects are represented by 33 contours. 130

Figure 6.12: Stretching the contours of the two shapesocoeeiieniieciiiiinieciee, 132
Figure 6.13: Metamorphosis between two closed polygonal contours..................... 132
Figure 6.14: Two polygonal 0bjectS. ... e s ee e e 133
Figure 6.15: Approximation of the original objects with M parallel planar contours134
Figure 6.16: Animation from ‘pear’ t0 “Zlove’ ..o 135
Figure 7.1: The ML-PVA archit@Cturecccvvimiiiirineiinceeie et 138
Figure 7.2: Processor board memory/bus configuration.cceceiiviicniiincnicnnne 139

Figure 7.3: Platforms, entities and communication schemes for client-server

PTOZIAINITIIIZ. ..ot vateeeerestieeesteestereteebeeanereess e esabeesanreeeneeass e e e s eareesansansaessnrenasasennas 143
Figure 7.4: The contours contain 23 vertices eachccocviiieineriiiicccinieenren e 146
Figure 7.5: The contours contain 44 vertices €achcccoooviviiiiiniiiii e 147
Figure 7.6: The contours contain 78 vertices €achccoovvvvierevniiniieninienricenneennn 147
Figure 7.7: The contours contain 88 vertices eachoccovvienviininiiniinisin e 148
Figuare 7.8: Unfolding of the matrix according to itS TOWS.ccoceonvviriiriiiiiiiinnacnnn 149

Figure 7.9: Speedup vs number of processors when both objects are represented by 10
COTEOUES. .rieereeerrteriraesiteeeteaaneeasanesnneraseeea e e e seessaseeaamm e s e esmee st e caneesaeteansbaasbeansnen 150
Figure 7.10: Speedup vs number of processors when both objects are represented by
15 COMBOUES....eiiiie ettt et s s e e e s snn e sene s 151
Figure 7.11: Speedup vs number of processors when both objects are represented by

) T 0TI S et ee et ee e e eeree e eee e e e et e e e s s et ae e e s st e s s s s asressen s eesna s et aan e saanaaennan 151

12

List of Tables

Table 1.1:Classification of Computer Metamorphosisoeevveieiieciieeeiiieccieneeeeeeees 17
Table 1.2: Applications of Computer MetamorphosiS........coevvivvrerverioireessisscnareenes 18
Table 5.1: Number of polygons for €ach 0bJectcccovviivoiivvieeiieicreeriesiseciseeieees 89
Table 5.2: The size in bytes of the files storing the objects of Figure 5.13.............. 105
Table 6.1: SHCING LIIE c.o.eriiiieiceeecitr et te s s e s sssbe s e e s nae s seeaenene 117
Table 6.2: TIME MEASUTEITEIES ...eo.eertivreererreerenieteneeeieeteneeeeesaesseeeesieeeesarenessens 120
Table 6.3: Time for correspondence determination........o.ccceeriiiceivver e 124
Table 6.4 : Triangulation time per frfamecccovoiieiiiinii e 128
13

Chapter 1

Shape Metamorphosis Technigues

1.1 Introduction

Image and object morphing techniques have gained increasing importance in the last
few years having applications in a variety of fields: special effects, animation, design,
education, visualisation etc. Given two objects metamorphosis involves producing a

sequence of intermediate objects that gradually evolve from one object to another.

Morphing, whether in two or three dimensions, generally consists of two basic phases,
the first establishes correspondence between the elements of the two objects and the
second interpolates the positions of the corresponding elements in order to create the

intermediate objects.

The correspondence determination should be established in such a way as that the
resulting animation appears ‘natural’ and ‘pleasing’ to the viewer. There is a variety of
ideas of what the sequence of the inbetween objects should satisfy to appear natural.
However it is rather easy to agree that a morph sequence should satisfy the following

criteria to yield a pleasing morph.
Connected and not distorted intermediate shapes: It is evident that algorithms that
result into disconnected or heavily distorted intermediate shapes are of little practical

use.

No self-intersection occurs during the metamorphosis.

14

Application to general objects: Most objects both in nature and in computer graphics
do not fall in a special category. Even so due to the difficulty of the metamorphosis
problem most existing methods put some restrictions to the objects they can handle.
The less restrictive is a method to the characteristics of the input objects the more

successful it can be considered.

Interaction and control from the user: The main reason to apply computer
metamorphosis techniques is to relieve the user of some tedious processes related with
animation. It is clear that it is not desirable for the user to specify how every single
component of the object should transform during the metamorphosis sequence.
However the user is the ultimate judge of the quality of the final result and therefore
he/she must be able to guide the metamorphosis by providing as limited input
information as possible. Since the source and the target objects can be significantly

different and/or misaligned, some user specification is unavoidable.

Establishing correspondences on the semantic level: An important target of algorithms
establishing correspondence is finding similar features on the two objects correspond

them together and thus preserve them during the animation.

The objective of this thesis is to present a method that solves the correspondence
determination problem in the semantic level, which is something which has not been
fully addressed by existing methods for correspondence determination, At the same
time this method should satisfy the rest of the criteria stated. The method will be
applicable to 3D and 2D polygonal objects.

The basic idea that we propose is using a physically based approach. The objects are
considered to be created by an elastic material. We assign energy needed to bend and
stretch features of the first object to corresponding features of the second. Similar
features will need a small amount of energy. Therefore the correspondence of the
shapes that minimises the total amount of energy needed (to transform the first object

to the second) is the solution to the correspondence determination problem.

15

In this chapter we will mainly concentrate on metamorphosis techniques that solve the
correspondence determination problem and particularly on ones that manage the
transformation of polygonal objects but will also present a background of the main

approaches used for solving the interpolation problem.

1.2 Metamorphosis techniques

1.2.1 Conventional Metamorphosis Techniques

Metamorphosis between two or more images over time is a useful visual technique
often used for entertainment or educational purposes. Traditional filmmaking
techniques for this effect include clever cuts (such as a character changing while
running through a forest and passing behind several trees) and optical cross-dissolve
in which an image is faded out while another is the same time faded in (with makeup
change, appliances, or object substitution). Taking the cutting approach to the limit
gives us the technique of stop-motion animation in which the subject is progressively
transformed and photographed one frame at a time. This process can give the
powerful illusion of continuous metamorphosis but requires much skill and it is
tedious work. Moreover, stop-motion usually suffers from the problem of visual
strobing by not providing the motion blur normally associated with moving film
subjects. A motion-controlled variant, called go-motion, in which the frame-by-frame
subjects are photographed while moving can provide the proper motion blur to create
a more natural effect, but the complexity of the model’s motion hardware and the
required skills become even greater. Lately in a lot of cases we have a computer

helping in these tedious processes with very impressive results.

Computer graphics techniques can be split into two main areas: 2D and 3D morphing.
2D techniques have given more impressive results but they have the disadvantage of
not keeping models of objects so a mapping between a part of the image that is not
visible in the first frame and visible in the last is not possible. We consider these two

approaches more analytically later in this chapter.

i6

1.3 A classification of Computer Metamorphosis Techniques

Computer metamorphosis techniques can be categorised by their method for
determining correspondences and their method for assigning trajectories and
transformations. In this section we concentrate on methods used to define
correspondences, we will briefly discuss methods that are used for interpolation at the

end of this chapter.
We present a classification of the computer metamorphosis methods according to a

number of different criteria. These criteria are summarised in Table 1.1 and then each

topic is developed in more detail.

Table 1.1:Classification of Computer Metamorphosis

1) According to the application
production of commercial or entertainment films

industrial or scientific simulation

| 2) According to the graphical objects that are transformed
image metamorphosis
contour metamorphosis
} 2D metamorphosis of polygonal shapes
metamorphosis
of 3D volumetric models
of 3D polyhedral objects

particle system metamorphosis

3) According to the information that is used for correspondence determination

17

1.4 Classification according to the application

It is possible to distinguish two main applications of computer metamorphosis. The
first one is the production of films for entertainment, didactic, or scientific purposes.
The second one is the simulation of natural or industrial processes useful in

engineering or science.

These two systems have different objectives. A film is first of all a mean of
communication. It must transmit a certain message while simulation must solve a
specific problem. Consequently in the first system the rendering is very important: the
film should appear realistic but the motions can be unrealistic, there are no physical
restrictions. In the second system the user expects a solution for a given problem to
obey specific natural laws. In Table 1.2, we present a non-exhaustive list of possible

applications of computer metamorphosis.

Table 1.2: Applications of Computer Metamorphosis

Films
For art and entertainment.
For advertisements.

For education.

Simulations
Engineering:
Creation of new objects combining characteristics of other available
objects.
Industrial design.
Science:
Reproduction of natural phenomena impossible to film.
Medical imaging.
Virtual reality.

18

1.5Classification according to the graphical objects that are

transformed

1.5.1 image metamorphosis:

This describes a situation where one image is transformed to another. While three-
dimensional object metamorphosis is a natural solution when both objects are easily
modelled for the computer often the complexity of the objects makes this approach
impractical. For example, many applications require transformations between
complex objects. In this case, it is often easier to manipulate scanned photographs of
the scene using two-dimensional image-processing techniques than to attempt to

model and render the details of the object's appearance for the computer.

The simplest method for changing one digital image into another is simply to cross
dissolve between them. The colour of each pixel is interpolated over time from the
first image value to the corresponding second image value. While this method is more
flexible than the traditional optical approach, (simplifying for example different
dissolve rates in different image areas) it is still often ineffective for suggesting the

actual metamorphosis from one subject to another.

Another method for transforming one image into another is to use a two dimensional
particle system to map pixels from one image onto pixels from the second image. As
the pixel tiles move over time the first image appears to disintegrate and then

reconstruct itself into the second image.

Another transformation method involves image warping so that the original image
appears to be mapped onto a regular shape such as plane or cylinder. This technique

has the advantage of several real-time implementations for video.

Image metamorphosis has given very impressive results. Examples of methods that
have been used so far for this purpose are [WOLS8], [WOLS89], [BEI92], [SEU9%4],
[SEU95], [SEU96], [HAS97], [HAS98] and [SEU98].

19

Beier and Neely in [BEI92] introduced a technique for the metamorphosis of one
digital image into another. This technique gives the animator high level control of the
visual effect by providing natural feature based specification and interaction. The user
interaction is based on the drawing of lines. A pair of lines (one defined relative to the
source image the other defined relative to the destination image) defines a mapping
from one image to the other. Multiple pairs of lines specify more complex
transformations, in this case a weighting of the co-ordinate transformations for each
line is performed. The blending is guided by user defined corresponding lines. Each
intermediate frame of the metamorphosis is computed by creating a new set of line
segments by interpolating the lines from their position in the initial image to their
position in the final. Both images are distorted towards the position of the lines. This
method gives the user fine control over the metamorphosis and has produced very

impressive results.

1.5.2 Volume Metamorphosis

A general volume is a collection of scattered voxels, each of which is associated with
a set of values. The problem of creating a sequence of in-between volumes
transforming from one given volume to another is referred to as volume
metamorphosis (or volume morphing). There are several methods in the literature
following this approach for the metamorphosis of a 3D object to another [HUG92],
[PAY92], [CHE95], [LERY5], [CHE96], [YUE96], [COH98].

Approaches using warp and distance field interpolation:

Cohen et. al. in [COH98], present a method for the metamorphosis of two or more
objects of general topology. The intermediate objects are constructed by a distance
field metamorphosis. The interpolation of the distance field is guided by a warp
function controlled by a set of corresponding anchor points. Some rules for defining a
smooth least-distorting warp function are given. To reduce the distortion of the

mtermediate shapes, the warp function is decomposed into a rigid rotational part and

20

an elastic part. The distance field interpolation method is modified so that the
interpolation is done in correlation with the warp function. The method is capable of
morphing between objects having a different topological genus where no
correspondence between the geometric primitives of the models needs to be
established. The desired correspondence is defined by a number of anchor points

provided by the animator.

Payne and Toga [PAY92], represent the objects by scalar fields. The field they use is
the distance field which represents the distance of a surface as a signed magnitude.
The sign designates insidefoutside and the magnitude shows the distance from the
point to the nearest point on the surface. Since input surfaces are often complex, a
high sampling rate is desirable, which makes distance field computation very
expensive. Once the distance field has been computed they use interpolation of the
distance fields to compute surfaces that are intermediate between the two "keyframe”
surfaces. Objects do not have to have a similar shape or identifiable corresponding
features and neither object is restricted to a certain number of components.
Components of different objects influence each other during averaging if they occupy
overlapping regions of space. Since this method does not rely on establishing
corresponding points on the key surfaces, it is both general and automatic, but for the
same reason, it cannot reliably interpolate similar surfaces. For example the natural
interpolation between two orientations of an object is a minimal rotation and
transiation. Distance fields will not seek out optimal combinations of shape preserving
motions as they do not address preserving shape or volume properties. Features on the
interpolated objects that might obviously correspond will not blend each other during
interpolation unless there is a spatial overlap. Results are highly sensitive to the initial

placement of the objects.

Chen et. al. in [CHE95] describe a method for interactive shape metamorphosis. This
method consists of morphing the 2D parameter space of a pair of surface models.
Beier’s technique [BEI92] is used to accomplish the warping. The 2D nature of the
process makes interaction easy. The user is presented with both the parametric pre-
image and the resulting surface in 3D-space to assist in defining the features to

morph. The surface attributes of the source models must be available in the 2D

21

parameter space so that they may be interpolated. There are also map parameters
used, attached to each sample. The surface attributes are interpolated as well as the
geometries. The samples map-parameters are also interpolated since they do serve for
the construction of the target model from a morphed pre-image, this is done by using
the morphed values of the map-parameters at each sample point. Traditional morphing
between 2D images operates on colour as a function of 2D pixel co-ordinates; this

method operates on colour as a function of 2D parametric co-ordinates.

Lerios et al in [LER95] consider 3D metamorphosis applied to volume-based
representations of objects. Their method has two components: first a warping of the
two input volumes, then a blending of the resulting warped volumes. The warping
component is an extension of Beier and Neely’s [BEI92] image warping technique to

3D, it is feature based and allows user control.

Volumetric methods using a signal approach.

Hughes [HUG92] describes a method for smoothly transforming one volumetric
model to another. His technique is based on interpolating smoothly between the
Fourier transforms of the two volumetric models and then transforming the results
back. Since, in some cases, a linear interpolation between the transformed datasets
gives unsatisfactory results, a schedule for the interpolation is used in which the high
frequencies of the second model are gradually removed, the low frequencies of the
first model are interpolated to those of the second and the high frequencies of the
second model are gradually added in. In the drawbacks of this method we have the
fact that a metamorphosis between two identical objects, one displaced from the other,
is not a smooth translation and that high frequencies will be present in certain

moments (the keyframes) while being absent the rest of the time.

Seok and Aoki in [AOK96] describe a new morphing technique using the Fourier
transform. Two-dimensional or three-dimensional models are Fourier-transformed
and the intensities of the transformed patterns are superposed and clipped, resulting in
a blending pattern of two meodels. Morphing by the simple interpolation yields an

interesting result between the models, but difficulty can arise if the models are

22

composed of dominant higher frequency components. They propose a new method,
where the morphing of two models is done after dividing a higher-frequency
dominant model into two lower-frequency dominant models. The morphing
experiment was conducted to show the validity of the proposed methods using simple
2D and 3D models.

Volumetric methods using Implicit functions:

Galin and Akkouche in [GAL96] address the metamorphosis of soft objects built
from skeletons. Their approach is split into three steps. The first step consists in an
original splitting of the initial and the final shapes with a view to creating a bijective
graph of correspondence. In the second step, they assume that the skeletons are
convex polygonal shapes, and thus take advantage of the properties of Minkowski
sums to characterise the skeletons of intermediate shapes. The Minkowski sum of two
sets A and B, denoted by A@B={a+b| ac A, be A}. They consider the vertices of the
objects as vector endpoints and apply the Minkowski sum to the set of vertices of the
two objects. Eventually, they characterise the intermediate distance and field function,
describe a set of interpolation methods and propose to use a restricted class of
parameterised distance and field functions so as to preserve coherence and speed-up
computations. They show that they can extend those results to achieve a Bezier like
metamorphosis where control peints are replaced by control soft objects. Eventually,
they point out that matching all components of the initial and the final shapes
generates amorphous intermediate shapes based on an overwhelming number of
intermediate sub-components. Thus, they propose heuristics with a view to preserving

coherence during the transformation and accelerating computations.

1.5.3 Contour metamorphosis
These methods consider the problem for the metamorphosis of closed polygonal

contours. [REE81], [SED92], [CHES9], [CHU94], [GUI%4], [GOL96], [AOK96] and
[COHY6] fall into this category.

23

Chen in [CHES89] mainly interested in industrial design, introduces a technique for
shape averaging. This method averages 2D planar polygons or 3D objects represented
by a set of coaxial planar contours. The number and the correspondences of the
contours is user-specified. Corresponding contours from the two objects are
transformed to have a common centre point. The method proceeds by firing rays
from the centres of the input shapes. Two points are assumed to be corresponding if
they are intersected by the same ray. Fach of these pairs of points are interpolated to
create intermediate slices, which are combined to create in-between objects using a
lofting technique. This method takes into consideration the topology of the objects so
it results in connected intermediate shapes. It also gives some control to the user

through the selection of slices.

Sederberg and Greenwood in [SED92] address the 2D shape blending problem. Their
method is based on a physical model. Imagining that each shape is made of a piece of
wire the blend is determined by computing the minimum work required to bend and
stretch one wire shape into the other. The user can specify some physical properties of
the wire that control the relative difficulty with which it can be bent or stretched. A
severe penalty is charged for blends which experience a local self intersection due to
the wire bending through an angle of zero degrees. This penalty nearly always
prevents the self intersection problem. This method usually finds and interpolates the

similar parts of the two shapes.

Goldstein and Gotsman in [GOL.96] present an algorithm for morphing between two
simple polygons. The two polygons are converted to multiresolution representations.
Intermediate representations are generated from the multiresolution representations,
from which intermediate polygons are reconstructed. They use a multiresolution
shape representation , based on curve evolution schemes. This representation captures

the geometric properties of a shape at different levels of detail.

Yuefeng Zhang in [YUE96] presents a new approach for polygon warping. The

warping of polygonal shapes is usually separated in two steps. The first establishes a

24

correspondence between the vertices of two given polygons. The second step
interpolates the corresponding vertices to generate vertices of an intermediate
polygon. This article presents new approaches to both steps. This new algorithm uses
fuzzy techniques to warp polygons that have different locations, orientations, sizes

and numbers of vertices. The algorithm is extensible to curved shapes.

1.5.4 Metamorphosis of three dimensional pelygonal objects

This approach involves the representation of a pair of three-dimensional objects as a
collection of polygons. The vertices of the first object are then displaced over time to
coincide in position with the corresponding vertices of the second object with colour
and other attributes similarly interpolated. Therefore we can clearly see two steps in
this approach first establishing a desirable vertex correspondence and then
interpolating the co-ordinates of the corresponding vertices. Correspondence
determination is a somewhat ambiguous process, related more to human judgements
rather than well-understood, universally applicable definitions. We can distinguish
two levels in solving this problem, the syntactic level where shapes are treated as
geometric entities and the metamorphosis is concerned only with geometric properties
of elements such as sizes or distances and the semantic level where correspondence is
established on the basis of similarity in parts of the two objects. At the semantic level
shapes are averaged according to the metaphorical properties of their elements. For
example in the semantic averaging of two human head shapes, regardless of their
sizes or locations the noses of the heads are corresponding and should be averaged

together.

In each case the 3D model of the first object is transformed to have the shape and
surface properties of the second model and the resulting animation is rendered and
recorded. The methods described in [BET89], [KEN91], [KEN92]}, [HONSE],
[PARO1], [GAL96], [CAR97], [KAN9T7], [LAZ97], [STA98] consider the

metamorphosis of three dimensional polygonal objects.

Methods using Projection:

25

Kent in [KEN91], [KEN92] presents a solution to the correspondence problem for
Euler-valid, genus 0, polyhedral objects. The first step of his method is the projection
of the topology of both models onto the unit sphere. The two topologies are merged
by clipping the projected faces of one model to the projected faces of the other, on the
sphere. Once the merged topology has been computed it is mapped onto the surface of
both original models. This generates two new models that have the same shape as the
original but share a common topology. This allows a transformation between the two
shapes, to be easily computed, by interpolating the co-ordinates of each pair of
corresponding vertices. Since the correspondences between the models are established
by their mappings onto the sphere, different mappings result in different
transformations. Thus this method gives the user some degree of control over the
transformation. The main drawback of this method is that it is restricted to special

categories of objects.

Decaudin and Gagalowicz in [DEC94] provide a method directly inspired by the work
of Kent. Their method applies to star-shaped obects. They create intermediate shapes
by creating a new shape including with them a volume equal to the sum of their

volume.

Lazarus and Verust in [LAZ97] extent Kent et al.’s method [KEN91] for cylinder-like
objects (objects that are star-shaped around an axis). Given a 3D curve inside each
object, two cylindrical meshes are built to approximate the two objects. The two
objects are morphed on these cylindrical meshes. The metamorphosis consists of an
interpolation of the 3D curves composed by radial interolation of each sampling point

of the mesh.

