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Abstract

The range of applicability of the Full Event Calculusis
proven to be the Ksp-IA class in the Features and Flu-
entstaxonomy. The proof is given with respect to the orig-
inal definition of this preference logic, where no adjust-
ments of the language or reasoning method were necessary.
The result implies that the claims on the expressiveness and
problem-solving power of this logic were indeed correct.

1 Introduction

We consider two well established approaches to Non-
monotonic temporal Reasoning about Actions and Change:
theEvent Calculus approach by Shanahan [16] and theFea-
tures and Fluents approach by Sandewall [14, 15]. It turns
out that, although the design of suitable preference logics is
a common task to both approaches, Sandewall’s approach
emphasises the systematic classification of these logics, via
formally proven assessments of their range of applicabil-
ity, while Shanahan’s approach does not use any similar
methodology. The aim of this paper is to extend the ben-
efit of Sandewall’s systematic methodology to Shanahan’s
approach. As a case study, we show that the most use-
ful among all definitions of the Event Calculus, theFull
Event Calculus (FEC), is a preference logic to which Sande-
wall’s systematic methodology applies. Shanahan origi-
nally proposed FEC as suitable, i.e. adequate in expres-
siveness and problem-solving power, for correctly solving
a number of NRAC reasoning problems with the following
characteristics. The information about actions is accurately
and completely specified, actions succeed only if their pre-
conditions are satisfied, successful actions may have a non-
deterministic effect, state variables are truth-valued, the ini-
tial state of the world is accurately and completely speci-
fied, and there is no information at any later state than the
initial one. The time structure consists in the set of natural
numbers with their standard order relation. The reasoning

implements temporal inertia. In this paper, the range of ap-
plicability of FEC is proven to be theKsp-IA class in the
Features and Fluents taxonomy. The proof is given with
respect to the original definition of this preference logic,
where no adjustments of the language or reasoning method
were necessary. AsKsp-IA formally captures all of the
above characteristics, this assessment result implies that the
claims on the expressiveness and problem-solving power of
FEC were indeed correct.

The general meaning of this assessment result is that the
assessed logic is guaranteed, orcertified to be correctly ap-
plicable to all reasoning problems in the class, i.e. the logic
always gives the correct, intended set of conclusions when
applied to any reasoning problem in that class. As theFull
Event Calculus is the first of a family of other similar defini-
tions, also involving important implementation issues, this
assessment result discloses knowledge on how to certify the
expressiveness and problem-solving power of these logics.
Assuming the given implementation is correct, the final user
would then be guaranteed on its fitness for a particular pur-
pose1, unlike all other products of similar nature.

Finally, a word on the Frame Problem.Ksp-IA ad-
mits an important sub-class,Ksp-IAd, obtained by re-
stricting Ksp-IA to the case of purely deterministic ac-
tions. In 1986 [4, 5] Hanks and McDermott pointed out
that none of the reasoning methods developed so far, in-
cluding predicate circumscription, were correctly address-
ing the Frame Problem. They used the Yale Shooting Prob-
lem as a diagnostic example. In 1994 [14, page 168] Sande-
wall classified this problem, for which theKsp-IAd class
resulted to be the smallest class including a correct solu-
tion for it. As FEC is correctly applicable toKsp-IA, and
Ksp-IAd � Ksp-IA, then FEC implements a provably
correct solution to the Hanks-McDermott problem.

1Any software licence agreement includes the following clause:
THE SOFTWARE IS PROVIDED AS-IS WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
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2 Preliminaries

We assume the reader familiar with theFeatures and Flu-
ents systematic methodology. Readers with no preliminary
knowledge in the topic are invited to consult [1, 15, 14].
Any concept not explicitly defined in this paper refers to [1].

The research task in this paper is precisely described as
follows, with some preliminaries.

Definition 2.1 (Preference Logic) [20, pages 73-77]
Let L be a standard logic, i.e. a logic with the usual
compositional model-theoretic semantics.

� Let� be a strict partial order on interpretations forL.
Intuitively, I1 � I2 means that the interpretation I2
is preferredover the interpretation I1. L and� define
a new logic L�. We call such logics preference logics.

� Let �; � be in L. � preferentially entails�, written
� �� �, if for any M , if M �� � then M � � or,
equivalently, if the models (preferred and otherwise)
for � are a superset of the preferred models for �.

