&
wQf Queen Mary
University of London

Relative Definability of Boolean Functions via Hypergraphs
Bucciarelli, Antonio; Malacaria, Pasquale

For additional information about this publication click this link.
http://gmro.gmul.ac.uk/jspui/handle/123456789/5021

Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact scholarlycommunications@gmul.ac.uk


http://qmro.qmul.ac.uk/jspui/handle/123456789/5021

QUEEN MARY

AND WESTFELD COLLEGE
UMIVERSITY OF LONDORM

Research Report No. RR-00-03 . ISSN 1470-5559 - August 2000

Relative Definability of Boolean
~ Functions via Hypergraphs

-~ Antonio Bucciarelli

_Pasquale Malacaria




Relative Definability of Boolean Functions via,
Hypergraphs

Antonio Bucciarelli

Dipartimento di Scienze dell’Informazione, Universitd di Rome “La Sapienza”,
via Salaria 113, 00198 Romae, Italy

Pasquale Malacaria

Department of Computing, Imperial College of Science Technology and Medicine,
180 Queen’s Gate London SW7T 2AZ, UK

The aim of this work is to show how hypergraphs can be used as a system-
atic tool in the classification of continuous boolean functions according
to their degree of parallelism. Intuitively f is “less parallel” than g if it
can be defined by a sequential program using g as its only free variable.
It turns out that the poset induced by this preorder is (as for the degrees
of recursion) a sup-semilattice.

Although hypergraphs have already been used in [6] as a tool for studying
degrees of parallelism, no general result relating the former to the latter
has been proved in that work. We show that the sup-semilattice of degrees
has a categorical counterpart: we define a category of hypergraphs such
that every object “represents” a monotone boolean function; finite co-
products in this category correspond to lubs of degrees. Unlike degrees of
recursion, where every set has a recursive upper bound, monotone boolean
functions may have no sequential upper bound. However the ones which
do have a sequential upper bound can be nicely characterised in terms of
hypergraphs. These subsequential functions play a major role in the proof
of our main result, namely that f is less parallel than g if there exists a
morphism between their associated hypergraphs.

1 Introduction

In this paper we will consider first-order continuous functions of type B —» B
‘where B is the flat domain of boolean values {.L, tt , £f }. Tuples of boolean
values are ordered component-wise. Note that continuous functions of this
type are just monotone functions.

Preprint submitted to Elsevier Preprint 13 August 1998




Given two continuous functions f and g, we say that f is less parallel than g
(f <par g) if there exists a closed PCF-term M such that [Mlg = f (where
[M] denotes the interpretation of M in the standard Scott model [17])*.

A degree of parallelism is a class of the equivalence relation associated with
the preorder <,.,. Two functions in the same class will be called equiparallel.
The degree of a given continuous function f will be denoted by [f].

We will use sometimes the expression f is g-definable for f <par g.

The study of degrees of parallelism was pioneered by Sazonov and Tracktem-
brot, [16,21] who singled out some finite subposets of degrees.

In order to study <;.. we introduce a category of hypergraphs. Continuous
functions will be projected on the objects of this category, and hypergraph
morphisms will be witnesses of <,,. relations.

An informal way of gradually describing the passage from function to hyper-
graph is the following:

Any function is a set of pairs {argument,value): its graph.

Monotone functions on finite posets can be represented by a set of pairs (min-
imal argument, value): their trace (for a formal definition of trace see the next
section).

In the hypergraph representations the arity of the function and the actual
content of minimal arguments are forgotten. The vertexes of the hypergraph
stand for minimal arguments, and the edges encode a partial information on
the actual content of such minimal arguments. The values of the encoded
function are recorded by coloring the vertexes.

Consider for instance the n-ary logical connective that outputs tt if all its
arguments are tt and is undefined otherwise. Then the hypergraph associated
to any such function is the same for all n, namely the hypergraph with a
unique vertex and no arcs. Indeed any hypergraph represents infinitely many
functions whereas traces are in a one-to-one correspondence with (monotone)
functions.

A natural question is hence how faithful the hypergraph representation is.
This question is indeed twofold, namely:

- Which properties of functions are characterised in terms of hypergraphs?

1 Actually, [M]g = f is an abbreviation for [M](curry(g)) = curry(f), since PCF
does not have product types. We will use this abbreviation throughout the paper.




— Is it the case that two functions having the same hypergraph are equipar-
allel?

Concerning the first questions the results in this paper are summarised in the
following table (rows stand for type of the function, column for hypergraph

properties characterising that type of function)?:

Hypergraphs
Junctional | no hyperarcs no binary only monochromatic
hyperarcs hyperares

Functions
continuous Yes No No No
stable Yes No Yes No
sequential Yes Yes Yes Yes
subsequentiol Yes No No Yes

So, for instance, a function f is stable if and only if the hypergraph H; asso-
ciated to it is functional and all its hyperarcs have at least three elements.

Concerning the second questions let us consider an example which gives some
evidence of the fact that the question itself is non-trivial:

Example 1: Let us consider, for n € w, n > 1 the monotone functions
Ty Gn 2 B™ — B defined by the following traces:

tr(fn) = {(v, £t ), (0" (v), £t ),..., (" 7}(v), vt )}

tr(gn) = {(w, tt ), (0" (), £t ),..., (0" (), tt )}

where v = (tt,1,...,L),w=(L, tt,..., tt ), and o((bs,...,bp-1,b5)) =

n—1 7o 1
(bnsby - -5 ).

i.e. f, is the function that outputs tt if it has at least one tt in its »
arguments whereas ¢, outputs tt if it has at least n — 1 tt among its
arguments.

