
Fast Algorithms for the Computation of Ranklets
Smeraldi, Fabrizio

 

 

 

 

 

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/4999

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queen Mary Research Online

https://core.ac.uk/display/30696785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/jspui/handle/123456789/4999


22

Fast Algorithms for the Computation of Ranklets
ISSN 2043-0167

EECSRR-09-01 January 2009 School of Electronic Engineering 
and Computer Science

Fabrizio Smeraldi





FAST ALGORITHMS FOR THE COMPUTATION OF RANKLETS

Fabrizio Smeraldi

Queen Mary University of London
School of Computer Science and Electronic Engineering

Mile End Road, London E1 4NS, UK

ABSTRACT

Ranklets are orientation selective rank features with applica-
tions to tracking, face detection, texture and medical imaging.
We introduce efficient algorithms that reduce their computa-
tional complexity from O(N log N) to O(

√
N + k), where

N is the area of the filter. Timing tests show a speedup of
one order of magnitude for typical usage, which should make
Ranklets attractive for real-time applications.

Index Terms— Ranklets, Rank features, Orientation de-
composition, Wilcoxon statistics, Distribution counting sort

1. INTRODUCTION

Rank features have long been appreciated by the Computer
Vision community because of their invariance to monotonic
brightness transformations, that results in an outstanding ro-
bustness. After the classical applications to wide-baseline
stereo matching [1, 2] and texture segmentation [3], rank fea-
tures have recently known a renewed interest in connection
with object recognition [4, 5].

Ranklets introduced Haar wavelet–style orientation selec-
tivity to rank features [6]. They are based on the Wilcoxon
statistics and have an interpretation in terms of pairwise pixel
comparisons; applications include face detection [4], point
tracking [7], texture classification [8] and the detection of
masses in mammographic images [9, 10]. One of the dis-
advantages of rank features is their relatively high computa-
tional cost. Ranklets were introduced as having O(N log N)
complexity, were N is the number of pixels in the support
window of the filter [6]. While this is relatively low, it
has arguably hindered the application to real-time or high-
throughput image analysis, where linear or constant-time
descriptors are preferred (see for instance [11]). The com-
plexity quoted was based on the computation of the Wilcoxon
statistics using the Quicksort algorithm. To the best of our
knowledge, most applications have so far been based on
Quicksort, many of them using the C library originally devel-
oped by the author of [6] or closely related implementations.

We introduce alternative, faster algorithms for the compu-
tation of Ranklets. Specifically, we note that due to the quan-
tised nature of image brightness, the Distribution Counting

algorithm [12] can be used to compute Ranklets with linear
complexity. This can be further improved in the case that the
same Ranklet needs to be computed over the entire image,
leading to O(

√
N + k) complexity and a dramatic speedup.

In the case that Ranklets with different support windows
must be computed at sparse image locations a caching mech-
anism using sparse matrices (in some way an extension of the
Integral Image of Viola and Jones [11]) also achievesO(

√
N)

complexity, albeit at the cost of a preprocessing step that is
linear in the size of the image.

We present a detailed discussion of these algorithms and
of an Insertion Sort alternative and report timing experiments
on standard database images.

2. BACKGROUND: RANKLETS

Ranklets are a family of multiscale rank filters that display an
orientation selectivity pattern similar to Haar wavelets. Like
all other rank features, they are defined on the relative order
of pixel intensity values rather than on intensity itself; thus
their computation entails a sorting operation.

With reference to Figure 1, consider the three Haar
wavelets hi(!x), i = 1, 2, 3 supported on a local window
W. Let Ti = h−1

i ({+1}) and Ci = h−1
j ({−1}) be the

counter-images of +1 and −1 in the three cases; the idea
is to perform a nonparametric comparison of the relative
brightness of these two regions, for each orientation i.

Let π(!x) be a ranking of the pixels inW according to their
intensity I(!x) (we are for the moment assuming that no two
pixels share the same intensity; this restriction will be lifted
in Section 4.1 below). We compute the Wilcoxon statistics
Wi

s =
∑

!x∈Ti
π(!x) for the comparison of the intensity of the

pixels in Ti and Ci;Wi
s is an increasing function of the rela-

tive brightness of Ti [13]. We centreW i
s around its average

value by computingW i
Y X = Wi

s − (N/2 + 1)N/4, where
N is the number of pixels inW. The Mann-Whitney statistics
Wi

Y X is equal to the number of pairs of pixels (!x, !y), with
!x ∈ Ti and !y ∈ Ci, such that I(!x) > I(!y) (for a proof,
see [13]); its value thus ranges from 0 to N 2/4. We define
Ranklets asRi

W = 8Wi
Y X/N2−1, so that their value ranges

from−1 to +1 as the contrast between Ti and Ci is reversed.



