
MPEG-4 Software Video Encoding
Hamosfakidis, Anastasios

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/4744

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/4744

MPEG-4 Software Video Encoding
Using Parallel Processing
Anastasios Hamosfakidis

Department of Computer Science

Research Report No. RR-01-05 ISSN 1470-5559 April 2001

MPEG-4 SOFTWARE VIDEO ENCODING
USING PARALLEL PROCESSING

Anastasios Hamosfakidis

A Thesis submitted in fulfilment of the requirements
of the degree of doctor of Philosophy

in the University of London

Department of Computer Science
Queen Mary and Westfield College

University of London.

2001

2

Abstract

This thesis presents a software model that allows a parallel decomposition of the

MPEG-4 video encoder onto shared memory architectures, in order to reduce its

total video encoding time.

Since a video sequence consists of video objects each of which is likely to have

different encoding requirements, the model incorporates a scheduler which

(a) always selects the most appropriate video object for encoding and,

(b) employs a mechanism for dynamically allocating video objects allocation onto

the system processors, based on video object size information.

Further spatial video object parallelism is exploited by applying the single program

multiple data (SPMD) paradigm within the different modules of the MPEG-4

video encoder. Due to the fact that not all macroblocks have the same processing

requirements, the model also introduces a data partition scheme that generates tiles

with identical processing requirements. Since, macroblock data dependencies

preclude data parallelism at the shape encoder the model also introduces a new

mechanism that allows parallelism using a circular pipeline macroblock technique

The encoding time depends partly on an encoder’s computational complexity. This

thesis also addresses the problem of the motion estimation, as its complexity has a

significant impact on the encoder’s complexity. In particular, two fast motion

estimation algorithms have been developed for the model which reduce the

computational complexity significantly.

3

The thesis includes experimental results on a four processor shared memory

platform, Origin200 that demonstrate the efficiency of the model in terms of

p a r a l l e l i s m a n d e n c o d i n g speedup.

4

 ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisor, Professor Yakup

Paker for his guidance and encouragement. His support has greatly contributed to

my research and to the preparation of this thesis. I have truly benefited and

enjoyed working with him.

I would also like to express my sincere appreciation to my graduate committee

members, Dr Alan Pearmain, and Dr. Sylvia Wilbur, for their support.

I wish to thank the IRISA INRIA Rennes, France, the CSAR centre of University

of Manchester, and the MoMuSys European ACTS project for supporting this

research. The TMR programme of the European Union provided me with a very

generous research award, for which I am grateful.

I would also like to acknowledge to Hanin Naguib, David Hawes, and Dr William

Ferreira for their support in preparing this thesis.

Finally, I owe a considerable debt of gratitude to my parents, who have provided

their unconditional support for this adventure, in the way that only parents can.

5

Table of Contents

1 Introduction...9
1.1 Introduction to Video Compression ...9
1.2 Research Problem and Motivation .. 11
1.3 Contributions of the thesis ... 13
1.4 Organisation of the Thesis.. 15

2 The MPEG-4 Video Encoder Problem ... 17
2.1 The Research problem .. 18

2.1.1 MPEG-4 video encoder computational complexity .. 18
2.1.2 Parallel processing of the MPEG-4 Video Encoder.. 21

2.2 Proposed framework for real time MPEG-4 parallel encoding.. 26
2.3 Implementation issues ... 29

2.3.1 Hardware architecture... 29
2.3.2 Other MPEG-4 video encoder characteristics useful for the experiments 30

3 Fast Motion Estimation Block-based Algorithms .. 33
3.1 Overview .. 33
3.2 MPEG-4 motion estimation ... 34

3.2.1 Motion estimation of P-VOPs ... 34
3.2.2 B-VOPs motion estimation ... 35

3.3 Motion estimation algorithms... 35
3.4 Proposed Fast Motion Estimation Methods... 39

3.4.1 Fast motion prediction scheme for bi directional coding. 39
3.4.2 A Hexagonal (HS) algorithm for fast block matching motion estimation................... 49

3.5 Conclusions .. 61
4 A scheduler for real-time MPEG-4 video encoding.. 63

4.1 MPEG-4 scheduling and heuristic schedulers ... 63
4.2 Proposed real time MPEG-4 heuristic scheduler .. 66

4.2.1 VOP selection mechanism.. 66
4.2.2 VOP distribution policy ... 71

4.3 Conclusions .. 73
5 A Shape Adaptive Data Partitioning Scheme for MPEG-4 Video Encoding.......................... 74

5.1 Dynamic shape adaptive load balancing scheme for MPEG-4.. 74
5.1.1 A Dynamic Shape Adaptive Data Partition Scheme ... 76

5.2 Texture coding .. 80
5.2.1 Overview of texture coding.. 80
5.2.2 Experimental results of the proposed dynamic shape adaptive scheme on texture coding
... 81

5.3 Motion Estimation and dynamic shape adaptive scheme .. 84
5.3.1 Motion estimation/Motion compensation.. 85
5.3.2 Experimental results.. 85

5.4 Shape coding and proposed scheme... 94
5.5 Conclusions .. 94

6 A New Fast Parallel Implementation of MPEG-4 Binary Shape Coding 96
6.1 Outline... 96
6.2 Binary Shape Encoder ... 97
6.3 Fast Search Shape Motion Estimation... 98

6.3.1 Description of shape motion .. 98
6.3.2 Fast motion estimations algorithms and shape search ... 100

6.4 A Parallel Shape Motion Estimation Scheme... 104
6.4.1 Motion estimation dependencies.. 104
6.4.2 Dependencies in the encoding of shape mode decisions.. 105
6.4.3 Dependencies imposed by the Context Arithmetic Encoder (CAE)......................... 105

6.5 The Proposed Parallel Binary Shape Coding Scheme .. 107
6.6 Experiments .. 110
6.7 Conclusions .. 114

7 Experimental Results for the “Producer-Consumer” Model. ... 116
7.1 Outline of the experimental results... 116

6

7.2 Single VOP per frame experiments .. 119
7.3 Multiple VOPs per frame experiments .. 124
7.4 Conclusions .. 127

8 Conclusions and Future Work... 129
8.1 Conclusions .. 129
8.2 Further work.. 131
8.3 Publications ... 133

9 REFERENCES.. 135

7

List of Figures

Figure 2.1: Basic MPEG-4 video encoder structure... 19@~
 Figure 2.2: MPEG-4 encoder software structure 21@~
Figure 2.3: Producer-Consumers model for the parallel VOPs encoding 23@~
Figure 2.4: The different types of macroblocks in the VOP (News 2) 25@~
Figure 2.5: Proposed dynamic VOPs allocation mechanism on MPEG-4 parallel encoding.... 29@~
Figure 2.6: QCIF video sequence News, (b) CIF sequence Coastguard............................... 32@~
Figure 3.7: The inner zone is shaded grey. In Step1 track the motion in the inner zone, and in Step
2 limit the search. If motion is tracked at C area of inner zone, then the search in step 2 is limited
to zone C in outer zone. .. 40@~
Figure 3.8: Search area-inner/outer zones and sub area partitions 40@~
Figure 3.9: Sign of the macroblock displacement at the search area.................................... 41@~
 Figure 3.10: Search area of outer zone UR and steps for deriving the final MV. 43@~
 Figure 3.11: Size of search area: (a) original search area, (b) inner search area- Step 1, (c) additional
search area for case 2, (d) the additional search areas for case 3.. 46@~
Figure 3.12: Motion vector distribution for (a) News 0, (b) News 1, and (c) Rallycross sequences.
X and Y axis specify the range of the search area while Z axis gives the probability in percentage of
the motion vector distribution within the search area... 51@~
Figure 3.13: (a) Hexagon and initial star patterns, neighbouring points of the initial star are shown
by grey colour, (b) Expanded star pattern for no edge points... 55@~
Figure 3.14: (a) all possible shapes of the hexagonal pattern when it reaches the left/right or the
up/down limits of the search area, and (b) possible star shapes (initial and expanded) for a down/up
or right edge MBD points.. 55@~
 Figure 3.15: HS search path for MV (3, -4)...................... 56@~
Figure 3.16: HS search path for MV (-7,7).. 56@~
Figure 3.17: PSNR comparisons of HS, DS, NTSS, 4SS, and FS for (a) “Rallycross, (b) News 0,
and (c) News 1... 59@~
Figure 3.18: The 55th estimated frame for the Rallycross sequence using different searching
algorithms. Estimated frames using (a) FS, (b) DS, (c) 4SS, (d) NTSS, and (e) HS. 61@~
Figure 4.19: Taxonomy of scheduling heuristics .. 64@~
Figure 4.20: VOPs playout chart... 69@~
Figure 4.21: Deadline VOP list sorted in an ascending order .. 70@~
Figure 5.22: Partitioning methods: (a) Stripwise, (b) Blockwise, and (c) Recursive partitioning
... 75@~
Figure 5.23: Data partition example on “News”. (a) Strip-wise partitioning and (b) blockwise
partitioning... 76@~
Figure 5.24: The dancer video object for the News sequence and its macroblock shape info table
... 77@~
Figure 5.25: VOP generated tiles of dancer video object when is encoded onto a two- processor
platform ... 78@~
 Figure 5.26: Previous neighboring blocks used in DC prediction...................... 81@~
Figure 5.27: Speed up curves for the News 0, News 1, and Coastguard 0 video objects......... 83@~
Figure 5.28: Speed up curves based on P-VOPs measurements for (a) the news 0 , (b) news 1, and
(c) coastguard 0 video objects when the HS fast algorithm is applied. 88@~
Figure 5.29: Speed up curves based on B-VOPs measurements for (a) news 0, (b) news 1, and (c)
coastguard 0 video objects when the HS fast algorithm is applied. 90@~
Figure 5.30: Speed up curves based on P-VOPs measurements for (a) news 0, (b) news 1, and (c)
coastguard 0 video objects when the full search algorithm is applied.................................. 91@~
Figure 5.31: Speed up curves based on B-VOPs measurements for the News 0, News 1, and
Coastguard 0 video objects when the full search algorithm is applied................................. 93@~
Figure 6.32: Candidates for the shape motion vector prediction .. 99@~
Figure 6.33: Shape MV distribution for (a) News 0, and (b) Coastguard101@~
Figure 6.34: LDSP and SDSP patterns ..103@~

8

Figure 6.35: (a) "intra" template and context construction, (b) "inter" template and context
construction ...106@~
 Figure 6.36: Current bordered Macroblock...........................106@~
Figure 6.37: Macroblock pipeline mechanism...108@~
Figure 6.38: Shape coding VOP parallelism for tile length equal to one row......................109@~
 Figure 6.39: Shape coding VOP parallelism for tile length greater than one row110@~
 Figure 6.40:Speed up curves for (a) news 0 and (b) coastguard 0 alpha planes..................113@~
Figure 6.41: Total shape encoding times for the original and the recommended fast parallel scheme.
..114@~
Figure 7.42: (a) Example of segmented News sequence with three objects (news 0, news 1 and
news 2), (b) Example of segmented Coastguard sequence with three variable size objects
(coastguard 0, coastguard 1 and coastguard 2..119@~
 Figure 7.43: Single VOP per frame encoding using the producer-consumer model
..121@~
Figure 7.44: Encoding frame rate for news 1, coastguard 1, and news 2 video objects123@~
Figure 7.45: Total encoding times for original MPEG-4 encoder and for proposed framework.
..127@~

9

List of Tables

Table 2.1 MPEG-4 CORE PROFILE ... 30@~
Table 3.2 PSEUDOCODE OF THE PROPOSED MOTION PREDICTION SCHEME FOR
TRACKING THE DIRECTION OF MOTION .. 44@~
 Table 3.3 PSEUDOCODE FOR DERIVING THE MV IN THE OUTER ZONE..... 45@~
Table 3.4 AVERAGE SEARCH POINTS PER MOTION VECTOR ESTIMATION AND PSNR
FOR THE FIRST 100 FRAMES OF NEWS 0 AND NEWS 1-IBP PATTERN.................. 48@~
Table 3.5 AVERAGE SEARCH POINTS PER MOTION VECTOR ESTIMATION AND PSNR
FOR THE FIRST 100 FRAMES OF RALLYCROSS- AVERAGE COMPLEXITY FOR THE
THREE VIDEO SEQUENCES... 48@~
Table 3.6 AVERAGE SEARCH POINTS PER MOTION VECTOR ESTIMATION AND PSNR
FOR THE FIRST 100 FRAMES OF NEWS 0 AND NEWS 1-IBBP PATTERN................ 49@~
Table 3.7 AVERAGE SEARCH POINTS PER MOTION VECTOR ESTIMATION AND PSNR
FOR THE FIRST 100 FRAMES OF RALLYCROSS- AVERAGE COMPLEXITY FOR THE
THREE VIDEO SEQUENCES... 49@~
Table 3.8 AVERAGE SEARCH POINTS PER MOTION VECTOR ESTIMATION AND PSNR
FOR THE FIRST 100 FRAMES OF NEWS 0 AND NEWS 1 .. 57@~
Table 3.9 AVERAGE SEARCH POINTS PER MOTION VECTOR ESTIMATION AND PSNR
FOR THE FIRST 100 FRAMES OF RALLYCROSS- AVERAGE COMPLEXITY FOR THE
THREE VIDEO SEQUENCES... 57@~
Table 4.10 PSEUDOCODE FOR THE PROPOSED VOP LIST CONSTRUCTOR............ 69@~
Table 5.11 MPEG-4 TOOLS AND THEIR OPERATIONS ON MACROBLOCKS............ 74@~
Table 5.12 PSEUDOCODE FOR THE PROPOSED SHAPE ADAPTIVE SCHEME 79@~
Table 6.13 SHAPE CODING TIMES FOR THE FIRST 100 FRAMES OF NEWS AND
COASTGUARD SEQUENCES.. 96@~
Table 6.14 MACROBLOCK SHAPE MODE DECISIONS.. 97@~
Table 6.15 AVERAGE COMPLEXITY AND BITS PER VOP FOR THE FIRST 100 FRAMES
OF NEWS 0 AND COASTGUARD 0..104@~
Table 6.16 TOTAL SHAPE ENCODING TIME FOR NEWS 0111@~
Table 6.17 TOTAL SHAPE ENCODING TIME FOR COASTGUARD 0........................111@~

1
0

Chapter 1

1 Introduction

1.1 Introduction to Video Compression

Moving images represented as a digital video have become an important commodity

in our society, and are increasingly used in areas such as education, communication,

entertainment and publishing [Smoliar 94]. Demand for digital video has been

growing at a phenomenal rate in the past few years. One of the major obstacles to

deploying digital video in many applications is the fact that huge amount of digital

data is required to represent uncompressed video which easily overwhelm the

available storage systems and communication channels. For example, a digital video

sequence that conforms to the ITU-R 601 digital video recommendation (720x486

pixels per frame, 30 frames per second and 16 bits per pixel), which has a

resolution comparable to the National Television System Committee (NTSC)

analog video signal, has an uncompressed rate of 168 megabits per second (Mbps)

[Rec. 601, 90] [Tekalp 95]. That means that a typical two hour movie would

occupy approximately 150 giga-bytes of disk space. In order to transmit, access

and store video, this colossal quantity of data obviously needs to be compressed.

In the traditional representation a video signal contains sample redundancy

[Rabbani 91]. Redundancy can be classified as spatial due to the correlation

between the neighbouring pixel values, spectral due to correlation between the

1
1

different colour planes /spectral bands, or temporal due to correlation between

subsequent frames in a video stream.

The main objective of a video compression algorithm is to exploit both the spatial

and temporal redundancy of a video sequence such that fewer bits needs to be used

to represent a video sequence up to an acceptable visual distortion.

During the past decade various compression methods [Watkinson 95] have been

developed to overcome the problem of compression leading to a number of

encoding standards such as H.261 [CCITT 90], H.263 [ITU-T 96], MPEG-1

[11172-2, 93], MPEG-2 [13818-2, 94], [Mitchell 96], [Eckart 95], and MPEG-4.

The current MPEG-4 work item of ISO MPEG, first proposed in May 1991 and

approved in July 1993, initially targeted audiovisual coding at a very low bit rate.

The motivation for MPEG-4 resulted from the common belief that either MPEG-1

or MPEG-2 was inadequate for a variety of applications where either the channel

has a low bit rate or the storage medium has a reduced capacity, but that there is a

need to store long audiovisual sequences. Soon the scope of the MPEG-4 changed.

It has become a coding standard that supports new ways for communication,

access, and manipulation of digital audiovisual data. The focus of MPEG-4

[Ebrahimi 97], [Koenen N3156, 99], [Koenen N2723, 99] [Bhaskaran 97]. [IEEE

CSVT 97] is the convergence of common applications of three major and largely

interrelated industries: telecommunications, computing and TV/film. MPEG-4

supports standard functionalities such as synchronisation, low delay mode, virtual

channel allocation, flexibility, security, the ability to handle various audiovisual

contents and formats, and the ability to access quality of decoded audio or video.

Additionally, eight key functionalities have been identified which support the

MPEG-4 focus and are not thought to be well-supported by existing (MPEG-1/2)

or other emerging standards. These are: content-based manipulation and bitstream

1
2

editing, content-based multimedia tools, content-based scalability, coding of

multiple concurrent data streams, hybrid and synthetic coding, improved coding

efficiency, improved temporal random access at very low-bit rates, and robustness

in error prone environments.

Moreover, with a flexible toolbox approach, MPEG-4 is capable of supporting

diverse new functionalities, and hence will cover a broad range of present and future

multimedia applications such as, content-based storage and retrieval, surveillance,

studio/television post production, and mobile multimedia applications.

1.2 Research Problem and Motivation

At present very few MPEG-4 video coding hardware solutions are available, as it

was found that dedicated hardware is less flexible and could become obsolete. A

hardware encoder is often optimised [Gove 94] [Hamosfakidis 97] for a particular

coding algorithm and therefore could not be used for other coding algorithms. Thus

software-based implementations have been found to be a more viable solution. A

software encoder allows flexibility since coding algorithms such as motion

estimation, and discrete cosine transformations (DCT), can be substituted by other

more efficient algorithms, and permits the inclusion of new tools, which are

desirable features for the MPEG-4 based multimedia applications. In addition, it

offers portability and reusability as a software encoder could be ported easily from

one system to another.

The main obstacle of software encoding is its poor encoding speed compared to

hardware encoding. To overcome this, parallel processing can be used to which the

structure of the video encoder happens to be very suitable. More specifically, a

video sequence is a series of frames in time, and therefore a natural choice is to

parallelise the encoder at the temporal dimension of the video signal. In temporal

parallelism, processors are assigned groups of frames from a video sequence. The

1
3

sequence is split up into groups of frames and each processor works on its own

group. There are no data locality problems since the whole frame is assigned to the

processor and no upper limit on the number of processors that can be used- a

typical two hour movie contains around 200,000 frames. Additionally, parallelism

can be applied to the spatial domain of the video sequence. The spatial parallelism

is accomplished by dividing the video frame into tiles where each tile contains a

given number of blocks of pixels (macroblocks). The tiles are assigned to the

system processors, [Tan 95], [Yu. 94], [Moulin 95], [Akramullah 97] [Huang 94],

and the video sequence is encoded in a frame by frame fashion.

In past decades a lot of research effort was spent on speeding up the software

video encoders by using parallel processing. In the literature, two well known

implementations of the MPEG-1 encoder, that uses the temporal approach, are

mentioned: (a) The Berkeley’s MPEG-1 encoder [Gong 94] that distributes the

frames to a cluster of workstations interconnected over the LAN/internet, and (b) a

modified version of this [Gong 95] that encodes frames in real time. A portable and

scalable parallel implementation of the MPEG-2 video encoder that achieves real

time encoding is presented in [Akramullah 97]. This implementation is based on

spatial parallelism, where the selection of the appropriate video data structure and

its size plays a key role [Moulin 95] [Akramullah 97], since motion estimation

needs to use data from a wide area of the frame that might not be covered by the

frame tile.

Finally, a spatial-temporal parallel video encoder is presented in [Shen 96]. In this

approach, the system processors are divided into groups and the frame sequence is

divided into sections, with each section assigned to a group of processors. Spatial

parallelism occurs inside the processors group by dividing frames into tiles.

1
4

However, the parallel processing of the MPEG-4 software video encoder is not a

trivial task that could be accomplished by using straightforward data-partitioning

methods or multitasking. Specifically, with the MPEG-4 approach a frame is more

likely to be composed of distinct video objects, arbitrarily shaped, with sizes

varying over time. Moreover, these video objects need to be tightly synchronised

when are encoded. The orchestration and the allocation of the MPEG-4 video

objects onto a parallel architecture for processing presents an interesting challenge.

Since the time required to compress a video sequence depends both on the

underlying hardware processing power, and on the encoder’s computational

complexity, this thesis also addresses the problem of reducing the encoder’s

complexity, especially as motion estimation complexity dominates and determines

the video encoder’s complexity.

1.3 Contributions of the thesis

This thesis proposes a software model that (a) reduces the MPEG-4 video

encoder’s complexity and (b) permits parallel processing in an optimised way that

can result (under circumstances: availability of hardware resources- number of

processors) in real time encoding. The major contributions of this work are

discussed in the following subsections

• A Data Partition Shape Adaptive Scheme for Motion Estimation and

Texture Coding

Load balancing in the MPEG-1, and MPEG-2 standards is achieved by dividing

frames into equally sized tiles, and assigning them to the processors. In MPEG-4,

macroblock processing requirements vary significantly, depending exclusively on

the macroblock location in the video object. Load balancing among the system

1
5

processors cannot be accomplished by dividing the object into equally sized tiles,

since the tiles are likely to have different processing requirements. Therefore, a

new data partition scheme is proposed for the MPEG-4 parallel video encoding

that divides the frame into tiles based on the macroblocks real processing

requirements.

• A Fast Parallel Scheme for MPEG-4 Binary Shape Coding

Data parallelism is not straightforward in the shape encoder, due to macroblock

dependencies which restrict the degree of parallelism. The proposed scheme

reduces the shape encoder’s computational complexity by using a fast search

algorithm in shape motion estimation, and introduces a circular pipeline technique

that makes enables parallel shape encoding.

• Two Block-based Fast Motion Estimation Algorithms

Motion estimation plays an important role in video encoding due to the fact that it

has a significant impact on the quality of the reconstructed video sequence and

makes a considerable contribution to the encoder’s complexity. Two fast motion

estimation algorithms are introduced that reduce the computational complexity of

the motion estimation. More specifically:

(i) “A Fast Motion Prediction Scheme for bi directional encoding”. This uses a

two level searching technique in order to locate the region of the search area

where the motion occurs. This scheme can be combined with other categories of

fast motion estimation algorithms that involve pixel subsampling or subsampled

motion-field estimation (block sub sampling) or subblock motion-field

estimation (smaller block size is used) for further speed improvement.

(ii) “A Hexagonal Search Algorithm for Fast Block Matching Motion Estimation”.