Carmel and Cohen in [CAR97] present an algorithm that builds a correspondence
between two arbitrary genus-0 objects and generates a sequence of in-between
objects. A warp function deforms the source object and aligns it with the target object.
An iterative polygon-evolution algorithm blurs the details of the warped source and
target objects into two convex objects with similar shapes that are projected on to two
identical circles. Merging the topologies of the projected objects and reconstructing

the original objects results in two objects with identical topologies. A two-part

26

transformation produces the morph sequence. The rigid part moves and rotates the
objects to their relative positions. The elastic part establishes the position of each of
the vertices forming the in-between object.

Geometry based methods:

Hong in [HHONS88] matches the centroids of the faces of two objects to establish
correspondences between them. These correspondences are then used to transform
one face into another. When one object has more faces than the other, the extra faces
are paired with the closest face in the other object. For carefully selected objects, this
technique is effective, but for arbitrary objects, severely distorted shapes occur during
the interpolation. Additionally during the transformation, the faces of the in-between
objects may break apart and appear to fly randomly from their initial position on one

object to their final position on the other.

Kanai et. al. in [KAN97] present a new algorithm for 3D geometric metamorphosis
between two objects based on the harmonic map. This algorithm is applicable for
polyhedra that are homeomorphic to the three dimensional sphere or the two
dimensional disk. In this algorithm, each of the two 3D objects is first embedded to
the circular disk on the piah_e. This embedded model has the same graph structure as
its 3D objects. By overlapping those two embedded models, a correspondence can be
established between the two objects. Using this correspondence, intermediate objects
can be generated. The user has to specify a boundary loop on an object and a vertex
on that boundary which control the interpolation. Thanks to the harmonic mapping the
correspondence is quite well related to the geometry of the objects. The problem of
connecting, in a smooth manner, the two embedded sheets for closed genus-0 messes

is not addressed.

Kaul and Rossignac [KAU91] use Minkowski sums for 3D object metamorphosis.
They have developed a new animation primitive to support an interactive environment
for animation design. They call it Parameterised Interpolating Polyhedron or PIP for
short. PIPs are specified by providing their initial and final shapes, which may be any
polyhedra and need not have corresponding boundary elements. The faces of the

polyhedra have constant orientations and vertices that move on a straight line between

27

|

a vertex of the initial shape and a vertex on the final one. This technique transforms
pairs of polyhedra by computing the Minkowski sum of versions of the two models.
By gradually scaling one model from 100% to 0% while simultaneously scaling the
other from 0% to 100% a transformation is obtained. When both the initial and final
shapes are convex the resulting Minkowski sum is convex and the algorithm produces
PIP faces that define the exact boundary of the intermediate polyhedra. When at least
one of the initial polyhedra is not convex, the boundary of their Minkowski sum is
always a subset of the faces stored in the PIP representation. These faces, stored in the
PIP, may intersect each other, however portions of these faces will lie inside the
Minkowski sum. The correct image of the transforming object may be produced by
using a hidden surface elimination algorithm. This method uses both geometrical and
topological information resulting in intermediate models having connected surfaces
and exhibiting small amounts of distortion. On the other hand the user has no control

over the transformation.

Methods using a graph approach:

In their 1989 article on shape distortion, Wes Bethel and Sam Uselton [BET89],
outlined their 3D morphing system. This system performs a warp between two three-
dimensional polygonal objects. The objects have to be polygonal but the principle
behind the system can be also applied on b-spline surfaces. The first step is the
construction of a B* tree for each object. The nodes of the tree represent faces and the
branches adjacency relationship between faces. The user then selects one face and one
vertex from that face, for each object, to set the correspondence between the objects.
Once the trees and the correspondences have been defined, a union of the two object
topologies can be created. The information about this union is stored to a new B* tree.
If one of the objects has more faces than the other then extra faces are added to the
union tree. Missing faces and vertices are added as needed. If one of the objects has a
hole on it then the union will also have a hole. The result is a master object that has all
the topological characteristics of each of the input objects. The most difficult part of
the processing is assigning new co-ordinate values to the master object. These co-

ordinates must be defined both for the initial and final keyframe. The treatment of

28

convex and star-shaped objects is fairly straightforward but objects with holes present
more difficulties. If there is a hole in the initial frame but not in the final one then the
hole should not be visible in the initial frame. The hole is really there but it has been
geometrically collapsed. The resultant system can semi-automatically match the

components of two objects.

Parent in {PAR91] describes a solution to the shape transformation problem for
arbitrary 3D polygonal objects. His method involves first breaking the surfaces of the
two objects into equal numbers of sheets of connected faces. New vertices are added
along the boundaries of these sheets until there is a one-to-one correspondence of the
points along the boundary of each pair of sheets. The corresponding pairs of sheets
are subdivided by first finding a path of edges on one sheet which connects two
vertices on the boundary of the sheet. A path of edges is then found that connects the
corresponding two vertices of the other sheet, and vertices are added to the newly
constructed path so that a one-to-one correspondence is obtained. These paths split
each original pair of sheets into two new pairs of sheets with one-to-one
correspondences between the points on their boundaries. The subdivision continues
recursively until each sheet contains a single face. The subdivided single-face sheets
are then recombined, resulting in two objects which have the same shape as the
original objects, but which share a common vertex-edge-face structure. The
transformation between the {wo shapes is computed by interpolating the
corresponding vertex positions of the two objects. The main drawback of this
algorithm is that often small regions of one model map to large regions of the other,

which results in severely distorted in-between shapes.

State et. al. in [STA98] present a new approach for establishing correspondence
between two homeomorphic 3D polyhedral models. The user specifies corresponding
feature pairs on the polyhedra. Based on these features, their algorithm decomposes
the boundary of each polyhedron into the same number of morphing patches. A 2D
mapping for each morphing patch is computed in order to merge the topologies of the
polyhedra one patch at a time. They create a morph by defining morphing trajectories
between the feature pairs and by inferpolating them across the merged polyhedron.

29

The user interface provides high-level control as well as local refinement to improve

the morph. The system can also handle non-simple polyhedra that have holes.
Interactive methods:

De Carlo and Gallier in [DEC96] tackle the problem of morphing two polyhedral
objects with different topologies. They use a sparse control mesh on each surface in
order to define a mapping between the two input objects. This approéch involves a
heavy user interaction with the user asked to define a rough control mesh on both
objects and to associate each face of one object to a face of the other one by one. This
implies that the two control meshes have the same number of faces and similar

topology.

1.& lassification according to the information used for

correspondence determination.

Another way to classify the algorithms establishing correspondence is what kind of
information they use from the original models (geometrical or topological
information). The term topology (quite different from the traditional use of the term in
mathematics) refers only to the connectivity information while the term geometry is
used when referring to a specific instance of the topology for which the relative vertex
co-ordinates have been specified. Algorithms that use only the geometrical
information usually result in disconnected intermediate models while algorithms

using only the topology usually result in severely distorted intermediate models.

1.7 Interpolation

First, we will present some methods of interpolation that have been used in computer
animation in general ((WAT92]) and later we will focus in some methods of

interpolation particularly used for computer metamorphosis.

30

1.7.1 General Animation Interpolation Methods

As soon as the correspondence of the components of the two models or images has
been established the actual interpolation of their positions can take place. This

interpolation can be linear or spline driven.

The linear interpolation produces some undesirable side effects which give the
animation a mechanical look, often referred to as the "computer signature” [CAT78].
The characteristic of this type of animation is the lack of smoothness and continuity in
motion so the keyframes are clearly visible because of the sudden changes in the
direction of motion. Another problem is the distortion that may occur in the situations
when the movement has a rotation component. Another disadvantage of the linear
interpolation scheme is the discontinuity in the speed of motion when the animator

requests different number of in-between frames between successive key frames.

All these serious drawbacks of the linear interpolation resulted in the use of the
splines even if that means additional information specified by the animator and more
time for the calculation of the motion parameters. By spline-driven animation we
mean the explicit specification of the motion characteristics of an object by using
cubic splines. The most useful practical system is to have the animator interactively

shape the curves and then to view the resulting animation in real time.

One method for spline-driven animation employs a velocity curve in 2D space to
specify the movement of the object. The velocity curve is a two-dimensional spline of

distance travelled, or arclength against time.

Given a space curve and a velocity curve, the sequence of operations required to find
the position along the space curve is done as follows: Starting at time t the distance s
is calculated from the velocity curve and then the element moves an amount s along

the space curve.

The advantage of this scheme is that the space and the velocity curve are specified

independently. Different velocity curves can be tried on the same space curve and

31

vice versa. Modification of the motion can be made without affecting the space curve.
Useful velocity curves can be stored by the animator and used across a wide range of

applications.

The velocity curve can be generalised to drive any motion parameter not only
arclength. The term 'motion parameter’ includes everything that moves in an
animation sequence apart from the usual kinetic variables such as position and
orientation. Movement could also include colour and transparency, in short anything

that is representable by numbers the animator may wish to vary in time.

Steketee and Badler in [STE85] were among the first to recognise the power of
specifying a velocity curve which they called a 'kinetic spline' to drive an
independently splined motion parameter. Termed the 'double interpolant method', they

created the following two interpolations:

1. The 'position’ spline: Let the motion parameter to be interpolated be d, d is
specified at n key values, dy,...,dn.1. The position spline is constructed by assigning a
keyframe number to each key value and interpolating through the resulting tuples
(dg, 0),...,(dp.1, n-1).

2. The kinetic spline: Each keyframe number is assigned a time. The kinetic spline

interpolates through the resulting pairs (0, t),...,(n-1, t,.1).

Calculating a value for the motion parameter proceeds in a manner identical to the
above. The kinetic spline provides a keyframe number given a time. The keyframe
number is then fed into the position spline to give a value for the motion parameter.
They also include a discussion of a slightly higher level of control than just
interpolation, concerned with the transition between one motion of an object ending

and another beginning.

The cubic B-spline is the most commonly used because its second derivative
continuity guarantees smooth motion. Furthermore the local control property of the B-
spline enables the animator to make small adjustments to the animation without the

adjustments affecting the entire sequence.

32

Following the development of Kochanek [KOC84] we will consider now the Hermite
basis. A Hermite cubic spline segment interpolates two of its control points. The
remaining two specifications are not positions but vectors that determine the tangent
of the curve at the interpolant points. By varying the magnitude of the tangents we can

change the shape of the curve. Therefore the basis is not affine invariant.
The basis functions are:

bo(u)=2u"-3u?+1
by(u)=-2u’+3u’
ba(u)=u’-2u’+u

ba(u)=u’-u’

A keyframing system supplies n key positions Py,...,P,1 but Hermite interpolation
requires the tangents T,..., 1.1 to be specified in order to make up the curve consisting
of n-1 segments (Py, Pi, To, T1),....,(Pn2, Pu1s Tna, Tao1). Kochanek suggests making
the tangent T; at P; a weighted sum of the source chord P;-Pi.; and the destination
chord Piy1-P;. The parameterisation of this weighting into tension, bias and continuity
is done to allow the animator to fine-tune the animation, either locally or globally,
without changing the key positions. The tension parameter t controls how sharply the
curve bends at a key position by controlling the magnitude of the tangent at that

position:
1-t ’
Ti=(> Y((Pis1-Pi)+(Pi-Pi.1))

The default, =0, is the Catmull-Rom spline. Increasing the tension reduces the
magnitude of the tangent vector down to zero at t=1, where the curve is at its tightest.
For t>1 the curve will loop at the key position. Decreasing the tension causes the

curve to slacken, or balloon out, at the key position.

The bias parameter b controls the relative weighting of the source and the destination

chord, which dictates the direction of the tangent at a key position.

33

Assuming t=0, we have:
I+b 1-b
Ti=(—)-(Pi-Pia)H(-) (Pie1-P)

The bias parameter simulates the traditional animation effect of following through an
action as 'overshooting' the key position (b=1) or exaggerating a movement by

'undershooting' a key (b=-1).

1.7.2 Other interpolation methods

Here we discuss methods that have been proposed specifically for the interpolation
step of computer metamorphosis. These methods try to avoid some of the undesirable
effects of linear interpolation. The first one applies to the morphing of closed
polygonal contours and attempts to cancel the distortion that may occur in situations
when the movement has a rotation component the second extends this approach to the
metamorphosis of three-dimensional polygonal objects while the last method tackles
the self-intersection problem occuring during the morphing of two-dimensional

polygonal shapes.

Sederberg et. al. in [SED93] present an algorithm for determining the paths along
which corresponding vertices travel in a 2D polygon shape blending. The polygons
are described in terms of the lengths of their edges and the angles at their vertices.
The intermediate polygons in the shape blend are computed by interpolating the
respective vertex angles and edge lengths. A problem with this approach is that the
resulting polygon will not close in general. To overcome this, Sederberg considers the
open polygon as a piece of wire and defines physical rules for bending and stretching.
The adjustments to angles and/or edges are computed by determining the equilibrium

shape when the two open polygon vertices are forced to coincide.

Yue Man Sun. et. al. in [YUE9S] present an extension of the intrinsic shape
interpolation scheme for 2D polygons [SED93]. Rather than considering a polyhedron

as a set of independent points or faces, their solution treats a polyhedron as a graph

34

representing the interrelations between faces. Intrinsic shape parameters, such as
dihedral angles and edge lengths that interrelate the vertices and faces in the two
graphs, are used for interpolation. This approach produces more satisfactory results

than the linear or cubic curve paths would, and is translation and rotation invariant.

Shapira et. al. in [SHAS5] present a method for automatic polygon blending that takes
into account polygon interiors as well as boundaries. This approach is based on a new
polygon representation scheme, the star skeleton. A star polygon is a polygon for
which there exists a point, the star point, for which all other parts are visible. The star
skeleton consists of two parts. First the decomposition of the polygon into star-shaped
pieces, and a special star point called the star origin, second a planar graph, the
skeleton, that joins the star origins. This approach interpolates shapes by first
interpolating between their skeletons and then unfolding the star pieces from the

interpolated skeletons.

1.8 Conclusions

This chapter presented the background of this dissertation and discussed
methods that have been proposed for the metamorphosis of three-dimensional

objects.

Summarising these methods we could say that methods that use only
geometric information of the original models like [HONS88] result in
disconnected shapes while methods that are purely topological like [BET89]

can lead to heavily distorted intermediate objects.

In general most methods proposed for determining the correspondences fall
into two categories. They are either automatic where the sole criteria for two
features corresponding is their relative position in space, or rely on extensive
guidance from the user which for non trivial objects can become a very tedious

and time consuming task.

35

The first category consists of the methods presented in [HUG92], [PAY92],
[KEN91], [CHEB9], [KAN97], [KAU91]. For these methods the process is
entirely automatic, it relies heavily on the initial orientation of the objects.
There is a very low level of control of the animation. Even the slightest change

of orientation results into a completely different morph.

The second category consists of the methods presented in [LER95], [CHE95],
[DEC96], [GALS6], [STAS8]. These methods rely heavily on user interaction.

The methods presented in [CAR97] and [COH98] appear to have found the
right balance between user interaction and automation. The user specifies a
limited number of features and the rest of the correspondences are calculated
automatically. [CAR97] mainly addresses the 2D case, the extension to three-
dimensional objects seems far from straightforward. The work of [COH98]
has given very impressive results, it applies to volumetric models of general
topology but it is somehow limited to the types of transformation it can create

{for example it is not easy to give a rotational effect in the animation).

Looking at the results, it seems that the volume based approach is reaching
maturity with the work of Cohen et. al in [COH98], while the polygonal

approach could still benefit from further improvement.

The use of polygonal representation has several advantages. The
corresponding data structures are more compact than the storage of voxelized
objects. Many practical and efficient algorithms are available to visualize
objects represented by polygonal representation. It is also very easy to attach
properties such as colour, normal, or texture to polygonal representations.
Therefore a method that successfully solves the correspondence determination

problem for polygonal objects is highly desirable.
This dissertation presents a method for the metamorphosis of 3D polygonal

objects, this method uses minimal user interaction but at the same time

succeeds establishing correspondences on the basis of the object’s similarities.

36

Chapter 2

Energy Minimisation for Computer Metamorphosis

2.1 Introduction

A common approach in shape metamorphosis involves the polygonal representation
of a pair of objects. The vertices of the first object are then displaced over time to
coincide in position with the corresponding vertices of the second object. There are
two steps in this approach: first establishing a desirable vertex correspondence and

then interpolating the co-ordinates of the corresponding vertices.

Most of the methods for correspondence determination in the semantic level that have
been proposed rely on user interaction or on information implied by the object’s
modelling representation. The former approach can be extremely tedious for complex
objects, effectively forcing the user to specify correspondences for all the object
vertices, while the later limits the metamorphosis to objects of a certain category,
objects where semantic information is incorporated into their representation during

the modelling step.

The next section presents an algorithm attempting to solve the correspondence
determination problem of two planar polygonal contours in the semantic level. This
épproach assumes that two features of the objects are similar if one needs small
changes to transform one to the other. The measure to quantify these “small” or “big”
changes is the energy needed to perform them assuming that the objects are made of a

piece of wire. This is the basis of Sederberg’s and Greenwood’s algorithm [SED92].

37

_ | In this ci*iapter we will discuss this algorithm and propose some possible extensions to
i it‘,'While in the following chapters we will attempt to extend this approach for the

e metarnorphosis of two-dimensional and three-dimensional polygonal objects.

2.2 Sederberg’s and Greenwood’s Algorithm overview

Sederberg’s and Greenwood’s algorithm, addresses the 2D shape-blending problem
and is based on a physical model. Imagining that each shape is made of a piece of
wire, then the metamorphosis is determined by compufing the minimum work
required to bend and stretch one wire shape into another. The user can specify some
physical properties of the wire which controls the relative difficulty with which it can
be bent or stretched. A severe penalty is charged for animations that experience a
local self-intersection due to the wire bending through an angle of zero degrees. This

penalty nearly always prevents the self- intersection problem.

Given two polygons Py and P; with the same number of vertices, shape blending is
accomplished by performing a linear or spline interpolation between the

corresponding vertices of the two polygons. Let P, denote vertices.

Pe=[P.,P’,..., P]; Pi=[{P),P!,...P}]

Assuming linear interpolation, intermediate polygons of the metamorphosis can be

defined as:
P(t) = uP¢+tP1= [uP + P, uP] +tP,,...,uP? +tP}] = [Po(t), Pi(t),..., Pa(t)]
Where tL 10,1] and u=1-t.

Typically two polygons that are morphed do not initially have the same number of
vertices and even if they do, defining a one to one correspondence, according to the

order of the vertices along the contour, will not usually generate a pleasing

3R

metamorphosis. Therefore the principal task in shape blending is that of adding
vertices to each polygon so that both polygons end up with the same number of

vertices, and the resulting vertex correspondences produce a desired metamorphosis.

The approach that is proposed is modelling the polygons as pieces of wire made of
some idealised material. The best shape blend is one that requires the least work to

deform Py to P; through bending and stretching.

Whenever we define that two consecutive vertices P%, P%.; of the first contour
correspond with two successive vertices P';, P'jy; of the second, we also define that
edge P%P%., of the first contour should be stretched to become edge P';P';1. In the
same manner, whenever we define that three consecutive vertices P, P%uq, P%u, of
the first contour correspond with three successive vertices P'j, P'j.1, P'js2 of the
second, we also define that angle PP, P% of the first contour should be bent to
become angle P'P'i+1P i of the second. Therefore stretching work is computed for
each line segment (that is, each adjacent pair of vertices) whereas bending work is
computed for each adjacent pair of line segments (that is, for each set of three

adjacent vertices).
Stretching work:
A force F will stretch an actual wire of length Ly an amount _ given by:

FL,
AE

§ =

where A is the cross sectional area and E 1s the modulus of elasticity, a constant of the

material.

The work expended in stretching a real piece of wire an amount 8 is:

_8%4E
21,

W

2.1)

AE is a constant for the wire so it can be replaced with a user defined constant k the

‘stretching stiffness constant’.

39

If Ly is the initial length of a section of wire and L, is its final length equation 2.1 will
compute different values if the initial and the final shapes are swapped. Furthermore,
if an edge collapses to a single vertex equation 2.1 requires infinite work (since Lg=0).
The exponent 2 in equation 2.1 assumes the wire is linearly elastic. If excessive
stretching occurs, less work is required to elongate the wire because it undergoes

plastic deformation. In this case an exponent ¢;=1 more closely expresses the work

expended.

These three considerations motivate the following modification to equation 2.1

[SED92]:

W =k (Li—Lo)es 55
T (I—cpmin(Ly, L) + emax(L,, L) *P

Where &, , e;, ¢, are user defined constants.

Bending work:

The authors of [SED92] point out some undesirable situations of blends. One of them
occurs when an angle goes to zero (in Figure 2.1 we present the drawing of an
incorrect animation, the angle at the circled vertex passes through zero), resulting in
two edges meeting at that vertex and passing over one another. When this occurs at

least part of the shape is turning ‘inside out’.