Fig. 1. The three two-dimensional Haar wavelets h1(!x),
h2(!x) and h3(!x) (from left to right). Letters in parentheses
refer to the “treatment” and “control” pixel sets.

3. DISTRIBUTION COUNTING

The computational cost of Ranklets is dominated by the rank-
ing π. In [6] this is put at O(N log N), i.e. the complexity of
the Quicksort algorithm. However, in the case of quantities
with a limited set of values such as pixel intensities, sorting
by accumulation is a more efficient strategy.

Let HW(i) = #{!x ∈ W|(!x) ≤ i} be the cumulative
histogram ofW. Then the rank of pixel !x is bound by

HW(I(!x) − 1) + 1 ≤ π(!x) ≤ HW(I(!x)), (1)

with the added convention that HW(−1) = 0. This is known
as the Distribution Counting algorithm [12]; the equality signs
apply to the case that exactly one pixel in W has intensity
i. In the case of tied measurements, it is common practice
in rank statistics to introduce average ranks π∗ (known as
midranks [13]). These are easily obtained by setting

π∗(!x) = 1/2 (HW (I(!x) − 1) + HW (I(!x))) + 1/2. (2)

The Distribution Counting algorithm has complexity
O(N + #) where the number of grey levels # accounts for
the integration of the histogram to obtainHW (or π∗).

Distribution counting is efficient forN % #, which is not
true for windowsW of small size. In this case, it is convenient
to keep track of the minimum and maximum intensity in W
to reduce the computation of π∗ to this interval. Because of
the statistical properties of natural images, we can expect the
effective range of intensities #∗ = Imax−Imin+1 to be much
smaller than #.

4. WHOLE IMAGE FILTERING

When the same filter is to be applied to the entire image some
optimisations are possible, leading to the Incremental Distri-
bution Counting algorithm introduced below. We compare
this algorithm with a similarly optimised Insertion Sort and
the reference Quicksort.

4.1. Incremental Distribution Counting

In the case of Distribution Counting, considerable compu-
tational savings are possible by exploiting the almost com-

Fig. 2. Histogram update forHW (left) andHT for a diagonal
Ranklet (right). The dashed areas are added to the histograms,
while the hatched areas are removed.

plete overlap between two consecutive positions of the sup-
port window W as it scans the image. To this end, one only
needs to maintain the histogram HW of W together with the
histogram HTi of the Ti for each of the three ranklet orien-
tations i = 1, 2, 3. When W is slid one pixel to the right,
the histograms can be efficiently updated as illustrated in Fig-
ure 2. Let W′ denote the translated window: the pixels in
W \ W′ are subtracted from HW, while those in W′ \ W are
added (Imin and Imax also need to be updated). Similarly,
for each of the three orientations, the pixels in T i \ T′

i are
discounted from HTi , while those in T′

i \ Ti are added. Fig-
ure 2 (right) shows the most complicated case, i.e. a diagonal
Ranklet.

For each position of W, one can obtain π ∗ from HW as
described in Section 3 above. The Wilcoxon statistics is ef-
ficiently computed as Ws =

∑Imax

j=Imin
HTi(j)π∗(j), where

with a slight abuse of notation we have treated π∗ as a func-
tion of the intensity j rather than of the pixel !x; Imin and
Imax are the minimum and maximum intensities inW.

Histogram updates only involve two full columns of W
(similarly, a shift in the y position of W only involves two
rows). Therefore, for a square window, the entire decom-
position can be computed at a cost of O(2

√
N + #∗) per

Ranklet, where #∗ is the average range of grey levels appear-
ing in W. This represents a considerable improvement over
O(N log N), which is the complexity of Quicksort.

4.2. Incremental Insertion Sort

The time complexity of Insertion Sort (IS) isO(N+d), where
d is the number of inversions [12]. Although the average case
is quadratic in N , its very simple structure makes the algo-
rithm effective for small sets of points. IS is also more effi-
cient on partially ordered arrays (in the optimal case of an al-
ready ordered array, d = 0 and the algorithm is linear). This
is clearly the case of a scanning support window, as most of
the pixels in W are unchanged between neighbouring posi-
tions. We apply an incremental update similar to that used in
Section 4.1 above, and refer to this as Incremental Insertion
Sort (IIS).



0 50 100 150 200 250
0

0.2

0.&

0.6

0.(

1

1.2

1.&

 

 

Quicksort
Increm Insertion
Distribution Count
Increm Distr Count

0 5 10 15 20
0

0.02

0.0&

0.06

Fig. 3. CPU time (s) as a function of the area of W for the
raster-scan computation of the 3 ranklet orientations.