Based on real word image sequence characteristics of centre-biased motion

vector distribution, this algorithm employs a two search pattern scheme that

1
6

outperforms some of the well known fast motion estimation algorithms, making

it suitable for real time encoding

• A Heuristic Scheduler Suitable for the Parallel MPEG-4 Video Encoding

onto Shared Memory Architectures.

This thesis addresses the problem of producing a schedule for the encoding of more

than one video object, onto a platform of more than one processor. It has been

proven in [El-Rewini 94] [Papadimitriou 79][Ulman 75] that finding an optimal

schedule for a set of tasks is NP-complete in its general case, and in several

restricted ones. Only for a few restrictive cases [Hu 61][Coffman 76][Gabow 82]

can scheduling be found by optimal algorithms. These cases are far removed from

practice involving massive parallel processing. To deal with these cases heuristic

solutions have been introduced. Generally, heuristics depend upon several

parameters of scheduling (tasks, target machine, etc.) and are characterised by their

ability to produce answers in less than exponential time, but without guaranteeing

an optimal solution. A heuristic scheduler has been proposed for shared memory

architectures, that selects the video objects according to their deadlines, precedence

constraints and frame rates, while ensuring maximum utilisation of the system

processors by using dynamic video object allocation policies.

1.4 Organisation of the Thesis

The thesis is organised as follows. The research problem is stated, with an

overview of the proposed model that will be used for the parallel MPEG-4

encoding. The chapter concludes by addressing issues related with the MPEG-4

software, and the hardware platform.

1
7

Chapter 3 deals with motion estimation complexity and its impact on the overall

performance at the MPEG-4 video encoder. It presents two new fast block-based

motion estimation algorithms that are used by the model.

Chapter 4 deals with scheduling issues arising from the parallel MPEG-4 video

encoding. It proposes a heuristic scheduler that is used by the parallel model in

order to prioritise and orchestrate the encoding of the MPEG-4 video objects onto

the parallel architecture.

Chapter 5 discusses a data partition scheme that is applicable for the spatial

parallelism of the MPEG-4 video objects onto a parallel architecture. Load

balancing and system utilisation are also addressed.

Chapter 6 proposes the new parallel scheme that is suitable for the fast parallel

MPEG-4 shape encoding.

Chapter 7 presents experimental results of the performance of the proposed

MPEG-4 software parallel model, when it is used for the encoding of MPEG-4

segmented video sequences with different characteristics, onto a four processor

shared memory architecture (SGI Origin200). The conclusions of this thesis, and

f u t u r e w o r k a r e d i s c u s s e d i n C h a p t e r 8.

1
8

Chapter 2

2 The MPEG-4 Video Encoder Problem

MPEG-4 is designed to address a wide range of multimedia applications, which

cover noninteractive video communications (e.g., multimedia broadcasting), digital

storage media (e.g., optical disks), content-based image and video databases,

interactive video communications (e.g, video conferencing and telephony), video

surveillance, and interactive video games [Diepold 98]. Interactive video

communications and video surveillance require real time encoding, with encoding

frame rates not less than 25 frames per second.

We found that the encoding frame rate for the News QCIF (176*144 pixels) video

sequence is 1,2 frames per second when it is encoded on a single processor

(R10000) SGI Onyx workstation, using the final committee draft (FCD) of the

MPEG-4 software codec1 [Simulation 98]. Similarly, for the CIF resolution

(352*288 pixels) Coastguard video sequence the encoding frame rate is 0.2 frames

per second. Rates far removed from real time encoding.

In Chapter 1 we mentioned that the encoding time of a video compression standard

depends both on the processing power of the hardware platform used, and on the

computational complexity of various algorithms. The rest of this chapter gives a

brief technical description of the MPEG-4 video object coding, states the research

1 Similar to MPEG-1, and MPEG-2 MPEG-4 developed simulation models in order to have a

reference video quality, where a simulation model contains a specific reference implementation of the

MPEG-4 encoder and decoder, including all the details that are not specified in the standard.

1
9

problem of speeding up the software MPEG-4 encoder, and describes the approach

that is adopted to implement a fast software parallel MPEG-4 video encoder onto

shared memory architectures.

2.1 The Research problem

2.1.1 MPEG-4 video encoder computational complexity

The MEPG-4 video encoder encodes video objects, where a video object (VO) is an

arbitrarily shaped video segment that has a semantic meaning. A 2-D snapshot of a

video object at a particular time instant is called a video object plane (VOP). A

VOP is defined by its texture (luminance and chrominance values) and its shape.

MPEG-4 allows content based access to not only the video objects, but also

temporal instances of the video objects, i.e, VOPs. In general, MPEG-4 coding of a

VOP involves coding of motion, texture and shape information. However, when the

VOP is a rectangularly shaped video frame, MPEG-4 video encoding becomes quite

similar to that specified in MPEG-1/MPEG-2.

The MPEG-4 video object coding consists of shape coding (for arbitrarily shaped

VOs), motion compensated prediction to reduce temporal redundancies, and DCT-

based texture coding of the motion compensated prediction error data to reduce

spatial redundancies. The video coding is performed at the macroblock level. VOPs

are divided into macroblocks, such that they are represented with the minimum

number of macroblocks within a bounding rectangle. Similar to MPEG-1 and

MPEG-2, MPEG-4 supports intracoded (I), temporally predicted (P), and

bidirectionally predicted (B) VOPs.

Figure 2.1 shows the basic VOP encoder structure. The encoder consists mainly of

two parts: a hybrid of a motion compensated predictor and a DCT-based coder

[Scafer 95] [Steinmentz 94], and a shape encoder.In the first part, motion

2
0

estimation and compensation are performed (except I-VOPs) on texture data,

followed by DCT and quantisation. Then, the difference between the predicted

data and the original texture data is coded by variable length coding (VLC). Motion

information is also encoded by using VLC. Then, the VOP is reconstructed as in

the decoder, that is, by applying inverse quantisation , applying inverse DCT

(IDCT) and adding the resulting data to the motion compensated predicted data.

The resulting VOP is then used for the prediction of future VOPs. The shape

encoder encodes the binary shape information and the transparency information of

the object. Since the shape of the VOP may not change significantly between

consecutive VOPs, predictive coding is employed to reduce temporal redundancies.

Thus motion estimation and compensation are also performed for the shape of the

object. Finally, motion texture, and shape information is multiplexed with the

headers to form the coded VOP bit stream

MUX Buffer

Previous Reconstructed
VOP

Shape
information

Shape
Coding

Motion
Estimation

Motion
Compensation

Texture
Coding

–

Motion
information

+
Texture

information

VOP_of_arbitrary_shap
e

VOP_of_arbitrary_shape

Figure 2.1: Basic MPEG-4 video encoder structure

By performing benchmark measurements with the FCD MPEG-4 video encoder we

found that motion estimation is the most computationally demanding part of the

encoder, (60%-80% of total encoding time) with significant impact on the image

quality and the overall encoding time. The (FCD) codec uses the full search (FS)

block matching algorithm which is the simplest, and provides an optimal solution

2
1

by exhaustively evaluating all the possible candidates within the search range in the

reference frame. However the computational complexity of the FS algorithm

prevents its use in real time encoding. Since the MPEG-4 does not specifies the

motion estimation scheme that is used in the encoder, this thesis considers the

problem of motion estimation’s computational complexity and in Chapter 3

proposes two fast motion estimation algorithms that reduce significantly the

complexity of the motion estimation searching process, while accomplishing very

small distortions of the image quality, compared to the full search algorithm.

2.1.2 Parallel processing of the MPEG-4 Video Encoder

2.1.2.1 MPEG-4 Video Encoder and Parallel Processing

The advantage of a software based MPEG-4 video encoder has already been

mentioned. However the computational requirements of fast (real time) encoding

that achieves encoding rates of 25-30 frames per second far exceed the processing

power of today’s workstations or a single processors PCs, even if fast motion

estimation algorithms are used. Parallel processing is a natural choice to meet the

large computational requirements of MPEG-4 video encoding. The MPEG-4 video

encoder software structure happens to be very suitable for parallel computing,

since it deals with the concurrent encoding of a frame’s video objects, figure 2.2.

Each frame consists of one or more arbitrarily shaped video objects, where their

shape and number is provided to the MPEG-4 video encoder. The MPEG-4

encoding of a video frame is performed by decomposing the frame into its video

2
2

objects, and then for each video object independent encoding is applied.

 Figure 2.2: MPEG-4 encoder software structure

Thus, parallelism can be achieved simply by creating multiple instances of the

MPEG-4 video encoder that can concurrently encode the frame’s video objects.

With this straightforward approach a coarse spatial parallelism has been introduced

by applying the single program multiple data (SPMD) programming paradigm

[Williams], where every processor runs an instance of the MPEG-4 encoder.

A “producer-consumer software” model was introduced in [Hamosfakidis 98] that

applies this coarse spatial parallelism using thread programming [Lewis

95][Kleiman 95][Stein 92], figure 2.3, for a shared memory platform. A thread is a

different stream of control that executes each instruction independently allowing a

multithread process to perform numerous tasks concurrently.

For each video object of the frame a thread is created that runs an instance of the

MPEG-4 encoder. These threads are called consumers. Initially in the system only

one thread exists: the producer thread. The producer is assigned the tasks of: (a)

identifying the number of video objects that compose the frame, (b) creating the

MPEG-4 video encoders the consumers, and (c) to distributing the video objects.

A naive scheduler is implemented in producer which ensures the continuous flow

of the video object data to the corresponding consumers. Between the producer

and the consumers exist synchronisation buffers. When a consumer encodes a video

object it sets the status of its corresponding synchronisation buffer. The producer

continuously checks the status of these buffers. If a buffer is not set, the producer

signals the consumer to proceed with the encoding of its next video object plane

(VOP), otherwise if the status flag of the buffer is set the producer thread blocks

waiting signal from the consumer. When a consumer has finished the encoding of its

video object for the entire video session it notifies the producer. When all

2
3

consumers have notified the producer that their encoding has finished the producer

terminates them.

The above scheme does not exploit efficiently the computational power of the

parallel architecture, since concurrency is restricted to the number of video objects

that make up the frame, and which is always constant. The degree of parallelism is

rather limited and the system is not scalable. Moreover, the model lacks the load

balancing aspect, as video objects vary in size over the time of the encoding

session. It is more likely some system processors are heavily loaded since their

assigned video objects are large, while other system processors are inactive for long

periods of the encoding session, since their assigned video objects are small. Load

balancing occurs only when the consumers encoding VOPs of equal size.

A solution to the load balancing problem is to use a video object’s spatial

parallelism [Hamosfakidis MPEG-4, 97]. The video object is divided into tiles and

each tile is assigned to a processor (data-parallel model). However the spatial

techniques that were discussed in the previous chapter, are not feasible for MPEG-

4 video encoding, since they have been developed for fixed size frames whose data

processing requirements are identical for any part of the frame. Additionally, these

approaches lack the scheduling aspect that arises in MPEG-4 video encoding.

Producer
Read VOPs

Buf nBuf 2Buf 1

Internal
Buf 1

Internal
Buf n

Internal
Buf 2Encoder 1 Encoder 2 Encoder n

Control Signals

Buffer/Threads
Synchronisation
Part

Encoder/
Consumer
Part

 Coded VOPs

Producer Part
Hard disk

2
4

Figure 2.3: Producer-Consumers model for the parallel VOPs encoding

2.1.2.2 Issues arising from the parallel MPEG-4 Video Encoding

Besides the synchronisation and the allocation of the video objects onto a parallel

architecture in order to achieve fast (real time) MPEG-4 parallel encoding the

following issues need to be carefully addressed.

1. Coding constraints imposed by the coding pattern:

I-VOPs have the highest data rates, the lowest motion artefacts, and are used to

provide functionality such as random access, and fast forward/backward. On the

other hand B-VOPs have the lowest data rates and the highest motion artefacts.

Moreover, I and P VOPs are used as references. I VOPs are encoded

independently, while P-VOPs are encoded using previously encoded I or P VOPs.

B-VOPs are encoded using a previously encoded I or P, VOP and a future

prediction of an I or P VOP. The set of all acceptable MPEG coding patterns

(SAMCP) is given by:

[Hamosfakidis IEEE MS 99]2

where the analogy of I- P - and B- VOPs in an “intra period” depends on a number

of factors such as quantisation level, quality of the picture source, and type of

encoder (open-loop or closed loop) [Wilkinson 96]. The most commonly used

MPEG coding patterns are:

(i) I1P2P3P4P5P6P7P8P9

(ii) I1P2B3P4B5P6B6P7B8.

2 (P + I) means either P or I VOP and

Hard disk

2
5

Thus, from this discussion it is obvious that VOP encoding needs to be done

according to coding pattern constraints; for example the P3 VOP cannot be encoded

before the P2 VOP in the (i), or the B3 VOP before the P2 VOP in (ii).

2. Encoding deadlines:

In real time encoding the frame has to be encoded before the expiration of its

assigned deadline. In the simplest case the encoding deadline calculated using the

sequence frame rate. For instance, if the frame rate of a video sequence is 25 frames

per second then the time that the frame needs to complete its encoding is 1/25 sec.

3. Video object formation:

In order to describe an arbitrarily shaped VOP, MPEG-4 defines a VOP by means

of a bounding rectangle. This bounding box surrounds the video object with the

minimum number of macroblocks, see figure 2.4. As is shown in this figure, there

are three different types of macroblocks depending on whether their pixels are

inside or outside the VOP (transparent, opaque, and contour). Transparent

macroblocks lie completely outside the video object while opaque macroblocks lie

inside the video object and contour macroblocks lie partly inside the object. Each

macroblock type has different processing requirements for each part of the MPEG-

4 video encoder. Thus, spatial VOP parallelism based on the current data

partitioning techniques would soon lead to an unbalanced processing system.

Transparent
macroblock

2
6

Figure 2.4: The different types of macroblocks in the VOP (News 2)

From the above discussion it can be concluded that the implementation of a

software encoder on a parallel platform is not a trivial task, and previous parallel

video encoding solutions cannot be applied in a straightforward way. A

“sophisticated” software model is required, that incorporates a scheduler

[Hamosfakidis IEEE MS 99] which calculates video object deadlines from the

sequence, and distributes the VOPs according to their precedence constraints and

their calculated deadlines to the parallel platform. In addition, the scheduler should

dynamically allocate the VOPs to the group of processors in order to achieve load

balancing.

The next section describes the framework of the proposed model, while analytical

descriptions of each of the techniques, schemes, and algorithms that the model

incorporates will be provided in the following chapters

2.2 Proposed framework for real time MPEG-4 parallel encoding

Opaque
macroblock

Contour
macroblock

2
7

The target architecture plays an important role in the selection of the heuristic

scheduler, and the parallel programming technique that will be adopted to

implement the proposed model. This thesis deals with the parallel processing of

the MPEG-4 video encoder on a shared memory platform, where parallelism is

provided by processes and threads. More specific, the operating system assigns

threads and processes to the system processors, therefore by increasing or

decreasing the number of threads/processes we increase or decrease the degree of

the parallelism employed in the system. Maximum system parallelism is achieved

when the number of threads/processes that run on the system equals to, or is

greater than the number of processors.

Initially the producer in our proposed model runs as a process that implements the

scheduler. In order to satisfy real time encoding requirements the scheduler needs to

sort the VOPs according to their deadlines in a list where the VOP with the earliest

deadline is selected first. When the list of the VOPs of all the video objects is

formed the scheduler (producer) creates the consumers and distributes the VOPs to

them. For each video object in the sequence, the producer creates a consumer

process that runs an instance of the MPEG-4 video encoder. There are

synchronisation buffers between the producer and the consumers that control the

flow of a VOP’s data to the model. More specifically, there is a flag for each

synchronisation buffer that is set when its encoder is encoding a VOP. The

producer selects the VOP with the earliest deadline from the list and checks the flag

status of the synchronisation buffer of the corresponding consumer for this video

object. If the flag is off the consumer sets it and starts the VOP encoding, while the

producer proceeds with the next VOP in the list. If all the flags of all the

synchronisation buffers are set, then the producer blocks until a consumer unblocks

it by signalling for new VOP data.

2
8

In order to facilitate VOP assignments to dynamically formed group of processors,

the producer provides the consumers with the VOP size, which is calculated by the

producer as a percent of the whole frame size. Each consumer in order to better

exploit the system parallelism, applies the SPMD paradigm for every part of the

MPEG-4 encoding procedure. Specifically, every time that the consumer enters

either the motion estimation/compensation, the texture, or the shape coding

module, it create threads that run multiple instances of this module on different

data areas of the VOP. Therefore, by increasing or decreasing the number of threads

created, the number of system processors that are allocated to the VOP is increased

or decreased. Since maximum system parallelism is exploited when the number of

threads equals to or is greater than the number of system processors, the number of

threads that a consumer can create is determined by multiplying the VOP size

(given as a percentage of the frame size) with the number of threads that exploit the

maximum system parallelism.

Figure 2.5 demonstrates the proposed dynamic allocation mechanism when three

video objects are encoded on a shared memory platform which consists of seven

processors, Pi, where 1 ≤ i ≤ 7. Specifically, the sequence is composed from three

video objects (VO1, VO2, and VO3) whose VOP computational requirements vary.

It is assumed that the scheduler has already created the VOP list, and that all the

VOPs that belong to the same frame have the same encoding deadlines. Initially,

there are three processes that simultaneously run three instances of the MPEG-4

encoder, one for each video object. The calculated VOP size for each video object as

a percent of the frame size is for VO1 0.30%, for VO2 0.30% and for VO3 0.40%,

while the number of threads that exploit the maximum system parallelism is 7, one

thread per processor. Therefore, at this example for VOP3 0.4*7 ≈ 3 threads are

created, that run on a group of three system processors (For instance P5, P6, and

P7). For VOP1 and VOP2 which have same sizes 0.3*7 ≈ 2 threads are created, that

run on the other two groups of processors, group 1 (P1, P2), and group 2 (P3, P4).

2
9

An analytical description of the proposed scheduler and the way that it allocates

the VOPs to the system processors is given in Chapter 4.

When the SPMD paradigm is applied at the consumer (processes) level it is more

likely to create threads that require more processing than other threads that handle

a different VOP area, since different macroblock types require different amounts of

processing, This leads to processor assignments with unbalanced threads in terms

of processing power. Therefore, the model incorporates a data partitioning solution

that results in equal workload distribution among the processors by creating

threads that encode equal number of macroblocks with similar processing

requirements.

Measurements demonstrate [Kuhn 98] that shape encoding is the most

computationally demanding part after motion estimation, where the consumer

cannot apply SPMD parallelism, since the macroblock shape status, which

indicates the amount of processing power that a macroblock needs, is dynamically

derived for each macroblock when its shape is encoded. To reduce the shape

encoding complexity a new solution is incorporated to the proposed parallel model

that speeds up shape encoding, and exploits system parallelism by introducing a

circular pipeline distribution algorithm, explained in Chapter 6.

ith frame of a sequence
that is composed from
three VOs

3
0

Figure 2.5: Proposed dynamic VOPs allocation mechanism on MPEG-4 parallel encoding

2.3 Implementation issues

The rest of this chapter addresses issues related to (i) the hardware platform that is

used to demonstrate the efficiency of the proposed parallel model in MPEG-4

video encoding, and to the (ii) the software that is used.

2.3.1 Hardware architecture

The implementation and experimentation was done on an Origin200, which is a

shared memory Silicon Graphics platform that consists of four processors R12000

with a 270 MHz clock speed.

VOP2 VOP3VOP1

P1 P2 P3 P4 P5 P6 P7

 Group 1
of processors

 SPMD at the
process level

SPMD at the
threads level

 Group 2
of processors

 Group 3
of processors

 Processors

3
1

2.3.2 Other MPEG-4 video encoder characteristics useful for the

experiments

2.3.2.1 Profile

Profiles and levels in MPEG-4 [14469-2, 99] are standardised in order to give users

a number of well-defined and well-chosen conformance points. These mainly serve

two purposes: 1) ensuring interoperability between MPEG-4 implementations, and

2) allowing conformance to the standard to be tested. For this thesis the core

profile, Table 2.1, is used for experiments.

Object Type Tools Core

Basic Tools

• I-VOP, P-VOP

• AC/DC prediction

• 4MV, Unrestricted MV

X

Error resilience

• Slice Resynchronisation

• Data Partitioning

• Reversible VLC

X

B-VOP X

Two quantisation methods X

P-VOP based temporal scalability

• Rectangular

• Arbitrary shape

X

Binary shape X

Table 2.1 MPEG-4 CORE PROFILE

2.3.2.2 Simulation software and sequences used on experiments

3
2

The final committee draft (FCD) MPEG-4 simulation software codec [Simulation

98] is the reference software, obtained by the MoMuSys project3. Most of the

experiments described in this thesis make use of the two well-known MPEG-4

video sequences: “News” and “Coastguard”, figures 2.6 (a) and (b). These

sequences are used widely from the researchers as benchmarks in order to evaluate

the performance of different MPEG coding algorithms and tools. The News is a

sequence of QCIF resolution (176*144 pixels), which is composed from four fixed

size video objects (news0, news1, news2, news3) with different motion coding

requirements (fast motion -news1, slow motion- news0, news2). The Coastguard

sequence has CIF resolution, (352*288 pixels) and is composed of four video

objects whose sizes vary over the sequence display time. Both sequences use

binary segmentation masks for the shape information (alpha planes).

(a)

3 European ACTS multimedia project for Mobile Multimedia Systems. This project has provided very

 significant input to the MPEG-4 standardisation process.

3
3

(b)

Figure 2.6: QCIF video sequence News, (b) CIF sequence Coastguard

3
4

Chapter 3

3 Fast Motion Estimation Block-based
Algorithms

3.1 Overview

The MPEG-4 standard, like its predecessors MPEG-1 and MPEG-2, makes

extensive use of the interframe block-based predictive coding. Interframe coding

uses motion estimation (ME) which has been proven to be an effective way to

exploit the temporal redundancy of video sequences. Motion estimation algorithms

have attracted attention within the research community and industry due to the

following facts

• they are the most computational intensive part of coding process (about 60-

80% of the total computation time) which limits the overall performance/ speed

of the encoder.

• they have a high degree of impact on the visual quality of final image for a given

bit-rate

• the method to extract the motion vectors (MVs) from video material is not

standardised, thus it is open to competitive approaches.

This chapter starts by analysing the motion estimation/compensation mechanism

of MPEG-4 in order to identify where full search motion estimation is employed.

Then it presents two new block based fast motion estimation algorithms that

3
5

proposed to replace the full motion estimation search algorithm of the MPEG-4

video encoder.

3.2 MPEG-4 motion estimation

3.2.1 Motion estimation of P-VOPs

The motion vectors of P-VOP macroblocks are derived as follows in the MPEG-4

standard:

Initially, both 8x8 and 16x16 vectors are obtained from the full search algorithm.