S

Figure 2.1: Simple example ‘solution’ 1

Another example of ill-behaved intermediate angles is ones not changing

monotonically during the animation. Consider the drawing presented in Figure 2.2

40

here the terminal angles at the circled vertex are both 90°, yet those angles in the

intermediate frames exceed 130°.

NI

Figure 2.2: Simple example 'solution’ 2

Work that causes bending is defined as [SED92]:

kb-(A9+mb-A9*)eb if the angle never goes to zero

W,= (2.3)

kb'(A9+mb'A9*)eb+pb if the angle does go to zero

where AB is the change of the angle between two consecutive edges by bending, AG*
shows how much this angle deviates from monotonicity during the animation and m,,
k., Pu €, are user defined constants. The constant m, penalises angles that do not
change monotonically, p, penalises angles that go to zero (causing local intersection),
k, indicates bending stiffness and e, is an exponent that simulates the effect of plastic

deformation due to excessive bending.

Least work solution:

The authors of [SED92] impose the condition that vertices can only be inserted at
existing vertices. Otherwise it becomes a non-linear constrained optimisation problem

whose solution is very expensive and whose global optimality is difficult to verify.

Given two polygons P° with m vertices and P' with n vertices all vertex
correspondences can be represented by an m<n matrix. The columns of the matrix
represent vertices of the first polygon and the rows of the matrix vertices of the

second. A correspondence between the i'th vertex of the first polygon and the j'th

41

vertex of the second polygon is represented on the matrix as a ‘17 at the junction of
column i and row j. Furthermore [i, j] is only allowed to be a correspondence if only
[i-1,], [1, j-1] or [i-1, j~1] is also a correspondence, otherwise intermediate polygons
in the shape transformation would split apart. Given that {0, 0}=[m, n] is a valid
correspondence, a complete solution can be represented on the matrix as a string of
‘1’ starting at [0, 0] and ending at {m, n] with each subsequent dot positioned one step

‘east’, ‘south’ or ‘southeast’ from the preceding dot.

The basic correspondence strategy proceeds by considering polygon fragments
consisting of vertices Pgﬂ,..., Pio of the polygon P° and vertices P;},..., le of the
polygon P'. These polygon fragments are denoted as P%) and P(j). The minimum
work required to transform P(i) into P(j) can be computed according to the work
equations (2.2} and (2.3). Therefore it is possible to find the path that connects [0, 0]
with [i, j] using the minimum amount of work denoted W(i, j). This is accomplished
observing that W(i, j) must equal one of the three predecessor values W(i-1, j),
W(i, j-1), W(i-1, j-1) plus the incremental work involved connecting that predecessor
with [i, j]. By keeping information about the predecessor of [i, j] it is possible to
backtrack the path to [0, 0].

The algorithm for computing the least work solution amounts to setting W(0, 0)=0
and from the work equations computing W(, j) i=0,...,m; j=0,...,n. Then W{m, n) is
the optimal least work solution and the path which leads to this least work solution
can be backtracked by following the stored pointers. A dot [k, h] in the path denotes a
correspondence of the k'th vertex of the first polygon with the h'th vertex of the
second. Therefore at this point by having the path it is possible to determine the vertex

correspondence of the two polygons.

The least work solution can be determined by visiting each junction only once hence

the complexity of this algorithm is O(mn).
The above discussion assumes that the first vertex of the first polygon corresponds to

the first vertex of the second but in the same way it is possible to compute a globally

minimum work solution for any initial correspondence.

42

Figure 2.3 presents a computer-generated animation obtained by the application of
Sederberg’s and Greenwood’s algorithm. The correspondence of the vertices

preserves the similar features of the two shapes.

[1 [1 [1]
1 1 1 —1

Il

Figure 2.3: An animation obtained by Sederberg's and Greenwood's algorithm

2.3Defining more pairs of corresponding vertices on the two

contours

Let’s assume that k pairs of corresponding vertices are defined on the two contours
(Figure 2.4). These vertices will separate each initial contour to k sub-contours. We

denote as my, n; the number of vertices of the i’th sub-contour of the first and second

contour respectively.
Polygon 1 Polygon 2
A, B,
m; -
A, B,
Ay A By 1
1y Wy " 4
m vertices n vertices

Figure 2.4: k pairs of corresponding vertices have been defined on the two contours.

43

In this case sub-contour A;A; corresponds to sub-contour B;B,, sub-contour AxA; to
sub-contour B2Bs and so on. These pairs of corresponding sub-contours can be
treated separately. The number of operations needed to calculate the vertex
correspondences of the first pair of mapped sub-contours is in the order of min,
similarly the number of operations needed for the second pair is in the order of myn,

and so on. Therefore the total number of operations needed is:

k
(m; n,)

i=1

If we assume that the k corresponding vertices divide the contour into sub-contours
with the same number of vertices then m;=my=...=my=mw/k. In this case the total

number of operations is in the order of:

k

m m m mn
mMm)=—h+—Mm, +..+—M, =
k k k k

i=]

Therefore by providing k pair of corresponding vertices on the two polygons and
assuming that these vertices are evenly distributed around the two contours, the

amount of computation is reduced by a factor of k.

2.4 Allowing varying stiffness for different parts of the wire

The original Sederberg’s and Greenwood’s work model assumes that each wire has
uniform stiffness. There was an extension of the original algorithm implemented that
allows the user to specify that some portions of the wire are more stiff than others,
suggesting a relative difficulty in altering those portions. In the case that the same
polygonal contours are used repeatedly, it is worth incorporating the information
about the wire stiffness in the modelling information of the contours. In Figure 2.5 we
present a computer-generated animation obtained with the application of Sederberg’s

and Greenwood’s algorithm to a pair of polygonal contours.

44

TS

Figure 2.5: Morphing two contours using the Sederberg’s and Greenwood’s

Algorithm

If we specify that parts of the wire are more difficult to bend and stretch (the
highlighted parts of the contours in the drawing of Figure 2.6a)} we obtain the
computer-generated animation of Figure 2.6b, This animation preserves the identical

parts of the two contours.

N

a) Specifying different degrees of stiffness for different
parts of the wire

NN

b) The animation sequence

Figure 2.6: Varying the wire stiffness

45

Even though it was demonstrated through examples that this can lead into quite
interesting animations we believe that is a lot more intuitive and that a higher level of
control is obtained by defining multiple pairs of corresponding vertices on the two
contours. In Figure 2.7b we present the same animation obtained by specifying three
pairs of corresponding vertices on the two contours (the highlighted vertices in the

drawings in Figure 2.7a).

A A’ /

C C’

a} Specifying three pairs of corresponding vertices

Y

b) The animation sequence

Figure 2.7: Specifying more than one pair of corresponding vertices

46

2.5 Conclusions

This chapter presented a physically based algorithm [SED92], developed for the
morphing of planar polygonal contours. Experiments have demonstrated that this
method gives very satisfactory results, avoiding self-intersections and identifying
similarities between the two terminal contours. This algorithm will be the basis of the
methods described in the following chapters for the metamorphosis of 2D and 3D
polygonal shapes.

47

Chapter 3

Metamorphosis of Simple Two-dimensional Polygonal

Objects.

3.1 Introduction

A two-dimensional polygonal shape consists of a number of polygons so that every
non-contour edge belongs to exactly two polygons and no vertex of the shape is inside
a polygon. In this chapter we will consider situations of morphing between some
special categories of two-dimensional shapes, these shapes consist of a set of
independent domains that can be geometrically ordered in space. The method
pfoposed reduces the problem of correspondence determination for these domains to a
shortest path problem in a directed graph. At the end of this chapter we outline how a
similar methodology could be used for the metamorphosis of special categories of
three-dimensional polygonal objects. In the next chapter the proposed method will be

extended to more general two-dimensional polygonal shapes.

3.2 Basic concepts from Graph theory

Here we present the basic concepts of Graph theory and the terminology which will
be used in this thesis [MCH90], [MINS8S].

48

Graphs are mathematical objects that can be used to model networks, data structures,
process scheduling, computations, and a variety of other systems where the relations

between the objects in the system play a dominant role.

Definition 3.1: A graph G(V, E) consists of a set V of elements called vertices and a
set E of unordered pairs of members of V called edges. An edge connecting a pair of
vertices u and v is denoted by (u, v). The cardinality of V, denoted |V, is called the
order of G, while the cardinality of E, denoted |E|, is called the size of G.

Definition 3.2: A vertex u in V is adjacent to a vertex v in V if (», v) is an edge in E.
The vertices u and v are called the endpoints of the edge (», v) and edge (u, v) is

incident with the vertices w and v.

Definition 3.3: The degree of a vertex v, denoted by deg(v) is the number of edges

incident with v.

Definition 3.4: A path from a vertex u to a vertex v in G is a sequence of edges (v,

e;), (er, e),...(er, v) where all the vertices and edges in the sequence are distinct.

Two vertices are connected if and only if there is a path from one to the other. A
graph G is connected if and only if every two vertices in G are connected. A graph
which remains connected even if we remove any one of its edges is strongly

connected.

Definition 3.5: A graph G where directions have been imposed on the edges of a
graph, interpreting the edges as ordered rather than unordered pairs of vertices is

called a directed graph.

If G is a directed graph and (u, v) 1s an edge of G, the edge (u, v) is incident into v,

and incident from u.

Definition 3.6: Two graphs Gi1(Vi, Ei1) and Ga(Va, Ey) are isomorphic if there is an
one to one correspondence M between Vi and V; such that » and v are adjacent in Gy

if and only if the corresponding vertices M(x) and M(v) are adjacent in Go.

49

Definition 3.7: A Graph G(V, E) is called a planar graph if it can be drawn or
embedded in the plane in such a way that the edges of the embedding intersect only at

the vertices of Q3.

3.3Morphing of shapes consisting of parts that can be

geometrically ordered.

Let’s consider a two-dimensional polygonal shape such as every non-contour edge of
it belongs to exactly two polygons and no vertex of the shape is inside a polygon. This
shape can be described by a planar graph where the nodes of the graph correspond to
the vertices of the polygons and the edges of the graph to the edges of the polygons.

Definition 3.8: The vertices of the graph, having a degree greater than two, are those

where three or more polygonal contours meet. We call these primary vertices.

Defimnition 3.9: A path connecting two primary vertices without containing any other

primary vertex will be referred as a simple path.

We will cénsider the problem of morphing two two-dimensional polygonal shapes
such as two of the contour vertices belong to all polygons and all the other non-
contour vertices belong to two polygons. These shapes consist of two primary vertices
connected by a set of polylines, when each polyline is a simple path (Figure 3.1). The
only common vertices that two polylines have, are the primary vertices. Since the
polylines do not intersect, they can be ordered according to their geometric position
on the plane. The position of a polyline in this ordering will be used as an index for

referencing it.
Suppose that the first shape consists of m polylines and the second shape of n

polylines (Figure 3.1). These polylines can be ordered from 1 to m for the first shape

and from 1 to n for the second. It is presumed that the primary vertices should

50

correspond so that vertex A of the first shape corresponds to vertex A' of the second

shape and vertex B of the first shape corresponds to vertex B' of the second shape.

Shapel

Figure 3.1: Two shapes consisting of two primary vertices and a set of primary paths

joining them

This section presents a method for determining how the polylines should correspond
so that the shape transformation is accomplished with least work. Sederberg's and
Greenwood’s algorithm will be used to determine the minimum energy needed to
transform a polyline to another and the correspondence of the polyline vertices that

results in this minimum energy transformation.

A valid solution to the correspondence problem of the polylines is one that for every
polyline of one shape finds one or more corresponding polylines of the other and this
correspondence leads to an animation sequence without self-intersections. When the
order of the polylines is not maintained during the animation at least one polyline
crosses another one. Therefore in a valid solution it is expected that the order of
polylines is preserved. In other words, it is expected that if the i’th polyline of the first
shape corresponds to the j’th polyline of the second shape then there is no polyline of
the first shape with index greater than i corresponding to a polyline of the second
shape with index less than j and there is no polyline of the first shape with index less

than i corresponding to a polyline of the second shape with index greater than j.

51

The contours of the two shapes should correspond otherwise self-intersections will
occur during the animation sequence. Therefore, we assume that the first and m'th
polylines of the first shape correspond to the first and n'th polylines of the second

shape respectively.

3.4Expressing the polyline correspondence problem as the

shortest path problem in a directed graph.

We construct a directed graph G containing mn vertices denoted [i, j] =1,...,n,
j=L,...,m. The vertex [i, j] represents a correspondence of the 1'th polyline of the first
shape with the j'th polyline of the second shape. The edges of G are defined so that
each vertex [i, j] (with i>1 and j>1) has three edges incident into it namely ({i-1, j-1],
[i, iD, (4, 311, [1, 3D and ([3-1, j1, [1, j]). This leads to a directed graph having vertex
[1, 1] as a source and vertex [m, n] as a sink; these vertices will be denoted s and ¢
respectively. The vertices s, ¢ represent the correspondences for the contour polylines

of the two shapes. We will refer to graph G as the correspondence graph.

Figure 3.3 illustrates the graph constructed for the two shapes of Figure 3.2

Figlre 3.2: Two shapes, the first one consists of four polylines and the second of

three.

52

[1,1]

Figure 3.3: The graph constructed for the metamorphosis of a shape consisting of four

polylines transformed to a shape consisting of three.

Lemma 3.1: if vertices v=[iv, jv] and p={i,, jp] of the correspondence graph G belong
in the same path from vertex s to vertex ¢ and vertex v precedes vertex p in the path

then 1,<i, and j,<jp.
We will use induction.

The above lemma is true if the distance of the two vertices on the path is 1. Vertex p
is adjacent to vertex v. The only such vertices are [i,+1, jy+1], [iv, jv+1] and [iv+1, ju].
Therefore vertex p must be one of these vertices, which means that i, is either i, or

iy*+1 and jp is either j, or jyv+1. Hence i,<i, and §,<j, holds.
Suppose that Lemma 3.1 is true if the distance between two vertices in the path is d.

We will prove that the above lemma is true when the distance between two vertices in
the path is d+1.

53

Let g=[i,, jg] be the vertex immediately preceding p in the path, therefore i,<i; and
jeSip- The distance of vertices v, g in the path is d, therefore from our assumption, i,<ig

and jy<jg. Which leads to i,<i, and j,<j,.

Theorem 3.1: There is a one-to-one mapping between the set of the paths in the
correspondence graph G, from vertex s to vertex ¢, and the set of all valid solutions to

the correspondence problem of the polylines.
Proof: In order to prove Theorem 3.1 must be demonstrate that:

Lemma 3.2: Every path of G from vertex s to vertex ¢ represents a valid solution to
the correspondence problem of the polylines.
Lemma 3.3: For every valid correspondence of the polylines, there is a unique path

from vertex s to vertex ¢ in G representing it.

In order for Lemma 3.2 to hold, it must be shown that

Lemma 3.4: Each path from vertex {1, 1] to vertex [m, n] in G contains vertices
representing a correspondence for every polyline of the two shapes.

Lemma 3.5: This set of correspondences for the polylines preserves the order of the

polylines during the animation sequence.
First, Lemma 3.4 will be proven:

Let us assume that there is a path P from vertex s to vertex ¢ in G that does not imply
any corresponding polyline for a number of polylines of the two shapes. Let i be one
of these polylines with the smallest index (without loss of generality it can be
assumed that this polyline belongs to the first shape). Index 1 cannot be equal to 1
since the path P contains vertex s=[1, 1] (thus implying a corresponding polyline for
polyline 1). There is at least one corresponding polyline for polyline i-1. Let v=[i-1, k}.
be the last vertex in the path, representing a correspondence of polyline i-1. Vertex v
cannot be the last vertex of the path since i-1<1<m and the last vertex of the path is
vertex =[m, n]. Therefore, there must be an edge leaving vertex v incident to another

vertex g of the path. Vertex g cannot have the first element of its ordered pair equal to

54

i (since it was assumed that there is no vertex belonging in path P implying a
correspondence for polyline i of the first shape). Vertex g cannot have the first
element of its ordered pair equal to i-1 either (since v is the last vertex of the path,
representing a correspondence for polyline i-1). This contradicts the definition of
graph G, since the only vertices that are adjacent from the vertex v=[i-1, k] are the
vertices [i-1, k+1], [1, k] and [i, k+1]. The contradiction occurred from our assumption
that there is a path in G from vertex s to vertex ¢ that does not imply a correspondence
for a number of polylines. Therefore each path in G, from vertex [1, 1] to vertex
[m, n], contains vertices representing a correspondence for every polyline of the two

shapes.

Now we will prove Lemma 3.5:

Let us assume that the order of polylines in the two shapes is not maintained when
correspondences are established. In this case there exist i, j, k, h so that i<j and k>h
and the i'th polyline of the first shape corresponds to the k'th polyline of the second -
shape while the j'th polyline of the first shape corresponds to the h'th polyline of the

second shape.

We will show that vertices [i, k], [j, h] with i<j and k>h cannot belong to the same

path from vertex s to vertex ¢.

If vertices [i, k], [j, h] belong to the same path either vertex [1, k] precedes vertex [}, h]
in the path or the other way around. Without loss of generality we can assume that
vertex [i, k] precedes vertex [j, h]. From Lemma 1 it is i<j and k<h, which contradicts
our assumption that k>h. Similarly it can be shown that vertex [j, h] cannot precede
vertex [i, k]. Therefore vertices [i, k], [j, h] with i<j and k>h cannot belong to the
same path from vertex s to vertex #. This ensures that the order of the polylines is

maintained throughout the blend thus avoiding the intersection of polylines.
To prove Lemma 3.3 we must show that for every valid solution to the

correspondence problem of the polylines there is a specific path representing it and

this path is unique.

33

Let's S be a valid solution to the correspondence problem of the polylines, this
solution will contain a set of ordered pairs (i, j) representing a correspondence of the
i'th polyline of the first shape with the j'th polyline of the second shape. We order
these pairs using their first element as the primary index and the second element as a
secondary index. Let (%, y), (w, z) be two consecutive pairs in this ordering we will

prove that) 0<w-x<l and i) 0sz-y< 1.

It is obvious that 1) holds from the way the pairs are ordered.
In order to prove ii) we first show that 0 <z-y. Let us assume that z-y<0. In this case
y<z and since x<w this contradicts our assumption that S is a valid solution for the

correspondence of the polylines.

Now we will show that z-y <1. Let’s assume that z-y>1 then there exist a polyline of
the second shape having an index k so that y<k<z. let r be the index of one of its
corresponding polylines. The pair (r, k) belongs in S. We will consider three cases for
the value of r; r is equal to x or w, r is less than x and r is greater than w. We will

show that in all those cases there is a contradiction occurring.

1) r is equal to either x or w: In this case the pair (r, k) should be between pairs (x, y),

(w, z) in S which contradicts the hypothesis that these pairs are consecutive.

2) r<x: It is also k>y, therefore the pairs (r, k), (%, y) cannot belong to the same valid
solution for the correspondence of the polylines. This contradicts our assumption that

S is a valid solution for the correspondence of the polylines.
3} r>w :It is also k<z, therefore the pairs (w,z), (r, k) cannot belong to the same valid
solution for the correspondence of the polylines. Which contradicts our assumption

that S is a valid solution for the correspondence of the polylines.

Therefore there is a contradiction occurring for every value of r. The contradiction

occurred from our assumption that z-y>1 therefore it is z-y <1.

Since there is an edge in G from every vertex v=[v;, v2] to all the vertices p=[p;, p2]

such that 0<p;-v;<1 and 0<p;-v,<1 it is obvious that there is a path in G from vertex

56

|
|

s={1, 1] to vertex £=[m, n] traversing all the vertices representing the pairs of every

valid solution S.

Now we will show that this path is unique. Suppose that there exist two different
paths Py, P» representing the same solution to the correspondence problem of the
polylines. These paths must pass from the same set of vertices but traverse this set of

vertices in a different order.

Let us find the first place that the two paths differ. Suppose that the i'th vertex of path
Py is vertex v=[i, jv] while the i'th vertex of path P; is another vertex p=[i,, jp]. Since
path P; must also contain vertex p, p must follow v in P; hence:

i,<ip and j,<j, (3.3)
In the same manner path P, must contain vertex v, therefore v, must follow p in P>
therefore:

io<i, and j,<jy (3.4).

From (3.3) and (3.4) it follows that i,=i, and j,=j, indicating that vertex p is the same

‘with vertex v which contradicts the assumption that vertices p and v differ. The

contradiction occurred from the hypothesis that there exist two different paths
representing the same solution for the correspondence of the polyliines, therefore the

path is unique.

3.4.1 Representation of the energy as edge length

We assign lengths to the edges of graph G. The length assigned to the edge
([1, i], [k, h]) is equal to the energy needed to transform polyline k to polyline h (as
given by Sederberg's and Greenwood’s algorithm) plus the energy needed to change
the angle between polylines i, k to the angle between the polylines j, h (In Figure 3.4
the angles ,). Every edge of G has a length equal to the energy needed to transform
a part of the first shape to a part of the second shape. The length of a path from vertex
[1, 1] to vertex [m, n] equals to the energy needed to perform the complete
transformation of the first shape to the second shape according to its equivalent

correspondence solution for the polylines. Therefore the minimum energy

37

transformation is accomplished by finding the solution that is represented by the

shortest path from vertex [1, 1] to vertex [m, n] in G.