2 Stable and sequential functions are introduced in section 2. Functional hyper-
graphs in section 3; monochromatic hypergraphs and subsequential functions in
section 4.




For a given n the maps f, and g, are represented by the same hypergraph,
namely the complete hypergraph of order n (that is the hypergraph in which
all but singletons subsets of vertices are hyperarcs). Hence there is a trivial
morphism (namely the identity) between the hypergraphs of f, and g,. How-
ever the PCF term M, defining f, in terms of g, has at least n — 1 “nested”
calls of g,.

For example for n = 3 we have

fa=Xdzyz. gs(z ga( tt y 2) tt)

and forn = 4

fo=2dzyzw. g4{x g2(y ga( tt tt zw) tt tt) tt tt)

The moral is that if we could prove that hypergraphs isomorphisms reflect
equivalence of degrees (i.e. that functions whose hypergraphs are isomorphic
are equiparallel) then we would have a simple and effective tool for the study
of degrees. We will indeed prove such a result as a corollary of our main result:
hypergraphs morphisms reflect <;.. relations.

1.1  Related works

The study of degrees of parallelistn was pioneered by Sazonov and Tracktem-
brot {16,21] who singled out some finite subposets of degrees. Some results
on degrees are corollary of well known facts: for instance Plotkin’s full ab-
straction result for PCF+por implies that this poset has a top. The bottom
of degrees is the set of PCF-definable functions which is fully characterised
by the notion of sequentiality (in any of its formulations). Moreover Sieber’s
sequentiality relations [18] provide a characterization of first-order degrees of
parallelism and this characterization is effective: given f and g one can decide
if f <par 9, and recently Stoughton [19] has implemented an algorithm which
solves this decision problem.

Recently, Loader has shown that the PCF-definability problem, i.e. the prob-
lem of deciding if a given continuous function is PCF-definable, is undecidible
[12]. As a consequence, the relation <., is undecidible in general (at higher-
order), since, if ¢ is PCF-definable and f continuous, then f is PCF-definable
if and only if f <par g




Hypergraphs for the study of degrees were first introduced in {6] where an
infinite subposet of degrees was pointed out. However no precise connection
between hypergraphs and monotone functions was established there. The def-
inition of functional hypergraphs bears striking resemblance to Ehrhard’s def-
inition of parallel hypercoherence [8] and indeed we owe him the condition
[H2'] in section 3.

2 The upper semi-lattice of degrees

Throughout this paper, we will often define boolean functions via their trace.
The notion of trace of a function has been defined by Berry [4] and Girard
[9] in the framework of stable semantics of A-calculi. For first-order, monotone
boolean functions traces are particularly easy to define. In the next paragraphs
we sketch the isomorphism between traces and boolean functions, without
proofs.

A a (n-ary) traceisaset T C B*x (B\{.L}) satisfying the following conditions:

— If (wy, b1), (we, ba) € T and wy T wy then by = bs.
- wem(T)and w < v then v & 1 (T).

A n-ary trace T univoquely determines the function fr : B® —» B defined by:

Jrwy=\{beB|3w<v (w,b) eT}
Given a monotone function f : B* —+ B, the trace of f is defined by

tr(f) = {{v,b) jve B, be B, b#L, flv)=">b and Vo' <v f(v') =1}

Traces are in one-to-one correspondence with monotone functions. It is easy
to check that, given a trace T' and a monotone function g, tr{fr) = T and

Jer(g) = 9-

In order to introduce the first remark on degrees we recall the parallel or
function por defined by

tt fz= tt ory= tt
por(z,y) =14 ff ifz= ff and y = ff

L otherwise.




Fact 2 The posel of degrees of parallelism is o sup semilattice with a bottom
element (the set of PCF-definable functions) and a top element (the equiva-
lence class of parallel or).

Proof: The set of PCF-definable functions is the L of degrees by definition,
whereas the fact that [por] is the T of degrees, is a corollary of Plotkin’s
definability result [15]3.

Given f : B®* — B and g : B® — B, we define & : B* — B such that
[h] = [f]V[g]. Without loss of generality, let us suppose that there exists [ > 0
such that m = n —I. Then we set k= n+ 1, and let / be the unique functlon
from B* to B such that:

tr(h) = {(( tt ,21,...,2),0) | ((21,...,20),) € tr(f)} |

((FF, Ly sy @) B) | (B0 - 2m), D) € tr(9)]}.
{

In order to prove that [h] = [f] V [g] we have first to show that f <,., h and .
g <par N It is easy to check that h( tt ,z1,...,2,) = f(21,...,2,), and thus

Pdrazy . zp. d tt 21 mplh=f
and that h( £ ,91, .., U Tt - -+ T) = g{&1, ..., ), and thus

Az .. .zm. d £f L... L 2. . zpJh=g.

Moreover, let &' : B —» B be such that f,g <par #, i.e. such that there exist
M, N: [MJp' = f and [NJW' = g. Then it is again easy to check that

f

MAzy ...z if 2y then M gzo... .z else N g zppq. .. 23 )h = h

Hence [h] = [f] V [g]. n

Given f, g as above the function A given in the proof of the proposition will
be denoted by f + ¢.

The set of monotone functions which can be computed by sequential, purely
functional programs is the L of the hierarchy of degrees, and it has been the
object of a considerable amount of research. We end this section with a short
overview of some of these works, pointing out some notions and results used
in the rest of the paper.