The search is made with integer pixel displacement for the Y component of the

YUV video sequence. The comparisons are made between the incoming block and

the displaced block in the previous reconstructed VOP. For the 8x8 integer vectors

only a small amount of additional computation is needed since the 8x8 search is

centered around the 16x16 vector with a search window of ±2 pixels. After integer

pixel motion estimation the coder makes a decision on whether to use intra or inter

prediction in the coding. If intra mode is chosen, no further operations are

necessary for the motion search. Otherwise, if inter mode is chosen the motion

search continues with half sample search around the vector position performed for

both 16x16 and 8x8 vectors. Finally the coder makes a comparison between the

sum of absolute differences (SAD) of the best half sample 16x16 vector and the

SAD of the best half sample 8x8 vectors in order to adopt the most appropriate

vector.

By measuring the complexity of the different steps that are used in P-VOP motion

vector derivation, it was observed that the integer pixel search overrules and

dominates the amount of time that is required for deriving P-VOP motion vectors-

90% of the computational complexity. Therefore, the full search algorithm that is

used in integer pixel searching needs to be replaced by a fast search solution.

3
6

3.2.2 B-VOPs motion estimation

In MPEG-4 a B-VOP’s macroblock is encoded in one of the following modes:

• Direct coding: Bi-directional motion compensation is used, derived by extending

the H.263 approach of employing P-picture macroblock motion vectors and

scaling them to derive forward and backward motion vectors for B-VOPs

macroblocks.

• Forward & Backward Coding: Forward and backward motion compensation

used in the same manner as in MPEG-1 and MPEG-2 with the difference that

VOP is used for prediction instead of a picture.

• Bi-directional Coding: The bi-directional coding in MPEG-4 uses interpolated

motion compensation in the same manner as in MPEG-1 and MPEG-2 except

that VOP is used for prediction instead of a picture/frame.

The MPEG-4 encoder calculates the macroblock’s SAD value using the above

modes, where the mode that results in the smallest SAD is chosen.

Again, by measuring the complexity of the different modes that are used in B-VOP

motion vector derivation, it was observed that the most computationally intensive

modes are the forward and backward coding modes. Therefore for these modes we

propose the replacement of the full search algorithm by a fast search solution

proposed in section 3.4.

3.3 Motion estimation algorithms

3
7

The block matching technique has been widely used for motion vector estimation

due to its simplicity. The straightforward approach is the full search algorithm that

performs full search block matching by searching all locations in a given search area,

and then selecting the position where the residual error is minimized. However, this

procedure requires an extremely large amount of computation. Motion vector

estimation is known to be one of the main bottlenecks in real-time encoding

applications, and the search for an effective motion vector estimation algorithm has

been a challenging problem for years. Over the past decades fast block matching

algorithms have been developed to reduce the computational cost. Generally these

can be categorised into the four groups detailed bellow:

A. Block Matching with Pixel Subsampling

One technique to reduce the complexity of motion vector estimation is block

matching with pixel sub sampling [B.Liu 93]. Instead of limiting the number of

search locations, the number of pixels used in matching error computation is

reduced. This technique is called “alternative 4:1 pixel”. Two other techniques

were also presented in [B.Liu 93] to enhance performance: the sub-sampled motion

field estimation which exploits the idea of block sub sampling, and the sub-block

motion-field estimation which uses a smaller block size in motion estimation. For

this category two fast algorithms are proposed, based on the combination of the

first (alternating 4:1 pixel sub sampling) and the second (sub-sampled motion-field)

techniques and the combination of the first and the third (sub-block motion field)

techniques.

B. Block Matching with Spatial/Temporal Correlations

This group of algorithms exploits the information from adjacent blocks by using

spatial and temporal correlations of motion vectors [Xie 92],[Zafar 91],[Zhang

91],[Chalidabhongse 97]. The main idea is to select a set of initial motion vector

candidates from spatially and/or temporally neighbouring blocks and choose the

3
8

best one (according to a certain rule) as the initial estimate for further refinement.

In theory the initial estimate can be obtained by using an auto regressive model

[Zafar 91], [Zhang 91]. For such a simple model, only one candidate is chosen and

used as the initial estimate in the experiments. The refinement process makes use of

full search within a reduced search area, which still involves a considerable amount

of computation. A hybrid algorithm that uses both block-recursive and block

matching methods was proposed in [Xie 92]. Although its original motivation did

not aim at the use of spatial and temporal correlations, it did provide an interesting

way to use both correlations effectively. In this algorithm, the motion vector

candidates are selected from two spatially and one temporally neighbouring blocks.

In the refinement process, a recursive method is used to explore the gradient

direction for motion vector updates. However, this gradient approach does not

work well for sequences with fast motion since an oscillation in the search direction

can happen in refinement. Finally, a hybrid algorithm that performs fast motion

vector estimation using multi resolution-spatio-temporal correlation (MRST) is

introduced in [Chalidabhongse 97]. The frame is decomposed into different

resolutions (this group of algorithms will be discussed in the next paragraph).

Motion estimation is first performed on the coarsest resolution, and motion vectors

of finer resolutions are refined based on the motion information obtained by the

spatio-temporal correlation and the previous level motion vector.

C. Hierarchical and Multiresolution Fast block Matching

This category of fast motion estimations algorithms initially predict an

approximate large-scale motion vector and then refine the prediction in a multi

resolution fashion to derive the motion vector of finer resolution. They are called

multiresolution [J.Li 93], [Uz 91], [Zafar 93] or hierarchical algorithms [Bierling

88], [Dufaux 92]. The hierarchical algorithms use the same image size but different

block sizes at each level. The assumption is that the motion vector obtained from a

larger block size provides a good initial estimate for motion vectors associated with

3
9

smaller blocks which are contained in larger blocks. But this assumption is often

not true and the estimation can be very poor. Furthermore larger block sizes imply

higher computational costs for block matching.

The multiresolution algorithms [J.Li 93], [Uz 91], [Zafar 93] use different image

resolutions with a smaller image size at a coarser level (pyramid form). They are

divided into two groups: constant block size and variable block size. In [J.Li 93]

and [Uz 91] the same block size is used at each level, where a block at the coarser

level represents a larger area than that of a finer level, so that a smaller search area

can be used at coarser levels. In [Zafar 93] different block sizes are employed at

each level to maintain a one-to-one correspondence between blocks in different

levels and the motion vector of each block can be used directly as an initial estimate

for the corresponding block at the finer level. In [X.Lee 96] a fast hierarchical

motion compensation scheme is reported, which uses, instead of the original block

pixel values a sign truncated feature (STF). Methods in this category work

relatively well, however for the motion vector refinement they use only the

information from coarser levels in finer levels without considering other useful

information such as temporal and /or spatial correlations among motion vectors of

the same level. In addition, the refinement process is performed by using full search

in a reduced search area, which, nevertheless, requires a considerable amount of

computation.

D. Fast block Matching Algorithms that reduce the number of search locations

Another interesting category of algorithms that reduce the complexity of motion

vector estimation is block matching with subsambling of the search range. With this

technique the number of search points used in matching error computation is

reduced. Several fast algorithms, such as the new three-step search [R.Li 94], the

4
0

one at a time search [Srinivasan 85], the cross-search [Ghanbari 90], the four-step

search [Po 96], the BBGDS [L.Liu 96], and the diamond search [Zhu 97] are

reported. Based on the property of center-biased motion vector distribution, these

algorithms employ various checking point patterns that derive MV in a limited

number of steps. In [Z.He 97] the search range is partitioned into nested zones. A

search starts from the first zone and continues in the second, third and up to zmaxth

search zone, until a block is found to satisfy one of the following: 1) the matching

error is less than a threshold value T 2) the overall best matching is found, or 3) the

minimum point is in the centre (first zone search). Finally, a hybrid method that

exploits the zone searching and the spatial macroblock relations is proposed in

[Touparis 99].

3.4 Proposed Fast Motion Estimation Methods

As stated in Chapter 2, this thesis aims not only the identification of the most

computational intensive parts of the motion estimation mechanism, but the

development of motion estimation solutions that are simple, fast and suitable for

the MPEG standard, yet work effectively in the sense of producing small residual

errors. Moreover, taking into account the facts, that (i) hierarchical algorithms are

not suitable at the MPEG coding, due to the extended use of different block sizes,

and (ii) that the most frequently used algorithms in MPEG are based on techniques

that explore correlations or search range sub-sampling, this thesis focuses on the

development of motion estimation algorithms that exploit correlations, or range sub

sampling. The rest of this chapter discusses two new algorithms, which exploit

range sub-sampling/correlations, including overall performance comparisons with

other well-known algorithms in this field.

3.4.1 Fast motion prediction scheme for bi directional coding.

4
1

3.4.1.1 Design Motivation

In predictive coding the size of the search area is proportional to the temporal

distance of the current frame4 from its reference. The insertion of frames increases

the search area of the reference frame which in turn increases complexity. The

proposed algorithm [Hamosfakidis WIAMIS 99] exploits the temporal correlation

of motion fields between consecutive frames. The macroblock displacement is used

for tracking the area of motion, and excluding search points that are not in the

direction of macroblock displacement. The original search area is partitioned into

two zones. The first zone (inner) is used to track the motion displacement, and the

second zone (outer) is used to derive the motion vector through a refinement

procedure, figure 3.1.

Figure 3.7: The inner zone is shaded grey. In Step1 track the motion in the inner zone, and
in Step 2 limit the search. If motion is tracked at C area of inner zone, then the search in
step 2 is limited to zone C in outer zone.

4 The terms frame and VOP will be used interchangeably.

A
B

C
D

C

b

c

 A
B

C D
 C

C

4
2

Figure 3.8: Search area-inner/outer zones and sub area partitions

3.4.1.2 Search area partition

The search area is divided into two nested zones (inner zone size is _ of original

search area) for the following reasons:

• it suits many of the coding patterns that the encoder uses. Most commonly

used patterns are the IPP…, or the IBPBP… [Wilkinson 96]. These

patterns generate a worthwhile gain in terms of (a) efficient compression

rates (bits per pixel and bit-rates), and (b) required computational

complexity compared with other patterns using more than one B VOP

between two reference VOPs

• the size of the inner area is either not too small that it could lead to a less

effective prediction of the macroblock displacement, or too large that it

could increase the computational complexity.

Each zone is divided into four sub regions: the upper left (UL), the upper right

(UR), the down left (DL), and the downright (DR). UL and DR sub regions derive

motion vectors with negative and positive co-ordinates (x,y) respectively.

Similarly, UR and DL derive motion vectors with (positive x, negative y) co-

0,0 xmax total_xmaxxmintotal_xmin

ymax

total_ymax

Ymin

total_ymin

++

+

+

--

-

-

UR3UR4

UR2
UR1

DR1 DR2

DR3DR4

DL1

DL4DL3

DL2

UL1

UL3

UL2

UL4

UL U
R

D
L R

4
3

ordinates, and (negative x, positive y) co-ordinates respectively, figure 3.2. The

sign of the motion is defined as follows: On the Y-axis macroblock

downwards/upwards displacements are assigned positive/negative values. On the

X-axis macroblock left/right displacements are assigned negative/positive values,

figure 3.3.

Figure 3.9: Sign of the macroblock displacement at the search area

3.4.1.3 Core of the fast motion prediction scheme

The motion vector is derived from a two step procedure. In the first step, a coarse

motion vector is derived from the inner search zone using full search. Then at the

second step the algorithm derives a refined motion vector using full search at the

part of the outer zone that includes the inner zone where the motion was tracked.

There are three cases for each motion vector derived in the first step. Each of these

cases determines the area of the outer zone where the search will be continued from

the scheme in the second step:

Case 1:There is no motion tracking. The derived motion vector (x,y) co-ordinates

have zero values and therefore for this case the algorithm uses the following

assumption: if no macroblock displacement is tracked in the inner zone then the

probabilities of tracking a displacement in the outer zone are almost zero, and

therefore there is no need to search in the outer zone in order to derive a motion

xmaxxmin

ymax

+-

-

+

0,0

ymin

4
4

vector. The search is terminated and the derived motion vector is the one with zero

co-ordinates.

Case 2: The algorithm tracks motion along the X or Y axis by searching the inner

zone. A motion vector is derived, where one of its co-ordinates has no zero value.

In this case, the search area of the outer zone is expanded up to its total size along

the axis where motion occurred. The search is continued in the outer zone, and a

new motion vector is searched by the algorithm (second step). The algorithm

compares the SAD value that the new vector generates with the SAD value of the

vector that has been derived from the first step. The new motion vector is chosen if

it contributes to a smaller SAD.

Case 3: The algorithm locates the motion in one of the four sub regions (SR) of the

inner zone, where SR is either the UL, or the UR, or the DL, or the DR region.

Motion vector searching continues in the outer zone as follows: Based on the

assumption that the motion is smooth and varies slowly, the initial sub- region

(SR) of the outer zone where the search will be continued is the SR2, see figure 3.4.

There is more likelihood in this area of finding a refinement motion vector (Step A).

If the motion vector that is found in Step A generates a smaller SAD value than the

motion vector that was found in SR1 from the inner’s zone search, then the search

continues at the SR3 sub-region (Step C). If the motion vector that is found in SR3

sub-region generates even smaller SAD than the motion vector found in SR2 then

the search is stopped and the SR3 motion vector is used by the scheme. Otherwise,

the motion vector derived from the SR2 sub-region is used and the search is

stopped.

On the other hand, if the motion vector that was found in Step A generates bigger

SAD than the motion vector that was found in SR1 (inner zone) the search

continues in the SR4 (Step C). If the derived motion vector in SR4 sub-region leads

4
5

to a smaller SAD than the motion vector of the SR1 sub-region, the search stops

and the scheme uses the motion vector of the SR4 sub- region. Otherwise, the

motion vector that was derived from SR1 is used and the search is stopped.

 Figure 3.10: Search area of outer zone UR and steps for deriving the final MV

The proposed scheme as pseudo code is given in tables 3.1 and 3.2. Table 3.1

describes how the scheme makes decisions regarding the direction of the motion

using the inner zone. Full search performed in the inner zone and a motion vector

(MV) is derived. By examining the motion vector coordinates (x,y) the scheme

determines the location of the motion vector in the inner zone and the search area of

the outer zone where search will be continued. Table 3.2 describes how search is

performed in the outer zone of the scheme’s search area.

TWO_LEVEL_MOTION_PREDICTION_SCHEME () {
 Divide the search area into two zones;
 WHILE (macroblocks) {
 FOR each macroblock {
 Search inner zone and find MV that minimises the SAD;
 IF (MV.x <0 && MV.y <0)

0,0 total_xmax

total_ymin

UR3UR4

UR1

U
RUR2

xmax

ymin

(Step A)
Derive MV2 from UR2

(Step B.1)
If (SAD of MV1>SAD of MV2)
Derive MV3 for UR3

MV1 from inner zone
search

(Step B.2)
If (SAD of MV2>SAD of MV1)
Derive MV3 for UR3

4
6

 Search_Area (UL, SAD, MV);
 IF (MV.x <0 && MV.y >0)
 Search_Area (DL, SAD, MV);
 IF (MV.x >0 && MV.y >0)
 Search_Area (DR, SAD, MV);
 IF (MV.x >0 && MV.y <0)
 Search_Area (UR, SAD, MV);
 IF (MV.x ==0 && MV.y ==0)
 Return MV;
 IF (MV.x >0 && MV.y ==0)
 Search_Area (R, SAD, MV);
 IF (MV.x ==0 && MV.y >0)
 Search_Area (D, SAD, MV);
 IF (MV.x ==0 && MV.y <0)
 Search_Area (U, SAD, MV);

 IF (MV.x <0 && MV.y ==0)
 Search_Area (L, SAD, MV);
 } /* end FOR */
 } /* END WHILE */
}

Table 3.2 PSEUDOCODE OF THE PROPOSED MOTION PREDICTION SCHEME FOR
TRACKING THE DIRECTION OF MOTION

Search_Area (direction, min_error, motion_vector) {
 Store_MV=motion_vector; store_SAD=min_error;
 IF (direction==UL | | direction==DL | | direction==UR | | direction==DR) {
 Use expanded sub-area indicated by the direction;
 Divide sub area into four sub regions {1,2,3,4};
 Derive the MV for the 2n d sub region, which is next to 1st sub region;
 IF (store_SAD > SAD) {
 Store_SAD=SAD; store_MV=MV;
 Derive the MV for the 3rd sub region that lays directly above 2n d sub
region;
 IF (store_SAD > SAD)
 Return MV;
 ELSE
 Return store_MV;
 } ELSE {
 Derive the MV for the 4th sub region that lays directly above 1st sub
region;
 IF (store_SAD < SAD)
 Return store_MV;
 ELSE
 Return MV;
 } /* end if store_SAD */
 } /* end if direction */
 IF (direction==U | | direction==D | | direction==R | | direction==L) {

4
7

 Expand sub area only at the indicated direction;
 Divide sub area into two sub regions {1,2};
 Derive the MV for the 2n d sub region ;
 IF (store_SAD < SAD)
 Return_store_MV;
 ELSE
 Return MV;
 } /* end IF direction */
} /* end Search_Area */

 Table 3.3 PSEUDOCODE FOR DERIVING THE MV IN THE OUTER ZONE

3.4.1.4 Complexity analysis

The evaluation of the computational complexity of the proposed motion estimation

scheme will be based on the number of searching points that it uses to derive the

motion vectors. If NxN (N2) is the size of the search area then the full search

algorithm computational complexity is N2 - where the computational complexity is

defined as the number of the searching points that the algorithm has to check.

Because the proposed scheme employs a two-zone search its complexity is given

as the sum of the complexities produced at each zone search, figure 3.4. Initially the

scheme searches only the inner zone using the full search algorithm, where its size

is by definition N/2xN/2 (N2/4), and therefore the complexity is given as N2/4. The

calculation of the computational complexity at the next step is not so simple as

before since it depends on the following scenarios/cases:

Case 1: No motion at all is tracked in the inner zone. According to the scheme the

search is terminated at the first step, and therefore the total area used for searching

is 1/4 of the original one. In this scenario the proposed scheme is four times faster

than the full search algorithm.

Case 2: Motion tracked along the X or Y axis at the inner zone. The additional area

that is used in the next search has size N/2xN/4 (N2/8). Therefore the total search

area is (N2/4+ N2/8) =3/8 N2. The scheme in this case is 8/3 times faster than the

full search algorithm.

4
8

Case 3: Motion tracked in one of the four sub regions (UL, DL, UR, DR) of the

inner zone. According to the scheme an additional search has to be performed on

two sub- regions (SR) of the outer zone where the size of each sub region is

(N/4xN/4); thus the additional area that has to be searched has size

2x(N/4xN/4)=N2/8. The total used search area is N2/4 (first step)+ N2/8 (second

step) =3/8 N2, and the scheme in this case is 8/3 times faster than the full search

algorithm.

From the above analysis is clearly that the proposed scheme performs between

2.66 and 4 (best and worst case scenarios) times faster than the full search

algorithm.

(a) (b) (c) (d)

 Figure 3.11: Size of search area: (a) original search area, (b) inner search area- Step 1, (c)
additional search area for case 2, (d) the additional search areas for case 3

3.4.1.5 Experimental results

The overall performance of the proposed scheme is compared against the overall

performance of the full search algorithm. As overall performance, this thesis

considers measurements related to the computational complexity and to the image

distortion. For the evaluation of the computational complexity the number of

average search points used to derive the macroblock’s motion vector is selected as

measure, whereas for the image distortion-quality the peak signal to noise ratio

(PSNR) is selected as a measure. PSNR is an image quality metric defined as

N

N

N/2

N/2

N/2

N/4 N/4

N/4

4
9

PSNR=10log10 (MSE is the mean squared error), where larger values of it

indicate higher quality.

For both schemes/algorithms the same set of video sequences is used with the

following characteristics

• Slow motion video sequences- News 0. It is a background object from the

News sequence with very slow motion

• Medium-High motion requirements video sequences- News 1, Rallycross.

News 1 is a video object with high motion requirements in News sequence

(dancer), and Rallycross is a video sequence with medium motion

requirements.

• Intra coding period of ten VOPs for the IBP pattern, and intra coding period

of nine VOPs for the IBBP pattern.

Tables 3.3 and 3.4 present the simulation results when the IBP pattern is chosen

and tables 3.5 and 3.6 the simulation results when the IBBP pattern is chosen,

since these patterns are the most often ones in predictive coding with B VOPs. In

terms of results related to image quality, the proposed scheme performs similarly

to the full search algorithm for both patterns and for every sequence. The PSNR of

the proposed scheme is identical with the PSNR of the full search algorithm.

For experimental results related to computational complexity we can observe the

following:

1. As expected for sequences with slow motion requirements, the proposed

scheme reaches its best performance, which is 4 times faster than the full

search algorithm. For News 0, where most of the search occurred within the

5
0

inner zone, the complexity of the proposed scheme is reduced by a factor of

3.42 and by a factor of 3.48 for the IBP and IBBP patterns

2. The average speed up in the computations of the proposed scheme is 3.12

times for the IBP pattern and 2.87 for the IBBP pattern.

Algorithms News 0 News 1
Av. SP
per MV

Complexit
y

Average
PSNR

Av. SP
per MV

Complexit
y

Average
PSNR

FS 225 100% 36.08 225 100% 32.03
Proposed
Scheme

65.8 29.23% 36.08 86.8 38.57% 32.03

Table 3.4 AVERAGE SEARCH POINTS PER MOTION VECTOR ESTIMATION AND
PSNR FOR THE FIRST 100 FRAMES OF NEWS 0 AND NEWS 1-IBP PATTERN

Algorithms Rallycross
Av. SP
per MV

Complexity Average
PSNR

Average
Complexity for the

Three video sequences

FS 225 100% 34.24 100%
Proposed
Scheme

63.55 28.24% 34.24 32.01%

Table 3.5 AVERAGE SEARCH POINTS PER MOTION VECTOR ESTIMATION AND
PSNR FOR THE FIRST 100 FRAMES OF RALLYCROSS- AVERAGE COMPLEXITY
FOR THE THREE VIDEO SEQUENCES

Algorithms News 0 News 1
Av. SP
per MV

Complexit
y

Average
PSNR

Av. SP
per MV

Complexit
y

Average
PSNR

FS 225 100% 36.18 225 100% 32.04
Proposed
Scheme

64.81 28.81% 36.18 87.89 39.06% 32.04

Table 3.6 AVERAGE SEARCH POINTS PER MOTION VECTOR ESTIMATION AND
PSNR FOR THE FIRST 100 FRAMES OF NEWS 0 AND NEWS 1-IBBP PATTERN

5
1

Algorithms Rallycross
Av. SP
per MV

Complexity Average
PSNR

Average
Complexity for the

Three video sequences

FS 225 100% 34.27 100%
Proposed
Scheme

82.11 36.49% 34.27 34.78%

Table 3.7 AVERAGE SEARCH POINTS PER MOTION VECTOR ESTIMATION AND
PSNR FOR THE FIRST 100 FRAMES OF RALLYCROSS- AVERAGE COMPLEXITY
FOR THE THREE VIDEO SEQUENCES

Overall, the proposed scheme performs better than the full search algorithm by a

factor of three. This number can be improved further, since the proposed scheme

does not deal directly with the searching technique that is used in the search area

for the motion vector derivation. The most suitable candidates for the scheme are

the block motion estimation algorithms that involve either pixel sub-sampling, or

sub-sampled motion-field estimation (block sub-sampling), or sub block motion-

field estimation (a smaller block size is used).