58

B’

Figure 3.4: Angle between two polylines

Figure 3.5 presents the computer generated animation sequence obtained with the

application of this method.

NS s I

Figure 3.5: An animation example. The initial shape consists of four polylines while

the final shape of three

3.5 Extension to another category of polygonal shapes

The method described in the previous section can be extended to morph a similar
category of shapes consisting of a contour and a set of simple paths connecting a
certain vertex of the contour to other contour vertices. Figure 3.6 presents a pair of

shapes of this category.

Suppose that we want to morph the shapes of Figure 3.6. We assume that the primary
vertices A, A' should correspond. Again the same directed graph G is constructed but

39

in this case the length of edge ([i, j], [k, h]) in G is equal to the sum of the energy
needed to transform the k'th polyline of the first shape to the h'th polyline of the
second shape (In Figure 3.5, the energy needed to change polyline AC to polyline
A’E), the energy needed to change the simple path joining the i'th polyline to the k'th
polyline in the first shape, to the simple path joining the j'th polyline to the h'th
polyline in the second shape (In Figure 3.7, the energy needed to change polyline BC
to polyline DE) and the energy needed to change the angle that polylines i, k form in
A to the angle that polylines j, h form in A’ (In Figure 3.7 the energy needed to
change angle _ to _). The shortest path in G from vertex [1, 1] to vertex [m, n]
represents the solution to the correspondence problem of the polylines. Note that the
correspondence of the simple paths joining the polylines is implied by the

correspondence of the polylines.

Shape1 ShapeZ2

Figure 3.6: A pair of shapes.

Figure 3.7: Two consecutive polylines and the angle between them.

60

3.6 Implementation details

Initially the length of the edges of the graph G is calculated by applying Sederberg's
and Greenwood’s method. When we have the lengths of all the edges of G we
compute the shortest path from vertex [1, 1] to vertex [m, n]. Suppose that we want to
find the shortest path from vertex [1, 1] to vertex [i, j], denoting L{[i, j]) the length of
this path. This is easily accomplished by the simple observation that this shortest path
must pass through one of the predecessor vertices of vertex {i, j] namety {i-1, jI, [i, }-
11 or [i-1, j-1], its length will be equal to the length of the shortest path to one of these
predecessors (L({i-1, j1), L([i-1, j-11) or L([i, j-1]) plus the length of the edge

connecting this predecessor vertex to the vertex {1, j]. Therefore

L({i, jD=min {(L([i-1, jTy+ength([i-1, j], [i, 1), L[, j-1])+Hength([i, j-1], [1 j1),
L({i-1, }-1DHength([i-1, 3-11, [i, jD}

When the value L([i, j]) has been determined it is stored in a mn matrix and a pointer

is kept to the predecessor vertex of the path that resulted in this value.

The algorithm for computing the least work solution for the polyline correspondence
amounts to setting L{[1, 1])=0 and computing L([i, i]) i=1,....m; j=1,...,n. L{{m, n]) is
then the length of the shortest path from vertex [1, 1] to vertex {m, n} in G which is
equal to the minimum energy for the transformation of the first shape to the second
shape. The correspondence of the polylines that results in this minimum energy
transformation is determined by backtracking these stored pointers. Knowing the
correspondence of the polylines, Sederberg's and Greenwood’s algorithm gives us the

correspondence of the vertices which is already computed.

The algorithm for filling the matrix is presented in Figure 3.8. The procedure
SEDERBERG calculates the energy needed to morph a pair of polylines, while the
procedure ANGLE calculates the energy needed in order to change the angle that two
polylines of the first shape form to the angle formed by their corresponding polylines
of the second shape. The matrix Previous contains the pointers used to backtrack the

corresponence of the polylines when the matrix has been filled.

61

Algorithm 3.1 Calculation of correspondence between two sets of polylines

Input: Two sets of simple paths (polylines)

Qutput: The value of the minimum energy needed to transform the first set to the
second, and an m by n matrix Previous. Every element of Previous(i, j] will contain
two fields Previous(i, j].col, Previous[i, j].row these two fields act as pointers to

another element of Previous.

for i 1 tomdo
for j”* 1 tondo
Edge[i, j|=SEDERBERG(, j);

Work{1, 119 0;
fori#i 2tomdo
begin
morph_energy ¥ Edge(i, 1);
Work{i, 117 Work[i-1, 1+ANGLE(i-1, 1, i, 1)+ morph_energy;
Previous[i, 1].col ¥ i-1;
Previous[i, 1].row ¢ 1;
end;

forj¥t 2tondo
begin
morph_energy ¥ Edge(l, j);
Work[1, j]7* Work[1, j-1+ANGLE(1, j-1, 1, })+ morph_energy;
Previous[1, j].col ¥ 1;
Previous]1, j].row 7t j-1;
end;

for i¥' 2 to m do
for i 2tondo
begin
morph_energy ** Edge(, j);
Energyl ¥* Work{i, j-1 HANGLE(, j-1, i, j)+ morph_energy;
Energy2 7' Work{i-1, j-1+ANGLE(-1, j-1, i, j)*+ morph_energy;
Energy3 ¥ Work{i, j-11+ANGLE(, j-1, i, j)+ morph_energy;

if (Energyl<Energy2)AND(Energyl<Energy3) then
begin
Work[i, j]¥* Energyl;
Previous{i, jl.col ?! i
Previous[i, j]l.row ¥ j-1;
end;
else
if (Energyl<Energy2)AND(Energyl<Energy3) then
begin

62

Work[i, j]*% Energy2;
Previous[i, jl.col R i-1;
Previous|i, j].row ?t j-1;
end;
else
begin
Work[i, j]¥% Energy3;
Previous{i, j].col K i-1;
Previous{i, j].row ™k j;
end:
end;

Figure 3.8: Algorithm for filling the matrix

Figure 3.9 presents the algorithm used for backtracking the pointers in order to find
the shortest path in G.

Algorithm 3.2 Calculation of correspondence between polylines
Input: The matrix Previous returned by algorithm 3.1
Output: A list Solution containing (i, j) pairs representing the correspondence of the iy,

polyline of the first polyline set to the jg polyline of the second polyline set.

x N m;

¢ p;

Solution ¥* add(x, y);
while (x!=0)OR(y!=0) do

begin
x 7% Previous[x, y].col;
y ' Previous[x, y].row;
Solution?* add(x, y);
end;

Figure 3.9: Pseudocode for backtracking the stored pointers

63

3.7Application of a similar methodology to three-dimensienal

polygonal objects

This section describes how this approach can be extended to handle the
metamorphosis of certain categories of three-dimensional objects. For the time being
convex objects will be considered. Let’s consider a convex object like the one
presented in Figure 3.10. Its intersection with a straight line results in a single pair of
points denoted A, A' (Figure 3.10b).

(a) (b)

Figure 3.10: A convex object and its intersection with a straight line

Let’s consider a plane that contains this line (Figure 3.11a). This plane will intersect
this object resulting in a contour containing the points A, A' or two sub-contours AA'
(moving clockwise), AA' (moving anti-clockwise). If the line is used as an axis for the

rotation of the plane more sub-contours are created (Figure 3.11b).

64

(b)

(a)

Figure 3.11: Intersection of the object with a set of rotating planes

Depending on the increment of the rotation a different number of sub-contours is
created. All this sub-contours have just two common points, namely the points A, A'.
The problem.of motphing a set of sub-contours (describing an object) to another
(describing another object) is similar to the problem described in the previous section -
for the polyline sets and since all the points of one sub-contour are on the same plane
it is possible to use a similar methodology. This will give us a correspondence of the
sub-contour sets and their vertices. The interpolation of these corresponding vertices
will result to intermediate sub-contour sets. If we triangulate the surface between
every two successive intermediate sub-contours we can create the intermediate objects
of the metamorphosis. We are not going to describe this method in any more detail
since a similar (and more powerful) method is described extensively in chapters 5 and
6.

Of course in general the intersection of a rotating plane with an object can result into
more than one contour. But still the method can be applied to many non-convex

objects, objects that they are star-shaped across the intersecting line.

65

3.8 Complexity

Let us consider the situation where the first shape consists of m and the second shape
of n polylines. The algorithm operates in two steps, the first step is the filling of the
matrix and the second is the backtracking of the stored pointers. The filling of the
matrix (Figure 3.8) requires the calculation of the energy needed for the morphing
between every pair 1, j of polylines (where i is a polyline of the first shape and j a
polyline of the second shape). Let vi, v; denote the number of vertices of the polylines
i and j respectively. Since we are using Sederberg’s and Greenwood’s method for the

calculation of energy the number of the necessary operations is on the order of vi-v;.

Let |V, |Val denote the total number of vertices of the first and the second shape
respectively while vyj, v denote the number of vertices in the i'th polyline of the first

and the second shape respectively. It is:

n
v, =W]+n Uy

i=1

and

M
Voj = IVZI +m U[V2|
j=l

The total number of necessary operations is in the order of:

C)= (V4 W) = (T) W, [+m) U, [V,

=1 j=1 i=1

Therefore the complexity of this step is O(JVi]_|V2]).

When we have filled the matrix its entry [m, n] contains the length of the
shortest path. What is actually important is the correspondence of the polylines
that resulted in this shortest path. The correspondence of the polylines can be

defined by backtracking the pointers that have been stored for each matrix

66

junction, during the filling of the matrix. Starting from the junction [m, n] we
follow the stored pointers till we reach junction [1, 1] (Figure 3.9). At each
step being on a junction [i, j] we follow the stored pointer that leads either
‘north’ to junction [i-1, j] or ‘west’ to junction [i, j-1] or ‘northwest’ to
junction {i-1, j-1]. Clearly the maximum number of steps occurs when there
are no ‘northwest’ steps: in that case we have to do m steps in the north
direction and n steps in the west direction for a total of m+n steps There are at
most m+n junctions visited, therefore the complexity of the algorithm is
O(m+n).

3.9 Conclusion

This chapter presented a methodology for the morphing of shapes that consist of a set
of distinct parts that can be geometrically ordered in space. The problem of
determining the correspondence of these parts was reduced to the problem of
computing the shortest path of a directed graph. The categories of shapes that were
studied in this chapter are very specialised and probably of little practical importance
but served the purpose of creating the framework for the application of this method.
In the following chapters this methodology will be applied to more general shapes

where their separation into parts is not as straightforward.

67

Chapter 4

A Method for the Metamorphosis of General Two-

Dimensional Polygonal Objects

4.1 Introduction

This chapter extends the method described in the previous chapter to the
metamorphosis of more general two-dimensional polygonal objects. In order to apply
the method described in Chapter 3, a new representation of the shapes is considered,
this new representation preserves the same geometric information but assigns a new
connectivity structure to the shapes. Several animations obtained with the application
of this method are presented. Since the resulting animations are not immune to

problems of self-intersection some possible solutions are discussed.

4.2 Tree structured shapes

Initially we will consider morphing between shapes with graph representation having
the property such that you can remove a set of consecutive contour edges and the
resulting graph becomes a tree. We will refer to these shapes as ‘tree structured’. This
category of shapes is probably of little practical importance but will help as an
intermediate case between the shapes studied in Chapter 3 and the most general

shapes that we will consider later in this chapter. A shape of this category can be

68

represented as a set of paths starting from the root and ending at the leaves of the tree.
Starting from the root of the tree and moving anti-clockwise across the contour we
can order these paths based on the order that we encounter the endpoint of each path
on the contour. The problem of morphing between two ‘tree structured” shapes can be
reduced 1o the problem of morphing between the two set of paths representing them.
This problem can be treated as discussed in Section 3.5 by considering the paths
leading to the leaves of the tree as simple paths. Figure 4.1 presents a tree-structured
shape and Figure 4.2 the new representation that is built from it. Note that in the new
representation of the shape the vertex B has been replicated as B, B,, B;, B, are

treated like different vertices even though they have the same geometric information.

Figure 4.1: A Tree-structured shape

A
B,
B, B, H,) . .
Ci C - A
pt. Cs wloh Y Py
I s A O

Figure 4.2: The new representation we consider for the shape of Figure 4.1,

69

In Figure 4.3, two computer generated animations of ‘tree-shaped’ objects are shown.
The first one is a metamorphosis of two shapes of similar topology, while the second
presents the metamorphosis of two objects with very dissimilar shapes. In column one
note how the similar parts of the two shapes are maintained throughout the

metamorphosis.

aharkaib
999997

(a) Animation 1 (b) Animation 2

Figure 4.3: Two animations of Tree-structured shapes

7

<

o 4.3 General two dimensional polygonal objects

This section deals with the metamorphosis between general two-dimensional
polygonal shapes. We assume that the user has defined a pair of corresponding

primary vertices one on the contour of each shape.

In general, shapes do not belong to any of the simple categories that were discussed so
far. The method employed for more general shapes is treating them as instances of
simpler shapes. For each shape a new topology is created, to represent it. This new
representation consists of a set of paths each starting from the vertex of the contour
with a given correspondence and ending on another contour vertex. The method
proceeds by first assigning directions to the edges of the graph and then following the

directed edges to find the paths.

There is more than one way of obtaining a directed graph. We follow the assumption
that the application of the same rules for the direction of the two graphs exploits their
structural similarities. The method that is used for the direction of the graph is a
breadth first search. Starting from a point of the contour with a given correspondence
a branch of the search will terminate when it reaches a point of the contour. The
points of the contour are the leaves of the tree that is built for the shape. This
preserves the correspondence of the two contours, thus avoiding crossovers during the

transformation.

Figure 4.4 illustrates the two steps for the representation of a shape as a set of paths
that can then be treated with the method described in Chapter 3. The first step is
making the graph of the shape directed and the second is the creation of a new graph

representation.

71

Dy

B,

Figure 4.4: Representing the shape as a set of paths

As soon as this new representation has been created for the two shapes it is possible to
apply the algorithm, that was described in section 3.5, on these set of paths to

interpolate them. Next section describes in more detail how this method operates.

4.4 Algorithm for finding a directed graph.

Consider the problem of morphing between two two-dimensional polygonal shapes.
We assume that a user has defined a pair of corresponding primary contour vertices,
one for each shape. The first step for the metamorphosis method is finding the
contours of the two terminal shapes. We will calculate the order of the contour

vertices in a clockwise order.

72

Let v be the vertex of the shape for which a correspondence has been defined, we
select an edge (v, x) incident from v and visit x (Figure 4.5¢). For all unexplored edges
(x, w) we calculate the right hand screw angle _that the edges (v, x), (x, w) form. The
edge (x, w) that creates the greatest angle .« (Figure 4.5d) is followed leading to
vertex w. In general, suppose /4 is the most recently visited vertex. If (%,) is the edge
we followed to reach 2 we calculate the right hand screw angle _ that the edges (%, &),
(h, m) form for all unexplored edges (4, m). The edge (h, m’) that creates the greatest
angle . is followed leading to vertex m’. If we have not vet returned to the initial
vertex v, we start the same procedure anew starting at vertex m’. This procedure
results either to a polygon of the shape (Figure 4.5d) moving anti-clockwise or to the
contour of the shape (Figure 4.5f) moving clockwise. We can determine if the
polygon calculated is the contour of the shape by adding all the intermediate angles
(=T~ max). If the polygon calculated is the contour of the shape the sum of all _
angles is 27t otherwise the sum is —2n and the procedure described should be repeated

for a different initial edge (v, x).

(a) (h
@ /b
(d)) (ﬂ

Figure 4.5: Calculating the contour of a shape

As soon as the contour of the shapes has been calculated we proceed to direct the

graph of each shape

Letv, ¢,...,c, be the contour of the shape. We start again from the vertex v. For all the
vertices b; adjacent to v we calculate the right hand screw angle that the edges (b, v),
(¢, v) form, We store the vertices b, in a list C(v) ordered according to this angle. We
insert all non contour vertices of C(v) in a list L.,, keeping track that they were reached
from vertex v. Let x be the first vertex of L,, for all unexplored edges (x, n;) we
calculate the right hand screw angle ; that the edges (v, x), (x, r;) form. We store the
vertices #; in a list C(x) ordered according to their respective angle ;. All non contour
vertices of C(x) are inserted in a list L, keeping track that these vertices were reached
from x. We repeat the same procedure for the next vertex of Ly and so on till the list is
exhausted. Then we move to the list L, and visit its first vertex. In general suppose
that we are going through the vertices of a list L; and 4 is the most recently visited
vertex. Let £ be the vertex of L;; that led us to A, for all unexplored edges (A, m;) we
calculate the right hand screw angle _; that the edges (&, &), (A, m;) form. We store the
vertices m; in a list C(h) ordered according to their respective angles ;. All non
contour vertices of C(#) not already in Ljs; are inserted in L;+;, we also keep track that
these vertices were reached from vertex 4. Then we visit the next vertex of L; and
follow the same procedure. This is repeated till there are no more vertices in L;. Then
we move to the list Li;;and start the same procedure anew starting from the first
vertex of Liv. This procedure is repeated till there are no more unexplored edges. This

results in a set of lists C that effectively describe the directed graph.

Algorithm 4.1 Directing the graph

Input: A graph G(V, E) presented as adjacency list L(v) for ve V. A list of the vertices
Contour belonging to the contour of the shape.

Output: A set of descendancy lists C(v) for ve V that effectively describe G as a

directed graph

74

The following figure (Figure 4.6) presents the algorithm used for directing G.

procedure DIRECT(previous, v)

begin
Mark v “old™;
for each vertex w on L[v] do
if w is marked “new” then
begin
CALCULATE_ANGILE(previous, v, w);
INSERT(C(v), w);
For each vertex x in C(v) then
if w not in contour then
DIRECT (v, w);
end
end

Figure 4.6: Algorithm for the directing the graph.

Figure 4.7 presents the algorithm used for calculating the set of paths

Algorithm 4.2 Finding the paths that will describe the shape.
Input: A directed graph G(V, E) represented by descendancy lists C(v) , for vl V.
Qutput: A set of paths starting from the vertex of the shape with a given

correspondence and ending on the contour of the shape.

procedure PATHS_FIND(v, path)
list temp;
Hst P
begin
temp Y1 path;
ADD(temp, v);

if v is a contour node then

begin

75

numpaths K numpaths+1;
Paths[numpaths] R temp;

end

if (C(v) is not empty) then

begin
PATHS_FIND(p->element, temp);
while (C(v) is not empty) do

begin
C(v) K p;
pH p->next;
If (p not empty)
PATHS_FIND(p->element, temp);
end

end

end

Figure 4.7: Algorithm for finding the paths

As soon as the paths are calculated for both shapes we can apply the method
described in Section 3.5 to calculate the correspondence of the paths and their
vertices. Having the correspondence of the paths we can interpolate their

corresponding vertices to create the intermediate shapes.

76

Figure 4.8 illustrates two computer generated animation sequences obtained with the

application of this method.

P S
SP O
Sep &
P 5
= ©

Figure 4.8: Two animation sequences.

77

4.5 Correction of the final animation sequence

Even though the described method keeps the domains invariant there are situations
like the computer generated animation presented in Figure 4.9. Here the vertex

correspondence leads to overlapping during the animation.

4

Figure 4.9: A situation of overlapping

78

Figure 4.10 illustrates a possible situation of overlapping.

.) possible overiapping proposed solution
Initiat shape final shape during the transformation
I |
(a) (b)

Figure 4.10: A possible situation of overlapping

To avoid this kind of undesirable effects, domains are considered being on different
layers, so that a domain of less depth hides the intersecting parts of a higher depth
domain. For each polyline with endpoints AB we consider the polygon formed by it
and the sub-contour AB moving anti-clockwise (Figure 4.11). Depth values are
assigned to these polygons equal to the index of their respective polyline and a depth
buffer technique is employed to hide overlapping when it occurs (Figure 4.11b). This

way an improved final animation sequence is achieved.

Figure 4.11: The polygon we consider for each polyline

79

Another problem occurs when the aliases of the same vertex correspond to different
vertices of the same path. This can lead to overlapping during the metamorphosis or
to shapes that lose their connectivity. To overcome this problem we allow a vertex to
slide during the interpolation step from one position of the path to another not
following the linear interpolation track. This keeps the connectivity of the original

models and cancels overlapping.

Let us consider the metamorphosis of the shapes shown in Figure 4.12:

A B C Ay B, C
A2 Bz
D : D E
Y Y1
X X Y,
/i\z Z
P X5 P

Figure 4.12: Two pairs of corresponding paths

Let’s assume that the calculated correspondences are:
(A1, X1), (B1, X1), (C, Y1), (E, Z) for the first pair of paths
(A2, X2), (B2, Y2), (D, P) for the second pair of paths

The resulting animation is presented in the following drawing (Figure 4.13).

80

— T\
— [T~

Figure 4.13: Two shapes and an intermediate frame of their blending

Again we assign priorities on the different paths so that a point slides from its initial
to its final position across the path. This does not change the correspondence of the
vertices but alters the trajectory of a vertex. Figure 4.14 presents the drawing of an

intermediate shape of the resulting animation sequence.

