
Programming with Bunched Implications
Armelin, Pablo

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/4746

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/30696777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/jspui/handle/123456789/4746

Programming with Bunched
Implications
Pablo Armelin

Department of Computer Science

Research Report No. RR-02-02 ISSN 1470-5559 September 2002

1

Programming with Bunched Implications

Pablo Armeĺın

Submitted for the degree of Doctor of Philosophy

Queen Mary, University of London

2002

2

Acknowledgements

I wish to thank David Pym for his seemly inexhaustible amount of patience during

the supervision of this thesis.

Also to my fellow PhD students Mike Samuels and Jules Bean for endless discus-

sions on and off (and on again) topic.

For the writing of this thesis I used Jules Bean’s “mathlig” package. Jules also

implemented TEX macros used in Chapter 8.

Finally, thanks to all the academic and non-academic members of the Depart-

ment of Computer Science, Queen Mary, Universisy of London for their uncondi-

tional support through all these years.

3

Programming with Bunched Implications

Pablo Armeĺın

Abstract

We give an operational semantics for the logic programming language
�����

, based

on the hereditary Harrop fragment of the logic of bunched implications, BI. We in-

troduce BI, explaining the account of the sharing of resources built into its seman-

tics, and indicate how it may be used to give a logic programming language. We

explain that the basic input/output model of operational semantics, used in linear

logic programming, will not work for bunched logic. We show how to obtain a com-

plete, goal-directed proof theory for hereditary Harrop BI and how to reformulate

the operational model to account for the interaction between multiplicative and ad-
ditive structure. We give examples of how the resulting programming language han-

dles sharing and non-sharing use of resources purely logically and contrast them

with Prolog. We describe the use of modules and their applications and discuss the

possibilities offered in this context by multiplicative quantifiers. We provide a de-

notational semantics based on the construction of a least fixed point of Herbrand

interpretations. Finally we provide an annotated implementation of the operational

semantics using the continuation-passing style (CPS).

�����
	������
�������������
�������������

� ������� � ������������! �"$#��% � �

Submitted for the degree of Doctor of Philosophy

Queen Mary, University of London

2002

4

Contents

1 Introduction 5

1.1 The logic landscape before BI . 5

1.2 A semantic view of a logic for resources 7

1.3 A proof-theoretic view of bunched logic 10

1.4 Introduction to logic programming . 11

1.4.1 Proof search as Computation . 12

1.4.2 Uniform Proofs . 12

1.4.3 Context management in linear logic 14

1.4.4 Context management in BI . 15

1.5 Thesis Overview . 18

2 The proof theory and semantics of BI 19

2.1 Introduction . 19

2.2 Bunches . 19

2.3 A Natural Deduction System . 21

2.3.1 Term Language . 21

2.4 Models for BI . 23

2.5 Predicate BI . 27

2.6 A sequent calculus system . 28

3 Logic Programming with BI 32

3.1 Introduction . 32

3.2 Uniform Proofs in BI . 32

3.3 Notation . 35

3.4 Uniform Proofs . 36

3.5 Weakening . 37

3.6 CutAxiom . 37

5

3.7 Resolution and Simple proofs . 39

3.8 Simple Proofs . 44

3.9 Resolution Proofs . 45

3.10 Permutation of Rules in BI . 46

3.10.1 Additive implication (� �
) . 46

3.10.2 Multiplicative implication (��� �) 49

3.10.3 Additive universal quantifier (� �) 51

3.10.4 Multiplicative universal quantifier (���	��
 �) 53

3.11 A shorter version using pseudo-connectives 55

3.11.1 Implication (�� �
) . 56

3.11.2 Universal quantifier (��� �) . 57

4 Operational Semantics 59

4.1 Introduction . 59

4.2 Subtraction Operation on Bunches . 59

4.3 Judgements for the operational semantics 68

4.4 Operational semantics overview . 70

4.5 Soundness and Completeness . 75

4.6 Predicate
�����

. 92

4.6.1 Predicate rules for LBI . 92

4.6.2 Operational semantics for predicate
�����

. 92

4.7 Predicate BI with bunched variables . 93

4.7.1 Alternative sequent calculus system: LBI � 93

4.7.2 Translation from LBI � to LBI . 94

4.7.3 Translation from LBI to LBI � . 95

4.8 Soundness and Completeness of LBI � . 97

4.9 Operational semantics for full predicate BI 97

5 Examples 100

5.1 Introduction . 100

5.2 Fights Between Rival Factions . 100

5.3 Family Matters . 103

6

5.4 Encapsulation . 104

5.5 Linear Recursion . 105

5.6 Other Idioms . 108

5.7 The �
�

-calculus . 110

5.7.1 A first failed attempt . 111

5.7.2 A second failed attempt . 113

5.7.3 The working version . 113

5.8 Modules . 115

6 Denotational Semantics 116

6.1 Introduction . 116

6.2 Hereditary Harrop formulæ for BI . 116

6.3 A Denotational Semantics for BI . 118

6.4 Discussion . 132

7 Conclusion and further work 134

7.1 Introduction . 134

7.2 Other Bunch-forming Operators . 134

7.2.1 Units . 134

7.2.2 Still more operators? . 136

7.2.3 New Units . 137

7.2.4 New Axiom . 137

7.2.5 New Connectives . 138

7.2.6 Computational content . 139

7.3 Applications . 141

8 Implementation for
�����

143

8.1 Introduction . 143

8.2 A Data Structure for Bunches . 143

8.3 Code for ����� � �
� 	 �

. 144

8.3.1 The ����� �
� datatype . 144

8.3.2 Joining bunches . 145

8.3.3 The “minimum number of weakenings” operation 145

7

8.3.4 The subtract operation . 146

8.3.5 Other important bunch operations 147

8.4 Code for
 � � ������� � ��

� 	%�
. 149

A Uncommented code of main modules 162

A.1 bunch.ml . 162

A.2 interpreter.ml . 170

Bibliography 187

8

Chapter 1

Introduction

1.1 The logic landscape before BI

From the early days of philosophy people has been fascinated by the possibilities

opened by our capacity for thought. Aristotle seems to be the first that realized that

thought processes can be abstracted and judged by their shape rather than their con-

tent, and gave a series of formal rules known as predication rules.

For thousands of years these rules were considered the ultimate truth about valid

reasoning. It wasn’t until the appearance of Boolean logic that the development of

logic took new impetus. The different, albeit equivalent, systems arising are nowa-

days known as classical logic.

Intuitionistic logic arises from some problems observed with classical logic. The

main philosophical objection to classical logic was raised by Brower and it consists

in its non-constructive character. For a good description of classical and intuitionis-

tic logic see [van Dalen 97]. Classical and intuitionistic logic are well suited to work

with universal, unchangeable truths. But problems arise when we are dealing with

finite resources.

1.1. The logic landscape before BI 9

As an example of the problems that might arise, consider this theorem of intu-

itionistic logic: ��� �������	��� ��
����� ��������
��
A proof in the sequent calculus is:

����� ������
Weakening����� ������� ��
���

����� ��
��

Weakening����� ���	��� ��
��
 �������� ������� ��
������

���� ���	��� ��
��� ��������
��
This theorem should be valid for any interpretations of � , � or
 . But it looks a

bit strange if we interpret them as

 � : “I have a pound”

 � : “I can buy a drink”

 : “I can buy a sandwich”

because even though it is true that with a pound we can buy a drink and also that

with a pound we can buy a sandwich, we certainly cannot buy both a drink and a

sandwich with only one pound.

Linear logic serves to reason about consumption of resources.

A typical rule in linear logic is !"� where the resources needed to prove each

branch are explicitly different

Γ �# ∆ �$!"�
Γ � ∆ %#&!'$

and, given that no weakenings or contractions are allowed, it is easy to see that Γ

and ∆ need to be disjoint. Effectively this amounts to having strict control over the

resources used.

However, the elimination of the structural rules turns out to be somewhat re-

strictive. To recover the power of intuitionistic and classical logic it is necessary to

provide a way for this structural rules to be available, at least in some situations.

The way that this problem is solved in linear logic is through the exponentials “!”

(pronounced “of course”) and “?” (pronounced “why not?”). A proposition # that

can be used an arbitrary number of times is written ! # . With the exponentials it is

possible to find an embedding of linear logic into classical logic. In particular the in-

tuitionistic implication (�) uses an exponential together with the linear implication

(# �($*),+.-0/ ! #�12$).

1.2. A semantic view of a logic for resources 10

1.2 A semantic view of a logic for resources

The use of linear logic as a logic for control of resources is a post-hoc development.

Suffice to say that there is no mention of resources, their consumption or interaction

in [Girard 87].

Moreover, the notion of resource that linear logic affords is very crude: either

something is available or it has been consumed.

However, if we take the notion of resource as a primitive, there are some be-

haviours and operations that arise naturally from the concept. Consider the follow-

ing, very simple, axiomatisation of the notion of resource (clearly, refinements are

possible):

 An underlying set of resources, � ;

 A representative for zero resources, � ;

 A way of combining resources, � ;

 A way of comparing resources, � .

Mathematically, we recognise that we have naturally identified a commutative pre-

ordered monoid �)���� ��� ��� ��� � of resources. Commutativity is not essential in this

context.

First, we may exploit the presence of the monoidal combining operation to de-

fine the following multiplicative conjunction [Urquhart 72, O’Hearn Pym 99, Pym 99a,

Pym 02], in the possible-worlds style [Kripke 65]:

	�
)"# � $ iff there are � and � � such that if 	 ������ � , then it is

the case that �
) # and � �
) $.

This conjunction is interpreted as follows: the resource required to establish # � $
is obtained by combining the resources required to establish each of # and $. Simi-

larly, we can define the corresponding implication

	�
) # � � $ iff for all � such that �
) # , it is the case that 	 ���
)&$.

This implication is interpreted as follows: if the resource required to establish the

“function”, # � � $, is 	 and the resource required to establish the “argument” # , is � ,

1.2. A semantic view of a logic for resources 11

then the resource required to establish the result is 	 � � . Thus the function and the

argument do not share resources. Rather, their respective resources are taken from

distinct worlds.

Second, the presence of the preorder suggests the possibility of a satisfaction re-

lation for the intuitionistic connectives, using worlds 	 ��� � � as usual:

	�
) # � $ iff 	�
) # and 	�
) $.

	�
) #�� $ iff 	�
) # or 	�
) $.

	�
)"# ��$ iff for all � � 	 , it is the case that �
)"# implies �
) $.

The conjunction (and the disjunction) are interpreted as follows: each of the con-

juncts (disjuncts) may share resources with the other. The implication is interpreted

as a “function” which may share resources with its argument.

The unit of the additive disjunction, � , holds nowhere. However, letting � be

part of the language causes problems that will be discussed in more detail in � 2.4.

We refer to the meaning of the semantics described here as the sharing interpre-

tation [O’Hearn Pym 99, Pym 02]. Similarly, the additives may be seen as describing

local properties whereas the multiplicatives are global. We return to this point in

Chapter 5 where we give a concrete, and implemented, programming example.

It is from the resource semantics just described that the logic of Bunched Im-

plications (BI) arise. It freely combines an additive (intuitionistic) and a multiplica-

tive (linear) implication as connectives of equal status [O’Hearn Pym 99, Pym 99a,

Pym 02]. Thus it stands in stark contrast with linear logic [Girard 87], in which in-

tuitionistic implication is available via the exponential [O’Hearn Pym 99, Pym 99a,

Pym 02].

BI is also a resource-aware logic, but its emphasis is on interference between re-

sources. The difference can be seen from the fact that in linear logic it is possible

to say for a given resource whether it is linear or not: it is enough to see whether it

is qualified with the exponential “!”. In contrast, resources in BI can be said to be

additive or multiplicative in relation to some other resources, but they don’t have an

additive or multiplicative character of their own. For example in the bunch � ��� ; � � �
	 �
� is additively related to � , and multiplicatively related to 	 .

1.2. A semantic view of a logic for resources 12

BI is a logic well suited for situations where it is important to keep track of (pos-

sibly harmful) interferences between resources.

One of the most obvious examples is the problem of pointer aliasing in program-

ming languages which support pointers. To illustrate this point consider two vari-

ables � and � . An assignments ������� might change the content of � if the variables

were aliases for the same location in memory. In the following example we will use

a forward version of Hoare’s triples to assert properties of a program, with intuition-

istic logic as the underlying logic.

Suppose that � and � are pointers and we have the assertion �	��
� 9 ����
� 9 . If

we want to know what can be said about � and � after executing the instruction �
����� we need to know more about � : if it was defined as

�� � ��� ������

then the assertion that holds after the assignment ������� will be �	��
� 3 ����
� 9 , but

if � was defined as

�� � �����

then � and � are aliased and after the assignment there is a different assertion that

holds: �	��
� 3 ����
� 3 . The important point to notice is that considering the asser-

tion �	��
� 9 ����
 � 9 on its own we have not got enough information to distinguish

between these two cases.

BI let us deal with this case because it provides a way of saying explicitly whether

two pointers are aliases or not. The first case, where � and � are not aliased, can be

expressed by the assertion �	��
� 9 ����
� 9 , to mean that � and � point to different re-

gions of the store. In the second case we would need to use the normal intuitionistic

conjunction.

Linear logic cannot help us much in this situation, since the problem of aliasing

is not related with consumption of resources, but with interference between them.

If we try to use linear logic anyway and � and � were made linear then we would not

be able to refer to them more than once, which is certainly an undesirable effect of

their linearity.

1.3. A proof-theoretic view of bunched logic 13

1.3 A proof-theoretic view of bunched logic

Proof-theoretically, the presence of the two implications is, at first sight, problem-

atic. To see this consider that whilst we may easily distinguish between multiplica-

tive and additive elimination (or left) rules,

Γ �# � � $ ∆ �#
� ���

Γ � ∆ �$
Γ �# �($ Γ �#

���
Γ �$

how are we to distinguish the corresponding introduction rules? We may write

Γ � #��$
�����

Γ �# ��� $
but how then to write a rule for ��� ?

Γ ? �$
Γ �# �($

A semantically clean solution is provided by moving to sequents built not out

of finite sequences of hypotheses but rather out of bunches of hypotheses, i.e., finite

trees, with the leaf nodes being formulæ, and the internal nodes denoted by either

“ � ” or “;”, and referred to as bunches.

We give the semantics and proof theory of BI in Chapter 2.

Turning to predication, consider that we can express a first-order sequent over

a collection � of first-order variables as ��� � Γ �# . Given this point of view, we can

see that it is possible to allow not only Γ to be bunched but also � . So for each

propositional rule, we have two possible forms of variable maintenance, i.e., additive

and multiplicative. For example, the two choices for the predicate � � rule are

��� � Γ �# ����� ∆ �$
� �	���� ; ��� Γ � ∆ �# � $ and

��� � Γ �# ����� ∆ �$
� ��
����'����� Γ � ∆ �# � $

The former choice is the one taken in linear logic and in this thesis. It may be sim-

plified, via Weakening and Contraction, to

��� � Γ �# ��� � ∆ �$
� �	���� � Γ � ∆ �# � $

The latter is the one taken in the basic version of BI [O’Hearn Pym 99, Pym 99a,

Pym 02].

1.4. Introduction to logic programming 14

The presence of bunched variables has one very significant consequence: It per-

mits the definition of both additive, or extensional, and multiplicative, or inten-

sional, quantifiers. For example,

��� ; � � Γ �#
� ���� � Γ ��� � #

���'��� � Γ %#
� � ��
 ���� � Γ � � ��
�� � #

where � is not free in Γ, and

��� � Γ ��� � # � � : Term
� ���� ; ��� Γ %#�� �	� ��

��� � Γ � � ��
�� � # �� � : Term
� �	��
 ����'����� Γ �#�� �� ��

Here, we assume a simple bunched calculus of term formation [O’Hearn Pym 99,

Pym 99a, Pym 02] and, as before, the additive case may be simplified to use just one

bunch of variables. The corresponding existentials are similar.

Semantically, the additive quantifier is handled intuitionistically,

	�
) ��� � # iff for all � � 	 and all
�

defined at � , it is the case that

�
) #�� �	� ��

i.e., the resource required to establish each instance of the quantified proposition

must be available at the starting world. The semantics of the multiplicative � � ��
 ex-

plains our use of the term “new”:

	�
) � � ��
 � � # iff for all � and all
�

defined at � , it is the case that

	 ���
)"#�� �	� ��

i.e., the resource required to instantiate the proposition is taken from a new world or

location. Again, the existentials are similar.

1.4 Introduction to logic programming

Logic programming, together with functional and imperative programming, is a par-

adigm based on the clever observation that proof search can be seen as a form of

computation. From this point of view, a program is the context where the compu-

tation will take place, and a specific request can be asked by presenting a goal to

be proved from this program. Given a program Γ, a query, lets call it # , to this pro-

gram is interpreted as a request to see whether # can be proved from Γ. Another

way of saying the same is to see whether there is a proof Γ # . If # has got exis-

tentially quantified variables, the meaning of the query is to find terms
���

such that

Γ �#�� ����� � �
 .

1.4. Introduction to logic programming 15

1.4.1 Proof search as Computation

However, for this scheme to work as a programming language we need to specify

how the flow of control will be handled. It is natural, since we are talking about logic

programming, to think of the logic connectives as means of achieving this flow of

control.

To limit the non-determinism of the proof search, proofs should satisfy some

properties. First, the proofs should satisfy the subformula property: every formula

in the premises should appear in the conclusion. This is necessary because in the

context of proof search the computation goes backwards, that is from conclusions

to premises. If one of these premises didn’t appear in the conclusion the program

has to somehow guess what is an appropriate premise, or backtrack on this choice,

making the performance intolerably inefficient. A typical rule that does not fulfil the

subformula property is Cut:
Γ �# ∆ � #��$

Cut
∆ � Γ �$

Here we can see clearly that given the conclusion, the proposition # had to be cre-

ated out of thin air. This is the reason why proof search always use Cut free calculi.

In the context of a natural deduction system for intuitionistic logic, another rule

that does not satisfy the subformula property is the � � rule:

Γ �# ��$ Γ �#
� �

Γ �$
has to be guessed if we are doing proof search, that is going backwards from Γ �$.

For the purpose of logic programming we need to use a sequent calculus presenta-

tion of the logic. For intuitionistic logic, a left rule for the implication is

Γ �# Γ � $*��
� �

Γ � # �($*��
which does have the subformula property.

1.4.2 Uniform Proofs

Another requirement for a useful programming language is that non-determinism

should be kept to a minimum. Towards this end first we define uniform proofs as

proofs which apply left rules only when no right rules are possible, that is when the

1.4. Introduction to logic programming 16

right hand side is atomic. We say then that the proof search is goal directed, since

the behaviour of the program is defined by the connectives given in the goal.

Our notion of logic programming is that introduced in [Miller et al. 91, Miller 81],

based on the sequent calculus.

Definition 1.4.1 We say that a proof is uniform if all left rules (including weakening

and, obviously, axioms) are applied above right rules.

Sometimes it is possible to transform a proof into a uniform proof, by permuting

the left rules above the right rules. For example, a proof with shape

Γ �#
Γ � $ �� Γ � $ �� ���

Γ � $*�� � �
� �

Γ � # �($*�� � �
can be transformed to a proof with the shape

Γ �# Γ � $*��
� �

Γ � # �($ ��
Γ �# Γ � $*��

� �
Γ � # �($*�� � �

Γ � # �($*�� � �
and if we succeed in permuting any occurrence of a left rule above any right rule, we

would have as a result a uniform proof.

But even in intuitionistic logic permutations are not always possible. Consider,

for example, the proof of the sequent �����&������ . All proofs of this involve applying

� � before � � in the following fashion:

����
� �

��������
� ��

���
� ������

� �
����� ������

and the left rule cannot be permuted upwards.

Other left rule that does not permute above all right rules is � � . This can be seen

even in the simple proof of � � �	�%� � �
� � �	�%� ��� :
�%��� � ��%��� �

� �
�%��� � � � �	�%� � �

� �
� � �	�	� � ��� � �	�%� � �

where the left rule cannot be applied first due to the fact that � is not free in the right

side of the sequent.

This proof also serves to illustrate another characteristic that the provability rela-

tion should satisfy, the existential property : every time that Γ � � � # there should be

1.4. Introduction to logic programming 17

a term
�

such that Γ %#�� �� ��
 . Only in this way an answer substitution can be calcu-

lated via an application of an � � rule. This requirement can be seen as a corollary

of the previous case in the predicate setting. It is easy to see that in the proof above

this requirement is not fulfilled, since to find the term to be substituted we need to

perform first the � � rule.

In intuitionistic logic, uniform proofs, which are goal-directed and in which the

non-determinism is confined to the choice of implicational formula, are complete

for hereditary Harrop sequents [Miller et al. 91, Miller 81].

Definite formulæ � ::) �
 �����
�� ���
 ��� ���
Goal formulæ � ::) �
 �
�� � �
 � � �
�� � �

 � � � �

Uniform proofs are said to be simple just in case the implicational left rules are

restricted to be essentially unary. For example, in first-order intuitionistic logic, we

get

Γ �#�� �� ��
 � � �	� ��
 �� � �	� ��
 � �
Γ � # � � ��

with � , � atomic and � � �	� ��
)	� � �� ��
 (often, # � � is retained in the left-hand pre-

miss).

Simple uniform proofs amount to the analytic notion of resolution. Taking all

this together, we interpret hereditary Harrop sequents Γ �
 � � � # as a logic program,

Γ, consisting only of definite formulæ, together with a query, or goal formula, # , in

which there is a logical variable � [Kowalski 79]. We use �
 to denote the simple,

uniform, i.e., resolution, proof, read from root to leaves.

1.4.3 Context management in linear logic

In intuitionistic logic, each of the reduction operators used in the execution of goal-

directed search is additive. This means that it is possible to store the program once

and refer to it as needed. In BI, however, as in linear logic [Pym Harland 94, Miller 81,

Harland et al. 96], we have multiplicative connectives which introduce a computa-

tionally significant difficulty. The typical case is � � :

Γ1
�# 1 Γ2
 # 2 � ��� Γ) Γ1 � Γ2 �
Γ
�# 1 � # 2

1.4. Introduction to logic programming 18

Faced with Γ
 # 1 � # 2, the division of Γ into Γ1 and Γ2 must be calculated. A naı̈ve

approach to this problem is simply to try the two subproofs and check whether the

remainders coincide, but the complexity of this algorithm is exponential on the size

of Γ.

The basic solution is the so-called input/output model. It is described for lin-

ear logic in [Hodas Miller 94, Cervesato et al. 00, Pym Harland 94, Harland et al. 96].

First pass all of Γ to the left-hand branch of the proof, leaving the right-hand branch

undetermined. Proceed with the left-hand branch until it is completed. Then cal-

culate which of the formulæ in Γ have been used to complete the left-hand branch

and collect them into a finite set, Γleft; The remaining, unused formulæ may now be

passed to the right-hand branch:

A simplified version of this method is shown below, to clarify the ideas involved.

...

ΓL
 # 1 Γ
� �
ΓL
�# 2

Γ) ΓL � Γ
� �
ΓL

Γ
 # 1 ! # 2

We refer to
� �

as a “remainder operator” because it removes from Γ the consumed

formulæ and passes the remainder to the next branch.

1.4.4 Context management in BI

The input/output model is not enough for BI. The main reason is that the interac-

tion between additive and multiplicative connectives in linear logic is far simpler.

Indeed, for the operational semantics of Lolli, a programming language based on

this model, there are two regions, one of them for additive resources and another for

multiplicative resources. But the mutually recursive nature of bunches breaks this

model. We will give a solution to these problems in Chapter 4, when we develop the

operational semantics for
�����

.

In BI, the problem is made more complex by the mixing of additive and multi-

plicative structure enforced by the presence of bunches and the basic input/output

idea will not work. To see this, consider the following search for a proof of the (prov-

able) sequent # � $� � � ��$ ����� � # (note that it is convenient to put the remainder

operator, read as “without”, in the “current” computation):

1.4. Introduction to logic programming 19

� not provable �
� ; ��# � $ � � � #��$	� �

�����# � $ � � � #��� � � $	� � � # � ���
 %#
� ���# � $ � � ���
 � � � � $�� ��� � � #

Consider the left-hand branch of the candidate � � rule In order to get an axiom

of the form $ �$, we must first remove the � from the program by performing a

Weakening and then perform a subtraction of # , which is required on the right-hand

branch of the � � , so that the result of � ; ��# � $ � � � # is $, i.e., the remainder operator

first throws away, via Weakening, the additive bunch surrounding the multiplicative

bunch within which $, the formula which must be removed, is contained. Now, the

remaining bunch is sufficient to form, after an � � reduction, the axiom $ 	$ but

insufficient to form the necessary axiom for � .

At first sight, thinking of axioms of the form Γ; � � , it might seem like we need

a subtraction operation which does not perform Weakening. This would solve the

problem in the particular case above but would worsen it in other cases. From being

incomplete the system would become unsound. To see this, consider a search for a

proof of the unprovable sequent � ; ��# � $ � � � � � $	��� � � � # .

Axiom
� ; � ; ��# � $ � � � #��$ Axiom

� ; � ; ��# � $ � � � #��� � �
� ; � ; ��# � $ � � � #��$	���

���
� ; ��# � $ � � � #� � � � $	��� � # � ���
 �#

� �
� ; ��# � $ � � ���
 � � ��� $	��� � � � #

Once the � � rule is applied, and after doing �(� , the propositions � and � are at

the same level in � � ; � ; ��# � $ � � � � # . If this is taken to be equal to � ; � ; $, both � and �

are provable. But this would be unsound; a proof of � ; ��# � $ � %� � � � $���� � ��� # should

fail, since $ and # are separated by a � and, therefore, any search for a proof should

start by weakening � so that # and $ can be sent to the two subproofs of � � :

not provable$ �� � � $	��� � #��#
� $* � � � � $ ��� � � �

Weakening
� ; ��# � $ � � � � � $���� � � � #

but after weakening � it is unavailable for the proof of the left branch.

Again it looks like this could be fixed, by requiring, for example, that not only

we avoid doing weakenings in the subtraction operator, but also that the � � rule be

1.4. Introduction to logic programming 20

applied only on multiplicative bunches. The first objection with this approach is the

unpleasant non-determinism introduced, since any additive bunch will have to use

each of its components consecutively trying to find a proof.

But far worst is that it doesn’t quite solve the problem either. To see this, it is

enough to consider a slight modification of the last search. Consider the unprovable

sequent � � � � ; ��# � $ � � '� � � � $ � � � � � ��# � � � . Using a non-weakening axiom plus the

restriction mentioned above, we find that � ; ��� � � � ; ��# � $ � � � � � ��� � # � � � ; � ; $ and a proof

can be built as follows:

� ; � ; $*�$ � ; � ; $* � � �
� ; ��� � � � ; ��# � $ � � � � � � � #��$	���

���
� � � � ; ��# � $ � � � � � � #��� � � $	��� �

� � # � ���
 �# � �

� �
� � � � ; ��# � $ � � � � �
 � � ��� $	��� � � � ��# � � �

Here, after the application of � � and � � it would be possible to prove both $
and � , which is again unsound. The reason is similar to the previous example: for

a proof of the sequent the bunch � � � � ; ��# � $ � � must be split in a way that $ goes to

the left branch and � and # go to the right branch, and this cannot be done without

weakening first � , making it unavailable thereafter.

The main source of difficulty is that weakening is not permutable with the � �
rule. The shape of the rule in BI is

Γ �$ ∆ �#
� �

Γ � ∆ �$ � #
where it can be seen that the � � rule requires a multiplicative bunch for its applica-

tion. If this problem was unsolvable we could as well give up trying to use BI as the

basis for a programming language, because there are exponentially many ways of

performing weakenings, given an arbitrary bunch with nested additive subbunches.

The basic idea for the solution, though far from simple in detail, is to introduce

stacks which keep a record of which resources have been added to the program as

a result of � � and which manage their interaction with the formation of axioms,

and with subtraction, and with passing by continuations. The detailed formulation

of the continuation-passing style (CPS) operational semantics is rather complex and

before giving it, in Chapter 4, we must look, in Chapter 3, at uniform, and simple,

proofs in BI.

1.5. Thesis Overview 21

1.5 Thesis Overview

In Chapter 2 we give a natural deduction system for BI and show soundness and

completeness of this system with respect to the resource semantics explained in � 1.2.

We also give a sequent calculus presentation of the logic.

Chapter 3 and Chapter 4 form the core work of the thesis.

In Chapter 3 we extend the concepts introduced in this chapter to the case of

logic programming in BI. In particular we show how to obtain uniform proofs, reso-

lution proofs, and simple proofs for the hereditary Harrop fragment of BI.

In Chapter 4 we present an operational semantics that solves the problems aris-

ing from the interactions between the multiplicative and additive structures of the

logic. We prove soundness and completeness of this semantics with respect to the

sequent calculus presented in Chapter 2.

In Chapter 5 we offer some basic examples of how this programming language

works and for which kind of problems it could be useful. We present the case of bel-

ligerent groups and how their behaviour is easily expressed in this logic, and how to

program a type inference system for the �
�

-calculus. We also discuss issues related

to linear recursion.

Chapter 6 provides a denotational semantics based on the construction of a least

fixed point of Herbrand interpretations. This is joint work with David Pym.

We discuss some conclusions and further work in Chapter 7 and in Chapter 8

we provide a fully annotated implementation of the operational semantics using the

continuation-passing style(CPS). This implementation was done in OCaml ??.

22

Chapter 2

The proof theory and semantics of BI

2.1 Introduction

In this chapter we present NBI, a propositional and predicate natural deduction sys-

tem for BI, describe the term language for BI and discuss soundness and complete-

ness of NBI without � with respect to the resource semantics described in the pre-

vious chapter.

 Give a grammar for bunches and explain the additive and multiplicative as-

pects of the logic.

 Present NBI, a natural deduction system for BI.

 Discuss soundness and completeness of NBI without � with respect to the re-

source semantics described in the previous chapter.

 Present LBI, a sequent calculus system for BI.

2.2 Bunches

The grammar of bunches is given as follows:

2.2. Bunches 23

Γ ::) # propositional assumption

 �
 multiplicative unit

 Γ � Γ multiplicative combination

 � � additive unit

 Γ;Γ additive combination

We write Γ � ∆ � to denote that ∆ is a sub-bunch of Γ in the evident sense. Equality of

bunches, � , is given by the commutative monoid laws for “ � ” and “;”, together with

substitution congruence: if ∆ � ∆ � , then Γ � ∆ � � Γ � ∆ � � . A bunch is said to be multi-

plicative if its top-level combinator is “,” and additive if its top-level combinator is

“;”. Contraction and Weakening are permitted for “;” but not for “,”:

Γ � ∆ ;∆ � �#
Contraction

Γ � ∆ ���#
Γ � ∆ � �#

Weakening
Γ � ∆ ;∆ � ���#

The introduction and elimination rules for the multiplicative and additive impli-

cations now go as follows:

Γ � #��$
� ���

Γ �# � � $
Γ; #��$

� �
Γ �# �($

Γ �# ��� $ ∆ �#
� � �

Γ � ∆ �$
Γ �# �($ ∆ �#

���
Γ;∆ �$

Definition 2.2.1 A bunch is additive if it’s main connective is a semicolon (;) and mul-

tiplicative otherwise.

As an example the following bunch is multiplicative, with an additive right branch

which in turn has an additive proposition.
,

�
� ���
� �

Γ ;

�
� ���
� �

∆

This bunch will be denoted as Γ � ��# ;∆ � .
Due to the two connectives used to form bunches, almost every aspect of the

logic can be seen as additive or multiplicative depending on whether is related to

2.3. A Natural Deduction System 24

“;” or “ � ”. For example we can talk about additive or multiplicative bunches, additive

or multiplicative connectives, and additive or multiplicative units (
� � and

�
 respec-

tively).

So the meaning of additive or multiplicative theorems should be clear. We give

an example of each:

Axiom
�, �

Monoid equation�
��
� �
��� ��
 � ��� �

Axiom
�" �

Monoid equation� � ; � �
���� � � � �

One thing to notice in the additive theorem is that the monoid operation could

have been replaced by a Weakening and the proof would still have been valid.

An example of a non-theorem is
� ��� � ��� � .

We are ready now to prove a small and useful lemma:

Lemma 2.2.2 Additive theorems are also multiplicative.

Proof: Assume
� � %# . Then the following transformation is possible:

� � �#
Weakening�
 ;

� � �#
Monoid equation�
 �#

Because a crucial step in the proof of this lemma is the use of Weakening, the

converse is not true.

2.3 A Natural Deduction System

We present here a natural deduction system for BI. We give introduction and elimi-

nation rules for the multiplicative and additive connectives of propositional BI and

call the resulting system NBI. The rules are displayed in Table 2.1.

2.3.1 Term Language

The corresponding term language for BI is the �
�

-calculus. The types of the lan-

guage represent propositions, and terms of a particular type are proofs of the corre-

sponding proposition.

2.3. A Natural Deduction System 25

Axiom#��#
Γ %# � where ∆ � Γ � �
∆ �#

Γ � ∆ ;∆ ���#

Γ � ∆ ���#

Γ � ∆ ���# �
Γ � ∆ ;∆ � � �#

� ��
 �
Γ � �
,� �# ∆ �

� �
Γ � ∆ ���#

Γ � #��$
�����

Γ �# ��� $
Γ %# ��� $ ∆ �#

� ���
Γ � ∆ �$

Γ �# ∆ �$
���

Γ � ∆ �# � $
Γ ��# � $ � � ∆ �# � #

���
Γ � ∆ ����

�	�� � �
Γ � � � � �# ∆ � �	�

Γ � ∆ ���#

Γ �
� �

Γ �$

Γ; #��$
���

Γ �# �($
Γ %# ��$ ∆ %#

���
Γ;∆ �$

Γ �# ∆ �$ � �
Γ;∆ �#&��$

Γ ��# ; $ � �� ∆ �#&��# � �
Γ � ∆ ����

Γ �# � ���) 1 � 2 � ��
Γ %# 1 ��# 2

∆ �# ��$ Γ ��# � �� Γ � $ � ��
� �

Γ � ∆ � ��

Table 2.1: Natural Deduction System NBI

2.4. Models for BI 26

We give here the rules for conjunction and implication, both in their additive and

multiplicative version, for illustrative purposes. A full discussion is given in Chap-

ter 5.

Γ � : # ∆ �� : $
���

Γ � ∆ �� ��� : # � $
Γ � � : # ��� : $ � � : � ∆ �� : # � $

���
Γ � ∆ �� let � � ��� � be � in � : �

Γ ��� : #� � : $
��� �

Γ � � : # � � : # ��� $
Γ � : # ��� $ ∆ �� : #

�����
Γ � ∆ ���� : $

Γ �� : # ∆ �� : $ � �
Γ;∆ �� ��� : #&��$

Γ � : # 1 ��# 2 ���) 1 � 2 ����
Γ �� � � : # �

Γ; � : #��� : $
���

Γ � � : # � � : # ��$
Γ �� : # �($ ∆ �� : #

� �
Γ;∆ � @ � : $

Lemma 2.3.1 The �
�

-calculus is strongly normalising.

Proof: Given strong normalisation for the simply-typed
�

-calculus, we can translate

the multiplicative connectives into their additive counterparts (� � into � and � into

�) and we get strong normalisation for the �
�

-calculus. It is easy to see that if there

is a reduction in the
�

-calculus of a term obtained via this translation from the �
�

-

calculus, then the original term can also perform this reduction step.

2.4 Models for BI

We have already mentioned the resources interpretation. Here we give a formal def-

inition of what a model is, briefly state soundness and completeness of Kripke mod-

els, and mention other possible semantics.

Definition 2.4.1 (Kripke Models) Let 	%� � � be a collection of BI propositions over a

language
�

of propositional letters.

2.4. Models for BI 27

Then a Kripke model is a triple �� �
�� � Set
��
)���� ����� where �) ��� ��� ��� ��� � is the

commutative preordered monoid mentioned in 1.2, � �
�� � Set
 is the category of pre-

sheaves over the preorder category � to Set,
)
	 ����	%� � � is a satisfaction relation

as described in 1.2:

	�
) � never.

	�
) � always.

	�
)	� iff 	 � � .
	�
) # � $ iff there are � and � � such that if 	 � ����� � , then it is

the case that �
)�# and � �
) $.

	�
)�# ��� $ iff for all � such that �
) # , it is the case that 	 ���
)&$.

	�
) # � $ iff 	�
) # and 	�
) $.

	�
) #�� $ iff 	�
) # or 	�
) $.

	�
)"# ��$ iff for all � � 	 , it is the case that �
) # implies �
) $.

and � ��� is a partial function from the BI propositions over
�

to the objects of � �
�� � Set

such that Kripke monotonicity is preserved.

Theorem 2.4.2 (Soundness of BI for Kripke models) If Γ 	# in NBI without � , then

Γ
)"# .

Proof: For more details of the proof see [Pym 02]. Here we provide a sketch analysing

two typical cases:

��� The induction hypotheses are that if a world forces Γ it also forces # , and if a

world forces ∆ it also forces $. We need to show that if a world forces Γ � ∆ it

also forces # � $.

That a world forces Γ � ∆ means that it is the result of the monoid operation

applied to two worlds, call them 	
1 and 	

2, which respectively force Γ and ∆.

But then 	
1

) # and 	

2

) $. According to the forcing semantics, this means that

	
1 � 	 2

)�# � $.

��� � By the induction hypothesis we know that for all worlds , if
) Γ � # then
) $.

We have to prove that if a world 	 forces Γ, then it also forces # ��� $. According

2.4. Models for BI 28

to the forcing semantics, # � � $ is forced in a world 	 � iff for all worlds � where

# is forced, 	 � ���
) $. So given a world where Γ is forced, and a world where

is forced, we can construct a world where Γ � # is forced. Applying then the

induction hypothesis we find that this world also forces $, which proves that

	 forces also # ��� $.

To show completeness of NBI without � we need the following lemma:

Lemma 2.4.3 If Γ � # in NBI without � , then there is a Kripke model � and world

 � � such that
) Γ but ��
)�# .

Proof: The proof of this lemma is difficult and highly technical. For an exhaustive

explanation we refer the reader to [Pym 02]. It extends the concept of prime theory

described in [van Dalen 97] to the setting of bunches (defining prime bunches) and

adds the idea of prime evaluation, a transformation of bunches closed under conse-

quence.

With the help of Lemma 2.4.3 it is easy to establish completeness.

Theorem 2.4.4 (Completeness of BI for Kripke models) If Γ
) # in NBI without � ,

then Γ %# .

Proof: If Γ �	# then, by Lemma 2.4.3 we would have a world � � in which
) Γ

but ��
) # , which contradicts the antecedent of the theorem.

The fact that � holds in no world, does not present problems for soundness, but

addition of � to the logic would make it incomplete. An example of a sequent that

holds in the Kripke resource semantics, but for which there is no proof in NBI is

��# ��� � � � � ; � $ ��� � � � �
)�� ��# � $ � ��� � � � �

2.4. Models for BI 29

To see that this sequent holds in all Kripke resource semantics, we will first prove

a lemma:

Lemma 2.4.5 	�
)���# ��� � � � � iff there is an � such that �
)"# .

Proof: From the forcing semantics we have that 	�
)���# � � � � � � iff for all 	 � � 	 , if

	 �
) # � � � then 	 �
) � , but since � is forced nowhere, then there should be no such

	 � .

Using again the forcing semantics we have that 	 � �
) # ��� � iff � �����
)"# and � �
) � .

The second conjunct holds always, so this is equivalent to � �����
),#

Going back to the forcing sequent, note that from Lemma 2.4.5 the antecedent

will hold iff there are � 1 and � 2 such that � 1

) # and � 2

) $. Therefore, by the re-

source semantics, there is a world, namely � 1 ��� 2 which forces # � $, and using again

Lemma 2.4.5 this implies that � ��# � $ � � � � � � � holds everywhere.

When we are looking for a proof of this sequent in NBI, after the first � � rule

there are essentially two attempts that can be tried, but both of them fail. If we try

the � ��� rule the failure is obvious:

Axiom��# � $ � � � �� ��# � $ � ��� � Not provable��# ��� � � � � ; � $ � � � � � � �# � $
� �����# ��� � � � � ; � $ � � ��� � � ; ��# � $ � � � �� �

�����# ��� � � � � ; � $ ��� � � � � � ��# � $ � ��� � � � �

where it is obvious that # � $ cannot be derived from the premises, since they should

consist on a multiplicative bunch with # and $ in different subbunches, which is not

the case.

If we tried instead applying a � � rule, we would reach the following figure:

Axiom��# � � � � � � ��# ��� � � � �

Not provable� � $ ��� � � � � ; ��# � $ � � � � � � #� �
� ���� $ ��� � � � � ; ��# � $ � ��� � �# ��� �
��� ���# ��� � � � � ; � $ ��� � � � � ; ��# � $ � � � � �

�����# � � ��� � � ; � $ ��� � � � � � ��# � $ � ��� � � � �

2.5. Predicate BI 30

To see why � � $ ��� � � � � ; ��# � $ � ��� ��� � # � is not provable, note that to apply

the � ��� rule, one first has to weaken the premise � $ ��� � � � � , losing any chance of

finding a proof of # � $.

The way that this incompleteness is solved in [Pym 02] is using topological Kripke

models, which provides an inconsistent world where � holds, more specifically a

Grothendieck topology. Alternatively it is possible to give a partial monoid seman-

tics as described in [Galmiche et al. 02].

2.5 Predicate BI

Turning to predication, consider that we can express a first-order sequent over a col-

lection � of first-order variables as
�����

Γ # . Given this point of view, we can see

that it is possible to allow not only Γ to be bunched but also � . So for each propo-

sitional rule, we have two possible forms of variable maintenance, i.e., additive and

multiplicative. For example, the two choices for the predicate ��� rule are

�����
Γ %# �����

∆ �$
� � ����

;
���

Γ � ∆ %# � $

�����
Γ %# �����

∆ �$
� �
���	�
���

Γ � ∆ �# � $
The former choice is the one taken in linear logic and in this thesis. It may be sim-

plified, via Weakening and Contraction, to

�����
Γ �# �����

∆ �$
� �	������

Γ � ∆ �# � $
The latter is the one taken in the basic version of BI [O’Hearn Pym 99, Pym 99a,

Pym 02].

The presence of bunched variables has one very significant consequence: It per-

mits the definition of both additive, or extensional, and multiplicative, or inten-

sional, quantifiers. For example,

���
; � � Γ �#

� ������
Γ ��� � #

���	� � � Γ %#
� � ��
 ������

Γ � �	��
 � � #
where � is not free in Γ, and

�����
Γ ��� � # � � : Term

� ����
;
��

Γ %#�� �	� ��

�����

Γ � �	��
 � � # �� � : Term
� �	�
 ����	�
���

Γ �#�� �� ��

Here, we assume a simple bunched calculus of term formation [O’Hearn Pym 99,

Pym 99a, Pym 02] and, as before, the additive case may be simplified to use just one

bunch of variables. The corresponding existentials are similar.

2.6. A sequent calculus system 31

2.6 A sequent calculus system

We have seen in Chapter 1 that a set of rules based in the natural deduction system is

not appropriate for proof search or logic programming because the non-determinism

associated to some of the rules, in particular the elimination of the implications.

The natural deduction system presented earlier is Cut free, or rather Cut can be

eliminated from it without losing completeness. However there are other rules where

the subformula property does not hold. Specifically the elimination rules for the two

implications:

Γ �# �($ ∆ �#
���

Γ;∆ �$
Γ �# ��� $ ∆ �#

��� �
Γ � ∆ �$

Notice that # in both rules has to be guessed if we were doing proof search, that

is going upwards from Γ � ∆ �$.