3.4.2 A Hexagonal (HS) algorithm for fast block matching motion

estimation

3.4.2.1 Design Motivation

Experimental results [Musmann 85] have shown that the block motion field of real

world video sequences is usually smooth, and varies slowly. This leads to a centre-

biased global minimum motion vector distribution instead of a uniform distribution.

This can be observed based on the full search algorithm for the well-known News,

and the Rallycross video sequences, figure 3.6. For the News 0 (background object)

sequence, nearly all the blocks (97.55%) can be considered stationary, figure 3.6

(a). For the News 1 (dancer) sequence of faster motion and camera zooming, the

motion vector distribution is still highly central-biased: 48.31% of motion vectors

found at the centre of the search area, and 80% of these are enclosed in a central 5x5

5
2

area, figure 3.6 (b). For the non segmented medium motion sequence Rallycross

52.76 % of its motion vectors are enclosed in a central 5x5 area, and 61.16% are

located in a central search 9x9 area, figure 3.6 (c).

(a)

0

20

40

60

80

100

-7-6-5-4-3-2-10 1 2 3 4 5 6 7
-7

-4

-1

2

5

5
3

(b)

 (c)

Figure 3.12: Motion vector distribution for (a) News 0, (b) News 1, and (c) Rallycross
sequences. X and Y axis specify the range of the search area while Z axis gives the
probability in percentage of the motion vector distribution within the search area.

0

10

20

30

40

50

-7 -5 -3 -1 1 3 5 7
-7
-5
-3
-1
1
3
5
7

0
5
10
15
20
25
30
35
40
45
50

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
-7
-5
-3
-1
1
3
5
7

5
4

Based on the characteristic of central-biased motion vector distribution fast block

matching algorithms have been developed, as mentioned earlier, that reduce the

number of search locations by searching only the area in which the distribution is

more likely to occur. A large search pattern exploited by the TSS [Koga 81] with

size 9x9 and nine checking points is quite likely to mislead the search path in the

wrong direction and hence miss the optimal point. A centre-biased TSS algorithm,

called NTSS [R.Li 94] tends to achieve better performance because it has a higher

probability of finding the global optimum point. The average number of search

points in NTSS is less than that in TSS but NTSS loses the simplicity of the TSS,

to some extent. Using a moderate search pattern with a fixed size of 5x5 searching

points, the 4SS [Po 96] obtains a performance that is similar to NTSS. However,

4SS still requires testing of 17 checking points for a stationery block. The DS [58]

employs two diamond search patterns of sizes 9x9 and 3x3 respectively, is faster

than the NTSS and the 4SSS, but does not cover edge points of the search area.

From the above discussion it is clear that the shape and the size of the search

patterns jointly determine not only the image quality (PSNR) but also the

computational complexity of this category of fast block matching motion

estimation algorithms. The proposed hexagonal (HS) algorithm employs a new

search pattern that reduces further the computational complexity without causing

distortion to the image quality.

3.4.2.2 Hexagonal Search (HS) algorithm

Since motion vectors are not evenly distributed in the search area in fact most of

them are located inside a centre-biased window of size 9x9, the HS patterns are

designed to take into account the following:

(i) reduced computational complexity: the point where the minimum block

distortion (MBD) occurs should be tracked using a small number of

5
5

checking points, which cover a significant portion of the centre-biased

search window, and

(ii) search patterns shape: when the MBD point is located, the search pattern

has to be shaped in such a way that allows a refined search which covers all

searching points around the MBD point in order to derive the MBD point

for the best matching block.

As shown in figure 3.7, the HS algorithm utilises a centre-biased search pattern of

seven checking points, out of which six points surround the centre one to compose

a hexagon (Step 1). The hexagon points are checked and the centre of the hexagonal

search window is then shifted to the point with minimum block distortion. The

search pattern and its size, for the next two steps of the HS, depend on the location

of the MBD points. If the MBD point is found at the center of the hexagonal

pattern, the search proceeds to the final step (Step 3), with a smaller search pattern

for a refinement search. Otherwise, the hexagonal search pattern is applied

repeatedly until the MBD point is found at the center of the hexagon (Step 2).

When the final step (Step 3) is reached, the search pattern is changed from

hexagonal to a star, figure 3.7 (b) with a variable number of search points, best case

4 and worst case 6. For edge points of the search area the hexagonal search pattern

(step 2) is modified, figure 3.8. The HS algorithm is summarised as follows:

Step 1: The initial hexagonal pattern is centered at the origin of the search window

and the seven checking points (_) of the hexagon are tested, figure 3.7 (a). If the

MBD point is found at the center position then go to Step 3, otherwise go to Step

2.

Step 2: The MBD point found in the previous search step is re-positioned as the

center point to form a new hexagon. If the new MBD point obtained is located at

the centre position, go to Step 3; otherwise, recursively repeat Step 2. The

5
6

hexagonal pattern is modified on the borders of the search area in order to cover the

edge points. Figure 3.8 (a) presents all the possible shapes of the hexagonal pattern

when it reaches the left/right or the up/down borders of the search area. More

precisely, there are two different scenarios when the pattern reaches the top or

down borders. The first scenario is the centre point of the pattern, when it is

shifted towards the up or down borders, to be on the border. In this case the new

hexagonal pattern employs 4 checking points. The other scenario is when the

checking points of the shifted hexagonal pattern are out of the borders of the search

area, in this case the shifted pattern has 6 checking points. Similarly there are two

cases when the shifted hexagonal pattern reaches the right or left borders of the

search area. One case is when the centre of the shifted pattern is on the border of

the search area, and the other case is where checking points of the shifted pattern

lie outside the borders. In both cases the modified pattern has 5 checking points.

Step 3: Switch the search pattern from hexagon to star (_), figure 3.7 (a).

There are two different star patterns that are employed for different locations of

the MBD point in the search area

• The MBD point is not an edge point. The initial star pattern, figure 3.7 (a) is

centered to the MBD point of the hexagonal pattern and its four checking

points are tested. If the new MBD point calculated for the star pattern is

located at the centre then this point is the final solution for the motion vector

and the search stops. Otherwise, if the new MBD point is one of the other

points of the initial star then its neighbouring points, excluding the central star

point, are checked figure 3.6 (b). The new derived MBD point is the final

solution of the MV since it generates the smallest MBD in the pattern.

• The MBD point is an edge point. The initial star pattern, adjusted to three

checking points, is centered on the MBD of the hexagonal pattern, and its three

checking points are tested, figure 3.8 (b). If the MBD point is at the centre of

the modified star the search stops, otherwise the neighbouring points of the

5
7

MBD, excluding the central point, are examined. The new derived MBD point

is the final solution of the motion vector that points to the best matching block.

(a) (b)

Figure 3.13: (a) Hexagon and initial star patterns, neighbouring points of the initial star
are shown by grey colour, (b) Expanded star pattern for no edge points.

(a) (b)

Figure 3.14: (a) all possible shapes of the hexagonal pattern when it reaches the left/right or
the up/down limits of the search area, and (b) possible star shapes (initial and expanded)
for a down/up or right edge MBD points.

5
8

Note that the checking points of the hexagon search pattern are partially

overlapping when Step 2 is repeated. Only three checking points need to be

calculated in the new pattern. In addition, at Step 3 when the search pattern

changes from hexagon to star, three, four, or six points of the star need to be

calculated, depended on star’s MBD point location. An example of a possible

search path using the proposed HS within a search 15x15 window is illustrated in

figure 3.9, to demonstrate the checking points overlapping along the search path,

MV (3, -4). Figure 3.10 also presents an example of how the HS derives a motion

vector from the borders of the search area, MV (-7,7).

 Figure 3.15: HS search path for MV (3, -4)

-7 -7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7

-6

-5

-4

-3

-2

-1
 0

 1

 2

 3
 4
 5

 6

 7

-7 -7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7

-6

-5

-4

-3

-2

-1
 0

 1

 2

 3
 4
 5

 6

 7

5
9

Figure 3.16: HS search path for MV (-7,7)

3.4.2.3 Experimental results

The overall performance of the Hexagonal search (HS) algorithm is compared

against the overall performance of the full search (FS) algorithm and three other

well-known algorithms from the category of search range sub sampling. These are:

the new three step (NTSS), the diamond search (DS), and the four step search

(4SS) algorithms. Similar to the case of the fast prediction scheme for the bi

directional coding, the overall performance takes into account the average search

points per MV of the algorithm, and the generated PSNR. The same set of video

sequences is used (News 0, News 1, and Rallycross). The block size fixed at 16x16

pixels, and the maximum motion in row and column is assumed to be ±7 for

simplicity. The first 100 frames of the News and Rallycross video sequences are

used. The simulation results are shown in Table 3.7 and 3.8 and figure 3.11.

Algorithms News 0 News 1
Av. SP
per MV

Complexit
y

Average
PSNR

Av. SP
per MV

Complexit
y

Average
PSNR

FS 225 100% 35.91 225 100% 32.04
4SS 17.03 7.57% 35.89 18.37 8.16% 32.01

NTSS 17.05 7.58% 35.89 18.96 8.42% 32.00
DS 13.05 6% 35.9 15.25 6.77% 32.00
HS 11.06 4.91% 35.9 12.67 5.63% 32.02

Table 3.8 AVERAGE SEARCH POINTS PER MOTION VECTOR ESTIMATION AND
PSNR FOR THE FIRST 100 FRAMES OF NEWS 0 AND NEWS 1

Algorithms Rallycross Average
Complexity for the

Three video sequences

6
0

Av. SP
per MV

Complexity Average
PSNR

FS 225 100% 34.15 100%
4SS 20.67 9.18% 34.13 8.30%

NTSS 21.01 9.34% 34.12 8.45%
DS 17.99 7.99% 34.14 6.92%
HS 14.44 6.41% 34.14 5.65%

Table 3.9 AVERAGE SEARCH POINTS PER MOTION VECTOR ESTIMATION AND
PSNR FOR THE FIRST 100 FRAMES OF RALLYCROSS- AVERAGE COMPLEXITY
FOR THE THREE VIDEO SEQUENCES

(a) Rallycross

35.20
35.30
35.40
35.50
35.60
35.70
35.80
35.90
36.00
36.10

10 20 30 40 50 60 70 80 90 100
Frame #

P
S

N
R

 Y
 (

dB
)

FS HS NTSS DS 4SS

6
1

(b) News 0

35.20
35.30
35.40
35.50
35.60
35.70
35.80
35.90
36.00
36.10

10 20 30 40 50 60 70 80 90 100
Frame #

P
S

N
R

 Y
 (

d
B

)

FS HS NTSS DS 4SS

6
2

 (c) News 1

Figure 3.17: PSNR comparisons of HS, DS, NTSS, 4SS, and FS for (a) “Rallycross, (b)

News 0, and (c) News 1.

Examing the results that are related to the image quality, the proposed scheme

performs very close to the PSNR performance of the full search algorithm, and

generates better PSNR results, for every sequence, than the other fast search

algorithms. In particular for the News 1 sequence, which has fast motion

requirements, the HS performs better than the other fast search algorithm, figure

3.11 (c). In terms of the performance related to computational complexity we

observe the following

1. The simulation shows that the average HS computational complexity is less

then the average computational complexity of all the other fast motion

31.90

31.95

32.00

32.05

32.10

32.15

10 20 30 40 50 60 70 80 90 100
Frame #

P
S

N
R

 Y
 (d

B
)

FS HS NTSS DS 4SS

6
3

algorithms. Specifically it is faster than the NTSS by 49.5%, faster than the

DS by 22.47 %, and faster than the 4SS by 47%.

2 . For sequences with medium to large motion vector distribution, HS

outperforms all the other fast search algorithms. For instance for the

Rallycross video trailer the HS computational complexity is 6.41% while

DS, 4SS, NTSS complexities are 7.99%, 9.18%, and 9.34% respectively

with similar performance to FS in terms of PSNR, figures 3.11, 3.12 and

tables VI, VII.

(a)

(b) (c)

6
4

(d) (e)

Figure 3.18: The 55th estimated frame for the Rallycross sequence using different searching

algorithms. Estimated frames using (a) FS, (b) DS, (c) 4SS, (d) NTSS, and (e) HS.

3.5 Conclusions

Two block motion estimation algorithms were discussed in this chapter. Both of

them are fast and suitable for the MPEG standard yet work effectively in the sense

of producing small residual errors.

The proposed fast motion prediction scheme for bi directional coding exploits the

temporal correlation of motion fields between consecutive frames. The macroblock

displacement is used to track the area of motion and to exclude the search points

that are not in the direction of the macroblock’s displacement. Experimental results

using with the most common used B coding patterns showed that the proposed

scheme derives the motion vectors in average case three times faster than the full

search algorithm. The speed up can be improved further, by involving in the

scheme search process either pixel sub-sampling, or sub-sampled motion-field

estimation, or sub- block motion-field estimation.

Based on the real world image sequence’s characteristics of center-biased motion

6
5

vector distribution, a new Hexagonal Search (HS) algorithm with a center-biased

pattern is proposed. Since the shape and the size of the pattern determine not only

the image quality but also the number of operations that are performed for the MV

derivation, the HS employs patterns that (a) use less checking points to derive the

MVs compared with other well known algorithms, and (b) cover all checking points

of the search area. Experimental results performed on sequences with different

motion requirements have demonstrated that the HS uses in average case 12.9

search points to derive a motion vector while the DS uses 15.43 search points to

derive a motion vector, the NTSS 19 search points, the 4SS 18.69, and the full

search 225 search points. Moreover, the HS performs closer to the PSNR

performance of the FS algorithm compared with the other algorithms that are used

in our experiments.

66

Chapter 4

4 A scheduler for real-time MPEG-4 video

encoding

It was mentioned in the introduction that the selection, and distribution of the

MPEG-4 video objects onto a parallel architecture for encoding is a challenging

problem. This chapter proposes and describes a heuristic scheduler suitable for

MPEG-4 real time encoding on shared memory platforms, when one or more video

objects exist in a scene.

4.1 MPEG-4 scheduling and heuristic schedulers

In Chapter 2 was shown that the proposed producer-consumer model for the

parallel processing of the MPEG-4 video coding standard requires a scheduler

which selects VOPs according to their calculated deadlines. But in MPEG-4 video

encoding VOP deadline calculation is not a simple task, since a frame may comprise

of more than one video object, each with different coding patterns, frame rates, and

more likely, VOPs that appear and disappear over the encoding session. Therefore,

the proposed scheduler should take into account in the VOP’s deadline calculation

formula, not only communication costs among the system processors, and the

VOPs estimated encoding times, but also (from the MPEG-4 configuration files)

the number of video objects that exist in the encoding session, with their starting

and ending display times, their frame rates and the precedence constraints imposed

67

by their coding patterns. Additionally, as VOPs vary in size, the scheduler needs to

adopt a dynamic VOP allocation policy to the system processors since a static

VOP allocation would lead to an unbalanced system.

The problem of scheduling has received a lot of attention in the literature, where the

design of scheduling heuristics depends both on the tasks characteristics, and on the

target platform [Sarkar 89]. Since the platforms are either shared memory

(centralised) or distributed, and the tasks are either independent or dependent with

real or non real time requirements the scheduling heuristics are generally placed into

the categories, shown in figure 4.1.

Figure 4.19: Taxonomy of scheduling heuristics

In real time scheduling, tasks have to be performed not only correctly but also

within a defined time (or deadlines). Typically, real time scheduling decisions are

based on task characteristics such as timing, precedence constraints and resource

requirements [Andre 91]. On the other hand, no time constraints are considered for

tasks scheduled by non real-time schedulers, where the main objective is the

minimisation of the total execution time of the parallel program. Moreover

• Non real- time static scheduling heuristics require previous knowledge of

68

the information in the task graph. They are classified as centralised [Adam

74] or distributed. Distributed heuristics apply to Multiple Instructions

Multiple Data (MIMD) architectures and take into consideration the

interprocessor communication costs. They use either list scheduling [Wu

90][Hwang 89][Sih 93][Kwok 96], or clustering [Kim 88][Gerasoulis

92][Sarkar 89][Palis 96]. Centralised heuristics apply to shared memory

architectures where communication costs are low. Their objective is either

the equalisation of the load among the system processors, or the

minimisation of the schedule length. The schedule length is defined to be the

longest path in a task graph from the source node to its terminal node

including all communications and computation costs. For homogeneous

processor platforms the minimisation of the schedule length is actually the

minimisation of the communication costs among the processors.

• In real time scheduling there are two categories of heuristics: dynamic and

static. Real time dynamic scheduling heuristics, both for distributed and

centralised systems [Ramamritham 90][Hamidzadeh 98][Manimaran

98][Zhao 87][Ramamritham 95][Hou 97] [Chetto 89] [Lehoczky 89],

produce feasible schedules that take into account deadlines and resource

constraints. They are suited for independent non- periodic tasks that arrive

sporadically. The real time static heuristics produce optimal schedules for

real-time tasks when their characteristics are known a-priori. There are

heuristics for periodic tasks and non-periodic tasks that take into account

parameters such as communication costs, deadline constraints and resource

requirements.

From the above discussion it can be concluded that none of the existing scheduling

heuristics can be employed directly to the MPEG-4 video object scheduling

[Hamosfakidis IEEE MS 98] [Hamosfakidis IEEE MS 99] [Y. He 98] [Y. He 97].

69

Since this thesis deals with the parallel MPEG-4 video encoding onto shared

memory platforms, none of the distributed scheduling heuristics from the above

taxonomy are suitable. These schedulers analyse the problem of optimally

assigning the modules of a program over the processors. Their objective is to assign

modules, wherever possible, to the processors on which they execute most rapidly

while taking into account the overhead of interprocessor communication. While an

MPEG-4 scheduler has to select the most appropriate VOP for encoding using its

calculated deadline, and then to distribute it on a group of processors where its size

is related to VOP size.

The non real time scheduling heuristics cannot be applied to real time MPEG-4

scheduling, even if they select the VOPs according to their precedence constraints,

since they omit the aspect of VOP deadline calculation.

Whilst real time dynamic scheduling heuristics schedule tasks according to their

time constraints they are not applicable in the case of the MPEG-4 scheduling,

since they do not consider precedence constraints that are imposed by the video

objects coding patterns; most of them deal with independent non-periodic tasks

that arrive sporadically. In addition, the heuristics of this category are used more in

order to produce an answer in polynomial time about the feasibility of tasks to

meet their real time requirements when they arrive in the system.

4.2 Proposed real time MPEG-4 heuristic scheduler

4.2.1 VOP selection mechanism

One interesting category from the taxonomy in the previous section heuristic is List

Scheduling. List schedules [Manacher 67] are a class of implementable schedules in

70

which tasks are assigned priorities and placed in a list ordered by decreasing

magnitude of priority. Whenever executable tasks contend for processors, the

selection of the tasks to be immediately processed is done on the basis of priority,

with the higher priority tasks being the first ones assigned to processors. This

section proposes a scheduler whose selection mechanism is based on the core of list

scheduling. VOP deadlines are calculated for all video objects of the sequence. The

VOP with the earliest deadline is assigned the highest priority. By using this

information a list is created that contains all the VOPs of the video sequence sorted

in an ascending order of their deadlines.

Before the VOP deadline calculation, the scheduler needs to know the order in

which the VOPs are encoded. Therefore for each video object, the scheduler creates

its VOP coding sequence using the information of the video object’s coding pattern.

More specific, the VOP coding sequence contains the VOPs of the coding pattern

ordered according to their actual encoding requirements. B VOPs are always placed

after their references in the VOP coding sequence. For instance, if a video object has

the I1B2P3B4P5B6P7 coding pattern its VOP coding sequence is the I1P3B2P5B4P7B6.

Next, for each VOP of the VOP coding sequence, the scheduler calculates its

deadline using the video object frame rate (FR), and its starting display time (ST).

A VOP with real time requirements must complete its encoding before the arrival of

the next VOP, where the time period between two arrivals is given as 1/FR. For

instance, the time period between two VOP arrivals for a video object with FR of

25 frames per second is 1/25 = 40 milliseconds. Therefore, the formula that the

proposed scheduler uses to calculate the VOP deadlines on a shared memory

platform, where no communication costs exist among the processors, is the

following one

)/1(* iiij FRjSTD +=

Dij is the calculated deadline of the j’th VOP in the ordered VOP coding sequence

71

of the i’th video object of the video sequence that has FRi frame rate, and its first

VOP is displayed for first time in the sequence at STi.

When the scheduler completes the VOP deadline calculation for each VOP in the

sequence, it starts placing VOPs into the list, ordered in decreasing magnitude of

priority, by employing the earliest deadline first (EDF) [Chetto 89] algorithm.

While VOPs exist, the scheduler searches all the VOP coding sequences to find the

VOP with the next earliest deadline that needs to be placed in the priority list. The

VOP with the earliest deadline is assigned the highest priority. In case there are

VOP deadline conflicts, the scheduler resolves them by introducing a priority rule

that assigns priorities based on VOP coding types. Since the I-VOPs are always

reference VOPs, they are assigned the highest priority, B-VOPs have the smallest

priority, while P-VOPs have higher priority than B-VOPs and less than I-VOPs.

Thus, if an I and a B VOP have the same deadline the scheduler puts the I VOP and

then the B VOP in the list. Table 4.1 presents the pseudo code for the VOPs

calculation deadline

Variables
num_vos: denotes the number of video objects existing in video session;

Temporal_VOPList = NULL; /* For each video object a list is constructed based on video
object’s VOPs deadlines and video object’s coding pattern constraints*/

VOPList = NULL; /* Final VOP list that contains in an ascending order the deadlines of
all VOPs of all video objects that exist in the video session */

Assigned Priorities for VOP coding types:
I_VOP_priority=1 –highest priority,
P_VOP_priority=2;
B_VOP_priority=3-lowest priority;

VOPListConstructor () {
 Continue=1;
 FOR each video object construct its Temporal_VOPList;
 WHILE (Continue) {
 Find the VOP with the earliest deadline among the Temporal_VOPLists;
 IF more than one VOPs have identical deadlines check their coding types;
 IF both VOPs have same coding types

72

 Put them in the VOPList;
 ELSE
 Put first in the VOPList the VOP with the highest priority;
 ELSE
 Put VOP in the VOPList;

 IF all Temporal_VOPLists empty;
 Continue=0;
 } /* end WHILE */

} /* end of VOP LIST CONSTRUCTOR*/

Table 4.10 PSEUDOCODE FOR THE PROPOSED VOP LIST CONSTRUCTOR

Figures 4.2 and 4.3 demonstrate an example of how the scheduler generates the

VOP list from the VOPs playout chart. Figure 4.2 shows the play out time chart of

a general MPEG-4 sequence. The sequence has three video objects; VO0, VO1, and

VO2. VO0 and VO1 start at time unit 0 and VO2 at time unit 60. Their frame rates

are 10, 25, and 50 frames per second respectively. VO0 has two instances and is

encoded as a sequence of one I and one P- VOP. VO1 has five instances and is

encoded as a sequence of one I, two B, and two P VOPs. VO2 has seven instances

and is encoded as a sequence of one I, two P, and four B VOPs. Moreover, VO0

and VO1 are both synchronized at the start of the session whilst all of them end at

the same time. The maximum VOP encoding time for each of the VO0, VO1, and

VO2 is 100, 40 and 20 time units respectively.