3 Actually in Plotkin’s original proof a parallel if function is used instead of poz.
For the interdefinability of the parallel “if” and “or” see [20].




The Full Abstraction problem for PCF led to the definition of classes of func-
tions which are more constrained than the continuous ones; in particular, as we
will see, stable [3] and strongly stable [5] functions have a nice characterisation
in term of hypergraphs.

A continuous function f : B® — B is stable if for all vy, vy € B", if v; and v
are bounded then f{v; Awg) = f(uv1) A f(va) (or equivalently if for all distinct
v1, v € w1 {(tr(f)), v1 and v, are upbounded.)

A subset A = {vy,..., v} of B* is linearly coherent (or simply coherent) if
Vil<j<n(Lem(A)or#n;(A)=1)
where # X denotes the cardinality of the set X (we use this notation through-

out the paper). The set m;(A) = {vl,...,v]} is the j-th component of A. A
subset A of B is coberent if either it contains .l or it is a singleton.

Example 3: Consider the sets A, B € B® defined by

A={(tt, tt,L),(tt, ££,L1),(£f, L, vt ),{( ££, L, ££)}

B={(L1, tt, £f ),(££f,1L, ¢t ),(tt, ££,1}}

A is not coherent, since its first component does not contain L nor it is a
singleton. B is coherent since all its components do contain L. A is the set of
minimal points of the if-then-else function, which is PCF-definable; B is the
set of minimal points of the so called Berry function, which is stable but not
PCF-definable.

" The set of coherent subsets of B" (resp. B) is denoted C(B*) (resp. C(B)).

Coherent sets play an important role in our description of monotone functions
via hypergraphs: the vertexes of the hypergraph associated to a function f
stand for the minimal points of f (i.e. the elements of the first projection of
the trace of f), and a set {vy,..., v} of vertexes is an arc if and only if the
set of the corresponding minimal points of f is coherent. We will often use the
following simple properties of traces and coherence:

Fact 4 ~ If A € C(B*) and B is an Egli-Milner lower bound of A (that is

ifVex € Ady e By <z, #B < #A andVy € Bidr € Ay < z) then
B e C(B").



~ If f: B* = B is a monotone function, A C B, and f(A) C B\ {L}, then
there exists an Egli-Milner lower bound B of A such that B C m(tx(f)),
#B < #A and f(B) = f(A).

The first item is easy to check (a proof can be found in [5]); the second one is
an immediate consequence of the definition of trace.

Definition 5 A continuous function f : B* — B is linearly strongly stable
(or simply strongly stable) if for any A € C(B")

- f(A) € C(B).
- F(NA) = AF(A).

Example 6: Let us see how strong stability rules out the Berry function
g : B® — B defined by

tr(g) = {({L, tt, ££f ), tt ), ((££f,L, tt ), tt ), ((tt, £f, 1), tt )}

As we have seen in example 3 the set B of minimal points of ¢ is coherent,
but Ag(B) = tt # g(A(B)) =L. Hence g is not strongly stable.

Even though the model of strongly stable functions is not fully abstract for
PCF, i.e. there exist strongly stable functionals which are not PCF-definable,
see [5], strong stability does capture the notion of sequentiality, or PCF-
definability, at first-order. In the following proposition “sequential” stands
for “Kahn-Plotkin sequential” [11], “Milner sequential” [13] or “Vuillemin se-
quential” [22], since all these notions coincide for first-order functions.

Proposition 7 Let f : B™ — B be a monotone function. The following are
equivalent:

- f is strongly stable.
- f is PCF-definable.

- f is sequential.

A proof can be found in [6] and in [2]. The original proof of “sequential <
PCF-definable” is in [4].

Actually there exist several alternative characterization of the notion of PCF-

definability for first-order functions, for instance Sieber’s logically sequential

functions [18] and Colson-Ehrhard’s hereditarily sequential ones [7]. Of course
any fully abstract model of PCF [1], [10],[14] provides a fortiori a characteri-
zation of PCF-definability for monotoue, first order functions.



3 Hypergraphs and monotone functions

Definition 8 A colored hypergraph H = (Vi, An, Cy) is given by a finite set
Vi of vertices, a set Ag C {4 C Vy|#A > 2} of (hyper)arcs and a coloring
function Cy : Vg — {black,white}.

As a first approximation a map between two hypergraps is a set-theoretic map
from vertices to vertices which preserves hyperarcs; concerning colours, several
notions are possible: one extreme is to ask for the preservation of colours; on
the other hand a more liberal requirement is to say that the images of “adja-
cent” vertices of different colours have different colours (think of “adjacent”
as “being in the same hyperarc”).

Formally we consider two notion of morphisms on hypergraphs:

A weak morphism from a hypergraph H to a hypergraph H’ is a function
m . VH — VHI such that:

— Forall A C Vy, if A€ Ay then m(A) € Ay,
~for all X € Ay, if z,2/ € X and Cg{z) # Cu(z') then Cy(m(z)) #
C’Hf(m(x"))

A strong morphism is more restrictive on colours: we require that for all z €

VH, C'H(x) = OHf (m(n:))

A sub-hypergraph H' of a hypergraph H has as set of vertices Vi a subset
of Vy and as hyperarcs those of H whose vertices belong to H'. Colours are
given by restriction.

Note that set theoretical inclusions are both weak and strong morphisms with
this notion of sub-hypergraph.

We will restrict our attention on a particular class of hypergraphs which turns
out to be in a very precise relationship with monotone functions.

A functional hypergraph is an hypergraph H such that:

H1 : If {z,y} € Ay then Cy{z) = Cu(y).