We conclude that NBI is not an adequate system for our purposes. We therefore

describe a sequent calculus for BI which doesn’t suffer from this drawback.

Proofs in BI may be presented as a sequent calculus, here given in Definition 2.6.1.

The Cut-elimination theorem holds [Pym 02] and semantic completeness theorems

are available [O’Hearn Pym 99, Pym 99a, Pym 02, Pym et al. 02].

The use of multiplicative predication and quantification is possible but more

complex. We conjecture that its main use will be in
�����

’s module system, adapted to

BI from the basic ideas presented in [Miller 81], in which we conjecture the import-

ing of functions from one module to another may exploit the additive–multiplicative

distinction to valuable effect for the programmer.

Definition 2.6.1 (LBI) The sequent calculus LBI is defined as follows:

2.6. A sequent calculus system 32

Identity and Structure

� 1 �# ��� 1 � : Prop � 2 �# ��� 2 � : Prop
Axiom � X1 � X2 � � where � �) ;or � ����

1 � �
�

2
� # ��� 1 � �# ��� 2 �

�����
Γ %# � where

� ��
∆ � �����

Γ � �����
∆ �#

����� ��� �
Γ � ∆ ��%# ��� � ∆ � : Prop � �

� ��� �
;
����� �

Γ � ∆;∆ � � �#

� ��� �
;
����� �

Γ � ∆;∆ � � �# � ∆ �	�) ∆ � � �
�) � � � � ∆ � : Prop �
����� ��� �
Γ � ∆ ��%#

����� � � � Γ �# � � : Term
Axiom ��� ��� � � Substitution����� ��� �

Γ � �	� ��
 �#�� �	� ��

for all � � s.t. Axiom � � ��� � � .

Multiplicatives

�����
Γ � #��$

��� ������
Γ �# � � $

�����
Γ �# ����� ����� �

∆ � Γ � � $ � ��
� � ������ �	� � � � �

∆ � Γ � Γ � � # ��� $ � ��

�����
Γ �$ ����

∆ �#
� ����	� ��

Γ � ∆ �$ � #

�����
Γ ��# � $ � ��

� ������
Γ ��# � $ � ��

���	� � � Γ �# � � �
� � ��
 ������

Γ � � ��
�� � # � � �
����� ��� �

Γ ��# � � � � �$ ��� � : Term � � �	�
 ��������� �
Γ � � � ��
 � � # � ��� � �$

���	�
���
Γ �#�� �� ��
 ��� � : Term � � � ��
 ������

Γ � �	��
 � � # � � �
����� � � � Γ ��# � � � � �$

� � ��
 ��������� �
Γ � � � ��
 � � # � � � � �$

Additives

�����
Γ; #��$

��������
Γ �# ��$

�����
Γ %# ����� ����� �

∆ � Γ � ; $ � ��
� �

� ��� �
;
����� �

∆ � Γ;Γ � ; # �($ � �

2.6. A sequent calculus system 33

�����
Γ �$ � ���

∆ �# � ����
;
���

Γ;∆ �$	��#

�����
Γ ��# ; $ � �� � ������

Γ ��#&��$ ����

�����
Γ �# � ���) 1 � 2 � ��������

Γ �# 1 ��# 2

�����
Γ ��# � �� �����

Γ � $ � ��
� ������

Γ ��# ��$ � ��

���
; � !
�

Γ �# � � �
� ������

Γ ��� � # � � �
����� �

!
� �

Γ ��# � � � � �$ ��� ! � : Term � � ������
1
� �

Γ � ��� � # � � � � �$
���

;
�

!
�

Γ �#�� �� ��
 ��� ! � : Term � � ������
Γ � � � # � � �

����� � !
� �

Γ ��# � � � � �$
� ������

1
� �

Γ � � � � # � � � � �$
There are some restrictions that have to be taken into account in the quantifier

rules. First, all variables are subjected to the linearity condition. This restriction

interacts with the well-formedness of the sequents in the following way: looking at

the rules upwards, it means that new variables have to be used in the instantiation

of the bound variables in all cases. Looking at the rules downwards, it means that

the variables cut off cannot be free in the rest of the sequent.

Extra conditions for � � ��
 � and � � :

� �� � �
Axiom � � ��� � and �
� FV � Γ �

Extra conditions for � �	�
 � and � � :

� �� � �
Axiom � � ����� and �
� FV � $ � or FV � Γ �

Lemma 2.6.2 (Implicit contraction) The following additive rules which use implicit

contraction are admissible in LBI:

�����
Γ �# �����

Γ �$ � ������
Γ �#&��$

�����
Γ �# ��� � ��� �

∆ � Γ; $ � ��
� �

� � � � � �
∆ � Γ; # �($ � �

2.6. A sequent calculus system 34

Proof: Given the rules in Definition 2.6.1 the rules above can be derived as follows:
�����

Γ �# �����
Γ �$ ������

;
���

Γ;Γ %#&��$
Contraction�����

Γ �#&��$
�����

Γ %# ����� ��� �
∆ � Γ; $ � ��

� �
� ��� �

;
��� �

∆ � Γ;Γ; # �($ � ��
Contraction��� � ��� �

∆ � Γ; # �($ � ��

A Cut rule is admissible in LBI:

����� �
1
� �

Γ �# ��� 1 � � ��� �
2
� �

∆ ��# ��� 2 � � �$
Cut��� � ����� � � �

∆ � Γ ���$
where � stands for units replacing the bunches of variables cut away.

Lemma 2.6.3 (Cut elimination) All instances of the Cut rule can be eliminated from

LBI.

Proof: As an illustration of the process, we provide the elimination for ��� :

���	� ��� �
Γ �# ��� � ����� �

∆ � $ � ��
��� ���� � �	� ��� � � � � �

∆ � Γ � # � � $ ����

� � � ��� �
��� �
Θ � #��$

��� ���� � ��� � ��� �
Θ %# ��� $

Cut��� � � � � � �
∆ � Γ � Θ � ��

where � � �# : Prop and � � �$: Prop, translates into

� � � ��� �
��� �
Θ � #��$ ��� � � ��� �

∆ � $ � ��
Cut��� � � � ����� �

∆ � Θ � # � �� ���	� ��� �
Γ �#

Cut��� � �	� ��� �
∆ � Γ � Θ � ��

where each Cut rule is of lower degree than the first.

The other cases are similar.

35

Chapter 3

Logic Programming with BI

3.1 Introduction

In this chapter we see how the concepts described in Chapter 1 for logic program-

ming in general apply specifically to logic programming with BI. Specifically we

 Define canonical bunches

 Define hereditary Harrop formulae for BI.

 Describe how the concept of uniform proof applies to BI proofs.

 Describe resolution and simple proofs for BI.

 Give an exhaustive analysis of permutations for the hereditary Harrop fragment

of BI.

We will use the arrow � to denote a proof transformation. This transformation

will consist on equivalent proofs, with the same premises and the same conclusion,

and will be used extensively in this chapter.

3.2 Uniform Proofs in BI

So far we have discussed BI semantically, and informally considered its use as a logic

programming language. Formally, as we have indicated, the basis of logic program-

ming in BI relies on the availability of goal-directed proofs.

3.2. Uniform Proofs in BI 36

Most of the permutations necessary to show that uniform proofs are complete

for bunched hereditary Harrop formulæ are straightforward. For example,

Γ �#
∆ � $ � �� ∆ � $ � �� � ���

∆ � $ � ���� � �
� � �

∆ � Γ � # ��� $ � ��� � �
�

Γ �# ∆ � $ � ��
� � �

∆ � Γ � # ��� $ � ��
Γ �# ∆ � $ � �� �

� � �
∆ � Γ � # � � $ � �� � � �

∆ � Γ � # ��� $ � ���� � �
or

Γ %#
∆ � $ � �� ∆ � �� �

� �
∆ � $ � � ∆ � � � � �

� � �
∆ � Γ � # � � $ � � ∆ � �� � � �

�

Γ �# ∆ � $ ����
� � �

∆ � Γ � # � � $ � �� ∆ � �� �
� � �

∆ � Γ � # ��� $ � � ∆ � �� � � �

Note, however, that uniform proofs in BI must always perform any possible (and

trivial) � � s (and � � s) before performing any right rule: to see this, consider that we

should like to have a uniform proof of # � $ %# � $.

An exhaustive analysis of the permutations is given at the end of this chapter, in

section 3.10.

Weakening is, at first sight, a source of difficulty. Weakenings may be permuted

above all rules except � � . To see this, consider that � � must divide a multiplicative

bunch between its two premises. So if a � � has a Weakening immediately below it,

then there is no way in which � � may be applied directly to the resulting sequent.

However, it turns out that this difficulty may be handled within the operational se-

mantics by examining in turn each of the multiplicative bunches below the “;” intro-

duced by the Weakening. To make this work, we must consider a canonical form for

bunches: a bunch is in canonical form iff

1. its left-hand branch is either a proposition, a unit or a canonical bunch of the

opposite (additive or multiplicative) type, and

2. its right-hand branch is canonical.

For example, if Γ and Γ � are additive and canonical and if ∆ is canonical, then � Γ � Γ � � ∆ �
is canonical. Our operational semantics, in Chapter 4 assumes that bunches are in

canonical form.

Given associativity of the two bunch-forming operators, the two bunches Γ � � ∆ � Θ �
and � Γ � ∆ � � Θ are equivalent. As a first step towards getting rid of this redundancy, we

define canonical bunches:

3.2. Uniform Proofs in BI 37

Definition 3.2.1 A canonical bunch is a bunch with

 its left branch either a proposition, one of the units or a canonical bunch of the

opposite kind than its parent

 its right branch a canonical bunch

Provided Γ and Γ � are additive and canonical and ∆ canonical the following is an

example of a multiplicative canonical bunch
,

�
� ���
� �

Γ ,

�
� ���
� �

Γ � ∆

Lemma 3.2.2 (Canonical bunch) Every bunch can be transformed into an equivalent

canonical bunch.

Proof: If the bunch itself is one of the base cases we are done. Otherwise, without

loss of generality, lets Γ be a multiplicative bunch. Then it is of the form � Γ � � Γ � � � . If

Γ � is additive we can make it canonical by recursion; if it is a proposition or one of

the units it is already canonical. And we can recurse on Γ � � . Else Γ is of the form

� � ∆ � ∆ � � � Γ � � � . But because of associativity of the monoid operation “ � ” this bunch

is equivalent to � ∆ � � ∆ � � Γ �0� � and we can apply the transformation recursively to this

bunch. Because ∆ is strictly smaller than Γ � the recursion is guaranteed to terminate.

The same transformation can be used for additive bunches since “;” is also a monoid

operation.

We are left with a tree with the following shape:

,

�
� ���
� �

Γ ,

�
� �

Γ � ,

�
� ���
� �

Γ
��� 1 Γ

�

3.3. Notation 38

where Γ � � � Γ
�

are either propositions, units or additive bunches, to which, by induc-

tion hypothesis, the same transformation can be applied

Note that the position of the subbunches has not changed with respect to a left

traversal of the tree. This fact is important if we are considering bunches of clauses,

and the order in which the clauses are considered is relevant, as is usually the case

in logic programming.

Canonical bunches let us represent bunches in a convenient way. Now, instead

of writing a bunch like Γ1 � � Γ2 � � � � � � � Γ ��� 1 � Γ � � � � we can write it Γ1 � Γ2 � � � � � Γ ��� 1 � Γ � with

no loss of information.

3.3 Notation

Often we need to say explicitly whether a context is multiplicative or additive. The

following notation is then useful:
�

Γ means that Γ is multiplicative and
;
Γ means that

it is additive.

We will use the notation Γ � ∆ to mean that ∆ is of the form ∆ � � Γ � . An extreme

case is that Γ � Γ. In the following discussion “ � ” and “;” are considered to be multary

operators, connecting two or more subbunches. In this way, not only associativity

issues are canonized away but also we get that Γ � ∆ only if Γ collects all clauses or

subbunches at its level. As a consequence, for example � �� � ; � �� � ; � ; 	 .

Also we will define the relation Γ 	 ∆. Clauses are considered to be additive

bunches. If
;
Γ then

;
Γ 	 ∆ iff

;
Γ � ∆. If

�
Γ then it is of the form

;
Γ1 �������.�

;
Γ � and

�
Γ 	 ∆

iff
;
Γ � � ∆ � 1

� � � � .

However, this definition is not enough to rule out some cases in which we don’t

want the relation to hold. For example we don’t want ��� ; � � � ��� ; � � to be a subbunch

of � ��� ; � � �
	 � ; ��� � ��� ; � � � because this would mean that we were using clauses from two

different multiplicative subbunches, without doing a weakening first. I think that the

following extra condition works:

As we have seen, uniform proofs do not, however, characterize resolution. For

that, we must ensure that the choice of clause in each implicational left rule is also

3.4. Uniform Proofs 39

goal-directed. For that we require proofs which are not merely uniform but simple,

i.e., in which all instances of implicational left rules are of the following, essentially

unary, forms (� is the unit of �):

Γ �# ∆ �
∆ � � Γ; # � � � � � � Γ �#

Γ � # ��� � � � � �

These rules are clearly admissible in LBI but to understand why the ��� � rule is com-

plete we must consider not only the canonical form for bunches but also that we

may replace the basic axiom sequent with the following CutAxiom rule:

Γ �
Γ � � � CutAxiom (CA) �

The effect of this rule, which may be seen as a form of garbage collection, is to

absorb, trivially, unused multiplicative bunches. Then we can make the following

transformation of proof figures (
�
 is the unit of “,”, i.e., � on the left):

Γ1 �#
Γ2 �

CutAxiom
Γ2 � � �

� � �
Γ1 � Γ2 � # ��� � �

�
Γ2 �

Γ1 %#
Unit of “,”

Γ1 � �
 �#
Cut

Γ1 � Γ2 �# �� �
� � �

Γ1 � Γ2 � # ��� � �

in which the right-hand premiss of the ��� � is rendered trivial.

3.4 Uniform Proofs

The first requirement for a logic that is going to be used as a basis for a programming

language, is that the amount of non-determinism is kept to a minimum.

Definition 3.4.1 (Hereditare Harrop Formulæ) The Hereditary Harrop fragment of BI

is defined by the following grammar

Definite formulæ � ::) �
 �����
�� ���
 � � �
�� � � �

 ��� ���
 � �	��
 � ���

Goal formulæ � ::) �
 �
 � � �
 � � �
�� � �
 � � � �

�� � �
 � � � �
 � � ��
 � � �

3.5. Weakening 40

At this point we have shown that in the Hereditary Harrop fragment of BI for each

proof there is a uniform proof which is equivalent to it. But now we face the follow-

ing problem: a uniform proof performs first all right rules down to an atom and at

this point only a left rule can be used. But it is not clear which left rule should be

applied first. We will show in this section that a goal-directed approach is complete.

With this we mean that if we systematically choose to apply an axiom or a left impli-

cation where the consequent is the atom we are trying to prove, then we will always

find a proof if there is one.

3.5 Weakening

We need to investigate the permuting properties of Weakening with respect to the

other rules, specially the right rules.

Thinking of proofs as proof search, that is as happening upwards, it can be seen

from a simple observation of the rules that it is possible to postpone the application

of any weakenings until an axiom forces them, and in that case they can be done

sidestepping any non-determinism. But there is an exception to this permutability:

� � . Since this right rule has as a context a multiplicative bunch, in the case in which

this context is additive there are two ways forward: first to try each of the multiplica-

tive bunches constituting the additive bunch one by one, and in case of failure also a

unit operation could be performed to transform an additive bunch Γ into the multi-

plicative � � Γ. We will see in the operational semantics that the context management

system we use removes this source of non-determinism.

3.6 CutAxiom

The usual axiom rule �* � is not suitable for proof search, since there are cases

where Cut cannot be eliminated without also losing goal directedness. An example

will be analysed below, but before that we propose an alternative axiom rule which

we will call CutAxiom:

3.6. CutAxiom 41

Lemma 3.6.1 The following rule, which we will call CutAxiom, is admissible.

Γ �
CutAxiom

Γ � � �
Proof: this rule encodes the following cut in a goal directed fashion:

Γ �

Axiom
�� �

Unit
� � � �

Cut
Γ � � �

The way to eliminate the cut in the proof above will depend on the structure

of the proof Γ � but typically it will involve finding a clause that defines � and

performing a left rule on this clause. An example is

Axiom
�� �

Axiom
�" �

Unit
� �
�" �

��� �
� � ����� � �
� �

In this example it is clear that the boxed clause, used in the ��� � rule, bears no

relation whatsoever with the goal. With the CutAxiom, though, it becomes nicely goal

directed:

Axiom
�� �

Axiom
�, �

� � �
� � ��� ���" �

CutAxiom
� � ����� � �
� �

Using the Unit
�

rule Unit�
 � and CutAxiom we can encode the normal

axiom rule in the following way:

Unit�
 �
CutAxiom

� �
The CutAxiom rule won’t be in the leaves of the proofs. Rather our proofs will

have only the Unit
�

rule as leafs.

3.7. Resolution and Simple proofs 42

3.7 Resolution and Simple proofs

First we show some general permutation properties of the calculus. In the following

sections � and � stand for atomic formulæ. Also we will annotate applications of

� �
rule as � ���

to indicate that the principal formula in the rule is the one which

defines � .

Lemma 3.7.1 Given a proof with a left implication rule as the last rule of the right

subproof and a left implication rule as the last rule, then these two rules can be per-

muted

Proof: We analyse all possible combinations, the additive case on the right subproof

first.

� �
There is a special case to be considered, when both arrows are of the same

type and belong to the same additive subbunch, in which case it is possible

for � to go to the left branch of the right subproof, instead to the right branch.

This case is considered first.

Γ1 �#
Γ2; � �$ ∆ � Γ3; � � ��

� ���
∆ � Γ2;Γ3; � ; $ � � � ��

� ���
∆ � Γ1;Γ2;Γ3; # � � ; $ � � � ��

�

Γ1 �# Γ2; � �$
� ���

Γ1;Γ2; # � � �$ ∆ � Γ3; � � ��
� ���

∆ � Γ1;Γ2;Γ3; # � � ; $ � � ����

Γ1 �#
Γ3 �$ ∆ � Γ2; � � � Γ4; � � ��

� ���
∆ � Γ2; � � � Γ3;Γ4; $ � � � ��

� ���
∆ � Γ1;Γ2; # � � � � Γ3;Γ4; $ � � � ��

� Γ3 �$
Γ1 �# ∆ � Γ2; � � � Γ4; � � ��

� ���
∆ � Γ1;Γ2; # � � � � Γ4; � � ��

� ���
∆ � Γ1;Γ2; # � � � � Γ3;Γ4; $ � � � ��

Γ1 �#
Γ3 �$ ∆ � Γ2 � � � � Γ4; � � ��

� ���
∆ � Γ2 � � � � Γ3;Γ4; $ � � � ��

� � � �
∆ � Γ1 � Γ2 � # � � � � � Γ3;Γ4; $ � � � ��

� Γ3 �$
Γ1 �# ∆ � Γ2 � � � � Γ4; � � ��

� � ���
∆ � Γ1 � Γ2 � # � � � � � Γ4; � � ��

� ���
∆ � Γ1 � Γ2 � # � � � � � Γ3;Γ4; $ � � � ��

� � � As in the previous case, when both arrows are multiplicative, there exist the

possibility for � to go to the left branch of the right subproof and this case has

to be treated separately.

Γ1 �#
Γ2 � � �$ ∆ � Γ3 � � � �� ��� ���
∆ � Γ2 � Γ3 � � � $ ����� � �� � � ���

∆ � Γ1 � Γ2 � Γ3 � # � � � � $ ����� � ��
�

Γ1 �# Γ2 � � �$ ��� � �
Γ1 � Γ2 � # � � ���$ ∆ � Γ3 � � � �� � � ���

∆ � Γ1 � Γ2 � Γ3 � # � � � � $ � ��� � ��

3.7. Resolution and Simple proofs 43

Γ1 %#
Γ3 �$ ∆ � Γ2; � � � Γ4 � � � ��

� � ���
∆ � Γ2; � � � Γ3 � Γ4 � $ ��� � � �� � ���

∆ � Γ1;Γ2; # � � � � Γ3 � Γ4 � $ ��� � � ��
� Γ3 �$

Γ1 %# ∆ � Γ2; � � � Γ4 � � � ��
� ���

∆ � Γ1;Γ2; # � � � � Γ4 � � � �� � � ���
∆ � Γ1;Γ2; # � � � � Γ3 � Γ4 � $ ��� � � ��

Γ1 �#
Γ3 �$ ∆ � Γ2 � � � � Γ4 � � � �� ��� ���
∆ � Γ2 � � � � Γ3 � Γ4 � $ ����� ����

��� ���
∆ � Γ1 � Γ2 � # ��� � � � Γ3 � Γ4 � $ � ��� ����

� Γ3 �$
Γ1 �# ∆ � Γ2 � � � � Γ4 � � � �� � � ���
∆ � Γ1 � Γ2 � # � � � � � Γ4 � � � ��

� � ���
∆ � Γ1 � Γ2 � # ��� � � � Γ3 � Γ4 � $ ��� � � ��

Definition 3.7.2 Given a left implication rule, we will call it unit-simple if its right

subproof consists of a series of weakenings followed immediately by a CutAxiom on

the atom defined by the implication.

Lemma 3.7.3 ((Unit-simple proofs)) All occurrences of non-unit-simple rules can be

removed by either eliminating the rule altogether or by permuting it upwards until it

becomes a unit-simple rule.

Proof Overview: We have to consider only instances of � �
and ��� �

where the atom defined by the principal clause is different than the atom

that we are trying to prove, or it is the same but the axiom applied in the

right subproof does not refer to the atom defined by the left implication

rule.

The proof is based on the fact that any occurrence of a left implication

rule which is non-unit-simple can be eliminated or permuted upwards

until it becomes a unit-simple rule. There are two fundamental proof fig-

ures that we are concerned with:

Ξ1���
Γ1 �#

Ξ2���
∆ � Γ2; � � �

� �
∆ � Γ1;Γ2; # � � � �

Ξ1���
Γ1 �#

Ξ2���
∆ � Γ2 � � � �� � � �

∆ � Γ1 � Γ2 � # ��� � � ��

3.7. Resolution and Simple proofs 44

In each case we assume that in Ξ1 and Ξ2 every occurrence of a left im-

plication rule is unit-simple. The only case when the rule cannot be per-

muted upwards is when � is equal to � and the last rule applied in Ξ2

(possibly after some weakenings) is a CutAxiom. But in this case the left

implication rule is unit-simple.

Proof:

CutAxiom When the last rule in the right branch is a CutAxiom there are three

cases. If �) � and this instance of � is used in the CutAxiom, then it is a

simple proof and there is nothing to do.

Γ1 �#

∆ � �
CutAxiom

∆ � � � �))))))))) Weakening �
∆ � Γ2; � � �

� �
∆ � Γ1;Γ2; # � � � �

Γ1 �#

∆ � � Γ2 �
CutAxiom

∆ � � Γ2 � � �))))))))) Weakening �
∆ � Γ2 � � � � ��� �

∆ � Γ1 � Γ2 � # � � � � �
In the next cases we don’t need to assume that � �) � . The important fact is that

the CutAxiom doesn’t eliminate the atom that had just been created by the left

implication rule.

If � is weakened away while bringing � to the top level then Γ1; # � � (or

Γ1 � # � � �) can be weakened before the application of the implication rule. Here

∆ � Γ2; � � � � � means that ∆ has two subbunches Γ2; � and � and it includes the

case ∆ � Γ2; � ; � � .

Γ1 �#

∆ � �
CutAxiom

∆ � � � ��)))))))))))) Weakening �
∆ � Γ2; � � � � � ��

� �
∆ � Γ1;Γ2; # � � � � � � ��

�

∆ � �
CutAxiom

∆ � � � ��)))))))))))))))))) Weakening �
∆ � Γ1;Γ2; # � � � � � � ��

In the case of ∆ � Γ2 � � � � � � the fact that Γ2 � � has been weakened away implies

that it is a different subbunch than � , since “ � ” does not admit weakening.

Γ1 �#

∆ � �
CutAxiom

∆ � � � ��)))))))))))) Weakening �
∆ � Γ2 � � � � � � �� � � �

∆ � Γ1 � Γ2 � # � � � � � � � ��

�

∆ � �
CutAxiom

∆ � � � ��))))))))))))))))) Weakening �
∆ � Γ1 � Γ2 � # ��� � � � � � ��

The simplified figures on the right are unit-simple by the Induction Hypothesis.

3.7. Resolution and Simple proofs 45

The third case is when Γ2; � or Γ2 � � is not weakened away. In this case the

implication rule can be permuted upwards.

Γ1 �#

∆ � � Γ2; � � �
CutAxiom

∆ � � Γ2; � � � � ��)))))))))))) Weakening �
∆ � Γ2; � � � � � ��

� �
∆ � Γ1;Γ2; # � � � � � � ��

�

Γ1 �# ∆ � � Γ2; � � �
� �

∆ � � Γ1;Γ2; # � � � �
CutAxiom

∆ � � Γ1;Γ2; # � � � � � ��)))))))))))))))))) Weakening �
∆ � Γ1;Γ2; # � � � � � � ��

Γ1 �#

∆ � � Γ2 � � � �
CutAxiom

∆ � � Γ2 � � � � � ��)))))))))))) Weakening �
∆ � Γ2 � � � � � � �� � � �

∆ � Γ1 � Γ2 � # � � � � � � � ��

�

Γ1 �# ∆ � � Γ2 � � � � ��� �
∆ � � Γ1 � Γ2 � # ��� � � �

CutAxiom
∆ � � Γ1 � Γ2 � # ��� � � � � ��))))))))))))))))) Weakening �
∆ � Γ1 � Γ2 � # ��� � � � � � ��

� � � and � �
In these cases we use lemma 3.6.1 to permute the occurrence of the

non-unit-simple rule upwards. However a special case arise when both impli-

cations are of the same type and at the same level. We will use ��� � to illustrate

the problem and the solution.

Γ1 �#
Γ2 � � �$ ∆ � Γ3 � � � �� � � �
∆ � Γ2 � Γ3 � � � $ � � � ���� ��� �

∆ � Γ1 � Γ2 � Γ3 � # � � � � $ ����� ����
�

Γ1 �# Γ2 � � �$ ��� �
Γ1 � Γ2 � # � � � �$ ∆ � Γ3 � � � ��

��� �
∆ � Γ1 � Γ2 � Γ3 � # � � � � $ � ��� � ��

The problem is that the permuted proof of Γ1 � Γ2 � # � � � �$ might no longer be

uniform. However, if that was the case, we can apply the permutations given

in the proof of uniformity and then apply the induction hypothesis.

To illustrate what happens in a specific case consider the proof of the sequent

� �
	 � � � � � � ��� � 	 � ��� � � . For simplicity we will use the normal Axiom rule instead of

CutAxiom. First consider the uniform but non-unit-simple proof

� �

	 	 � �
� �

	 �
� � � 	 �� �
��� �

	 �
� � � ��� � � ��� � 	 � � � � �
� � �

� �
	 � � � � � � ��� � 	 � ��� �� �

3.7. Resolution and Simple proofs 46

After the transformation indicated above, this proof becomes

� �
	 	 � �

� �
	 �
� � � 	

� � �
� �
	 � � ��� �" � � 	 �� �

��� �
� �
	 � � ��� � � ��� � 	 � ��� �� �

which is not uniform, because there is a � � � rule below a � � rule. But this subproof

can be transformed into the following uniform proof

�" � �, �
� � �

� � � ��� �" � 	 	
� �

� �
	 � � ��� �" � � 	 �� �
� � �

� �
	 � � � � � � ��� � 	 � � � �� �

Lemma 3.7.4 The system resulting from replacing � � � with the following rule, which

we will call ��� � � , is equivalent

Γ1 �# Γ2 � � �
� � � �

Γ1 � Γ2 � # ��� � �
Proof: The crucial point is to note that all weakenings done to bring an atom to

the top level (so the CutAxiom rule can be applied) could be done earlier to bring

the implication clause to the top level and then applying the rule. At that point the

surrounding context disappears.

First, using the last lemma we need to consider only simple proofs. Then the

following transformation can be done.

Γ1 �#

∆ � � Γ2 �
CutAxiom

∆ � � Γ2 � � �))))))))) Weakening �
∆ � Γ2 � � � � � � �

∆ � Γ1 � Γ2 � # ��� � � �

�
Γ1 �#

∆ � � Γ2 �
CutAxiom

∆ � � Γ2 � � � � � � �
∆ � � Γ1 � Γ2 � # ��� � �))))))))))))))) Weakening �
∆ � Γ1 � Γ2 � # ��� � � �

Notice that in the transformed rule we have decoupled the weakenings from the

CutAxiom. This is harmless since the weakenings had to be done anyway, getting rid

of the same clauses than before. Also the “goal directness” of the weakenings is not

lost, because where before we were using � now we use # ��� � with the same results.

3.8. Simple Proofs 47

3.8 Simple Proofs

These proofs have nice computational properties. In the case of ��� � this means hav-

ing a single thread of control and no context-management non-determinism. Again

we will use the new axiom rule and move the side condition over to the other side

by means of a cut.

Lemma 3.8.1 The following � � � rule is admissible

Γ �#
Γ � # ��� � �

Proof: We transform the rule presented in the last lemma in the following way

Γ1 �#
Γ2 �

Axiom
Γ2 � � � � � � �

Γ1 � Γ2 � # � � � �
�

Γ2 �
Γ1 �#

Unit
Γ1 ���,%#

Cut
Γ1 � Γ2 %#

Axiom
� �

��� � �
Γ1 � Γ2 � # � � � �

and then the axiom becomes redundant.

The comment above respect to cut elimination applies here as well: that is, cut

can always be eliminated but the way this is done will depend on the proof of Γ2 � .

In the case of � �
things are not so “simple”. However it is possible to avoid a

source of non-determinism by a trick shown in the following lemma. Note that in

this case brackets are used only to force precedence of “;” over “ � ”, and must not be

confused with the sub-bunch notation.

Lemma 3.8.2 The following rule is admissible and will be called � � � . Moreover the

replacement of � �
with this rule doesn’t affect the power of the system.

Γ �# ∆ �
� � �

∆ � � Γ; # � � � �
Proof: The proof is based in the fact that among the weakenings necessary to bring

� to the top on the right subproof, there will be weakenings of any bit of context

connected additively to it. These weakenings can be done on the left subproof.

3.9. Resolution Proofs 48

Γ1 �#

∆ � �
CutAxiom

∆ � � � �))))))) Weakening �2∆ � � � �))))))))) Weakening �1∆ � Γ2; � � �
� �

∆ � Γ1;Γ2; # � � � �

�

Γ1 %#))))))) Weakening �1Γ1;Γ2 �#
∆ � �

CutAxiom
∆ � � � �

� � �
∆ � � � Γ1;Γ2; # � � � �))))))))))))))))) Weakening �2∆ � Γ1;Γ2; # � � �� �

Here the series of weakenings called Weakening �1 weakens the components of the

subbunch Γ2. The series of weakenings called Weakening �2 weakens the components

of ∆ necessary to bring � or the subbunch Γ1;Γ2; # � � to the top level.

Finally we state and prove the most important lemma in this section:

Theorem 3.8.3 Simple (resolution) proofs are complete for the hereditary Harrop frag-

ment of BI.

Proof: Given a sequent Γ �# where all components of Γ are definite formulæ and #
is a goal formula, we know from Section 3.10 that the goal is probable if and only if

there is a normal proof.

Also from Lemma 3.7.3 we know that any proof of an atomic formula can be

transformed into a resolution proof.

3.9 Resolution Proofs

We now present the system that will be used on the rest of this work. We will call it

LBI � and the rules are shown in Table 3.1.

We assume that Γ and ∆ have not got any additive or multiplicative conjunc-

tions to insure uniformity of the proofs. This invariant has to be maintained when

the context is increased via a right implication rule. Therefore we apply to the an-

tecedent of the implications the following operation:

3.10. Permutation of Rules in BI 49

Γ � �
CutAxiom

Γ � � � �

Γ �
�

��� � � �

Γ � � � � � � �

Γ � �
� Γ � �

��� � �

Γ � � Γ � ; � � � � � �

Γ �	# ∆ ��$
� �

Γ � ∆ � # � $
Γ � � #�
 ��$

� � �
Γ ��# ��� $

Γ ��# Γ ��$ ���
Γ �	#&��$

Γ �	# � ���) 1 � 2 � ���
Γ �	# 1 ��# 2

Γ; � #
 � $
���

Γ �	# �($

Table 3.1: Resolution proofs

Definition 3.9.1 (the clausal decomposition, [P])

� Γ � � �
 ::) Γ � � �
� Γ ��# � $ �
 ::) Γ �� #�
�� � $
 �
� Γ ��# � $ �
 ::) Γ �� #�
 ; � $
 �
�Γ ��# ��� � �
 ::) Γ ��# � � � �
� Γ ��# � � �
 ::) Γ ��# � � �

3.10 Permutation of Rules in BI

As a general organizing principle in the following permutations, we have first treated

the additive cases and then the multiplicative ones. There are four main subsections

corresponding to the four left rules that have to be considered: � �
, ��� � , � � and

� � ��
 � . The subcases correspond to the right rules and are treated in the following or-

der: implication, conjunction, disjunction (in the additive case only), universal and

existential quantifiers. In the case of the right rules the order of treatment is again

first the additives and then the multiplicatives.

3.10.1 Additive implication (� �
)

All applications of � �
have the side condition that � �$: Prop.

3.10. Permutation of Rules in BI 50

���

�����
Γ �#

� � � � � � �
∆ � $ � ; � ��

������ � � � � �
∆ � $ � �� � �

� �
� � � � �

;
��� �

∆ � Γ; # �($ � �� � �
�

�����
Γ �# ����� � � � �

∆ � $ � ; � ��
� �

��� � � �
;
� � �

∆ � Γ; # ��$ � ; � ��
������ � � �

;
� � �

∆ � Γ; # �($ � �� � �

� �

�����
Γ %#

� � � � � � �
∆ � $ � � ����� � �

∆ � �� ������ � � � �
;
��� � �

∆ � $ � ;∆ � ���� �
� �

� � ��� �
;
� �

;
��� � �

∆ � Γ; # �($ � ;∆ � ���� �
�

�����
Γ �# � � � � � � �

∆ � $ � �
� �

��� � � �
;
��� �

∆ � Γ; # �($ � � ����� � �
∆ � �� ������ ��� �

;
� �

;
� � � �

∆ � Γ; # �($ � ;∆ � ���� �

� � For �) 1 � 2
�����

Γ �#

� � � � � � �
∆ � $ � �� �

� �� � ��� � � �
∆ � $ ���� 1 � � 2 � �

��� � � �
;
� � �

∆ � Γ; # �($ � � 1 � � 2

�

�����
Γ �# ��� � � ��� �

∆ � $ � �� �
� �

������� �
;
� � �

∆ � Γ; # �($ � �� �
������ � � �

;
� � �

∆ � Γ; # �($ � �� 1 � � 2

� � Here a potential problem might arise if � is not free in Γ. Then a substitution

should be done first.

�����
Γ �#

� � � � � �
; � 1
�

∆ � $ � �� � � 1
� ��
 ��� new tag � � ���� � � � � �

∆ � $ � ��� � � � ���
� �

����� � �
;
��� �

∆ � Γ; # ��$ � ��� � � � ���
�

�����
Γ �# ����� � � �

; � 1
�

∆ � $ � �� � � 1
� ��

� �
��� � � �

;
� �

; � 1
�

∆ � Γ; # �($ � �� � � 1
� ��
 ��� new tag � � �� � � � �

;
� � �

∆ � Γ; # �($ � ��� � � � ���

3.10. Permutation of Rules in BI 51

� �

�����
Γ �#

��� � � � �
;
� � ∆ � $ � �� � �	� ��
 ��� � : Term � � ���� ��� � � �
∆ � $ � � � � � � ���

� �
� � � � �

;
��� �

∆ � Γ; # �($ � � � � � � ���
�

�����
Γ �# ��� � � � �

;
� � ∆ � $ � �� � �	� ��

� �
������� �

;
���

;
� � ∆ � Γ; # �($ � � � �	� ��
 ��� � : Term � � �� � � � �

;
��� �

∆ � Γ; # �($ � � � � � � ���

� � �

�����
Γ �#

������� � � �
∆ � $ � � � ��

��� �� � � � � � �
∆ � $ ���� � � �

� �
��� � � �

;
� � �

∆ � Γ; # �($ � � ��� �
�

�����
Γ �# ��� � � � � �

∆ � $ � � � ��
� �

� � � � �
;
��� �

∆ � Γ; # �($ � � � ��
��� �� ��� � �

;
��� �

∆ � Γ; # �($ � �� � � �

� �

�����
Γ �#

��� � � ��� �
∆ � $ � �� � � � � �

∆ � ��
� ���� � � � � �
��� � �

∆ � $ � � ∆ � �� � �
� �

� � � � �
;
� � �
��� � �

∆ � Γ; # ��$ � � ∆ � � � �
�

�����
Γ �# ��� ��� � � �

∆ � $ � ��
� �

� � � � �
;
� � �

∆ � Γ; # �($ � �� ��� � � �
∆ � ��

� �� � ��� �
;
� � � � � � �

∆ � Γ; # �($ � � ∆ � �� � �

� �	�
 �

�����
Γ �#

��� � � � � �
� 1
�

∆ � $ � �� � � 1
� ��
 ��� new tag � ��� ��
 �� � � � � � �

∆ � $ � � � ��
�� � � � ���
� �

� � � � �
;
��� �

∆ � Γ; # �($ � � �	�
�� � � � � �
�

�����
Γ �# � ��� � � � �

� 1
�

∆ � $ � �� � � 1
� ��

� �
��� � � �

;
� � �

� 1
�

∆ � Γ; # �($ � �� � � 1
� ��
 ��� new tag � � � ��
 ���� � � �

;
��� �

∆ � Γ; # �($ � � � ��
�� � � � ���

3.10. Permutation of Rules in BI 52

� � ��
 �

�����
Γ �#

��� � � � � � � � ∆ � $ � �� � �� ��
 ��� � : Term � � � ��
 ���� ��� � � �
∆ � $ � � � ��
�� � � � ���

� �
��� � � �

;
��� �

∆ � Γ; # �($ � � � ��
 � � � � � �
�

�����
Γ �# ������� � � � � � ∆ � $ � �� � �� ��

� �
� � � � �

;
��� � � � ∆ � Γ; # �($ � �� � �	� ��
 ��� � : Term � � � ��
 �� � � � �

;
��� �

∆ � Γ; # �($ � � � ��
 � � � � ���

3.10.2 Multiplicative implication (��� �)

All applications of � � � have the side condition that � �$: Prop.