Video objects

Time (Units)
0 20 40 60 80 100 120 140 160 180 200

VO2

VO1

VO0

 VOP1 0 VOP11 V O P12 V O P13 VOP1 4

 VOP0 0 VOP0 1

VOP2 0 VOP2 1 VOP2 2 VOP2 3 VOP2 4 VOP2 5
VOP2 6

I B B P B B P

I B P B P

 I P

73

Figure 4.20: VOPs playout chart

Using the proposed selection policy the resulting list is shown in figure 4.3, with

the VOP with the earliest deadline shown by the pointer at the top of the list. In

case of deadline conflicts the VOP with the highest priority type is placed first in

the list (I and P-VOPs-VOP00 and VOP23, P and B-VOPs-VOP26 and VOP14, P and

B-VOPs-VOP01 and VOP13, and VOP25,).

VOP10, Type I, Deadline 40
VOP20, Type I, Deadline 80

VOP12, Type P, Deadline 80

VOP00, Type I, Deadline 100

VOP23, Type P, Deadline 100

VOP11, Type B, Deadline 120

VOP21, Type B, Deadline 120

VOP22, Type B, Deadline 140

VOP26, Type P, Deadline 160

VOP14, Type B, Deadline 160

VOP24, Type B, Deadline 180

VOP01, Type P, Deadline 200

VOP13, Type B, Deadline 200

VOP25, Type B, Deadline 200

Figure 4.21: Deadline VOP list sorted in an ascending order

VOP pointer

74

From this example it can be observed that the VOP selection mechanism of the

proposed scheduler always selects the VOP with (i) the earliest deadline that can

be encoded, as far it concerns its coding pattern constraints, and (ii) the most

important coding type. I and P-VOP types are more important for the encoding

procedure, since they are used as references for the encoding of other P and B-

VOPs.

4.2.2 VOP distribution policy

As has been mentioned earlier a static allocation scheme leads to an unbalanced

system since video object sizes vary over time. The scheduler needs to employ a

dynamic VOP allocation scheme to allocate the system processors, that is related

to VOP size. The scheduler for the producer-consumer model proposed in Chapter

2 creates, for each video object, a process that runs an identical MPEG-4 video

encoder. So far, without the VOP size calculation the scheduler distributes the

VOPs in a static fashion, with each video object assigned only one process that also

restricts the degree of system parallelism to the fixed number of the video objects.

Maximum system parallelism is achieved in the encoding of an MPEG-4 frame

when all system processors are assigned an MPEG-4 thread/process. By

calculating the VOP’s size as a percent of the frame size, the scheduler determines

the percentage of the maximum number of threads that could be created for this

VOP. This information is passed to the consumer (MPEG-4 encoding process) of

the corresponding video object, and thus dynamic VOP allocation occurs, since the

consumer always creates a number of encoding threads that varies as the VOP size

varies.

The scheduler allocates the VOPs to the consumers by employing two different

75

policies: the One VOP Scheduling (OVS) policy, and the Multiple VOP Scheduling

(MVS) policy. With the OVS policy only one VOP at a time is distributed and

encoded onto the system. The VOP size as a percent of the frame size is set to

100%. Thus, the corresponding MPEG-4 video encoder (consumer) encodes the

VOP by creating for each MPEG-4 encoding module the maximum number of

threads that exploit the system parallelism.

The MVS policy distributes more than one VOP concurrently to the processors.

Each VOP is assigned to its corresponding consumer (MPEG-4 video encoding

process). Further parallelism occurs at the process level (consumer) by creating

threads for each module of the MPEG-4 encoding process. The number of threads

that are created for each VOP in the consumer process is related to VOP size which

is given as percentage of the frame size.

Scheduling decisions about the most appropriate VOP allocation policy occurs as

follows:

The scheduler checks the number of video objects in the video sequence. If no more

than one video object exists in the sequence, then only one consumer is created by

the model, and the scheduler employs the OVS allocation policy. More

specifically, as has been described in Chapter 2 the communication between the

scheduler and the consumer is accomplished through a synchronisation buffer.

When the consumer performs VOP encoding, it sets the flag of its synchronisation

buffer. Every time the scheduler selects a VOP from the VOP list, it checks the flag

status of the consumer’s synchronisation buffer. If it is set, the scheduler blocks till

the consumer finishes the encoding of its current VOP.

If more than one video object exists in the sequence, the scheduler employs the

MVS allocation policy. Specifically, the scheduler selects the VOP with the earliest

76

deadline from the list, calculates its size as a percentage of the frame size, and

checks the flag status at the synchronisation buffer of the corresponding consumer

(encoder) for this video object. If the flag is not set the encoder sets it, and starts

the VOP encoding, while the producer proceeds with the next VOP from the list.

Otherwise the producer blocks till the encoder unblocks it by signaling for new

VOP data.

Because video objects might appear and disappear from the video sequence, a

possible scenario for the scheduler is to deal with the encoding of only one video

object for a number of frames. In that case, the scheduler’s allocation policy should

be changed to the OVS. Therefore, when the MVS policy is employed, the

scheduler checks if the first m VOPs in the sorted list belong to the same video

object with the VOP that is encoded now by the system, m is the number of video

objects that exist in the sequence. If so, that means that the scheduler cannot

distribute concurrently any of the next m VOPs to the consumers, since all of them

belong to the same video object and coding pattern constraints apply. Therefore,

the OVS policy is employed for the next m VOPs of the list.

Similarly when the OVS distribution policy is employed, the scheduler checks if

the first two VOPs of the list belong to the same video object. If not, then these

VOPs can be encoded concurrently and thus the VOP allocation policy is changed

for them from OVS to MVS.

4.3 Conclusions

This chapter presented a scheduler suitable for real time encoding that selects and

distributes the MPEG-4 video objects onto a parallel architecture for encoding. The

VOP deadline calculation is not a simple task since a frame consists of more than

one video objects that might have different coding patterns, frame rates, and

77

furthermore, VOPs are likely to change over the encoding session, some enter and

some leaving the scene. By using list scheduling, where the VOP deadlines are

calculated according to the)/1(* iiij FRjSTD += formula that takes into account the MPEG-4 encoding

video object characteristics, the scheduler creates a list, in which the VOPs are

placed in an ascending order of their deadlines. The selection of the appropriate

VOP is achieved by using the earliest deadline first (EDF) policy.

Since VOP size varies over the encoding period the scheduler introduces two

dynamic VOP allocation policies to the system processors, the OVS which is

employed when one VOP per frame is encoded, and the MVS which is employed

when multiple VOPs per frame are encoded. Both of them allocate the VOP to a

group of processors that its size equals to the number of threads that will be

created in the MPEG-4 encoding process. The number of the generated threads is

related to the VOP size which is calculated by the scheduler.

Chapter 5

5 A Shape Adaptive Data Partitioning
Scheme for MPEG-4 Video Encoding

5.1 Dynamic shape adaptive load balancing scheme for MPEG-4

The previous chapter addressed the issues that are related to the appropriate video

object selection, and allocation onto the parallel architecture. Each VOP is

dynamically assigned to a group of processors where the number of group

processors is equal to the number of threads that will be used for the VOP

78

encoding. Further parallelism (spatial) is achieved inside the consumer process by

dividing the video object into tiles that are processed by different processors. In

MPEG-4 unlike MPEG-1 and MPEG-2, some computationally intensive

algorithms of the encoder are data dependent, which makes their execution times

different for different data areas of the video object. Transparent macroblocks do

not need encoding. While contour macroblocks are processed by all algorithms

(motion estimation, texture and shape coding) of the encoder, and opaque

macroblocks do not need shape encoding. Table 5.1 depicts the operations

performed on different types of macroblock.

TOOLS TRANSPARENT MB CONTOUR MB OPAQUE MB

Motion estimation X X

CAE-Shape coding X

DCT/IDCT X X

Table 5.11 MPEG-4 TOOLS AND THEIR OPERATIONS ON MACROBLOCKS

Thus, if the video object data is partitioned into equally sized tiles that are encoded

by different processors, it will eventually lead to unbalanced workloads among the

processors. Data partitioning should be addressed carefully in the parallel

processing in order to achieve real time MPEG-4 video encoding.

In its simplest form a data partitioning method restricts the data sub region to a

rectangular shape in order to avoid the use of complex data structures.

1

2

3

1 2

3 4

1 2

3 4 5

79

Figure 5.22: Partitioning methods: (a) Stripwise, (b) Blockwise, and (c) Recursive

partitioning

Figure 5.1 shows several commonly used partitioning methods. Stripwise

partitioning divides the data area horizontally, or vertically into n sub areas for n

processors. Blockwise partitioning divides the data area evenly along both the

horizontal and vertical dimensions. Finally, the recursive method [Berger 87]

divides the data area recursively in a binary fashion. Although this method

contributes to an optimally distributed load it is not widely used due to the

relatively high cost of the recursive operations executed during the decomposition.

If the MPEG-4 video objects are large enough and their bounding box is filled

entirely, the above mentioned partitioning methods may achieve load balancing, as

the opaque and contour macroblocks are likely to be distributed uniformly on the

system processors. But in the general case, there are VOPs sub regions composed

of transparent macroblocks, and VOP sub regions composed of opaque and contour

macroblocks, which makes the straightforward application of the above partitioning

methods on the MPEG-4 video data inefficient. Moreover as the VOP size may be

irregular, it may be even not possible to employ the strip-wise and blockwise data

partitioning methods. Figure 5.2 presents a data partitioning example that uses both

the stripwise and the blockwise techniques for the News 1 video object of the

News segmented video sequence when it is sent for encoding on a four-processor

platform. A bounding box surrounds the News 1 video object. All the macroblocks

that are reside within the white area of the bounding box are either opaque, or

contour (on borders) macroblocks, while the rest of them are transparent

80

Figure 5.23: Data partition example on “News”. (a) Strip-wise partitioning and (b) blockwise

partitioning

From the above example it is apparent that both partitioning techniques result in a

distribution where some processors are assigned all the transparent macroblocks,

which do not need processing, while others are assigned with computationally

intensive opaque/contour macroblocks. In order to achieve load balancing, a shape

adaptive data partition scheme is proposed [Hamosfakidis IWSNHC 99] that

partitions video object data according to the actual macroblock processing

requirements.

5.1.1 A Dynamic Shape Adaptive Data Partition Scheme

To accomplish load balancing among the system processors, the construction of

video object tiles should based on the type of video object macroblocks. The type

of a macroblock can be extracted from the video object’s alpha plane. Specifically,

by using the video object’s alpha plane we construct a binary matrix that contains

the type information of all the video object macroblocks. Each cell of the matrix

corresponds to the co-located video object macroblock. If the macroblock is inside

or on the video object’s border the matrix cell is set to one, otherwise is set to zero,

see figure 5.3. In this example the dancer video object from News sequence is used

(size 96x80 pixels). A binary matrix of five rows (80/16=5) and six columns

(96/16=6) is created from the information that is extracted from the MPEG-4 alpha

plane. The transparent macroblocks are found in the black area of the bounding box

are presented by the cells with the zero value in the binary matrix.

81

1 1 1 1 1 1
1 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1

Figure 5.24: The dancer video object for the News sequence and its macroblock shape info

table

Because the transparent maroblocks are not processed by the encoder, the shape

adaptive scheme does not use them in the construction of video object tiles. The

scheme knows the number of contour, and opaque macroblocks that exist in the

video object by counting the number of non- zero valued cells in the generated

matrix. The calculated sum is divided by the number of the system processors in

order to derive the number of macroblocks per tile. The scheme creates the tiles as

follows: tiles are formed by using all the video object’s macroblocks, so that their

corresponding matrix cell values are non-zero. The first tile is formed when the

counting number of no transparent macroblocks reaches the appropriate value of

macroblocks per tile. Then the scheme proceeds with the formulation of the next

tile by starting to count the next non-transparent macroblock that follows the first

tile. The same procedure is repeated till the formation of last tile.

For the above example, if the dancer VOP has to be distributed onto a two-

processor platform, its tiles (A, B) are formed using the matrix information of

figure 5.3. Tiles A, and B processing requirements depends exclusively on the

macroblocks that require actual processing. Load balancing is “guaranteed” since

82

each processor is assigned equal workloads. Slice A contains 13 “active”

macroblocks and slice B contains 14 “active” macroblocks, figure 5.4.

1 1 1 1 1 1
1 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1

Figure 5.25: VOP generated tiles of dancer video object when is encoded onto a two-

processor platform

A description of the proposed dynamic shape adaptive scheme in terms of pseudo

code is given in table 5.2, where Num_Resources refers to the number of available

resources, threads/processors, etc.

SHAPE_ADAPTIVE_SCHEME(Num_Resources) {

 FOR each instance of the Video Object {

 WHILE(macroblocks_exist) {
 Find macroblock _type from video object’s alpha plane;
 IF (macroblock.type!= TRANSPARENT) /*outside VOP */
 Set corresponding matrix cell to one;
 ELSE
 Set corresponding matrix cell to zero;
 } /* end WHILE */

Tile A

Tile B

83

 Divide the number of the non zero macroblocks by the Num_Resources;

 Form Video Object tiles using the number from the above division;

 Distribute Video Object to system processors for further processing;

 } /* end FOR */

} /* end SHAPE_ADAPTIVE_SCHEME */

Table 5.12 PSEUDOCODE FOR THE PROPOSED SHAPE ADAPTIVE SCHEME

Since typical MPEG-4 video encoding involves motion estimation/compensation,

and texture and shape coding, the rest of this chapter will investigate the

applicability of the proposed scheme at the MPEG-4 video encoder modules. By

adopting the SPMD model at consumers level, each processor in a VOP’s group

will run an identical instance of the same module (motion estimation, or texture

coding, or shape coding module) on different areas of the VOP. The proposed

scheme is applicable, if and only if there are no macroblock dependencies.

Therefore for each module of the video encoder an overview of its structure is given

in order to identify parts where the proposed data partition scheme can be applied.

Experimental results also will be given about the speed up that is accomplished by

the scheme

5.2 Texture coding

5.2.1 Overview of texture coding

The MPEG-4 texture coding involves discrete cosine transformations (DCT),

followed by DC/AC predictions, and variable length coding (VLC). The next

paragraph overviews the texture coding mechanism in order to identify parts where

the proposed scheme can be applied.

84

Transform coding is a very popular compression method for still image and video

coding [Cho 91]. The most successful transformation is the DCT which is applied

to data areas that form blocks of 8x8 pixels size. After the DCT transformation, the

precision of the DCT coefficients is further reduced by quantising them on a block

basis. The last step before the entropy coding is the lossless prediction of the

quantised DC and AC coefficients. This procedure involves dependencies between

different blocks of data since for the selection of the quantised DC (QDC), the

values of neighbouring blocks are used [Puri97]. If X refers to the current block, A,

B, and C correspondingly to the left block, to the block above and to the left, and

to the block immediately above the current block X respectively, figure 5.5, then

the QDC value of block X, QDCx, is predicted by the next formula.

If (|QDCA -QDCB| < |QDCB –QDCC|) QDCP = QDCC Else QDCP = QDCA ;

A

B C D

X MacroblockY

or or

 Figure 5.26: Previous neighboring blocks used in DC prediction

Similarly to DC prediction, the AC coefficients from either the first row or the first

column of the previous coded block are used to predict the corresponding

coefficients of the current block.

From this discussion it is clear that the proposed data partition scheme can be

85

applied only for the DCT transformation and the quantisation procedure, since no

data dependencies exist between different blocks that might exist on different tiles

which are encoded concurrently by different processors.

5.2.2 Experimental results of the proposed dynamic shape adaptive
scheme on texture coding

By measuring the encoding time of the different parts of the texture encoder it was

observed that the most computationally intensive part is the DCT and inverse

DCT (IDCT) macroblock transformations. Due to the fact that these operations

like the coefficient quantisation are performed on a block basis, it is possible to run

all of them in a parallel fashion using the proposed data partition scheme.

As mentioned earlier, for our experiments a parallel implementation of the texture

encoder has been developed to the Origin 200. In order to exploit the parallelism of

Origin200 the thread model is used to implement the SPMD parallel paradigm.

Each instance of the texture encoder runs on the system as a thread which performs

DCT/IDCT and quantisation on a different area of the video object. The operating

system schedules the threads to the system processors, and as the number of

threads increases the utilisation of the system processors increases as well.

Maximum system parallelism is achieved when the number of threads,

num_threads, equals to or is greater than the number of processors. The

num_threads is given to the system as a parameter before the MPEG-4 encoder

starts. Initially, the MPEG-4 encoder runs as one thread, the “master” thread.

When it starts the texture coding, the “master” thread checks the number of threads

that has been requested to create. If num_threads=0, then texture coding is

performed on the master thread. Otherwise, “slaves” threads are created. Each

“slave” thread is assigned a VOP tile that is generated by the proposed scheme.

86

Experiments have been performed for the texture coding part of the News 0, News

1 (QCIF), and Coastguard 0 (CIF) video objects to demonstrate the efficiency of

the proposed data partition scheme on the parallel processing of the texture coding.

An efficient data partitioning mechanism leads to a load balanced system and in

theory, if there are no data dependencies, to a speed up that equals the number of

system processors. Thus, by drawing the graphs of speed up versus the number of

threads, conclusions can be made about the efficiency of the data partition scheme.

Figure 5.6 shows the speed up curves for News 0, News 1, and Coastguard 0 video

objects, when one, two, three, and four slave threads are used for the parallel

processing of the DCT/IDCT and quantisation modules, when the proposed data

partition scheme is used.

DCT/IDCT/Quantisation

1.00

1.85

2.62

3.36

1 2 3 4
 #Threads

S
pe

ed
 U

p

News 1

DCT/IDCT/Quantisation

1.00

1.74

2.49

3.19

1 2 3 4
#Threads

S
pe

ed
 U

p

News 0

87

Figure 5.27: Speed up curves for the News 0, News 1, and Coastguard 0 video objects

DCT/IDCT/Quantisation

1.00

1.70

2.44

3.17

1 2 3 4
 #Threads

S
pe

ed
 U

p

Coastguard 0

88

By observing the above graphs the following can be concluded

(i) The speed up increases almost linearly as the number of threads

increases in the four-processor Origin200, indicating the scalable

behavior of the scheme. The speedup reaches the maximum value when

the number of threads reaches the number of system processors.

(ii) The slope of the curves is related to VOP size and has a value of less

than one. This is caused mainly by an overhead associated with “slave”

threads scheduling mechanism. More specifically, thread’s lifetime is

related to texture coding time of video object’s tile. Since texture coding

performance is very fast, threads are created, scheduled, and destroyed

very fast on the system. The kernel has to schedule with a high

frequency new generated texture coding threads that last for a few

microseconds or milliseconds. This leads to a non- optimal system

parallelisation, since the time that is required by the kernel to start the

threads on the system processors is significant, compared to the time

that is required for the threads to execute their tasks on the system

processors.

5.3 Motion Estimation and dynamic shape adaptive scheme

Earlier in Chapter 3 two fast motion estimation algorithms were proposed in order

to reduce encoder’s computational complexity. Although these fast motion

estimation algorithms contribute significantly to the reduction of the motion

estimation complexity, the amount of computation is still large for large size VOPs.

If real time requirements need to be met, motion estimation can be applied on

different data areas of the VOP to achieve parallel processing. The rest of this

section investigates the application of the proposed scheme on the motion

estimation part. It starts by dealing with issues regarding the conditions that need

89

to be satisfied for parallel motion estimation, and concludes by presenting speed up

results for the proposed data partition scheme when different motion estimation

algorithms and coding patterns are used.

5.3.1 Motion estimation/Motion compensation

As discussed in section 3.2, the motion estimation procedure derives the motion

vectors by searching around the original macroblock position in the reference VOP.

The reference is either a past VOP (P-VOPs) or a future VOP (B-VOPs

prediction). The size of the search area at the reference VOP is dependent on a

range variable (f_code), which is given to the encoder as a parameter. In the general

case, the MPEG-4 search range around the original macroblock forms a window

with dimensions 32x32 pixels for P-VOPs with unary temporal distance, while for

other temporal distances the size of this window increases almost linearly. Access

problems in the search area at the reference VOP arise when the VOP is divided

into tiles that are processed by different processors, since each processor needs to

have access to an area at the reference VOP with a size corresponding to the search

window size.

When the proposed scheme is applied to cluster systems, the above problem is

solved by cashing redundant data in the local memory of the processors

[Akramullah 97]. Even simpler is the solution in the case of shared memory

systems, where each processor has access to the same address space. The reference

VOP is kept in the shared memory to which each processor has access. More

precisely, each processor works with an area of the reference VOP where its size

corresponds to its assigned tile size expanded by a number of macroblocks rows

that used to form the complete search window area.

90

5.3.2 Experimental results

The parallel motion estimation search that uses the proposed data partition scheme

is implemented on the four- processor SGI Origin 200. As in the case of parallel

DCT encoding, in order to exploit Origin200 processing power the thread model is

adopted again. Each instance of the motion estimation algorithm is running on the

system as a thread. The number of motion estimation threads, num_threads, is

given as a parameter before the MPEG-4 encoder starts running. Initially, the

MPEG-4 encoder runs as one thread, “master” thread. When it enters the motion

estimation part, the “master” thread checks the number of threads, num_threads,

that it has been requested to create. If num_threads =0, then the motion estimation

is performed on the master thread. Otherwise, “slave” threads are created and each

“slave” thread is assigned a VOP tile that is generated by the proposed data

partition scheme. The thread library provides a system call that allows multiple

threads to read simultaneously the same area of data. This call is used widely in our

implementation each time that more than one processor tries to access the same

search area in the reference VOP. In this way, no memory access contention occurs

when motion estimation is performed at the borders of two neighbouring tiles.

The efficiency of the proposed data partition scheme, in parallel motion estimation

searching, is tested for different motion estimation algorithms, and different

temporal distances. More specific, the experiments are performed for the full

search algorithm, and the HS fast estimation algorithm using two different temporal

distances. Unary one, for P VOPs coding patterns, where search area window size

is 32x32 pixels, and another one for the IBPBP coding pattern where search area

size is 48x48 pixels. Similar to the case of texture coding, by drawing the graphs of

speed up versus the number of threads conclusions can be made about the data

partition scheme at the parallel motion estimation search.