N

Figure 4.14: The corrected intermediate frame

4.6 Conclusions

The examples that have been used so far show that the algorithm presented tends to
associate regions of the two shapes, which look alike when the shapes consist of a
small number of polygons. As the number of polygons increases the method seems
prone to self-intersections. The heuristics proposed for correcting the self intersections

when they occur are successful only when the self-intersections are not very severe.

81

This method does not seem easily extensible to 3D. Most 3D objects consist of
hundreds if not thousands of polygons. Application of this method to non-trivial three-

dimensional objects will result in a high number of self-intersections.

Another problem is the representation of the intermediate objects. The intermediate
shapes of the 2D case were created from a set of paths that were giving the impression
of a polygonal shape, this cannot be successful for the 3D case since in order of the

intermediate objects to be rendered they need to be in polygonal representation.

82

Chapter 5

Metamorphosis of Three-Dimensional Polygonal Objects

5.1 Introduction

This chapter presents a method for the metamorphosis of three-dimensional
polygonal objects. This method is an extension of the method developed in Chapter 3,
for two-dimensional polygonal shapes and it applies to 3D dimensional objects in the
case where there exists at least one axis such that the intersection of the object with
any plane perpendicular to this axis results in at most one contour. The method applies

to but 1s not limited to convex objects and objects that are star-shaped around an axis.

A common approach in shape metamorphosis involves a pair of objects represented as
a collection of polygons. The vertices of the first polygonal object are then displaced,
over time, to coincide in position with the corresponding vertices of the second object.
Like the two-dimensional case there are two steps in this approach: first establishing a
desirable vertex correspondence and then interpolating the co-ordinates of the

corresponding vertices to get the intermediate objects.

The approach, presented in this chapter, is based on the fact that features of the two
objects are assumed similar if small changes are needed to transform one to the other.
The measure used to quantify these 'small’ or 'big’ changes is the energy needed to
perform them, assuming that the objects are made of wire. This is the basis of

Sederberg's and Greenwood’s algorithm [SED92] already introduced. This approach

83

is: extended to three dimensional polygonal ()b_]ectS The proposed squuon uses a:

simpllfied representatzon of the original models.

-] Kent in [KENQZ} states the following criteria for judging a soiutxon to a shape &

e transformanon problem:

" 1) Is face connectivity maintained for all intermediate shapes?
2) Are the intermediate shapes distorted?

3) What restrictions exist on the original models?

Some of the methods existing in the literature give very interesting results according
to these criteria, but little attention has been given for correspondence determination
in the semantic level. The method proposed in this chapter tries to recognise similar
features of the two objects that are morphed and maintain those features throughout

the blend.

5.2 Approximation of 3D objects with a set of parallel planar

contours.

Let’s consider the problem of morphing two three-dimensional objects, made up by a
set of polygons (Figure 5.1). In most practical cases the complexities of these objects
make it difficult to find an exact solution with respect to energy minimisation.

Therefore, a simplified way of representing the objects is required.

LEIPAN

Ohiectl (Ohiect2

84

Figure 5.1: Two polygonal objects.

Consider the intersection of an object with offsets of a given plane. This results in a
set of planar contours on parallel planes (Figure 5.2). Depending on the number of
contours, it is possible to reconstruct the original model to a reasonable precision

using one of the existing algorithms for surface reconstruction from planar contours.

Levin in [LEV86] addressed the problem of the reconstruction of an n-dimensional
model from a sequence of its (n-1)-dimensional cross-sections. It presented and

analysed the distance field interpolation method.

A procedure is said to be of order k if for data values taken from a C'-continuous
function, the error in the approximation is O(hjﬂ) (0<j<k). For equidistant cross-

section levels xi=x;+(i-Dh (1<i<n)

He proves that:

Theorem 5.1 Let B be a closed 3D domain whose boundary B is composed of a
finite number of surfaces which are C*-continuous and mutually disconnected and let
x=x; (1<=i<=1) be the planes which are locally tangent to B. Let & be any positive

constant. For each h>0 consider any point (<%, y1", y,) with:

. h
min, ., |x" —x; |76
which is a point of disagreement between B and the reconstructed domain. Then

dist[(x", yi*, v2"), _B]=O(h*")yash 0

Hence for h small enough (5", 1", v2%) is close enough to _B so that d(x; y1, y2) is C¥

continuous as of function of x in (x"-mh, x"+mh)

For the time being we will consider situations where each intersection of the object

results in a single contour.

85

|

Let us consider the problem of morphing these two sets of planar contours with least
work. Since the contours do not intersect they can be ordered according to their
geometric position in space with respect to a perpendicular axis to the intersecting

planes. The position of a planar contour in this ordering wiil be used as an index.

Suppose that m contours, not necessarily equidistant are used to describe the first
object and similarly n contours are used for the second object. It is possible to order
the contours of the first object from 1 to m and of the second object from 1 to n
(Figure 5.2).

Object 1 Object 2

Figure 5.2: The objects approximated with a set of parallel planar contours

The next section presents a method for determining how the contours of the first
object should correspond to the contours of the second object so that the object
transformation is accomplished with least work. Sederberg's and Greenwood’s
algorithm will be used to determine the minimum energy needed to transform one
contour to another and the correspondence of the contour vertices that results in this

minimum energy transformation.

A valid solution to the contour correspondence problem described above needs to

satisfy the following:

for every contour of the first object there is one or more corresponding contour(s) of

the second object, and this leads to an animation sequence without crossovers.

86

Crossovers occur when one contour crosses another one, or two contours are
interchanged. To avoid crossovers it is expected that if the i’th contour of the first
object corresponds to the j’th contour of the second object then there is no contour of
the first object with index greater than i corresponding to a contour of the second
object with index less than j and similarly there is no contour of the first object with
index less than 1 corresponding to a contour of the second object with index greater

than j.

We assume that the extreme contours correspond together, so that the first and m’th
contours of the first object correspond to the first and n’th contours of the second

object respectively.

5.3The contour correspondence problem is expressed as the

shortest ﬁath pgrohlem in a directed graph.

The correspondence problem of the contours bears a lot of similarities to the

correspondence problem of the polylines described in Chapter 3.

Initially a directéd graph G is constructed as described in section 3.4. This graph
contains mn vertices denoted [, j] i=1,...,n and j=1,...,m. The vertex [i, j] represents a
correspondence of the i'th contour of the first object with the j'th contour of the second
object. We assign lengths to the edges of graph G, so that edge ([i, j], [k, h]) has a
length equal to the energy needed to transform the k'th contour of the first object to
the h'th contour of the second object (as given by Sederberg's and Greenwood’s

algorithm).

As the problem of the correspondence of the contours was stated, it is equivalent to
the problem of the correspondence of the polylines discussed in chapter 3. Using
similar arguments as the ones presented in section 3.4 we can demonstrate that there
is one-to-one mapping between the set of the paths in G from vertex s to vertex t and

the set of all valid solutions to the correspondence problem of the contours.

87

Furthermore we can show that the shortest of those paths represents the solution of the
correspondence problem of the contours with least energy.

The implementation of the method proceeds as follows: Initially Sederberg's and
Greenwood’s method is used for the calculation of the length of the edges of graph G.
When the length of all the edges of G has been calculated it is possible to compute the
shortest path from vertex [1, 1] to vertex [m, n]. The method used is described in

section 3.4.

Sederberg's and Greenwood’s method needs a pair of corresponding anchor points in
order to be applied on a pair of contours. Therefore we need an anchor vertex on each
contour of the shapes. These can be either user-defined or automatically computed. In
all the examples presented in this chapter these anchor points were automatically
computed by the intersection of the contours with a plane containing the axis used for

slicing.

Having the correspondence of the contours and their vertices we can interpolate their
positions and compute the intermediate contour sets for the desired number of frames.
Then a surface reconstruction method from these sets of planar contours gives us the

intermediate object for each frame of the animation sequence.

5.4 Examples

Figure 5.3 presents the objects that will be used for the animations of this chapter.

Table 5.1 presents the number of polygons for each object.

Object Number of polygons
Banana - 256

Glove 2191

Teapot 2518

Plane 686

Face 4357

Head 1882

88

Table 5.1: Number of polygons for each object

89

b
>

, ‘face

b4

 objects ‘banana’, ‘glove’, ‘teapot’, ‘plane

igina

: The or

3

5

Figure

‘head’

90

Figures 5.4 and 5.5 present two animation sequences obtained by the application of
this method. In Figure 5.4 one a pot is transformed to an aeroplane while in Figure 5.5
a banana is transformed to a glove. In both Figures 5.4, 5.5 the first column contains
sets of contours that approximate the object during the metamorphosis. In the first and
last line of this column there is a set of contours that approximate the initial and the
final object respectively. These contours are obtained by the intersection of the
original object (Figure 5.3) with a set of equidistant parallel planar planes. The
orientation and the number of planes are user-defined and this is a way that the user

can influence the resulting animation sequence.

Figure 5.4: Metamorphosis from ‘banana’ to ‘glove’

91

The second column of Figures 5.4, 5.5 displays the reconstructed wireframe objects
from the sets of parallel planar contours of column 1. The third column of Figures 5.4
and 5.5 contains the same objects of the second column but rendered. These examples
were rendered using faceted shading and neutral colours to better illustrate the

topological structure of the intermediate models.

Figure 5.5: Metamorphosis from ‘teapot’ to ‘biplane’

92

In the first example (Figure 5.4), the two terminal objects are approximated by a
different number of contours (seven for the first object and ten for the second) while
in the second example (Figure 5.5) both terminal objects are approximated by ten

contours.

By applying the metamorphosis method to these two sets of contours it is possible to
find a correspondence for the contours and their vertices. Once the correspondence of
the contours and their vertices has been established, the intermediate contour sets are
computed by interpolating between each pair of corresponding vertex locations. The
preservation of the contour ordering and the usage of Sederberg’s and Greenwood’s
method for determining the vertex correspondence minimises the situations where any

kind of self-intersection occurs during the animation sequence.

The objects that are used in these examples have very dissimilar shapes, none of them
is convex and the objects 'banana’, 'glove' are not star-shaped. These examples
demonstrate clearly that the proposed method can be applied to generic polygonal
objects. A limitation of the proposed method is that it can not handle situations where
the intersection of the object and a plane results into multiple contours during the
slicing step. Once we have found the correspondence of the contours and have
calculated the intermediate contour sets we apply an algorithm for surface
reconstruction from planar contours [FUCS82] to get the intermediate objects. This
algorithm calculates a triangulated surface between every two successive contours.
Since all faces in the resulting intermediate objects are triangles they remain planar

during the animation.

Since the method uses both topological and geometric information of the original
models, it avoids undesirable effects such as faces flying apart during the
metamorphosis or uneven, distorted transformations (i.e. large parts of one object
changing to small parts of another). Both examples display lack of distortion of the

intermediate objects.

Even though this method produces even and not distorted transformations it allows

parts of an object to extend or compress so that they can be mapped to similar parts of

93

the other object. Let’s -consider the contour sets of Figure 5.6, when object A is
morphed to object B parts of the shape will extend through the creation of new
contours. In Figure 5.4 the two terminal objects are approximated by a different
number of contours. The lid of the teapot, which is quite similar with the rear body of

the plane, is extended through the generation of three more contours.

When object C of Figure 5.6 is morphed to object A part of the object will be deflated

or squeezed.

Object A Object B Object C

Figure 5.6: Morphing between three objects

Other transformations that are possible are scaling either locally or for the whole
object. As successive contours deform it is possible to have effects that appear as

local or global deformations on the 3D level.

The anchor points on the contours can be used to provide a rotational component to
the animation (Figure 5.7). this can be provided by the user adding an additional
overhead in the amount of user interaction required but alse giving the possibility to
the animator to guide the animation to transformations he requires like part of the

object twisting.

94

Figure 5.7: Adding a rotational effect to the metamorphosis

The described method allows some user control over the transformation through
mechanisms such as selecting the orientation of the original objects, defining the axis
for the slicing of the objects and defining the number of slices for each object. The

following figure (Figure 5.8) displays that the original orientation of the initial objects

influences the resulting animation sequence.

Figure 5.8: Two different animations depending on the orientation of the original

objects

95

When there is more than one possible axis for slicing the object there is an obvious
question of what the preferable axis should be. Obviously this mainly depends on
what the animator wants to achieve but there are some general based on the work of
this Thesis.

An axis with a specific semantics (such as from the front to the back of a car) usually
gives good results probably because the viewer can associate more with changes

happening across this axis.

An axis that minimises the relative displacement of the contours on the parallel
planes. The less the relative displacement of the contours the closer they are and the

more precise is the reconstruction of the object from the planar contours.

Choosing the axis as the longest dimension of the object seems giving better results

In general, an axis which the object is symmetric around is a good candidate to be

used for slicing.

5.5 Methods for selecting the number and spacing of slices

It is clear that in order to represent an object adequately the number of slices and their
spacing depends on the complexity of the original. For example a cylinder that is
sliced across its axis can be described (without loss of information necessary to
describe the object) by just two contours; (ie the base and the top of the cylinder). On
the other hand, a more complex shape having fine details and drastic shape changes,
along the axis used for slicing, would need many more slices in order to be

represented with a reasonable precision.
Several approaches have been followed for determining the number and the position

of slices. The first one assumes that slices are equally spaced across the axis of

slicing. The number of contours used is user defined and depends on the complexities

96

of the original models. This was the method used for the examples presented in
Figures 5.4 and 5.5. This approach demands minimum user interaction but does not
guarantee the preservation of the important characteristics of the two objects since
drastic changes in object’s shape occurring between two successive contours will not
be present in the intermediate objects. Consequently this approach demands a very
large number of slices to guarantee that no important characteristics of the two shapes
are lost. This gives an additional overhead not only to the time needed to slice,
transform, interpolate and reconstruct the objects but also creates intermediate objects

of high complexity.

A second approach allows the user to break the objects into parts across the axis used
for slicing and define the number of contours for each part (Figure 5.7). This approach
gives a higher level of control over the transformation with the drawback of an

increased level of user interaction.

User defined slices for
breaking the object into
parts

Additional slices

Figure 5.9: Breaking the object into parts across the axis used for slicing

Finally in the next section we present a fully automated method for finding out the

nummber and the position of slices.

5.6 An automated contour slicing algorithm

This section presents a method that automatically calculates the characteristic
contours necessary to describe an object. The method operates by examining a

number of densely spaced contours across the axis of slicing, but keeping only a

97

contour if it differs considerably from the previously selected contour. But how do we
decide that two contours differ enough and on what basis? One obvious answer is that
the measure to quantify the amount of difference between two contours is the energy
needed to change one to the other as defined by Sederberg’s and Greenwood’s
algorithm. This is a naive approach as we can see in Figure 5.10. In this case all the
slices that are calculated are identical (Figure 5.10b) and only the two extreme
contours will be used for the approximation of the object. This will result to the

reconstructed shape of Figure 5.10c which differs considerably from the original.

>

(a) (b) (©)

Figure 5.10: Possible anomaly on the contour selection

This happens because Sederberg’s and Greenwood’s algorithm does not take into
consideration the relative displacement of the two contours. To overcome this
problem we modified the original method by adding an energy term related to the
angle that the centres of gravity of three successive contours form. We assume that
the centres of gravity of successive contours are connected by the same elastic
material that the contours are made of. The method for selecting a number of
characteristic contours to describe the object proceeds as follows: Moving across the
axis used for slicing we calculate n uniformly spaced contours. The two extreme
contours 1, n are included by definition to the selected contours. The contours 2,..,n-1
are provisional since only the most characteristic of them will be selected to
approximate the object. For each provisional contour we calculate two energy terms:
the first term is the energy needed to morph it to the previous selected contour and the
second term is the energy needed to align the ‘last selected contour’, the ‘current

provisional contour’ and the ‘next provisional contour’ (for the Figure 5.11, the

98

second term is the energy needed to bend angle to.':rn). If .th.e sum of these two energy
terms is greater than a user defined threshold the current contour is included in the set
of the contours that will be used to approximate the object and it becomes the ‘last
selected contour’ otherwise it is discarded. Following this procedure for all
provisional contours, from contour 2 to contour n-1, we obtain a set of selected
parallel planar contours that will be used to approximate the object. In Figure 5.12 we

present the algorithm used for the selection of these characteristic contours.

Last selected
contour

current
contour

next
contour

Figure 5.11: Angle formed by three successive contours

| Algorithm 5.1 Calculating the most characterisﬁc contours

| Input: A set of contours Contour{N] created bythe intersection of the object with N
parallel planes, a user defined threshold.

Output: A set of contours List_of _Contours containing the most characteristic

contours of Contour{N].

Last_Selected?* Contour(1)
Current 7' Contour(2)
for j¥' 2to N-1do
begin
Next** Contour(j+1);
Energy " Energy to_transform(Last_Selected, Current)+
+Energy to_straighten{center(Last_Selected), center(Current), center(Next));
if Energy>Threshold then
begin
ADD(List_of Contours, Current);

99

Last_Selected R Current;
end
Current F Next
end
ADD(List_of Contours, Current)

Figure 5.12: Algorithm for the selection of contours

When a branching occurs we consider that the shape change is substantial by

definition.

Better results are obtained by using a high sampling rate (testing a big number of

slices) so that we can guarantee that no important object characteristics are lost.

Figures 5.13, 5.14 present some examples of slicing obtained by the application of
this method. The first Figure 5.13 presents the approximation of the object “face’,
while Figure 5.14 display a sequence of crude to more precise approximations of the
same object depending on the threshold used. In Figure 5.14 the first column displays
the selected contours, the second the reconstructed wireframe model and the third the

fully rendered object. It is easy to notice that the selected contours are more densely

spaced where the changes are more rapid.

Initial Object

Approximated

100

with 23 contours

Figure 5.13: An example of an object approximated by a set of contours

Figure 5.14: The same object represented in different levels of precision

The contour representation of a 3D polygonal object seems to share the same
problems as the related problem of how to reconstruct a surface from a set of parallel
planar contours. When the cross-sections are not dense they may exhibit significant
differences in the geometry and the topology of the boundary contours making the
reconstruction difficult and imprecise. When branching occurs ambiguities arise about
how the successive contours should tile. But the simplification method has a certain
advantage over the surface reconstruction problem, when we simplify the objects we
also have the original models so even if there exist situations of multiple branching
we do have the information as to how these multiple branches connect to each other.
Therefore a possible extension of the simplified representation would be to

incorporate this connectivity information to the contour representation, which will

101

allow this method to be applied in the simplification and subsequent reconstruction of
general 3D polygonal objects.

Figure 5.15 presents an animation from the object ‘face’ approximated by 23 contours
to the object ‘head’ approximated by 29 contours. These two set of contours were
obtained by applying the automated method for the selection of contours. We can
notice that the similar characteristics of the two objects correspond to each other. The

neck of the first object is extended through the generation of additional contours.

102

Figure 5.15: An animation example

5.7Using the method for the calculation of the contours as a

method for shape simplification

The above method has been implemented as an aid of the computer metamorphosis
method for determining the number and the position of slices. Soon it has become
apparent that the same methodology could be applied in reducing the complexity
(number of vertices) required to represent a polygonal object, say for rapid
prototyping. In these situations we can afford to lose some precision of the
representation of the object and reduce its modelling size. One example of this kind of
application is compression and transmission of polygonal objects with variable
precision. In this case the information that needs to be transmitted is simply a set of
contours. The approximated model can be reconstructed at the receiver, using one of
the existing surface reconstruction algorithms or it can be visualised be applying

volume rendering techniques.

The modelling size of the approximation can be reduced further by applying a
simplification technique on 2D for each selected contour. Figure 5.16 presents the
pseudocode we used for simplifying each 2D contour. This method effectively keeps
a vertex of the contour if the angle formed on it is sufficiently different than w. Figure
5.17 presents some approximations of the object ‘face’. The first column contains the
reconstructed object using a set of selected contours. The second and third columns
further simplify the original object by applying the algorithm of Figure 5.16 on each
contour. The Objects of the second column were obtained by using a threshold angle
of 12° while the objects of the third column were obtained by using a threshold angle
of 18°.

Algerithm 5.2 Simplyfing a planar contour

Input: A contour , a user defined angular threshold.

Cutput: A set of points approximating the original contour List_of Vertices

103

Last_Selected % Vertex(1)
ADD(List of Vertices, Last Selected)

Current # Vertex(2)

for j 9t 2 to Number of vertices do
begin
Next# Vertex(j+1);

if |pi~-Angle(Last_selected, Current, next)|<Threshold then
begin
ADD(List_of Vertices, Current);
Last_Selected ' Current;
end
Current 7* Next
end
ADD(List_of Vertices, Current)

Figure 5.16: Algorithm for the selection of vertices

104

 Colamn1 Colu

23 contours

20
contours

18 contours

Figure 5.17: The object 'face’ represented in a different degree of precision

The original object ‘face’ (Figure 5.3) had a modelling size of 173080 bytes. Table
5.2 contains the modelling size of the approximations presented in Figure 5.15. As we
can notice the objects in column 2 of Figure 5.13 achieve a good approximation of the

original object with only a small fraction of the its modelling size.