H2 : If X C Vg, such that #X > 2, is not a hyperarc then there exists a
partition X3, Xs of X such that for all Y C X if YNX; # QY NXo £ 0
then Y is not a hyperarc.

Condition [H2| can be equivalently and more synthetically expressed as fol-
‘lows:

| H2’ : If Xy, X, are hyperarcs and X; N X, # 0 then X; U X5 is an hyperarc.




Lemma 9 The conditions [H2] and [H2'] above are equivalent.

Proof: [H2] = [H?/] is easy to prove. Conversely let X C Vg be such that
#X > 2and X ¢ Ag. I there is no hyperarc included in X, then any partition
satisfies {H2]. Otherwise let ¥ ¢ X be a maximal hyperarc included in X,
i.e. a {a fortiori proper) subset of X such that Y € Ay and for all Z C X,
if Z € Ay then #Z < #Y. By [H2'] and by maximality of ¥ we have that
forall Z C X, ZNY # 0 and ZN(X\Y) # 0 then Z ¢ Ap. Hence, the
partition ¥, X \ Y satisfies [H2]. .

It is trivial to check that a sub-hypergraph of a functional hypergraph is
functional.

We are now ready to define our categories of interest: SH, WH
object SH = object WH = Functional Hypergraphs.

arrows SH = Strong Morphisms.

arrows WH = Weak Morphisms.

(it is trivial indeed to check that in both cases we have a category).

Definition 10 Let f : B" — B be the n-ary function defined by tr(f) =
{{vi,b1),. .., (vg, b)) }. The hypergraph H;y is defined by

~ Vi, ={1,2,...,k}.

- AHf e {{ib’a‘;g, .. .,il} C VH_f {1>2 and{vil,viz,. . .,'U?;!} S C(Bn)}
- CHf(i) = if b; then white else black.

Example 11: Consider the Berry function g : B3 — B defined in example 6

and the parallel-or function por : B? — B defined in section 2, whose traces
are respectively

tr{g) = {((L, tt, ££), tt ), ((£f,L, tt ), vt ), ((tt, ££,L), tt )}

tr(por) = {((.L, tt ), tt ), ((tt L), tt),((£f, £f), ££)}

We have:
HQ = ({11 2:3}: {{1; 2:3}}1 Oﬂg(l) = CHg (2) = CHg (3) - White)

Hpor = ({1: 2:3}5 {{1:2}: {1,2, 3}}:

10




CHyee (1) = Ch,,. (2) = white, CH,, (3) = black)

The map « : Hy — Hyoy defined by a(l) = o(2) = 1, o3) = 2 is a (strong)
morphism.

Proviso 12: The vertexes of H; are in one-to-one correspondence with 7 (tr(f)).
We could have turned this correspondence into an identity, by stipulating
that Vi, = m1(tz(f)). However, since we will prove that whenever Hy and
H, are {weakly or strongly) isomorphic, f and g are equiparallel, and since
hypergraph isomorphisms are clearly independent from vertexes’ names, we
do prefer to keep this identity implicit. Nevertheless in several proofs of the
following sections, given Hy we will need to explicitly refer to minimal points
of f (i.e. to elements of w (tr(f))). Formally, given a functional hypergraph
H, there exists a family of functions {hs}reqy | m,=m1 © Vi — Upneo B" such
that hf(VH) = ’H’;_(tr(f)).

For the sake of simplicity we will omit h; whenever possible, and in particular
we will feel free of considering the vertexes of H; as if they were labelled by

m(tr(f)).

Also, in definition 10, the hypergraph H; associated to f is defined up to
(strong) isomorphism, since the order of tr(f)’s elements is not determined.
We could introduce a canonical numbering of the elements of B® to overcome
this problem, but again, since we will show eventually that (even weak) iso-
morphisms reflect equality of degree of parallelism, it is satisfactory for us to
work with hypergraphs defined up to isomorphisms.

We can observe that for any monotone function f : B® — B, the hypergraph
Hjy is functional: the requirement H1 is satisfied by H since if two minimal
points vy, ve of f are coherent, then they are bounded (note that this is true
only for binary sets), hence f{v;) = f(vq). H2 is verified as well, since if a set
A = {vy,..., v}, £ > 2 of minimal points of f is not coherent, then there
exists 1 < j < n such that the j-th component {v{,...,v}} of Ais { tt, £ }.
Hence the partition of {1,...,k} given by { {# | v/ = tt },{i | o] = £f }}
satisfies H2. Actually the converse does hold, too:

‘Proposition 13 Given an hypergraph H there exists a monotone function
f: B® — B, for some n, such that H; is strongly isomorphic to H if and only
if H is a functional hypergraph.

11




Proof: The function Fg associated to a functional hypergraph H = (Vy, Ag, Cy)
is defined as follows: Fiy : B® — B where n = #Vy + #Ag with

Ag={BCVy|#B>2and B¢ Ag}.

The trace of Fg has m = #Vy elements. We fix enumerations vy, .. . v, for the
set Vi and By, ... B, for the set Ay. For all B; € Ay let (B}, B?) a partition
of B; satisfying the condition [H2] (at least one such partition does exist, since
H is functional).

The i—th element of tr{Fy) is then defined as follows:

DU I - IR Y Y ) I
(( i i), Ci)

i1 n—i
where
tt if v; € B}
b =4 £f ifv, € B
1 otherwise
and

tt  if Cy(v;) = white
C; =
£f if Cy(v;) = black.