���

�����
Γ �#

� � ��� � � �
∆ � $ � ; � ��

������ � � � � �
∆ � $ � �� � �

��� �� ��� � �	�
� � �
∆ � Γ � # ��� $ � �� � �

�

�����
Γ �# ��� � � � � �

∆ � $ � ; � ��
��� ������ � �	� � � �

∆ � Γ � # ��� $ � ; � ��
���� � � � �	�
� � �

∆ � Γ � # ��� $ � �� � �

� �

�����
Γ �#

��� ��� � � �
∆ � $ � �� ��� � � �

∆ � �� � �� ��� � � �
;
� � � �

∆ � $ � ;∆ � ���� �
� � �� � ��� �	� � �

;
��� � �

∆ � Γ � # ��� $ � ;∆ � ���� �
�

�����
Γ �# ������� � � �

∆ � $ � ��
��� ���� ��� �	� � � �

∆ � Γ � # � � $ � �� ����� � �
∆ � �� � �� � � � �	�
� �

;
��� � �

∆ � Γ � # � � $ � ;∆ � ���� �

� � For �) 1 � 2

�����
Γ �#

��� ��� � � �
∆ � $ � �� �

� �������� � � �
∆ � $ � �� 1 � � 2 � � ���� � � �	� ��� �

∆ � Γ � # � � $ � �� 1 � � 2

�

�����
Γ �# ��� � � ��� �

∆ � $ � �� �
� � �� � � � �	�
� � �

∆ � Γ � # ��� $ � �� �
� ���� � � �

;
��� �

∆ � Γ; # � � $ � �� 1 � � 2

3.10. Permutation of Rules in BI 53

� �

�����
Γ �#

� � � � � �
; � 1
�

∆ � $ � �� � � 1
� ��
 ��� new tag � � ������ � � � �

∆ � $ � ��� � � � ���
��� �������� �	� � � �

∆ � Γ � # � � $ � ��� � � � ���
�

�����
Γ %# � � � � � �

; � 1
�

∆ � $ ���� � � 1
� ��

��� �� � � � �	�
� �
; � 1
�

∆ � Γ � # � � $ � �� � � 1
� ��
 ��� new tag � � ���� ��� �	� � � �

∆ � Γ � # � � $ � ��� � � � ���

� �

�����
Γ �#

��� � � � �
;
� � ∆ � $ � �� � �	� ��
 ��� � : Term � � ���� ��� � � �
∆ � $ � � � � � � ���

��� ���� � � � � � � �
∆ � Γ � # � � $ � � � � � � ���

�

�����
Γ �# ������� � �

;
� � ∆ � $ ���� � �� ��

��� �� � � � �	�
���
;
� � ∆ � Γ � # ��� $ � �� � �	� ��
 ��� � : Term � � ���� � � �	� � � �
∆ � Γ � # � � $ � � � � � � ���

� � �

�����
Γ �#

������� � � �
∆ � $ � � � ��

��� �� � ��� � � �
∆ � $ ���� � � �

��� ������ � �	� � � �
∆ � Γ � # ��� $ ���� � � �

�

�����
Γ �# � � � � � � �

∆ � $ � � �'��
� � �� � ��� �	� � � �

∆ � Γ � # ��� $ � � � ��
��� �� ��� � �	�
� � �

∆ � Γ � # ��� $ � �� ��� �

� �

�����
Γ �#

��� � � � � �
∆ � $ � �� � � � � �

∆ � ��
� ���� � � � � � � � � �

∆ � $ � � ∆ � �� � �
� � �� � � � �	�
��� �
� � � �

∆ � Γ � # � � $ � � ∆ � �� � �
�

�����
Γ %# � � � � � � �

∆ � $ � ��
��� �� � � � �	�
� � �

∆ � Γ � # ��� $ � �� ��� � � �
∆ � ��

� �� ��� � �	�
� � � ��� � �
∆ � Γ � # � � $ � � ∆ � �� � �

3.10. Permutation of Rules in BI 54

� �	�
 �

�����
Γ �#

��� � � � � �
� 1
�

∆ � $ � �� � � 1
� ��
 ��� new tag � ��� ��
 �� ��� � � � �

∆ � $ � � � ��
�� � � � ���
��� ���� � � � � � � �

∆ � Γ � # � � $ � � � ��
�� � � � � �
�

�����
Γ �# ��� � � � � �

� 1
�

∆ � $ � �� � � 1
� ��

��� �� ��� � �	�
� � �
� 1
�

∆ � Γ � # � � $ � �� � � 1
� ��
 ��� new tag � ��� ��
 �� � � � �	�
� � �

∆ � Γ � # ��� $ � � � ��
 � � � � ���

� � ��
 �

�����
Γ �#

������� � � � � � ∆ � $ � �� � �� ��
 ��� � : Term � � � ��
 ���� ��� � � �
∆ � $ � � � ��
�� � � � ���

��� ���� � � � � � � �
∆ � Γ � # � � $ � � � ��
�� � � � ���

�

�����
Γ �# � � � � � � � � � ∆ � $ �� � � �	� ��

� � ���� � � � � � � � � � ∆ � Γ � # � � $ � �� � �� ��
 ��� � : Term � � � ��
 ���� � � � � � � �
∆ � Γ � # � � $ � � � ��
 � � � � ���

3.10.3 Additive universal quantifier (� �)

All applications of � � have as side condition that � � : Term

���
���

;
� �

Γ ��# � � � � ; $ ��
������

;
� �

Γ ��# � � � � �$ � �
� ������

Γ � ��� � # � ��� � �$ � �

�

���
;
� �

Γ ��# � � � � ; $*��
� ������

Γ � ��� � # � � � � ; $ ��
��������

Γ � ��� � # � ��� � �$ � �

� �
���

;
���

Γ ��# � � � � �$ � � � ∆ �� � ����
;
�

;
� � Γ ��# � � � � ;∆ �$ � �

� ����
;
� � Γ � ��� � # � � � � ;∆ �$�� �

�

���
;
���

Γ ��# � � � � �$
� ������

Γ � ��� � # � ��� � �$ � � � ∆ � � ����
;
� � Γ � ��� � # � � � � ;∆ �$	� �

3.10. Permutation of Rules in BI 55

� � For �) 1 � 2 ���
;
� �

Γ ��# � � � � �$ �
� ����

;
���

Γ ��# � � � � �$ 1 ��$ 2 � ������
Γ � ��� � # � � � � �$ 1 � $ 2

�

���
;
� �

Γ ��# � � � � �$ �
� ������

Γ � ��� � # � ��� � �$ �
��������

Γ � ��� � # � ��� � �$ 1 ��$ 2

� �
���

;
�

; � 1
�

Γ ��# � � � � �$ � � 1
� �
 ��� new tag � � ����

;
���

Γ ��# � � � � � � � � � $ � � �
� ������

Γ � ��� � # � � � � � � � $,� � �
�

���
;
�

; � 1
�

Γ ��# � � � � �$ � � 1
� �

� ����
; � 1
�

Γ � ��� � # � ��� � �$ � � 1
� �
 ��� new tag � � ������

Γ � ��� � # � � � � � � � $,� � �

� �
���

;
�

;
� � Γ ��# � � � � �$ � � � ��
 ��� �� : Term � � ����

;
���

Γ ��# � � � � � � � $ � ���
� ������

Γ � ��� � # � ��� � � � � $ � ���
�

���
;
�

;
� � Γ ��# � � � � �$ � � � ��

� ����
;
� � Γ � ��� � # � ��� � �$ � � � ��
 ��� �� : Term � � ������
Γ � ��� � # � � � � � � � $ � ���

� � �
���

;
� �

Γ ��# � � � � � $*��
� � ����

;
� �

Γ ��# � � � � �$ ��� �
� ������

Γ � ��� � # � � � � �$ � � �
�

���
;
� �

Γ ��# � � � � � $*��
� ������

Γ � ��� � # � � � � � $*��
� � ������

Γ � ��� � # � � � � �$ ��� �

3.10. Permutation of Rules in BI 56

� �
���

;
� �

Γ ��# � � � � �$ � � � ∆ �
� �� � �

;
��� � � � Γ ��# � � � � � ∆ �$ � �

� ����	� � � Γ � ��� � # � ��� � � ∆ �$ � �
�

���
;
� �

Γ ��# � � � � �$
� ������

Γ � ��� � # � � � � �$ � � � ∆ ��
� ����	� � � Γ � ��� � # � ��� � � ∆ �$ � �

� �	�
 �
��� �

;
��� �

� 1
�

Γ ��# � � � � �$ � � 1
� �
 ��� new tag � � � ��
 ����

;
���

Γ ��# � � � � � � ��
 � � $ � � �
� ������

Γ � ��� � # � ��� �� � � ��
 � � $,� � �
�

��� �
;
� � �

� 1
�

Γ ��# � � � � �$ � � 1
� �

� ����	�
� 1
�

Γ � ��� � # � � � � �$ � � 1
� �
 ��� new tag � � � ��
 ������

Γ � ��� � # � � � � � � ��
 � � $,� � �

� � ��
 �
��� �

;
��� � � � Γ ��# � � � � �$ � � � ��
 ��� �� : Term � � �	��
 ����

;
���

Γ ��# � � � � � �	�
�� � $ � � �
� ������

Γ � ��� � # � � � � � � ��
�� � $,� � �
�

� � �
;
��� � � � Γ ��# � � � � �$ � � � ��

� ����	� � � Γ � ��� � # � � � � �$ � � � ��
 ��� �� : Term � � �	��
 ������
Γ � ��� � # � ��� �
� �	��
 � � $ � ���

3.10.4 Multiplicative universal quantifier (� � ��
 �)

All applications of ���	�
 � have as side condition that �� � : Term

���
��� � ��

Γ ��# � � � � ; $*��
������	� � �

Γ ��# � � � � �$ � �
� � ��
 ������

Γ � � �	��
 � � # � � � � �$ � �

�

��� � ���
Γ ��# � � � � ; $ ��

� � ��
 ������
Γ � � � ��
 � � # � ��� � ; $ ��

��������
Γ � � �	��
 � � # � � � � �$ � �

3.10. Permutation of Rules in BI 57

� �
���	�
���

Γ ��# � � � � �$ � � � ∆ �� � ���� �	� � �
;
� � Γ ��# � � � � ;∆ �$	� �

� � ��
 ����
;
� � Γ � � �	��
 � � # � � � � ;∆ �$	� �

�

���	� ��
Γ ��# � � � � �$

� � ��
 ������
Γ � � �	�
 � � # � � � � �$ � � � ∆ �� � ����

;
� � Γ � � �	�
 � � # � � � � ;∆ �$	� �

� � For �) 1 � 2 ���	�
���
Γ ��# � � � � �$ �

� ����	�
���
Γ ��# � � � � �$ 1 � $ 2 � � ��
 ������

Γ � � � ��
 � � # � � � � �$ 1 � $ 2

�

���	�
���
Γ ��# � � � � �$ �

� �	��
 ������
Γ � � � ��
�� � # � � � � �$ �

� ������
Γ � � � ��
�� � # � � � � �$ 1 � $ 2

� �
� � �	�
� �

; � 1
�

Γ ��# � � � � �$ � � 1
� �
 ��� new tag � � ����	� ���

Γ ��# � � � � � � ��
 � � $,� � �
� � ��
 ������

Γ � � �	�
 � � # � ��� � � � ��
 � � $,� � �
�

��� �	� � �
; � 1
�

Γ ��# � � � � �$ � � 1
� �

� �	��
 ����
; � 1
�

Γ � � � ��
�� � # � � � � �$ � � 1
� �
 ��� new tag � � ������

Γ � � � ��
�� � # � � � � � �	�
 � � $ � � �

� �
��� � � ���

;
� � Γ ��# � � � � �$ � � � ��
 ��� �� : Term � � ����	� � �
Γ ��# � � � � � � � $ � ���

� �	�
 ������
Γ � � �	��
 � � # � � � � � � � $,� � �

�

��� �	� � �
;
� � Γ ��# � � � � �$ � � � ��

� � ��
 ����
;
� � Γ � � �	��
 � � # � � � � �$ � � � ��
 ��� �� : Term � � ������
Γ � � � ��
 � � # � ��� � � � � $ � � �

3.11. A shorter version using pseudo-connectives 58

� � �
��� � ��

Γ ��# � � � � � $*��
��� ����	� � �

Γ ��# � � � � �$ � � �
� � ��
 ������

Γ � � �	�
 � � # � � � � �$ � � �
�

���	�
��
Γ ��# � � � � � $ ��

� � ��
 ������
Γ � � � ��
 � � # � ��� � � $* �

��� ������
Γ � � � ��
 � � # � ��� � �$ � � �

� �
���	� � �

Γ ��# � � � � �$ � � � ∆ ��
� ���� � � � � � Γ ��# � � � � � ∆ �$ � �
� �	��
 ���� � � � Γ � � � ��
 � � # � ��� � � ∆ �$ � �

�

���	�
���
Γ ��# � � � � �$

� �	��
 ������
Γ � � � ��
�� � # � � � � �$ � � � ∆ �

� ����	� � � Γ � � � ��
 � � # � ��� � � ∆ �$ � �

� �	�
 �
���	�
� �

� 1
�

Γ ��# � � � � �$ � � 1
� �
 ��� new tag � � � ��
 ����	�
���

Γ ��# � � � � � �	��
 � � $ � � �
� �	��
 ������

Γ � � � ��
�� � # � � � � � �	��
 � � $ � � �
�

���	�
� �
� 1
�

Γ ��# � � � � �$ � � 1
� �

� �	�
 ���� �
� 1
�

Γ � � �	��
 � � # � � � � �$ � � 1
� �
 ��� new tag � � � ��
 ������

Γ � � � ��
 � � # � � � � � �	��
 � � $ � � �

� � ��
 �
���	� � � � � Γ ��# � � � � �$ � � � ��
 ��� �� : Term � � � ��
 ����	�
���

Γ ��# � � � � � � ��
�� � $,� � �
� � ��
 ������

Γ � � � ��
�� � # � � � � � � ��
 � � $ � � �
�

���	� � � � � Γ ��# � � � � �$ � � � ��

� � ��
 ����	� � � Γ � � �	��
 � � # � � � � �$ � � � ��
 ��� �� : Term � � � ��
 ������

Γ � � � ��
 � � # � � � � � � ��
�� � $,� � �

3.11 A shorter version using pseudo-connectives

We will exploit the symmetries on the rules of bunched implications to cut down the

number of figures analysed. To this end we introduce a special notation that can

3.11. A shorter version using pseudo-connectives 59

be instantiated to multiplicative or additive versions of the connectives. The sym-

bols � and � � are pseudo-operators for ’,’ or ’;’. The symbols �� and ��� are pseudo-

connectives for ��� and � . The symbols � and � are pseudo-connectives for � and

� . The symbols � � and � � � are pseudo-connectives for � �	�
 and � . The symbols � �

and � � � are pseudo-connectives for � �	��
 and � .

� has to match �� , � , � � and � � . Conversely � � has to match ��� , � , � � � and � � � .

For example the sequent

� � � � � � � � � � ��� � � ∆ � Γ � # �� $ � � � ∆ � ��� �

can have any of the following four instantiations

� ��� � �
;
���

;
��� � �

∆ � Γ; # ��$ � ;∆ � ��� �
��� � � �

;
� � � � � � �

∆ � Γ; # �($ � � ∆ � �� � �
��� � � �	�
� �

;
��� � �

∆ � Γ � # � � $ � ;∆ � ���� �
����� � �	� � � �
��� � �

∆ � Γ � # ��� $ � � ∆ � �� � �
This way of presenting permutations is inspired by the work of [Kleene 52] in

intuitionistic and classical logic.

3.11.1 Implication (�� �
)

All applications of �� �
have the side condition that � �$: Prop.

���&�

�����
Γ �#

��� � � � � �
∆ � $ � � � � ��

��� ���� ��� � � �
∆ � $ � �� ��� �

�� �
� � � � � � ��� � ∆ � Γ � # �� $ � �� ��� �

�

�����
Γ �# ������� � � �

∆ � $ � � � � ��
�� �

� ��� � � � ��� � ∆ � Γ � # �� $ � � � � ��
��� ���� � � � � � � � ∆ � Γ � # � � $ � �� ��� �

� �

�����
Γ �#

������� � � �
∆ � $ � �� ��� � � �

∆ � ��
� �� � � � � � � � ��� � � ∆ � $ � � � ∆ � ���� �
� � �

��� � � � � � � � � � � � � ∆ � Γ � # �� $ � � � ∆ � ���� �
�

�����
Γ �# ������� � � �

∆ � $ ����
�� �

� ��� � � � � � � ∆ � Γ � # �� $ � �� � � � � �
∆ � ��

� ���� ��� � � � � � � � � � � ∆ � Γ � # �� $ � � � ∆ � ���� �

3.11. A shorter version using pseudo-connectives 60

� � For �) 1 � 2
�����

Γ �#

��� � � � � �
∆ � $ � �� �

� ���� � � � � �
∆ � $ � �� 1 � � 2 � � �

� � � � � � � � � ∆ � Γ � # �� $ � �� 1 � � 2

�

�����
Γ �# ������� � � �

∆ � $ ���� �
�� �

������� � � � � � ∆ � Γ � # �� $ � �� �
� �������� � � � � � ∆ � Γ � # �� $ � � 1 � � 2

� � � �

�����
Γ �#

� � � � � � � � � 1
�

∆ � $ � �� � � 1
� ��
 ��� new tag � � � � �������� � � �

∆ � $ � � � � � � � � ���
�� �

� � � � � � ��� � ∆ � Γ � # �� $ � � � � � � � � � �
�

�����
Γ �# ��� ��� � � � � � 1

�
∆ � $ � �� � � 1

� ��

� � �

� � ��� � � � � � � � 1
�

∆ � Γ � # � � $ � �� � � 1
� ��
 ��� new tag � � � � ���� � � � � � � � ∆ � Γ � # � � $ � � � � � � � � ���

� � � �

�����
Γ %#

��� � � � � � � � � ∆ � $ � �� � �	� ��
 ��� � : Term � � � � �� ��� � � � �
∆ � $ � � � � � � � � ���

�� �
��� � � � � ��� � ∆ � Γ � # � � $ � � � � � � � � � �

�

�����
Γ �# � � � � � � � � � � ∆ � $ � �� � �	� ��

�� �
��� � � � � ��� � � � � ∆ � Γ � # �� $ � �� � �� ��
 ��� � : Term � � � � �� � � � � � � � � ∆ � Γ � # �� $ � � � � � � � � ���

3.11.2 Universal quantifier (��� �)

All applications of � � � have as side condition that � � : Term

���&�
��� � �� Γ ��# � � � � � � $*��

��� ���� � �� Γ ��# � � � � �$ ��� �
� � ������

Γ � � � � � # � ��� � �$ ��� �
�

��� � ��� Γ ��# � � � � � � $*��
� � ������

Γ � � ��� � # � � � � � � $*��
��� ������

Γ � � ��� � # � ��� � �$ ��� �

3.11. A shorter version using pseudo-connectives 61

� �
��� � ��� Γ ��# � � � � �$ � � � ∆ ��

� �� � � � � � � � � � Γ ��# � � � � � � ∆ �$ � �
� � ���� � � � � Γ � � ��� � # � � � � � � ∆ �$ � �

�

��� � � � Γ ��# � � � � �$
� � ������

Γ � � � � � # � � � � �$ � � � ∆ �
� ���� � � � � Γ � � � � � # � � � � � � ∆ �$ � �

� � For �) 1 � 2 ��� � ��� Γ ��# � � � � �$ �
� ���� � �� Γ ��# � � � � �$ 1 ��$ 2 � � ������

Γ � � ��� � # � � � � �$ 1 � $ 2

�

��� � ��� Γ ��# � � � � �$ �
� � ������

Γ � � � � � # � � � � �$ �
� ������

Γ � � � � � # � ��� � �$ 1 ��$ 2

� � � �
��� � � � � � � � 1

�
Γ ��# � � � � �$ � � 1

� �
 ��� new tag � � � � ���� � ��� Γ ��# � � � � � � � � � $ � � �
� � ������

Γ � � � � � # � ��� � � � � � � $ � � �
�

� � � � ��� � � � 1
�

Γ ��# � � � � �$ � � 1
� �

� � ���� � � � 1
�

Γ � � � � � # � ��� � �$ � � 1
� �
 ��� new tag � � � � ������

Γ � � � � � # � � � � � � � � � $ � � �

� � � �
��� � � � � � � � � Γ ��# � � � � �$ � � � ��
 ��� �� : Term � � � � ���� � �� Γ ��# � � � � � � � � � $ � � �

� � ������
Γ � � � � � # � ��� � � � � � � $,� � �

�

��� � � ��� � � � � Γ ��# � � � � �$ � � � ��

� � ���� � � � � Γ � � � � � # � ��� � �$ � � � ��
 ��� �� : Term � � � � ������

Γ � � ��� � # � � � �
� � � � � $ � ���

62

Chapter 4

Operational Semantics

4.1 Introduction

In this chapter we develope an operational semantics for a logic programming lan-

guage based on BI. We use a structural approach as described in [Plotkin 81] and we

provide a transition system in the shape of transition rules which closely match the

sequent calculus described in the last chapter.

 Define a subtraction operation on bunches.

 Describe in detail an operational semantics for propositional BI logic program-

ming.

 Prove soundness and completeness of the operational semantics with respect

to LBI.

 Give an operational semantics for the quantifiers.

4.2 Subtraction Operation on Bunches

Definition 4.2.1 We say that a clause # is at top level in a bunch Γ if either Γ is #
itself or if Γ is a multiplicative bunch and # is one of the additive bunches forming Γ.

All clauses can be brought to the top level by performing weakenings in a unique

way, as the following lemma shows:

4.2. Subtraction Operation on Bunches 63

Lemma 4.2.2 Given a bunch Γ of clauses, and a clause # belonging to it, there is ex-

actly one way of performing the minimum number of Weakening reductions so as to

bring # to the top level.

Proof: If # is at top level already, there is nothing to do. Else there are two cases

depending on whether Γ is additive or multiplicative. In the first case # belongs to

one of the multiplicative bunches forming Γ. It is clear that to put # at top level all

the other multiplicative bunches must be weakened away. Then we are either left

with # at top level, or we carry on with the second case.

In the second case # belongs to one of the additive bunches forming Γ)
;
Γ1 ������� �

;
Γ � ,

say Γ � . Moreover Γ � itself must be of the form
�

∆1; ����� ;
�

∆ � , if # was not at top level, and

belongs to one of these, say ∆ � . To bring # to the top level, all Γ � ��� �)�� � must be

weakened away and we are left with a new Γ �) Γ1 �������.� ∆� �������.� Γ � where Γ � is replaced

by ∆� . We can repeat this process with Γ � which is strictly smaller than Γ, guarantee-

ing termination.

Consider ∆ to be an additive bunch or a proposition. Then it is always possible to

transform any bunch of the form Γ � ∆ � into a bunch with the shape Γ � � ∆ using weak-

enings. Moreover, there is a unique way of doing this using the minimal number of

weakenings possible.

The base case is when Γ) ∆. No further processing is necessary.

If Γ)
�

Γ1; ����� ;
�

Γ � then, since we are dealing with a case where Γ �) ∆, ∆ has to belong

to one of the Γ � . Then all the other bunches at that level need to be weakened and

the result is Γ �� .
If Γ)

;
Γ1 ������� �

;
Γ � then ∆ has to belong to one of the Γ � and we continue the pro-

cess with this bunch. If we call the resulting bunch Γ �� then the final result will be

Γ1 ������� � Γ �� ������� � Γ � .

This concept is easily extended to the case where ∆ is a multiplicative bunch. We

just perform the weakenings in turn on each additive subbunch.

Defined formally as an operation parameterised on ∆ we have

4.2. Subtraction Operation on Bunches 64

Definition 4.2.3 (Minimum Number of Weakenings (MNW)) The operation MNW∆ is

defined as

1. MNW∆ � ∆ ��) ∆

2. MNW∆ �
�

Γ1; ����� ;
�

Γ � ��) MNW∆ �
�

Γ � �

3. MNW∆ �
;
Γ1 �������.�

;
Γ � ��)

;
Γ1 �������.� MNW∆ �

;
Γ � � �������.� ;

Γ �

4. MNW � ∆1 � ∆2 ������� � ∆ ��� � Γ ��) MNW∆1 � MNW � ∆2 ������� � ∆ ��� � Γ � �

We need the MNW operation to define the notion of subbunch:

Definition 4.2.4 (subbunch) A bunch ∆ is said to be a subbunch of Γ, denoted ∆ 	 Γ

in the following cases:

1. when ∆)��

2. when ∆)
;
∆ or ∆ is a proposition and Γ is of the form Γ � � ∆ �

3. when ∆)
;
∆1 ������� �

;
∆ � and

 ∆1 	 Γ, and

 if we let � Γ � � ∆1 ��) MNW∆1 � Γ � , then �
;
∆2 ������� �

;
∆ � � 	 Γ �

Is it really necessary to define the “subbunch” relationship in such a complicated

way? At first sight it might be thought that a simpler definition, as the one provided

in [Armelin Pym 02] would be sufficient. However this definition is incorrect. For

example it allows ��� ; � � 	���� � � �

Lemma 4.2.5 If Θ 	 ∆ 	 Γ, then

MNWΘ � MNW∆ � Γ � �) MNWΘ � Γ �

Proof: First we consider the case when ∆ is an additive bunch or a clause. In this

case we use induction on the shape of Γ. The proof is based on the fact that if ∆

belongs to a subbunch of Γ, then Θ belongs to that same subbunch.

Case Γ) ∆:

MNWΘ � MNW∆ � ∆ � �) MNWΘ � ∆ � � Definition 4 � 2 � 3 �

4.2. Subtraction Operation on Bunches 65

Case Γ)
;
Γ1 ������� �

;
Γ � : Since ∆ is an additive bunch or a clause, then ∆ 	 Γ � for some

� . Then

MNWΘ � MNW∆ �
�

Γ1; ����� ;
�

Γ � � �) MNWΘ � MNW∆ �
;
Γ � � � � Definition 4 � 2 � 3 �

) MNWΘ �
;
Γ � � � Induction Hypothesis �

) MNWΘ �
�

Γ1; ����� ;
�

Γ � � � Definition 4 � 2 � 3 �

Case Γ)
�

Γ1; ����� ;
�

Γ � : Again, given that ∆ is an additive bunch or a clause, then

∆ 	 Γ � for some � . Then

MNWΘ � MNW∆ �
;
Γ1 �������.�

;
Γ � � �) MNWΘ �

;
Γ1 �������.� MNW∆ � Γ � � ������� �

;
Γ � � � Definition 4 � 2 � 3 �

)
;
Γ1 �������.� MNWΘ � MNW∆ �

;
Γ � � � ������� � ;

Γ � � Definition 4 � 2 � 3 �
)

;
Γ1 �������.� MNWΘ �

;
Γ � � �������.� ;

Γ � � Induction Hypothesis �
) MNWΘ �

;
Γ1 �������.�

;
Γ � � � Definition 4 � 2 � 3 �

Finally, if ∆ is multiplicative, we use induction on ∆ itself:

MNWΘ � MNW � ∆1 ������� � ∆ ��� � Γ � �) MNWΘ � MNW∆1 � MNW � ∆2 ������� � ∆ ��� � Γ � � � � Definition 4 � 2 � 3 �
) MNWΘ � MNW∆1 � Γ � ��� Case

;
∆ �

) MNWΘ � Γ ��� Induction Hypothesis �

Definition 4.2.6 (Subtraction of bunches) Given two bunches Γ and ∆ 	 Γ the sub-

traction operation between them, denoted Γ � ∆, is defined by cases on ∆

Γ � �	
) Γ (4.1)

Γ �
;
∆) Γ �

�
(4.2)

Γ � �
;
∆1 �������.�

;
∆ � �) � Γ �

;
∆1 � � � ∆ �

;
∆1 � (4.3)

�
where Γ � �

;
∆) MNW∆ � Γ �

Now we prove a series of lemmas that will be used in the proofs of soundness

and completeness of the operational semantics.

4.2. Subtraction Operation on Bunches 66

Lemma 4.2.7 The following Weakening rule is admissible

Γ � ∆ %#
Weakening �� Θ;Γ � � ∆ �#

Proof: By cases on the shape of ∆. When ∆) �
 the rule just reduces to normal

weakening:
Γ � ��
�%#

Definition 4 � 2 � 6
Γ �#

Weakening
Θ;Γ �#

Definition 4 � 2 � 6� Θ;Γ � � ��
 �#

Case
;
∆: we notice that MNW∆ � Γ �) MNW∆ � Θ;Γ � , since Θ has to be weakened away

to get
;
∆ to the top level.

Γ � ∆ �#
Definition 4 � 2 � 6

MNW∆ � Γ � � ∆ �#
Weakening

MNW∆ � Θ;Γ � � ∆ �#
Definition 4 � 2 � 6� Θ;Γ � � ∆ �#

Case
�

∆)
;
∆1 ������� �

;
∆ � :

Γ � ∆ �#
Definition 4 � 2 � 6� Γ � ∆1 � � � ∆ � ∆1 ���#

Definition 4 � 2 � 6� MNW∆1 � Γ � � ∆1 � � � ∆ � ∆1 � �#
Induction Hypothesis� MNW∆1 � Θ;Γ � � ∆1 � � � ∆ � ∆1 � �#
Definition 4 � 2 � 6� � Θ;Γ � � ∆1 � � � ∆ � ∆1 � �#

Definition 4 � 2 � 6� Θ;Γ � � ∆ �#

Lemma 4.2.8 � ∆ � Γ � � ∆) Γ

Proof: By cases on the shape of ∆

Case ∆)��	
 : � �	
�� Γ � � �	
�) ��
�� Γ) Γ

Case
;
∆: Given that MNW∆ �

;
∆ � Γ �)

;
∆ � Γ, we have that �

;
∆ � Γ � �

;
∆) Γ

4.2. Subtraction Operation on Bunches 67

Case
�

∆)
;
∆1 ������� �

;
∆ � :

�
�

∆ � Γ � �
�

∆) �
;
∆1 �������.�

;
∆ � � Γ � �

;
∆1 ������� �

;
∆ � � Case �

) � �
;
∆1 � � ∆ �

;
∆1 � � Γ � �

;
∆1 � � � ∆ �

;
∆1 � � Subtraction � 4 � 2 � �

) � � ∆ �
;
∆1 � � Γ � � � ∆ �

;
∆1 � � Case

;
∆ �

) Γ � Induction Hypothesis �

Lemma 4.2.9 Γ � � ∆ � Θ ��) � Γ � ∆ � � Θ

Proof: By induction on the shape of ∆.

Case ∆)��	
 : then Γ � � �	
 � Θ �) Γ � Θ)�� Γ � �	
 � � Θ

Case
;
∆: by Lemma 4.2.8 we have that �

;
∆ � Θ � �

;
∆) Θ and so

Γ � �
;
∆ � Θ �) � Γ �

;
∆ � � � �

;
∆ � Θ � �

;
∆ ��� Subtraction � 4 � 3 � �

) � Γ �
;
∆ � � Θ � Subtraction � 4 � 2 � �

Case
�

∆)
;
∆1 ������� �

;
∆ � :

Γ � � ∆ � Θ �) Γ � �
;
∆1 ������� �

;
∆ � � Θ ��� Case �

) � � � Γ �
;
∆1 � � ����� � �

;
∆ � � � Θ � Subtraction � 4 � 3 � �

) � Γ � �
;
∆1 �������.�

;
∆ � � � � Θ � Induction Hypothesis �

) � Γ � ∆ � � Θ � Case �

Lemma 4.2.10 If Θ 	 Γ then � Γ � ∆ � � Θ) � Γ � Θ � � ∆

Proof: By induction on the structure of Θ.

Case Θ) ��
 : Then � Γ � ∆ � � �	
�) Γ � ∆) � Γ � ��
 � � ∆
Case

;
Θ: then let Γ �) Γ �

;
Θ

� Γ � ∆ � �
;

Θ) � Γ � � ∆ ��� Subtraction � 4 � 2 � �
) � Γ �

;
Θ � � ∆ � Subtraction � 4 � 2 � �

4.2. Subtraction Operation on Bunches 68

Notice that in this case the weakenings necessary to bring Θ to the top level with

respect to � Γ � ∆ � are precisely those necessary to bring it to the top with respect to Γ

alone.

Case
�

Θ)
;

Θ1 ������� �
;

Θ � : The condition for Θ 	 Γ gives us that
;

Θ � � Γ � 1
� � � � . Then

� Γ � ∆ � � Θ) � Γ � ∆ � � �
;

Θ1 ������� �
;

Θ � ��� Case �
) � � Γ � ∆ � �

;
Θ1 � � � Θ �

;
Θ1 ��� Subtraction � 4 � 3 � �

) � � Γ �
;

Θ1 � � ∆ � � � Θ �
;

Θ1 ��� Case
;

Θ �
) � � Γ �

;
Θ1 � � � Θ �

;
Θ1 � � � ∆ � Induction Hypothesis �

) � Γ � �
;

Θ1 ������� �
;

Θ � � � � ∆ � Subtraction � 4 � 3 � �
) � Γ � Θ � � ∆ � Case �

Note that the behaviour of the subtract operation can have different results if

Γ and ∆ are permuted. Of course, for this to be possible, we need not only Θ 	 Γ

but also Θ 	 ∆. For an example of this abnormal behaviour take Γ) � ; � � �
	 � and

∆) Θ) � . Then we have that ��� ; � � �
	 � � � � � �) 	 � � but � � ��� ; � � �
	 � � � �) � ; � � �
	 � . However,

the lemma still holds. The only problem is that commutativity cannot be used.

Lemma 4.2.11 If Θ 	 ∆ 	 Γ, then � Γ � ∆ � � Θ � Γ � � ∆ � Θ � .

Proof: By induction on the structure of Θ.

Case Θ) ��
 :

� Γ � ∆ � � ��
) Γ � ∆ � Subtraction � 4 � 1 � �
) Γ � � ∆ � ��
 � � Subtraction � 4 � 1 � �

4.2. Subtraction Operation on Bunches 69

Case
;

Θ: Let ∆ �) � ∆ �
;

Θ �

� Γ � ∆ � �
;

Θ) � Γ �
;

Θ � � ∆ � Lemma 4 � 2 � 10 �
) � MNWΘ � Γ � �

;
Θ � � ∆ � Definition 4 � 2 � 6 �

) � MNWΘ � MNW∆ � Γ � � �
;

Θ � � ∆ � Lemma 4 � 2 � 5 �
) Γ � � ∆ � � ∆ � Definitions �
) Γ � � ∆ � ∆ � � Commutativity �
� Γ � ∆ � � Weakenings �
) Γ � � ∆ � Θ � � Definition �

Case
�

Θ)
;

Θ1 ������� �
;

Θ � : The condition for Θ 	 ∆ gives us that � 1
� � � � �

;
Θ � � ∆. Then

� 1
� � � � �

;
Θ � �� Γ. Then

� Γ � ∆ � � Θ) � Γ � ∆ � � �
;

Θ1 ������� �
;

Θ � ��� Case �
) � � Γ � ∆ � �

;
Θ1 � � � Θ �

;
Θ1 ��� Subtract �

� � Γ � � ∆ �
;

Θ1 � � � � Θ �
;

Θ1 ��� Case
;

Θ �
) Γ � � � ∆ �

;
Θ1 � � � Θ �

;
Θ1 � ��� Induction Hypothesis �

) Γ � � ∆ � �
;

Θ1 ������� �
;

Θ � � � � Subtract �
) Γ � � ∆ � Θ ��� Case �

Lemma 4.2.12 Given Θ 	 ∆ 	 Γ,

� Γ � Θ � � � ∆ � Θ �) Γ � ∆

Proof:

� Γ � Θ � � � ∆ � Θ �) Γ � � Θ � � ∆ � Θ � � � Lemma 4 � 2 � 9 �
) Γ � � � Θ � ∆ � � Θ � ��� Lemma 4 � 2 � 11 �
) Γ � ∆ � Lemma 4 � 2 � 8 �

4.2. Subtraction Operation on Bunches 70

Lemma 4.2.13

� Γ � � � � ∆ � � ��) � Γ � � � � � � � ∆

Proof:

� Γ � � � � ∆ � � �) Γ � � � � � ∆ � � � � Lemma 4 � 2 � 9 �
) � Γ � � � � � � � � � ∆ � � � � � � � Lemma 4 � 2 � 12 �
) � Γ � � � � � � � � ∆ � � � � � � � � Lemma 4 � 2 � 11 �
) � Γ � � � � � � � ∆ � Subtraction and unit operation �

Lemma 4.2.14 Given Θ 	 Γ and ∆ 	�� Γ � Θ �

� � Γ � Θ � � ∆ � � Θ) Γ � ∆

Proof:

� � Γ � Θ � � ∆ � � Θ) � � Γ � Θ � � Θ � � ∆ � Lemma 4 � 2 � 10 �
) � � Γ � Θ � � Θ � � ∆ � Lemma 4 � 2 � 10 �
) � Γ � � Θ � Θ � � � ∆ � Lemma 4 � 2 � 11 �
) � Γ � ��
"� � ∆ � Subtraction �
) Γ � ∆ � Unit operation �

Lemma 4.2.15 If ∆ 	 Γ, then � Γ � ∆ � � ∆ � Γ

Proof: By cases on ∆

∆)��	
 : � Γ � �	
 � � ��
) Γ

∆)
;
∆: According to Definition 4.2.6, Γ �

;
∆) Γ � , where Γ � �

;
∆) MNW∆ � Γ � . Therefore

� Γ � ∆ � � ∆) MNW∆ � Γ � and since by the definition of MNW it is possible to reach Γ

using a series of weakenings, then � Γ � ∆ � � ∆ � Γ

4.3. Judgements for the operational semantics 71

∆)
�

∆1; ����� ;
�

∆ � :

� Γ � ∆ � � ∆) � Γ � �
;
∆1 �������.�

;
∆ � � � �

;
∆1 ������� �

;
∆ � � Case �

) � � Γ �
;
∆1 � � � ∆ �

;
∆1 � � � � ∆ �

;
∆1 � �

;
∆1 � Subtract �

� � Γ �
;
∆1 � �

;
∆1 � Induction Hypothesis �

� Γ � Case
;
∆ �

Lemma 4.2.16 If Θ 	 ∆ 	 Γ, then

� Γ � ∆ � � � ∆ � Θ � � Γ � Θ

Proof:

� Γ � ∆ � � � ∆ � Θ �) � � Γ � Θ � � � ∆ � Θ � � � � ∆ � Θ ��� Lemma 4 � 2 � 8 �
� Γ � Θ � Lemma 4 � 2 � 15 �

4.3 Judgements for the operational semantics

We now introduce the judgements used to specify the operational semantics.

From the discussion in � 1.4.4 we have concluded that there are unwanted inter-

actions between the � � rule and the rule of Weakening. The solution we found to

this problem is based in the following idea: keep track of any additive extension of

the program using a stack of boxes. Basically the idea is to use boxes to protect any

additive part of the program that was added dynamically from unwanted weaken-

ings, without compromising the soundness of the operational semantics.

In the example we used in � 1.4.4, specially the first proposed solution which

turned out to be unsound, the problem arised because of the equal status of two

propositions, one of which was added dynamically through a � � rule. We will

quickly revisit this example to motivate the use of boxes. Looking for a proof of

� ; ��# � $ � � � � � $ ��� � � � # we need first to apply the rules � � and ��� and we reach

the following unprovable sequent: � � ; � ; ��# � $ � � � � #��$�� � . The crucial problem here is

4.3. Judgements for the operational semantics 72

that � and � , despite having different origins, are living side by side, and the distinc-

tion between them is lost.

The solution we found is to put � inside a box if one is available. This allows us

to distinguish between � and � : one of them is inside a box, the other one is not.

Note that if there was no box available, it would mean that there was no previous � �
rule, and the problem would not arise. Now it is possible to use Weakening without

loss of information, because any clause that could still be needed in later stages can

be recovered from the box.

Now we are ready to introduce the new box datatype which is defined as follows:

Definition 4.3.1 A box can be

 locked We will use � as a notation for locked boxes

 open notated � , where � is a bunch

 full which will be notated � Γ � � where Γ and � are bunches

In addition open boxes can be flagged with the theorem flag. The notation used

for flagged open boxes will be � � and sometimes we will use the notation � to mean

that it is unimportant whether the box is flagged or not. The meaning of the theorem

flag is explained in detail below.

For the rest of the chapter we will work with pairs � Γ
 � � where Γ is a bunch and �

a stack (implemented as a list) of boxes.

The judgements used for the operational semantics will have the following form

� Γ
 � � � � � � ∆
 � � � ���
 #

where Γ and ∆ are bunches, � and � � are stacks of boxes, � and � � are integers and #
is a proposition. We will call the left pair (� Γ
 � �) the upwards pair, and the right pair

(� ∆
 � � �) the downwards pair. The meaning of the judgement is:

Given a program Γ with a stack � as an input, after proving # we are left

with a program ∆ and stack � � for the rest of the computation.

If ∆ is � � (for � � mpty flag) it means that it is known beforehand that ∆ must be

empty. If ��� 0 then � has been found previously in a goal position. This means that

4.4. Operational semantics overview 73

Γ actually refers to a subbunch of itself. If � � � 0 then � is in a goal position in # and

therefore ∆ refers to a subbunch of itself. In these cases we are working with a logic

which is locally affine, since any left over can be “pumped back” to where one of the

� rules occurred.

Given a judgement, and using this interpretation, we sometimes are interested

in finding out what are the resources necessary to prove # . To do this we define an

operation on these pairs which given two pairs will return a bunch. The operation is

defined as follows

Definition 4.3.2 The operation pair subtraction is defined by cases in the following

way:

1. Remainders are not allowed and a full box is on the top of the downward stack:

��� ;Γ
 � � :: � � � � � � � � �
 � ∆ � � :: � �) � ��� � ; � Γ � ∆ � , where
� ��� � is � if # is an additive conjunc-

tion or implication, and is � otherwise.

2. Remainders are not allowed and there is something other than a full box on top

of the downward stack: � Γ
 � � � � � � � � �
 � �) Γ ��) Γ � �
 � .

3. Finally, in case neither (1) nor (2): � Γ
 � � � � � � � ∆
 � ��) Γ � ∆.

It should be noted that the second case can be considered a special case of the

third case if we consider � � as special notation for �
 . It was added to the definition

because technically � � is not a bunch.

4.4 Operational semantics overview

At each occurrence of a � � rule, a box is created. Initially, the box is locked, and is

put at the top of the upward stack.

When an � � operator is used, the box is unlocked and the antecedent of the

implication # � $ is put into it: so we get a stack of the form # � :: � . If the box is

unlocked already, with previous implicational antecedents in it, then the new an-

tecedent is additively combined with the existing ones: so we get a stack of the form

� ; # � :: � . Also, the empty flag is reset, thereby allowing no remainder to pass except

through the box. At this stage the open box carries the “theorem flag” � which in-

dicates that # �($ is regarded as possibly an intuitionistic theorem, failure of which

4.4. Operational semantics overview 74

will be detected at a CutAxiom rule. This procedure is necessary because theorems

behave like � with respect to multiplicative resources and the counters � and � � have

to be set appropriately.

A box that contains a remainder is denoted by � ∆ � # . Such boxes occur in down-

ward stacks and indicate that the computation was performed under the wrapping

of # , arising from additives, and leaves a remainder ∆.

CutAxiom : We are given a bunch Γ which contains the atom � , i.e.,the principal formula

of the axiom, in any position, and a stack � . There is exactly one way of per-

forming the minimum number of Weakening reductions, reducing Γ � � � � to

Γ � � �* � , on Γ so as to bring � to top-level. This is done and we give to the

success continuation the resulting bunch without � , i.e.,the remainder Γ � . In

fact, since the only possible reduction above a CutAxiom is one of the Unit re-

ductions, we can be more specific about what the form of ∆ and � � must be.

For example, if ∆ is � � , Γ � is not equal to
�
 and � has an open box on top, then

� � must have a full box on top. Otherwise, ∆ must be equal to Γ � and � � must be

equal to � . If the top of the stack is an open box containing � , it is necessary to

check whether � is in � . If not, then the theorem flag of the open box must be

removed because it means that the # �($ in a previous ��� which created the

open box is not a theorem.

��� � : We start with a bunch in which the clause # ��� � occurs in an arbitrary posi-

tion. The unary, or “resolution”, version of � � � is invoked but the bunch taken

in the premiss is that which is obtained, as in the CutAxiom case, by perform-

ing the minimum number of Weakening reductions on Γ so as to bring � to

top-level.

� � : We start with Γ and � given and try to prove # from Γ and � :: � . Upon success,

we get a remainder, Γ � . At this point, we can try to prove $ from Γ � and � . Upon

success, we get as a result a remainder ∆ together with an arbitrary modifica-

tion of the stack. Because we managed to prove # � $ from Γ, leaving ∆, this

result is given to the final success continuation. The special case in which ∆ is

� � works in the same way but for the fact that Γ � and � , which must be �
 , will

4.4. Operational semantics overview 75

prove $ only when Γ � proves $ without leaving any remainder. So, Γ and � are

given, Γ � and ∆ are calculated, and � is modified as necessary, depending on the

reductions encountered above. An example which includes this case follows af-

ter the description of the operators. If a � goal or an intuitionistic theorem was

found, the counter will be greater than zero and the computation will succeed

even if � � is set and there is a non-empty remainder.

��� s : There are five subcases. In the first two, a remainder is allowed, which may

occur only if we are on some multiplicative branch of the search.

In the first, handled by ��� , the bunch Γ and the stack � are given. Notice that

the stack � is the same on both sides of the left-hand branch: modifications to

the stack before passing to the next branch occur only in operators in which re-

mainders are not permitted. Moreover, notice that the right-hand branch gets

an empty stack: it has already all the information needed to search for a proof.

For example, this case of the rule is used for the proof of ��# ; $ � � �
 ��# ��$ � � �
and, indeed, the same program, with this rules, proves � $ �%# � � � , ��# �%# � � � ,

� $ ��$ � � � , etc. In each case, the context given to the left-hand branch will be

equivalent to ��# ; $ � � � and the subtraction, “Γ � ∆”, will leave � for the right-

hand branch.

The second case, � �
�

takes care of the case in which � is found as a goal

in both conjuncts. Of course, the � � rules do not propagate the presence of

� from the left branch to the right branch. An increased counter should be

passed on to the rest of the computation since any left over found later could

have been given to the #&��$ subproof and weakened away at this point.

In the other three, handled by � �
� �

, � �
� � �

and � �
���

, no remainder is permitted.

Here we have three subcases, depending on whether the stack is full on return

of the left, right or neither branch. An increased counter will be passed to the

rest of the computation only if � is found in both left and right subproofs. An

example which includes one of these cases follows after the description of the

operators.

��� s : There are four subcases. All four share the property that the antecedent of the

4.4. Operational semantics overview 76

implication leaves no remainder. Note that we assume that any occurrences

of � or � in the antecedents # in # ��$ which are (inductively) principal con-

nectives are immediately removed using operators corresponding to the oper-

ationally trivial � � or � � rules. An example which illustrates ��� follows after

the description of the operators. The last rule is used when the implication is

an intuitionistic theorem, when it should behave in similar ways to � .

The remaining cases are similar. In all cases, failure invokes backtracking.

A worked example, as mentioned above, will clarify these complex constructions

Thus we revisit the problematic example presented in Chapter 1 showing how the

use of boxes manages the interaction between the multiplicatives and additives, spe-

cially � � , ��� and Weakening. (here, “CA” denotes CutAxiom and the counters are 0

throughout):

Unit
���������� 	
�� � � �� ��� ��� ��	 ��
������	
CA
���	

;
��� ��� ����� 	 ��
�� � � �� ��� ��� ��	 ��
���� � �

Unit���������
�� � � �� ���
������	
CA��	

;
� ���
�� � � �� ���
���� � 	 !#" ��$��	

;
�%� ��� ����� 	 ��
�� � � �� ��� �&� �%	 ��
������'� ! 	 (" �� �%� ��� �����)*
�� � � �������+)*
������'	 (��� ! 	 �

Unit���������
�� � � �� ���
������	
CA���#���
�� � � �� ���
������,� -."