Size in bytes 23 contours 20 contours 18 contours
Angle 0° 83509 bytes 72018 bytes 64352 bytes
Angle 12° 26273 bytes 23436 bytes 21122 bytes
Angle 18° 16928 bytes 15302 bytes 14064 bytes

Table 5.2: The size in bytes of the files storing the objects of Figure 5.13.

105

5.8Application of the 3D metamorphosis methodtogeneral |

polygenal objects

The method that was described assumes that an intersection of a chosen .plan.e Wlth tl;ié:. : "
object results in single contours. In general it is possible that the intersection results it
two or more contours. Let us consider the situation shown in Figure 5.18, here the

intersection of the first object with the P plane results in two contours.

Plane P

Objectl Object2
Figure 5.18: A view of two 3D objects

One of the possible ways for the metamorphosis to be achieved is shown in the Figure
5.19. Part A of the first object can be transformed to part X of the second object with
part B collapsing, part D transforming to part Z and part C transforming to part Y.

Figure 5.19: Morphing of shapes ‘solution’ 1

106

Another possible way for the metamorphosis is part A transforming to part X, part B
transforming to part Z, part D collapsing and part C transforming to part Y (Figure
5.20).

Figure 5.20: Morphing of shapes 'solution’ 2

Another possible way for the transformation is part A transforming to part X and parts
B, C joining together to form part Y (Figure 5.21).

Figure 5.21: Morphing of shapes 'solution’ 3

1t is obvious that these are not the only ways to achieve the metamorphosis of the first
object to the second but nevertheless these examples serve the purpose of
demonstrating the fact that depending on the specific situation there can be more than

one acceptable ways of the metamorphosis. Which one is chosen is based on the

specific situation. Therefore it appears that granting the user the possibility to guide
the animation will result into more positive results. This can be accomplished by
allowing the user to divide the objects into parts, define correspondences for these
parts and provide an axis for the slicing of each part. In Figure 5.22 we see the

necessary definitions for a metamorphosis according to the first example.

Figure 5.22: Breaking the objects into parts

5.9 Conclusions

The method presented in this chapter tackles the correspondence determination
problem and it applies to three-dimensional polygonal objects which have the
property that there exist an axis so that the intersection of the objects with any plane
perpendicular to this axis does not result to more than one contour. The set of objects

with this property is a superset of the objects that are star-shaped around an axis.

The examples that have been used so far show that the algorithm tends to associate
regions of the two objects that look alike. The preservation of the contour ordering
and the usage of Sederberg’s and Greenwood’s method for determining the vertex
correspondence minimises the situations where any kind of self intersection occurs.
The described method allows some user control over the transformation through
mechanisms such as selecting the axis for the slicing of the objects, defining the
number of slices for each object and defining the anchor points on the contours.

Further control of the transformation can be granted by allowing the user to divide the

108

objects into parts and define corresponding parts. This can allow the application of a
similar methodology to more general polygonal objects, where the intersection of the
object and a plane results in multiple contours. The application of this method can
lead to animations that combine a variety of transformations, like scaling, rotation,

deformation and extension or compression of the object.

109

Chapter 6

Performance and Complexity of the 3D Metamorphosis
Algorithm

6.1 Introduction

In this chapter we evaluate the three—dimensional_; metamorphosis method described in
Chapter 5 according to a number of different criteria. These criteria include the
estimation of the time complexity for the different steps of the method and the
estimation of the number of vertices and polygons of the intermediate objects. These
theoretical estimations are in most cases accompanied by experimental measurements
obtained by the application of this method to the metamorphosis of specific objects.
At the end of the chapter we present a simplified method attempting to solve the
vertex correspondence determination problem in real time. All the discussion in this
chapter assumes that the intersection of the objects with parallel planes results in
single contours. This does not limit the generality of the conclusions drawn since, as
shown in Chapter 5, the objects can be partitioned by user interaction to a collection

of objects where our metamorphosis method can be applied.

6.2 Steps of the 3D metamorphosis method

110

The method described in the previous chapter operates in a number of consecutive

steps.

Step 1 Defining the contours: This is the step of the algorithm that finds out the
contours, necessary to describe each object involved in the metamorphosis. This can
either be part of the metamorphosis or a pre-processing step performed once to form a

library of objects.
Step 2 Correspondence determination: This is the step used to calculate the
correspondence of contours and their vertices. This is the core of the metamorphosis

method.

Step 3 Interpolation of corresponding vertices: This step involves the interpolation of

the position of corresponding vertices.

Step 4 Reconstruction of the intermediate objects: This step reconstructs the

intermediate objects from the intermediate contours created by the interpolation step.

6.3 Defining the contours

The objects that were used were modelled with the polygon-based representation.

This representation consists of:

A list of the object vertices — each vertex is defined by a three-dimensional

co-ordinate in a local co-ordinate system associated with the object.

The polygons — Each polygonal facet is described by a set of vertices that comprise

this facet. The vertices are presented as indices in the vertex list.

We consider Euler-valid polygonal shapes without holes. In this case the topology of

the objects obey the generalised formula:

111

|

V-E+F=2

where V, E, and F, are respectively the number of vertices, edges and facets of the

object.

It is assumed that the user has provided a direction for the slicing in a form of a
vector. The calculation of the contours created by the intersection of the object with
the parallel planes proceeds as follows. Initially the objects are read from the database
describing them. A list is created storing the co-ordinates of the object vertices as they
are read from the database. A list of edges is created storing for each edge the two'
indices of the polygons that share it. In order to calculate a particular contour we test

the intersecting plane with the edges of the object.

Let PP, be an edge of an object (Figure 6.1). The points Py=(x,, yi, z1) and Py=(x2, v»,

2z,) define the parametric equations:

X-X1=t(X2-X1)

y-yi=ty2-y1)

Z-Z:=t(Z2-2Z1)

This set of parametric equations describes the straight line that passes through points

P; and Ps.
The direction that the user has defined will be the normal to the slicing plane with
direction cosines , , . Then the equation of the plane in the normal form is:

X+ _yt+ zEp (6.1)

Having the equation of a plane in normal form we can obtain all planes parallel to the

given plane by varying p.

The distance _ of a point Py (x4, y1, z1) to the plane of equation (6.1) is:
= Xt oyt Z21p (6.2)

112

As the vertices of the object are read from the database their distance from the plane
_x+_y+_ z=0 that passes through the origin is calculated using the equation (6.2). We
store the maximum and the minimum distances (_max, _min)- The value of p of the
planes that are used for slicing is within the range min<p<_max. If 1 equidistant
intersecting planes are used then:

P=_min T 1(_max- _min}/0 fori=1...n.

In order to calculate the point where an edge PP, is intersected by a given plane we

solve the linear system:

X-X1 W(Xg-xﬂ
Y-yi=t(y2-y1)
z-21=t(Z2~21)

Xyt z=p

If there exists a single solution, a point P; (X3, y3, z3) and a value for t will be
calculated. The point Py » belongs to the straight line that passes through the points Py,
P,. It also belongs to the line segment PP, if and only if O<t<1.

The procedure used to calculate the intersection of an object with a plane proceeds as
follows. Initially we search the edges of the object and find an edge PP, (Figure 6.1)
that is intersected by the plane. The point where the plane intersects PP, is the first
vertex of the contour. We search the edge-polygon list and find a polygon B that
contains P;P;. This polygon will also contain another edge intersected by the plane (in
Figure 6.1 edge PaP4). The point where the plane intersects P3P; is the second vertex
of the contour. The edge P3P, also belongs to another polygon C, we follow P3Psand
visit C. In general suppose that X is the most recently visited polygon and e is the
edge of X that led us to X; let g be the other edge of X intersected by the plane, the
point of g where the plane intersects g is added to the list of vertices that form the
contour. Edge g belongs to another polygon Y, we visit Y and start the same
procedure anew for polygon Y. This procedure is continued till we return to the
original polygon B. At this point the contour has been formed by the points of

intersection determined as above. It is obvious that the contour vertices can be

113

calculated in a clockwise or anti-clockwise order along the contour. We used the
convention that all contours vertices should follow a clockwise order, Therefore if the
vertices are calculated in an anti-clockwise order the order of the contour vertices is
reversed. This discussion assumes that the polygons of the shape are convex (which is

a reasonable assumption in most practical cases).

Figure 6.1; Calculating the contour created by the intersection of the object with a

pi'ane

Figure 6.2 presents the algorithm used for the calculation of a contour. The procedure
FIND EDGE() finds an edge of the object intersected by the i’th slicing plane, we

will denote this plane as R;.

Algorithm 6.1 Finding the contours
Input: An object described by polygonal representation

Output: A set of contours

for all planes i do

begin
FirstEdge ¥t FIND EDGE();
CALCULATE(poll, pol2, FirstEdge);
FirstPolygon™t poll;
Findcontour(FirstEdge, FirstPolygon);
end;

114

procedure FIND_CONTOUR(edge OldEdge, polygon OldPolygon)
begin
CALCULATE(poll, pol2, OldEdge);
if pol1=0ldPolygon then
NewPolygon i pol2;
else

NewPolygon i poll;

if NewPolygon!=FirstPolygon then
for all edges e of NewPolygon do
begin
If (e!=0OldEdge) AND (e is intersected by the plane) then
begin
point K INTERSECTION(e, plane);
ADD CONTOUR(point);
FIND_CONTOUR(e, NewPolygon);

end;
end;
else
begin
point INTERSECTION(e, plane);
ADD CONTOUR(point);
end;

end:

Figure 6.2 Algorithm for the calculation of a contour

A naive implementation of FIND_EDGE would have to search randomly the edges of
the object. In this case FIND _EDGE would have a complexity O(jE|) where |E| is the
number of edges of the object. A more efficient method was identified for finding the
first edge intersected by a given plane. This method resembles to a climbing algorithm
and operates as follows. Assume that of we want to find an edge intersected by the
first plane R; described by the equation _x+_y+_z=p;. As it was mentioned before,

while the vertices of the object are read from the database their distance from the

115

plane x+ y+_ z=0 that passes through the origin is calculated using the equation
(6.2). Let v be the vertex with the minimum distance _q. The distance of v from R
is _min—p. We calculate the distance from R; for all the vertices adjacent to v. If there
exists a vertex x that its distance to the plane has a different sign than the distance of
the vertex v then the edge (v, x) 1s intersected by the plane. If there is no such vertex
then we visit the vertex with less distance from R;. In general suppose y is the most
recently visited vertex. For all the vertices adjacent to y we calculate their distance to
the plane R;. If there exist a vertex w that its distance to the plane R, has a different
sign than the distance of the vertex y then edge (y, w) is intersected by the plane. If
there is no such vertex then we visit the vertex z having the less distance from R; and
start the same procedure anew starting from vertex z. This procedure will give us an
edge (7, 5) intersected by the first plane R;. In order to calculate an edge intersected by
the second plane we repeat the procedure described above starting with r. In general
suppose that we have calculated an edge (b, d) intersected by the plane R; we repeat

the climbing algorithm starting from vertex b for the plane Rjs.
The above implementation of the procedure FINDEDGE is presented in Figure 6.3.
Algorithm 6.2 Calculating an edge of the object intersected by the plane

Input: The polygonal representation of an object

Output: An edge of the object that is intersected by the plane

procedure FINDEDGE(vertex v, plane 1)

begin
int min_distance Yt infinite;
int current_distance;
vertex current _vertex;
boolean found 7\ FALSE;
int distance ¥t FIND DISTANCE(v, 1);

While (there are vertices x adjacent to V) AND(NOT found)
begin
current_distance ¥t FIND DISTANCE (w, i);

116

if (current_distance* distance)<0
found ‘R TRUE,;

else
begin
end;
end;
if found then
return (v, w);
else

if lcurrent_distance|<|min_distance| then

min_vertex K w;

FINDEDGE(min_vertex, i);

end;

min_distance "R current_distance;

Figure 6.3: The procedure FINDEDGE

Table 6.1 presents the measurements for the time needed to slice an object.

The second column contains the number of polygons of the object, the third

column the time needed to find the intersection of the object with twenty

planes while for the fourth column again twenty planes are used but only the

most characteristic contours are used.

SLICING TIME. THE SLICING TIME. FINDING THE
OBJECT POLYGONS OBJECT IS INTERSECTED MOST CHARACTERISTIC
BY 20 PLANES CONTOURS
(SECONDS) (SECONDS)
Plane 686 2 7
Face 1882 5 33
Glove 2191 5 24
Teapot 2518 12 62
Head 4357 22 123

Table 6.1: Slicing time

117

Figure 6.4 presents a plot of the time versus the number of polygons of the
object. When the planes are equidistant the time is almost proportional to the
number of polygons. When we calculate the most characteristic contours the
total time is dominated by the time needed to calculate the energy between

every two successive contours.

Slicing Time

140
120
100

Time in sec

0 10 20 30 40 50
Number of pohyons(hundrais)

A Intersection of the object with 20 equidistant planes
B Intersection of the object with 20 equidistant planes and finding the most

characteristic of the resulting cross-sections.

Figure 6.4: Slicing time versus number of polygons

6.4 Correspondence determination

We will attempt to calculate the complexity of the second step of the algorithm, the

correspondence determination step. Usually this kind of measurements is related to

118

the number of polygons or the number of vertices of the original objects. Since the
proposed algorithm operates on a new representation of the objects involved it is
difficult to relate the complexity of the algorithm with the original objects. Therefore
we will consider the performance characteristics of this algorithm with respect to the

contour representation.

Table 6.2 presents the time measurements we obtained with the application of the 3D
metamorphosis algorithm. The second column contains the number of polygons of the
first object, the third and fourth the number of contours and the total number of
vertices in the contour representation. The next four columns present the same
information for the second object. The last two columns present the time needed for
correspondence determination and the time needed for the triangulation. In all these
examples we used linear interpolation and the interpolation time was negligible

compared to the times needed for the other steps.

FIRST Polygons | Contours Vertices SECOND Polygens | Contours Vertices Cor. Triang.
OBJIECT OBJECT Time Time
| Pot 2518 |7 579 | Face 1882 |17 1022 [122 [29
Glove! |[2191 |16 485 | Head 4357 {23 2896 |301 [110
Glove! |[2191 |16 485 | Head 4357 |23 607 |52 10
Glove' 2191 16 485 Banana | 256 17 282 23 7
Glove! |[2191 |16 485 | Face 1882 |17 1022 100 |23
Glove' [2191 |16 485 | Glove! [2191 |16 485 |41 6
Glovel [2191 |16 485 | Teapot |[2518 |7 579 |56 20
Glove [2191 |16 485 | Biplane [686 |10 206 |18 6
Face 1882 |29 984 | Biplane |686 |10 206 |36 16
Face 1882 |29 2669 | Head 4357 |23 2896 | 1815 | 184
Face' 1882 |29 984 | Head' |4357 |23 607 103 |13
Biplane |686 |10 206 | Biplane |686 |10 206 |9 3
Biplane [686 |10 206 | Teapot |2518 |7 579 |28 14
Biplane | 686 10 206 Banana | 266 17 282 10 4
Biplane | 686 |10 206 | Face 1882 |17 1022 |46 22

119

Biplane | 686 10 206 Head 4357 |23 2896. 130

106

!Simplified representation

Table 6.2: Time measurements

The timings show that this method is far from giving results in real time but for most
case the result can be calculated at interactive rates. This is not unusual for the
methods used for correspondence determination. For indicative purposes some of the
times needed for some of the other methods, as provided by their authors are given

below.

The method presented in [HUG92] is quite time consuming, for a volume of size n the

computation of every inbetween image takes at least O(n’logn) time.

Lerios et. al in [LER95] provide an example were the objects were represented by a
300° voxel grid and the correspondence which was specified by 26 element pairs was
established in 8h by an novice and 3h by an expert then 8h were necessary on a SGI

Indigo V2 to obtain a sequence of 50 in-between shapes.

Cohen et. al, in [COHI98] reported that it took 40 min on a SGI 4400 to create an

intermediate 200° volume with 20 anchor points.

The method presented in [KAN97] is one of the fastest methods. The authors report
that when the first object consists of 5798 polygons and the second object of 3765
polygons it took 46 seconds on a SGI 4400.

For the mainly interactive methods the time needed is dominated by the time
necessary for the animator to specify a number of corresponding features on the two

objects.

[DEC96] The authors report that it took 1h [5min of interaction to create a

correspondence between two relatively simple shapes.

120

[STA98] Again the user interaction is extremely heavy and according to the authors, it

took them 6h to create a morph between a human (17374 polygons) and a triceratops

(5438 polygons).

Let us consider an object approximated by m parallel contours morphed to an object
approximated by n contours. The correspondence determination involves the filling of
an mén matrix with each entry of the matrix involving the application of Sederberg’s
and Greenwood’s algorithm to a pair of polygonal contours. Let us consider that the
first contour set contains |V} vertices and the second contour set |V;| vertices. [V
denotes the number of vertices in the j'th contour of the first object while [V denotes

the number of vertices in the j'th contour of the second object. We can write:

Vi [H Vit A Vigl=|V]
|V21 |+|V22"|“. . .+§V2nI=EV2|

The number of operations needed to transform the i'th contour of the first object to the

j'th contour of the second object is in the order of |Vj| |Vyj.

The order of the total number of operations is:

WVl AV, D= (V1 AV, D= W
=1

=] j=1

Therefore the complexity of the algorithm is O(|Vi}_|V2).

In Figure 6.5 we keep the vertices of the first object constant and presents the plot of
the time needed for the correspondence determination versus the number of vertices
of the second object. There are three different paths, one for the first object being
‘glove’, one for ‘biplane’ and one for ‘face’. As we can see the time is almost
proportional to the number of vertices of the second object which agrees with the

theoretical estimation of the complexity.

121

Correspondence time

ime In sec

T

0 100 200 300 400

Number of vertices (tens)

Figure 6.5: Correspondence time versus number of vertices in the contour set.

The number of vertices in the contour representation is related to the number of
contours used. For example the following chart (Figure 6.4) shows that for the object

‘Plane’ the number of vertices is almost proportional to the number of contours used.

122

800
700
600
500
400
300
200
100

¢ Number of ertices

Number of vertices

0 10 20 30 40

Number of confours

Figure 6.6: Number of vertices vs contours for the object ‘teapot’.
In Table 6.3 we present the time measurements for the metamorphosis of the two
three-dimensional polygonal objects ‘banana’ and ‘biplane’ presented in Chapter 5.
Each row corresponds to a particular metamorphosi.s where a different number of
contours is used for the object representation. The first column of the table contains
the number of contours used to approximate the objects. The second column gives the
time needed to calculate the correspondence of contours and their respective vertices.
The algorithm was executed on a Octane SGI workstation. Other examples with

different pair of objects have shown analogous results.

NUMBER OF CORRESPONDENCE TRIANGULATION TIME PER TOTAL TIME FOR A
CONTOURS FOR TIME. FRAME. 24 FRAME ANIMATION.
EACH OBJECT (SECONDS) (SECONDS) (SECONDS)
11,11 7 0.4 17
11,16 113 0.5 23
11,23 16 0.8 127
11,33 23 1.2 59
16,11 11 0.5 23
16, 16 16 0.6 24
16,23 13.5 0.8 38

123

16,33 34 1.1 61
23,11 9 0.8 28
23,16 13 0.8 32
23,23 35 0.8 54
23,33 50 1.1 77
33,11 24 1.1 61
33,16 34 1,1 72
33,23 51 1,2 70
33,33 71 1.1 99

Table 6.3: Time for correspondence determination

The following chart (Figure 6.5) relates the time needed for correspondence
determination with the number of contours used to approximate the original objects

‘banana’, ‘biplane’.

time (seconds)
(<]
w

second
ohject
confours

11 16 23 33
first chiect contours

Figure 6.7: Correspondence determination time, varying the number of contours

describing the two objects.

124

Let us consider the situation that the user breaks-up the objects into parts and define
correspondences for these parts. Suppose that the two objects are divided in p parts.

The number of the operations needed to establish correspondences is in the order of:

P ; ,
(7|7:)

Where |V, V2] is equal to the number of vertices in the i'th part of the first and the

second object respectively.

If we consider that each part has the same number of vertices the number of

operations is in the order of:

s APLE !y:p?!fiilezlleHVzl

wm PP p p

Hence by breaking the object into parts and defining correspondences for these parts

we reduce the number of operations by the number of parts.

6.5 Complexity of the intermediate objects of the metamorphesis

Let us consider the metamorphosis of an object described by n contours to an object
described by m contours. Without loss of generality we can assume that m<n. Let k be

the number of contours for an intermediate object. Then:

m<k<m+n

Let [V||, [V2] be the total number of vertices of the first and the second set of contours
respectively. These vertices will be distributed across the set of contours describing

the original objects. We denote vy;, vo; the number of vertices in the j'th contour of

each object.

Clearly vi;<{V}|, v3<|V>] and

Vit .+V1m=|V1l

125

Vartvart. . Fvan={Va|

We will calculate the lower and upper limit of the number of vertices [V| of an

intermediate object (all intermediate objects have the same number of vertices).