We leave to the reader to check that Fy is a monotone function whose hyper-
graph is (strongly isomorphic to) H. a

It is easy to see that the function FHf bears in general no resemblance with
f for example if f = por : B? — B then Fy, : B® — B. The function Fy
associated with a functional hypergraph H is not uniquely specified, since it
depends on the choice of the partitions (B}, BZ), 1 <4 < [ in the construction
above.

We end this section with a nice property of the categories SH, WH.

Proposition 14 SH, WH have coproducts.

Proof: Let us define the binary coproducts: given H, H' let H" be the hy-
pergraph given by the disjoint union of vertices of H, H', the disjoint union
of hyperarcs of H, H' and the disjoint union of the colouring maps of H, H'.
Then H" is a functional hypergraph (condition H1 is trivial and condition H2
is trivially checked as well by using H2').

The inclusion maps h (resp &' ) from H (resp H') to H" provide the injections.
Finally is easy to see that any pair of maps f, f' from H (resp H') to H"
factorize through H”, both in SH and in WH. ®

12




Note that categorical coproduct and Lu.b. of degrees are related in the follow-
ing sense:

Fact 15 The coproduct H; & H, (in both categories SH, WH) is isomorphic
the hypergraph of f +g¢.

Proof: By definition the trace of f -+ g has [+r elements with { (resp r) being
the number of element in the trace of f (resp g); this means that Hy,, has as
vertices the disjoint union of vertices of Hy, H,. By the definition of trace of
f + g is also clear that the colouring map of Hy,, is the disjoint union of the
maps in Hy, H,.

The only thing we are left to check is hence the hyperarcs. Again by definition
of trace of f + g and by definition of coherence it is easy to check that a
coherent subset of trace of f (resp of trace of g) is a coherent subset tr(f+g).
For the opposite direction note that by the definition of coherence a coherent
subset of tr(f +g) cannot contain elements from both tr(f) and tr(g) (again
by definition of tr(f + g) because of the first argument). This implies that the
hyperarcs of Hyy, are indeed the disjoint union of the hyperarcs of Hy and
H,. =

3.1 Relating hypergraphs and degrees

First we can observe how clearly hypergraphs classify PCF-definable and sta-
ble functions versus general monotone functions.

Fact 16 Let f : B® — B be a continuous function: f is stable if and only if H;
has no binary hyperarcs. It is strongly stable if and only H; has no hyperarcs.

Proof: Let us prove the statement concerning strongly stable functions: given
f:B* — B, if Hy has a hyperarc A = {v;,..., v} (see proviso 12), then by
definition {v1,...,v} € C(B™). Now either all the vertexes of A have the
same colour in Hy, and hence f(AA) < A f(A), or they have not, hence
f(A) € C(B). In both cases f is not strongly stable.

Conversely if H; has no hyperarc, let A € C(B") be such that L¢g f(A)
(otherwise f(A) € C(B) and f(AA) = Af(A) holds trivially). By fact 4,
there exists an Egli-Milner lower bound B of A such that B C m(tr(f)) and
f(A) = f(B). Since B is coherent and H; has no hyperarc, #B = 1, hence
f(A) € C(B) and f(AA) = A f(A), since it is easy to see that A A is above
the element of B.

13




The proof of the statement concerning stable functions is a particular case of
the one above, with & = 2 (one needs here that #B < #A, in fact 4). m

Hypergraphs have already been used in [6] in order to show that the poset of
degrees is highly non-trivial; in particular it contains both infinite (ascending
and descending) chains and infinite anti-chains. Bucciarelli defined a class of
hypergraphs as follows.

Definition 17 Given two natural numbers m > n > 3, let H(n,m) be the
hypergraph defined by: -

H(n,m)=({L2,....mL{AC{1,2,...,m} | #A > n}, for alli C(i) = white)

It is easy to check that the H(n,m)’s are functional hypergraphs. Let’s call
SH' the full subcategory of SH whose objects are (strongly isomorphic to)
the H(n,m). The main result of [6] is then:

Proposition 18 Let f, g be such that Hy, H, are objects of SH'; then SH'(Hy, H,) #
0 iff f <par 9-

In the following picture, f(n,m) stands for a function such that Hypm) is
weakly isomorphic to H(n,m) (a canonical choice for the f{n, m)’s is presented
in [6]), and arrows denote <,,, relations:

£(3,5)
N
f4,6)  f(3,4
TN
5,7) f(4,5) f(3,3)
NP
f5.6)  f(4,4)
\ |
| 1(5,5)
14




4 Subsequential functions

A monotone function f : B® — B is subsequential if it is extensionally upper
bounded by a strongly stable function. As shown in proposition 20 subse-
quential functions correspond to hypergraphs with monochromatic hyperarcs
and to functions preserving linear coherence. Such a class of functions admits
hence a natural characterisation in order theoretic, graph theoretic and alge-
braic terms. Moreover, thanks to their properties subsequential functions will
be an important combinatorial tool in our work.

Lemma 19 Let {B,}iex (X a non-empty set of indices) be such thatVz € X,
B, € C(B") and A = {A\Bg|z € X} € C(B"). Then U,ex Bs € C(B").

Proof: Suppose that YV = U,cx B, ¢ C(B"}; then there exists a component
1 < j < n and a partition (¥7,Y3) of Y such that for all 4; € Y1, {y1)! = tt
and for all yp € Y5, (o) = ££ .

It is easy to see that Vo € X, B, CY; or B, C Y»; hence if ¢ = A B, we get

~ ol = tt B, CY.
- gl = ff if B, C Y.