� ��� �%� �����
�� � � �� ���
���� � ��	 (��� ! 	 � � - �

We are looking for a proof of # � $* � � � � � $ � ��� � � # . So we set up the initial lists

as empty, and we explicitly say that we require no left-overs from the computation.

The operational version of the sequent is, then,

� ��# � $ �
 �
 � � � � � �
 �
 �
 � � � � $	� � � � � #

We know from the previous chapter that if there is a proof, then there is a uniform

proof. Therefore the first step is to apply the � � rule. Then the left branch has the

following shape:

� ��# � $ �
 � �
 � � � � ∆
 � �
 �
 � � � $	� � �

This rule put a locked box in the stack and carries on with the proof of the left

branch. The value of ∆ has to be determined later.

Since the goal is not yet atomic, we apply � �
�
. The other variants of � � cannot

be applied: ��� needs an empty stack; ���
� �

needs an open box as the top element

4.4. Operational semantics overview 77

of the stack. The distinction between � �
�

and � �
� � �

is irrelevant at this stage (they

will be distinguished by the content of the stack on return).

� � ; ��# � $ �
 � � �
 � � � � � �
 � ??
 �
 $	� �

Looking at the goal, we see that we need to apply one of the � � rules. From the

five subrules, three do not apply, because we have an � � as a condition. Again, the

distinction between rules � �
� � �

and � �
���

will be made later on inspection of the

stack.

We continue the computation with the left branch, and then arrive to this se-

quent:

� � ; ��# � $ �
 � � �
 � � � � � �
 � ??
 �'
 $
At this point, the goal being atomic, we need to apply a left rule. In this case it can

be seen that the rule CutAxiom
�

is needed, because $ is a subbunch of ��# � $ � . In this

way we show that � � � $ ��� � is not a theorem in intuitionistic logic, and therefore

we don’t need to increase the counter.

Then we need to find a proof of the following sequent

��#
 � �
 � � � � � �
 � ??
 �
 �

Since the counter is zero, and the � � is present, the only Unit rule available is Unit
� �

.

Applying this rule, we find the value of � ??

��#
 � �
 � � � � � �
 � � # � �
 �'
 �

and start coming back, via the success continuation, to the branches which were

left unresolved, namely the right subproof of � � first, and the right subproof of � �
afterwards.

Since there is a full box at the top of the stack, we know at this point that the rule

we need to use is � �
���

. We have to perform the appropriate subtraction operation to

work out what is the corresponding program. Doing this we find that � ; � ��# � $ ���	# ��)
� ; $ and then we have as right subproof

� � ; $
 �
 � � � � � �
 �
 �
 �

Now there is a straightforward application of a CutAxiom rule and a Unit rule, and

this solves this subproof.

4.5. Soundness and Completeness 78

On return to the � � rule, we find out that it was ���
�

that was required. This

rule “unpacks” the content of the full box, sending the correct residue to the rest of

the computation. It is at this point that we discover that ∆)�# and therefore the right

branch of the � � rule is

��#
 �
 � � � � � �
 �
 �
 #

Again there are easy applications of the rules CutAxiom and Unit which finalise the

proof.

4.5 Soundness and Completeness

In this section we first prove that the operational semantics shown in Table 4.1 is

sound. This means that for each successful computation there is a corresponding

proof in LBI.

To show completeness, however, it is better to prove first Lemma 4.5.2. Com-

pleteness then follows immediately.

Theorem 4.5.1 Soundness: If � Γ
 � � � � � � ∆
 � � � � �
 # then � Γ
 � � � � � � � ∆
 � � � %#

Proof: By induction on the structure of the proof. For the remainder of this proof we

will consider the value of � to be 0, and exceptions and special cases will be treated

explicitly. This affects the proof only in the following way: instead of talking about Γ

in each case, when � � 0 we are talking about a subbunch of Γ.

In each case we present the proposed rule for the operational semantics, and we

show that there is a corresponding proof in BI.

The proofs use Definition 4.3.2 of pair subtraction on page 70.

� Unit

� Unit� Γ
 � � � � � � Γ
 � � ��� 1
 �

When we find � as a goal we should succeed immediately, because any Γ will

prove � . However, if the rest of the computation leaves a remainder, this re-

mainder could have been used in the proof of � getting rid of it in the first

place. Because it is not possible to know in advance which subbunch should

4.5. Soundness and Completeness 79

� Unit� Γ
 � � � � � � Γ
 � � ��� 1
 �
Unit� Γ
 � � 0

� � � Γ
 � � 0
 �
Unit

�
� � � 0 �� Γ
 � � � � � � � �
 � � 0
 �

Unit
� �

��# ;Γ
 # � :: � � � � � � � �
 � Γ � # :: � � �
 �
� Γ �
 � � � � � � ∆
 � � � � �
 �

CutAxiom
�

� Γ � � �
 � � � � � � ∆
 � � � ���
��
� Γ �
 � :: � � � � � � ∆
 � � � � �
 �

CutAxiom
� �

��� ;Γ � � �
 � � :: � � � � � � ∆
 � � � ���
��
� Γ �
 � � � � � � ∆
 � � � ���
 #

��� �
�

� Γ ��# ��� � �
 � � � � � � ∆
 � � � � �
 �
� Θ; # � �
 �
 � 0� � � � �
 �
 �

 # � Γ �
 � � � � � � ∆
 � � � � �
 �

� � �

� Γ � Θ; # � � �
 � � � � � � ∆
 � � � � �
 �
� Γ
 � :: � � � � � � Γ �
 � :: � � � �
 # � Γ �
 � � ��� � � � ∆
 � � � ��� �
 $

� �� Γ
 � � � � � � ∆
 � � � � � �
 # � $
��# � Γ
 � � � � � � ∆
 � � � � �
 $

� � �
�

� Γ
 � � � � � � ∆ �
 � � � ���
 # ��� $
� Γ
 � � � � � � ∆
 � � �
 # � Γ � ∆
 �
 � 0� � � � �
 �
 �
�
�$ � �� Γ
 � � � � � � ∆
 � � �
 # � $

� Γ
 � � � � � � ∆
 � � � �
 # � Γ
 � � � � � � ∆ �
 � � �
�$ ���
�
� � � � � and ∆ � 	 ∆ �� Γ
 � � � � � � ∆ �
 � � �
 # � $

� Γ
 � � � � � � ∆
 � � � �
 # � Γ
 � � � � � � ∆ �
 � � ��� �
 $ � �
� �
� � � ��� � � � � �� Γ
 � � � � � � ∆ � ∆ �
 � � � �
 #&��$

� Γ
 � � � � � � � �
 � � ���
 # � Γ
 � � � � � � � �
 � � � ��� �
 $ � �
� � ���

� Γ
 � � � � � � � �
 � � � ��� � �
 #&��$

��� ;Γ
 � � :: � � � � � � � �
 � ∆ � �� :: � � ���
 # ��� ; � Γ � ∆ �
 �
 � 0� � � � �
 �
 � � � �
 $ � �
�����

��� ;Γ
 � � :: � � � � � � � �
 � ∆ � �� :: � � ��� � �
 #&��$
��# ;Γ
 �
 � � � � � � �
 �
 � � �
�$

���� Γ
 �
 � � � � � � �
 �
 � � �
 # ��$
��# ;Γ
 # � :: � � � � � � � �
 � ∆ � # :: � � ���
 $

���
�

� Γ
 � :: � � � � � � ∆
 � :: � � � �
 # �($
��# ; � ;Γ
 � ; # :: � � � � � � � �
 � ∆ � ��� ; # � :: � � � �
 $

���
� ���

��� ;Γ
 � :: � � � � � � � �
 � ∆ � � :: � � ���
 # �($
��# ;Γ
 # � :: � � � � � � � �
 # � :: � � � �
 $

���
� � �

� Γ
 � :: � � � � � � Γ
 � :: � � ��� 1
 # ��$
� Γ
 � � � � � � ∆
 � � � ���
 #

���� Γ
 � � � � � � ∆
 � � � � �
 #���$
� Γ
 � � � � � � ∆
 � � � � �
 $

� �� Γ
 � � � � � � ∆
 � � � � �
 # ��$
�

Γ � is obtained uniquely by performing the minimal number of Weak-

enings required to bring � , # ��� � or � Θ; # � � � to top-level.
�

If � � � � then ∆ �) ∆ � # , else ∆ �) ∆.

�
If � � ��� � � � � , then � � � �)�
	 1, else � � � �) � .

�
Here :: � indicates that here the theorem flag may be present or

not.

Table 4.1: Operational Semantics of
�����

4.5. Soundness and Completeness 80

be used in this manner, the standard way of dealing with this without incurring

in unacceptable performance deterioration by use of backtracking, is setting a

flag marking the fact that remainders are allowed and can be “pumped back”

to the earlier occurrence of � Unit. The need for a counter instead of a flag is

discussed in detail when considering the ��� � rule.

Given � Γ
 � � � � � � Γ
 � � ��� 1
 � , and ∆ 	 Γ we have to show that � Γ
 � � � � � � � ∆
 � ���� that is

Γ � ∆ � . This is always the case in BI using the �,� rule.

Unit

Unit� Γ
 � � 0
� � � Γ
 � � 0
 �

Since the flag is 0 we know that � was not found up to this point. We need to

show that � Γ
 � � � � � � � Γ
 � � � .

� �
�	
� �

Subtraction
Γ � Γ �

Definition 4 � 3 � 2� Γ
 � � � � � � � Γ
 � �� �

Unit
�

Unit
�
� � � 0 �� Γ
 � � � � � � � �
 � � 0
 �

We have � Γ
 � � � � � � � �
 � � 0
 � . The presence of � � indicates that no remainder is al-

lowed to be passed on. But since � � 0 we are concerned with a subbunch of

Γ, call it ∆, such that � ∆
 � � � � � � � � �
 � � � . ��
 is such a ∆. It is at this point that we

discover that any proof that we are trying to find should have used Γ in the

�"� rule (the fact that the counter is greater than 0 indicates that there was ef-

fectively such a rule earlier in the computation). The counter should be reset,

since we are making use of the �,� rule at this point.

Unit
� �

Unit
� �

��# ;Γ
 # � :: � � � � � � � �
 � Γ � # :: � � �
 �

4.5. Soundness and Completeness 81

We have to show that ��# ;Γ
 # � :: � � � � � � � � �
 � Γ � # :: � � � . Using Definition 4.3.2, and

given that in this case
� ��# �) � , � Γ
 # � :: � � � � � � � � �
 � Γ � # :: � �) � ��# � ; � Γ � Γ �) �	
 , and

we have again that �
 �

CutAxiom

� Γ �
 � � � � � � ∆
 � � � � �
 �
CutAxiom� Γ � � �
 � � � � � � ∆
 � � � ���
��

Here Γ � � �) MNW
� � Γ � � � � , or equivalently Γ �) Γ � � � � � .

We assume that � Γ �
 � � � � � � � ∆
 � � � � and we need to prove that � Γ � � �
 � � � � � � � ∆
 � � � � .

There are many cases on how � can be proved. It can be done using one of the

Unit rules, or it can be done by � being considered a normal atom (for example

in � �
� ��� � �) via one of CutAxiom, � �
or ��� � . We are not concerned with this

distinction, though. All cases of the induction hypothesis can be represented

by the sequent Γ � � ∆ � .

Γ � � ∆ �
� Γ � � � � � � � ∆ �

CutAxiom� � Γ � � � � � � � ∆ � � � �
Lemma 4 � 2 � 14

Γ � � � � ∆ �
Definition 4 � 3 � 2� Γ � � �
 � � � � � � � ∆
 � � � �

CutAxiom
�

� Γ �
 � :: � � � � � � ∆
 � � � � �
 �
CutAxiom

�
��� ;Γ � � �
 � � :: � � � � � � ∆
 � � � ���
 �

If the top of the stack is an open box, and � cannot be proved from � , then we

know that the �(� rule that opened the box is not a theorem, and the theorem

flag should be removed. Otherwise this rule behaves like CutAxiom. The induc-

tion hypothesis is � Γ �
 � :: � � � � � � � ∆
 � � � � . We need to prove ��� ;Γ � � �
 � � :: � � � � � � � ∆
 � � � � .

From Definition 4.3.2 we know that � Γ �
 � :: � � � � � � � ∆
 � � ��) Γ � � ∆ and then

4.5. Soundness and Completeness 82

Γ � � ∆ �
� Γ � � � � � � � ∆ �

CutAxiom� � Γ � � � � � � � ∆ � � � �
Lemma 4 � 2 � 14

Γ � � � � ∆ �
Lemma 4 � 2 � 7��� ;Γ � � � � � ∆ �

Definition 4 � 3 � 2��� ;Γ � � �
 � :: � � � � � � � ∆
 � � � �

� � �

� Γ �
 � � � � � � ∆
 � � � � �
 #
��� �� Γ ��# ��� � �
 � � � � � � ∆
 � � � � �
 �

The assumption is � Γ �
 � � � � � � � ∆
 � � � �# , where Γ �) Γ ��# ��� � � ��# � � � . We need to show

that � Γ ��# ��� � �
 � � � � � � � ∆
 � � �� � .

� Γ ��# ��� � � � # � � � � � ∆ %#
� � �� � Γ ��# ��� � � � # ��� � � � ∆ � � # � � �� �) Lemm � 4 � 2 � 14

Γ ��# ��� � � � ∆ �
Definition 4 � 3 � 2� Γ ��# ��� � �
 � � � � � � � ∆
 � � � �

� �

� Θ; # � �
 �
 � 0� � � � �
 �
 �
�
 # � Γ �
 � � � � � � ∆
 � � � � �
 �
� �

� Γ � Θ; # � � �
 � � � � � � ∆
 � � � ���
 �
Here Γ �) Γ � Θ; # � � � � � Θ; # � � � .

The induction hypotheses are � Θ; # � �
 �
 � � � � � � � �
 �
 � # and � Γ �
 � � � � � � � ∆
 � � � � . We

need to show that � Γ � Θ; # � � �
 � � � � � � � ∆
 � � � � .

First notice that � Θ; # � �
 �
 � � � � � � � �
 �
 �) Θ; # � � and that � Γ �
 � � � � � � � ∆
 � � ��) Γ � � ∆. For

convenience we will use the abbreviation Θ
�

to stand for Θ; # � � .

Θ
� �# Γ � � ∆ �

� �
� Γ � � ∆ � � Θ � �

Lemma 4 � 2 � 10� Γ � � Θ � � � ∆ �
Def � of Γ �� � Γ � Θ � � � Θ

� � � Θ � � � ∆ �
Lemma 4 � 2 � 11� � Γ � Θ � � � � Θ �

� Θ
� � � � ∆ �

Subtraction and Unit operation
Γ � Θ � � � ∆ �

Definition 4 � 3 � 2� Γ � Θ � �
 � � � � � � � ∆
 � � � �

4.5. Soundness and Completeness 83

� � Suppose that

� Γ
 � :: � � � � � � Γ �
 � :: � � � �
 # � Γ �
 � � ��� � � � ∆
 � � � ��� �
 $
� �� Γ
 � � � � � � ∆
 � � � � � �
 # � $

As induction hypothesis we have that � Γ
 � :: � � � � � � � Γ �
 � :: � � �# and � Γ �
 � � � � � � � ∆
 � � � $.

We need to show that � Γ
 � � � � � � � ∆
 � � � �# � $.

From Definition 4.3.2 we get that � Γ
 � :: � � � � � � � Γ �
 � :: � �) Γ � Γ � .

We note that � � behaves like �
 with respect to the subtraction operation. Thus

we can pack the different cases into one in which � Γ �
 � � � � � � � ∆
 � � �) Γ � � ∆ Then we

use the following figure.

Γ � Γ � %# Γ � � ∆ �$
� �� Γ � Γ � � � � Γ � � ∆ ��%# � $)))))))))))))))))) Weakening � � Lemma 4 � 2 � 16 �

Γ � ∆ %# � $

� � �
��# � Γ
 � � � � � � ∆
 � � � �
 $

� � �� Γ
 � � � � � � ∆ �
 � � ���
 # ��� $

Here ∆ needs to be a subbunch of # � Γ and ∆ � needs to be a subbunch of Γ. This

makes a difference if some residue of # remains in Γ. If � � � � it means that �
was found as a goal while trying to prove $ and then it is permissible to get rid

of this part, effectively performing weakening of any left over from # . It is not

allowed to do that otherwise, even if � � 0.

Once we have clarified this, we revert to the treatment of the rule as if �) 0.

As induction hypothesis we have that � ��# � Γ �
 � � � � � � � ∆
 � � �$. We need to show that

� Γ
 � � � � � � � ∆
 � � �# ��� $

Using Definition 4.3.2 we get that ��# � Γ �
 � � � � � � � ∆
 � �) ��# � Γ � � � ∆, so

��# � Γ � � ∆ �$
Lemma 4 � 2 � 10� Γ � ∆ � � #��$
��� �

Γ � ∆ �# ��� $
Definition 4 � 3 � 2� Γ
 � � � � � � � ∆
 � ���# � � $

4.5. Soundness and Completeness 84

� �
� Γ
 � � � � � � ∆
 � � �
 # � Γ � ∆
 �
 � 0� � � � �
 �
 �
�
 $ ���� Γ
 � � � � � � ∆
 � � �
 #&��$

Note that the counter � is unchanged in the left branch. So as inductive hy-

potheses we have � Γ
 � � � � � � � ∆
 � � �# and � Γ � ∆
 �
 � � � � � � � �
 �
 � �$. We need to show that

� Γ
 � � � � � � � ∆
 � � �# ��$

From Definition 4.3.2 we have that � Γ
 � � � � � � � ∆
 � �) Γ � ∆ and � Γ � ∆
 �
 � � � � � � � �
 �
 �) Γ � ∆.

Then

Γ � ∆ %# Γ � ∆ �$ � �
Γ � ∆ �# ��$

Definition 4 � 3 � 2� Γ
 � � � � � � � ∆
 � � �#&��$

� �
�

� Γ
 � � � � � � ∆
 � � ���
 # � Γ
 � � � � � � ∆ �
 � � �
 $ � �
�
� � � � � and ∆ � 	 ∆ �� Γ
 � � � � � � ∆ �
 � � �
 #&��$

As induction hypotheses we have that there is a ∆ � � 	 ∆ such that � Γ
 � � � � � � � ∆ � �
 � � #
and that � Γ
 � � � � � � � ∆ �
 � � �$

The behaviour of the counters imply that � is found during the proof of # and

that � is not found during the proof of $. Since � was found in the left sub-

proof, we are concerned not with ∆ but with a subbunch of it. We can decide a

posteriori which subbunch of ∆ we need, and that will be done when we return

from the proof of $.

We need to prove that � Γ
 � � � � � � � ∆ �
 � ���# � $

Γ � ∆ � �# Γ � ∆ � �$ � �
Γ � ∆ � �#&��$

Definition 4 � 3 � 2� Γ
 � � � � � � � ∆ �
 � ���# ��$

� �
� �

� Γ
 � � � � � � ∆
 � � � �
 # � Γ
 � � � � � � ∆ �
 � � � � �
 $ � �
� �
� � � ��� � � � � �� Γ
 � � � � � � ∆ � ∆ �
 � � � � 1
 #&��$

4.5. Soundness and Completeness 85

The behaviour of the counters imply that � is found in both branches of the

conjunction. Therefore as induction hypotheses we have that there are ∆ � � 	 ∆

and ∆ � � � 	 ∆ � such that � Γ
 � � � � � � � ∆ � �
 � ��%# and that � Γ
 � � � � � � � ∆ � � �
 � ���$.

We need to prove that � Γ
 � � � � � � � ∆ � ∆ �
 � � #,��$. So, making ∆ � �) ∆ � � �) ∆ � ∆ � we

can use the following figure

Γ � � ∆ � ∆ � � �# Γ � � ∆ � ∆ � ���$ � �
Γ � � ∆ � ∆ � � �# � $

Definition 4 � 3 � 2� Γ
 � � � � � � � ∆ � ∆ �
 � � �#&��$
Note that ∆ � ∆ � is the biggest subbunch that can be passed on to the rest of the

computation without compromising soundness.

Notice also that this case produce a higher level of non-determinism than the

others, since backtracking will be on the right subproof, trying to find a new

proof of $ and leaving a possibly different ∆ � . This non-determinism is caused

by the behaviour of � in this operational semantics. When the left subproof

is allowed to leave a remainder and also contains � in a goal position, there

is no way to know in advance what are the resources necessary for the right

subproof. For example, in the proof of � � � �
	 � �� � � � � � � � � � � � � � � � , the sub-

bunch � �
	 is fed back to the proof of the first � and � �
	 to the proof of the

second. But there are also proofs of � � � �
	 � � � � � � � � � � � � � � 	 � �� � and of

� � � �
	 � �"'� � � � � � ��� � � � � � � � � � , changing every time the resources used by the

second � . This situation can only be solved by backtracking on the right sub-

proof.

� �
� � �

� Γ
 � � � � � � � �
 � � � �
 # � Γ
 � � � � � � � �
 � � � � � �
 $ � �
� � �

� Γ
 � � � � � � � �
 � � � � � � �
 # � $
Induction hypotheses � Γ
 � � � � � � � � �
 � � �# and � Γ
 � � � � � � � � �
 � � �$.

We need to prove that � Γ
 � � � � � � � � �
 � � �# �,$. Since � Γ
 � � � � � � � � �
 � �) Γ the proof reduces

to the figure

Γ %# Γ �$ � �
Γ �# � $

4.5. Soundness and Completeness 86

� �
���

��� ;Γ
 � � :: � � � � � � � �
 � ∆ � � :: � � � �
 # ��� ; � Γ � ∆ �
 �
 � 0� � � � �
 �
 � � � �
�$ ���
� �

��� ;Γ
 � � :: � � � � � � � �
 � ∆ � �� :: � � ���
 #&��$
Induction hypotheses: ��� ;Γ
 � � :: � � � � � � � � �
 � ∆ � � :: � � �# and ��� ; � Γ � ∆ �
 �
 � � � � � � � �
 �
 � $. We

need to prove that ��� ;Γ
 � � :: � � � � � � � � �
 � ∆ � � :: � � �#&��$.

First from Definition 4.3.2 we get that

��� ;Γ
 � � :: � � � � � � � � �
 � ∆ � � :: � �) � ; � Γ � ∆ �) ��� ; � Γ � ∆ �
 �
 � � � � � � � �
 �
 �

Then we can use the following figure:

� ; � Γ � ∆ ���# � ; � Γ � ∆ � �$ � �
� ; � Γ � ∆ ���#&��$

��� ;Γ
 � � :: � � � � � � � � �
 � ∆ � � :: � � �#&��$

���
��# ;Γ
 �
 � � � � � � �
 �
 � � �
 $

���� Γ
 �
 � � � � � � �
 �
 � ���
 # �($
As induction hypothesis we have that ��# ;Γ
 �
 � � � � � � � �
 �
 � 	$ and we need to prove

that � Γ
 �
 � � � � � � � �
 �
 � �# �($

Given that ��# ;Γ
 �
 � � � � � � � �
 �
 �) # ;Γ then we use the ��� rule

;Γ �$
���

Γ �# ��$
Definition 4 � 3 � 2� Γ
 �
 � � � � � � � �
 �
 � %# ��$

���
�

��# ;Γ
 # � :: � � � � � � � �
 � ∆ � # :: � � � �
�$
���

�
� Γ
 � :: � � � � � � ∆
 � :: � � � �
 # �($

As induction hypothesis we have that ��# ;Γ
 # � :: � � � � � � � � �
 � ∆ � # :: � � �$ and we need

to prove that � Γ
 � :: � � � � � � � ∆
 � :: � � �# �($

We use the fact that ��# ;Γ
 # � :: � � � � � � � � �
 � ∆ � # :: � �) # ; � Γ � ∆ � which gives

; � Γ � ∆ ���$
���

Γ � ∆ �# �($
and Γ � ∆) � Γ
 � :: � � � � � � � ∆
 � :: � �

4.5. Soundness and Completeness 87

���
� �

��# ; � ;Γ
 � ; # :: � � � � � � � �
 � ∆ � ��� ; # � :: � � � �
�$
���

� ���
��� ;Γ
 � :: � � � � � � � �
 � ∆ � � :: � � � �
 # �($

The induction hypothesis in this case is ��# ; � ;Γ
 � ; # :: � � � � � � � � �
 � ∆ � ��� ; # � :: � ���$ and

we need to prove that ��� ;Γ
 � :: � � � � � � � � �
 � ∆ � �� :: � � %# ��$.

We use the fact that ��# ; � ;Γ
 � ; # :: � � � � � � � � �
 � ∆ � ��� ; # � :: � �) # ; � ; � Γ � ∆ � and then

; � ; � Γ � ∆ ���$
���

� ; � Γ � ∆ ��%# ��$

and � ; � Γ � ∆ �) ��� ;Γ
 � :: � � � � � � � � �
 � ∆ � � :: � �

���
� � �

��# ;Γ
 # � :: � � � � � � � �
 # � :: � � � �
 $
���

� � �
� Γ
 � :: � � � � � � Γ
 � :: � � ��� 1
 # �($

The induction hypothesis is that ��# ;Γ
 # � :: � � � � � � � � �
 # � :: � � �$ and we need to prove

that � Γ
 � :: � � � � � � � Γ
 � :: � � %# ��$. There is extra information in the fact that since

the open box returned with the “theorem” flag still on, then # is not necessary

to prove $. Then we can use the following figure

; � ; � Γ � ∆ ���$
���

� ; � Γ � ∆ ��%# ��$

� �
� Γ
 � � � � � � ∆
 � � � � �
 #

� �� Γ
 � � � � � � ∆
 � � � � �
 #�� $
� Γ
 � � � � � � ∆
 � � � � �
 $

� �� Γ
 � � � � � � ∆
 � � � � �
 # ��$

This case is trivial. The induction hypothesis is that � Γ
 � � � � � � � ∆
 � � � 	# � or $ � and

we need to prove that � Γ
 � � � � � � � ∆
 � � � �#�� $. This is straightforward using � �

4.5. Soundness and Completeness 88

Lemma 4.5.2 (Completeness) If

� Γ � � � � � � � � ∆ � � � � �#

then

� Γ � � � � � � � Γ � � � � � � �
 #

Proof: We will use induction on the structure of the proof � Γ � � � � � � � � ∆ � � � � 	# . If nec-

essary there will be cases depending on the values of � and � � , or the shape of

� Γ � � � � � � � � ∆ � � � � .

�,�

�,�� Γ � � � � � � � � ∆ � � � �� �

Here ∆ is the subbunch used by other parts of the proof to the right of the

current subproof.

The bunch represented by � Γ � � � � � � � � ∆ � � � � can be Γ itself (if ∆) �
 or ∆) � �), �	
 (if

∆) Γ) or Γ � 	 Γ (in all other cases). The rule � Unit in the operational semantics

will postpone the decision of which subbunch of Γ we need until the rest of

the computation has consumed everything it needs. At that point any left over

will be considered as consumed by this rule. But the fact that � was found has

to be signalled to the rest of the computation. This is done by incrementing a

counter. The reason why a simple flag is not sufficient will be discussed in the

��� � rule.

� Unit� Γ
 � � � � � � Γ
 � � ��� 1
 �

� �

� �� Γ � � � � � � � � ∆ � � � � �

For this rule to be valid � Γ � � � � � � � � ∆ � � � � must be equal to �
 .

There are three ways that �
 can be produced according to Definition 4.3.2:

4.5. Soundness and Completeness 89

��# ;Γ
 # � :: � � � � � � � � �
 � ∆ � # :: � �) Γ � ∆. This case will produce �
 only when ∆) Γ, and

then we can use the rule Unit
� �

.

Unit
� �

��# ;Γ
 # � :: � � � � � � � �
 � Γ � # :: � � �
 �

� Γ
 � � � � � � � � �
 � �) Γ. This case will produce �
 in two cases: when Γ) �
 and when

� was found in a goal position (which is signalled with � � 0). The first case

can use the Unit rule (see next case). When Γ is not �
 then the rule Unit
�

can

be used. The flag must be reset to indicate that the �"� rule was made use of.

Unit
�
� � � 0 �� Γ
 � � � � � � � �
 � � 0
 �

� Γ
 � � � � � � � ∆
 � ��) Γ � ∆ which will be �	
 only when ∆) Γ. In this case rule Unit can

be used

Unit� Γ
 � � 0
� � � Γ
 � � 0
 �

CutAxiom

Γ �
CutAxiom

Γ � � �

We are given that � Γ �
 � � � � � � � ∆
 � � � � where Γ �) Γ � � ��� � , and as induction hypoth-

esis we have that � Γ �
 � � � � � � ∆
 � � � ���
 � . We need to prove that � Γ � � �
 � � � � � � ∆
 � � � � �
�� .

First, using Definition 4.3.2 we have that � Γ �
 � � � � � � � ∆
 � � ��) Γ � � ∆) � Γ � � � � � � � ∆.

Then we can make the following transformations

� Γ � � � � � � � ∆ �
CutAxiom� � Γ � � � � � � � ∆ � � � �
Lemma 4 � 2 � 14

Γ � � � � ∆ �
Definition 4 � 3 � 2� Γ � � �
 � � � � � � � ∆
 � � � �

and any proof with this shape will be found by the following rule:

� Γ �
 � � � � � � ∆
 � � � � �
 �
CutAxiom� Γ � � �
 � � � � � � ∆
 � � � ���
��

4.5. Soundness and Completeness 90

In the special case where �) � :: � � � and � is not a subbunch of � then we have

to take care of removing the flag that said that the ��� rule which created the

open box was possibly a theorem, because at this stage we know it cannot be,

since the resources in � are not enough to prove the goal.

� Γ �
 � :: � � � � � � ∆
 � � � � �
 �
CutAxiom

�
��� ;Γ � � �
 � � :: � � � � � � ∆
 � � � ���
 �

� � �

Γ %#
� � �

Γ � # � � � �

Since the stacks are not tampered with, subcases analysis are unnecessary.

We are given that � Γ �
 � � � � � � � ∆
 � � � %# where Γ �) Γ ��# � � � � � # ��� �

The induction hypothesis in this case is � Γ �
 � � � � � � ∆
 � � � ���
 # and we need to prove

that � Γ ��# ��� � �
 � � � � � � ∆
 � � � � �
 � . First we show that from � Γ �
 � � � � � � � ∆
 � � � %# there al-

ways is a proof of � Γ ��# � � � �
 � � � � � � � ∆
 � �� � :

� Γ �
 � � � � � � � ∆
 � � ���#
Definition 4 � 2 � 6� Γ ��# ��� � � � # � � � � � ∆ �#

� � �� � Γ ��# ��� � � � # ��� � � � ∆ � � # � � � �
Lemma 4 � 2 � 14

Γ ��# � � � � � ∆ �
Definition 4 � 2 � 6� Γ ��# ��� � �
 � � � � � � � ∆
 � �� �

This can be done using ��� � to get

� Γ �
 � � � � � � ∆
 � � � � �
 #
��� �� Γ ��# ��� � �
 � � � � � � ∆
 � � � � �
 �

� �

∆; # � � %# Γ � �
� �

Γ � ∆; # � � � �

In this rule the stacks are not used, so it is not necessary to go into the sub-

cases.

We are given that � Θ; # � �
 �
 � � � � � � � �
 �
 � �# and � Γ �
 � � � � � � � ∆
 � � � �

4.5. Soundness and Completeness 91

As induction hypotheses we have � Θ; # � �
 �
 � 0� � � � �
 �
 �
�
 # and � Γ �
 � � � � � � ∆
 � � � ���
 � .

We need to show that � Γ � Θ; # � � �
 � � � � � � ∆
 � � � � �
�� .

For convenience we will use the abbreviation Θ
�

to stand for Θ; # � � .

Θ
� �# Γ � � ∆ �

� �
� Γ � � ∆ � � Θ � �

Lemma 4 � 2 � 10� Γ � � Θ � � � ∆ �
Def � of Γ �� � Γ � Θ � � � Θ

� � � Θ � � � ∆ �
Lemma 4 � 2 � 11� � Γ � Θ � � � � Θ �

� Θ
� � � � ∆ �

Subtraction and Unit operation
Γ � Θ � � � ∆ �

Definition 4 � 3 � 2� Γ � Θ � �
 � � � � � � � ∆
 � � � �

This proof will be found by the following rule:

� Θ; # � �
 �
 � 0� � � � �
 �
 �

 # � Γ �
 � � � � � � ∆
 � � � � �
 �
� �

� Γ � Θ; # � � �
 � � � � � � ∆
 � � � ���
��

� � We are given � Γ
 � :: � � � � � � � Γ �
 � :: � � # and � Γ �
 � � � � � � � ∆
 � � � 	$. From Definition 4.3.2

we have � Γ
 � :: � � � � � � � Γ �
 � :: � �) Γ � Γ � and � Γ �
 � � � � � � � ∆
 � � �) Γ � � ∆. We can perform the

following transformations:

Γ � Γ � �# Γ � � ∆ �$
� �� Γ � Γ � � � � Γ � � ∆ � �# � $
Weakening � � Lemma 4 � 2 � 16 �

Γ � ∆ �# � $
� Γ
 � � � � � � � ∆
 � � � �# � $

The induction hypotheses are � Γ
 � :: � � � � � � Γ �
 � :: � � � �
 # and � Γ �
 � � � � � � � ∆
 � � � � � �
 $.

We need to prove that � Γ
 � � � � � � ∆
 � � � � � �
 # � $. This is straightforward from � �

� Γ
 � :: � � � � � � Γ �
 � :: � � � �
 # � Γ �
 � � ��� � � � ∆
 � � � ��� �
�$
� �� Γ
 � � � � � � ∆
 � � � � � �
 # � $

Note that there is no need to analyse subcases with respect to the values of � ,

� � or � � � . It is enough to ensure that any information about occurrences of � in

a goal position to be passed on correctly. This means passing the � � received

from the left subproof as the initial counter for the right subproof.

4.5. Soundness and Completeness 92

� � �
� Γ �$

� � �
Γ �# ��� $

Given ��# � Γ
 � � � � � � � ∆
 � � ���$ we can make the following proof:

��# � Γ � � ∆ �$
Lemma 4 � 2 � 10� Γ � ∆ � � #��$
��� �

Γ � ∆ �# ��� $
Definition 4 � 3 � 2� Γ
 � � � � � � � ∆
 � ���# � � $

As induction hypothesis we have that ��# � Γ
 � � � � � � ∆
 � � � � �
 $ and we need to show

that � Γ
 � � � � � � ∆ �
 � � � � �
 # � � $. This can be done immediately from the proof figure

above, using the � � � rule of the operational semantics.

��# � Γ
 � � � � � � ∆
 � � � � �
 $
��� �� Γ
 � � � � � � ∆ �
 � � � � �
 # � � $

� �
Γ �$ Γ �# � �

Γ �$	��#

Given ��� ;Γ
 � � :: � � � � � � � � �
 � ∆ � � :: � � # and ��� ; � Γ � ∆ �
 �
 � � � � � � � �
 �
 � $ and as induction

hypotheses ��� ;Γ
 � � :: � � � � � � � �
 � ∆ � � :: � � � �
 # and ��� ; � Γ � ∆ �
 �
 � 0� � � � �
 �
 � ��� �
 $ we need

to prove that ��� ;Γ
 � � :: � � � � � � � �
 � ∆ � � :: � � � � � �
 #&��$.

��� ;Γ
 � � :: � � � � � � � �
 � ∆ � � :: � � � �
 # ��� ; � Γ � ∆ �
 �
 � 0� � � � �
 �
 � ��� �
�$ ���
� �

��� ;Γ
 � � :: � � � � � � � �
 � ∆ � � :: � � � � � �
 # ��$

Given
� Γ
 � � � � � � � ∆
 � � �# � Γ � ∆
 �
 � � � � � � � �
 �
 � �$ � �� Γ
 � � � � � � � ∆
 � � �#&��$

and assuming as inductive hypotheses � Γ
 � � � � � � ∆
 � � �
 # and � Γ � ∆
 �
 � 0� � � � �
 �
 �

 $
we need to prove that � Γ
 � � � � � � ∆
 � � �
 # ��$. It can be done with ��� .

� Γ
 � � � � � � ∆
 � � �
 # � Γ � ∆
 �
 � 0� � � � �
 �
 �
�
 $ ���� Γ
 � � � � � � ∆
 � � �
 #&��$

Given
� Γ
 � � � � � � � ∆
 � ���# � Γ
 � � � � � � � ∆ �
 � � �$ � �

�
� ∆ � 	 ∆ �� Γ
 � � � � � � � ∆ �
 � ���#&��$

4.5. Soundness and Completeness 93

and induction hypotheses � Γ
 � � � � � � ∆
 � � � �
�# and � Γ
 � � � � � � ∆ �
 � � �
 $, we need to

prove that � Γ
 � � � � � � ∆ �
 � � �
 # � $. This can be done with � �
�
.

� Γ
 � � � � � � ∆
 � � ���
 # � Γ
 � � � � � � ∆ �
 � � �
 $ � �
�
� � � � � and ∆ � 	 ∆ �� Γ
 � � � � � � ∆ �
 � � �
 #&��$

Given
� Γ
 � � � � � � � ∆
 � ���# � Γ
 � � � � � � � ∆ �
 � ���$ � �

� �
� Γ
 � � � � � � � ∆ � ∆ �
 � ���# � $

and induction hypotheses � Γ
 � � � � � � ∆
 � � � �
 # and � Γ
 � � � � � � ∆ �
 � � � � �
 $, we need to

show that � Γ
 � � � � � � ∆ � ∆ �
 � � � �
 #&��$. This is done with � �
� �

� Γ
 � � � � � � ∆
 � � � �
 # � Γ
 � � � � � � ∆ �
 � � � � �
 $ � �
� �
� � � ��� � � � � �� Γ
 � � � � � � ∆ � ∆ �
 � � � �
 #&��$

Given
� Γ
 � � � � � � � � �
 � � �# � Γ
 � � � � � � � � �
 � � �$ � �� Γ
 � � � � � � � � �
 � � �#&��$

and � Γ
 � � � � � � � �
 � � � �
�# and � Γ
 � � � � � � � �
 � � ��� �
 $ as induction hypotheses, we need to

prove � Γ
 � � � � � � � �
 � � � � � �
 #&��$. This can be done using ���
� � �

.

� Γ
 � � � � � � � �
 � � � �
 # � Γ
 � � � � � � � �
 � � � � � �
 $ � �
� � �

� Γ
 � � � � � � � �
 � � � � � � �
 # � $

���
;Γ �$

���
Γ �# � #

Given ��# ;Γ
 �
 � � � � � � � �
 �
 � $ and ��# ;Γ
 �
 � � � � � � �
 �
 � � �
 $ as inductive hypothesis, we need

to show that � Γ
 �
 � � � � � � �
 �
 � � �
 # �($

This is straightforwards given that ��# ;Γ
 �
 � � � � � � � �
 �
 �) # ;Γ and � Γ
 �
 � � � � � � � �
 �
 �) Γ

��# ;Γ
 �
 � � � � � � � �
 �
 � �$
Definition 4 � 3 � 2# ;Γ �$

���
Γ �# ��$

Definition 4 � 3 � 2� Γ
 �
 � � � � � � � �
 �
 � %# ��$

This proof will be found by the following rule

4.5. Soundness and Completeness 94

��# ;Γ
 �
 � � � � � � �
 �
 � � �
 $
���� Γ
 �
 � � � � � � �
 �
 � ���
 # �($

Given ��# ;Γ
 # � :: � � � � � � � � �
 � ∆ � # :: � � �$ and ��# ;Γ
 # � :: � � � � � � � �
 � ∆ � # :: � � � �
 $ as induction

hypothesis, we need to prove that � Γ
 � :: � � � � � � ∆
 � :: � � � �
 # �($.

��# ;Γ
 # � :: � � � � � � � �
 � ∆ � # :: � � � �
�$
���

�
� Γ
 � :: � � � � � � ∆
 � :: � � � �
 # �($

Given
��# ; � ;Γ
 � ; # :: � � � � � � � � �
 � ∆ � ��� ; # � :: � � �$

������ ;Γ
 � :: � � � � � � � � �
 � ∆ � �� :: � � %# �($
and induction hypothesis ��# ; � ;Γ
 � ; # ::� � � � � � � �
 � ∆ � ��� ; # � ::� � � �
 $ we need to prove

��� ;Γ
 � :: � � � � � � � �
 � ∆ � � :: � � � �
 # ��$. We can do this using ���
� �

.

��# ; � ;Γ
 � ; # :: � � � � � � � �
 � ∆ � ��� ; # � :: � � � �
 $
���

� �
��� ;Γ
 � :: � � � � � � � �
 � ∆ � � :: � � ���
 # ��$

Given
��# ;Γ
 # � :: � � � � � � � � �
 # � :: � � �$

���� Γ
 � :: � � � � � � � Γ
 � :: � � �# �($
and as induction hypothesis ��# ;Γ
 # � :: � � � � � � � �
 # � :: � � � �
 $ we want to show that

� Γ
 � :: � � � � � � Γ
 � :: � � � � 1
 # �($. This is done with the ���
� � �

rule.

��# ;Γ
 # � :: � � � � � � � �
 # � :: � � � �
 $
���

� � �
� Γ
 � :: � � � � � � Γ
 � :: � � ��� 1
 # �($

� �
Γ �# �

� �����) 1 � 2 �
Γ %# 1 ��# 2

Given
� Γ
 � � � � � � � ∆
 � � � �# � or $ �

� �� Γ
 � � � � � � � ∆
 � � ���#�� $
and induction hypothesis either � Γ
 � � � � � � ∆
 � � � ���
�# or � Γ
 � � � � � � ∆
 � � � � �
 $, we need

to prove � Γ
 � � � � � � ∆
 � � � ���
 #���$, which can be done using one of the � � rules.

� Γ
 � � � � � � ∆
 � � � � �
 #
� �� Γ
 � � � � � � ∆
 � � � � �
 #�� $

� Γ
 � � � � � � ∆
 � � � � �
 $
� �� Γ
 � � � � � � ∆
 � � � � �
 # ��$

4.6. Predicate
�����

95

4.6 Predicate �����

We have discussed in � 2.5 the possibility of having bunched variables. Also all the

analysis of permutations presented in Chapter 3 use bunched variables showing that

it is perfectly feasible to have simple resolution proofs using the full predicate BI.

However, the implementation described in Chapter 8 uses only additive mainte-

nance of variables.

In the next section we will describe the first steps towards implementing a ver-

sion of
�����

with fully bunched variables.

4.6.1 Predicate rules for LBI

The predicate rules that we are going to utilise are a straightforward simplification

from the ones given earlier in Definition 2.6.1. The main difference is that there is

no need to tag explicitly the variables to mark them as additive, since all of them are.

Also where before we used a bunched notation for the � � rule, now a flat represen-

tation is enough.

���
;
���

Γ �#�� �	� ��
 ��� � : Term � � ������
Γ � � � # � � �

���
;
���

Γ ��# � � � � �$ ��� � : Term � � ������
Γ � ��� � # � � � � �$

4.6.2 Operational semantics for predicate
�����

The operational semantics for these rules are as we should expect:

� ��� ;
���

Γ
 � � � � � � � � � ∆
 � � � ���
 #�� �	� ��

� �� ����� Γ
 � � � � � � � � � ∆
 � � � � �
 � � � # � � �

� ��� ;
��

Γ ��# � � � �
 � � � � � � � � � ∆
 � � � ���
 $
� �� ����� Γ � ��� � # � ��� �
 � � � � � � � � � ∆
 � � � � �
 $

or, more traditionally, using � to denote a substitution (list of pairs of terms),

� Γ
 � � � � � � ∆
 � � � ���
 � :: � #�� �	� ��

� �� Γ
 � � � � � � ∆
 � � � � �
 � � � � # � ���

� Γ ��# � � � �
 � � � � � � ∆
 � � � ���
 � :: � $
� �� Γ � ��� � # � ��� �
 � � � � � � ∆
 � � � ���
 � $

Soundness and completeness of these rules are trivial.