4.3. Experimental results

We evaluated the comparative performance of Quicksort, the
Incremental Distribution Counting (IDC) algorithm and IIS
over the 241 images of the Caltech Pasadena Houses data-set
(246 × 163 pixel series) [14]. Tests were run using C im-
plementations on an Intel Core2 Duo E8200 CPU running at
2.66GHz. Our system has 3GB of RAM installed and runs
Linux Fedora 10. Timing with clock() provides an accu-
racy of 0.01s; The standard qsort() function was used for
Quicksort.

Figure 3 shows the time for the computation of all 3
ranklet orientations over the entire image as a function of
N = #W. Times are averaged across the 241 images in the
database; multiple values for the same N and the same algo-
rithm correspond to different aspect ratios of W. As can be
seen, IDC represents by far the best choice, outperforming the
other algorithms for most window sizes. The speedup with
respect to Quicksort is dramatic (a factor of 5 for N = 32
pixels only, or 10 for N = 84). IIS is slightly advantageous
forN ≤ 16 (Figure 3, inset).

5. SPARSE COMPUTATION

We may not be interested in computing each filter over the
entire image — notably if an attentional mechanism is used,
or in the later stages of a cascading approach. When locations
are sparse, it is no longer possible to exploit window overlap
to increase efficiency.

As our experiments below show, a straightforward use of
the Distribution Counting algorithm generally provides the
best solution in this case, with complexity O(N). However,
a competitive alternative is presented by a Sparse Distribu-
tion Counting (SDC) algorithm reminiscent of the Integral
Image used by Viola and Jones for the computation of Haar

wavelets [11]. SDC requires a preprocessing step that is lin-
ear in the number of pixels of the entire image, but then allows
computing ranklets of any size with linear complexity in the y
size ofW (that is, O(

√
N) for Ranklets of fixed aspect ratio).

5.1. Sparse Distribution Counting

As we have seen, the Distribution Counting algorithm de-
pends on the possibility to compute HW with a limited
number of operations. To this end, let the “tally image”
Bi(x, y) =

∑
p≤x,q≤y δ(i − I(p, q)) be the number of pixels

of intensity i in the rectangular region delimited by the origin
and point (x, y). For any sub-window W with a diagonal
specified by (x0, y0) and (x1, y1) we have

HW(i)=Bi(x1, y1)−Bi(x0, y1)−Bi(x1, y0)+Bi(x0, y0). (3)

This is essentially equivalent to the Integral Image algorithm
of Viola and Jones [11], except that Bi(x, y) counts the pix-
els instead than cumulating their intensity. This method has
the advantage that, once Bi is computed at a linear cost, any
windowW can be processed in constant time. Unfortunately,
this is impractical for the computation of the histogram of
images of normal size, as it would require storing # = 256
tally images. However, since each unit increment of x or
y adds only a relatively small number of pixels to the tally,
one can expect the locations at which each B i changes to
be sparse, at least in a region around the origin. This can
be exploited to reduce storage space. We overlay a square
grid of step ∆ to the image. For each grid cell (r, s) we
compute the following cell-wise tally images: B r,s

i (x, y) =∑
p≤x,s∆≤q≤y δ(i − I(p, q)). Instead of caching all values

of these function, we use a variant of the Yale sparse matrix
representation to efficiently store only the points (x i,k, yi,k)
such that Br,s

i (x, y) < Br,s
i (xi,k, yi,k) ∀x < xi,k, ∀y <

yi,k [15]. Matrix rows are implemented as linked lists: each
element is a structure containing the column number x i,k as
well as the actual value ofBr,s

i (xi,k, yi,k). Pointers to the lists
are stored in an array of length equal to the number of rows in
the cell. Only the rows corresponding to some y i,k are allo-
cated; the other rows y point to the list for the largest y i,k so
that yi,k < y. Retrieving a value of Br,s

i (x, y) thus amounts
to scanning a list for the largest xi,k smaller than x; the cost of
this operation is limited by the size of the cell∆. A separate,
finer grid with step Γ < ∆ is used to keep track of the mini-
mum and maximum grey values in the image neighbourhood,
so that matrix lookup is not performed in un-needed parts of
the dynamic range.

For each support window W, the histogram HW can be
obtained according to Equation 3, except that each horizontal
“band” ofWwith∆s ≤ y < ∆(s+1) needs to be treated sep-
arately, and the results summed (the asymmetry in the treat-
ment of x and y is due to the sparse matrix representation
used). This introduces a linear dependence on the vertical
size of the Ranklet.