We hence deduce a non-trivial partition (A;, As) of A such that a € A; iff
of = tt and a € Ay iff o/ = £f . This is a contradiction since 4 € C(B"). =

Proposition 20 Let f : B* — B be a monotone function. The following are
equivalent:

1 For all A C sx(f), if m(A) € C(B") then my(A) € C(B)*

2 For all A € C(BY), f(A) € C(B). (i.e. f preserves the linear coherence of
B™.)

3 f is subsequential.

4 If X € Ay, then for all z,y € X Cy,(x) = Cg,(y) (i.e. X is monochro-
matic).

Proof:
1 = 2: Let A € C(B") be such that L¢ f(A) (otherwise f(A4) € C(B)). By

fact 4 there exists B C tr(f) such that = (B) is an Egli-Milner lower bound
of A, and ma(B) = f(A). Since m;(B) is coherent (fact 4) we are done.

4 Since by definition of trace L& wa(A), me(A) € C(B) if and only if m3(4) is a
singleton
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2 = 3: We have to define a strongly stable upper bound of f. Let f : B* — B
be the function defined as follows:

fz) = Vo (A fw)

Aec(Br), =\ A YEA

First of all we have to show that f is a function, i.e. that, given z € B?,
if A,B € C(B") are such that x > AA,AB, then A f(A) and A f(B) are
bounded (this is sufficient since B is clearly a coherent bounded complete cpo,
i.e. any set of pairwise bounded boolean values is bounded, and hence has a
Lub.). If A and B are as above, let us suppose, without loss of generality, that
Af(A) = tt and A f(B) = £f . Since C' = {A A, A B} is Egli-Milner smaller
than {z}, which is coherent, C is coherent (see fact 4), hence by lemma 19
AUB € C(B"). Since A f(A) = tt and A f(B) = £f we conclude that
f(AUB) = { tt, ff } ¢ C(B), hence f does not preserve C(B"). Since we
know that f does preserve C(B"), we conclude that f is well defined.

Moreover f is clearly monotone, and it is an upper bound of f since for any
z € B, {z} € C(B").

In order to prove that f is strongly stable, given A € C(B3"), let us prove that
(1) f(A) € C(B) and (2) fF(AA) = A F(A).

(1) If L€ f(A) then f(A) € C(B). Let us suppose that L& f(A). In this case,
by definition of f, for any z € A there exists B, € C{B") such that A B, <=z
and A f(Bg) >1. Since {A B, | € A} vis Egli-Milner smaller than A, we
conclude as above by fact 4 and lemuma 19, that U.cs B, € C(B"). Hence
F(Ugea Bz) € C(B). Now since for all z € A f(z) = A f(B,) >L, we have

F(A) = {Af(By) | z € A} = f(Uzea Bz) € C(B) and we are done.

(2) Since f is monotone, F(AA4) < A f(A). Let A F(A) = b > 1, and for any
z € A let B, be as above, that is B, € C(B*), AB, <z and A f(B;) =b>1.
Again we have that D = Uy By € C(B"). Moreover A(D) < A A, since for
any z in A, A B, < z, hence by definition of f, f(AA) > A f(D) = b, and we
are done.

3= 4 If X € Ay, and z,y € X are such that Cy,(z) # Cx,(y) then we can
find a subset A of tr(f) such that 71(A) € C(B") and m3(A) & C(B); it is clear
then that any extensional upper bound of f will not preserve the coherence
on 71(A) and henceforth will not be strongly stable.

4 = 1: Immediate by definition of H;.

16




We can observe that Berry’s function g is subsequential, whereas por is not
(see example 11).

Given aset A = {vy,..., v} C B", there exist in general a number of functions
whose minimal points are exactly the elements of A. For instance, if the v; are
pairwise unbounded, there exist 2* such functions. The following lemma states
that, among these functions, the subsequential ones are those whose degree of
parallelism is minimal.

Lemma 21 Let f,g: B* ~ B be such that g is subsequential and w1 (tx(f)) =
w1 (tr(g)). Then g <par f.

Proof: Let M be a PCF term which defines the sequential upper bound g of
g, defined as in proposition 20.

Let us define g : B” ~» B by

go = \fAzy .. Ty if foy... 2, then Mz ...z, else Mz, .. . z,)f

If we prove that gg = g we are done. Let @ = (a,...,a,) € B", and suppose
g(@ = b # L; then f(@) #L and (@) = b. Hence go(a@) = b. Conversely if
90(@) = b #1L then f(@) #.L and hence g{@) #1L as well. Since g(a@) < §(a) = b,
we get g(@) = b = go(@) and we are done. n

Our main result of section 5 is that, if there exists a morphism a : Hy — Hy,
then f <par ¢. The following lemma introduces a key notion towards that
result, namely the one of slice function. The idea is the following: in order to
reduce f : B™ — Bto g : B® — B we start by transforming the minimal points
of f into the ones of g. This amounts to defining a function from B™ to B",
that we describe as a set of functions f5,..., fn : B™ — B. If these functions
are g-definable, then we can already g-define a function which converges if and
only if f converges, namely :

h=AzZi...ZTm g{AT) ... (faT)

and we are left with the problem of forcing h to agree with f whenever it
converges.

For the time being we show that, if the f;’s are defined via a hypergraph mor-
phism ¢ : Hy — H,, then they are subsequential, hence “relatively simple”.