4.7. Predicate BI with bunched variables 96

4.7 Predicate BI with bunched variables

The predicate sequent calculus presented in � 2.6 has some properties that makes it

unsuitable for logic programming. The main problem is the Axiom � x � y � relation that

needs to be maintained throughout the proof. This relation has got a global charac-

ter which means that it cannot be determined at one particular step on the proof. It

could be done using a system of constraints, but we prefer a simpler solution, which

is to present an alternative system where this global constraints do not arise.

4.7.1 Alternative sequent calculus system: LBI �

An alternative system with the same power than LBI is given by the following mod-

ifications. First we will consider families of variables which will be � -convertible.

We will identify the families by tags (� � �� � � �) and adorn each of them with integer

subscripts to make them unique.

We change the axiom and the substitution rules as follows

Identity and Structure

� 1 �# ��� 1 � : Prop ��� 1 � � 2 � Axiom � where � �) ;or � ����
1 � �
�

2
� # ��� 1 � �# ��� 2 �

��� �
���
� �

Γ �# � � : Term
Substitution��� � ��� �

Γ � �	� � �
��#�� �� � �

where � 1 � � 2 iff all variables in � 1 have a matching variable in � 2 with the same

tag, and � is a bunch of variables using just the tag �

Multiplicative quantifiers
���	�

� 1
�

Γ �# ��� 1 � � � ��
 � � new � ������
Γ � �	�
 � � #�� � � � 1

��� � ��� �

Γ ��# � � � � �$ ���� � : Term � � � ��
 ������ � �
Γ � � � ��
�� � #�� � � �
 � �$

���	� ���
Γ �#�� �	� ��
 ���� � : Term � � �	��
 ������

Γ
� � ��
 � � # � ���
��� �

� 1
� �

Γ ��# ��� 1 � ���$ � � ��
 � � new � ������ � �
Γ � � �	�
 � � #�� � � � 1
 � �$

4.7. Predicate BI with bunched variables 97

Additive quantifiers
���

; � 1!
�

Γ �# ��� 1 �
� � � new � ������

Γ ��� � #�� � � � 1

��� � �

!
� �

Γ ��# � � � � �$ ��� ! � : Term � � ������
1
� �

Γ � ��� � #�� � � �
 � �$
���

;
�

!
�

Γ �#�� �	� ��
 ��� ! � : Term � � ������
Γ
� � � # � ���

�����
� 1!
� �

Γ ��# ��� 1 � � �$ � � � new � ������
1
� �

Γ � � � � #�� � � � 1
 � �$
Looking at the rules as going upwards, the linearity condition is preserved by

creating always new variables. The logic restriction for � � ��
 � , � � , � � ��
 � and � � is

now quite simple: � has to be a new tag.

4.7.2 Translation from LBI � to LBI

We first provide a translation from LBI � to LBIto show that this system is sound with

respect to the other.

 Every occurrence of an Axiom rule in LBI’ has to be changed to name explicitly

the variables connected by this axiom.

� 1 �# ��� 2 � : Prop � 1 � � 2
Axiom���

1 � �
�

2
� # ��� 1 ���# ��� 2 �

�

� 1 �# ��� 1 � : Prop � 2 �# ��� 2 � : Prop
Axiom � X1 � X2 ����

1 � �
�

2
� # ��� 1 ���# ��� 2 �

 In every substitution LBI adds axioms, so they have to be added in the transla-

tion �����
���
� �

Γ �# � � : Term
Substitution����� ��� �

Γ � �	� � �
��#�� �	� � �
 �

�����
���
� �

Γ �# � � : Term
Axiom ��� ��� �0� Substitution����� � � �

Γ � �	� � �
��#�� �	� � �

for all � � s.t. Axiom � � ��� � �

 The right universal rules and the left existential rules need an � -conversion to

match the syntax of the rules.

4.7. Predicate BI with bunched variables 98

In short, the translation reduces to connecting bunches of variables via axioms.

In principle it could happen that by adding these axioms some of the quantifier rules

break down, in the sense that the restrictions don’t hold any more. The linearity

condition is preserved because LBI’ uses new variables all the time. But we need to

check the extra conditions.

First of all note that the axioms connect variables with the same tag. Then sup-

pose we have a proof ending with the application of � � or � �	��
 � (I’ll use the symbol

� � � to stand indistinctly for the two universal quantifiers)

Ξ����� � � � 1
�

Γ %# ��� 1 � � � � ������
Γ � � � � 1 � # ��� 1 �

We need to check that it is still the case that

� 1
�� � �
Axiom � � ��� � and �

� FV � Γ �

and indeed, the set

� �
Axiom � � ��� � and �
� FV � Γ �

contains only variables with tags different from � .

Likewise suppose the proof ends with an � � or � �	��
 � rule. Then after translation

we will have a proof like

Ξ�������
� 1
� �

Γ ��# ��� 1 � � �$ � � � �������� � �
Γ � � � � � 1 � # ��� 1 � � �$

The condition now is that

� 1
�� � �
Axiom � � ��� � and �

� FV � $ � or FV � Γ �

and because of the same reasons than before, this is the case.

4.7.3 Translation from LBI to LBI �

The variables are partitioned by � -convertibility. This is done by closing the relation

Axiom � x � y � under transitivity. We assign a different tag to each class. The translation

is done by replacing each variable with the tag of its class subscripted by an unused

integer.

4.7. Predicate BI with bunched variables 99

Could it happen that in a rule that requires a new tag this procedure produces a

tag already in use by some other variable? If that was the case then the two variables

would be � -convertible which means that it would violate the corresponding extra

condition in LBI.

Here there is a proof of the intuitionistic sequent � �	��
 � � � � �	�%� � ��� � � � � � � ��
 �	�%� ���� �
in LBI and its translation into LBI’

Axiom � � � ,� Axiom � � ! ��� ! ������
!; � � ��� !

��� � �	� � ��� ����%� ������
� �� �

1; � � ��� !
��� � � � �	�%� � ��� ����%� ���� �

Unit� � ��� !
��� � � � �	�%� � ��� ����	� ���� �

� � ��
 �� ���
!
��� � � � ��
�� � � � �	�%� � ��� � ��	� ���� �

Unit���
!
��� � � �	�
 � � � � �	�	� � ��� � ��%� ���� �

� � ��
 ����
!
� � � ��
�� � � � �	�%� � ��� � � � ��
 �	�%� ���� �

Unit�
1;

�
!
� � � ��
�� � � � �	�%� � ��� �� � � � � � ��
 �	�%� ���� �

� ��
1
� � � ��
 � � � � �	�%� � ��� �� � � � � �	��
 �	�%� ������

There are two sets of � -convertible variables: � � � � and � � ��� . Assigning tags �

and � respectively and doing some renaming we convert this proof into

Axiom� ���
!2; � 2

� � �
!1
�

� 1
� �%��� 2 � � 2 ��
�%��� 1 � � 1 � � ����

1; � 2
� � �

!1
�

� 1
� � � �	�%��� 2 ��� � ��%��� 1 � � 1 �

Unit�
� 2
� �

!1
�

� 1
� � � �	�%��� 2 ��� � ��%��� 1 � � 1 � � �	�
 �� � �

!1
�

� 1
� � � ��
 � � � � �	�%� � ��� �
�%��� 1 � � 1 �

Unit� �
!1
�

� 1
� � �	�
 � � � � �	�%� � ��� ����%��� 1 � � 1 � � �	��
 �� �

!1
� � � ��
 � � � � �	�%� � ��� � � �	�
 � �	�%� � � � 1 �

Unit�
1;

�

!1
� � �	�
 � � � � �	�	� � ��� �� � � � � �	�
 � �	�%� � ��� �

� ��
1
� � � ��
 � � � � �	�%� � ��� �� � � � � � ��
�� �	�	� � ��� �

When searching for a proof of a sequent, we don’t know in advance which ones

are going to be the axioms. In many cases we could make good guesses at them

but in general this is an issue that has to be left open until the last minute, when

the proof is finished. From the point of view of proof search, the extra conditions

that have to be satisfied for a proof to be valid can be seen as constraints on the

possible axioms available. The system proposed as alternative have the constraints

built-in in such a way that all decisions can be made locally preserving soundness

and completeness.

4.8. Soundness and Completeness of LBI � 100

4.8 Soundness and Completeness of LBI
�

If we denote Γ LBI # proofs done in LBI and likewise Γ LBI � # proofs done in LBI � ,

then we can state the following

Lemma 4.8.1

Γ LBI # iff Γ LBI � #

Proof: There are easy forwards and backwards translations described in 4.7.2 and

4.7.3.

4.9 Operational semantics for full predicate BI

When considering the operational semantics for predicate BI, the first step is to pro-

vide operational rules for the quantifiers. In addition, we need to add a context into

the rules, and a way of keeping track of the substitutions already performed.

The rules for existential quantifiers for BI are

���	�
���
Γ �#�� �� ��
 ��� ! � : Term � � � ��
 ������

Γ � �	�
 � � # � � �
���

;
�

!
�

Γ �#�� �� ��
 ��� ! � : Term � � ������
Γ � � � # � � �

However these rules turn out to be very restrictive. As an illustration of the issues

arising, consider the program consisting only of the atom � ��� ; � � �
	 � � . When trying to

prove a predicate � � � ; � � ��� � � where � ��� and � are variables, there is no combination

of existential quantifiers that would allow a proof to be done. As an example we

show a failed attempt using � for � and � �	�
 for � and �

�����
;
��� ��� �

; � � ��� ��� � � ��� ; � � �
	 � � � ��� ; ��� � � � �
� �	�
 ������

;
��� ��� �

; � � ��� � � ��� ; � � �
	 � �
� �	��
 � � � ��� ; ��� ��� � �
� �	�
 ��	�

;
��� ��� �

; � � � ��� ; � � �
	 � �
� � ��
 � ��� � � ��� ; � � ��� � �
� ��	�

;
��� ��� � � � ��� ; � � �
	 � �
� � � � � ��
 � ��� � � � � ; � � ��� � �

and the context
�����

;
��� ��� �

; � � ��� �
� � cannot be split in an appropriate way because it has

the wrong shape. Trying other combinations of quantifiers (� � � �� ��
 � � � � � � � ; � � ��� � � ,
� �	�
�� ��� � � � � � � � ; � � ��� � �) will not work either, and always for the same reason: the re-

sulting bunch of variables is of the wrong shape.

4.9. Operational semantics for full predicate BI 101

One way of solving this problem is to restrict the shape that the bunch of terms

can take. For example, it can be required that different kind of bunches cannot be

embedded into each other, which effectively amounts to bunches which have a flat

structure.

But it is possible to change slightly the rules in such a way that this problem

doesn’t arise. Consider the variant existential rules

��� � � ��� ; � � � Γ �#�� �� ��

� ���� � � � � Γ � � � # � � �

��� � � ��� �
��� � Γ %#�� �	� ��

� � ��
 ���� � � � � Γ � � ��
 � � # � ���

with the side conditions that � � � � � � # � � � : Term and � � : Term

Cut elimination for these rules in their new formulation can be done as follows:

a proof figure like

��� � � ��� ; � � � ∆ %#�� �	� ��

� ���� � ��� � ∆ � � � # � � �

����� ���
; � � � Γ ��# � ��� � �$

� ������ ����� �
Γ � � � � # � ��� � �$

Cut� ��� � � �
Γ � ∆ � �$

translates to

��� � � ��� ; � � � ∆ �# � � � � ��� ���
;
� � � Γ ��# � � � � �$

Cut��� � ��� �
Γ � ∆ ���$

And for � � ��
 , a proof figure like

��� � � ��� � � � � ∆ %#�� �	� ��

� � ��
 ���� � ��� � ∆ � � ��
 � � # � � �

��� � ��� � � � � Γ ��# � � � � �$
� �	��
 ������ ��� � �

Γ � � �	�
 � � # � ��� � �$
Cut� ��� ��� �

Γ � ∆ � �$
translates to

��� � � ��� � � � � ∆ �# � � � � ��� ��� � � � � Γ ��# � � � � �$
Cut��� � ��� �

Γ � ∆ ���$
The operational semantics for these rules is

� ��� � � ��� ; ��� � Γ
 � � � � � � � � � ∆
 � � � � �
 #�� �	� ��

� �� ��� � � � � Γ
 � � � � � � � � � ∆
 � � � ���
 � � � # � � �

� ��� � � ��� � ��� � Γ
 � � � � � � � � � ∆
 � � � � �
 #�� �� ��

� � ��
 �� ��� � ��� � Γ
 � � � � � � � � � ∆
 � � � � �
 � �	��
 � � # � � �

with the side conditions � � : Term and � � � � # � � � : Term.

Now turning to the universal quantifiers, the BI rules are

4.9. Operational semantics for full predicate BI 102

����� �
;
� � � Γ ��# � � � � �$ ��� � : Term � � ������ ��� �
Γ � ��� � # � ��� � �$

����� � � � � � Γ ��# � � � � �$ ��� � : Term � � � ��
 ���� � ��� �
Γ � � �	�
 � � # � � � � �$

But there is some extra information that might be used to simplify these rules.

Since the proofs that we are using are uniform, we know that the conclusion of these

rules has to be atomic. It is also convenient for the translation to separate the three

cases that could arise.

Also we have some knowledge about the structure of the context of variables/constants.

It is useful first to split the cases of the left universal quantifiers depending on the

three possible resolution instances

First, the clause selected for resolution is an atom and the rule applicable after

unification is a CutAxiom.

��� � � � � � �
;
� � � � �� Γ � �

CutAxiom��� ��� � � ���
;
� � � � �� Γ � � � � � � � � � � ��� � : Term � � ������ ��� � � � � Γ � ��� � � � � � � � � � �

The proposed operational semantics for CutAxiom � is

� ����� Γ
 � � � � � � � � � ∆
 � � � � �
 �
CutAxiom �� ���	� ��� � � � Γ � ��� � � � � �
 � � � � � � � � � ∆
 � � � � �
 � � �� �

with the side conditions ���
��
: Term and � � ��� � � � ��� : Term � . In addition we require

that ��� � ; ����� � . Notice that Γ � has no free terms on it.

� ��� � ��� Γ �
 � � � � � � � � � ∆
 � � � � �
 # � �� �
� �� � � �	� � � � ; � �

Γ � � �� � ��# � �� � ��� � � �� � �
 � � � � � � � � � ∆
 � � � ���
�� � �� �
For this rule the side conditions are

� � : Term, � � ��� � # � ��� : Term, and �� � :

Term.

� ����� � � � Θ; ��� � ��# � ��� � � � � � �
 � � 0
� � � � � � ∆
 � � �

 # � � � � ����� Γ �
 � � � � � � � � � ∆
 � � � � �
 �

� �� ��� � � ��� � � Γ � � Θ; �
�
� � ��# � �� � � � � �� � � �
 � � � � � � � � � ∆
 � � � ���
 � � �� �

� � : Term and � � ��� � # � � � : Term

103

Chapter 5

Examples

5.1 Introduction

The examples developed in this chapter are based in the ideas of conflict or other

interactions arising from memebership to different groups. The logic of BI, specially

the affine version, seems to be well suited for dealing with these issues. In this chap-

ter we

 Present two motivating examples: fights between political parties and family

relationships.

 Discuss the advantages of
�����

over Prolog for these kind of programs.

 Discuss problems arising from linear recursion.

 Present a major example: the implementation of an �
�

-calculus type inference

system.

 Discuss issues related to the use of modules.

5.2 Fights Between Rival Factions

This logic seems well suited to model hooligan behaviour, as well as political par-

ties. As an example consider the bunch
� � ��������� � ���������
	�� � � �

���
� � � �
�����

. In these

examples p(x) means that x is a person. The bunch structure shows that
���

and

5.2. Fights Between Rival Factions 104

���
belong to the same group, and that

���
and �

�
belong to belligerent groups. To

say that two individuals are in a possible fighting relation we say simply ��� ��� � � � ��� �
� � � � � � � ��� � � � � ��� � , which is to say that � and � can fight if they are people which be-

long to different groups. A complete program would be

� � �������
� � ���������
	

� � � �
���
� � � �

�����
	

� � 	 ��� �� ���� � � � 	 � � ��� � � � � � � � � �

If more than two groups are involved, then the program has to be modified, be-

cause the relation holds even when some group is not considered. This can be done

modifying the definition of fight to
� � 	 �	� ��
��� � � � 	 � ����� � � � ��� � � � ����� , to be read:

once � and � have been found, disregard any left-over. Alternatively each group

could be decorated with a multiplicative unit to signal that it can be ignored. So

we might have for example

� � �������
� � ������������
	$� � � � ���
� � � � ���������	 � � � � ����� � � � ���
����

However, the first approach is to be recommended since it doesn’t produce re-

dundant solutions. Adding a unit to each group allows the unit operation to be per-

formed in different places, but without changing the solution.

The following is an equivalent Prolog program for this problem. It uses tags to

distinguish the groups.

� ����� 	 � ��� � � ��� � 	 � ��� �

� � �
� 	 � ��� � � � �

� 	 � ��� �

�� ���� � ��� 	�� � � � � ��� 	��%��	 � ��� 	�� �
	�� �) � �

When we are talking of political parties, sometimes they split into rival factions,

but each faction in turn might want to keep the former allies. See Figure 2 for an

example of this. Notice that �
���

fights with
���

and
���

but also with �
� � and �

���
. If

we call x and y allies if they don’t fight, then despite �
�

been an ally of �
���

and also

5.2. Fights Between Rival Factions 105

of �
� � , �

���
and �

� � are not allies. The modification of the program to reflect this

state of affairs is straightforward:

� � �������
� � ���������
	

� � � �
���
�

� � � �
������� � � �

� �����
	

� � � �
� � ��� � � � ��� �����
	

� � 	 ��� �� ���� � � � 	 � � ��� � � � � � � � � ��� � 	

Notice that the defining clause didn’t need any modification.

To modify the Prolog program we could start by adding an extra tag to reflect the

structure of the problem like this

� ����� 	 � � 	
�
� � � ��� � 	 � ��	

�
�

� � �
� 	 � � 	

�
� �

� � �
����	 � � 	 � ��� � � � �

��� 	 � � 	 � ��� �

� � �
� � 	 � � 	 � ��� � � � � ��� 	 � � 	 � ��� �

�� ���� � ��� 	�� � � � � ��� 	�� 	
�
��	 � ��� 	�� 	

�
�
	 � �) � �

�� ���� � ��� 	�� � � � � ��� 	�� 	��%��	 � ��� 	�� 	��%�
	 � � � 	�� �) � �

and we should be aware that the whole program has had to be modified to account

for the extra tag. Or a new, more flexible implementation can be dreamed up, like

using a list of tags as a second argument:

� ����� 	 � � � � � � � ��� � 	 � � � � � �
� � �

� 	 � � � � � �
� � �

����	 � � � 	 � � � � � � � �
� � 	 � � � 	 � � � � �

� � �
� � 	 � � � 	 � � � � � � � �

��� 	 � � � 	 � � � � �

�� ���� � ��� 	�� � � � � ��� 	 � ��	 � ��� 	����
	 	 �" 	 � � �
� ��� 	���� �
	 �"�	 � � � � � �
	����

� � 	 �	���� � � � � ��	 � �) 	�� �

	 �"�	 � � � � � �
	������ � � 	 �
	 ����� � � � � ��	 � � 	 � 	 	 �" 	 � � �
� � � � 	�� ��� �

5.3. Family Matters 106

Please compare the heavy machinery used in this example with the simplicity of

the
�����

version.

5.3 Family Matters

Another example that is well suited to be represented with bunches is family ties.

Members of the same family are represented with additive bunches, and different

families are multiplicatively connected. In the following examples
	 � � � and

� � �

mean that � is a man or a woman respectively. In this context, if we want to express

the old fashion practice that � and � can marry if they are of different sexes and

different families, it could be done simply with the predicate
� � 	 �	� � � � � 	

� ��� � � � 	 � �
��� � 	 � � ��� # � � � � # � � ��� 	 � � ����� �

. The addition of
� �

to the antecedent is, again,

to take care of the families not considered in the relation. So a
�����

program would

look like

� 	 � � ��� �
� � # ����� � ���
	

� 	 � � � � �� �� � � � # � �" � � �����
���
	

� 	 ��� � ��
� ��� � � # � ����� �"� ���
	

� � 	 ��� � � � � 	 � ��� � � � 	 � � ������� 	 � � ��� # � � ��� � � # � � � � 	 � � ����� � � �

Again Prolog needs the addition of extra-logical tags to reflect the structure of the

family relations:

	 � � � � �
	 ��� �

# ����� � 	 ��� �

	 � � � � � �� � 	 �
� �

	 � �" � � �����
	
�
� �

	 ��� � ��
� ��� 	 � � �

# � ����� �" 	 � � �

� � � � 	
� ��� � ��� 	 �%� � � 	 ��� 	 �%��	 # ��� 	 � �
	 � �) � �

� � � � 	
� ��� � ��� 	 �%� � � # ��� 	 �%��	 	 ��� 	 � �
	 � �) � �

5.4. Encapsulation 107

Hopefully it is clear by now that for this type of problems a programming lan-

guage based on BI will provide a simple way of expressing the fundamental features,

while Prolog will need at least some control structures foreign to the problem.

In the sequel to the chapter, we will explore other examples from a
�����

perspec-

tive. We will not refer to Prolog again.

5.4 Encapsulation

In this family setting, complications might arise. If a Don Juan just arrived in town,

would it be possible for him to marry somebody living there? We can answer this

question by asking
�����

whether the goal �
#��$	 � ��� � � � �

�
�
�
��� � � � � 	 � ��� � � ��� � � � � � � 	 # �

has got any answer substitution. Then we will see, to our dismay, that this outsider

will be able to marry every woman available! As an example we show a simplified

proof that Don Juan can marry Kate:

	 ��� � � 	 ��� � � 	 � � � ; ���� � ���� � 	 ��� � ; ���� � �
� �	 ��� � � � � 	 � ��� ; ���� � � � � 	 ��� � ; ���� �.� 	 ��� � � � ���� � � �

��� �	 ��� � � � � 	 � � � ; ���� � � � � 	 ��� � ; ���� � � � ��� ��� � 	 � � � � �� � � � � � � 	 	 � � ��� � 	 	 ��� � � � �
� �	 ��� � � � � 	 � � � ; ���� � � � � 	 ��� � ; �� � � � � ��� ��� � 	 � � � � �� � � � � � � 	 	 � � ��� � � � 	 	 ��� � � ,�
��� �� 	 � ��� ; ���� � � � � 	 ��� � ; ���� �.� � ��� ��� � 	 � � � � �� � � � � � � 	 	 � � ��� � 	 ��� ��� � � � � 	 	 ��� � � ,�

Of course we don’t want that! With a simple modification of the program it is

possible to avoid this happening. The trick consists on changing the multiplicative

implication by an additive one. We also need to take care of connecting this clause

additively to the rest of the program.

��� 	 � � ��� �
� � # � � � � ����	

� 	 ��� � ��
� ��� � � # � ����� �" ���

�
�

� � 	 ��� � � � � 	 � ��� � � � 	 � � �
����� 	 � � ��� # � � ��� � � # � � � � 	 � � ����� � � �

With these changes it is not possible for outsiders to take advantage of the situa-

tion. Any tentative of adding
	 � ��� � � � �

�
�
�

to the program will fail to hold a proof of

�
#�� � � � � 	

� ��� � � ��� � � � � � � 	 # � .

5.5. Linear Recursion 108

���
Fails� 	 � ��� ; ���� � � � � 	 ��� � ; ���� � � 	 ��� ��� � ���� � � �

���
Fails	 ��� ��� �

� �
	 ��� ��� � � � � 	 � � � ; ���� � � � � 	 ��� � ; �� � � �.� ; ��� ��� � 	 � ��� � �� � � � � � 	 	 � � ��� � � 	 	 ��� � � � �

� �	 ��� ��� � � � � 	 � � � ; ���� � � � � 	 ��� � ; ���� � � � ; ��� ��� � 	 � ��� � ���� � � � � 	 	 � � ��� � � � � 	 	 ��� � � "�
��� �� � 	 � ��� ; ���� � � � � 	 ��� � ; ���� � �.� ; ��� ��� � 	 � ��� � �� � � � � � 	 	 � � ��� � 	 ��� � � ��� � � 	 	 ��� � � ,�

Trying to add
	 � � � �

multiplicatively to the program fails because the left rule for

additive implication requires to find a proof with the additive subbunch connected

to the implication, leaving the proposition
	 � � � �

outside its scope.

Lets see what happens if we try to avoid this problem by adding
	 � � � �

using an

additive implication:

���
Fails	 ��� ��� ; � � 	 � ��� ; ���� � � � � 	 ��� � ; �� � � � � 	 ��� � � � ���� � � �

� �
	 ��� � � ; � � 	 � ��� ; ���� � � � � 	 ��� � ; �� � � � � ; ��� ��� � 	 � � � � �� � � � � � 	 	 � � ��� � 	 	 ��� � � � �

� �	 ��� � � ; � � 	 � ��� ; ���� � � � � 	 ��� � ; ���� � � � ; ��� ��� � 	 � � � � �� � � � � � 	 	 � � ��� � � � 	 	 ��� � � ,�
���� � 	 � � � ; ���� � � � � 	 ��� � ; ���� � �.� ; ��� ��� � 	 � ��� � �� � � � � � 	 	 � � ��� � 	 ��� ��� � � � 	 	 ��� � � "�

Here the proof fails because the definition of
� � � � 	

� ��� � requires the two propo-

sitions to be multiplicatively apart, and in this case
	 � � � �

is additively apart from

everyone else.

5.5 Linear Recursion

Linear recursion is problematic since the use of a linear implication consumes it and

then it is not available for use later on. This can be overcome by repeating the im-

plication in the program as many times as could be foreseen, if it can be foreseen

at all. But operationally this solution opens up another problem, which is that on

backtracking, each repetition of the clause can be chosen as a new match, giving a

polynomial number of repeated answers. For example, the following program per-

mutes lists of three elements.

5.5. Linear Recursion 109

� � � �� �" � � ��� � � � �� 	 � � ��� ���������� � � � �
	

� � 	 � ��	 � � � �� �" � �� ��� � � � � � 	 � ���
	 � ��� ��� � �
	 ��� �
��� �� �" � � ��� � � � ��	 � �����
	
� � 	 � ��	 � � � �� �" � �� ��� � � � � � 	 � ���
	 � ��� ��� � �
	 ��� �
��� �� �" � � ��� � � � ��	 � �����
	
� � 	 � ��	 � � � �� �" � �� ��� � � � � � 	 � ���
	 � ��� ��� � �
	 ��� �
��� �� �" � � ��� � � � ��	 � �����
	

���������� � � � ��
��	

� � 	 � � ���������� � � � ��� 	 � ��� ��� � 	 ��� ��� ���������� � � � �
	
� � 	 � � ���������� � � � ��� 	 � ��� ��� � 	 ��� ��� ���������� � � � �
	
� � 	 � � ���������� � � � ��� 	 � ��� ��� � 	 ��� ��� ���������� � � � �
	

� � 	�� � �����	 � � � � 	�� �$��� �� �" � �� ��� �
� � 	�� � �

But each solution is going to come up 36 times because of the different ways

of picking up the repeated clauses. So we have implemented the following feature:

after a linear implication the programmer can write a number, and this will mean

that the clause can be used precisely that number of times, but matched only once

on backtracking. So this same program could be written

� � � �� �" � � ��� � � � �� 	 � � ��� ���������� � � � �
	

� � 	 � ��	 � � � �� �" � �� ��� � � � � � 	 � ���
	 � ��� ��� � � � 	 � � ����� �� �" � � ��� � � � � 	 � ����� 	

���������� � � � ��
��	

� � 	 � � ���������� � � � ��� 	 � ��� ��� � �
	 ��� � � ���������� � � � �
	

� � 	�� � �����	 � � � � 	�� �$��� �� �" � �� ��� �
� � 	�� � �

and each solution will be found only once.

If we wanted to permute lists of length up to 3, we could do it by changing the

program slightly, only adding an additive unit to the definition of
�����	 � � :

� � � �� �" � � ��� � � � �� 	 � � ��� ���������� � � � �
	

� � 	 � ��	 � � � �� �" � �� ��� � � � � � 	 � ���
	 � ��� ��� � � � 	 � � ����� �� �" � � ��� � � � � 	 � ����� 	

���������� � � � ��
��	

5.5. Linear Recursion 110

� � 	 � � ���������� � � � ��� 	 � ��� ��� � �
	 ��� � � ���������� � � � �
	

� � 	�� � �����	 � � � � 	�� �$��� �� �" � �� ��� �
� � 	�� � � � �

Unfortunately, the encapsulation of this behaviour is very poor. In particular, the

same behaviour can be achieved using the previous program by adding the additive

unit to the query, i.e., changing the query from

� � � �����	 � �
� � ��� 	 � � � 	 � ��

���
	 � �

which would fail, to

� � � �����	 � �
� � ��� 	 � � � 	 � ��

���
	 � � � �

which will succeed, something that the programmer probably did not intend. In

particular, if there are other sections of the code which rely on the fact that lists

are of length precisely 3, this raises the possibility of breaking the program at these

points.

A solution to this problem, which is similar to the solution found early for the

marriage problem, is to change the definition of
���� 	 � � from a multiplicative im-

plication to an additive implication. Therefore the definitive version of the program

that permutes lists of length exactly 3 is

� � � � �� �" � � ��� � � � �� 	 � � ��� ���������� � � � ��	

� � 	 � ��	 � � � �� �" � �� ��� � � � � � 	 � ���
	 � ��� ��� � � � 	 � � ����� �� �" � � ��� � � � � 	 � ������	

���������� � � � ��
��	

� � 	 � � ���������� � � � ��� 	 � ��� ��� � � 	 ��� ��� ���������� � � � �
�
�

� � 	�� � �����	 � � � � 	�� � �
� �� �" � �� ��� �

� � 	�� � �

Now a query with the form � � � ���� 	 � �
� � ��� 	 � � � 	 � ��

���
	 � ��� � will fail. The rea-

son that this query fails for this program can be seen schematically from the fact

that while it is possible to transform � ��� 3
� � � � � � into � � � 2

� � � � � ��� � � � � , with the

5.6. Other Idioms 111

possibility of sending the last clause to an eventual proof of � , the same transfor-

mation would be invalid in the case of � ��� 3
�

;
� � � , which is not equivalent to

� � ��� 2
�

;
� ����� � � ��� � .

Most of the time it is not known in advance how many times an implication is

going to be needed, for example when working with lists of arbitrary length. As an

ad-hoc solution to this problem we have added the following facility: when the num-

ber written in a multiplicative implication is 0 it is taken to mean an infinite number

of times. The suggested notation is as in the following program which permutes a

list of arbitrary length:

� � � � �� �" � � ��� � � � �� 	 � � ��� ���������� � � � ��	

� � 	 � ��	 � � � �� �" � �� ��� � � � � � 	 � ���
	 � ��� ������� � � 	 ��� �
��� �� �" � �� ��� � � � ��	 � �����
	

���������� � � � ��
��	

� � 	 � � ���������� � � � ��� 	 � ��� ������� � 	 � � � � ���������� � � � �
�
�

� � 	�� � �����	 � � � � 	�� � �
� �� �" � �� ��� �

� � 	�� � � � �

Notice that we need to put an additive unit in the definition of
���� 	 � � since

there will always be clauses that are not consumed.

5.6 Other Idioms

Going back to the example about political parties, consider the following variation.

Each group might have a boss which behaves as a person with respect to fights, but

with the difference that bosses don’t fight among themselves. This kind of restriction

is expressed in
�����

in a very simple way by adding a clause that can be used just once.

The program becomes

� � � � � � ����� � ��"�"
� � ��	

� � � � ��� �
� ��"�"

� � ��� � � � � � ����	
� � � � ��� �

� ��"�"
� � ��� � � � � � ����	

5.6. Other Idioms 112

� � 	 ��� �� ���� � � � 	 � � ��� � � � ��� � � � ��� � �

Given this program,
� �

will fight with
� �

,
� �

and
� � , but

� �
will fight only with

� �

and
� � . The fact that

� �
will not fight with

� �
is enforced by the clause

� � � � � � � ���

� ��"�"
� � � , which can be used only once, and the fact that

� �
and

� �
are bosses.

A further complication could be that one of the tribes has got a chief instead of

a boss, even though it should behave in the same way than a boss with respect to

fights. A slight modification of the program will accomplish this behaviour

� � � � � � ����� � ��"�"
� � � � � �% � � � � �
	

� � � � ���
� � ��"�"
��� ���
� � � � � ����	

� � � � ���
� �
� ��� � � ���
� � � � � ���
	

� � 	 ��� �� ���� � � � 	 � ����� � � � ��� � � � �����

and
� �

and
� �

will not fight for the same reasons than before.

Consider a multiplicative bunch of additively connected clauses. If we want to

express a collection of items, one from each region, we can do it in this way

� � � � ���
� � ��� �����
	

� � � � ���
� � � � �����
	

� � �������
� � ��� �����
	

� � 	 � � � � � ����� � � � � � � � 	 � � ��� ��� � � � � ��� � � �� �� � �
� � � � �
	
� � �� �� � �
� � � �� � �

Here we need a 3 following the implication because there are three groups. In

case of more groups this number should be increased accordingly. The result is col-

lected in a list.

A slight modification allows us to represent the case where the elements of the

bunches are no tagged uniformly

� � � � ���
��� ��� �����
	

��� � � ���
� � � � �����
	

5.7. The �
�

-calculus 113

� � �������
��� ��� �����
	

� � 	 � � � � � ����� � � � � � � � 	 � � ��� ��� � � � � ��� � � �� �� � �
� � � � �
	
� � �� �� � �
� � � �� � �

Since the definition of
� � �� �� � �
� speaks explicitly of

� � � � , then
� �

,
� �

and
� �

are not going to be picked up. But this behaviour can be changed by adding to

the goal an extra clause which allows a
�

to become a
�

. This is done like this:

� � � � � �	� � � � �
��� � � � ���
��� � � �� �� � � � � � � . If we allow two
�

s to become
�

s then it can

be achieved with � � � � � ��� � � � ����� � � � � ���
��� � � �� �� � �
� � � � .
Also if the program data consisted of many different tags, different individuals

can be selected at run time using implications in the goal. For example

� � � � ���
��� ��� ����� � � � � ����	
� � � � ���
� � � � ����� � � � � ����	
��� �������
� � ��� ����� � ��� � ����	

� � 	 � � � � � ����� � � � � � � � 	 � � ��� ��� � � � � ��� � � �� �� � �
� � � � �
	
� � �� �� � �
� � � �� � �

We could use the goal

� � � � � �	� � � � �
��� � � � � ��� ��� � � ����� � � � � � �

if we wanted to talk about the
�

s,

� � � � � �	� � � � �
��� � � � � ��� ��� � � ����� � � � � � �

if we want to refer to the
�

s or

� � � � � � � � � � �
��� � � � ��� ��� � � � � � � � �
��� � � � � ��� ��� � � �� �� � �
� � � �

if we are talking about two
�

s and one
�

, etc.

5.7 The �
�

-calculus

The basic system as presented in [O’Hearn Pym 99] and [O’Hearn 99] consists of the

following rules:

5.7. The �
�

-calculus 114

� �� : � � : �

Γ; � : � � : �
� �

Γ � � � � : � ���
Γ � : � ��� ∆ �� : �

���
Γ;∆ �� @ � : �

Γ ��� : � �� : �
�����

Γ � � � � : � ��� �
Γ �� : � ��� � ∆ �� : �

�����
Γ � ∆ �� � : �

However we will work with an implicit version of � � and � � as described later

in the paper

� �
Γ; � : � � : �

Γ �� : � ��� Γ �� : �
���

Γ �� @ � : �
The problem mentioned in the paper does not arise because

�����
takes care of the

weakenings automatically.

To build a type checking program for the �
�

-calculus we will represent the judge-

ments Γ � : � in the following way: judgements will be of the form Γ � : � where

Γ is the collection of clauses forming the program. The variables will be represented

by clauses of the form �
� � 	 � � , read “ � is a variable of type

�
”. The typed terms of the

calculus will be represented by clauses of the form
� � � ��� 	 � �

and are read “
�

is an

alpha-lambda-term of type
�

”.

First we will show two failed attempts to build a type-checker for the �
�

-calculus.

This will serve to show some features of
�����

and also some of its limitations.

5.7.1 A first failed attempt

The first and most immediate attempt is to define the rules using the additive impli-

cation

� � 	 � � � � � � � 	 � � �
�

�
� � 	 � ��� � �

� � 	 � 	�� 	 � � � � � ��� � ��� � � � 	��%�
	 � 	 � ��� 	 � ��� �
�

�
� � 	 � � � � � � � ��� 	 � ��� � � �

� � 	 � 	�� 	 � � � � � � � � 	 � �
� � � 	�� ��	 	�# � � � � � 	 � ��� �

�
�
� � 	 � � ��� � � � ��� 	 � ����� ���

5.7. The �
�

-calculus 115

� � 	 � 	 � 	 � � � � � ��� ��� ��� 	 � �
	 � � �
� � � � ��� 	 � 	 � ��� 	 � ����� � � � � � 	 � �
� � � ���

� � 	 � 	 � 	 � � � � � ��� � � ��� 	 � �
	 � � �
� � � � ��� 	 	�# � � �

� � 	 � ��� � � � � � � 	 � � � ��� �

We now explain the rules in turn. The first rule says that, for any � and � , � : � is

an �
�

-term if there is a variable � of type � , or, equivalently, if we can prove �
� � 	 � � .

This correspond to the � � rule.

The next rule, corresponding to � � , says that if by augmenting additively the

current context with an extra variable � : � we manage to prove that � : � is a valid

�
�

-term, then we are allowed to conclude that in the current context � � � � : � ���
is also a valid �

�
-term.

The next rule corresponds to ����� . It is similar to the previous one, but says that

if we have the variable � : � connected multiplicatively to the context then we can

conclude that
� � � � : � � � � is a valid �

�
-term.

The rule for � � says that if we know that � is of type � ��� and � is of type

� we can conclude that � @ � is of type � . Similarly in the case of ����� .

This program will fail for the multiplicative connectives. The reason why this is

so can be seen from the following proof skeleton when we try to prove
� � � � : � ��� � .

Here we use Γ
�

as a shorthand for the rest of the program, i.e., the program with-

out the clause that appears explicitly. Also � , � , � and � are universally quantified

throughout.

Not provable
Γ �� � � � ��� Not provable

� � � � ��� �
� �

� � � � ��� � � Γ � ; � � � ���"� � � : �"� � : �
��� �

Γ �� � � � ��� ��� � : �
� � � and unification �

Γ
�

; ��� � � ���,� ��� � : ��� ��� � � ��� � : 	 ���������� �� � � ��� � : 	 �� � � ���
The problem in this version arises from the structure of the left additive implica-

tion rule
Γ; # � � �# ∆ �

� �
∆ � Γ; # � � � �

which sends the subbunch where the additive implication is located, and the rest of

the bunch to two different subproofs.

5.7. The �
�

-calculus 116

5.7.2 A second failed attempt

We could try changing the definition of the rules using multiplicative implications

instead of additive ones. This would give as a result the following program:

� � 	 � � � � � � � 	 � � ��� � � �
� � 	 � ��	 � �

� � 	 � 	�� 	 � � � � � ��� � ��� � � � 	��%�
	 � 	 � ��� 	 � ��� ������� �
� � 	 � � � � � � � ��� 	 � �
	 � � �

� � 	 � 	�� 	 � � � � � � � � 	 � �
� � � 	�� ��	 	�# � � � � � 	 � ��� ������� �

� � 	 � � ��� � � � ��� 	 � ��	 � ���

� � 	 � 	 � 	 � � � � � ��� ��� ��� 	 � �
	 � � ��� � � � � � ��� 	 � 	 � ��� 	 � ��� � � � � � � 	 � �
	 � � � �

� � 	 � 	 � 	 � � � � � ��� � � ��� 	 � �
	 � � ��� � � � � � ��� 	 	�# � � �
� � 	 � ��� � � � � � � 	 � � � � ��� �

But this time the additive connectives are the ones that cause trouble. When we

try to prove � � � � : � � � we get the following proof skeleton

Not provable
Γ �� � � : ���

��� �
Γ
� � � � � ���,� ��� � � : � �� : �

Weakening
� � � � ��� ; � Γ � � � � � ���"� ��� � � : �,� �� : �

���
Γ �� � � � ��� � � : �

� � � � and unification �
Γ
� � ��� � � ���"� � � : ��� � � � � � � ��� � : 	 ���������� � � � ��� � : 	 �� � � ���
Of course, the problem now arises from the weakening of � � � � ��� . But, consider-

ing the proof search from the bottom up, we are forced to perform the weakening if

we are going to use the � � � rule, which expects the implication to be at the top level.

5.7.3 The working version

The problem with the previous versions is that the context where the program lives

cannot be used as a context to keep the additive or multiplicative relation between

the variables.

Γ �
� �

Γ � � � � ���"� � � � � � ���"�

Γ; � � � ���"� � � � ��� �����
���

Γ � � � � � � � ����� �����
Γ � � � ������� ����� Γ � � � � �'���"�

���
Γ � � � ��� @ � �����

5.7. The �
�

-calculus 117

Γ � � � � ���"� � � � ��� �����
� ���

Γ � � � � � � � � ��� � � ���
Γ � � � ��� ��� ��� ��� ∆ � � � � � ���,�

�����
Γ � ∆ � � � ����� �����

A basic program that performs type checking or type inference of terms in the

�
�

-calculus can be implemented using
�����

as follows:

� � 	 � � � � � � � 	 � � ��� � � �
� � 	 � ����� 	 � �

� � 	 � 	�� 	 � � � � � ��� � ��� � � � 	��%�
	 � 	 � ��� 	 � ��� ������� �
�
� � 	 � ��������� �� ��� � � � ��� 	 � ��	 � � �

� � 	 � 	�� 	 � � � � � � � � 	 � �
� � � 	�� ��	 	�# � � � � � 	 � ��� ������� �

� � 	 � � ��� � � � ��� 	 � ��	 � ���

� � 	 � 	 � 	 � � � � � ��� ��� ��� 	 � �
	 � � ��� � � � � � ��� 	 � 	 � ��� 	 � ��� � � � � � � 	 � �
	 � � � �

� � 	 � 	 � 	 � � � � � ��� � � ��� 	 � �
	 � � ��� � � � � � ��� 	 	�# � � �
� � 	 � ��� � � � � � � 	 � � � � ��� �

If we ask to type the term
� � � � � � � we get the run

Γ � �
� � � �� � � � � � � � 	 � �

� � � 	 � � ��� � � � 	 � ���
	 � � �� �

� � �� �
� � ��� � � � � � �

and if we try to type the term
� � � � �

� � �
@ � � @ � we get

Γ � �
� � � �� � � � � � � � 	 � �

� � � 	 � � ��� � � � 	 � ��� ��� ��� � � 	 � �
	 � ������	 � � �� �

� � �� �
� � ��� ����� � � ��� � � � ��� � � � �

If we ask the program to find
� ��� 	 and

� � � � such that
� � � ��� � � � � �� 	 	 � �
	 � � �� � is

well typed we are answered with

Γ � �
� � �� 	

	 � � �� � � � � ��� � � � � ���	 	 � ��	 � � �� �

� ���	 �
� � � � � � � �

� � �� �
� � � � �

5.8. Modules 118

� �
�
� � � � � � � � � �

� ���	 �
� � � � � � � � � � �

� � �� �
� � � � ��� � � � �

�����

5.8 Modules

Suppose we have a BI program that solves the Towers of Hanoi problem in a file

called Hanoi.bi

�
��� 	 � ��

� �

� � � ��
�
��� 	 � ��

� ��� 	 �
�
 � ��� 	 � ��

	 ���� � 	 �� � � �� 	 ��
��� � �
	
�

� � 	
�
	 � � 	 � � � � 	 � 	 � 	 � �
�

� � 	 � 	 � 	 � � 	 � � � " � � �
	 � 	 � 	 � � �
� 	 �

�
 � � 	 � 	 � 	 � � � #�� � ��� 	 �����" 	 � � 	 � � � � �

� 	 �
�
 � � 	 � 	 � 	 ���

� �

This code can be used from another program in the following way

� � � " � � � � � � ����� � 	��
� ��

� � ��� � � � � �� � � ��� �

When presented with the goal
" � � � � � " � " � " � � �������

the goal

	��
� ��

� " � " � " � � ��������� � � � � �� � " � " � " � � �������

will be tried. Now, since the antecedent is capitalised, it will try to load the program

Hanoi.bi, if it exists in the current directory. After this, the goal
� � � ��

� " � " � " � � �������

will be solved in the new program created by replacing all occurrences of ��� 	 � �� by

" � " � " � � �����
.