The speedup curves from the application of the data partitioning scheme for the

91

News 0, News 1 and Coastguard 0 video objects, when the HS motion estimation is

applied for temporal distance one are given in figure 5.7, and for temporal distance

two are given in figure 5.8.

 (a)

Motion Estimation

1.00

1.83

2.68

3.43

1 2 3 4
 #Threads

S
pe

ed
 U

p

News0

Motion Estimation

1.00

1.80

2.55

3.30

1 2 3 4
 #Threads

S
pe

ed
 U

p

News1

92

 (b)

 (c)

Figure 5.28: Speed up curves based on P-VOPs measurements for (a) the news 0 , (b) news
1, and (c) coastguard 0 video objects when the HS fast algorithm is applied.

Motion Estimation

1.00

1.87

2.70

3.45

1 2 3 4
#Threads

S
pe

ed
 U

p

Coastguard 0

Motion Estimation B-VOPs

1.00

1.68

2.33

3.00

1 2 3 4
#Threads

S
pe

ed
 U

p

News0

93

 (a)

Motion Estimation B-VOPs

1.00

1.89

2.71

3.55

1 2 3 4
#Threads

S
pe

ed
 U

p

News1

 (b)

Motion Estimation B-VOPs

1.00

1.90

2.80

3.56

1 2 3 4
#Threads

S
pe

ed
 U

p

Coastguard 0

94

 (c)

Figure 5.29: Speed up curves based on B-VOPs measurements for (a) news 0, (b) news 1,

and (c) coastguard 0 video objects when the HS fast algorithm is applied.

The speedup curves from the application of the data partitioning scheme for News

0, News 1, and Coastguard 0 sequences, when the full search motion estimation

algorithm is applied for temporal distance one are given in figure 5.9, and for

temporal distance two are given in figure 5.10.

Motion Estimation

1.00

1.81

2.67

3.46

1 2 3 4
#Threads

S
pe

ed
 U

p

News1

95

 (a)

(b)

(c)

Figure 5.30: Speed up curves based on P-VOPs measurements for (a) news 0, (b) news 1,
and (c) coastguard 0 video objects when the full search algorithm is applied.

Motion Estimation

1.00

1.92

2.86

3.58

1 2 3 4
#Threads

S
pe

ed
 U

p

News0

Motion Estimation

1.00

1.97

2.95

3.83

1 2 3 4
#Threads

S
pe

ed
 U

p

Coastguard 0

96

 (a)

Motion Estimation B-VOPs

1.00

1.72

2.47

3.12

1 2 3 4
#Threads

S
pe

ed
 U

p

News0

Motion Estimation B-VOPs

1.00

1.79

2.64

3.49

1 2 3 4
#Threads

S
pe

ed
 U

p

News1

97

(b)

(c)

Figure 5.31: Speed up curves based on B-VOPs measurements for the News 0, News 1, and
Coastguard 0 video objects when the full search algorithm is applied.

By observing the above graphs the following can be concluded.

(i) Similar to DCT, the speed up increases linearly increasing as the number

of threads increases, indicating the scalable behavior of the scheme. The

speed up reaches the maximum value when the number of threads

reaches the number of system processors.

(ii) The scheme behaviour is independent of the size of search area. For

both types of VOPs (P and B) the scheme has demonstrated the same

behaviour in terms of speed up results.

(iii) The slope of the curves is related to VOP size and the type of the

search algorithm that is employed for motion estimation. For larger

VOPs, like Coastguard 0, the speed up curves for both P and B-VOPs

Motion Estimation B-VOPs

1.00

1.87

2.80

3.71

1 2 3 4

#Threads

S
pe

ed
 U

p

Coastguard 0

98

are slightly better from the corresponding speed up curves for the P and

B-VOPs of the smaller size VOPs, News 0 and News 1. There is an

overhead associated with the “slave” threads scheduling mechanism.

The time that a VOP tile needs for motion estimation is related to the

thread lifetime. If small size VOP tiles are used in motion estimation

then their threads are created and destroyed more often than the threads

that do motion estimation in bigger size VOP tiles. Thus the kernel has

to schedule more often the threads on the system processors and if

every few milliseconds or microseconds, threads are created and

destroyed, the optimum system parallelisation cannot be achieved since

it takes some time for the kernel to set up the threads on the processors.

The same observations apply for the speed up curves that use different

motion estimation search algorithms. The speed up curves (for all the

video objects and all the VOP types) generated by the full search

motion estimation algorithm are slightly better than the speed up curves

generated by HS. Again this can be explained by the frequency of thread

scheduling on the parallel system. When a fast motion estimation

algorithm is applied, the time that a tile needs for the derivation of its

motion vectors is significantly less than the time that this tile needs

when the full search algorithm is used. Therefore, in the full search

algorithm, the thread scheduling on the system processors happens less

frequently than in HS.

5.4 Shape coding and proposed scheme

As it has been shown in table 5.1 only the contour macroblocks are processed by

the context arithmetic encoder. At first glance, the shape adaptive data partition

scheme seems very suitable for the MPEG-4 shape encoder. However, it is not

applicable to the shape encoder, since the binary matrices that are used for the data

99

partition cannot be used in the case of shape encoding. In shape encoding the

decision of whether or not to encode a contour macroblock is made dynamically.

Furthermore there are a lot of other inter relations between macroblock data that

affect the shape coding parallelism. The next chapter addresses the main issues

related to the implementation of a parallel MPEG-4 shape encoding scheme.

5.5 Conclusions

Video object spatial parallelism is achieved by dividing the video object into tiles

that are processed by different processors. In MPEG-4 unlike MPEG-1 and

MPEG-2, some computationally intensive algorithms of the encoder are data

dependent, which makes their execution times different for different data areas of

the video object. This chapter presented a data partition scheme that generates tiles

with identical processing requirements based on macroblock’s actual processing

requirements. Since typical MPEG-4 video encoding involves motion estimation,

and texture and shape coding, this chapter investigated the applicability of the data

partition scheme at the MPEG-4 video encoder modules. Experimental results on

the four-processor Origin200 showed that:

1. For motion estimation, and texture coding the scheme speed up is almost

linear, indication of the scalable behavior of the scheme

2. In the motion estimation the scheme behavior is independent of the size of

the search area

3. The scheme performance is related to VOP size and in the case of the

motion estimation is also related to the type of the search algorithm that is

used.

4. Optimum parallelism is not achievable when the scheme runs on a thread

environment, in which the overhead associated with the thread scheduling is

significant compared to the thread lifetime.

10
0

Chapter 6

6 A New Fast Parallel Implementation of
MPEG-4 Binary Shape Coding

6.1 Outline

This chapter investigates the complexity of the MPEG-4 shape encoder, by

analyzing its parts, and proposes a scheme that reduces complexity suitable for real

time parallel shape processing if a fast motion estimation algorithm is used. The

most computational intensive task of the shape encoder is shape motion estimation

(ME). This is shown by replacing the full search algorithm at the shape motion

estimation part of the shape encoder with the HS and measuring the shape encoding

time for the first 100 frames of the News 0 and Coastguard 0 video sequences.

Table 6.1 shows clearly that motion estimation complexity dominates and

determines the complexity of the shape encoder.

We developed a pipeline technique that allows video object data parallelism at the

shape encoder.

News 0 Coastguard 0
Total Shape Coding Time 3498 (msec) 11952 (msec)
Motion Estimation Time using the full search
algorithm

1780 (msec) 7541 (msec)

CAE Time 594 (msec) 1734 (msec)
Coding Shape Decisions Time 65 (msec) 221 (msec)
VOP reconstruction and bit stream operations 260 (msec) 850 (msec)

Table 6.13 SHAPE CODING TIMES FOR THE FIRST 100 FRAMES OF NEWS AND
COASTGUARD SEQUENCES

10
1

It should also be mentioned that the selection of the video objects, used in this

Chapter, has been done in such a way that their alpha planes cover all the possible

cases that the shape encoder encounters. There are two types of alpha planes in

MPEG-4 video encoder: (i) size varies over time- Coastguard 0, or (ii) fixed size-

News 0.

6.2 Binary Shape Encoder

As mentioned earlier, compared to other coding standards, MPEG-4 has the

important capability to represent arbitrary shapes. If the video sequence is encoded

as one video object (rectangular frame) no extra information about shape needs to

be transmitted from the encoder. Otherwise, for arbitrary shaped objects the shape

information must be encoded and transmitted to the decoder. The object shape

information is given by the object’s alpha plane which is formed from a rectangular

bounding box, and surrounds the object in such a way that its horizintal and vertical

dimensions are multiples of 16 pixels (macroblock size). The pixels of the bounding

box that are on the boundaries, or inside the video object are called “white”, and

have a value of 255, while the pixels that are outside the video object are called

“black”, have a value of 0.

Each shape macroblock can be encoded in no less than five modes, Table 6.2

Mode Description
 “transparent”

 “opaque”
 “intra”
 “inter”
 “no update”

All pixels within the macroblock are “black”
All pixels within the macroblock are white
Macroblock is encoded using the intra template.
Macroblock is encoded using the inter template
No correction is applied within the macroblock after the
motion compensation

Table 6.14 MACROBLOCK SHAPE MODE DECISIONS

10
2

“Intra” and “inter” shape coding is similar to “intra”, and “inter” texture coding. A

transparent or opaque macroblock that belongs to an I-VOP is assigned either the

“transparent” or the “opaque” shape mode. Contour macroblocks are assigned the

“intra” mode. For “opaque” and “transparent” shape modes no further action is

taken. For “intra” modes the macroblock is processed by the context arithmetic

encoder (CAE) [Brady 97]. Macroblock shape decisions are encoded as well, and

sent to the decoder.

For predictive coding the appropriate macroblock shape mode decision is chosen

by driving a motion estimation/compensation scheme. In particular, if the error

produced by the comparison of the original shape macroblock with the motion

compensated macroblock is less than a threshold value the macroblock is assigned

the “no update” mode. In the “no update” mode, the shape mode is encoded and

sent to the decoder with additional information about the macroblock’s shape

motion vector. Otherwise, if the error exceeds the threshold value the shape

encoder checks the macroblock’s pixel values by dividing it into four sub blocks

(4x4 size), and examining the sub block values. If all sub blocks are transparent or

opaque the macroblock is assigned the “no update” mode. Otherwise it is sent to

the context arithmetic encoder, where it is encoded both in “intra” and “inter”

modes in order to select the mode that results in the best compression. Finally, the

macroblock shape mode is encoded and multiplexed to the shape bitstream, with

the macroblock’s compressed data produced by the arithmetic encoder.

6.3 Fast Search Shape Motion Estimation

6.3.1 Description of shape motion

The motion estimation procedure of the MPEG-4 shape encoder completes in two

10
3

steps: (i) an appropriate prediction of the shape motion vector (MVs) is found,

and (ii) based on the prediction found in i) a shape motion vector is computed by

the full search motion estimation algorithm. The prediction of the shape motion

vector is estimated by selecting the suitable initial candidate among the motion

vectors of the three previously decoded surrounding texture macroblocks, and the

motion vectors of the three previously decoded surrounding shape binary

macroblocks. The candidates are located and denoted as shown in figure 6.1.

Figure 6.32: Candidates for the shape motion vector prediction

The initial shape motion vector prediction is determined by taking the first

encountered motion vector that exists from the MVs1, MVs2, MVs3, MV1, MV2,

and MV3 in this order.

In the next step, the initial candidate is either accepted as the shape motion vector,

or is used as the basis for a new motion vector search, which depends on the

resulting prediction errors. The motion compensated error (MC) is computed by

comparing the macroblock indicated by the predicted shape motion vector with the

current macroblock. If the computed motion compensated error is less than or equal

to a predefined threshold value, the predicted shape motion vector is directly

employed as the shape motion vector, and the procedure terminates. Otherwise,

the shape motion vector is searched around the predicted shape motion vector. A

 MV1

Current
 MB

MVs1

 MV2

 MV3

MVs2 MVs3

Current
MB

10
4

full search (FS) algorithm is employed using a search range of ±N pixels around the

predicted shape motion vector. The sum of absolute differences (SAD) is calculated

between the original macroblock and the macroblock indicated by the shape motion

vector. The shape motion vector that minimises the SAD is chosen, and this is

further interpreted as motion vector difference of shape (MVDs), where MVDs =

MVs - MVPs is coded differentially.

In case of conflicts, when more than one shape motion vectors minimise the SAD

by an identical value, the MVDs that minimises the code length (Q) is chosen. Q is

given as:

Q=2* AbsoluteValue(MVDs in horizontal dimension) + 2 * AbsoluteValue(MVDs

in vertical dimension) + (2-x),

where x=1 if horizontal element of MVDs is 0 and x=1 in any other case.

If more than one shape motion vector minimises the SAD by an identical value and

by an identical Q, then the MVD with the smallest vertical element is chosen. If the

vertical elements are identical, then the MVD with the smallest horizontal element

is chosen.

6.3.2 Fast motion estimations algorithms and shape search

As shown in Table 6.1 motion estimation, especially the full search (FS) algorithm

complexity dominates the overall shape encoder complexity. Therefore, it needs to

be substituted by another fast motion estimation search algorithm. In Chapter 3 it

was shown that there are different categories of fast motion estimation algorithms

that can be used to speed up the texture motion estimation procedure. Are there

any similarities between the texture and the shape motion field? If so, then it could

be convenient to use the fast motion estimation algorithms developed for the

texture field to the shape field. By examining the Coastguard 0, and News 0 alpha

planes motion field was revealed that the shape motion, similar to the texture

10
5

motion, is smooth and varies slowly. That also leads to a center-biased, global

minimum shape motion vector distribution instead of a uniform one. Figure 6.2 (a)

shows that for the Coastguard 0 alpha plane, 58% of its shape motion vectors are

found in a central square area of size 5x5. While for the News 0 alpha plane, nearly

all its shape motion vectors considered stationary, 97.55% are found in a central

area of size 5x5, figure 6.2 (b).

 (b)

(a)

0

10

20

30

40

50

60

-8-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 8
-8
-5
-3
-1
1
3
5
8

0

5

10

15

20

25

30

35

40

-7-6 -5-4-3 -2-1 0 1 2 3 4 5 6 7
-7

-4

-1

2

5

10
6

(b)

Figure 6.33: Shape MV distribution for (a) News 0, and (b) Coastguard

In Chapter 3 it was shown that the HS, and the diamond search (DS) algorithms are

two fast block matching algorithms that outperform the full search algorithm. We

use both of them in the shape motion estimation search, in order to observe their

computational complexity performance, with the following enhancements.

• The HS that was shown in Chapter 3 employs two search patterns: a

search pattern whose checking points form a hexagon, and a star pattern

(deployed at the final step) with a variable number of searching points.

When the search pattern is changed from hexagon to star, the original HS is

modified in order to be compliant with the compression requirements of the

shape encoder. Specifically, when the pattern changes to star for each

pattern point as well as its SAD calculation the code length Q is also

calculated. Therefore, if more than one searching point of the star pattern

minimises the SAD by an identical value, the Q code length criterion is

applied, to select the most appropriate point.

• The diamond search (DS) algorithm employs two search patterns, figure

6.3. The first pattern is called the “large diamond search pattern” (LDSP)

and comprises of nine checking points that compose a diamond shape. The

second pattern consists of five checking points forming a smaller diamond

shape, called the “small diamond search pattern” (SDSP) [58]. When the

search pattern changes from LDSP to SDSP, the code length Q is calculated

10
7

as well. Therefore, if more than one searching point of the SDSP pattern

minimises the SAD by an identical value the Q code length criterion is

applied to select the most appropriate point.

Figure 6.34: LDSP and SDSP patterns

For the following experiments the required average number of search points for

each shape macroblock is used to measure the computational complexity, and the

average number of bits per VOP is used to measure the compression efficiency.

The maximum search motion range in each row and column is ±8 pixels. The results

are shown in Tables 6.3

Algorithms News 0 Coastguard 0
Av. SP
per MV

Complexit
y

Bits per
VOP

Av. SP
per MV

Complexit
y

Bits per
VOP

FS 256 100% 1001.86 256 100% 17618.1
0

10
8

DS 13.10 5.12% 1006.96 14.13 5.52% 17924.5
2

HS 10.06 3.92% 1006.93 10.97 4.28% 17854.5
4

Table 6.15 AVERAGE COMPLEXITY AND BITS PER VOP FOR THE FIRST 100

FRAMES OF NEWS 0 AND COASTGUARD 0

Table 6.3 shows that modified HS and DS outperform the FS, for both cases of

alpha plane shape encoding (news 0 and coastguard 0), by reducing significantly the

complexity of the motion estimation, and thus the overall shape encoding time. The

trade off for using these fast search algorithms is a slight increase in the average

number of bits per VOP, as is shown in the above table, due to the fact that fewer

macroblocks are assigned the “no update” shape mode which results in better

compression results.

6.4 A Parallel Shape Motion Estimation Scheme

As shown earlier in Chapter 5 not all macroblocks require the same processing

power. By generating matrices that contain the macroblock type information, it is

possible to create a data partition that leads to load balancing for motion estimation

and texture coding before the actual video object processing. In shape coding, the

macroblocks are coded not by their type information, but on their shape mode

decisions that are decided for P and B VOPs on the fly. For P and B VOPs their

shape mode decisions are based on their alpha plane values and the generated

motion compensation error. Furthermore, more restrictions are applied to the

degree of parallelism at the shape encoder for context arithmetic encoding, and I-

VOP shape mode coding. The following paragraphs present the dependencies that

prevent a straightforward application of the previous Chapter’s data partition

scheme.

10
9

6.4.1 Motion estimation dependencies

To derive current macroblock shape motion vector the shape motion vectors of

previously encoded and decoded neighbouring macroblocks need to be used. The

prediction of the (i,j) macroblock shape motion vector depends on the shape

motion vectors of the ((i-1), j), (i, (j-1)), and ((i+1), (j-1)) macroblocks.

6.4.2 Dependencies in the encoding of shape mode decisions

The shape encoder encodes the macroblock shape mode decisions of an I-VOP by

determining a cord word for each macroblock. The cord word of (i,j) macroblock is

generated by calculating number l, which indexes a table of cord words. To

calculate the l the shape modes of the neighbouring blocks are needed. Index l is

given as l =27*(f(i-1, j-1)-3)+9*(f(i,j-1)-3)+3*(f(i+1,j-1)-3)+(f(i-1,j)-3), where

f(x,y) is one of the seven shape mode of the (x,y) macroblock [14469-2, 99].

6.4.3 Dependencies imposed by the Context Arithmetic Encoder

(CAE)

In the context arithmetic encoding of MPEG-4 alpha planes, it is assumed that a

high degree of local correlation exists between the alpha plane pixel values.

Therefore for a given pixel the probability distribution is conditional upon the

values of the pixels in the local neighbourhood. When the CAE is applied to a

macroblock, pixels from neighbouring macroblocks are used to make up the context.

MPEG-4 uses two different contexts, one for “intra” CAE macroblocks, figure 6.4

(a), and another for “inter” CAE macroblocks, figure 6.4 (b).

 Co

C5

C9

C6

C1

C4 C3 C2

C8 C7

Current Pixel

11
0

(a)

 (b)

Figure 6.35: (a) "intra" template and context construction, (b) "inter" template and context

construction

Therefore, for construction of “intra” or “inter” MPEG-4 templates, a pixel border

of size equals to two, or one pixels has to be built around the macroblock. Figure

6.5 displays a bordered macroblock.

C2 C1C3

C0

Pixels of current MB

C8

C6

C4

C7 C5
Pixels of the bordered MC MB

Alignment

(i, j) MB

(i+1, j-1) MB0 (i-1, j-1)
MB

1 (i-1, j)
MB

3 (i+1, j)
MB

4 (i, j-1)
MB

11
1

 Figure 6.36: Current bordered Macroblock

The above figure clearly shows the data dependencies among the macroblocks when

CAE is applied. Every macroblock of P and B VOPs is encoded both in “intra” and

“inter” modes. In “intra” mode, for the context construction of (i,j) macroblock’s

top left and top right corner pixels, the pixel values of the (i-1, j-1), (i,j-1), and

(i+1,j-1) previously decoded macroblocks are needed. Similarly when the “inter”

template is built, the context construction of the top left and top right pixels of the

(i,j) macroblock needs the pixel values of the previously decoded (i-1, j-1), and (i,j-

1) macroblocks.

6.5 The Proposed Parallel Binary Shape Coding Scheme

To accomplish parallelism in a video object’s shape encoding a pipeline scheme is

introduced, where the macroblock dependencies are handled according to the

following rule: “The macroblock (i,j) is processed by the processor Pn, where 1≤ n

≤ number of system processors, if the (i, j-1), (i+1, j-1) macroblocks have been

processed by the processor Pn-1, and the (i-1,j) macroblock by the processor Pn”

As it was observed in the previous section, for the shape motion estimation, for the

shape mode decision coding, and for the context arithmetic coding of the (i,j)

macroblock, the (i-1, j),(i, j-1), (i+1, j-1) macroblocks need to be encoded first.

The above rule makes sure that the macroblock is encoded only when this

information is available. The macroblocks of the VOP alpha planes are encoded row

by row from the proposed scheme. Every processor is assigned a row. If there are

(i-1, j+1) MB 2 (i, j+1)
MB

(i+1, j+1) MB

11
2

more processors than rows then the processors that have not been assigned a row

will remain inactive; if there are more rows than processors then it is likely more

than one processors will be assigned more than one row. Macroblock processing

happens as follows:

 Initially the first row starts to be encoded, since there are no dependencies from

above neighbouring macroblocks. The rest of the processors remain inactive for

their (i,j) macroblocks till the (i, j-1),(i+1, j-1) macroblocks of the previous row

have been processed. In particular, when the processor that encodes the first row

has finished with the encoding of the first two macroblocks of its row, it signals to

the processor that it has been assigned the second row to start its encoding.

Similarly, when that processor has finished the encoding of the first two

macroblocks of its row, it signals to the processor that has been assigned the third

row. This procedure continues for every processor that has been assigned a row,

figure 6.6.

Figure 6.37: Macroblock pipeline mechanism

This figure demonstrates an example of three processors (P1, P2, P3) that have to

encode three rows (R1, R2, R3) with six macroblocks each. In the time period T1

only P1 is active. P2 cannot start its processing before the start of T2. P3 starts at

the end of T2 when the first two macroblocks of R2 have been encoded.

Number of
processors

Number of
macroblocks

1 2 3 4 5 6 7 8 9 10

R1

R2

R3T1

T2
P3

P2

P1

11
3

Every time a processor needs to proceed with its macroblock shape coding, it

checks if it can do that, if not it is waiting for notification from the processor that

encodes the above row. When a processor has finished its row encoding, it checks if

it has been assigned another row. If so the above rule is applied again.