Lemma 22 Let f : B® — B, g : B — B be monotone functions and o :
H; — H, be o weak morphism. For 1 <i < nlet f; : B™ ~ B be the function
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defined by °

tr(fi) = {(v, @(v))v € m(vx(f)), a(v)’ # L}
Then for all A C tr(f;), if m(A) € C(B™) then m3(A) € C(B) .
(we will call f; the ith—slice of g following f and )

Note tha_t the fi’s, 1 < i < n, defined above are such that for all v €
Vi, a(v) = fi(v).

Proof: It is easy to see that the f;’s are well defined. Let A be a subset of
tr(f;) such that m (A) is coherent. If #A = 1 then w3(A) € C(B) holds triv-
ially. Otherwise, by definition of f; we know that for any v € m; (A), a(v)* #.L.
Moreover a(m;(A)) € C{B™), since « preserves hyperarcs. Hence we conclude
that for all v,v" € m(4), a(v)’ = afv)}, ie that m(A) = {a() | v €
m(A)} € C(B).

By proposition 20 and lemma 22 we get:

Corollary 23 Let f : B™ — B, g : B™ — B be monotone functions and
a: Hy = Hy be a weak morphism. All the slices of g following f and o are
subsequential,

Example 24: Berry’s function g, defined in example 6, is por-definable, as is
any other monotone function. Let us define a morphism o : Hy — Hy,,, and
see how the construction of the two slices of por following g and « provides
directly a way of constructing the PCF-term defining g with respect to por.
Let vy = (L, tt, £f ), vo = (££,1, tt ) and vz = ( tt, £f , L) be the
minimal points of g and wy = (L, tt ), we = ( tt , L) and w3 = ( £f , £f )
those of por. It is easy to check that the function o : Vi, — Vg, defined by
a(vi) = a(ve) = wr and avs) = w, is a (strong) morphism from H, to Hye:.

The morphism « defines the map from 71(tr(g)) into m (tr(por)) shown in
the following picture:

5

see proviso 12.




(L, tt, £f£)— (L, tt)

/

(£f,1, tt) (tt,L)

/

(tt, ££f,.1) (£f, £f)
The corresponding slice functions fi, fp : B> — B are then defined by:
tr(fl) = {(( tt, ff a}-)a tt )}

tr(fo) = {((L, vt , ££), tt ), (( ££,1, tt), tt }}

Both f; and fs are sequential, hence PCF-definable. For example the following
terms M, M, define fi, fo respectively:

M, = Az y z. if z then (if y then L else tt )else L

My = Az y z. if z then (if z then L else tt) else {if y then tt else 1)

The pair (My, M) realizes a sequential transformation of the minimal points
of g onto (some of) the minimal points of f. This allows to construct a term
M defining g with respect to por as follows:

M=ANMyzf(Mizyz) (Mazy2)

It is easy to check that [M]por = g.

The theorem of the following section generalizes the situation above: we show
‘that, given a (weak) morphism « : H; — Hy, the slices of g following f and «
are g-definable (even if in general they are not sequential), and this is enough
to construct a PCF-term which g-defines f.

19




5 Hypergraph morphisms and degrees

Theorem 25 Let f : B — B, g : B™ — B be monotone functions. If
WH(Hy, Hy) # 0 then f <par g-

Proof:

Let o : Hf — H, be a weak morphism. We prove the theorem by induction

on k = #tr(f).

If k =1 f is sequential (strongly stable), hence PCF-definable, and f <par g
holds trivially.

Suppose now k = n -+ 1; we reason by cases on the structure of Hy:

~ VHf ¢ Ag,: this means that there exists a sequentiality index for f, that
is a component of m(tr(f)) which is not a singleton and which does not
contain L; let ¢ be such a component. Define

M = \g NE. if z; then M 4, gT else M ¢ g%

where M,, p = tt , ff , is the term g-defining the sub-function fo
of f such that m;(m (tx(f,))) = {p}. The terms M, do exist by inductive
hypothesis: #tr(f,) < #tx(f), and WH(H;,, H,} # U since the restriction
of a to Hy, is a morphism.

It is easy to check that M g-defines f.

~ Vg, € Ag,:

Let f; , 1 <4 < m, be the ith-slice of g following f and «, and now define

i as

;o {fi if #er(f;) < #er(f)

AZ.v for v € mo(tr(f;)) otherwise

The f;’s are well defined, since if #tx(f;) = #tr(f) then #m(er(fi)) = 1,
Vi, being a hyperarc and f; subsequential.

Let us prove that the fz s are g-definable. The only case to be checked is
f; = f; in the previous definition, since AZ.v is PCF-definable.

Since the f;’s are subsequential, by lemma 21 f; <par f7, where tr( =
{vete(f ) | m1(v) € m(tr(fi))}. Now #tr(ff) < #tr(f) and, as above,
WH(H:, Hy) # 0. Hence by inductive hypothesis F <par g, and finally
fi Spaxr g by tran31t1v1ty of <par. Let M; be a term g-defining .

Before constructing a term M g-defining f let us prove that we can already
g-define a “convergence test” for f, i.e. that for all T = (zy,...,2;) € B

f@ #L « g(MeT, - . [Mn]eT) #1
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The direction = is trivial, since the f;’s are upper bounds of the f;’s, hence
if there exists v € m{tx(f)) such that v < %, then ([My]¢7, ..., [M.leZ) >
a{v).

For the opposite direction, let us suppose that f(Z) ==L, and hence for
all v € m(tx(f)), T # v. By definition of the f;’s we know that for all w €
o(Vy,), ((Mi]oz, ..., [Mn]gZ) < w, since, under the hypothesis f(z) =1,
we have that for all 1 < j < m, forall b € { tt , £f } [M;]l¢g% = b implies
#; = AZ. b implies for all w € a(Vy,), w? =b.