� L� is monotonicif for all �; �; 
 2 L, if � �� 
 then
also � ^ � �� 
. �

Definition 2.2 (Range of Applicability) [1, definition 2.9]
Let L� be a preference logic, let � be a scenario descrip-
tion and let � be the mapping defined in terms of � that
selects those members of the classical model set [[�]] which
are minimal according to �, so that the maximally pre-
ferred models are the selected ones. We say that “L� is
correct for �” iff the preferred model set for � and the in-
tended model set for � are identical, i.e. iff 2 �([[�]]) =
� (�). We call “range of applicability of L�” the class of
all � such that L� is correct for �. We call “classifica-
tion of L�” the formally proven assessment of the range of
applicability of L�. �

Within model-theoretic AI, Shoham’s 1986 [19] notion
of model preference is a generalisation [20, pages 83-85] of
McCarthy’s 1980 [10] predicate circumscription, which in
turn is a generalisation [12] of Clark’s 1978 [2, 3] predicate
completion. Shanahan’sFull Event Calculus is a preference
logic; in fact, as summarised in definition 3.1, it uses classi-
cal first-order logic as base logic and predicate circumscrip-
tion as model-preference criterion.

As Shanahan’sFull Event Calculus is a preference logic,
the research task in this paper then consists in formally as-
sessing its range of applicability. However, it is required by
definition 2.2 that� and� use the same language for�.
As meeting this requirement is not possible in the present

2Please note that� and� are defined in terms of�, hence they speak
the same language.

case, we extend the notion of correctness by redefining it
in terms of an immersion operator. We then say that “L�
is correct for�” iff �([[T (�)]]) = � (�), where� is writ-
ten in the underlying language andT (�) is the translation
of � in the language ofL�. If T is the identity operator,
thenT (�) � � and the previous definition of correctness
applies. The following is the underlying language for�.

Definition 2.3 (Underlying Language) [1, section 3.1.3]
Let T be the time-point domain [1, section 3.1.1], F the
set of all feature symbols, V the domain of all feature val-
ues, and E the set of all action symbols. Let hH;vi be
the lattice whose elements, called observations, are mem-
bers of H = T � F � 2O � V and the order relation v
applies as follows: ht1; f1; f: : :g; v1i v ht2; f2; f: : :g; v2i
iff t1 v t2. The tuple ht; f; f: : :g; unknowni is an abbrevi-
ation for

W
iht; f; f: : :g; vii, varying i over all possible tu-

ples ht; f; f: : :g; vii in H. Let hD;vi be the lattice whose
elements, called rigid occurrences of actions, are members
ofD = T�T�E and the order relationv applies as follows:
hs1; t1; A1i v hs2; t2; A2i iff s1 v s2. The order relation@
is an abbreviation for v ^ 6=. The relation hs1; t1; A1i =
hs2; t2; A2i simply means that A1 and A2 start at the same
time-point, while hs1; t1; A1i @ hs2; t2; A2i means that A1
starts earlier than A2. Let � be a scenario description.

� The OBS part of � is a sub-lattice of hH�;vi, whose
elements are members ofH� = T �F��2

O�V � H,
where F� is the set of all features explicitly occurring
in �.

� The SCD part of � is a sub-lattice of hD;vi. Each
tuple in SCD specifies the starting time, the ending
time and the action symbol of an action scheduled for
execution.

� The function V : D ! 2H� maps each schedule’s
occurrence in a set of non-empty lattices of observa-
tions. The function V is parametric on the action
type, and the LAW part of � consists in the definition
of V as a set of action-laws in Full Trajectory Nor-
mal Form, one law for each action type. The Full Tra-
jectory Normal Form for the action-laws is a mapping
hs; t; Ai V

Wn

i=1

Vm

j=1 Sij for which the action oc-
currence hs; t; Ai is expandedinto a formula in Full
Disjunctive Normal Form, that is into a disjunction of
conjunctions of trajectory formulas Sij , each of which
corresponds to the feature fj in the alternative i. A tra-
jectory formula for a given feature fj in F is the first-
order formula 8� 2 [s; t] � T :[� ]fj �='j(�) where 'j
is a partial fluent defined over D � [s; t] � T , and
s 6= t. �

The underlying language is very expressive. The assess-
ment will reveal how much of that expressivity the specific
logic is capable of using.



3 Definition

The following definition first appeared in [17, section 3]
then in [18, page 209]. The definition extends [16, chap-
ter 16] and [17, section 1] to the case of actions with dura-
tion, and derives from Kowalski’s 1992 [6] simplification of
the 1986 [7] Kowalski and Sergot original Event Calculus.