119

Chapter 6

Denotational Semantics

6.1 Introduction

The traditional way of providing a denotational semantics for logic programming is

giving a least Herbrand model, the set of all atoms provable from a particular pro-

gram [Lloyd 87] which can be characterised by a least fixpoint [vanEmden Kowalski]

However, since this logic programming language admits a dynamic growth of

programs via � � and ��� � rules, we provide a denotational semantics in the spirit

of [Miller 81], where programs are interpreted by Kripke models. We need to point

out that the model provided does not completely capture the operational behaviour

of programs (i.e., is not a fully abstract model). In particular the usual issues related

to permutation of clauses and their possibly different behaviour are ignored by this

semantics.

In this chapter we

 Define Herbrand interpretations for programs.

 Provide a fix point semantics for
�����

.

 Show soundness and completeness for this semantics.

6.2 Hereditary Harrop formulæ for BI

Recall Definition 3.4.1:

6.2. Hereditary Harrop formulæ for BI 120

Definite formulæ � ::) �
 �
 � � �
 ��� �
 � ��� �
�� ���

 ��� ���

Goal formulæ � ::) �
 �
 �
 � � �
�� � �
 � � �
 � ��� �
 � � �

 � � � �

This class of formulæ is not quite the largest we could consider. We could add at

least the following without compromising completeness of resolution proofs:

 Inconsistency, � , to allow, for example, definite clauses of the form � � � and

goals of the form � ;

 Definite clauses of the form � �	�
 � ��� and goal clauses of the form � � ��
 � � � ;

 Goal clauses of the form ��� � � and � �	�
 � � � .

We also conjecture that a variety of extensions to the implicational definite formulæ,

admitting formulæ more complex than atoms in the positive position, are possible.

Although programs contain additively universally quantified clauses and goals

contain additively existentially quantified “logical variables”, we restrict our analysis

here to the propositional structure. This restriction represents no loss of generality

the first-order structure being handled operationally by unification, but considerably

simplifies the presentation of the semantics. If we were to include not only additively

quantified program clauses and goals but also their multiplicative counterparts, then

it would be necessary to handle the quantifiers explicitly, probably within an infini-

tary extension of Definition 3.9.1 (cf. [Miller 81]).

Recall that the definition of clausal decomposition (Definition 3.9.1) is

� �%���"�
 ::) �%���"�
� �%� � � � �
 ::) �%�� �
�� � �
 �
� �%� ����� �
 ::) �%�� �
 ; � �
 �
� �%� � ��� �"�
 ::) �%� � ��� �"�
� �%� � ���"�
 ::) �%� � ���,�

and that a resolution proof in BI is defined by

6.3. A Denotational Semantics for BI 121

�� � �
CutAxiom

� ��� ���
�� �

�
��� � � �

� � � � � � ���
� � �

� �� � �
��� � �

� � � � � ; � ���,�� �%�

� 1 �
�

1 � 2 �
�

2 � �
� 1 � � 2 �

�
1 � � 2

� � � �
� �
�

� � �
�� � � � � �

�� �
�

1 �� �
�

2 � �
�� �

�
1 � � 2

�� �
� �

����) 1 � 2 � ���
�� �

�
1 � � 2

� ; � �
 �
�

���
�� � � � �

6.3 A Denotational Semantics for BI

Definition 6.3.1 Let � 	���� ��� ��� � be the commutative monoid of programs in which � is

given by “ � ”, � is given by �
 and � � � � just in case there is a � � � such that � � � � ; � � � .

We consider models in the category � 	
 � � Set
 with the interpretation of propositions

Prop(�) over a signature of propositional atoms � given by a partial function

� � � : Prop ��� ����� � � �� 	
�� � Set
 �

such that � � � � ��� 	 ���
 � : �� �
� .

Definition 6.3.2 �
) � iff � � � � ��� �) �

Lemma 6.3.3 The forcing relation,
) , between interpretation programs (worlds), P,

and goal formulæ, G, satisfies the following:

�
) � always

�
)	� iff � � �	

�
),� iff ��� � � ��� �) �

�
) � 1 � � 2 iff �
) � 1 and �
) � 2

�
) � � � iff for all � � � � , if � �
) � then � �
) �

�
) � 1 � � 2 iff �
) � 1 or �
) � 2

�
) � 1 � � 2 iff there are � 1 and � 2, where the relation � � � 1 � � 2

holds, such that � 1

) � 1 and � 2

) � 2

�
) � � � � iff for all � � , if � �
) � , then � � � �
) �

6.3. A Denotational Semantics for BI 122

Proof: By induction on the structure of the goal formulæ. We show some cases:

� Any � produces a proof � � � , and therefore � � � � ��� is always non-empty.

� By observation of the rule Unit, the only � that can prove � is �
 . So, for any

� : �� � � , it must be the case that � � �
 .

� Immediate from Definition 6.3.2

�
1 � � 2 Given that � � 1 � � 2 � � ��� �) � , then there exists � : � �

�
1 � � 2. Then there are

� 1 and � 2 such that � 1 : � �
�

1 and � 2 : � �
�

2. This shows that � � 1 � � ��� �) �

and � � 2 � � ��� �) � , and therefore �
) � 1 and �
) � 2. Here we are using the � � rule

with implicit contraction, which is admissible by Lemma 2.6.2.

�
1 � � 2 Given that � � 1 � � 2 � � ��� �) � , then there exists � : �� �

�
1 � � 2

� ��� � We have that there exists a proof � : � � � ��� � . For any � 1 that forces � , we

have that � � : � 1 � � . Putting these two proofs together using ��� � we find a

proof � � � : � � � 1 �
� , which shows that � � � 1

) � .

The remaining cases are similar.

Lemma 6.3.4 (deduction-theorem) The forcing clauses for the two implications may

be expressed as follows:

1. �
) � � � iff � ; � �

) � ;

2. �
) � ��� � iff � � � �

) � .

Proof:

1.

�
) � � � iff � � � � � � ��� �) �

iff there exists � : � � � � �

iff there exists � : � ; � �
 �
iff � � � � � ; � �
 � �) �

iff � ; � �

) �

6.3. A Denotational Semantics for BI 123

2.

�
) � � � � iff � � ��� � � � ��� �) �

iff there exists � : �� � � � � �

iff there exists � : � � � �
 �
iff � � � � � � � �
 � �) �

iff � � � �

) �

Definition 6.3.5 (Herbrand interpretation) We define a Herbrand interpretation of

programs

� ��� �� : 	
�� � � Set �

by � � �� �) ������� � � � � ��� , where � is atomic.

The interpretation � ��� gives the meaning of a program � with respect to a given

goal � : � � �
	
We seek a semantics for programs which is independent of any particular choice

of goal. Accordingly, we consider the meaning of a program as being that which is

determined by all possible (atomic) goals.

Thus, a Herbrand interpretation of a program � is given in the framework of BI’s

model theory as follows:

Definition 6.3.6 (forcing) There is a forcing relation

) , between Herbrand interpreta-

tions � ��� � , programs (worlds), � , and goal formulæ, � , which satisfies the follow-

6.3. A Denotational Semantics for BI 124

ing:

� ��� �� �
�

) � always

� ��� � �
�

)	� iff � � ��

� ��� �� �
�

),� iff there is some � : � ��� � � � ��
�
� ��� �� �
�

) � 1 � � 2 iff � ����
�"� �

) � 1 and � ����
�"� �

) � 2

� ��� � �
�

) � � � iff � ���� � � � ; � �

) �
� ��� �� �
�

) � 1 � � 2 iff � ����
�"� �

) � 1 or � ���� ��"� �

) � 2

� ��� � �
�

) � 1 � � 2 iff there are � 1 and � 2, where the relation � �

� 1 � � 2 holds, such that � ���� ��"� � 1

) � 1 and

� ���� � � � 2

) � 2

� ��� �� �
�

) � � � � iff � ����
� � � � � � �
 �

) �

Let � denote the set of all Herbrand interpretations. Given two Herbrand inter-

pretations, � 1 and � 2, we can define the following operations:

 � ��� �
1
� � ��� �

2
iff for all programs P, � � �� �

1
	 � � �� �

2
;

 � � �
�
1 � � 2

::) � � �� ��
1

� � � � �
2
;

 � � �
�
1 � � 2

::) � � �� ��
1
� � � � �

2
;

 � � � ���) � , for all � .

Lemma 6.3.7 (lattice) With the definitions above, � is a complete lattice.

Proof: Each � ���� � is a map from programs (worlds) to the powerset of the set of

proofs of sequents of the form � ��� , where � is a program and � is atomic, which

is a complete lattice.

We now give a sequence of lemmas which explains the relationship between Her-

brand interpretations (� ���� ��) and forcing (

))

Lemma 6.3.8 (� respects

)) If � ���� �
1
� � ���� ��

2
, then, for all programs � and goals

� , � ���� �
1
� �

) � implies � ��� �

2
� �

) �

6.3. A Denotational Semantics for BI 125

Proof: By induction on the structure of � . In all cases we use the ordering defined

above, that is � ���� �
1
� � ���� �

2
means that for all programs � � �� �

1
	 � � � �

2
. We

show some cases:

� atomic: From Definition 6.3.6 �

) � under � � �� �
1

if and only if there is some

proof � : �� �
� in � � �� �

1
. Therefore this proof is also in � � �� �

2
, which means

that � ��� ��
2
� �

) � .

�) � � � : We have that � ���
�
1
� �

) � � � , which means that � ���� ��

1
� � ; � �

) � .

By induction hypothesis we know that � ���� �
2
� � ; � �

) � , which means that

� ��� �
2
� �

) � � � .

�) � ��� � : We have that � ���� �
1
� �

) � � � � , which means that � ���� �

1
� � � � � �
 �

) � .

By induction hypothesis we know that � ��� �
2
� � � � � �
 �

) � , which means that

� ��� ��
2
� �

) � ��� � .

�) �
1 � � 2: We have that � ����
�

1
� �

) � 1 � � 2, which means that there are � 1 and

� 2 such that � � � 1 � � 2 and such that � ���� �
1
� � 1

) � 1 and � ���� �
1
� � 2

) � 2. By

induction hypothesis we know that � ���� �
2
� � 1

) � 1 and � ���� ��
2
� � 2

) � 2, and

therefore � ���� �
2
� �

) � 1 � � 2

The remaining cases are similar.

Lemma 6.3.9 (

) at finite height) Let � ���� �
1
� � ���� ��

2
� � � � be an � -chain and sup-

pose that, for some program � and goal � ,

�
0 � �����

� ���� ��� � �

) � �

then there is a �
	 1 such that � ���� ��� � �

) � .

Proof: By induction on the structure of � . Suppose � is atomic. If we have

0 � ����� � ���� ��� � �

) � , then there is some � : � �

� � �
0 � ����� � � � ��� . Therefore there

is a � such that � � � ��� ��� , so that � ���
��� � �

) � , as required.

For the inductive step, we suppose that the lemma holds for all goal formulæ of

a given bounded complexity and proceed by cases. We give just two examples.

6.3. A Denotational Semantics for BI 126

� � �
1 � � 2: If

0 � ����� � ���� ��� � �

) � 1 � � 2, then, by the definition of

) , there are � 1

and � 2, where � 1 � � 2 � � , such that

�
0 � �����

� ���� ��� � � 1

) � 1 and

�
0 � �����

� ��� ��� � � 2

) � 2 �

But each of � 1 and �
2 is smaller that � , and so, by the induction hypothesis,

there are � and � � such that � ���� ��� � � 1

) � 1 and � ���� � � � � � 2

) � 2. By Lemma 6.3.8

we can let � be the greater of � and � � .

� � � ��� � � : If

0 � ����� � ���� ���� � �

) � � � � � , then, by the definition of

) , it is be the case

that

0 � ����� � ���� ��� � � � � � �
 �

) � � . But � � is smaller than � . Then by the induc-

tion hypothesis, there is a � such that � ���� � � � � � � � �
 �

) � � and we can conclude

that � ��� ���� � �

) � ��� � � , as required.

The remaining cases are similar.

Now, given this notion of Herbrand model, which amounts to a special case of

the general notion of model explained in [Pym 02, Pym et al. 02], we can pick out a

computationally useful semantics for programs, � . Whereas the truth of a goal � ,

with respect to a program � , in a given Herbrand interpretation, � , defined below,

of BI is determined by the existence or not of a a proof of � from � in the image of

� , the denotation of a program must account for all of the possible computations

which � can support. Consequently, we define the meaning of a program, in a given

Herbrand interpretation, � , to be a subset of the collection of all possible computa-

tions, here represented by proofs, of which it is capable.

We can now define an operator,
�

, on Herbrand interpretations which iteratively

constructs a model corresponding to the execution of
�����

programs. There are three

cases in the iteration. The first corresponds to instances of the CutAxiom rule,

� � �
CutAxiom

� ��� ���
The second corresponds to the ��� � � � rule,

� �
�

� � � � �

� � � ��� � �	�

6.3. A Denotational Semantics for BI 127

And the third corresponds to the ��� � � rule,

� � �
� �� � �

��� � �

� � � � � ; � ���"�� �	�
Definition 6.3.10 (the operator

�
) We define an operator

�
: � � � � as follows:

� � �� �� � � �) � �
 � : �� �%� and � ���� � � � �

) � (� � � � ���)

�

� �
 � : � � � , � ��� � � � and � ����
�"� � �

) �
(� � � � � � � � �)

�

� �
 � : � ��� , � � � � � , � ���� � � � �

) � and

� ���� ���� � � �

) � (� � � � � � � � � ; � ���,�)

We now give a series of lemmas which explain the relation between Herbrand

interpretations (� ����), forcing (

)) and the
�

operator:

Lemma 6.3.11 (monotonicity) Let � ���� �
1
� � ���� �

2
be Herbrand interpretations. Then

� ���� � � �
1 � � � ��� � � � 2 � .

Proof: Suppose � ���
�
1
� � ����
�

2
and let � : � ��� � � � � � � �

1 � . We must be in one

of three cases, corresponding to the three components of the definition of
�

 We are in the CutAxiom case and must therefore also have that

� ���� � � �
1 � � � � � �

) �

and so also � ��� � � �
2 � � � � � �

)	� , so that � : � � � � � � �� � � �

2 � . Then it follows

that � ��� �� � �
1 � � � ���� �� � � 2 � .

 There is some � � � � in � such that

� ���� ��
1
� � �

) � �

By Lemma 6.3.8, we must also have that

� ���� ��
2
� � �

) � �

so that � : � ��� � � � �� �� � �
2 � . Therefore � ���� �� � �

1 � � � ���� �� � � 2 � .

6.3. A Denotational Semantics for BI 128

 There is some � ��� in � such that

� ���� �
1
� � �

) � and � ���� �

1
� � � �

)�� �

By Lemma 6.3.8, we must also have that

� ���� �
2
� � �

) � and � ���� �

2
� � � �

)�� �

so that � : � ��� � � � �� � � �
2 � . Therefore � ���� � � �

1 � � � ���� � � � 2 � .

It follows that � ���� � � �
1 � � � ���� � � � 2 � .

Lemma 6.3.12 (continuity) Let � ���� �
0
� � ��� �

1
� � ���� �

2
� � � � be an � -chain of

Herbrand interpretations. Then

� ���� � ���
0 � ����� ��� �) � ���� � 0 � ����� � � ��� �

Proof: The required equality is established by proving inclusion each way round.

Suppose, for an arbitrary � , that � ���� � � � � ��� �
0 � ����� ��� . By Lemma 6.3.11, we

get

� ���� � � ��� � � � ���� � ��� 0 � ����� ��� �
Since � is arbitrary, we get

� ���� �
0 � ����� � � ��� � � � ���� �� �	� 0 � ����� ��� � �

Conversely, suppose � : � �'� � � � � �� �	�
0 � ����� ��� � . We must be in one of three

cases, corresponding to the three components of the definition of
�

.

 We are in the CutAxiom case and must therefore also have that

� ���� � ���
0 � ����� ��� � � � � � �

)�� �

In this case, � � � � �� � � � � � , for any � 	 1. Therefore, � � � � � �
0 � ����� � � ��� � .

 There is some � � � � in � such that

� ���� �
0 � ����� ��� � � �

) � �

6.3. A Denotational Semantics for BI 129

By Lemma 6.3.9, there is a � such that

� ���� ���� � � �

) � �

Therefore, � � � � �� � � ��� � 	 � � �� � 0 � ����� � � ��� � .

 There is some � ��� in � such that

� ���� �
0 � ����� ��� � � �

) � and � ���� �

0 � ����� ���.� � � �

)	� �

By Lemma 6.3.9, there are � � and � � � such that

� ���� � � � � � �

) � and � ���� � � � � � � � �

)	� �

Taking � to be the greater of � � and � � � , we get

� ��� ��� � � �

) � and � ���� ��� � � � �

)�� �

So � � � � �� � � � � � 	 � � �� � 0 � ����� � � ��� � .

It follows that

� ���� � � �
0 � ����� ��� � � � ���� � 0 � ����� � � ��� � �

as required.

So we have that
�

is a monotone, continuous operator on a complete lattice, so

it follows, by the the Knaster-Tarski fixed point theorem [Tarski 56, Lloyd 87], that
�

has a least fixed point given by

� ���� �� � � ��� �)
�

0 � �����
� ���� �� � � ��� �

Having constructed a least fixed point of the operator, we must show that we

have indeed provided an interpretation of programs within a model of BI.

Lemma 6.3.13 (� ���� � � � � � � interprets within a model) The Herbrand interpretation

� ���� �� � � � � � provides an interpretation of programs � within a model of the hereditary

Harrop fragment of BI.

6.3. A Denotational Semantics for BI 130

Proof: A straightforward calculation. First, we recall that the collection 	 of pro-

grams is a preordered monoid, with the monoidal combination of � and � � given

by � � � � and the ordering being defined by � � � � iff, for some � � � , it is the case that

� � � � ; � � � , which may be considered a small monoidal category. The required model

is based on the category of presheaves, � 	
�� � Set
 .
Next, we must define the interpretation map, � ���� , with respect to this category.

We define

� ���� : Prop ��� � ��� � ��� 	
 � � Set

pointwise by

� � # � ����)

��� �� ���
 � : �� � # if # is atomic�
otherwise

It follows that, with the forcing relation

) , the category of presheaves, � 	
�� � Set
 is

a model of propositional BI (without �). Note that we haven’t exploited Day’s tensor

product directly, since we have defined � ���� only on atoms, but we have exploited

it in purely propositional form via

) .

The integration of � should, given the analysis in [Pym 02, Pym et al. 02], be rel-

atively straightforward.

Lemma 6.3.14 (soundness) If �� �
� , then � ��� � � � � � � � �

) � .

Proof: By induction on the structure of proofs.

 Suppose the last rule applied is the � rule,

�� � �

Then we have immediately that

� ���� �� � � � � � � �

) ���

since � ���� �� � � ��� � � �

) � always.

6.3. A Denotational Semantics for BI 131

 Suppose the last rule applied is the � rule,

�
 � �

We have immediately that

� ��� �� � � ��� � �
�

)	� �

since
�
 � �
 .

 Suppose the last rule applied is CutAxiom,

� � � � � �
� � � � � � ���

� � �
By the induction hypothesis, we have that � ���� � � � ��� � �

�

)�� and, by assump-

tion, we have � � � � ��� �� � , so that we have � ���� � � � � � � � �

),� , as required.

 Suppose the last rule applied is � � -�� ,
� � �

� � � � � �
� � -��

� �%�
where � � � � � � � � � ; � ���,� .

By the induction hypothesis, we have that

� ���� �� � � ��� � � � �

) �

and

� ���� � � � � � � � � � �

)��

Therefore, by the definition of
�

, there is a proof of � � � in � � �� �� � � � � ��� � � .

But � � �� � � � � � � is a fixed point, so there is a proof of � �'� in � � � � � � � � � .

Therefore

� ��� � � � � � � � �

)"���

as required.

 Suppose the last rule applied is ��� � -�� ,
� � �

�
��� � -��

�� �	�
where � � � � � � � � � . By the induction hypothesis, we have that

� ���� �� � � ��� � � � �

) � �

6.3. A Denotational Semantics for BI 132

Therefore, by the definition of
�

, there is a proof of � � � in � � �� � � � � � ��� � � .

However, � � � � � � ��� � is a fixed point, so there is a proof of �� ��� in � � � �� � � � � � .

Therefore

� ��� �� � � ��� � � �

)"���

as required.

 Suppose the last rule applied is � � ,

�� �
�

1 � �
�

2

� �
�

1 � � 2

Then � ���� � � � � � � � �

) � 1 � � 2 follows immediately from the induction hypoth-

esis and the definition of

) .

 Suppose the last rule applied is ��� ,

� ; � �
� �
�� � � �

By the induction hypothesis, we have that

� ���� � � � ��� � � � � ; � �
 �

) �

and so, by the definition of

) , we immediately have that

� ���� � � � � � � � �

) � � � �

as required.

 Suppose the last rule applied is � � ,

�� �
� �

���) 1 � 2 �
�� �

�
1 � � 2

Then � ���� � � � ��� � � �

) � 1 � � 2 follows immediately from the induction hypoth-

esis and the definition of

) .

 Suppose the last rule applied is � � ,

� 1 �
�

1 � 2 �
�

2

� 1 � � 2 �
�

1 � � 2

By the induction hypothesis, we have that

� ���� �� � � � � � � � 1

) � 1 and � ��� �� � � � � � � � 2

) � 2 �

6.3. A Denotational Semantics for BI 133

Since � 1 � � 2 � � 1 � � 2, we have, by the definition of

) , that

� ���� � � � � � � � � 1 � � 2

) � 1 � � 2 �

as required.

 Suppose the last rule applied is ��� � ,

� � � �
� �
� � ��� �

By the induction hypothesis, we have that

� ���� �� � � ��� � � � � � � �
 �

) �

and so, by the definition of

) , we immediately have that

� ���� � � � � � � � �

) � � � � �

as required.

Lemma 6.3.15 (completeness) If � ���� � � � � � � � �

) � , then � �
� .

Proof: By induction on the structure of the model and the structure of the goal,

adapting an argument of Miller [Miller 81].

By Lemma 6.3.9, it is sufficient to suppose that � and � are such that, for some

�
	 0,

� ���� � � � � � � � �

) � �

and suppose this is the least such � .

If � has � 	 0 occurrences of connectives and quantifiers, then define the ordinal

measure

� � � � � �) � � ��� � 1 � 	 ���

where � is ordinal multiplication. We show, by induction on � , that if there is an �

such that � � � � � �) � , then �� �
� .

In the base case, we have � � � � � �) 0 ��) � � 0 	 0 � , so � must be atomic and, by the

definition of
�

, it must be that either

6.3. A Denotational Semantics for BI 134

 � ��� � 1 � ��� � � �

) � , � ���� � 1 � � � � � � � � �

)�� and there is some � � � � �� � 1 � ��� � such

that � : �� �
� ; or

 there is some � � ��� � in � such that � ���� � 1 � � � � � � �

) � and there is some � �

� � � �� 1 � ��� � such that � : �� �
� ; or

 there is some � � � � � in � such that

� ���� � 1 � � � � � � �

) � � � ��� � 1 � � � � � � � �

)	�

and there is some � � � � �� � 1 � ��� � such that � : �� �
� .

In each of these three cases, we immediately have that �� �
� .

In the inductive case, we have � � � � � �) � � � 	 � � 0. So there are two subcases:

either � � � � � � is a limit ordinal (i.e., ��) 0) or a successor (i.e., � � 0).

Suppose ��) 0. Then � is atomic and � � 0. So we have

� ���� ����� 1 � � � � � �

) � �

By the definition of the
�

, either

 � ��� � ��� 1 � � � � � �

) � , � ���� � ��� 1 � � � � � � � � �

)�� and there is some � � � � �� � ��� 1 � � � �
such that � : � �

� ; or

 there is some � � ��� � in � such that � ��� ������ 1 � � � � � � �

) � and there is some

� � � � �� ����� 1 � � � � such that � : �� �
� ; or

 there is some � � � � � in � such that

� ��� ������ 1 � � � � � � �

) � � � ��� ������ 1 � � � � � � � �

)	�

and there is some � � � � �� � ��� 1 � � � � such that � : � �
� .

Again, in each of these three cases, we immediately have that � �
� .

Suppose ��� 0. Then � is not atomic and we proceed by cases on the structure of

� , i.e., one case for each possible principal connective of � . The cases closely follow

the corresponding clauses of Definition 6.3.6 and we omit the details of all but one

example.

6.4. Discussion 135

 If � � �
1 � � 2, then we have, by assumption, that

� ���� ������ 1 � ��� � � �

) � 1 � � 2 �

Therefore, by Definition 6.3.6, we have that

� ���� ����� 1 � � � � � � 1

) � 1 and � ���� ����� 1 � � � � � � 2

) � 2

Now, each of � 1 and �
2 has fewer connectives than �

1 � � 2 and so, by the in-

duction hypothesis, we have that

� 1 �
�

1 and � 2 �
�

2 �

as required.

The remaining cases are similar.

6.4 Discussion

We briefly consider a comparison with the model-theoretic semantics of the linear

logic programming language Lolli, given in [Hodas Miller 94].

The basic idea in [Hodas Miller 94] is that a semantics for Lolli, i.e., the resolution

or uniform proof implementation of the hereditary Harrop fragment of intuitionistic

linear logic, is given by a family of Kripke-structures, ��� , index by the elements � of

a commutative monoid ����� 	�� 0 � of “resources”.

A forcing semantics based on a judgement of the form

��� �
)�# �

where is in some poset of worlds � � � � � read as, “ # holds at world in the � th

Kripke structure” Thus the forcing is parametrised on both worlds and on the choice

of index, thereby permitting the semantics of 1 (and also !) to be given via the idea

of a phase shift between structures, i.e.,

��� �
)"� 1 12� 2 iff for all � � � � and all � �
�

,

if � � and � � � � �
),� 1, then � � � � � � �
),� 2

6.4. Discussion 136

A completeness theorem is provided not with respect to a model constructed via

a fixed-point operator but rather via a term model in which

��� � ,�) � �
 � is atomic and ; �&��� �

where the proof-theoretic judgement ; � �� is determined by the calculus of uni-

form proofs for ILL in which the stoup, “;”, separates the intuitionistic worlds, ,

from the linear resources, � . Here
�

is the set of all sets of hereditary Harrop for-

mulæ,
�

is subset, � is the set of all multisets of hereditary Harrop formulæ, 	 is

multiset union and 0 is the empty multiset.

Note that [Hodas Miller 94] provides no fixed point construction.

137

Chapter 7

Conclusion and further work

7.1 Introduction

In this chapter we describe possible extensions to the idea of bunched contexts and

which kind of logic may arise from them. We analyse connectives with weakening

and no contraction, and conversely operators with contraction but not weakening.

7.2 Other Bunch-forming Operators

BI has two bunch-forming operators: an additive one,“;” , which allows Weakening

and Contraction, and a multiplicative,“ � ” , which does not. We will study in this sec-

tion the addition of two extra operators, “ � � ”, which allows Weakening but not Con-

traction, and “;;” which allows Contraction but not Weakening. We will assign the

names “affine” and “relevant” respectively to these new bunch operators.

7.2.1 Units

One of the first questions with these new operators is which kind of units they have.

The following lemma shows that all operations which allow Weakening have the same

unit.

Lemma 7.2.1 The unit corresponding to “ � � ” is the same than the unit for “;”, that is

� . Moreover, any operation that allows Weakening has to have � as its unit.

7.2. Other Bunch-forming Operators 138

Proof: Suppose that ��� is the unit for “ � � ”, or more generally, the unit for any opera-

tion which allows Weakening. Then we show that this unit is equivalent to �
Axiom

��� � �
Weakening � � � �

� � � � �� ���
Unit � � � ��� ���

Axiom� �
Weakening � ; �� ; ���, �
Unit � ; �

��� �

Next we show the admissibility of a rewriting rule from “;” to “ � � ”:

Lemma 7.2.2 The existence of Weakening for “ � � ” and Contraction for “;” makes the

following rule admissible
Γ � ∆;Θ � �# � ; � � � �
Γ � ∆ � �Θ � �#

Proof:
Γ � ∆;Θ � �#

Weakening � � � �
Γ � � ∆ � �Θ � ; � ∆ � �Θ � � �#

Contraction � ; �
Γ � ∆ � �Θ � �#

Conversely,

Lemma 7.2.3 The addition of the rule � ; � � � � implies Weakening for “ � � ”.

Proof:
Γ � ∆ ���#

Weakening
Γ � ∆;Θ � �# � ; � � � �
Γ � ∆ � �Θ � �#

and hence, for Lemma 7.2.1 the equivalence of their units.

Therefore the logic obtained using only “;” and “ � � ” is the affine version of BI

described in [O’Hearn 99].

In the same way, the existence of Weakening for “;” and Contraction for “;;” makes

the following rule admissible

Γ � ∆;;Θ � %# � ;; � ; �
Γ � ∆;Θ � �#

And again, adding this rule to the system implies Contraction for “;;”.

7.2. Other Bunch-forming Operators 139

7.2.2 Still more operators?

So we have that if Γ � ∆;;Θ � # then Γ � ∆;Θ � # and then Γ � ∆ � �Θ � # , producing an

ordering on the operators. But where does “ � ” stand with respect to these transfor-

mations? It seems that it has no connection with any of them. For example, if we

add the rule
Γ � ∆ � Θ � �# � � � ;; �
Γ � ∆;;Θ � %#

then we would induce Contraction for “ � ” as seen in Lemma 7.2.3. The system then

would have two different (inequivalent) connectives with Contraction.

Following this idea, one could think of an infinite hierarchy of bunch-forming

operators ;; � and a meta-rule

Γ � ∆;; � � 1Θ � %# � ;; � � 1 � ;; � �
Γ � ∆;; � Θ � �#

which would induce Contraction in all of them. Then “,” could be thought of as ;;
�

.

An alternative meta-rule could be

Γ � ∆;; � Θ � �# � ;; � � ; �
Γ � ∆;Θ � �#

then we would have a flat or horizontal hierarchy of inequivalent bunch-forming

operators with Contraction. However “,” again goes off the picture.

These two ways of creating new bunch-forming operators can be combined into

one, with an operator ;;
 � � and meta-rules

Γ � ∆;; � 1 � � � Θ � %# � ;; � 1 � � � � ; �
Γ � ∆;Θ � �#

Γ � ∆;; �
 � 1 � � � Θ � �# � ;; � � � 1 � ��� � ;; � � � ��� �Γ � ∆;; �
 � � � Θ � %#

In the sequel we will use only the first (vertical) hierarchy, but the extension of

the meta-rules to the last case is easy.

This analysis can be applied to “ � � ” which would produce the following meta-rules

Γ � ∆;Θ � %# � ; � � � � 1 � � � �Γ � ∆ � � � 1 � � � Θ � %#
Γ � ∆ � � �
 � � � Θ � %# � � � � � � ��� � � � � � � 1 � ��� �Γ � ∆ � � �
 � 1 � � � Θ � �#

with the following simplified meta-rule which corresponds to the vertical hierarchy

only, and is the one used from now on:

Γ � ∆ � � � Θ � �# � � � � � � � � � 1 �Γ � ∆ � � � � 1Θ � %#

7.2. Other Bunch-forming Operators 140

7.2.3 New Units

As shown in Lemma 7.2.1, all affine operators share the same unit. The new relevant

bunch-forming operators, however, bring a whole new hierarchy of units with them.

The unit rules associated to them can be succinctly expressed in the following Unit

meta-rules:

Γ �#
Unit � � � 	 �

Γ;;� � ��
 �#
Γ;;� � �	
 �#

Unit � � 	 	 �
Γ �#

7.2.4 New Axiom

As seen in Chapter 3, BI admits the following axiom rule

Γ �
CutAxiom

Γ � � �
The problem with this rule is that it relies on the fact that � can always be put

at the top level in a bunch. This is the case when only “ � ” and “;” are used to form

bunches. Now, however, there is no guarantee that this will be the case. But there

are still some side conditions that allow manipulation with the units.

We could try a meta-rule for the axiom with the following shape:

Γ1 � � � 1 � � � Γ
 � 1 � � � ��� 1 Γ
 � � � �
Axiom

Γ1;; � 1 � � � � � Γ
 � 1;; � ��� 1 � Γ
 ;; � � � � � � �

justified by the following proof figure

Γ
� � � � �

Axiom
� �

Unit� � � � ;; � � � �
Cut

Γ
 ;; � � � �

...
Induction

Γ1;; � 1 � � � � � Γ
 � 1;; � ��� 1 � � � �
Cut

Γ1;; � 1 � � � � � Γ
 � 1;; � ��� 1 � Γ
 ;; � � � � � � �

It is also possible to provide another axiom rule making use of one of the rules

presented in � 7.2.2, rule � ;; ��� 1 � ;; � � . First, using this rule, we push the rank of all

bunch operators above � upwards until � is at top level, and then we use an axiom

rule similar to CutAxiom:

Γ1;; � � � � ;; � Γ
 � � �
CutAxiom

Γ1;; � 1 � � � � � Γ
 ;; � � � � � �

where �) max � � 1 � � � �.���
,� .

7.2. Other Bunch-forming Operators 141

It would be nice if the first of these rules could be derived from this second, sim-

pler, one. But this is not the case. For example the sequent � � 4;;4 � ��� ;;2 � � � 2 � � 3 � ;;3 	 � 	
can be proved using the former:

� � 4 � � 4 � ;;2 � � � 2 � � 3 � � 3
Axiom� � 4;;4 � ��� ;;2 � � � 2 � � 3 � ;;3 	 � 	

but not the latter:

Not provable� � 4;;4 ��� ;;2 � � � 2 � � 3 �� � � 4

� � 4;;4 ��� ;;2 � � � 2 � � 3 � ;;4 	 	 � ;;3 � ;;4 �� � 4;;4 � ��� ;;2 � � � 2 � � 3 � ;;3 	 � 	

7.2.5 New Connectives

Together with the new bunch forming operators there are new connectives related

to them. They are new variants of addition and implication. With the purpose of not

straining our imagination, the notation for them will be � � � , ��� � � , � � � and � � � .

Conjunctions

The left rules for the new conjunctions are straightforward

Γ ��# � � � $ � ��
� � � �

Γ ��# � � � $ � ��
Γ ��# ;; � $ � �� � � � �
Γ ��# � � � $ � ��

The right rules also can be stated in the familiar pattern

Γ %# ∆ �$
� � � �

Γ � � � ∆ �# � � � $
Γ %# ∆ �$ � � � �
Γ;; � ∆ %# � � � $

But perhaps their behaviour is revealed better if we take under account two things.

First, contraction is allowed for ;; � and weakening for � � � . Second, the conversion

rules allow us to change the “rank” of the bunches. So to allow for maximum gener-

ality the meta-rules could be stated like

Γ;;
 Θ �# ∆;;
 Θ �$ � �
 ��� ����� � � 	 �
Γ;; � ∆;; ��� Θ �# � �
&$

Γ �# ∆ �$
� �
 ��� � 	 	 �

Γ � � � ∆ � � � � Θ �# � ��
 $
where Θ represents in the case of � � � � the fraction of the context which is needed

by both branches of the proof, and therefore needs to be duplicated via contraction,

and in the case of � � � � the fraction of the context which is not used an weakened

away. Note that in the first case the rank of the bunches goes up. This is a price

to pay, since for example � ;;
 � � � � � � if and only if 	 � � . In � �
 � there are no

restrictions on � � since whatever its rank it would always be possible to weaken Θ.

7.2. Other Bunch-forming Operators 142

Implications

Now it’s the turn for the right rules to be straightforward

Γ;; � #��#
� � � �

Γ �#� � � $
Γ � � � #��#

� � � � �
Γ �# ��� � � $

The left rules can be stated following the pattern of the normal version of BI

Γ �# ∆ � ∆ � ;; � $ � ��
� � �

�
∆ � Γ;; � ∆ � ;; � #� � � $ � ��

Γ �# ∆ � ∆ � � � � $ � ��
� � � � �

∆ � Γ � � � ∆ � � � � # ��� � � $ � ��
Again these rules can be transformed into a more revealing format

Γ;;
 Θ �# ∆ � ∆ � ;;
 Θ;;
 $ � ��
� �
 � � ����� � ��� � � � 	 �

∆ � Γ;; � ∆ � ;; � � Θ;; � � � #� �
&$ � ��
Γ �# ∆ � ∆ � � �
 $ � ��

� � �
 � � ����� � 	 	 �
∆ � Γ � � � ∆ � � � � � Θ � � � � � # ��� ��
 $ � ��

Note again the raising of the ranks in the premises of � �
 �
and the lack of re-

strictions on � � � in ��� �
 �
.

7.2.6 Computational content

Here we use a similar notation than the one used in Chapter 4: � Γ � � � � � ∆ � ���
 # ex-

presses that the context Γ proves # leaving a residue ∆. Left rules for the conjunc-

tions and right rules for the implications are straightforward and omitted for the sake

of brevity.

However, before looking at the rules we need to see how the new rules interact

with the old ones. In particular there are weird interactions between � and � � and be-

tween ��� and � � . This is because these two operators are related to bunch operators

which don’t allow weakening.

Interaction between Multiplicatives and Relevant operators

To make the discussion more concrete let’s look at how a proof of � � � � � � � should

fail, paying special attention to the lazy model of resource consumption:

� � � � � � � � � � ���� � � � ;; ��� � � � � � � �
Contraction

� � �� � � � �
This proof should fail immediately in the left branch, given that there is not proof

of � � � � because � is left over. However, when all the context is given to the left

7.2. Other Bunch-forming Operators 143

branch of a computation, it is intended that any part of the program left over should

be given to the rest of the computation to be consumed later. There is not easy way

to know in advance if any particular left-over is legal or not.

Also the following derivation would go through under the operational semantics

of ��� , despite the sequent being unprovable.

�" �
��� �

� ;; � ��� �� �
Therefore it is proposed that the multiplicative and relevant bunch-forming oper-

ations, together with their related operators, not to be used together in the same

program. One way of enforcing this could be to use the same syntactic operators for

both, and let the programmer specify in which way they are intended to be used.

Right rules for Conjunctions

For a clearer understanding of the right rules, we will use the second version. The

rule for � � � is the same than � � , the only difference being that the flag used to signal

that an additive unit has been found as a goal is set and remains so thereafter.

� Γ � � � � � Γ � � ���
 # � Γ � � � � � � ∆ � ���
 $
� � �� Γ � � � � � ∆ � ���
 # � � $

� Γ � � � � � ∆1 � ���
 # � Γ � � � � � ∆2 � � �
 $ � � �� Γ � � � � � ∆1 � ∆2 � ���
 # � � $
Given that � � allows contraction, all the context is given to both subformulas and

the residue is that part of the context that was used by neither of them. Note that

this operational semantics would be unsound if Multiplicative connectives are being

used at the same time for the reasons explained above.

Left rules for Implications

As in the case of BI, the fact that we are working with Hereditary Harrop Formulae,

normal, and goal directed proofs helps to simplify the left rules for implications. The

crucial factor is that for an atom to be probable there has to be either an atom in the

program or an implication with the atom as its consequent. That is the rationale

behind the following simplifications

Γ �# ∆ � ∆ � � � �,� ��
��� � �

∆ � Γ � � ∆ � � � # � � � �,� ��
Γ �# ∆ � ∆ � ;; �,����

� � �
∆ � Γ;;∆ � ;; #� � �"����

Now for a proof to be possible at all ∆ � , which is the subbunch connected with the

atom in the right branch, has to disappear, either by proving a unit or by weakening

7.3. Applications 144

if this is feasible. In either case the same derivation can be done in the left branch,

allowing us to assimilate ∆ � into Γ and so simplify the rules even further

Γ %# ∆ ���"� ��
��� � �

∆ � Γ � � # ��� � �"� ��
Γ �# ∆ ���"� ��

� � �
∆ � Γ;; #� � �,� ��

In the same way than in normal BI, the relevant implication rule can be simplified

one step more, ending up with a unary rule reflecting the fact that the proofs are

simple. Extra care has to be taken with the clause #� � � itself, which should be con-

tracted just in case, but once it has been used, it could be discarded if necessary.

Γ ��#� � �,���#
� � �

Γ ��#� � �"����
Finally the operational semantics for the implications are

� Γ � � � � � � � ���
 # � ∆ ���"� � � � � � ∆ � � ���
 �
� � � �� ∆ � Γ � � # ��� � �"� � � � � � ∆ � � � �
 �

� Γ ��#� � �"� � � � � � ∆ � � �
 #
� � �

� Γ ��#� � �,� � � � � � ∆ � � �
 �

7.3 Applications

We conjecture that this hierarchy of operators can provide a purely logical founda-

tion for computer security. For example an operating system can provide to each

user a number which will control what level of access the user can have. Suppose

that a particular secret program is allowed a level 3 access. This could be written

like this:

open � � 3 � � 3 ;;3 secret � � �

Any user with access up to 3 will be able to “unlock” the relevant piece of code.

For example a user with access level 2 could find the following proof:

open ;;3 open � � 3 � � 3 � � 3
Axiom

open ;;3 open � � 3 � � 3 ;;3 secret � � � secret � � � � ;;2 � ;;3 �
open ;;2 � open � � 3 � � 3 ;;3 secret � � � � secret � ���

� � 2 �
open � � 3 � � 3 ;;3 secret � � � open � � 2 secret � � �

But if the user had an access level greater than 3 this could not be done:

Not provable
open ;;4 open � � 3 � � 3 � � 4

Axiom
open ;;4 open � � 3 � � 3 ;;4 secret � � � secret � � � � ;;3 � ;;4 �
open ;;4 � open � � 3 � � 3 ;;3 secret � � � � secret � ���

� � 4 �
open � � 3 � � 3 ;;3 secret � � � open � � 4 secret � � �

7.3. Applications 145

With this arrangement anyone with access level 1 can play the role of super-user.