By applying this rule for the shape encoding on a multiprocessor platform of n

processors the maximum degree of parallelism, for a VOP of height m with m>n,

will be accomplished after the encoding of 2*(n-1) macroblocks, which happens

after n-1 steps, assuming that in each step two macroblocks are encoded. Figure 6.7

demonstrates this by an example where a VOP of seven columns and six rows is

sent for shape encoding onto a multiprocessor platform consisting of three

processors (P1, P2, and P3). The VOP size is given as a table where the (i, j) cell

corresponds to the (i, j) macroblock of the VOP, 0 ≤ i ≤6, and 0 (j (5. The value

inside the cell denotes the time unit that the macroblock will be encoded. It is

assumed that the macroblock’s shape coding is completed in one time unit.

At time unit one and two, the (0,0), and (0,1) macroblocks are processed by the P1

processor while at time unit three (0,2) and (1,0) macroblocks are processed

simultaneously by P1 and P2. Maximum parallelism is achieved at the fifth time

unit and lasts till time unit fourteen. From the fifteenth up to the sixteenth units

only P2 and P3 processors are active, and at time unit seventeen only P3 remains

active. The shape encoding ends after two units.

1 2 3 4 5 6 7

3 4 5 6 7 8 9

 0 1 2 3 4 5 6

0

1

2

3

4

5

P1

P2

P3

P1

P2

P3

11
4

5 6 7 8 9 10 11

8 9 10 11 12 13 14

10 11 12 13 14 15 16

12 13 14 15 16 17 18

Figure 6.38: Shape coding VOP parallelism for tile length equal to one row

An interesting observation about the proposed scheme is that it achieves and

ensures the longest duration of maximum shape coding parallelism in comparison

with any other VOP pipeline splitting mechanism. If the VOP is split into tiles of

height greater than one row then maximum parallelism will occur significantly later.

For the above example, if the VOP tiles had size two, maximum parallelism would

have happened only after the eleventh time unit, figure 6.8.

1 2 4 6 8 10 12

3 5 7 9 11

6 8 10 12

9 11

12

 Figure 6.39: Shape coding VOP parallelism for tile length greater than one row

6.6 Experiments

The proposed scheme is implemented using the SPMD paradigm. The hardware

platform where the experiments were performed is a four processor Origin 200. In

P1

P2

P3

0 1 2 3 4 5 6

0

1

2

3

4

5

11
5

order to exploit its processing power the thread model is adopted again. Each

instance of the shape encoder is running on the system as a thread. The kernel

schedules the threads on the system processors. By increasing or decreasing the

number of threads, we increase or decrease the degree of parallelism that we would

like to exploit in the system. Maximum parallelism is achieved when the number of

threads equals (or is greater than) the number of processors. The number of

threads, num_threads, is given as a parameter before the encoding starts.

Initially, the MPEG-4 encoder runs as one thread, the “master” thread. When it

enters the binary shape module the “master” thread checks the number of threads

that it is requested to create. If no additional threads are requested, i.e. num_threads

=0, then the shape encoding is continued on the master thread. Otherwise, the

master thread creates “slave” threads. Each “slave” thread is assigned a VOP’s row

as follows: first thread first row, second thread second row etc. If more rows exist

than threads then the remaining rows are assigned to the threads using the same

assignment order from the first round of assignments. The thread proceeds with the

encoding of its row macroblocks by applying the rule of the proposed scheme. If

the rule allows the macroblock shape encoding, the thread continues, otherwise is

blocked till the thread in the above row’s macroblocks unblocks it. Tables 6.4 and

6.5 present the total shape encoding times for the first 100 frames of the news 0

and coastguard 0 video sequences, when the scheme is using one, two three, or four

“slave” threads respectively on the Origin200

0 Number of
“slave” threads

Total Shape Encoding Time
for news 0 object

1 1740 (msec)
2 1150 (msec)
3 861 (msec)
4 700 (msec)

Table 6.16 TOTAL SHAPE ENCODING TIME FOR NEWS 0

11
6

1 Number of
“slave” threads

Total Shape Encoding Time
for coastguard 0 object

1 6540 (msec)
2 4224 (msec)
3 3190 (msec)
4 2546 (msec)

Table 6.17 TOTAL SHAPE ENCODING TIME FOR COASTGUARD 0

If no parallelism is used, the total shape encoding times for News 0, and

Coastguard 0 video sequences are 1740 and 6450 milliseconds respectively. It is

shown from the tables that as the number of threads increases the total shape

encoding time decreases. If maximum parallelism is exploited- four “slave”threads,

then the total encoding time for News 0, and Coastguard 0 is reduced to 700 and

2546 milliseconds respectively.

Shape Encoding

1.00

1.51

2.02

2.48

1 2 3 4
#Threads

S
pe

ed
 U

p

11
7

(a)

(b)

 Figure 6.40:Speed up curves for (a) news 0 and (b) coastguard 0 alpha planes

From the above results, if speed up curves versus the number of threads are drawn,

for the shape coding of Coastguard 0, and News 0 video sequences, figure 6.9, the

following are observed.

(i) The speed up curves are almost linearly increasing as the number of

threads increases, indicating of the scalable behaviour of the scheme.

The speedup reaches the maximum value when the number of threads

reaches the number of system processors.

(ii) The slope B of the speeding up line Y, where Y = B*X, has a value of

less than one. This is expected since the pipeline mechanism does not

provide full data parallelism. In addition, delays are added by the thread

Shape encoding

1.00

1.54

2.05

2.56

1 2 3 4
#Threads

S
pe

ed
 U

p

11
8

synchronisation/signalling mechanism.

In conclusion the proposed scheme, even if does not provide maximum data

parallelism of the shape encoding onto a parallel platform, reduces significantly the

length of the encoding time. Figure 6.10 presents the total shape encoding times (in

milliseconds) for the proposed scheme and the original MPEG-4 shape encoder on

Origin200. The shape encoding has been performed for the first 100 frames of

News 0, and Coastguard 0 alpha planes, and the scheme employs the fast motion

estimation HS algorithm. Without the proposed scheme the shape encoding times

for the News 0 and Coastguard 0 video sequences are 3498 and 11952 milliseconds

respectively. With our scheme the total encoding times for the News 0 and the

Coastguard 0 sequences are 700, and 2546 milliseconds. That shows a five times

speed up in the shape encoding times of our video sequences.

0

2000

4000

6000

8000

10000

12000

14000

T
ot

al
 S

ha
pe

 E
nc

od
in

g
T

im
e

Original scheme Our recommended scheme

11
9

Figure 6.41: Total shape encoding times for the original and the recommended fast parallel

scheme.

6.7 Conclusions

In shape encoder the decision of encoding or not a contour macroblock is made

dynamically. Furthermore macroblock dependencies in the (i) encoding of shape

mode decisions, in the (ii) shape motion estimation, and at the (ii) arithmetic

encoder prevent the application of Chapter 5 data partition scheme in shape

encoder parallelisation. A circular pipeline algorithm that controls the VOP’s

macroblock flow on the system processors is introduced in this chapter.

Experimental results showed that the algorithm demonstrates a scalable behavior

and exploits the parallelism in the shape encoder when the macroblock

dependencies allow that.

By examining the shape motion field we found that there are similarities between

the texture and the motion estimation field. Therefore, we replace the full search

motion estimation algorithm by the HS fast motion estimation algorithm.

Experimental results on the four-processor Origin200 showed that the proposed

scheme when it uses the HS algorithm achieves a five times speed up in the shape

e n c o d i n g t i m e o f t h e o r i g i n a l s h a p e encoder.

Coastguard 0 News 0

12
0

Chapter 7

7 Experimental Results for the “Producer-
Consumer” Model.

7.1 Outline of the experimental results

In Chapters 3, 5, and 6 experimental results were presented for the proposed

solutions that used from the proposed model for the parallel MPEG-4 video

encoding. Specifically, the results in Chapter 3 demonstrated the performance of

the proposed fast motion estimations algorithm in terms of their computational

complexity and image quality in the motion estimation part of the video encoder. In

Chapter 5, results were presented for the proposed data partition scheme when

VOP spatial parallelism is applied to motion estimation and texture coding modules

of the MPEG-4 video encoder. Finally, the results in Chapter 6 have shown that

the proposed shape coding scheme allows parallelism and speeding up the MPEG-

4 shape encoding part.

The results of this Chapter plan to demonstrate the overall performance of the

proposed model when MPEG-4 video encoding is applied on shared memory

platforms. For these experiments the “producer consumer” model is used with the

proposed scheduler of Chapter 4. For VOP spatial parallelism in motion estimation

and texture coding parts of the consumer process, the recommended data

partitioning scheme is employed, and for shape encoding the proposed shape

12
1

encoding scheme is applied. Additionally, in order to reduce the MPEG-4 video

encoder computational complexity, the full search algorithm used in motion

estimation is replaced by the HS fast motion estimation algorithm, described in

Chapter 3. Once again, the shared memory platform for the experiments is a four

processor Origin200, where maximum processor utilisation is achieved when each

of its processors is scheduled to run one thread/process.

 (a)

5

News 0

News 1

News 2

12
2

 (b)

Figure 7.42: (a) Example of segmented News sequence with three objects (news 0, news 1 and
news 2), (b) Example of segmented Coastguard sequence with three variable size objects
(coastguard 0, coastguard 1 and coastguard 2

6

Coastguard 0

Coastguard 1 Coastguard 2

12
3

7.2 Single VOP per frame experiments

We have designed two different sets of experiments. The first set is performed on

individual MPEG-4 video objects from the News and Coastguard video sequences,

figure 7.1, and is intended to demonstrate the scalability of the proposed parallel

MPEG-4 video encoding model. For this category of experiments the proposed

“producer-consumer” model will proceed with the encoding of the MPEG-4

objects as follows.

Initially the scheduler of the producer process creates a sorted list according to

VOP deadlines for all VOPs of the MPEG-4 video object sequence. Since only one

video object is encoded by the system, the scheduler adopts the OVS allocation

policy. Specifically, the scheduler sends the consumer (MPEG-4 video encoding

process) the VOP with its size information, which in this case is 100% (as a

percent of the frame size). The consumer process, in order to exploit the Origin200

processing power creates, for each module of the MPEG-4 encoder (motion

estimation, texture coding, and shape coding), the maximum number of threads that

exploit the maximum degree of system parallelism (in this case four). Each thread

runs on a different part of the VOP, where the VOP data partition is performed by

the scheme proposed in Chapter 5 scheme. For the binary shape coding, the

consumer exploits system parallelism by creating threads that run the shape

encoder according to the proposed scheme of Chapter 6. Finally, when the

consumer process has finished with its VOP encoding, it notifies the producer to

send the next VOP from the sorted VOP list, see figure 7.2.

Figure 7.2 shows how the “producer consumer model” encodes a single VOP per

frame when it runs on the four-processor, Origin200.

12
4

 Figure 7.43: Single VOP per frame encoding using the producer-consumer model

Producer process

Consumer process
MPEG-4 video
encoder

VOP data

Motion estimation
part

Thread 1 Thread 2 Thread 3 Thread 4

Texture coding
part

Thread 1 Thread 2 Thread 3 Thread 4

Encoded VOP data

Thread 1 Thread 2 Thread 3 Thread 4

VOP deadline list

12
5

The framework scalability is estimated by drawing the graph of the number of

encoded frames per second, versus the number of system threads, since parallelism

is exploited by the number of threads/processes that run concurrently to the

system. More processors allow more threads for the MPEG-4 video encoding

modules to run concurrently, and that results in faster encoding and faster encoding

frame rates per second. The number of threads that the consumer creates is given as

a parameter before the encoding. If we want to exploit the maximum system

parallelism, the parameter that determines the number of threads is set to –1. In

this case, the consumer retrieves from the system the number of processors, and

creates equal number of threads. In any other case, the consumer gets the value of

the threads parameter, and creates equal numbers of threads. The proposed model

runs for different scenarios that involve no parallelism up to the maximum, figure

7.3.

(a)

16.95

21.00

25.05

29.12

1 2 3 4

#Threads

F
ra

m
es

 p
er

 s
ec

on
d

News 1-Frame rates

12
6

(b)

11.18

15.18

19.18

23.20

1 2 3 4#Threads

F
ra

m
es

 p
er

 s
ec

on
d

Coastguard 1- Frame rates

10.41

12.67

14.93

17.19

1 2 3 4
 #Threads

F
ra

m
es

 p
er

 s
ec

on
d

News 2-Frame rates

12
7

 (c)

Figure 7.44: Encoding frame rate for news 1, coastguard 1, and news 2 video objects

Figure 7.3 presents the graphs for the News 1, News2, and Coastguard 1 video

objects, when different numbers of threads are used on the Origin200. News 1, and

News 2 are fixed size video objects, whilst Coastguard 1 is a video object whose

size varies over the encoding time. By observing the above graphs the following can

be concluded

The encoding frame rates increase almost linearly as the number of threads

increases, indicating the scalable behaviour of the scheme. Maximum frame rates are

reached when the number of threads is equal to (or greater than) the number of

system processors.

The slope of the graph curve, which indicates the resulting speedup, has a value of

less than one. In theory, when maximum parallelism is employed, four threads in

case of the four processor Origin200, the speedup should be four times in terms of

encoding frame rates per second. When no thread parallelism is applied to the

proposed model for News 1, News 2, and Coastguard 1 video objects their

encoding frame rates are 16.95, 10.41 and 11.18 respectively, while when maximum

parallelism applied their encoding frame rates are 29.12, 17.19, and 23.20

respectively. This could be explained by:

(i) Threads lifetime. More specifically, as it was shown in Chapters 3 and

5 the thread’s lifetime is related to VOP’s size. If the VOP size is small

then the threads that created for the motion estimation and texture

coding modules are executing very fast. The kernel has to schedule very

frequently new texture coding or motion estimation threads that last

only for few microseconds or milliseconds. This leads to non optimal

12
8

system parallelism, since the time that is required from the kernel to

start the threads on the system processors is significant compared to

the time that is required for the threads to execute their coding MPEG-4

module tasks on the system processors.

(ii) Binary shape coding. -The MPEG-4 video encoder performs binary

shape encoding, which was shown in Chapter 6 can not be parallelisable

in the same way that texture and motion estimation is parallelised, due

to data dependencies between VOP macroblocks. The proposed

MPEG-4 binary shape scheme provides thread parallelism, but through

a pipeline mechanism with a lot of synchronisation control among

threads that adds additional overhead.

7.3 Multiple VOPs per frame experiments

The second set of experiments is performed on the MPEG-4 News and Coastguard

video sequences, and is intended to demonstrate the speed improvement in terms of

total encoding times, or encoding frame rates per second, when the proposed

“producer-consumer” model is used into a shared memory platform compared with

the original software MPEG-4 encoder. All the segmented video objects of the

News (News 0, News 1, News 2, and News 3) and Coastguard (Coastguard 0,

Coastguard 1, Coastguard 2, and Coastguard 3) sequence are used at the encoding of

each sequence.

More specifically, first we encode the sequences using the original MPEG-4

software video encoder on the Origin200. The original video encoder handles the

sequences as follows:

It finds, for each frame, its video objects and for each video object performs the

encoding using at motion estimation, the full search algorithm. When the encoder

12
9

has finished with the encoding of all the frame’s video objects, it continues with the

video objects of the next frame. The total encoding times for the first one hundred

of the News and Coastguard video sequences are 82190 and 370215 milliseconds

respectively, and their encoding frame rates per second are 1.2 and 0.2.

Then the same sequences are encoded using the proposed model. For this set of

experiments the “producer-consumer” model will proceed with MPEG-4 video

sequence encoding as follows:

Initially the scheduler of the producer process creates a sorted list according to

VOP deadlines for all VOPs of all the video objects of the MPEG-4 video sequence

(News and Coastguard), as has been shown in Chapter 4. Since more than one

video objects exist in the scene (their number is four), and can be encoded by the

system concurrently, the scheduler employs the MVS VOP allocation policy,

section 4.2.2. The scheduler sends the consumers (MPEG-4 video encoding

process) the VOP with its size information as a percent of the frame size. For each

consumer the scheduler checks its flag status at the synchronisation buffer. If it is

off, it selects the next VOP from the sorted list, and proceeds in the same way.

Otherwise if the flag is set, then the scheduler blocks until the consumer unblocks

it. The consumer process, as described previously, exploits the Origin200

processing power by applying VOP spatial parallelism, using the proposed data

partition scheme at VOP’s motion estimation and texture coding parts. For the

shape encoding, the proposed parallel shape scheme is used.

The total encoding times for the first one hundred frames of the News and

Coastguard video sequences for the “producer-consumer” model are 9830, and

30512 milliseconds respectively, and their encoding frame rates per second are 10.2

and 3.33 frames.

13
0

From the above results, expressed either in terms of total encoding times, or

encoding frame rates per second, it is clearly shown that the proposed model for

the parallel MPEG-4 video encoding outperforms significantly the original MPEG-

4 video encoder. More specifically, on the four-processor platform, Origin200, the

proposed MPEG-4 scheme achieves at least ten times faster encoding frame rates

than the original encoder for News and Coastguard sequences, or in terms of total

encoding times the encoding of the segmented News and Coastguard video

sequences takes approximately 1/10th of the total encoding time that the original

MPEG-4 encoder needs, figure 7.4.

Figure 7.45: Total encoding times for original MPEG-4 encoder and for proposed
framework.

7.4 Conclusions

This chapter presented experimental results for the “producer-.consumer model”.

Two well-known benchmark video sequences are used in our experiments the News

and the Coastguard. Both of them cover a wide range of MPEG-4 encoding

requirements. The News is a QCIF video sequence and its frame is composed of

82190

9830

370215

30512

0

50000

100000

150000

200000

250000

300000

350000

400000

Original MPEG-4 encoder Proposed MPEG-4 scheme
Time in msec

News QCIF Coastguard CIF

13
1

video objects with different motion requirements (slow, medium and high). The

Coastguard has CIF resolution and its frame consists of video objects that their size

varies over time. The first set of experiments showed that the scheme demonstrates

a scalable behaviour which is independent of specific VOP characteristics such as:

1. motion requirements (News 0 is a background object with slow motion, and

News 1 with high motion requirements),

2. video sequence resolutions (Coastguard 0 has CIF resolution, and News 0 and 1

have QCIF), and

3. MPEG-4 video object’s size (the size of coastguard video object varies over

time).

When the maximum system parallelism is exploited on the Origin200 the encoding

frame rates reach the maximum value which for the case of the News 1 video

sequence is real time encoding (almost 30 frames per second). The same

observations are applicable in multiple VOPs (per frame) encoding where instead of

one encoding process and multiple threads we have the scenario of multiple

encoding processes using multiple encoding threads.

The second set of experiments evaluated the encoding performance of the proposed

model using as benchmark the encoding performance of the original MPEG-4

encoder. It was shown that on the four-processor Origin200 the proposed scheme

performs ten times faster than the original encoder for sequences that have different

encoding characteristics in terms of resolutions, video object sizes, and motion

requirements.

13
2

Chapter 8

8 Conclusions and Future Work

8.1 Conclusions

This thesis has presented a software model, the “producer-consumer” model that

allows parallel processing for the MPEG-4 video encoder on shared memory

architectures, in order to reduce its total video encoding time.

The emerging MPEG-4 standard has introduced and supported the concept of

video objects. Each frame is segmented into objects where their coding requirements

depend on a variety of parameters. Before the MPEG-4 standard, video encoder

speedup (H.263, MPEG-1 and MPEG-2) was accomplished by fast motion

estimation algorithms, and the use of parallel processing where the exploitation of

the spatial, or the temporal parallelism of the video sequence provided a reliable

framework for the parallel video encoding. For instance, using the spatial approach

maximum parallelism was achieved by dividing the frame into equal size tiles,

where their number is equal to the number of system processors.

Due to the object-oriented approach of the MPEG-4 video encoder, its video

encoding onto a parallel architecture becomes a research challenge with no

straightforward solutions.

13
3

Since a video sequence consists of video objects that are more likely to have

different frame rates and sizes that vary over the video session, this framework

incorporates a scheduler that (a) selects the VOPs taking into account precedence

constraints, frame rates, and deadlines using priority list scheduling with an EDF

policy, and (b) allocates VOP’s onto the system processors by using a dynamic

allocation mechanism based on the VOP’s size information. This allocation

mechanism employs two different policies, the OVS which applied when one video

object exists in the sequence, and the MVS policy which applied when more than

one video objects exists in the sequence.

When a VOP is dynamically allocated to a group of processors, the maximum

parallelism inside the group is achieved by applying the SPMD paradigm onto the

different modules of the MPEG-4 video encoder. More specifically, for each

module of the MPEG-4 video encoder (texture coding, motion estimation) threads

are created, where their number is equal to the number of group processor. Each

thread runs the same module on a different VOP data area (spatial parallelism). Due

to the fact that all macroblocks do not have the same processing requirements the

model also has introduced a data partition scheme that generates VOP tiles with

identical processing requirements. Moreover, since the parallelism of the shape

encoder is not applicable, due to the macroblock dependencies at shape encoding, a

scheme has been developed and used by the model that allows parallelism using a

circular pipeline macroblock mechanism.

Moreover, since the encoding time depends not only on the processing power of

the underlying hardware platform but also the encoder’s computational complexity,

this thesis deals with motion estimation algorithms, because their complexity has a

significant impact on the complexity of the encoder. Particularly, two fast motion

estimation algorithms have been developed for the model which reduce significantly

13
4

the computational complexity.

The results in Chapter 3 present the impact of the proposed fast motion estimation

algorithms in motion estimation complexity. Specifically, it is clearly shown that

the proposed HS fast motion estimation algorithm outperforms not only the full

search algorithm, but and other well known motion estimation algorithms from the

category of the algorithms that reduce the number of search locations such as DS,

NTSS, and 4SS.

The experiments in Chapter 5 have demonstrated that the proposed data partition

scheme for the texture and the motion estimation parts, results in a speed up that

almost linearly increases as the number of threads increases, indicating the scalable

behaviour of the scheme. By increasing the number of system processors we can

increase the number of threads that run on the different VOP areas, and thus speed

up further the encoding process. Similarly, the results in Chapter 6 demonstrate

scalable behaviour for the proposed shape coding scheme, where the speed up

improved significantly by replacing the full search shape motion estimation

algorithm by the HS.

Finally Chapter 7 experiments with the “producer-consumer” model, that

incorporates all the parts that have been discussed so far in this thesis, show a

scalable framework for shared memory architectures where scalability is provided

by the number of threads that are assigned to system processors. The model is also

eligible for real time encoding, since it sorts the VOPs according to their encoding

deadlines, taking into account coding pattern constraints, frame rates, and start

session times.

13
5

8.2 Further work

In this thesis the proposed framework incorporates a scheduler that selects the

VOPs according to their encoding deadlines and then distributes them to system

processors using dynamic VOP allocation policies (OVS, MVS), where the number

of processors in the group depends on VOP’s size and numbers of video objects of

the video sequence.

While the scheduler selects the appropriate VOPs for real time encoding does not

have any policy that treats the case when a VOP cannot meet its deadline due to

insufficient processing power. More specifically, the scheduler is developed in

such a way that it exploits all the available processing power of the shared memory

platform, but cannot make decisions about the selected coding pattern of a video

object that its deadline cannot be met, or about its encoding frame rate. Since the

selected coding pattern has an impact on the total video object’s encoding time,

further work should include a scheme that roughly estimates the encoding times of

different coding patterns for each video object, based on current encoding times.