Lower limit: It is clear that an intermediate object will have a vertex corresponding to

each vertex of the initial objects therefore it is max(|V,|, [V2)<|V|

Upper limit: The k'th contour of the intermediate object will be an intermediate of two
contours i, j with vy;, vy vertices respectively. Let vy be the number of vertices of this

intermediate contour. Then vi<viitvy;.

As it was mentioned it is k<m-+n. Therefore in the worst case the intermediate objects

will be described by m-+n contours,

Let v; denote the total number of vertices of the i’th contour of an intermediate object.

|V[mV1+V2+. . -+Vm+n (63)

VIS Vit Vo
. (6.4

Vet =< Vim + Van

If we consider that all contours of the first object contain the same number of vertices
Vi/m and similarly all contours of the second object contain the same number of

vertices Vo/n summing all the expressions (6.4) we get:

V. + +
wimamy T oL by p gy 7B g 7R
m n m n o

The number of triangles needed to triangulate the surface between two contours of vy,

v, vertices is vit+vy.

126

If the object is represented by k contours then the total number of triangles of the final

reconstructed object is:
n-1

(V;- +vm)=v1 +v,+2 v,=v +v, +21V]
=2

k]

=1

6.6 Interpelation of corresponding vertices.

Once the correspondence of the object vertices has been established the
transformation is computed by interpolating between each pair of corresponding
vertex locations. Either linear or spline interpolation can be employed for calculating
the vertex trajectories. In both cases the complexity of the algorithm is O(]V|) where

[V| is a number of vertices of the intermediate objects.

. sH TR
Since [V ISV |?

sH+n
jfj LV, 1? " ﬂthe complexity of the interpolation step is

O(IVi+V2)

6.7 Reconstruction of the intermediate objects.

The interpolation step results in one set of contours for each frame of the
metamorphosis, If we apply a surface reconstruction algorithm for each set of planar
contours we can construct the intermediate objects of the metamorphosis. The method
we used for the triangulation of the surface between each pair of successive contours
was introduced in [FUCS82]. The following table (Table 6.4) presents the time needed

to triangulate an intermediate object of the metamorphosis ‘banana’ to ‘biplane’.

NUMBER OF CONTOURS FOR TRIANGULATION TIME
EACH OBJECT PER FRAME (SECONDS)

11,16 1.6

16, 11 1.8

16,16 1.8

127

11,23 2.4
16,23 2.5
23,23 73
23,11 2.4
11,33 3.4
16,33 34
23,33 3.4
33,33 3.5
33,11 3.3
33,16 33
33,23 32
33,33 3.4

Table 6.4 ; Triangulation time per frame

6.7.1 Alternative methods for visualising the intermediate contour sets

As we can notice in the following charts (Figures 6.8-6.11) the triangulation time
becomes increasingly significant as more frames are used for the metamorphosis.
These measurements were obtained by applying the metamorphosis method to the
objects ‘banana’, ‘teapot’ which were represented with different number of contours

from chart to chart.

Ten frames Fifty frames

Cormresponde Comesponde

nce time nce time
H Triangulation Trianguation
time time

128

Figure 6.8: Percentage of the total execution time spent for correspondence

determination and triangulation when both objects are represented by 11 contours.

Fifty frames

Ten frames

& Comresponde
Corresponde nce time
nce time
& Triangulation
B Trianguation time
time

Figure 6.9: Percentage of the total execution time spent for correspondence

determination and friangulation when both objects are represented by 11 contours.

129

Ten frames Fifty frames

Corresponde Comresponde
nce time nee time

T rianguiation Trianguelation
time time

Figure 6.10: Percentage of the total execution time spent for correspondence

determination and triangulation when both objects are represented by 23 contours.

Ten frames Fifty frames

] Corresponae

Corresponde
nce time nce time

& Triangulation 2 Triangufation
time time

Figure 6.11: Percentage of the total execution time spent for correspondence

determination and triangulation when both objects are represented by 33 contours.

Every intermediate contour of the animation keeps the same number of vertices. It is
reasonable to assume that consecutive frames of the animation will contain the same
triangles. Using that observation we can calculate the optimal triangulation for one
frame of the animation and use all the connectivity information for k successive

frames. That way we can reduce the triangulation time for a factor close to k.

6.7.2 Volume rendering techniques

The term volume rendering describes techniques that enable the visualisation of

sampled scalar functions of three spatial dimensions. The major application in this

130

field is medical imaging, where volume date is available from X-ray Computer
tomography scanners. CT scanners produce three-dimensional stacks of parallel plane
images. The availability of stacks of parallel plane images motivated the development
of techniques for viewing such volume data sets as three-dimensional field rather than
as individual planes. This gives the immediate advantage that the information can be

viewed from any viewpoint.

There have been techniques developed to display such volume data sets on a
computer graphics monitor as some projection of the data rather than a cross-section
of it. The marching cubes algorithm was independently reported by Wyvill and
McPheeters in 1986 [WYV86] and by Lorenson and Cline in 1987 [LORS87]. Both
algorithms essentially operate in two phases. In the first pass the cubes forming the
boundary set are calculated. In the second phase of the algorithm those cubes in the
boundary set are examined and a set of connected polygons are produced for

rendering.

It easy to notice the similarity of the problem visualising these stacks of parallel plane
images to the problem visualising the intermediate contour sets created by our
metamorphosis method. Therefore volume rendering techniques can be used to

visualise the intermediate contour sets.

6.8 A simple heuristic method for the metamorphosis of closed

planar contours

The time measurements presented in section 6.2.1 make it clear that the described
method is far from giving results in real time. In this section we present a simplified

heuristic method that comes quite close of actually producing real-time performance.

Suppose that we want to blend two closed planar contours. (Figure 6.12a). Let us
assume that the user has defined a pair of corresponding vertices on the two contours
s0 that vertex A of the first contour corresponds to vertex E of the second contour. We

unfold the two closed contours to two straight linear pieces AA', EE' (Figure 6.12b).

131

The simple heuristic we propose is that a point X of the first contour corresponds to a
!

point X' of the second if Y] = BE that is we consider that corresponding points are

proportionally spaced around the two contours.

A B F

(a)

>

-3

5 ¢ G ®)

Figure 6.12: Stretching the contours of the two shapes

The proposed method is extremely fast (it can calculate the correspondence in real-
time) and favours well in situations that the animation has a scaling or rotation
component. In Figure 6.13, we present a computer generated animation, between two

closed polygonal contours, obtained by the application of this method.

LI DD

Figure 6.13: Metamorphosis between two closed polygonal contours

In this example, the user has defined a pair of corresponding vertices and the rest of
the correspondences were calculated automatically. A finer level of control over the

animation is possible if the user defines more than one pair of corresponding vertices.

132

6.9 Extension to 3D object metamorphosis.

Suppose that we have a pair of three-dimensional objects, made by a set of polygons,

that we want to morph (Figure 6.14).

Cbject 1 Cbject 2
Figure 6.14: Two polygonal objects

Again we consider the intersection of an object with offsets of a given plane. But this
time we consider that both objects are intersected with the same number of planes.
Depending on the number of contours, we can reconstruct the original model to a
reasonable precision using one of the existing algorithms for surface reconstruction

from planar contours.

For the time being, we will consider situations where the intersection of the object

with each of the different planes is a single contour.

We simplify the problem of morphing the original objects to the problem of morphing
these two sets of planar contours. Since the contours do not intersect, we can order
them according to their geometric position in space. We will use the position of a

planar contour in this ordering as an index for referencing it.

Suppose that we are using M contours to describe each object. We can order the

contours of each object from 1 to M (Figure 6.15).

133

M contours M contours

1 <=z 1
2 2
3 / 3

-

<
: M
M

Object 1 Object 2

Figure 6.15: Approximation of the original objects with M parallel planar contours

We assume that the i'th contour of the first object corresponds to the i'th contour of
the second object. By applying the methodology described in Section 6.10 for each
pair of corresponding contours, we get new intermediate sets of contours. Once we
have these, we can apply one of the existing algorithms for surface reconstruction

from planar contours that will result in the intermediate objects of the metamorphosis.

6.9.1 Number of polygons of the intermediate objects

Let us consider the metamorphosis of a pair of objects described by n contours. An

intermediate object of the metamorphosis will also be described by n contours.

Let us denote as | V} | number of vertices in the i'th contour of the first object and | V]|
the number of vertices in the i'th contour of the second object. The i'th contour of each
intermediate object will have | V/ [+ V,| vertices. The total number of vertices of an
intermediate contour set is:
n . .
! I
(A7 =D
i=1
The number of triangles needed to triangulate between two contours of x, y vertices is

X+y.

134

The total number of triangles of an intermediate object of the animation is:

el
UV 1+ V3 1+ 72 |+ 7 =20, 1207, | = () 1+ 7 17+ 175)

izl

6.9.2 Examples

In Figure 6.16, we present an animation sequence obtained by the application of this
method. Here we transform the object ‘pear’ to the object ‘glove’. Both objects are
represented by 10 contours. These contours are obtained by the intersection of the
original object with a set of parallel planes. The orientation and the number of planes
are user defined and this is a way that a user can influence the resulting animation

sequence

Figure 6.16: Animation from ‘pear’ to ‘glove’

i35

By applying the method described in section 6.4 to these two sets of contours, we can
find a correspondence for their vertices. Once the correspondence of the vertices has
been established the intermediate contours sets are computed by interpolating between
each pair of corresponding vertex locations. Once we have calculated the intermediate
contour sets, we apply an algorithm for surface reconstruction from planar contours
[FUCB2] to get the intermediate objects. This algorithm calculates a triangulated
surface between every two successive contours. Since all the faces in the resulting

intermediate objects are triangles, they remain planar during the animation.

Furthermore depending on the number of contours that are used for the approximation
of the original objects and the algorithm that is used in the surface reconstruction step,
we can get results close to a real time rate. For example the time needed for the
correspondence determination from the object ‘face’ to the object ‘head” when both

objects are represented by 23 contours is 0.5 seconds.

The described method allows some user control over the transformation through
mechanisms such as selecting the axis for the slicing of the objects and defining the

number of slices for the objects.

6.10 Conclusions

In this chapter we evaluated the three-dimensional metamorphosis method described
in Chapter 5 according to a number of different criteria. These criteria included the
estimation of the time complexity for the different steps of the method. From the
experimental results it was demonstrated that the algorithm is far from giving results
in real time. There was also a theoretical estimation presented of the number of
vertices and polygons of the intermediate objects. Experimental results showed that
the complexity of the intermediate objects tends to be close to the complexity of the
most complex of the initial objects. A simplified algorithm was also presented that

manages to calculate correspondences in real-time.

136

Chapter 7

Parallelisation and benchmarking

7.1 Introduction

In this chapter we first discuss issues related to parallel processing and particularly
with the application of parallel processing to computer graphics. We describe the
methods employed for the parallelisation of Sederberg’s and Greenwood’s algorithm
and the three-dimensional metamorphosis method and present the benchmarking
results obtained. All parallelisation work was implemented on the ML-PVA parallel

architecture of Queen Mary and Westfield College.

7.2 The ML-PVA Accelerator

The parallelisation was implemented on the ML-PV A accelerator originally built for
the MONALISA project [SAH94] demonstrator. This accelerator is hosted by a Unix
graphics workstation allowing it to be used as a shared resource connected to the
network. The current architecture of accelerator, ML-PVA, in QMW comprises of the
following parts. (Figure 7.1}

137

——— ! high
ether net speed
PC § bus
FRAME
BUFFER
monitor

-
i

camer a

Figure 7.1: The ML-PVA architecture

- A frame buffer of 32Mbytes. The frame buffer subsystem is made up of an address
generator, a set of RAM memory boards, and a number of FIFO buffered /O
processor boards which share a high speed synchronous back-plane bus. The
operations within the frame subsystem and the communications to host computers are
controlled by a Motorola 68040-based single board processor, running the real time

operating system OS9.

-5 I0OPs (Input Output Processors). These are intelligent input output processors used
for accessing the frame buffer. A standard interface is provided by the use of this
hardware. In generall all IOPs are the same except a few add on devices for the ones

attached to the converters.

A 68030 main processor (PVA Host) configured with
- A local hard disk of 40Mbytes
- An external hard disk of 320Mbytes (backup disk)
- A floppy disk driver

138

A card computer running a real-time operating system, controlling the ML-PVA, and
responsible for the management of pool processors (DSPs), IOPs, and the frame
buffer.

-~ 8 DSPs (DSP96002) Processing units on which given tasks run (operating at 40Mhz
with a peak performance of 60Mflops) each with 4MB local SRAM. Two of them
located on the same board (Figure 7.2), sharing two global on-board memory banks; a
4AMB bank of SRAM and a 16MB bank of DRAM both of which are mapped in the
VME address space. Each board also has 2 DbeX (peripheral expansion bus)
interfaces which are used for data transfer to/from the frame buffer. Two boards

constitute a cluster which has single IOP to access the frame buffer.

B-BUS

A-BUS

™ DSPS ey
2 _To
frame
butffer
T via
10P

. DSPYEG(() =

Figure 7.2: Processor board memory/bus configuration.

7.2.1 The Programming model of ML-PVA : SAPS

The programming model of ML-PVA is based on Self Adaptive Parallel Servers
{(SAPS) model [SAH91], which provides Single Program Multiple Data (SPMD)
parallelism. In this model, a parallel application is composed of a number of copies of
the same sequential program each running on a separate processor node. This form of
parallelism is widely used on message passing multiprocessor systems because it has
a relatively simple and well defined structure, and it facilitates a uniform and easy-to-

understand usage of communication primitives. SPMD style also provides a

139

framework for developing parallel application software using sequential programming
techniques, and therefore enables application software already developed for
sequential machines to be used for parallel architectures, without undergoing major

changes.

Under the SAPS model, the mechanisms for SPMD parallelism are encapsulated
within servers. A server when requested executes multiple copies of an associated
sequential procedure in parallel in SPMD mode. The data is provided by the client
within the service request. The interface between the application programs, as clients,
and the parallel servers is conveniently hidden in the procedure call mechanism which

is a well-understood facility to develop modular programs.

The interaction between a SAPS and an application as its client, for the actual
provision of the service, is based on standard remote procedufe call which is
structured as a servxce-request and a service- reply is also supported by a data objects
scheme which enables data decomposition. Servers fetch application data via

operation invocations on da’ca objeécts.

The server-application (clienﬁ) ;:duality provides the means for the separation of
concerns and therefore the sepélrétion of the building of servers and their utilisation by
the applications. Application‘é are éonventional sequential programs developed
independent of the concerns for parallelism. The main building block of a server is
also a sequential procedure; a parallel SPMD structure is obtained when this
procedure is interfaced to a standard template. This scheme allows building servers

using existing sequential software without major modifications.

A SAPS has a multi-process structure. This structure contains the mechanisms for the
reception of service requests, their processing, and the transmission of the results
back. A dispatcher process and a pool of workers form a process farm where the
dispatcher farms out work to workers and each worker when becomes idle, requests
for more work from the dispatcher process. It 1s the multiplicity of the workers that
provide parallelism within the server. Workers run on the pool processors in a one
node per worker fashion. The number of nodes used by the workers of a particular

server is not statically decided, it depends on run time availability of nodes. A server

140

can start operating with a single worker and dynamically increase its worker

population at run time as more nodes become available.

Within the SAPS structure it is the scheduler process which is responsible for the
resource management activities. It manages the configuration (it creates the dispatcher
and worker processes), and it reconfigures the SAPS structure by adding or deleting
workers. The scheduler coordinates its activities with other SAPS schedulers through

the pool manager.

The structure of a server is completely transparent to its clients. Each server has two
message communication access points: one for handling service requests (service
access point), and the other for monitoring the processor resources and co-ordinating

its resource usage with other computing agents (resource management access point).

The SAPS structure as a whole is supported by a standard software template. The
complete functionality of a SAPS as a generic server object is programmed within this
template. To create a SAPS blueprint for a particular service all that is required is the
interfacing of a conventional sequential procedure (the task proper) to a copy of the

template. This is achieved via a local procedure call interface.

7.2.2 Developing an application for ML-PVA

There are two types of application programming;

1- PVA-Host driven (non-server) programs

2- System-Host driven (client-server) programs

The first type of application programs run over a number of DSPs under the ultimate
control of PVA host. There is no direct communication between PVA host and
System Host (Workstation) while the programs running over DSPs. Only the
initialising actions are taken by the application running on the System Host. Generic

application of this kind reads data from frame buffer, performs a specific algorithm

141

and writes results to frame buffer. This kind of application does not need any code to

be run on the System Host.

The second type, client-server, performs an algorithm over a number of DSPs under
the control of System-Host. The system-host, sends tasks and collects the result. It is
system-host's responsibility to provide data to the server tasks. The responsibility of
PV A-Host, for this type of programming, is to fetch the availability messages from
DSPs and to dispatch a task.

Developing and compiling a non-server program is explained first. For client-server

based programming only the differences are mentioned in the following paragraphs.

7.2.3 Implementing a Client Server program on ML-PVA

A client server program runs over all three platforms. Although a programmer would
not need to develop any program on PVA-Host, PVA-Host takes the responsibility of

communicating with System-Host and DSPs, and dispatching the tasks.

The actual implementation of a client program based upon an RPC command to PVA-
Host. Before calling this RPC command, which is sending tasks to pool manager to be
dispatched, client is responsible for sending the data and all relevant information to

the frame buffer.

The basic protocol for a client-server based programming over this system is given in

Fig 7.3.

142

PROCESSOR POOL
(96002's)

PV A
Host
(6 80 30)

|Manager|

‘ispmain |
(viaispd) |

Figure 7.3: Platforms, entities and communication schemes for client-server

programming.

The sample program running on the system host has six distinguishable parts;

- Pre-processing {(a sequential part of the algorithm)

- Initialising the parallel processing environment

- Preparing and sending data

- Preparing and sending tasks (implicitly waiting for the results)
- Collecting the results.

- Post-processing of the results (sequential part of the algorithm)

The sample program running on DSP has three distinguishable parts. The third part is

a forever loop comprising five sections.

- Pre-processing {(a sequential part of the algorithm)

- Reading initialisation data

143

- Waiting for a task to be dispatched forever
- Getting task and task information
- Reading data
- Computing and producing local results
- Communicating with pool manager over the results

- Writing results

Given parts should be considered as a superset of any program structure, as all of

them are not expected to be in each program.

7.3 Parallelisation of Sederberg's and Greenwood’s Algorithm

Sederberg’s and Greenwood’s algorithm addresses the two-dimensional shape-
blending problem. We discussed this algorithm in detail in Section 2.2. Sederberg’s
and Greenwood’s algorithm assumes that an initial correspondence has been defined
for a pair of vertices. Here we consider the more general problem where no pair of
corresponding vertices has been defined. Suppose that the two polygonal contours that
are to be morphed have m, n vertices respectively. A given vertex of the first contour
will correspond with at least one of the n vertices of the second. Therefore the
algorithm must be executed for n initial correspondences and the chosen
correspondence is the one that needs the minimum amount of energy. The execution
of the algorithm for one of these n initial correspondences has been identified as the

simplest task that we could decompose the total work to.

A server must have access to the co-ordinates of the vertices so that it can calculate

the energy of the contour blending for a given initial correspondence. When this
calculation finishes it must also be able to return its result to the host. Therefore, there
are routines implemented allowing the host to put the data in the frame-buffer and

read the results from the frame buffer.

Since it is desirable to minimise the communication between the processor pool and

the frame buffer it was decided that tasks should be organised as packets of the simple

144

identified task. In the situation that k of these packets are used the processor assigned
the i’th task would calculate the energy for the blending of the two contours when
vertex 0 of the first shape corresponds with vertices (0/k)i,...,(n/k)(i+1)-1 of the
second. The server finds which of these initials correspondences yields the minimal
amount of work and what is the complete vertex correspondence for that initial
correspondence. Finally the server attempts storing its result to the frame buffer and
does so if the energy needed for its solution is less than the energy calculated from all
other tasks that have been served. The approach we followed, for comparing the
partial results, was the implementation of a WK kernel command WKCombine that
combines the results of the different servers storing the results in the frame buffer
(overwriting any previously stored result) only if the energy needed is less than the
current found minimum. When the execution of all tasks is finished the Silicon
Graphics host reads the stored result from the frame buffer, this result is the global

solation to the correspondence problem.

The Remote Procedure Call that is sending a task to the pool manager contains the
following fields: the name of the first object in the frame buffer keeping the data of
the vertices of the first contour, the name of the object in the frame buffer keeping the
data of the vertices of the second contour, two numbers equal with the number of
vertices of each contour and a number of shifts that should be performed in the first
vertex of the second polygon to agree with the initial correspondence that must be

calculated.

7.3.1 Benchmark Results

Two approaches have been followed for determining the size of the packet. The first
approach divides the number of elementary tasks to the maximum number of
available processors (in our case the maximum number of available processors was
eight) while the second approach uses packets of fixed size. In this section we
compare the speedup obtained using these two approaches. Figures 7.4 to 7.8 present

the speedup obtained. For the situation that we use packets of fixed size we consider

145

cases where every active DSP gets at least one packet of work. In all these examples

the packet size was ten elementary tasks.