A different kind of restriction can be achieved with the connective � � . The pro-

gram ��� � � � � � � 7 �%� � � ;;3 � ��� � ;;3 � � � � will allow users to prove the clause �%��� � � � � �%� � �
only if 3

� � �
7. For example with �) 4 we have:

Axiom� ��� � � ��� � Axiom
�	��� �
�%��� �

� � 7
�

� ��� � � � 7 �	��� � ;;7
� ��� ����%��� � � ;;4 � ;;7 � 	 Res

��� � � ��� � � 7 �%� ��� ;;4 � ��� � ��	��� �

���

��� � � � � � � 7 �%� ��� ;;4 � � � �
�%� � � � � 4 �
��� � � ��� � � 7 �	� � � ;;4 � ��� � ;;4

� � � ����%��� � � � 4 �	� � � � ;;3 � ;;4 ���� � � ��� � � 7 �	� � � ;;3 � ��� � ;;3
� � � ����%��� � � � 4 �	� � �

If ��� 3 the proof will fail because there is no rule � ;;3 � ;; � � , and if � � 7 the rule

� � 7
�

would not be applicable because the bunch will have a rank that is too high.

It is possible to produce the same effect in Prolog by attaching each clause with

an integer and coding in explicitly the restrictions we want to enforce. The version

described above is more elegant and simpler.

146

Chapter 8

Implementation for
�����

8.1 Introduction

In this chapter we describe a suitable datatype for bunches and describe in de-

tail the two main modules of the OCaml [Cousineau Mauny 98] implementation i.e.,

����� � �
� 	 �

and
 � � �� ���� � ��

� 	%�

This code is available from
� ��� � ����� #�#�# � ����" � � 	 � � � � � � � � �	� � � � ��� � � � � �

8.2 A Data Structure for Bunches

Consider the following instance of a canonical additive bunch
;

�
� ���
� �

� ,

�
� ���
� �

� 	

�

It is composed by two additive clauses, � and � , and a multiplicative bunch.

When defining a datatype for this structure, we need these three components to be-

long to the same type, so we can put them together in a list. Also it seems reasonable

to consider the additive unit to be an additive bunch.

This construction suggests the following data structure:

� � �� ����� � � � �
� ��� ��� �
����� �

�
� � ����� ��� �
��� � 	 �

�
� �

�
� � �

� �
� � � � �!��� � � "

� � � � � 	 � �� �" �

8.3. Code for ����� �
�
� 	%�

147

�
� � 	 � � �

� �
� � � � �!��� � � "

� � � � � �
� �� �" �

The use of this data structure presents the following slightly paradoxical char-

acteristic: clauses that are in an additive relation with each other should be called

additive clauses. In addition, if a multiplicative bunch is in an additive relation with

some other bunches, it should be of the same type than the clauses at that level. So,

for example, if there is a bunch a ; (b , c), the subtree (b,c) should be of the same

type than a, that is an additive bunch. So we get that an additive bunch could be the

additive unit, an additive clause, or a multiplicative node. The final twist is that this

bunch is additive, and it is an additive node of a list of additive bunches. So for the

constructors of the general type bunch, the constructor MulBunch takes an additive

bunch, and AddBunch a multiplicative one.

With this definition of the datatype the mutually recursive nature of additive and

multiplicative bunches is enforced at the type level. However it also makes the code

more complicated. So we have settled for a simpler datatype as explained in the next

section.

8.3 Code for ���������
	���

In this section we describe the ����� �
� datatype and its related operations. Also we

show the implementation of some important operations described in the main body

of the thesis.

8.3.1 The ����� � � datatype

We are concerned mainly with bunches of clauses, but, as mentioned in 2.5 BI allows

bunched contexts of variables. For this reason it is better to work with a generic

dependent type � � � 	 � ���"� , which represents bunches of elements of type � .

As a first step towards a simplified datatype, we will use only one unit: the mul-

tiplicative unit (�). The reason is that in the operational semantics

The ����� � � datatype is defined as

� � ���� � ����� �
� �
��	 � � �

� � ����� �

8.3. Code for ����� �
�
� 	%�

148

� � � � ��� � ����� � � �� �" �

� � � � ��� � ����� � � �� �" �

8.3.2 Joining bunches

�� � 	 � �� � �
�
��� �

�� � � �
� �

	 � � �
� ��� 	
�
� # � �

��� ��	 	 � � �
� � �$	�� �

� ��� ��	 	
�
� � �$	�� � � �

� �
�

	�� ��	 � � � � � � 	
�
�

� � � � � � � �
 �

 � �
� � � 	 � � � � �� � ���

���"�� � ��� � ��	 � � � � �� � �
�

���"� � � � � �
�
���
�

�� � � � �� � �
�
��� �

�� � � �
� �

	 � � �
� ��� 	
�
� # � �

� � ��	 	 � � �
� � �$	�� �

� � � ��	 	
�
� � �$	�� � � �

� �
�

	 � ��	 � � � � � � 	
�
�

� � � � � � � �
 �

 � �
� � � 	 � � � � �� � ���

���"�� � ��� � ��	 � � � � �� � �
�

���"� � � � � �
�
���
�

8.3.3 The “minimum number of weakenings” operation

In Chapter 4 we defined an operation called minimum number of weakenings which

will transform a bunch with the shape Γ � ∆ � into a bunch with the shape Γ � � ∆.

1. MNW∆ � ∆ ��) ∆

8.3. Code for ����� �
�
� 	%�

149

2. MNW∆ �
;
Γ1 �������.�

;
Γ � ��)

;
Γ1 �������.� MNW∆ �

;
Γ � � �������.� ;

Γ �

3. MNW∆ �
�

Γ1; ����� ;
�

Γ � ��) MNW∆ �
�

Γ � �

Although this definition is made with respect to a general subbunch ∆, the im-

plementation was done with respect to an individual clause. The reason is that in

the cases where this operation is needed, doing it at the level of a clause is enough.

In the case of the rules CutAxiom and ��� � this is obvious, but even in the case of � �

the result of MNWΓ; ���
�

Θ � Γ; # � � � is Θ � which is equal to MNW ���
�

Θ � Γ; # � � � .
The implementation of the operation is as follows:

�� � ���� 	 � #
� � � ��� � � �� �

� � � � � � � � � � � � � 	 	 � � � �� � 	 � #
� � ���"� �

� � � � � � � � � � � � � 	 	 � � � �� � 	 � �� �
� 	 � #

� � � ��� � � � �

���"� 	 � �� � � � 	 � #
� ��� � � � ���

� � � � � � � � � � � �$	 � # � �

� � � � � � � � � � � � � 	 	 � � � �� � 	 � #
� �

���"� 	 � #
� ��� � � � �

� ��� � � ���

8.3.4 The subtract operation

Recall the definition of subtraction given in Definition 4.2.6:

Γ � �	
) Γ (8.1)

Γ �
;
∆) Γ �

�
(8.2)

Γ � �
;
∆1 �������.�

;
∆ � �) � Γ �

;
∆1 � � � ∆ �

;
∆1 � (8.3)

�
where Γ � �

;
∆) MNW∆ � Γ �

The implementation is done as follows:

�� � �����" ��� � �
� � � " ��� ����� �
� �

	 � � � � " ��� # � �

��	 � � � � � ����� �
�

� � � � � � � ��
	 �
����� �
�

� � � � � � � � � � � �

8.3. Code for ����� �
�
� 	%�

150

" ��� � �
� � � � ����� �
�

� � � � � � � � � � � �
" ��� � �

� � � � � " ��� � �
� � � ��� � � � � ����� �
�

�

� � � � � � � � � � � ��" ��� � �
� � � � ����� � �

�
�

� � � � �" � ��� �
� ��������� � � �� � � �� �

8.3.5 Other important bunch operations

Subbunch

Recall that the definition of subbunch (Definition 4.2.4) says that ∆ 	 Γ

1. when ∆) �	

2. when ∆)
;
∆ or ∆ is a proposition and Γ is of the form Γ ��� ∆ �

3. when ∆)
;
∆1 ������� �

;
∆ � and

 ∆1 	 Γ, and

 if we let � Γ � � ∆1 �) MNW∆1 � Γ � , then �
;
∆2 �������.�

;
∆ � � 	 Γ �

�� � " ��������� � �
�
����� �
� �

�� � � � � � � � �
� 	
	 � ����� �
�

� � �� � � � �"� ��� �
�
��� ��� � ���" � �

�
� � � � ���� � � � � �

� ��� � � � � � � ���� � ��� �

� � ��� �
�
��� ��� � � � � ��� � � ��"

 � �
�

� �

Intersection between two bunches

This operation is needed in the application of the rule � �
� �

described in 4.5.

�� � ���� � � �� "��� � �� �
� � � ��� � � �� �

��	 � � � � � ��	 � � �
� � � � � � " ����� � �

� � � 	 	 � � � �� � ����� �
�!���"� � 	 � � �
� � � � � � � � � � � � � � �� " �� � �� � �

�

� � � � � � � � � � � �$	 � �� � � � � �� " �� � �� � �
��� � � � �� "��� � �� �

��� � � � � ���

8.3. Code for ����� �
�
� 	%�

151

� � � � � � � � � � � � � � �� " �� � �� � �
�

� � � � � � � � � � � � � � �� �
� � � �� " �� � �� � �

��� � � � �� "��� � �� �
� � � � � � ���

�
�

� � � � �" � ��� �
� ��������� � � �� � � �� �

Check

This operation checks whether # was completely consumed in � � � :

� Γ �$
��� �

Γ �# ��� $
�� � �
���� � " � ����� � � �
�� � � � � � 	
	 � ����� �
� � �� � � � �"� ��� ��� �����"�

� �

�
� � � � ���� � � � � �

� ��� � � � � � � ���� " �
��� �

� � ��� ��� �
� � � ��� � � ��"�

 � �
� � �

Get an additive bunch

After a � �
rule the left branch proceeds with the additive subbunch at the same

level than the additive implication. This code retrieves this additive bunch given a

clause.

�� � ���� �� � � ����� � � � � � ��� � � �� �
��	 � � � � � � � �" � � � �� � ����
	 � � � � �� � � ����� � ��� �

� � � � � � " ����� � �
� � �!� ��� � � �� � ����� �
�

���" � � �"� � � � �� � ����
� � �

� � � � � � � � � � � �
�� � � ����� � � � �

� � � � � � � � � � � �
 � 	
	 � � � �� � �� � � ����� �
� � �

���" �� � � ����� �
� � ��� � � � �

� � � ���� �" � � � " ����� �
�
� �

�� � ���� � � � ��� � � �� �
� � � � � � � �

�
�

� � � � ��"�

8.4. Code for
 � � �� ���� � ��

� 	%�
152

�
� � � � � ��� � � �� �

� � ��� � � � � � �� � � ����� � � � �

��� � ��� � � � � �
 � 	 	 � � � �� � �� � � ����� � � � �

���"� � � �

�
�

� � � � �"� � ��� �
� ��������� � � �� � � �� �
 �

 � � �� �" � � ����� �
�
��
��� � � ��� � � �� �" � � 	 � ��� �� �" � � � � ��" �

� �� � ����� �
�

���" ���� �" �

�
�

� � � � �" � ��� �
� ��������� � � �� � � �� �

8.4 Code for
�
���������������	��� 	���

In general, given a rule of the operational semantics, there is a translation into OCaml

using continuation passing style (CPS). We explain here how this is done.

For a rule with the shape

� Γ
 � � � � � � ∆
 � � � � �
 # � ∆
 � � � � � � � � Θ
 � � � � � � �
 $
� �� Γ
 � � � � � � Θ
 � � � � � � �
 $ ��$

we get the following CPS translation

�� � ���� � � ��� ���
Γ
	

�
� � " ����� ��� � 	 � ��� � � � "� ���� � � "�
� 	 � "�� �

	 � � � � ��� � � # � �
�����

� # ��$ � �
� ����� ��� � 	 �# � � "� ���� � � "� �� 	 �

� � ��� ���
∆
	

� � � � " ����� � � � � "� ���� � � � � "� �� 	 � � � �
� ����� � � �$ � �%"� ���� � � � � "�
� 	 � �

� � ��� ���
Θ
	

� � � � � " ����� � � � � � "� ���� � � � � � � "� �� 	 � � � � �
"�� ������� � � � "� ���� � � � � � � "� �� 	 � � � ���

which can be simplified using
 -reduction to

�� � ���� � � ��� ���
Γ
	

�
� � " ����� ��� � 	 � ��� � � � "� ���� � � "�
� 	 � "�� �

8.4. Code for
 � � �� ���� � ��

� 	%�
153

	 � � � � ��� � � # � �
�����

� # ��$ � �
� ����� ��� � 	 �# � � "� ���� � � "� �� 	 �

� � ��� ���
∆
	

� � � � " ����� � � �%"� ���� � � � � "�
� 	 � � � �
� ����� � �$ � � "� ���� � � � � "� �� 	 � � "��

�������������

��� � ��� ����� ��� ����� ��� ����� ��� ����� ��� ������������� ������� � � ��������� ������� � � ��������� ������� � � ��������� ��� ���
���

Define some operators to improve readability
���

�� � ��� ��� �
� � � � " ��� � � � � � �

�

�� � � � � � � � � � �� �
�� � � ��� � � � 	 � �� �

��������� ���

�� � ���� � � ��� ��� � � 	�	 � 	 " � � " ����� ��� � 	 � ��� � � � "� ���� � � "� �� 	 � "�� �
���� � � � � 	�	 � ��� � ��"�
� 	 � �
	 � � � � ��� � � # � �

���

When an atom is found we can call a left rule, which is done in the function
� � �

below. We need to pass on the flags (� � psilon and �), the substitution (� igma) and

the success continuation (
"��

).

���

��� � � � 	 � � ��� � � � � ����� ��� � 	 � ��� � � ��� ��� � "� ���� � � "�
� 	 � "��

���

If the goal is a command we execute it. The current substitution may be needed for

side effects, so we pass it on.

���

��� ��� 	�	 � � �!" � � � �� � � � �
	�	 � � ��"� �� 	 � " �

"�� ����� ��� � 	! � "� ���� � � "�
� 	 �
���

8.4. Code for
 � � �� ���� � ��

� 	%�
154

For � � there are five subcases. The first three arise when � � psilon �)��	
 and the last

two when � � psilon) �	
 . However, notice that in all cases � Γ
 � � is used in the left

subproof. This means that it is possible to take common factor with respect to the

left branch, and analyse cases after this has been done.

���

��� � �
� �

� ��� 	 �%"� � � �
� ����� ��� � 	 � � ��� � � "� ���� � � "� �� 	 �

���

Note that it is all right to ignore the � � psilon flag, since it is not going to be changed.

���

� � ��� � ���� � � 	 "�� �
� � � "�
� 	 � � � �

���

First, if � � psilon �) � � then we are in one of the first three cases:

���

 �� � "� ���� � �
� ��� "� ���� � � �� �

� � ��� 	 ��� 	 ��� � ���
 � � � � � � �� �

��� ��� ���
���

The rule for � � is

� Γ
 � � � � � � ∆
 � � �
 # � Γ � ∆
 �
 � 0� � � � �
 �
 �
�
�$ � �� Γ
 � � � � � � ∆
 � � �
 # � $
In the continuation we can ignore the program (we know that it has to be � �
�� �
 �)

and the flags � � psilon and 	 from the right branch.

���

��� � � 	�	 � � � ���� � � 	 � � � � � � "� � ���%"� ���� � � "�
� 	 � �
� � ��� � � �

� ��"�� � ���� � � 	 "�� � � "� ���� � �
�

���

At this point we know that � � �) � . It has to be greater, then, since the only way

of reducing � is through the Unit
�

rule, which is not applicable since � � psilon �) � � .
Now the distinction between ���

�
and � �

� �
is based on whether � appears in a goal

position in # or not. So we unconditionally do the left branch and decide which rule

to use after testing the � counter.

8.4. Code for
 � � �� ���� � ��

� 	%�
155

���

���"�� � � � � � � �� �
� � ��� 	 ��� � ���

� ����� ��� � 	 � � �%"� � � "� ���� � � "�
� 	 � �
���

In the following continuation we deliberately ignore the stack returned, as well as

the � � psilon flag.

���

� � ��� � ���� � � � 	
�
�
� � � �

� �
���

The rule for � �
�

is

� Γ
 � � � � � � ∆
 � � � �
 # � Γ
 � � � � � � ∆ �
 � � �
�$ ���
�
� � � � � and ∆ � 	 ∆ �� Γ
 � � � � � � ∆ �
 � � �
 # � $

For it to succeed, we need to test whether the condition ∆ � 	 ∆ holds.

���

 � � � � � �
� � � � " ��������� �
� ���� � � � ���� � � ��� ��� ���

� �� � "�� � ���� � � � 	 "�� � �%"� ���� � �
���

The rule for � �
� �

is

� Γ
 � � � � � � ∆
 � � � �
 # � Γ
 � � � � � � ∆ �
 � � ��� �
 $ � �
� �
� � � ��� � � � � �� Γ
 � � � � � � ∆ � ∆ �
 � � � �
 #&��$

In this case we succeed, but taking the intersection of both remainders. This pro-

duces backtracking on the right subproof, increasing the non-determinism of the

program. For a more detailed discussion of this issue see � 4.5 in Chapter 4

���

���" � � � � � �
��� ��� � ���

� �� � "�� � � � � � �� " �� � �� � ���� � � ���� � � � 	 "�� �

 � "� ���� � � �

���" � � �"� � � � �� � ���� " � �
�
� �� � � ��� � � ���

���"� � � �" � � � �� � �� � " � �
�
� �� � � ��� � �

���

8.4. Code for
 � � �� ���� � ��

� 	%�
156

The other two cases, � �
� � �

and � �
���

, arise when � � psilon) � � . We distinguish the cases

by looking in the stack returned by the proof of # . It is convenient to look first at the

case � �
���

.

���

���"� 	 � � �
� "�� # � � ���
�� � "� ���� �) ��

���

���

The rule for � �
���

is

��� ;Γ
 � � :: � � � � � � � �
 � ∆ � � :: � � � �
 # ��� ; � Γ � ∆ �
 �
 � 0� � � � �
 �
 � � � �
 $ � �
���

��� ;Γ
 � � :: � � � � � � � �
 � ∆ � � :: � � � � � �
 #&��$
���

� � � ���
� ���� � � 	 � "� ��� � � � � � ��� � � �

���

��� � "� � � � � 	�	 � ��� ���� � ����	 � � � � � � "� � ���%"� ���� � �

"�
� 	 � � � � ��� � 	 � � � 	 �
�
� � � �

� �
"�� �
	 � � � 	 "�� � ���%"� ���� �

� � � � � �
� �

� � � � � � �� � � � ���"� �
���

���

Finally, the rule for � �
� � �

is

� Γ
 � � � � � � � �
 � � � �
 # � Γ
 � � � � � � � �
 � � � � � �
 $ � �
� � �

� Γ
 � � � � � � � �
 � � � � � � �
 #&��$
and we use it if the stack is of any other shape.

���

�
�

� � � � ��� � � ���
� ����� ��� � 	 � � �%"� � ��� "� ���� � � "�
� 	 � �

� � ��� � � � � � �
� �

"�� � � � � "� ���� �
� � � � � �

� �
� � � � � � �� �

�
���

��� ���" �
�

���

���

The rule for � � is

� Γ
 � :: � � � � � � Γ �
 � :: � � ���
 # � Γ �
 � � � � � � � ∆
 � � � � � �
 $
� �� Γ
 � � � � � � ∆
 � � � � � �
 # � $

8.4. Code for
 � � �� ���� � ��

� 	%�
157

���

��� 	 � � �
� ���% 	 � "� � � �
��� � � 	�	 � 	 ����� � � � � " � � � ��� � �� �

�
�" � 	 � "� �� 	 �

� � ��� � � � 	�	 � � 	 ����� � � ��� " � � � � "�
� 	 � � � �
��� � � 	�	 � � 	 " � � � � "� � � "� ���� � � � "�
� 	 � � "�� �

���

The rules for ��� are

� Γ
 � � � � � � ∆
 � � � ���
 #
���� Γ
 � � � � � � ∆
 � � � � �
 #���$

� Γ
 � � � � � � ∆
 � � � � �
 $
� �� Γ
 � � � � � � ∆
 � � � � �
 # ��$

so we first try # and in case of failure (return) we try $
���

��� � ��� � ��� 	 �%"� � � �
� ����� ��� � 	 � � ��� � � "� ���� � � "� �� 	 � "�� �

� ����� ��� � 	 � � � "� � � "� ���� � � "� �� 	 � "��

���

The rule for � � � is
��# � Γ
 � � � � � � ∆
 � � � ���
 $

��� �� Γ
 � � � � � � ∆ �
 � � � � �
 # � � $
���

��� 	 	 � � ���% 	 � "� 	 � � � �
�� � � ���% � � � ��� �� � ��� � � ���% � �

�� � � �# ����� � � ��� � �� � � � � 	�	 ��� � ��� 	 " � ���"� � � ���% � � � 	�	 � 	 " � �
�
� �# ����� � � � � "� � � "� ���� � � "�
� 	 �

� � ��� � ���� � � 	 "�� � � "� ���� � � � � � "
� �

 � � � � �
� �� � "�� � ���� � ����� � ���% 	 "�� � �%"� ���� � � � � � "

���"�� � � � � �
���� � � ���% ���� � ���

� �� � "�� � ���� � � 	 "�� � � "� ���� � � � � � "
�

���

There are various rules for ��� .

���

8.4. Code for
 � � �� ���� � ��

� 	%�
158

��� � 	 � � ���% 	 � "� � � �
�� � � ���% � � � ��� �� � ��� � � ���% �

 �
�� � ��" � � 	 � � � � "$# � �

���

��# ;Γ
 �
 � � � � � � �
 �
 � ���
 $
���� Γ
 �
 � � � � � � �
 �
 � � �
 # �($

���

� � � � � � �
���

���

� ��� �� �
��� 	 � �� � ��� � � � � � � �� �

� � ��� � � 	 � �� � � � � �
���

��# ;Γ
 # � :: � � � � � � � �
 � ∆ � # :: � � ���
 $
���

�
� Γ
 � :: � � � � � � ∆
 � :: � � ���
 # ��$

���

� ����� � � � � � � � ��� �� �
� � ���% 	�� � ��� � � �

�
� ��� � � � � � �"� � � � �� � �� �

� � ��� " �
� � 	 � � �

 �
��� � ��� � � � 	�	 � 	 ��" � � � � �%"� � ��� "� ���� � � "�
� 	 �

� � ��� � ���� � � 	 � � �
� � � � �

�� � ��� � �
	
� � � 	 � � �
��� # � �

� � � � ���� � � � � � ���% 	 � �
� � � � ���

� � � 	�	 � � 	
�
��� � � � � � � � 	�	 � � � � � ���% 	 � �

� ��� �� �
��� 	��

�
��� ��� � � � � � 	�	 � 	 � �

�
�

�
�

� � ���� � � ��� � ��� 	 � �
 �

8.4. Code for
 � � �� ���� � ��

� 	%�
159

"�� � ��� � �
	 " � � "� ���� � � �

�

���

���

��� � ����� � � � � � �
� "

�
� ��	 � � � �

�� �
�
� � � � �#

� ���
�
� � �

�
�

 � �� � � � � � � � � ��� � � " � �
	
�
� � ��� � "� �� 	 � �

� ����� ��� � 	 � � � " ��� " � �
� �

�
� � � � "� ���� � � � ��"��

���

���

��� � � �# ��� � � � � � � �
� "

�
� �
	 � � � �

�� �
�
� � � � �#

�
� � �

� � �
�
�

 � �� � � � � � � � � ��� � � " � �
	
�
� � ����� "� �� 	 � �

� ����� ��� � 	 � � � " ��� " � �
� �

�
� � � � "� ���� � � � ��"��

��� � ��� �
�
	 � � � � � � �"� � � � �� � �� � �����

� ���� � ��� � ��" � � � 	 � �� 	 � � � � � � �
��� � ��� � �#

�
�
	 � � � � � � �" � � � �� � ����

� ��� � �# � ��� � ��" � � � �	 ���� 	 � � � � � � �

��� �
� � #�� � � � "� � � � � � � ���� �$	 � � �
�

�
� � � 	 ���

�
� �

� � ����� � � � 	�	 � 	 " � � � ��� � �%"� ���� � � "�
� 	 � "�� �
�� � ���� � �" � � �
�� � � � �
	 � � �
� � � 	 � �� 	 � ����������� � �� � � ��� � "�
� 	 ��� # � �

��� � � " �
� 	 � � � " � �

� � � � � � � � �� � � ���"�
	 � � � �
� � � � � � ��� 	

�
��	 � � � � � �

	
�
��� � � � � � � � �� � � ���" 	 � � � �

�
�

� � 	 � � � �
 �

	 � � �
� � # � �

��� � � 	 � � � � � � �
� � 	 �	 � � � 	 � ��	 � � � � � � �
� ��� �	 � � � 	 � ��� � � � � �
� ��� ��� �

�
	 ��� � � �

8.4. Code for
 � � �� ���� � ��

� 	%�
160

 � � �" � ��� �
	 � � � � � �� � 	 � � � �����"� �
� ��� ��� � �#

�
�
	 ��� � � �

 � � �" � ��� �
	 � � � � � �� � 	 � � � �����"� �
� � 	 � � �

� � � 	 � ��� � �
 � � �" � � � �
	 � � � � � � � �" � � � �
	 � � � � � �� � 	 � � � �����"���

� �����
� �
� � � 	 � ��� � �
 � � �" � � � �
	 � � � � � � � �" � � � �
	 � � � � � �� � 	 � � � �����"���

�
� � ���"����

�
 � � ��� � � �� �

� � ��	 � � � � � 	 � � � �
� � � � � � � � �" � �

� � � � � � � � � � � � � �
���" ���

�
 �

� � � � � � � � � � � � � �
�� � � � ���"���� � � �

 � � � 	 � � � � � �� � ���"����
�
 � � � � � � � �

���" �
� � � � � � � � � � � � � �

���" ���
�
 �

� � � � � � � � � � � � � �
�� � � � ���"���� � � �

 � � � 	 � � � � � �� � ���"����
�
 � � � � � � � �

���" �
�
�

� � � � �" � � � ��� �
� ��������� � � �� � � �� �
 � �� � � � �� � � ���"����

�
 � � 	�	 ���

�
� � � � ���� � � 	�	 � �

#�� ��� � �
�
�
	 � � � � ���

�� � � � 	�	 � � � � � �� 	 � � � � 	�	 � �
�� � � ��� ��� � � �
 � � � � � � � � �� �

� ���" �

 �
�� � ��� � � "� �

8.4. Code for
 � � �� ���� � ��

� 	%�
161

	 � � �
� � � # � �

� � ��� �
�
	
�
� � � � ��� � �#

�
�
	
�
� � �!" � �� � � �

�
�

� � � �

 �

� �� � 	 � � � � ��� � � " �# � �

���

There are two rules for CutAxiom. One of them applies just when the top of the stack

has got an open box with the theorem flag and the atom considered is not a member

of the content of the box (�)

� Γ �
 � � � � � � ∆
 � � � � �
 �
CutAxiom

�

� Γ � � �
 � � � � � � ∆
 � � � � �
��
� Γ �
 � :: � � � � � � ∆
 � � � � �
 �

CutAxiom
� �

��� ;Γ � � �
 � � :: � � � � � � ∆
 � � � � �
��
���

� ��� � �
	 � � ��� � � � �
� ���	 � ��� � � � � ��� � � � � ��� � � � ��� "�
� 	 � � � �

���� � �
� � � ��� � � � ��� � � "� �� 	 � � �

�� � "�� �
	 � � �
� "$# � �

� �� �
� � 	�� � � � � � � �
 � � � �

� � � 	
	 ��� � � " � � � �� �
� �� �

� � 	�� ��� � � � �
���" !"

�
�

� ��"

 �
��� � � 	�	 � � 	 "�� � � � � � "� ���� �

�
� �

� � ��� ��� � � � ��� � � ���

"�
� 	 � � "�� � "�
� 	 �
���

The rule for � � � is
� Γ �
 � � � � � � ∆
 � � � � �
 #

� � �
�

� Γ ��# � � � �
 � � � � � � ∆
 � � � � �
 �

���

8.4. Code for
 � � �� ���� � ��

� 	%�
162

� � 	 	 � � ���% 	 � � ��� � � 	 � � � �
�� � � � 	�	 � � �
 � � � � � �� � � � 	 � # � � � � 	�	 �
���"�� � � � � � �� � � � 	�	 � �
���"� � � �� � � � �� � � � � � �� � � �� � � ���

� � � � � 	 � # � � � � 	�	 ���
 �
� ���	 � ��� � � � � ��� � � � � ��� � � � ��� "�
� 	 � � � �

���� � �
� � � ��� � � � ��� � � "� �� 	 � � �

��� � � 	�	 � � 	 " � � � ���% � �%"� ���� �
�
� �

� � ��� ��� � � � ��� � � ���

"�
� 	 � � "�� � "�
� 	 �
���

� Θ; # � �
 �
 � 0� � � � �
 �
 �

 # � Γ �
 � � � � � � ∆
 � � � ���
 �
� � �

� Γ � Θ; # � � �
 � � � � � � ∆
 � � � � �
 �
���

� ��� 	 � � ���% 	 � � ��� � � � � �
�� � � �� � � � � � �� � � ����� �
� � � � � 	�	 � �

� ���	 � ��� � � � � ��� � � � � ��� �

� � ��� "� �� 	 � � � �
��� � �

� � � ��� � � � ��� � � "�
� 	 � � �
��� � �� � � 	 � � � � � ���% � ��� "� ���� � � "�
� 	 � �

� � ��� � � �
"�
� 	 � � � � �

��� � � 	�	 � � 	 " � � � � � "� ���� � �
"� �� 	 � � � "�� ���

"�
� 	 �
���

We can still get a multiplicative or additive conjunction if it was wrapped in a quan-

tifier

���

� � 	 � � �
�
�
	
�
� � �����

� �
�
�
	
�
� � �

8.4. Code for
 � � �� ���� � ��

� 	%�
163

�� � ����� ��� � 	 � � � �� � � � �� � � ����� �� � � � �!��� � � "�
��� � � � � 	�	 �

 �
��� ��������� � 	 	 " � � � � � � ��� ��� �%"� ���� � � "�
� 	 � "��

�
�

� � �
� � � � � � � � � �

 � �
�

� � � � � �� 	 �� � " � � � �
�
�

� � � ���" ��� � �
�

��� �
�

	 � � �
� � � ��� � # � �

���

The rule for � Unit is

� Unit� Γ
 � � � � � � Γ
 � � ��� 1
 �

���

� � � � " � �
� � � � "�� � � � 	�	 � 	 " � � "� ���� � �

� �
��� "�
� 	 �

���

���

� � � � " � �
 � � � � � � 	 ��� � ���

 �� �%"� ���� ��� � � "� ���� � � ��� � � 	�	 �
�
� � � ��	 � � � �

���

If �%) 0 we use the rule for Unit
� �

Unit
� �

��# ;Γ
 # � :: � � � � � � � �
 � Γ � # :: � � �
 �

���

� �� � � � � � � �� � 	 � � � � " # � �

� ��� �� �
� ���% 	 � �� �%��� ��� � � �

"�� � � � ��	 � � � 	�� � � ��� � � � 	�	 � 	 ��� � � � � ��� ���%"� ���� � � "�
� 	 �
�
�

� � � �

���

8.4. Code for
 � � �� ���� � ��

� 	%�
164

Else, we use the rule Unit
�

Unit
�
� � � 0 �� Γ
 � � � � � � � �
 � � 0
 �

���

���" ���
� � �����

"�� � � � ��	 � � � 	 " � ���%"� ���� � � "�
� 	 �
���

Finally, if � � is not present or the bunch is empty, there is no reason not to succeed,

and we use the rule Unit

Unit� Γ
 � � 0
� � � Γ
 � � 0
 �

���

���" !"�� � � � 	�	 � 	 " � � "� ���� � � "�
� 	 �
���

If none of these cases applies we backtrack, but we should never reach this case

���

�
�

� � �
� � � � � � � � � �

�
� � " � � � � � ��� � � �� �

� � ��� ����� � � � � ��" � � "
�
	 ��� � � �!��" ��� " �

�
� �#

� ���
�
� � � " ���

�
� " � � � ��� �

� � � ��� � �#
����� � � � � ��" � � "

�
	 ��� � � � ��" ��� " �

�
� �#

�
� � �

� � � " ���
�
� " � � � ��� �

� ��� � � ���

�
� � �� � � �� � � ��� � � �� �

� � ��� �
�
	 ��� � � � � � ��� �

�
	 �� � � �� ���

�

� � � ��� � �#
�
�
	 ��� � � � � � ��� � �#

�
�
	 �� � � ������

�

� � 	 	 � � ��� 	 � � ��� � 	 �
�
� � � 	 	 � � ���% 	 � � ��� � 	 �

�����
� ��� � � ���

�������������

165

Appendix A

Uncommented code of main modules

For a fully commented version of this code, see Chapter 8.

A.1 bunch.ml

 � �� � � �� � ��� ��� �

 � �� � � �� � � ��� �
� ��������� � � �� � � �� �
 � �� � � �� � � ��� �
�

��� � �
� � � �� � � �� �

� � ���� � � � �� �
�� � � � � � � � � � � � �

� �

� � � � � � ��� � � � � � � ��� � � � �

� � ���� � ����� �
� �
��	 � � �

� � ����� �

� � � � ��� � ����� � � �� �" �

� � � � ��� � ����� � � �� �" �

�� � 	 � �� � �
�
��� �

�� � � �
� �

A.1. bunch.ml 166

	 � � �
� ��� 	
�
� # � �

��� ��	 	 � � �
� � �$	�� �

� ��� ��	 	
�
� � �$	�� � � �

� �
�

	�� ��	 � � � � � � 	
�
�

� � � � � � � �
 �

 � �
� � � 	 � � � � �� � ���

���"�� � ��� � ��	 � � � � �� � �
�

���"� � � � � �
�
���
�

�� � � � �� � �
�
��� �

�� � � �
� �

	 � � �
� ��� 	
�
� # � �

� � ��	 	 � � �
� � �$	�� �

� � � ��	 	
�
� � �$	�� � � �

� �
�

	 � ��	 � � � � � � 	
�
�

� � � � � � � �
 �

 � �
� � � 	 � � � � �� � ���

���"�� � ��� � ��	 � � � � �� � �
�

���"� � � � � �
�
���
�

�� � ���� � � � � � �
�� � ��� � � � �" � � �� � � � � � � ��� � �" � � ��� � � � � � � �" � � 	 � � � � � � � �
 �

	 � � �
� � # � �

��	 � � � � � � � �
� � � � � ��� �
� � ��	 � � � � � � � 	 �
� � ��	 � � � 	

A.1. bunch.ml 167

�� � ���� ������� � �
�� � � � � � � � � ������� � � �� �" � � � � � ��� � ������� � � � � � �" � � � � � �����

�
� ��� 	 � � � � ���

�
� ��� � � � � � ���

 � � ��� � � �� �
��	 � � � � � ��	 � � �

� � � � � � �

� � � � � � � � � � � � ������� � �
� � ��	 � � ��	 � �� � � 	 � 	

� � � � � � � � � � � � ������� � �
� � ��	 � � � � � �� � � � � 	

�� � ���� � 	
� ��� �

�� � ��� � �� �" � � 	 � � �
� 	

� � � � �
 � � ��� � � �� �

��	 � � � � � ��	 � � �
� � � � � � � � ���

� � ��	 � � � � � � 	 �
� � ��	 � � � � � � 	 �

�� � ���� � � � �
�
�
� �

	 � � � � �
�
� 	
�
��� # � �

� � 	 � � � 	 ��	 � � � � � ��� 	 � � �
� � � � 	 � �

� � � � ��� 	
�
�

� ��� � � 	 � � � � � ��	 � � � 	 � � � � � ��� � � � � � 	 � 	 �

� ��� � � 	 � � � � � ���
	 � � � 	 � ��� � � ����� � �
	 � �� �

�
� � � 	 � 	 ��� �

� � � ��� � � � ��� ��� � � � �����

� � � � � 	 � � � � � ��	 � � � 	 � � � � � ��� � � � � � 	 � 	 �

� � � � � 	 � � � � � ���
	 � � � 	 � ��� � � ����� � �
� � �� �

�
� � � 	 � 	 ��� �

� � � � � � � � ��� � � � � � �����

�
�

� � � � �" � � � �� � �� �
� �"�	 � � �
� � � � ��� �

A.1. bunch.ml 168

�� � ���� � � ���� �
�� � ��� � � �" � � � �� �

� � �� � � �
 � � ��� � � �� �

��	 � � � � � � �

� � � � � � �

� � ��	 � � ��	
� � ��	 � � ��	

�� � � � �" � " � ����� �
� �
�� � � � � ��� � � �� � � � �" ��� ��� � ���" � �

�
� � � � ������ � ��"� �

� ��� � � � � � � �� � ����� � �
��� �

� � ��� ��� �
� � � ��� � � �

 � �
�

� �

�� � 	
	 �
����� �
� �

�� � � � � � � � � � � �� � � � �" ��� ��� � ���"� � �

�
� � � � ������ � ��"� �

� ��� � � � � � � ���� ����� � �
��� �

� � ��� ��� �
� � � ��� � � �

 � �
�

� �

�� � " ��������� � �
�
����� �
� �

�� � � � � � � � �
� 	
	 � ����� �
�

� � �� � � � �"� ��� �
�
��� ��� � ���" � �

�
� � � � ���� � � � � �

� ��� � � � � � � ���� � ��� �

� � ��� �
�
��� ��� � � � � ��� � � ��"

 � �
�

A.1. bunch.ml 169

� �

�� � ���� � � �� "��� � �� �
� � � ��� � � �� �

��	 � � � � � ��	 � � �
� � � � � � " ����� � �

� � � 	 	 � � � �� � ����� �
�!���"� � 	 � � �
� � � � � � � � � � � � � � �� " �� � �� � �

�

� � � � � � � � � � � �$	 � �� � � � � �� " �� � �� � �
��� � � � �� "��� � �� �

��� � � � � ���

� � � � � � � � � � � � � � �� " �� � �� � �
�

� � � � � � � � � � � � � � �� �
� � � �� " �� � �� � �

��� � � � �� "��� � �� �
� � � � � � ���

�
�

� � � � �" � ��� �
� ��������� � � �� � � �� �

�� � �
���� � " � ����� � � �
�� � � � � � 	
	 � ����� �
� � �� � � � �"� ��� ��� �����"�

� �

�
� � � � ���� � � � � �

� ��� � � � � � � ���� " �
��� �

� � ��� ��� �
� � � ��� � � ��"�

 � �
� � �

�� � ���� �� 	 �� � " � �
����� �
� �

�� � � � � � � � � � � �� � � 	 � � � ���"� � � �
������� � ����� � �

�� � ���� � � �� 	 � � � ��� � � �� �
��	 � � � � � ��	 � � �

� � � � � � " ����� � �
� � �!� ��� � � �� � ��	 � � � ���" ����� �
�

� � � � � � � � � � � �
� � �� 	 � �

� � � � � � � � � � � �
�� � � � � �
 � � �" � � �� � � � � � � � � � �� � � �" � � � � � �

���" � � � �

A.1. bunch.ml 170

 �
 � 	
	 � � � �� �

	 � �� �
��� � �� 	 � � � � � �

���" $	 � �� � � ��� � �� 	 �
� � �

�

� � � � � � � � � � � �
� � �� 	 � �

� � � � � � ��� � � ��� � " ����� � �
� �

 � � � �
� 	 	 �

����� � �
� � �� � ����� �
�����"�

 � 	
	 � � � �� �
� � ��
	 � �

���" � � ��
	 � � � � � � �

�
�

� � � � �" � ��� �
� ��������� � � �� � � �� �

�� � ���� �� ��� � �� ��� � � "�
�
�
�
� � �� � � � � ��� � � �� �

��	 � � � � � � � �"� � � � �� � �� � 	 � � � � �� � � � �� � �

� � � ��� � " � � � � � ��� �
�
�
� � �� � � � �� � ��� � � "� ���"���

� � � � � � � � � � � � �� � � � �� ��� � � " �
�
�
� � �� � � �

� � � � � � � � � � � �
 � 	
	 �

�
�
� � �� � � � � �� �

� � � �� � � � �� ��� � � "�
�
�
�
� � �� � � � � � � � �

���" 	 � �� � � � �� � � � �� ��� � � "
�
�
�
� � �� � � ��� � � � ���

� � � � � � � � � � � � �� � � � �� ��� � � " �
�
�
� � �� � � �

� � � � � � � � � � � �
 � 	
	 �

�
�
� � �� � � � � �� �

� � � �� � � � �� ��� � � "�
�
�
�
� � �� � � � � � � � �

���" � � �� � � � �� � � � �� ��� � � "
�
�
�
� � �� � � � � � � � ���

�
�

� � � � �" � ��� �
� ��������� � � �� � � �� �

�� � �����" ��� � �
� � � " ��� ����� �
� �

	 � � � � " ��� # � �

��	 � � � � � ����� �
�

� � � � � � � ��
	 �
����� �
�

� � � � � � � � � � � �
" ��� � �

� � � � ����� �
�

A.1. bunch.ml 171

� � � � � � � � � � � �
" ��� � �

� � � � � " ��� � �
� � � ��� � � � � ����� �
�

�

� � � � � � � � � � � ��" ��� � �
� � � � ����� � �

�
�

� � � � �" � ��� �
� ��������� � � �� � � �� �

�� � ���� �� � � ����� � � � � � ��� � � �� �
��	 � � � � � � � �" � � � �� � ����
	 � � � � �� � � ����� � ��� �

� � � � � � " ����� � �
� � �!� ��� � � �� � ����� �
�

���" � � �"� � � � �� � ����
� � �

� � � � � � � � � � � �
�� � � ����� � � � �

� � � � � � � � � � � �
 � 	
	 � � � �� � �� � � ����� �
� � �

���" �� � � ����� �
� � ��� � � � �

� � � ���� �" � � � " ����� �
�
� �

�� � ���� � � � ��� � � �� �
� � � � � � � �

�
�

� � � � ��"�
�
� � � � � ��� � � �� �

� � ��� � � � � � �� � � ����� � � � �

��� � ��� � � � � �
 � 	 	 � � � �� � �� � � ����� � � � �

���"� � � �

�
�

� � � � �"� � ��� �
� ��������� � � �� � � �� �
 �

 � � �� �" � � ����� �
�
��
��� � � ��� � � �� �" � � 	 � ��� �� �" � � � � ��" �

� �� � ����� �
�

���" ���� �" �

�
�

� � � � �" � ��� �
� ��������� � � �� � � �� �

�� � ���� 	 � #
� � � ��� � � �� �

A.1. bunch.ml 172

� � � � � � � � � � � � � 	 	 � � � �� � 	 � #
� � ���"� �

� � � � � � � � � � � � � 	 	 � � � �� � 	 � �� �
� 	 � #

� � � ��� � � � �

���"� 	 � �� � � � 	 � #
� ��� � � � ���

� � � � � � � � � � � �$	 � # � �

� � � � � � � � � � � � � 	 	 � � � �� � 	 � #
� �

���"� 	 � #
� ��� � � � �

� ��� � � ���

�� � ���� ��� �� � � ����� � � � � � � " ��

�
�
 � ��� �� � � 	 � � �

� � � ��� �� � � ���" � �
� ��� � � � � �

�
� � ��� �� � � ���" � �

� ��� � � � � "���

�
�
� � ��� � � � ��� �� � � 	 � � �

�

 � � ��� �� � � ���" � �
� ��� ��� � �� � � ��� � � � � �

� �
�
� � � �

�
� � ��� �� � � 	 � � � � � � � "���

�
�
 � ��� �� � � ��

� � � � � ��� �� � � ���" � � 	 � � � � � � �

�
� � ��� �� � � ���" � � 	 � � � � � � "���

�
�
� � � �

� � � ��� �� � � ��
� � �

 � � ��� �� � � ���" � � 	 � �
� 	 � �� � � ��� � � � � �

� �
�
� � � �

�
� � ��� �� � � ��

� � � � � � "���

�
�
� �� � � � � � � � � �

� �
�
� � ��� � � � � � � ��� �� � � ����� �
�

� � � ��� � � � � � � � �

� �
�
� � � � � � � � � 	 � � �

��� ����� ��� � � � � � � � � � � ��" � � � � ���

�� � ���� ����� �
� � � � � " � � � � � �
�� � ���� � � � � ��� � � �� �

� � � � � �
� � � � � � � � � � ����� �
� � � � � " � �� � � � �

A.2. interpreter.ml 173

� � � � � � � � � � ����� �
� � � � � " � �� � � � ��� ��� � � � �

 � � ��� � � �� �
��	 � � � � � � � 	 � � � �

� � � � � � �

� � ��� � � � � ��� � � � 	 � � � � � � �
� � ��� � � � � ��� � � � � � � � � � � �

�� � ���� � � � ����� � ��� � � ���� � � � " � �� � � � ����� � � � � � � " � � � � � �
�

�� � �% � � ��� � � � ����� � � " � � � � � ��� � � �
�� � � " � � ��� � � � ����� � �

� � ��� � � �� ��� � � � �

�� � �� � �� � � � �� � � 	 � � � �� � �� � � � � � � � � � � 	 � � � � � � � � � � � � � �

�� � ���� � � � "��" � 	 � � � � " # � � � � � " ��

�
�
� � � �� � � � # � � � � � � � � �

�
� � ��� � � � � � � � � " �" � �

� �
�
� � � �� � � � # � � � � � � � � �

�
� � ��� � � � � � � � � " �" � �

� �
�
� � � �� � � � # � � 	 � � � � � �

�
� � � �

� � � � "�!" � �
� �

�
� � � �� � � � # � � � � � � � � �

�
� � � � � � � � "�!" � �

� �
�
� � � �� � � �� � � � � � � �

�
� �� � �� � � � � " !" � �

� �
�
� � � �� � � � � � � � � �

�
� �� � � � " � � � � � ��� � � � � � � � � "��" � �

� �
�
� � � � �

�
� � � � � �

A.2 interpreter.ml

	 � � � �� � � � � � " ��
	 � � � �� � � � ��� � �

� � �� � � � � � ���	 � � � � � � � � � �
� �

� � �� � ���	 � � �� 	 � � �� 	 �
�
�
� ��� � " � �� � �

A.2. interpreter.ml 174

� �
�
� ��� � � � � � " � � � � � � � � " � �� � �

� � � � " � ��� " � � � �
� � � � � � � " � �� � � � � � ���	!� ��� � �

�
����� �
�

�

� � �� �
� � � � � � � ���	 �

�
� � � � � � � � � � � � � � " � �� � �

� � �� ��� � � � � � ��� � �
� � ������ � � "� � � � ��� � � "�

� � �� � ��� � � � � �

� � �� ��� � � � �
�

� � � �

� � ����� �" � � " � �
����� � �

� � �� � � � ��� � � "���
�
����� �
�

� ��� � �
� � � ��� � � ��� � � "���

�
����� �
�

� ��� � � "� �
�
����� � �

� � ������ � � � � � ���%"� ���� � � �� �
�
�" � 	

 � �� � � �� � � � �" �� �

 � �� � � �� � � � �
 � �� � � �� � � � ��� � ���!��� � � "� �

�
����� � �

� �� � �

�� � 	 � � �
	 � � � � � � � � " � �

 � 	 � � � " � �
� �

��� � ��� ����� ��� ����� ��� ����� ��� ����� ��� ������������� ������� � � ��������� ������� � � ��������� ������� � � ��������� ������� � �����
��� � �� � � � � ��� �

� � � �
� ��� � � " �� �" � 	 ��� � � 	 � � � � �� �� � � � ��� �

� " � ��� � � ���
�� � � 	 ��� � � � � � �
	 	 � � �

�� � � � ��� � � � � � �
	 � � � �

�� � � 	 ��� � � � � � �
	 	 � � �
�� � � � ��� � � � � � �
	 � � � �

�� � 	 � � � � � � � � �
	 ��� � � " � � �
�

A.2. interpreter.ml 175

�� � � � 	 ��� �

��� � ��� ����� ��� ����� ��� ����� ��� ����� ��� ������������� ������� � � ��������� ������� � � ��������� ������� � � ��������� ��� ���
����� ��� � "�� 	 � ���� � � ��� " � �� 	 �����

�
 �� � � � � ��� � � ���

�� � ��� ��� �
� � � � " ��� � � � � � �

�

�� � � � � � � � � � �� �
�� � � ��� � � � 	 � �� �

��� � ��� ����� ��� ����� ��� ����� ��� ����� ��� ������������� ������� � � ��������� ������� � � ��������� ������� � � ��������� ��� ���
��� ��� � � � � �

� � �� ��� ���� � � � ��� � � �� � " ���

�� � �� ��� � � ������ � ��"

�� � "� � �� ��� � � � �� ��� � � � �

�� � ���� � � � �!� � � � � � � � � � �� ��� � � �� �
� � ���"

�� � " � 	 � � �
� � # � �

� � � � 	 � � � � ���	 � ���� � � � ���	 � � � � �

�
�

� � ���� � �
� � � � � � � � �

�
� � �%� � ���� � �

� � � � "��� � � �
 �

� � ��� � � � ����� � � � � � �

���� � � � " � � � � � � � � ����" � � � � �

�� � ���� � � � ��� � � � � � � � � �
�� � � � � 	 � � � � � � � � � ���	 � ��� � � � ���	 � � � � � � �
� � 	 �

�
��� �� 	 � ��� � � � �� 	 � � � � � � �
� � � �

 � � � ���� � � � ����� �
� �!� � � � � ��� � � � " � �� � � � � �

A.2. interpreter.ml 176

 � �� � � �� � ��� ��� �

�� � �
� � � � � � � � " � � � ��� � ��� � � � " � � � � � " � � � � �����

��� � ��� ����� ��� ����� ��� ����� ��� ����� ��� ������������� ������� � � ��������� ������� � � ��������� ������� � � ��������� ��� ���
��� � ���� � �

� �
� ���� � � � ���" 	 � � � �	

� �� � � � �� � ��� ��� � � ���

�� � ���� � ����� �� ����� � � �
�� � � � � ��� � � �� �

� 	 � � �
� � � 	 � ��� � �

� � � ��� �� � � � �!� ����� � � � ����� �� � � � � � �����

� � � �
� �

� � � 	 � ��� � �
� � � ��� �� � � � �!� ����� ��� � ����� �� � � � � � �����

� � � � � � � �

 �
� � ������� � ����� �
�

��� � ��� ����� ��� ����� ��� ����� ��� ����� ��� ������������� ������� � � ��������� ������� � � ��������� ������� � � ��������� ��� ���
��� � �� � � ��� �� ��

�
� � � � ���" # � �

�
���

�
� �

� 	 ���

�� � � � � � ���� � �

�� � � � � � � � � � � �
�� � ���� � � �

�� � � � � � � � � ��� �� � � � �
�� � � � � �� � � � � � � ��� �� � � � � �

�
�

 �
� � � � ��� � � �

� � � � � � � ��� ������� � � � � ��� �� � � � � � �	� � � ����� �
��� 	 � � � � � �� � �

�����

 � � � � � �	� � � � � � � � �� �
 � � � � � �� �

� � � � � � � � � � � � � � �
���"� � �

�
�����

���"� � �

A.2. interpreter.ml 177

 � �� � � � � � �� � � � �� � � � � � � � �! �
 � � � � � �� � � � � � � � � � ���" � � � �����
�
� � � � � � ��� � � � � � �

�� � � � � � � � � � � ��� � � �� �
�
�
� � � � 	 " 	 �

	
�
� � � �

�
� � � � 	 " 	 � �

��	
�
�

�
�

� � � � �" � � � �� � �� � � � � � � � � � � � � �

�� � � �#
� � �

�
� � � " � � � � � � ��� ��� 	 � � � � � � � � �
	 ��	 " �

�� � � �#
�
� � �

� � � " � � � � � � ��� � � 	 � � � � � � � � �
	 ��	 " �

������� ����� ��� ����� ��� ����� ��� ����� ������� ������������� ������� � � ��������� ������� � � ��������� ������� � � ��������� �������
��� �

��� " � � � � �� � "
�
� � � ����� � ���

�� � " � � ����# ��� � � � � � �
��� ��� � � � � � �

��� � �
�
� � �

���

�� � ������	 " ��� " � � ���
�� � ���� � " � � � ��� � � �� �

� � � � 	 � � � � � � � 	 ��� ���	 � " ��� " ��� � ���

��� ��� 	�	 � � �
� � � � ��� 	�	 � � � ��� �� 	 � " ��� " � � � ���

��� � �
� �
� � ��	 � ��� � � � � � � � � ��" � � ��	 ��" � � ���

��� 	 � � �
� � ��	 � ��� � � � 	 � � � � ��" � � ��	 ��" � � ���

��� � ��� � � � 	 � ��� � � � � ��� � � " � � ��	 ��" � � ���
��� 	 	 � � � 	 � 	 � � � � � 	 	 � � ��" � � 	 � " � � 	 � �
��� � 	 � � � 	 � � � � � � 	 � � ��" � � 	 � " � � �
��� � � � 	 � � � � � � � � 	 �!" � � ����# � �

� �� � �����" � " � � �
��� � � �# � � 	 � � � � � � � �# � � 	 ��" � � ����# � �

� �� � � ���"� ��" � � �
��� � ��� �

�
	 � � � � � � ��� �

�
	 ��" � � ����# � �

� �� � �����" � " � � �
��� � ��� � �#

�
�
	 � � � � � � ��� � �# � � 	 ��" � � ����# � �

� �� � �����"� ��" � � �

A.2. interpreter.ml 178

�
� �!��" � � � ��� � � �� �

� � � � 	 � � � � � � � 	 ��� ���	 � " ��� " ��� � ���

� � � �
� �
� � ��	 � ��� � � � � �

� �
� ��" � � ��	 ��" � � ���

� � 	 � � �
� � ��	 � ��� � � � 	 � � �

� ��" � � ��	 ��" � � ���

� � 	 	 � � � 	 � 	 � � � � � 	 	 � � ��" � � 	 � ���	 � " ��� " � � � � 	
�
�

� � � 	 � � � 	 ��� � � ��� 	 � � � " � � 	 � ���	 � " ��� " � � � ���

� � � ��� �
�
	 � � � � � � ��� �

�
	 ��" � � ����# � �

� �� � � ���" ���" � � �

� � � ��� � �#
�
�
	 � � � � � � ��� � �#

�
�
	 ��" � � ����# � �

� �� � � ���"����" � � �

 �
� ��" � 	 ��" � �

�� � � " ��� " � � ��� � ��" � � ����� 	 " ��� " � � � ���

�� � ��" ��� " � � ��� � " � �
� ����� 	 " ��� " � � � ���

��� � ��� ����� ��� ����� ��� ����� ��� ����� ��� ������������� ������� � � ��������� ������� � � ��������� ������� � � ��������� ��� ���
��� 	 ���� 	 � � � � �� � � � � �� �

� �
� � �� 	�� � ��

���

�� � ���� � � �� 	 � � � ��� � � �� �
� � ��	 � � � � � � � ��	 � � �

� � � � �!� � � " ����� �
�
� � � � ��� � � �� � � � ��	 � � � ���" ����� �
�

� � � � � � � � � � � � � �
� � �� 	 � �

� � � � � � � � � � � � � �
�� � � � � �
	 � � �
� � ��# � �

� � � � � �
� � � � � � � � � � �

 �
 � � � 	
	 � � � �� �

��� � �� 	 � � � � � � �

A.2. interpreter.ml 179

���" � � ��� � ��
	 �
� � �

�

� � � � � � � � � � � � � �
� � �� 	 � �

� � � � � � � � ��� � � ��� � " ����� � �
� �

 � � � �
� � � 	
	 �

����� � �
� � �� � ����� �
�����"�

 � � � 	
	 � � � �� �
� � �� 	 � �

���" � � ��
	 � � � � � � � � �

�
�

� � � � �" � � � ��� �
� ��������� � � �� � � �� �

��� � ��� ����� ��� ����� ��� ����� ��� ����� ��� ������������� ������� � � ��������� ������� � � ��������� ������� � � ��������� ��� ���

�� � ���� � � ���
�
� " � � � ���� � � � � � � "� � � � 	 � � �

�� � �� � ����� � � � � � �� � � � ��� � �

�� � �" � � � � �� �
�� � � �" � " � 	 � � �
� " �	� � � # � �

� � � ��� ��� � � � � � �
�
�

� � � � ��"
 � � ��� � � �� �

�
�
� � " � � � � ��"

� �
�
� �

�
� � � � ��"

� � � � " � " � � � �" � "

� � � � � � " 	 �
� � � � �" � "

�� � ���� 	 � � �!� � � ��� � � �� �
� � ��	 � � � � � � � �"� � � � �� � �� � 	 � � � � 	 � � � � � ������� � ��

� � �

� � � � � � � � � �

� � � � � � 	 � � � � � � �$	 � � � � 	

� � � � � � 	 � � � � � � �$	 � � � � 	 � ��� � � � � � � � � ��� 	

A.2. interpreter.ml 180

� � � � � � 	 � � � � � � �$	 � � � � 	

� � � � � � 	 � � � � � � �$	 � � � � 	 � ��� � � � � � � � � ��� 	

�
�

� � � � �" � � � �� � �� � " � 	 � � � ��" � � � � ��� � 	 � � � � � ������� � ��
� � �

�� � �� ����" ��� " � � � � "
�
� � " ��� � � "��" �

�� � � � � � � � � � � � "
�
� � " �

�� � � � � 	
�
� � � ��" ��� " � �

�
� �

� � � 	
� � � � ��� � � � 	 � � � � ��� � � � � � � � �

� ��� � � "��"

�� � ���� 	 � �� �" �
�
� �
� �
� � " � � ��� � � �� �

� � ��	 � � � � � � �
� � � � ��� � � � � �

��� � � � � �
� � � � � �� �" � � � � �" � � ��� � � � � � � �" � � 	 � � 	 � �� �" �

�
���
� �
� � "$�� �" � �

� � � � � �� �" � � � � �" � � ��� � � � � � � �" � � 	 � � 	 � �� �" �
�
���
� �
� � "$�� �" � �

�� � �� � � �� ��� " �
�� � �� ��� � � � � �� � � ����" �
�� �

�
� � " � � � �� � � � � � � � ���" �� ���� �
� � �� � � � � � � " �"

� 	 � �� �" �
�
���
� �
� � "

�
� � " � �� ���

�� � ��� � � � � � � �� � � ��� � � �� �
�
�
� � " � � � � �"� � � � �� � �� � � � ��� � �

� �� � � �� � ��� � � 	 � � � �� �
�

� �
�
� �

�
� � � � �"� � � � �� � �� � ��� �� �� �

� �� � � �� � ��� � � 	 � � � �� �
�

� � � � " � " � � �� � � �� ��� � " � � � � �
�

� � � � � � " 	 �
� � �

�� � �� ��� � � � � �� � � ��� � " � � � � �
� �

�� �
�
� � " � � � �� � � � � � � � ���" �� ���� �

�� � ��� � � "��" � � � �� � � � � � � "��" � 	 � �� �" �
�
���
� �
� � "

�
� � " � �� ���� �

�� ����" ��� " � � �
� � " ��� � � "��"

�� � ���� #�� � � � � � � � ��� � � �� �

A.2. interpreter.ml 181

� � � � � �

� � ��� � � � � � � �� � � � � �� 	 � �� � � � � � � 	 � � � � � �
��� � � � " � � � � � � � � � � � ��� ���	 � ���� � � � ���	�� � � � � ���

�� � � �� � � � � 	�	 � � � � � � � � � ��� � � �� �
� � � " � � � � � � � � � �" � � �

� � � � " � � � � �
� � ��� � � � " � � � ��� � �

� � � � " � � " � �
� � ��� � � � " � � � ��� �

� � � � � � � #�� � � 	 �
� � �

�� � � � � ��� � � � " � �� � � ��� � ���	 � ���� � � � ���	 � � � � � � � � � �
 � � � � � �� � �

� " � � � � �" � � � �� � ��
� � � � � � ��# � � � #������ ��� � � �� 	 � ��� � � � �� 	 � � � � " �����

�� � ���� ��� � � � � ��� � � �� �
� � � � 	 � � " ��� � �

 �! �" � � � � ��
� � �� � ��� � � � � � � ��

�

���" � � ��� �� � � � � ��� �

� � � �
� �
� ���% 	 � "� � � � ��� � � ���% � ��� � � �%"�

� � 	 � � �
� ���% 	 � "� � � � ��� � � ���% � ��� � � �%"�

� " � � � � ��� �� � � � � " �

��� � ��� ����� ��� ����� ��� ����� ��� ����� ��� ������������� ������� � � ��������� ������� � � ��������� ������� � � ��������� ��� ���
��� � �% �" �"$#�� � � � "� � � � � !� � ���� �!" ���

�
 ���

�� � ���� � � ��� ��� � � 	�	 � 	 " � � " ����� ��� � 	 � ��� � � � "� ���� � � "� �� 	 � "�� �
���� � � � � 	�	 � ��� � ��"�
� 	 � �
	 � � � � ��� � � # � �

��� � � � 	 � � ��� � � � � ����� ��� � 	 � ��� � � ��� ��� � "� ���� � � "�
� 	 � "��

��� ��� 	�	 � � �!" � � � �� � � � �
	�	 � � ��"� �� 	 � " �

"�� ����� ��� � 	! � "� ���� � � "�
� 	 �

A.2. interpreter.ml 182

��� � �
� �

� ��� 	 �%"� � � �
� ����� ��� � 	 � � ��� � � "� ���� � � "� �� 	 �

� � ��� � ���� � � 	 "�� �
� � � "�
� 	 � � � �

 �� � "� ���� � �
� ��� "� ���� � � �� �

� � � � 	 � � 	 � � � ���

 � � � � � � �� �
��� � � ���

��� � � 	�	 � � � ���� � � 	 � � � � � � "� � ���%"� ���� � � "�
� 	 � �
� � ��� � � �

� ��"�� � ���� � � 	 "�� � � "� ���� � �
�

���"�� � � � � � � �� �
� � � � 	 � � � ���

� ����� ��� � 	 � � �%"� � � "� ���� � � "�
� 	 � �
� � ��� � ���� � � � 	

�
�
� � � �

� �
 � � � � � �

� � � � " ��������� �
� ���� � � � ���� � � ��� �

�
���

� �� � "�� � ���� � � � 	 "�� � �%"� ���� � �
���" � � � � � �

��� � � � ���

� �� � "�� � � � � � �� " �� � �� � ���� � � ���� � � � 	 "�� �

 � "� ���� � � �

���" � � �"� � � � �� � ���� " � �
�
� �� � � � � � � ���

���"� � � �" � � � �� � �� � " � �
�
� �� � � � � � �

���"� 	 � � �
� "�� # � �

� � � ���
� ���� � � 	 � "� ��� � � � � � ��� � � � ���

��� � "� � � � � 	�	 � ��� ���� � ����	 � � � � � � "� � ���%"� ���� � �

"�
� 	 � � � � ��� � 	 � � � 	 �
�
� � � �

� �
"�� �
	 � � � 	 "�� � ���%"� ���� �

� � � � � �
� �

� � � � � � �� � � � ���"� �
���

�
�

� � � � � � � � ���

� ����� ��� � 	 � � �%"� � ��� "� ���� � � "�
� 	 � �
� � ��� � � � � � �

� �
"�� � � � � "� ���� �

� � � � � �
� �

� � � � � � �� �
�
���

��� ���" �
�

���

��� 	 � � �
� ���% 	 � "� � � �

A.2. interpreter.ml 183

��� � � 	�	 � 	 ����� � � � � " � � � ��� � �� �
�
�" � 	 � "� �� 	 �

� � ��� � � � 	�	 � � 	 ����� � � ��� " � � � � "�
� 	 � � � �
��� � � 	�	 � � 	 " � � � � "� � � "� ���� � � � "�
� 	 � � "�� �

��� � ��� � ��� 	 �%"� � � �
� ����� ��� � 	 � � ��� � � "� ���� � � "� �� 	 � "�� �

� ����� ��� � 	 � � � "� � � "� ���� � � "� �� 	 � "��

��� 	 	 � � ���% 	 � "� 	 � � � �
�� � � ���% � � � ��� �� � ��� � � ���% � �
�� � � �#�������� � ��� � �� � � � � 	�	 � � � ���% 	 " � ���" � � ���% � � � 	�	 � 	 " � �

�
� �# ����� � � � � "� � � "� ���� � � "�
� 	 �

� � ��� � ���� � � 	 "�� � � "� ���� � � � � � "
� �

 � � � � �
� �� � "�� � ���� � ����� � ���% 	 "�� � �%"� ���� � � � � � "

���"�� � � � � �
���� � � ���% ���� � ���

� �� � "�� � ���� � � 	 "�� � � "� ���� � � � � � "
�

��� � 	 � � ���% 	 � "� � � �
�� � � ���% � � � ��� �� � ��� � � ���% �

 �
�� � ��" � � 	 � � � � "$# � �

� � � � � � �
� ��� �� �

��� 	 � �� � ��� � � � � � � �� �
� � ��� � � 	 � �� � � � � �

� ����� � � � � � � � ��� �� �
� � ���% 	�� � ��� � � �

�
� ��� � � � � � �"� � � � �� � �� �

� � ��� " �
� � 	 � � �

 �
��� � ��� � � � 	�	 � 	 ��" � � � � �%"� � ��� "� ���� � � "�
� 	 �

� � ��� � ���� � � 	 � � �
� � � � �

�� � ��� � �
	
� � � 	 � � �
��� # � �

� � � � ���� � � � � � ���% 	 � �
� � � � ���

� � � 	�	 � � 	
�
��� � � � � � � � 	�	 � � � � � ���% 	 � �

� ��� �� �
��� 	��

�
��� ��� � � � � � 	�	 � 	 � �

�
�

A.2. interpreter.ml 184

�
�

� � ���� � � ��� � ��� 	 � �
 �

"�� � ��� � �
	 " � � "� ���� � � �

�

��� � ����� � � � � � �
� "

�
� ��	 � � � �

�� �
�
� � � � �#

� ���
�
� � �

�
�

 � �� � � � � � � � � ��� � � " � �
	
�
� � ��� � "� �� 	 � �

� ����� ��� � 	 � � � " ��� " � �
� �

�
� � � � "� ���� � � � ��"��

��� � � �# ��� � � � � � � �
� "

�
� �
	 � � � �

�� �
�
� � � � �#

�
� � �

� � �
�
�

 � �� � � � � � � � � ��� � � " � �
	
�
� � ����� "� �� 	 � �

� ����� ��� � 	 � � � " ��� " � �
� �

�
� � � � "� ���� � � � ��"��

��� � ��� �
�
	 � � � � � � �"� � � � �� � �� � �����

� ���� � ��� � ��" � � � 	 � �� 	 � � � � � � �
��� � ��� � �#

�
�
	 � � � � � � �" � � � �� � ����

� ��� � �# � ��� � ��" � � � �	 ���� 	 � � � � � � �

��� �
� � #�� � � � "� � � � � � � ���� �$	 � � �
�

�
� � � 	 ���

�
� �

� � ����� � � � 	�	 � 	 " � � � ��� � �%"� ���� � � "�
� 	 � "�� �
�� � ���� � �" � � �
�� � � � �
	 � � �
� � � 	 � �� 	 � ����������� � �� � � ��� � "�
� 	 ��� # � �

��� � � " �
� 	 � � � " � �

� � � � � � � � �� � � ���"�
	 � � � �
� � � � � � ��� 	

�
��	 � � � � � �

	
�
��� � � � � � � � �� � � ���" 	 � � � �

�
�

� � 	 � � � �
 �

	 � � �
� � # � �

��� � � 	 � � � � � � �
� � 	 �	 � � � 	 � ��	 � � � � � � �
� ��� �	 � � � 	 � ��� � � � � �
� ��� ��� �

�
	 ��� � � �

 � � �" � ��� �
	 � � � � � �� � 	 � � � �����"� �
� ��� ��� � �#

�
�
	 ��� � � �

A.2. interpreter.ml 185

 � � �" � ��� �
	 � � � � � �� � 	 � � � �����"� �
� � 	 � � �

� � � 	 � ��� � �
 � � �" � � � �
	 � � � � � � � �" � � � �
	 � � � � � �� � 	 � � � �����"���

� �����
� �
� � � 	 � ��� � �
 � � �" � � � �
	 � � � � � � � �" � � � �
	 � � � � � �� � 	 � � � �����"���

�
� � ���"����

�
 � � ��� � � �� �

� � ��	 � � � � � 	 � � � �
� � � � � � � � �" � �

� � � � � � � � � � � � � �
���" ���

�
 �

� � � � � � � � � � � � � �
�� � � � ���"���� � � �

 � � � 	 � � � � � �� � ���"����
�
 � � � � � � � �

���" �
� � � � � � � � � � � � � �

���" ���
�
 �

� � � � � � � � � � � � � �
�� � � � ���"���� � � �

 � � � 	 � � � � � �� � ���"����
�
 � � � � � � � �

���" �
�
�

� � � � �" � � � ��� �
� ��������� � � �� � � �� �
 � �� � � � �� � � ���"����

�
 � � 	�	 ���

�
� � � � ���� � � 	�	 � �

#�� ��� � �
�
�
	 � � � � ���

�� � � � 	�	 � � � � � �� 	 � � � � 	�	 � �
�� � � ��� ��� � � �
 � � � � � � � � �� �

� ���" �

 �
�� � ��� � � "� �
	 � � �
� � � # � �

� � ��� �
�
	
�
� � � � ��� � �#

�
�
	
�
� � �!" � �� � � �

A.2. interpreter.ml 186

�
�

� � � �

 �

� �� � 	 � � � � ��� � � " �# � �

� ��� � �
	 � � ��� � � � �
� ���	 � ��� � � � � ��� � � � � ��� � � � ��� "�
� 	 � � � �

���� � �
� � � ��� � � � ��� � � "� �� 	 � � �

�� � "�� �
	 � � �
� "$# � �

� �� �
� � 	�� � � � � � � �
 � � � �

� � � 	
	 ��� � � " � � � �� �
� �� �

� � 	�� ��� � � � �
���" !"

�
�

� ��"

 �
��� � � 	�	 � � 	 "�� � � � � � "� ���� �

�
� �

� � ��� ��� � � � ��� � � ���

"�
� 	 � � "�� � "�
� 	 �
� � 	 	 � � ���% 	 � � ��� � � 	 � � � �

�� � � � 	�	 � � �
 � � � � � �� � � � 	 � # � � � � 	�	 �
���"�� � � � � � �� � � � 	�	 � �
���"� � � �� � � � �� � � � � � �� � � �� � � ���

� � � � � 	 � # � � � � 	�	 ���
 �
� ���	 � ��� � � � � ��� � � � � ��� � � � ��� "�
� 	 � � � �

���� � �
� � � ��� � � � ��� � � "� �� 	 � � �

��� � � 	�	 � � 	 " � � � ���% � �%"� ���� �
�
� �

� � ��� ��� � � � ��� � � ���

"�
� 	 � � "�� � "�
� 	 �
� ��� 	 � � ���% 	 � � ��� � � � � �

�� � � �� � � � � � �� � � ����� �
� � � � � 	�	 � �

A.2. interpreter.ml 187

� ���	 � ��� � � � � ��� � � � � ��� �

� � ��� "� �� 	 � � � �
��� � �

� � � ��� � � � ��� � � "�
� 	 � � �
��� � �� � � 	 � � � � � ���% � ��� "� ���� � � "�
� 	 � �

� � ��� � � �
"�
� 	 � � � � �

��� � � 	�	 � � 	 " � � � � � "� ���� � �
"� �� 	 � � � "�� ���

"�
� 	 �
� � 	 � � �

�
�
	
�
� � �����

� �
�
�
	
�
� � �

�� � ����� ��� � 	 � � � �� � � � �� � � ����� �� � � � �!��� � � "�
��� � � � � 	�	 �

 �
��� ��������� � 	 	 " � � � � � � ��� ��� �%"� ���� � � "�
� 	 � "��

�
�

� � �
� � � � � � � � � �

 � �
�

� � � � � �� 	 �� � " � � � �
�
�

� � � ���" ��� � �
�

��� �
�

	 � � �
� � � ��� � # � �

� � � � " � �
� � � � "�� � � � 	�	 � 	 " � � "� ���� � �

� �
��� "�
� 	 �

� � � � " � �
 � � � � � � 	 ��� � ���

 �� �%"� ���� ��� � � "� ���� � � ��� � � 	�	 �
�
� � � ��	 � � � �

� �� � � � � � � �� � 	 � � � � " # � �

� ��� �� �
� ���% 	 � �� �%��� ��� � � �

"�� � � � ��	 � � � 	�� � � ��� � � � 	�	 � 	 ��� � � � � ��� ���%"� ���� � � "�
� 	 �
�
�

� � � �

���" ���
� � �����

"�� � � � ��	 � � � 	 " � ���%"� ���� � � "�
� 	 �
���" !"�� � � � 	�	 � 	 " � � "� ���� � � "�
� 	 �

�
�

� � �
� � � � � � � � � �

�
� � " � � � � � ��� � � �� �

� � ��� ����� � � � � ��" � � "
�
	 ��� � � �!��" ��� " �

�
� �#

� ���
�
� � � " ���

�
� " � � � ��� �

A.2. interpreter.ml 188

� � � ��� � �#
����� � � � � ��" � � "

�
	 ��� � � � ��" ��� " �

�
� �#

�
� � �

� � � " ���
�
� " � � � ��� �

� ��� � � ���

�
� � �� � � �� � � ��� � � �� �

� � ��� �
�
	 ��� � � � � � ��� �

�
	 �� � � �� ���

�

� � � ��� � �#
�
�
	 ��� � � � � � ��� � �#

�
�
	 �� � � ������

�

� � 	 	 � � ��� 	 � � ��� � 	 �
�
� � � 	 	 � � ���% 	 � � ��� � 	 �

�����
� ��� � � ���

��� � ��� ����� ��� ����� ��� ����� ��� ����� ��� ������������� ������� � � ��������� ������� � � ��������� ������� � � ��������� ��� ���
��� � �� � � �� � � �� � � �� � � �� ���

�� � ���� �� �
�
� � " � � ��� � � �� �

� � ��� � � � � � �
	 � � � � � � � � � ���	 ��� � � " � �

� � �� �
�
� � " �

� � � � �# ��� � � � � � �
	 � � � � � � � ��� ���	 � � � � " � �

� � �� �
�
� � " �

�
�

� � � � ��	 � � �

�� � �����
�
 � � � �

� � � ��� � � �
��� � � ��� �� � �

	 � � � � � � � ���%"� ���� � � � � � 	 � � �
� � ��� � ���� � �

�
�� 	 " � �%"� ���� � � " ��� " �

� �
� �� 	 � ��� � � � ��� " � � �� �

�
� � " � � " ��� " � �

 �� �%"� ���� ��� � � "� ���� � � � � �� � � �
�
��

�
� � � � 	 � � � � � � � � � � �� �

� �� � ��� � � � " � �� � � � � � ��� ��# � �!�� � � �
�
�� � � �

� � ��� � � � ����� �
�
� � � ���� � �

� � � � "� " ��� " �
� �� � � �

�
�� �

��� � � � " � � � � ��� � ������������������� � � � �
� � �"� �� � �" �� �

 � �

���"

� �� �
��� � � � " � � � � � � �" � ��� � ������������������� � � � �
�� � " � �� � � � �� � � � �

A.2. interpreter.ml 189

 � " � � � � � �� � � �

���"� � � �"� �� � �" �� �

 � �
�
�

���� � � � " � �� � � � � � � ��� � ������������������� � � � �
� � �" � � �" �� �

190

Bibliography

[Aı̈t-Kaci 91] H. Aı̈t-Kaci. Warren’s Abstract Machine: A Tutorial Recon-

struction. MIT Press, Cambridge, MA, 1991.

[Alberti et al. 98] F. Alberti, N. Ghani, V. de Paiva, E. Ritter. An efficient linear

abstract machine with single-pointer property. unpublished,

1998

[Armelin Pym 02] P. Armelı́n, D. Pym. Bunched Logic Programming. Proc. IJ-

CAR 2001, LNAI 2083:289–304, 2001.

[Avron 92] A. Avron. Whither relevance logic? Journal of Philosophical

Logic 21:243–281, 1992.

[Bollen 91] A.W. Bollen. Relevant Logic Programming. Journal of Auto-

mated Reasoning, 7:563–585, 1991.

[Bugliesi et al. 93] M. Bugliesi, E. Lamma, P. Mello. Modularity in Logic Pro-

grammimg. Journal of Logic Programming, Elsevier, 1993.

[Cervesato et al. 00] I. Cervesato, J. Hodas, F. Pfenning. Efficient resource man-

agement for linear logic proof search. Theoretical Computer

Science, 232:133–163, 2000.

[Clocksin 97] W. Clocksin. Clause and effect. Springer-Verlag, 1997.

[Clocksin Mellish 94] W. Clocksin, C. Mellish. Programming in Prolog.. Springer-

Verlag, 1994.

[Cousineau Mauny 98] G. Cousineau, M. Mauny. The Functional Approach to Pro-

gramming. Cambridge University Press, 1998.

[Dyckhoff 92] R. Dyckhoff. Contraction-free sequent calculi for intuitionis-

tic logic. Journal of Symbolic Logic, 57:3, 1992.

191

[Došen 92] K. Došen. The first axiomatization of relevant logic. Journal

of Philosophical Logic 21:339–356, 1992.

[Elliot Pfenning 91] C. Elliot, F. Pfenning. A Semi-Functional Implementation of

a Higher-Order Logic Programming Language. In P. Lee, edi-

tor, Topics in Advanced Language Implementation, 289–325,

MIT Press, 1991.

[Gabbay 91] D. Gabbay, F. Kriwaczek. A Family of Goal Directed Theorem

Provers Based on Conjunction and Implication: Part 1. Jour-

nal of Automated Reasoning, 7:511–536, 1991.

[Gabbay 92] D. Gabbay. Extending the Curry-Howard Interpretation to

linear, relevant and other resource logics. Journal of Symbolic

Logic, 1992.

[Galmiche Méry 01] D. Galmiche, D. Méry. Proof-search and countermodel gener-

ation in propositional BILogic. TACS 2001, 2001.

[Galmiche et al. 02] D. Galmiche, D. Méry, D. Pym. Resource Tableaux (Extended

Abstract). Proceedings of CSL ’02, Edinburgh, 2002.

[Girard 87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 1–

102, 1987.

[Girard et al. 89] J.-Y. Girard, Y. Lafont, P. Taylor. Proofs and Types. Cambridge

University Press, 1989.

[Gunter 92] C.A. Gunter. Semantics of Programming Languages. The MIT

Press, 1992.

[Harland 92] J. Harland. On Normal Forms and Equivalence for Logic Pro-

grams. Proceedings of the Joint International Conference

and Symposium on Logic Programming 146-160, Washing-

ton D.C, 1992.

[Harland 93] J. Harland. Success and Failure for Hereditary Harrop Formu-

lae. Journal of Logic Programming, 17:1–29, 1993.

192

[Harland Pym 97] J. Harland, D. Pym. Resource-distribution via Boolean con-

straints (extended abstract). Proc. CADE-14, LNAI, 1249: 222–

236, Springer, 1997.

[Harland et al. 96] J.A. Harland, D.J. Pym, M. Winikoff. Programming in Lygon:

an overview. In M. Wirsing and M. Nivat, editors, LNCS 1101:

391–405, 1996.

[Haynes 87] C. Haynes. Logic Continuations. Journal of logic program-

ming, Elsevier, 1987.

[Hodas 94] J.S. Hodas. Logic Programming in Intuitionistic Linear Logic:

Theory, Design, and Implementation. PhD Thesis, 1994.

[Hodas Miller 94] J.S. Hodas, D. Miller. Logic programming in a fragment of

intuitionistic linear logic. Information and Computation,

110(2):327–365, 1 May 1994.

[Ishtiaq Pym 98] S. Ishtiaq, D. Pym. A Relevant Analysis of Natural Deduction.

J. Logic Computat. 6:809–838, 1998.

[Ishtiaq O’Hearn 01] S. Ishtiaq, P. O’Hearn. BIas an Assertion Language for Muta-

ble Data Structures. Proceedings of POPL, 2001.

[Kleene 52] S.C. Kleene. Permutability of inferences in Gentzen’s calculi

LK and LJ. Two papers on the predicate calculus. Memoirs

of the American Mathematical Society, number 10, 1952.

[Kowalski 79] R. Kowalski. Logic for Problem-solving. North-Holland, Else-

vier, 1979.

[Kripke 65] S.A. Kripke. Semantical analysis of intuitionistic logic I.

In J. Crossley and M. Dummett, editors, Formal Systems

and Recursive Functions, 92–130. North-Holland, Amster-

dam, 1965.

[Lafont 88] Y. Lafont. The Linear Abstract Machine. Theoretical Com-

puter Science, 59:157–180, 1988.

193

[Leroy 96] X. Leroy. A modular module system. Rapport de recherche

2866, INRIA, 1996.

[Lloyd 87] J.W. Lloyd. Foundations of Logic Programming. Springer-

Verlag, 1987.

[Loveland Nadathur 94] D. Loveland, G. Nadathur. Proof Procedures for Logic Pro-

gramming. in Handbook of Logic in AI and Logic Program-

ming, D. Gabbay, C. Hogger and A. Robinson (eds.), Oxford

University Press, 1994.

[Miller 81] D. Miller. A logical analysis of modules in logic programming.

Journal of Logic Programming, 6(1& 2):431–483, 1981.

[Miller 92] D. Miller. A Proposal for Modules in
�

Prolog. 1992.

[Miller et al. 91] D. Miller, G. Nadathur, F. Pfenning, A. Ščedrov. Uniform

proofs as a foundation for logic programming. Annals of Pure

and Applied Logic, 51:125–157, 1991.

[Nadathur 93] G. Nadathur. A Proof Procedure for the Logic of Hereditary

Harrop Formulas. Journal of Automated Reasoning, 115–145,

1993.

[Nadathur Tong 99] G. Nadathur, G. Tong. Realizing Modularity in
�

Prolog. Jour-

nal of Functional and Logic Programming, MIT, 1999.

[O’Hearn 99] P. O’Hearn. Resource Interpretations, Bunched Implications

and the �
�

-calculus, 1999.

[O’Hearn 02] P. O’Hearn. On Bunched Typing. Journal of Functional Pro-

gramming, 2002.

[O’Hearn Pym 99] P. O’Hearn, D.J. Pym. The logic of bunched implications. Bul-

letin of Symbolic Logic, 5(2):215–244, June 1999.

[Plotkin 81] G. Plotkin. A structural approach to operational semantics.

Technical Report DAIMI FN-19, Aarhus University, 1981.

194

[Polakow Pfenning 98] J. Polakow, F. Pfenning. Ordered linear logic programming.

Technical Report CMU-CS-98-183, Carnegie Mellon Univer-

sity, 1998.

[Pym 98] D. Pym. Logic Programming with Bunched Implications.

1998.

[Pym 99a] D. Pym. On bunched predicate logic. In Proc. LICS’99, 183–

192. IEEE Computer Society Press, 1999.

[Pym 02] D. Pym. The Semantics and Proof Theory of the Logic of

Bunched Implications. Applied Logic Series, Kluwer Aca-

demic Publishers, 2002.

[Pym et al. 02] D. Pym, P. O’Hearn, H. Yang. Possible worlds and re-

sources: The semantics of BI. Submitted. Manuscript at

http://www.dcs.qmw.ac.uk/ � pym, 2002.

[Pym Harland 94] D. Pym, J. Harland. A uniform proof-theoretic investigation

of linear logic programming. J. Logic Computat., 4:175–207,

1994.

[Read 88] S. Read. Relevant Logic, A Philosophical Examination of In-

ference. Basil Blackwell, 1988.

[Reynolds 93] J. Reynolds. The Discoveries of Continuations. Lisp and Sym-

bolic Computation, 6, 233–247, 1993.

[Schmidt 86] D. Schmidt. Denotational Semantics. Allyn and Bacon, 1986.

[Tarski 56] A. Tarski. Logic, Semantics, Methamatematics. Oxford Uni-

versity Press, 1956.

[Tennant 92] N. Tennant. Autologic. Edinburgh University Press, 1992.

[Urquhart 72] A. Urquhart. Semantics for relevant logics. Journal of Sym-

bolic Logic, 1059–1073, 1972.

[van Dalen 97] D. van Dalen. Logic and Structure. Springer, 1997.

195

[vanEmden Kowalski] M. van Emden, R. Kowalski. The Semantics of Predicate Logic

as a Programming Language. J. ACM 23,4:733–742, 1976.

[Van Roy 94] P. Van Roy. 1983-1993: The Wonder Years of Sequential Pro-

log Implementation. Journal of Logic Programming, Elsevier

North-Holland, 1994.

[Vickers 1989] S. Vickers. Topology Via Logic. Cambridge University Press,

1989.

[Winikoff 97] M. Winikoff. Logic Programming with Linear Logic. PhD

Thesis, 1997.

[Winikoff Harland 95] M. Winikoff, J. Harland. Implementation and development

Issues for the Linear Logic Programming Language Lygon.

Proceedings of the Eighteenth Australasian Computer Sci-

ence Conference, 563–572, 1995.

[Zhang 91] G.-Q. Zhang. Logic of Domains Birkhäuser, 1991.

Corrections to Thesis “Programming with

Bunched Implications”

December 16, 2002

Page 45: “lemma 3.6.1” should read “lemma 3.7.1”.

Page 72: the description of n and n′ should say “non-negative integers” in-
stead of just “integers”.

Page 74: in the case −∗L “to bring α to top-level” should read “to bring φ−∗α
to top-level”.

Pages 81 and 82: the justification for the first step on each of the proofs should
be “Definition 4.2.6”.

Page 84: in rule ∧R (and also in Table 4.1) all instances of 〈∆|s〉 should be
changed to 〈∆|s′〉.

Page 85 (and Table 4.1): rule ∧Riii should be changed to

〈Γ|s〉nBB〈εε|s
′〉n′ òφ 〈Γ|s〉nBB〈εε|s

′′〉n′′ òψ
∧Riii

〈Γ|s〉nBB〈εε|s
′′′〉n′′′ òφ ∧ ψ

were s′′′ depends on s′ and s′′ in the following way:

match s’, s’’ with

| ξ ::s , -> ξ ::s
| , ξ ::s -> ξ ::s
| any1,any2 -> any2

Notice the absence of the theorem flag in all open boxes.

Page 87: in rule → Riii the proof figure should be

φ; (Γ − ∆) ` ψ
→ R

Γ − ∆ ` φ → ψ

1

	RR-03-07.pdf
	RR03-7correct.pdf