For instance, if the video object’s coding pattern for an intra period consists of

more than one P VOP, the scheme by making the assumption that the VOP size

does not change dramatically in the intra period, it will assigns to the P-VOPs of

the intra period the encoding time that was calculated for the first P VOP of the

period. Then it will check for each VOP of the period if its estimated deadline can

be met. If not, it will replace the video object’s coding pattern for this period with

another pattern consisting of VOPs that their estimated deadlines can be met

(maybe a coding pattern with less B-VOPs or P-VOP). The length of the intra

period where the VOP size does not change significantly needs investigation.

Similarly, if the scheduler has also been provided with information regarding video

13
6

objects visibility importance when displayed on the video sequence, then further

work would involve the development of a scheme that exploits this information in

terms of video object frame rates. If a VOP cannot meet its deadline using the

current frame rates, the scheme based on the visibility importance of this object

would be able to adopt another frame rate that meets VOPs encoding deadlines for

this video object.

8.3 Publications

Part of the work presented in this thesis has been published (or submitted) in the

following papers:

A.Hamosfakidis, and Y. Paker, “Survey of Multimedia Architectures”, Technical

Report, ACTS project AMPA, Copyright of AMPA Consortium 1997 [17].

A.Hamosfakidis, and Y. Paker, “Concurrency analysis for real-time MPEG-4 video

encoding”, ”, In Proceedings IEEE Multimedia Systems’99, vol II, pp. 862-866,

Florence June 1999 [29].

A.Hamosfakidis, Y. Paker, and J. Cosmas, “A study of concurrency in MPEG-4

video encoder”, In Proceedings IEEE Multimedia Systems’98, Austin, pp. 204-

208, June 1998 [32].

A.Hamosfakidis, J. Cosmas, Y. Paker, and A. Pearmain, “Parallelisation of MPEG-

4 video verification model encoder in inter/intra separate mode”, Doc ISO/MPEG

1889, MPEG Bristol meeting, April 1997 [34].

13
7

A.Hamosfakidis and Y. Paker, “A fast motion prediction scheme for the MPEG-4

video encoder”, WIAMIS’99, pp. 125-129, May-June 1999 [61].

A.Hamosfakidis, and Y. Paker, “An MPEG-4 parallel shape adaptive motion

estimation scheme”, Intern. Work. Synthet.-Natural. Hybrid Cod. and Three

Dimen. Imag., IWSNHC3DI’99, pp. 41-45, September 1999 [65].

A.Hamosfakidis, and Y.Paker, “A new parallel MPEG-4 scheme for fast binary

shape coding”, submitted in ACM Multimedia 2000, November 2000, Los

Angeles, USA.

A.Hamosfakidis, and Y. Paker, “A novel Hexagonal Search algorithm for fast block

matching motion estimation”, submitted in IEEE Signal Processing Society 2001

International Conference on Image Processing, Thessaloniki, Greece

13
8

9 REFERENCES

[Adam 74] T.Adam, K.M.Chandy, J.R.Dickson “A comparison of list schedules

for parallel processing systems”, Commun. ACM, 17, pp. 685-690, 1974.

[Ahmad 95] I. Ahmad, “Resource management on parallel and distributed systems

with static scheduling: Challenges, solutions and new problems”, Concurrency:

Pract. Exp., vol. 7, pp. 339-348, August 1995.

[Akramullah 97] S. M. Akramullah, I. Ahmad, and M. L. Liou “ Performance of

software based MPEG-2 video encoder on parallel and distributed systems”, IEEE

Transactions on Circuits and Systems for Video Tech., vol. 7, no. 4, pp. 687-696,

August 1997.

[Andre 91] M.Andre and G. Koob, Foundations of real-time computing: scheduling

and resource management, Kluwer academic publishers, 1991.

[Berger 87] M.J. Berger and S.H. Bokhari, “ A partitioning strategy for non

uniform problems on multiprocessors”, IEEE Trans. Comput., vol. C-36, pp. 570-

580, May 1987.

[Bhaskaran 97] V. Bhaskaran, and K. Konstantinides, Image and Video

Compression Standards, Kluwer Academic Publisher, Massachusetts, 1997.

13
9

[Bierling 88] M.Bierling, “Displacement estimation by hierarchical block

matching”, In Proceedings SPIE Visual Commun., and Image Processing”, vol. 1001,

pp. 942-951, 1988.

[Brady 97] N. Brady, F. Bossen, and N. Murphy, “Context based arithmetic

encoding of 2D shape sequences”, International Conf. on Image Processing, vol II,

Santa –Barbara, pp. 29-32, October 1997.

[CCITT 90] CCITT, Recommendation H.261: Video codec for audiovisual services

at p*64 kbit/s. The International Telegraph and Telephone Consultative

Committee, 1990.

[Chalidabhongse 97] J. Chalidabhongse, and C. Kuo, “ Fast motion vector

estimation using multiresolution-spatio-temporal correlations”, IEEE Trans.

Circuits Syst. Video Technol., vol. 7, no. 3, pp. 477-488, June 1997.

[Chetto 89] H. Chetto and M. Chetto “Some results of the earliest deadline

scheduling algorithm” IEEE Trans. on Software. Engineering., vol 15, no. 10, pp.

1261-1269, Oct. 1989.

[Cho 91] N.I.Cho and S.Lee, “Fast algorithm and implementation of 2-D Discrete

Cosine Transform”, IEEE Trans. on Circuits and Syst,, vol. 38, no.3, pp. 297-305,

March 1991.

[Coffman 76] E.G. Coffman, Computer and Job-Shop scheduling theory, John

Wiley & Sons, Somerset, N.J., 1976.

[Diepold 98] Klaus Diepold, “MPEG-4 Applications Document”, ISO/IEC

JTC1/SC29/WG11/ N2322, MPEG 98, Dublin, July 1998.

14
0

[Dufaux 92] F. Dufaux, and M. Kunt, “Multigrid block matching motion estimation

with an adaptive local mesh refinement”, In Proceedings SPIE Visual Commun., and

Image Processing”, vol 1818, pp. 97-109, 1992.

[Ebrahimi 97] Touradj Ebrahimi, “MPEG-4 Video Verification Model Version 8”,

no. N1796, MPEG Stockholm meeting, July 1997.

[Eckart 95] S. Eckart and C. Fogg “ISO/IEC MPEG-2 Software Video Codec”, In

Proc. SPIE, vol 2419, pp. 100-109, February 1995.

[El-Rewini 94] H. El-Rewini, T. Lewis, and H. Ali, Task scheduling in parallel and

distributed systems, Prentice Hall, Englewood Cliffs, N.J., 1994.

[Gabow 82] H. Gabow, “ An almost linear algorithm for two processor

scheduling”, Journ. ACM, vol. 29, no. 3, pp. 766-780, July 1982.

[Gerasoulis 92] A.Gerasoulis and T.Yang, “ A comparison of clustering heuristics

for scheduling DAGs on Multiprocessors”, J. Parallel and Distributed Computing,

pp. 276-291, December 1992.

[Ghanbari 90] M. Ghanbari, “The cross-search algorithm for motion estimation”,

IEEE Trans. Commun., vol 38, pp. 950-953, July 1990.

[Gong 94] K. Gong, and L. Rowe, “Parallel MPEG-1 Video Encoding”, September

1994 (http://bmrc.berkeley.edu/research/publications/1994/120/msreport-fm.html).

14
1

[Gong 95] K. Gong and L. Rowe, “A parallel implementation of an MPEG

encoder: Faster than real time!”, Proceedings of the SPIE Conference on Digital

Video Compression: Algorithms and Technologies, pp. 407-418, San Jose,

February 1995.

[Gove 94] R Gove, “The MVP: a highly integrated video compression chip”,

Proceedings of IEEE Data Compr. Conf. , pp. 215-224, Utah, March 1994

[Hamidzadeh 98] B. Hamidzadeh, and Y. Atif, “Dynamic scheduling of real time

tasks by assignment”, IEEE Concurrency, pp. 15-25, October-December 1998

[Hamosfakidis MPEG-4 97] A. Hamosfakidis, J. Cosmas, Y. Paker, and A.

Pearmain, “Parallelisation of MPEG-4 video verification model encoder in

inter/intra separate mode”, Doc ISO/MPEG 1889, MPEG Bristol meeting, April

1997.

[Hamosfakidis 97] A. Hamosfakidis, and Y. Paker, “Survey of Multimedia

Architectures”, Technical Report, ACTS project AMPA, Copyright of AMPA

Consortium 1997.

[Hamosfakidis 98] A. Hamosfakidis, Y. Paker, and J. Cosmas, “A study of

concurrency in MPEG-4 video encoder”, In Proceedings IEEE Multimedia

Systems’98, Austin, pp. 204-208, June 1998.

[Hamosfakidis IEEE MS 99] A. Hamosfakidis, and Y. Paker, “Concurrency

analysis for real-time MPEG-4 video encoding”, ”, In Proceedings IEEE

Multimedia Systems’99, vol II, pp. 862-866, Florence June 1999.

14
2

[Hamosfakidis WIAMIS 99] A. Hamosfakidis and Y. Paker, “A fast motion

prediction scheme for the MPEG-4 video encoder”, WIAMIS’99, pp. 125-129,

May-June 1999.

[Hamosfakidis IWSNHC 99] A. Hamosfakidis, Y. Paker, “An MPEG-4 parallel

shape adaptive motion estimation scheme”, Intern. Work. Synthet.-Natural. Hybrid

Cod. and Three Dimen. Imag., IWSNHC3DI’99, pp. 41-45, September 1999.

[Y. He 98] Y.He, I. Ahmad and M. L. Liou, ``Real-time distributed and parallel

processing for MPEG-4'', Proc. of IEEE International Symposium on Circuits and

Systems, Monterey, pp. 603-606, May 31 - June 3, 1998.

 [Y. He 97] Y.He, I. Ahmad and M. L. Liou, ``An implementation of MPEG-4

video verification model encoder using parallel processing'', Proc. of 3rd Asia-

Pacific Conference on Communications (APCC '97), Sydney, December 1997.

[Z. He 97] Z. He and M.L.Liou, “A high performance fast search algorithm for

block matching motion estimation”, IEEE Trans. Circuits Syst. Video Technol., vol.

7, no. 5, pp. 826-828, October 1997.

[Hou 97] C.Hou and K.Shin “Allocation of periodic task modules with precedence

and deadlines constraints in distributed real-time systems” IEEE Trans. on

Computers, vol. 46, no. 12, pp. 1338- 1355, December 1997.

[Hu 61] T. Hu, “ Parallel sequencing and assembly line problems”, Operations

Research, vo.9, no.6, pp. 841-848, 1961.

14
3

[Huang 94] Z. Huang, Y. Takeuchi and H. Kunieda “Distributed load balancing

schemes for parallel video encoding system”, IEICE Trans. Fundamental Electron.

Commun. Comput. Science, vol. E77-A, no. 5, pp. 923-930, May 1994.

[Hwang 89] J. Hwang, Y. Chow, F. Anger, and C. Lee, “Scheduling precedence

graphs in systems with interprocessor communication times”, SIAM Journal.

Computing, vol. 18, no. 2, pp. 244-257, April 1989.

[IEEE CSVT 97] “Special Issue on MPEG-4”, IEEE Transactions on Circuits for

Video Technology, vol. 7, no. 1, February 1997.

[ITUT-T 96] ITU-T Recommendation H.263: Video coding for low bitrate

communication. The International Telecommunication Union, 1996.

[Kim 88] S.Kim, and J.Browne. “A general approach to mapping of parallel

computations upon multiprocessor architectures”, Int’l Conferen. Parallel Proc.,

vol, 3, pp. 1-8, 1988.

[Koenen N3156, 99] Rob Koenen, “Overview of the MPEG-4 Standard”, ISO/IEC

JTC1/SC29/WG11 N3156, December 1999.

[Koenen N2723, 99] Rob Koenen, “MPEG-4 Requirement Document”, Doc

ISO/MPEG N2723, MPEG Seoul Meeting, March 1999.

[Koga 81] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion-

compensated interframe coding for video conferencing”, in Proc. NTC81, New

Orleans, LA, pp. C9.6.1-9.6.5, Nov 1981.

14
4

[Kleiman 95] S. Kleiman, D. Shah, and B. Smaalders, Programming with Threads,

SunSoft Press A Prentice Hall Title, 1995.

[Kuhn 98] P. Kuhn, and W. Stechele, “Complexity analysis of the emerging

MPEG-4 standard as a basis for VLSI implementation”, Proceedings in SPIE Visual

Communications and Image Processing, pp. 498-509, San Jose, 1998.

[Kwok 96] Y.Kwok and I.Ahmad, “Dynamic critical-path scheduling: An effective

technique for allocating task graphs to multiprocessors”, IEEE Trans. Parall. and

Distrib. Sys., vol 7, no. 5, pp. 506-521, May 1996.

[X. Lee 96] X. Lee and Y.Q. Zhang, “A fast hierarchical motion-compensation

scheme for video coding using block feature matching”, IEEE Trans. Circuits Syst.

Video Technol., vol. 6, no. 6, pp. 627-635, December 1996.

[Lehoczky 89] Lehoczky, J., L. Sha, and Y. Ding, “ The rate-monotonic scheduling

algorithm: exact characterisation and average case behaviour”, IEEE Real-Time

Systems Symposium, pp. 166-171, 1989.

[Lewis 95] B. Lewis, D. Berg, A Guide to Multithreading Programming, SunSoft

Press A Prentice Hall Title, 1995.

[J. Li 93] J.Li, X. Lin, and Y. Wu, “Multiresolution tree architecture with its

application in video sequence coding: A new result”, In Proceedings SPIE Visual

Commun., and Image Processing”, vol. 2094, pp. 730-741, 1993.

14
5

[R. Li 94] R. Li, B. Zeng, and M. Liou, “A new three step search algorithm for

block motion estimation", IEEE Trans. Circuits Syst. Video Technol., vol. 4, no. 4,

pp. 438-442, August 1994.

[B. Liu 93] B. Liu and A. Zaccarin, “New fast algorithms for the estimation ob

block motion vectors”, IEEE Trans. Circuits Syst. Video Technol., vol.3, pp.148-

157, April 1993.

[L. Liu 96] L.Liu and E. Feig, “ A block based gradient descent search algorithm for

block motion estimation in video coding”, IEEE Trans. Circuits Syst. Video

Technol., vol. 6, no. 4, pp. 419-423, August 1996.

[Manacher 67] Manacher, G.K. “Production and Stabilization of real task

schedulers”, Journal of ACM, pp. 841-848, July 1967

[Manimaran 98] G.Manimaran and C.Murthy, “An efficient dynamic scheduling

algorithm for multiprocessor real-time systems”, IEEE Transactions on Parall. and

Distrib. Sys., vol. 9, no. 3, pp. 312-319, March 1998.

[Mitchell 96] J. Mitchell, W. Pennebaker, C. Fogg, and D. LeGall, MPEG Video

Compression Standard, Chapman & Hall, Digital Multimedia Standards Series,

1996.

[Moulin 95] P. Moulin, A.T. Ogielsky, G. Lilienfeld, J. W. Woods “Video signal

processing and coding on data parallel computers”, Digital Signal Processing, vol. 5,

pp. 118-129, April 1995.

[Musmann 85] H.G. Musmann, P.Pirsh, and H.-J. Grallert “Advances in picture

coding”, Proceedings of IEEE, vol. 73, pp. 523-548, Apr. 1985

14
6

[Palis 96] M.Palis, J.Liou and S. Wei, “ Task clustering and scheduling for

distributed memory parallel architectures”, IEEE Transactions on Parall. and

Distrib. Sys., vol. 7, no. 1, pp. 46-55, January 1996.

[Papadimitriou 79] C. Papadimitriou, and M. Yannakakis, “Scheduling interval

ordered tasks”, SIAM Journal of Computing, vol. 8, pp. 405-409, 1979.

[Po 96] L.M. Po and W. C. Ma, “A novel four-step search algorithm for fast block

motion estimation”, IEEE Trans. Circuits Syst. Video Technol., vol. 6, no. 3, pp.

313-317, June 1996.

[Puri 97] A. Puri, R.L. Schmidt and B.G. Haskell, “Improvements in DCT based

video coding”, Proc. SPIE Visual Commun. and Image Processing, San Jose, pp.

676-687, February 1997.

[Rabbani 91] M. Rabbani and P.W. Jones, Digital Image Compression Techniques,

Tutorial Texts in Optical Engineering, Vol, TT 7, SPIE Optical Engineering Press,

Bellingham, WA, 1991.

[Ramamritham 90] K.Ramamritham, J. Stankovic and P. Shiah, “Efficient

scheduling algorithms for real-time multiprocessor systems, IEEE Transactions on

Parall. and Distrib. Sys., vol. 1, no. 2, pp. 184-194, April 1990.

[Ramamritham 95] K. Ramamritham, “ Allocating and sceduling of precedense-

related periodic tasks”, IEEE Transactions on Parall. and Distrib. Sys., vol. 6, no. 4,

pp. 412-420, April 1995.

14
7

[Rec 601, 90] CCIR, Recommendation 601-2: Encoding parameters of digital

television for studio. International Consultative Committee for Radio, 1990.

[Sarkar 89] V. Sarkar, Partitioning and Scheduling Parallel Programs for Execution

on Multiprocessors, MIT press, MA, 1989.

[Scafer 95] R. Scafer and T. Sikora, “Digital video coding standards and their role in

video communications”, Proceedings of IEEE, vol. 83, pp. 907-924, June 1995.

[Shen 96] K. Shen and E.J.Delp, “A Spatial-Temporal Approach for Real-Time

MPEG Video Compression”, Proceedings of the 25th International Conference on

Parallel Processing, pp. 100-107, August 13-15, 1996.

[Sih 93] G.Sih and E.Lee, “A compile-time scheduling heuristic for interconnection-

constrained heterogeneous processor architectures”, IEEE Trans. Parall., and

Distrib. Sys., vol 4, no. 2, pp. 75-187, February 1993.

[Simulation 98] Simulation software “Text of IS14496-5 (MPEG-4 simulation

software) final committee draft”, Doc ISO/MPEG N2205, MPEG Tokyo Meeting,

March 1998.

[Smoliar 94] S.W. Smoliar and H. Zhang, “Content-based video indexing and

retrieval”, IEEE Multimedia, pp. 62-72, Summer 1994.

[Srinivasan 85] R. Srinivasan, and K. Rao, “Predictive coding based on efficient

motion estimation”, IEEE Trans. on Commun. vol COM-33. Pp. 888-896, August

1985.

14
8

[Stein 92] D. Stein and D. Shah, “Implementing lightweight threads”, SunSoft Inc,

USENIX, 1992.

[Steinmentz 94] R. Steinmentz, “Data Compression in Multimedia Systems”,

Multimedia Systems, pp. 166-172, 1994.

[Tan 95] M. Tan, J.M. Siegel, and H.J.Siegel, “Parallel implementation of block-

based motion vector estimation for video compression on the MasPar MP-1, and

PASM”, International Conference on Parallel Processing, pp. 14-18, August 1995.

[Tekalp 95] A.M . Tekalp, Digital Video Processing. New Jersey: Prentice Hall

PTR, 1995

[Touparis 99] A. Tourapis, O. C.Au and M.L. Liou, “Fast motion estimation using

circular zonal search”, In Procs. of SPIE Visual Commun. and Image Processing,

pp.1497-1505 January 1999.

[Ulman 75] J. Ulman, “NP-complete scheduling problems”, Journal Comput. and

Sys. Sciences, vol 10, pp. 384-393, 1975.

[Uz 91] K.Uz, M. Vetterli and D. LeGall, “Interpolative multiresolution coding of

advanced television with compatible subchannels “,”, IEEE Trans. Circuits Syst.

Video Technol., vol. 1, pp. 86-99, March 1991.

[Watkinson 95] John Watkinson, Compression in Video and Audio, Focal Press,

1995.

14
9

[Wilkinson 96] J.H Wilkinson, “The optimal use of I, P, and B frames in MPEG-2

coding”, Proceedings in International Broadcast Convention, pp. 444- 449, IEE,

1996.

[Williams 90] S.A. Williams, “Programming models for parallel systems”, WILEY

Series in Parallel Computing, 1990.

[Wu 90] M. Wu and D. Gajski “ Hypertool: A programming aid for Message-

Passing Systems”, IEEE Trans. Parall. and Distrib. Sys., vol 1, no. 3, pp. 330-343,

July 1990.

[Xie 92] K.Xie, L. Eycken, and A. Oosterlinck, “A new block-based motion

estimation algorithm”, Signal Processing: Image Commun., vol. 4. pp. 507-517,

1992.

[Yu 94] Y. Yu and D. Anastassiou, “Software implementation of MPEG-2 video

encoding using socket programming in LAN”, In Proc. of SPIE Digital Video

Compression on Personal Computers: Algorithms and Technologies, vol. 2187, pp.

229-240, San Jose, February 1994.

[Zafar 91] S. Zafar, Y.Q. Zhang, and J.S. Baras, “Predictive block matching motion

estimation for TV coding-Part I: Inter block prediction”, IEEE Trans. Broadcast,

vol. 37, pp. 97-101, September 1991.

[Zafar 93] S. Zafar, Y. Q. Zhang, and B. Jabbari, “Multiscale video representation

using multiresolution motion compensation and wavelet decomposition”, IEEE

Journal. Select. Areas Commun., vol. 11, pp. 24-35, January 1993.

15
0

[Zhang 91] Y.Q.Zhang and S. Zafar, “Predictive block matching motion estimation

for TV coding-Part II: Interframe prediction”, IEEE Trans. Broadcast, vol. 37, pp.

102-105, September 1991.

[Zhao 87] W.Zhao, K. Ramamritham, and J.Stankovic, “Scheduling tasks with

resource requirements in hard real-time systems”, IEEE Trans. on Soft. Engineering,

vol. SE-13, no. 5, pp. 564-577, May 1987.

[Zhu 97] S. Zhu and K. K. Ma, “A new diamond search algorithm for fast block

matching motion estimation”, Intern. Conference on Information Commun. and

Signal Processing, ICICS, pp. 292-317, Singapore, Sept 1997.

[11172-2, 93] ISO/IEC 11172-2, Coding of moving pictures and associated audio

for digital storage media at up to about 1.5 Mbit/s. MPEG (Moving Pictures

Expert Group), International Organisation for Standardisation, 1993 (MPEG-1

Video).

[13818-2, 94] ISO/IEC 13818-2, Generic coding of moving pictures and associated

audio information. MPEG (Moving Pictures Expert Group), International

Organisation for Standardisation, 1994. (MPEG-2 Video).

[14469-2, 99] ISO/IEC, ISO/IEC International Standard 14469-2, MPEG-4 Visual,

Spring 1999.