Since Vy, is a hyperarc, we know that #a(Vy,) > 2, and by minimal-
ity of the elements of m(tr(g)) we conclude that for all w € ny(tx(g))
([MeE, ..., [Mu)gT) # w, and hence g(fM]¢z, . .., [Mn]oZ) =L.

We can now conclude the proof, again by case reasoning on the structure
of H I+
- Vg, is a monochromatic hyperarc {w.lo.g. assume that all vertices are

white). Then it is easy to check that the term

M = Ag ME. if g(M1g%) ... (M,,g7%) then tt else tt

g-defines f.
. VHf is not monochromatic: we first note that in this case

Vz,y € Vi, Clz) = Cly) & Clez)) = Claly)

i.e. @ acts as the identity or the “negation” on colours (the “<” direction
follows directly from the definition of weak morphism; as for “=” remark
that, since Vy, is a polychromatic hyperarc, if C(z) = C(y), then there
exists z € Vi, such that C(2) # C(z). Since it must be C{a(z)) # C(a(x))
and C(a(z)) # Cla(y)), the result follows). We define then

M = Ag AZ. e(g(M197) ... (MmgT))

where ¢ is the boolean identity or the boolean negation according to how
e acts on colours. Then again it is easily checked that M g-defines f.

In the following example, we “run” the proof of the theorem in order to con-
struct a PCF-term which defines f; relatively to gs, these functions being
defined in the example 1.

Example 26:
Since Hy, = Hg, =

({1,2,3} {{1,2},{1,3},{2,3},{1,2,3}}, C(1) = C(2) = C(3) = white)

21




we can choose id : Hy, — H,, as morphism. The corresponding transformation
of m1{(tr(fs)) onto x1{tr(gs)) is then:

(st ,1,1)—={(L, tt, tt)
(L, tt,L)——=(tt,.L, tt)

(L, 1, tt)—={tt, tt, 1)

The slice functions are hence defined by:
er(f]) = tr(f) = {((L, et , 1), vt ), (L, L, vt ), vt )}
er(fy) = tr(fg) = {((tt, L, 1), te ), (L, L, £t ), tt )}

tr(fé) - tr( Aé) = {(( tt, L, J—)v Tt ): ((-—L? Tt :-L): Tt )}

The fls being non-sequential, we have to re-run our proof in order to define
them relatively to gs. Let us consider f{. The following picture represents a
morphism o : Hyp — Hy,:

(L, tt, tt)
(L, tt, L}—=(tt,L, tt)

(L,l, tt)—(tt, tt, L)

The corresponding slice functions are
"= fl# =0T tt
er(fy) = tr(f)) = {((L, L, tt), tt)}

tr(fy) = tr(ff) = {((L, tt, 1), tt)}
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Now the f!s are trivially gs-definable (their traces are singletons). The corre-
sponding terms are M; = MAT tt , Ms = ARAT if z3 then tt else L
Ms = AhAT if z, then tt else 1.

The term M gs-defining f] is hence:

M = MhAZ if h (M), h &) (M h T) (M3 h T) then tt else tt

By eliminating redundant conditional statements {and with some abuse of
notation) we obtain the following definition of fi:

L= AF ga( tt ,z3, z2)

similar constructions allow us to obtains the terms gs-defining f; and f3, and
finally we get (again with some simplifications)

fs =Xz 25 23 galgs( T, 23, 22), ga(zs, tt, z1), g3(z2, 1, tT))

We can observe that this construction leads to a term which is more complex
than the one showed in example 1.

We can of course remark that:

Corollary 27 If H; and H, are strongly (or weakly) isomorphic, then [f] =
[4].

This corollary answers to a question asked in the introduction: functions hav-
ing the same hypergraph are equiparallel.

Another remark concerns subsequential functions: if H; has monochromatic
hyperarcs then any function & : Vg, — Vg, which preserves hyperarcs is a
weak morphism. Hence:

-Corollary 28 Let F be the forgetful functor from colored hypergraph to hy-

pergraph, and let o : F(Hy) — F(H,) be a hypergraph morphism. If f is
subsequential then [ <,u: g.
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6 Conclusion

We have seen several properties relating the poset of degrees and a category
of hypergraphs: Concerning the objects of this category we have shown how
one can naturally characterize basic properties of boolean functions in term
of hypergraphs. Concerning the arrows we have shown that hypergraph mor-
phisms reflect <p., relations. Moreover, when a morphism o : Hy — H, does
exist, we can extract from the proof of theorem 25 a PCF-term which defines
f relatively to g.

One natural question at this point is whether hypergraph morphisms preserve
<par relations, i.e. whether whenever f <p.. g, WH(Hy, H,) is non-empty.
The answer is no; for example, consider:

Example 29: Let f; : B> — B be the function defined in example 1. Its
hypergraph is:

Hy, = ({13 2, 3}1 {{11 2},{1,3}.{2,3}, {1: 2,3}},C(1) = C(2) = C(3) = white)

It is easy to see that there exists no (even weak) morphism m : Hy, > Hpor.
Nevertheless f3 <p.r por, since for instance

fs = [M]por

where
M = Af Azyzaws. if f(f (21, z2))}xs then tt else L

Although the notions of hypergraph morphism presented here are too weak
in order to get a completeness result we do believe that hypergraph represen-
tation does retain enough information on functions in order to achieve such
completeness. The price to pay seems to be the use of more involved notions
than (weak or strong) hypergraphs morphisms.
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