0 100 200 300 &00 500 600 700 (00
0

0.5

1

1.5

2

2.5

3

3.5

&

&.5

5
x 10!3

 

 
Quicksort
Sparse Distr Count
Distribution Counting

Fig. 4. Average CPU time (s) vs side of W for the computa-
tion of all 3 ranklet orientations at randomly chosen locations

5.2. Experimental results

We comparedQuicksort, the SDC algorithm and a straightfor-
ward implementation of Distribution Counting (DC) over the
241 images of data-set [14], 1760 × 1168 pixel series (hard-
ware and timing method as in Section 4.3).

Figure 4 shows the time required for the computation of
all 3 orientations of a square Ranklet as a function of the side
of W. Times are averaged across 10, 000 random locations
on each of the 124 images. Both DC and SDC outperform
Quicksort. As can be seen SDC is linear in the side of W,
which makes it faster for larger window sizes. We set ∆ =
64 and Γ = 8 pix; for each image, the average preprocess-
ing time is 2.05s and the algorithm cashes only 6.5% of the
1760 × 1168 × 256 tally image values required by a naive
approach. However, since DC is faster than our develop-
ment implementation of SDC for window sizes up to about
350 × 350 pixels and does not require any preprocessing, it
is probably the best choice for most applications. The lower
complexity of SDC may make it advantageous as optimised
implementations become available.

6. CONCLUSIONS

We introduced four algorithms for the computation of Ran-
klets that improve on the complexity of the classical Quick-
sort approach. Distribution Counting is linear in the number
of pixels of the support window (plus the number of grey lev-
els), and is applicable to both raster–scan and sparse com-
putations. The Incremental Distribution Counting algorithm
applies to full image scans, and is linear in the side of the
support window of the filter. Incremental Insertion Sort is
also a convenient option for scanning with small sized filters.
Finally, the Sparse Distribution Counting algorithm achieves
a complexity proportional to the side of the window for the

sparse computation of Ranklets of arbitrary size; however, a
linear preprocessing of the image is required.

Speedups of an order of magnitude are easily achieved us-
ing these algorithms, which we believe should make Ranklets
attractive for real–time applications. To facilitate these, the
C implementations used in this paper will be made available
through www.ranklets.net. Finally, we hope that some
of the ideas discussed here may be applicable to the compu-
tation of other features based on local pixel rankings.

7. REFERENCES

[1] R. Zabih and J. Woodfill, “Non-parametric local transforms for
computing visual correspondence,” in Proceedings of the 3rd
ECCV, 1994, pp. 151–158.

[2] D. N. Bhat and S. K. Nayar, “Ordinal measures for visual cor-
respondence,” in CVPR, 1996, pp. 351–357.

[3] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative
study of texture measures with classification based on featured
distribution,” Pattern Recognition, vol. 29, no. 1, pp. 51–59,
1996.

[4] E. Franceschi, F. Odone, F. Smeraldi, and A. Verri, “Feature
selection with nonparametric statistics,” in ICIP, September
2005, vol. I, pp. 325–328.

[5] M. Heikkilä, M. Pietikäinen, and C. Schmid, “Description of
interest regions with local binary patterns,” Pattern recogni-
tion, vol. 42, pp. 425–436, 2009.

[6] F. Smeraldi, “Ranklets: orientation selective non-parametric
features applied to face detection,” in Proc. of the 16th ICPR,
August 2002, vol. 3, pp. 379–382.

[7] A. Del Bue, F. Smeraldi, and L. Agapito, “Non-rigid structure
from motion using ranklet-based tracking and non-linear op-
timization,” Image and Vision Computing, vol. 25, no. 3, pp.
297–310, March 2007.

[8] M. Masotti and R. Campanini, “Texture classification using
invariant ranklet features,” Pattern Recognition Letters, vol.
29, pp. 1980–1986, 2008.

[9] M. Masotti, “A ranklet-based image representation for mass
classification in digital mammograms,” Medical Physics, vol.
33, no. 10, pp. 3951–3961, 2006.

[10] A. Mohammed, R. A. El-Khoribi, and L. Fekry, “Discrete Hid-
den Markov Tree modelling of ranklet transform for mass clas-
sification in mammograms,” GVOP Special Issue on Mammo-
grams, vol. 7, pp. 61–68, 2007.

[11] P. Viola and M. Jones, “Robust real-time object detection,” in
II Int. W. on Stat. & Comp. Th. of Vision, 2001.

[12] D. E. Knuth, The art of computer programming, vol. III,
Addison–Wesley, 1973.

[13] E. L. Lehmann, Nonparametrics: Statistical methods based on
ranks, Holden-Day, 1975.

[14] “Pasadena houses 2000,” accessed Jan 2009,
http://www.vision.caltech.edu/html-files/archive.html/.

[15] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sher-
man, “Yale sparse matrix package i: the symmetric codes,”
IJNME, vol. 18, pp. 1145–1151, 1982.