When there are more than four active DSPs there at least two DSPs used being on the
same board. As we can notice the speedup obtained when there are no DSPs used on
the same board is very close to the maximum expected value while there is a drop in
the speedup obtained when there are active DSPs sharing the same board. We can also

notice that the maximum speedup obtained increases with the size of the problem.

The following charts show that better results are obtained by using a number of tasks

equal to the number of available DSPs.

Figure 7.4: The contours contain 23 vertices each

Spe
ed-
up

0 2 4 6 3 10

Numbaer of Processors

A Size of packet equal to (total number of elementary tasks)/(total number of
available DSPs)
B Fixed size packet of ten elementary tasks

146

Figure 7.5: The contours contain 44 vertices each

Sp
ee
d-
up

¢4

0 . i . ; . i . . .

Number of Processors

A Size of packet equal to (total number of elementary tasks)/(total

number of available DSPs)
B Fixed size packet of ten elementary tasks

Figure 7.6: The contours contain 78 vertices each

bt
43
= I8

0 T 4 ¥ v ¥ T

4 6
Number of Proesors

A Size of packet equal to (total number of elementary

tasks)/(total number of available DSPs)
B Fixed size packet of ten elementary tasks

147

Figure 7.7: The contours contain 88 vertices each

t 3
o

Number of Fiocesors

A
Size of packet equal to (total number of elementary tasks)/(total number of available

DSPs)

B Fixed size packet of ten elementary tasks

7.4 Parallelisation of the 3D metamorphosis method.

The most time consuming part of the 3D metamorphosis algorithm (Section 3.6,
Figure 3.8) is the part of filling of the matrix Edge. If the first object consists of m
contours and the second object consists of n contours the method requires the filling
of a MmeR matrix. The [i, j] entry of the matrix must contain the energy needed to

transform the i’th contour of the first object to the j’th contour of the second object.

The step that fills the matrix Fdge was the part that was identified for parallelisation.
The total amount of tasks was taken to be equal to the number of the available DSPs.
In order to break up the total work into tasks we considered unfolding the matrix

according to its rows (Figure 7.9).

In this linear representation of the matrix the index of an entry [i, j]is (i-1)m+j. If N is
the number of available DSPs then the k’th task will calculate the value of the entries

[i, j] that satisfy the condition:

148

mn(k=1) . . mnk
—— < (i —Dm+ j L
(@~Dm+j 7

AL L2 ¢ o« o« Lm~
N T A S
{ { { { { {
{ { { { { {
¢ ¢ ¢ { ¢
\n,l ¢ { « « RhR,m_)
The Edge matrix.
LI 1,2 « ¢« ¢« Lm 21 22 ¢« « « 2,m ¢« ¢ « nl n2 (nm
e "
1% Task 8" Task

...

Figure 7.8: Unfolding of the matrix according to its rows.

A server must have access to the co-ordinates of the vertices to be able to calculate the
energy of the contour blending for a given pair of contours. When this calculation
finishes it must be also able to return its result to the host. Therefore there were
routines implemented allowing the host to put the data in the frame-buffer and read

the results from the frame buffer.

The RPC sending a task to the pool manager contains the following fields: the name
of the first *file’ in the frame buffer keeping the data of the vertices of the first object,
the name of the “file’ in the frame buffer keeping the data of the vertices of the second

object, the name of the ‘file’ that will be used to store the results and the task number.
When all the tasks have been served the host reads the results from the frame buffer

and fills the matrix Edge then the execution of the algorithm continues serially as in

Figure 3.8.

146

7.4.1 Benchmarking results

Figures 7.9-7.11 present the speedup obtained with the paralielisation. When there are
more than four active DSPs there at least two DSPs used being on the same board. As
we can notice the speedup obtained when there are no DSPs used on the same board is
very close to the maximum expected value while there is a drop in the speedup
obtained when there are active DSPs sharing the same board. We can also notice that

the maximum speedup obtained increases with the size of the problem.

The objcts are both represented by 10 contours

* A
upB

Number of Processors used

Figure 7.9: Speedup vs nmumber of processors when both objects are represented by 10

contours.

150

The objects are both represented by 15 contours

o A
2B

Speedup

Number of Processors used

Figure 7.10: Speedup vs number of processors when both objects are represented by

15 contours.

The objects are both represented by20 contours

o A
5B

Number of Processors used

Figure 7.11: Speedup vs number of processors when both objects are represented by

20 contours.

151

7.5 Conclusions

In this éﬁapter we discussed issues related to parallel processing and particularly with
the application of parallel processing to computer graphics. We also described the
methods employed for the parallelisation of Sederberg’s and Greenwood’s algorithm
and the three-dimensional metamorphosis method and presented the benchmarking
results obtained. The parallelisation work was implemented on the ML-PVA parallel
architecture using the SAPS programming model. This served as a performance test

of this parallel architecture and also as an evaluation test of the framework it operates.

152

Chapter 8

Conclusions and Future Work

8.1 Overview of the dissertation

The dissertation presented a method for the metamorphosis of shapes consisting of
parts that can be geometrically ordered in space. This method uses the position of
these parts in the ordering as a way of reducing the complexity of the correspondence
problem. When the shapes are not clearly separated to a number of geometrically

ordered parts we considered simplified representations of the objects.
The method was initially applied to situations of two-dimensional polygonal shapes
and later to three-dimensional polygonal shapes. The performance characteristics of

the algorithm were discussed and a parallelisation method and benchmarking results

were presented.

8.2 Summary of Contributions

This dissertation has presented a methodology for the metamorphosis of three-

dimensional polygonal objects.

153

The main argument of the dissertation {s that there is a need for a method that can
relieve the animator of the tedious task of defining a great number of corresponding
components on the two objects. Furthermore, this automated process of defining
correspondences should atterapt to identify similarities between the two objects and
couple these similarities during the interpolation step. There were methods developed

for two-dimensional and three-dimensional polygonal objects.

At the introduction of Chapter 1 there were a number of objectives set for this work. In
this section we will recap these objectives and discuss the degree they have been

achieved.

Connected intermediate objects: The shapes of the intermediate objects are fully
connected since the polygons are created by a full triangulation between every pair of
successive contours. Since all the polygons of the intermediate objects are triangles

they also remain planar during the animation.

Avoidance of distortion: The method proposed in this thesis uses the geometric
information of the original objects, the result is that it avoids the undesirable situations
where a small part of the first object transforms to a large part of the second it is

incorporated into the minimisation of energy

No Self-intersection: Self intersection rarely appears. The usage of Sederberg’s and
Greenwood’s algorithm on the contour level and the preservation of the contour

ordering do not allow self intersection.

The examples presented in this thesis support the argument that the minimisation of
energy succeeds in identifying the similar features of the two objects and maintains
them during the animation. The user interaction is quite minimal but can be easily

increased to guide the animation. It constitutes of defining constants of the material,

choosing the axis of slicing and choosing anchor points on the contours.

The application of the method puts some restriction on the initial objects. The method
applies to objects that have the property that there exists an axis such that the

intersection of the object with any plane perpendicular to this axis is a single contour.

The method allows correspondences that lead to a variety of transformations.
Transformations containing comBinations of the object scaling, translating, rotating,

compressing and extending, can be potentially achieved.

A side product of this metamorphosis method was an algorithm for the automatic
selection of a number of characteristic contours that describe the objects. This

algorithm can be also used as a shape simplification technique.

Some time consuming tasks related with the 3D method were parallelised on the
experimental ML-PV A parallel architecture. This served as a performance test of this

parallel architecture and as an evaluation test of the framework it operates.

8.3 Discussion of the 3D metamorphosis method in relation with

other methods

In this section we are going to compare the results of the 3D method with the methods

described in Chapter 1.

The method proposed uses both geometrical and topological information and avoids

distortion appearing in [BET89] and disconnected objects appearing in [HONS8S].

Our method is quite computationally intensive, but for most cases the
correspondences can be computed at interactive rates. The time needed is comparable
to the time needed by [COH98] and less that the time needed by [LER95], [DEC96]
and [STA98]. The method proposed in [KANO97] solves the correspondence

determination problem a lot faster.

155

Our method manages better control than the fully automated methods of [HUG92],
[PAY92], [KENOS1], [CHES9], [KAN97], [KAU91] and manages to create pleasing
animations without the excessive user interaction needed by [LER95], [CHE95],
[DEC96] and [STA9E].

There is a restriction on the objects that the method can handle but this is not unusual
for methods operating in the polygonal representation. [KEN91], [DEC94] demand
that the objects are star-shaped, [LLAZ97] operates on objects that are star-shaped
around an axis, [KAN97] morphs objects that are homeomorphic to a disk. Some
volumetric methods like [COH98] operate on objects of general topology with
impressive results but on the other hand these methods do not seem capable of
producing certain types of transformations, like transformations with a partial

rotational component.

8.4 Further work

The 3D metamorphosis method proposed fares well when the intersection of the
objects with the planes resplt in single contours. When the intersection of the objects
with planes result in multipie contours (branching) user interaction can reduce the
problem to a collection of simpler problems. Further research should be carried out in
order to develop techniques that would smoothly join the different parts together
during the animation. Determining automatically whether an object can be used by our

method would be a very useful addition.

It would be worthwhile to extend this method so that the slicing planes are
perpendicular to the line segments of a 3D polyline rather than perpendicular to a

straight axis. This would allow our method to be applied to a wider category of shapes.

In all cases considered we dealt only with the changes on the object’s shape. In general

objects will be texture mapped and therefore we should consider how the texture of the

objects would behave during the animation.

As it was mentioned, the method of the automated selection of contours necessary to
describe the objects could be used as a method for shape simplification. Better results
could be obtained by the usage of a more sophisticated method for the simplification

of the contours on the 2D level.

All the methods developed in this thesis would be greatly assisted by the development
of an intergrated user interface that would give the animator the chance to guide the
animation through mechanisms as orienting, scaling and translating the shapes

defining the axis for slicing, separating the shapes into parts etc.

The contour representation of a 3D polygonal object has the same problems as the
related problem of how to reconstruct a surface from a set of parallel planar contours.
When branching occurs ambiguities arise about how the successive contours should
triangulate. But the simplification method has a certain advantage over the surface
reconstruction problem: when we simplify the objects we also have the original
models so even if there exist situations of multiple branching we do have the
information as to how these multiple branches connect to each other. Therefore a
possible extension of the simplified representation could be to incorporate this
connectivity information in the contour representation which will allow this method to
be applied in the simplification and subsequent reconstruction of general 3D polygonal

objects.
In summary the 3D metamorphosis method that has been presented appears to give

very good results for the objects for which it has been in order to be used in a

commercial environment it has to be extended.

157

[AOK96]

tCAR97]
[CAT78]

[CHES9]

[CHE95]

[CHE96]

Bibliography

Y. Aoki, Kang Seok. Morphing of 2-D models by Fresnel transform.
Proceedings of International Conference on Image Processing IEEE
vol.3, 1996, pp. 727-30.

T Beier, S-..Neély. Feature-based image metamorphosis. Computer

* Graphics, Proceédings SIGGRAPH '89, pp. 35-42.

EBethel, S Uselton. .Shape' Distortion in Computer - Assisted
Y _k':erraﬁie'_Animatidn. In State of the Art in Computer Animation.

= Mégriéﬁét Thalmann N. and Thalmann, D., eds., Springer Verlag, New

York, 1989, pp. 215-224.

E. Carmel, D. Cohen. Warp-guided object-space morphing. Visual
Computer, vol.13, no.9-10, 1997, pp. 465-78.

E. Catmull. The problems of computer Assisted animation.
Proceedings ACM SIGGRAPH vol 12, no 3, August 1978.

E. Chen, R. Parent. Shape Averaging and Its Applications to Industrial
Design. IEEE Computer Graphics and Applications vol. 9, no. 1,
January 1989, pp. 47-54.

D. T. Chen, A. State, D. Banks. Interactive shape metamorphosis.
Proceedings 1995 Symposium on Interactive 3D Graphics. ACM.
1995, pp. 43-4.

M. Chen, M. W. Jones, P. Townsend. Volume distortion and morphing

using disk fields. Computers & Graphics, vol.20, no.4, July-Aug. 1996,
pp. 567-75.

158

[CHU94]

[COHY6]

[COHY98]

[DEC94]

[DECY6]

[FUC82]

[GALY6]

[GOL96]

[GUI94]

Chun-Hsiung Chuan. Kuo C-CJ. Contour metamorphosis using the
wavelet descriptor. Proceedings of Spie - the International Society for
Optical Engineering, vol.2182, 1994, pp. 288-99.

D. Cohen-Or Levin D. Solomovici A, Contour blending using warp-
guided distance field interpolation. Proceedings. Visualization '96

(IEEE Cat. No.96CB36006). ACM. 1996, pp.165-72.

D. Cohen-Or Levin D. Solomovici A. Three-dimensional distance
field metamorphosis. ACM Transactions on Graphics, vol.17, no.2,
April 1998, pp.116-41.

P. Decaudin, A. Gagalowicz. Fusion of 3D shapes. The 5
Eurographics Workshop on Animation and Simulation, Oslo

Eurographics Association 1994, pp.1-14.

D. De Carlo, J. Gallier. Topological evolution of surfaces.

Procceedings of Graphics Interface *96, pp. 194-203.

H. Fuchs, Z. M. Kedem, S. P. Uselton. Optimal surface reconstruction
from planar contours. Computer Graphics proceedings SIGGRAPH
vol. 16, no. 3, 1982, pp. 69-75.

E. Galin, S. Akkouche. Blob metamorphosis based on Minkowski
sums. Blackwell Publishers for Eurographics Assoc. Computer
Graphics Forum, vol.15, no.3, 1996, pp.143-53.

E. Goldstein, C. Gotman. Polygon morphing using a multiresolution

representation. Proceedings of Graphics Interface *96, pp. 50-60.
L. Guibas, J. Hershberger. Morphing simple polygons. Proceedings of

the Tenth Annual Symposium on Computational Geometry. ACM
Press. 1994, pp.267-76.

159

[HAS97]

[HAS98]

[HONS8S]

[HUG92]

[KAN97]

IKAU91]

[KENO91]

A. E. Hassanien, M. Nakajima. Image morphing with snake model and
thin plate spline interpolation. SPIE-Int. Soc. Opt. Eng. Proceedings of
Spie - the International Society for Optical Engineering, vol.3229,
1997, pp.407-16.

A. E. Hassanien, M. Nakajima. Image morphing of facial images
transformation based on Navier elastic body splines. Proceedings
Computer Animation '98 (Cat. No.98EX169). IEEE Comput. Soc.
1998, pp.119-25.

T. Hong, N. Magnemat-Thalmann, D. Thalmann. A General Algorithm
for 3-D Shape Interpolation in a Facet-Based Representation.
Proceedings of Graphics Interface '88 (June 1988) pp. 229-235.

J. F. Hughes. Sheduled Fourier Volume Morphing. Computer
Graphics, proceedings SIGGRAPH 92, vol. 26, no. 2, 1992, pp. 43-
46.

T. Kanai, H. Suzuki, F. Kimura F. 3D geometric metamorphosis based
on harmonic map. Proceedings The Fifth Pacific Conference on
Computer Graphics and Applications (Cat. No.97TB100206). IEEE
Comput. Soc. 1997, pp.97-104.

A. Kaul, J. Rossignac. Solid-Interpolating Deformations: Construction

and Animation of PIPs. Proceedings of Eurographics 91.

J. Kent, R. Parent, W. Carlson. Establishing Correspondences by
Topological Merging: A new Approach to 3-D Shape Transformation.
Proceedings of Graphics Interface 31 (Calgary, Alberta, June 1991)
pp. 271-278.

160

[KENS2]

[KOCg4|

[LAZ97]

[LER95]

[LLOR87]

[MCHS0]

[MINSS8]

[PAR91]

J. Kent, R, Parent and W. Carlson. Shape Transformation for
Polyhedral objects. Proceedings of SIGGRAPH '92 (Chicago, July 26-
31, 1992) pp. 47-54.

D. Kochanek, R. Bartels. Interpolating Splines with Local tension,
Continuity and Bias Control. Proceedings of SIGGRAPH '84
(Minneapolis Minnesota July 23-27, 1984} In Computer Graphics vol.
18, no. 3 (July 1984) pp. 33-41.

F. Lazarus, A. Verroust. Metamorphosis of cylinder-like objects.
Journal of Visualization & Computer Animation, vol.8, no.3, July-
Sept. 1997, pp.131-46.

A. Lerios, C. D. Garfinkle, M. Levoy. Feature-based volume
metamorphosis. Computer Graphics Proceedings. SIGGRAPH 95.
ACM. 1995, pp.449-56.

W. E. Lorensen and H. E. Cline, Marching Cubes, A High Resolution
3D Surface Construction Algorithm, Computer Graphics Proceedings.
SIGGRAPH 87, pp. 163-69.

J. MchuGh. Algorithmic graph theory. Prentice Hall International
editions 1990.

E. Minieca. Optimization Algorithms for networks and graphs Marcel
Dekker Inc. 1988.

R. Parent. Shape transformation by boundary representation
interpolation: a recursive approach to establishing face
correspondences. Journal of Visualizaton and Computer Animation.
vol 3 issue 4, 1992, pp. 219-239.

161

[PAY92]

[REER1]

[SED92]

[SED93]

[SEU%4]

[SEU95]

[SEU96]

B. Payne, N. Toga. A distance Field Manipulation of Surface Models.
IEEE Computer Graphics and Applications vol. 12, no. 1, Jan. 1992,
pp. 65-71.

W. Reeves. Inbetweening for Computer Animation Utilizing Moving
Point Constraints. Proceedings of SIGGRAPH '81 (Dallas , Texas,
August 3-7, 1981), In Computer graphics vol. 15, no. 3 (August 1981)
pp. 263-269.

T. W. Sederberg, E. Greenwood. A Physically Based Approach to 2-d
Shape Blending. Computer Graphics (Proc. SIGGRAPH) 26(2): 1992
pp. 25-34.

T. W. Sederberg, Gao Peisheng, Wang Guojin and Hong Mu. 2-D
Shape Blending :An Intrinsic Solution to the Vertex Path Problem.
Proceedings SIGGRAPH 93 pp. 15-18.

Seung-Yong Lee. Kyung-Yong Chwa. Hahn J. Sung Yong Shin.
Image morphing using deformable surfaces. Proceedings of Computer

Animation '94. IEEE Comput. Soc. Press. 1994, pp. 31-9.

Seung-Yong Lee, Kyung-Yong Chwa, Sung Yong Shin, G.Wolberg.
Image metamorphosis using snakes and free-form deformations.
Computer Graphics Proceedings. SIGGRAPH 95. ACM. 1995, pp.
439-48.

Seung-Yong Lee, G. Wolberg, Kyung-Yong Chwa. Sung Yong Shin.
Image metamorphosis with scattered feature constraints. IEEE
Transactions on Visualization & Computer Graphics, vol.2, no.4, Dec.
1996, pp. 337-54.

162

[SEU98]

[SHA95]

[STA98]

[STES5]

[WAT92]

[WOLS8]

[WOLS9]

[WYV86]

[YUE95]

Seung-Yong Lee, G. Wolberg, Sung Yong Shin. Polymorph:
morphing among multiple images. IEEE Computer Graphics &
Applications, vol.18, no.1, Jan.-Feb. 1998, pp. 58-71.

M. Shapira, A. Rappoport. Shape blending using the star-skeleton
representation. IEEE Computer Graphics & Applications, vol.15, no.2,
March 1995, pp.44-50,

A. State, M. C. Lin, D. Manocha, M. A. Livingston. Feature-based
surface decomposition for correspondence and morphing between
polyhedra. Proceedings Computer Animation '98 (Cat. No. 98EX169).
IEEE Comput. Soc. 1998, pp.64-71.

S. Steketee, N. Badler. Parametric Keyframe Interpolation
Incorporating Kinetic Adjustment and phrasing Control. Proceedings
of SIGGRAPH '85 (San Fransisco, California, July 22-26, 1985), pp.
255-262.

A. Watt, M. Watt. Advanced Animation and Rendering Techniqes
theory and practice. Addison-Wesley 1992,

G. Wolberg. Image warping among planar shapes. New Trends in
Computer Graphics. Proceedings in Computer graphics '88 pp. 209-

218.

G. Wolberg. Skeleton Based Image Warping. Visual Computer,
Volume 5, Number 1/2 March 1989 pp. 95-108.

B. Wyvill, C. McPheeters and G. Wyvill. Data structure for Soft
Object. Visual Computer Volume 2, pp. 227-34.

Yue Man Sun, Wenping Wang, F. Y. L. Chin. Interpolating

polyhedral models using intrinsic shape parameters. Proceedings of the

163

[YUE96]

Third Pacific Conference on Computer Graphics and Applications
Pacific Graphics "95. Computer Graphics and Applications. World
Scientific. 1995, pp.133-47.

Yuefeng Zhang. A fuzzy approach to digital image warping. IEEE

Computer Graphics & Applications, vol.16, no.4, July 1996, pp.34-41.