Definition 3.1 (Full Event Calculus) The calculus uses
classical first-order logic as base logic, augmented with the
formulas in table 1 and axioms in table 2 for represent-
ing the specific problem domain of interest and for con-
trolling deduction, and uses McCarthy’s 1986 [11] pred-
icate circumscription 3 with forced separation as model-
preference criterion. The language of the calculus is de-
fined in table 1. Let S1 be a conjunction of Initiates,
Terminates and Releases formulae, let S2 be a conjunc-
tion of InitiallyP , InitiallyN , Happens and temporal or-
dering formulae, and let S3 be a conjunction of Unique-
ness of Names Axioms for actions and fluents. The set
of logical consequences of the calculus are defined as be-
ing the set of logical consequences of � ^ �, accord-
ing to the classical, Tarskian definition of logical conse-
quence, written f� : � ^ � � �g, where � is the con-
junction of axioms A1 : : : A7 in table 2, � is the con-
junction CIRC[S1; Initiates; T erminates;Releases] ^
CIRC[S2;Happens] ^ S3 where CIRC is the circum-
scription of the given predicates, and � is either a pos-
itive or negative HoldsAt formula. The minimisation of
Happens corresponds to the default assumption that there
are no unexpected event occurrences. The minimisation
of Initiates, Terminates and Releases corresponds to
the default assumption that actions have no unexpected ef-
fects. �

As the essence of the Frame Problem is how do we use
logic to represent the effects of actions without having to
explicitly represent all their non-effects, the above method
is a solution to the Frame Problem.

The conceptual basis of the above model-preference cri-
terion is the partitioning of the set of premises and the appli-
cation of different selection functions to the classical model
set of the resulting and distinct sets of premises. The set
of selected models is then chosen by filter preferential en-
tailment, using predicate circumscription as selection func-
tion. The filtering technique was first described by Sande-
wall in 1989 [13], and occurs within the Event Calculus lit-
erature as the principle of forced separation [16, chapter 16
and page 81].

3The generalisation of the 1980 [10] definition, allowing predicates,
functions and constants to vary, and allowing many predicates to be min-
imised in parallel.

4 Classification

We shall now proceed to the assessment of the range of
applicability of this logic. Are the underlying semantics and
the logic’s semantics equivalent? Is the intended model set
for � equal to the set of logical consequencesEC(T (�))?

Let the relationht; f; vi 2 � (�) be a shorthand for “ex-
ists an interpretationhM;Hi such thathB;M;H;P ; Ci 2
Mod(�) andH(t; f) = v”, according to the known defini-
tion of intended model set. Let the relationht; f; truei 2
EC(T (�)) be a shorthand for� ^ � � HoldsAt(f; t),
and the relationht; f; falsei 2 EC(T (�)) be a short-
hand for� ^ � � :HoldsAt(f; t), where (1)� is the con-
junction of axiomsA1 : : : A7 (def. 3.1), (2)� is the con-
junctionCIRC[S1; Initiates; T erminates;Releases] ^
CIRC[S2;Happens] ^ S3 (def. 3.1), and (3) all formulae
in S1 andS2 are inT (�) (definition 4.1).

Definition 4.1 (Immersion Operator) Let L1 be the un-
derlying language (definition 2.3), and let L2 be the lan-
guage of the logic (definition 3.1). The immersion operator
T : L1 ! L2 is defined as follows:

� T (h0; f; truei) = InitiallyP (f) and
T (h0; f; falsei) = InitiallyN(f);

� T (hs; t; Ai) = Happens(A; s; t);

� T (hs; t; Ai V
Wn

i=1

Vm

j=1 Sij) is translated into a set
of formulas, one Initiates(A; f; s) formula for any
fluent f becoming true as the effect of a deterministic
action A, one Terminates(A; f; s) formula for any
fluent f becoming false as the effect of a deterministic
action A, one Releases(A; f; s) formula for any flu-
ent f becoming randomised (true or false) as the effect
of a non-deterministic action A, one HoldsAt(f; s)
formula for any positive precondition (hs; f; truei)
to the successful execution of the action A, and one
:HoldsAt(f; s) formula for any negative precondi-
tion (hs; f; falsei) to the successful execution of the
action A. Preconditions are explicit conditions for the
truth of Initiates, Terminates andReleases formu-
lae. �

The following two propositions by Lifschitz [8] are
needed for the assessment. We reproduce them as in Shana-
han [16, page 280].

Proposition 4.1 CIRC[� ^ 8 x:�(x) �(x); �] is equiv-
alent to �^8x:�(x)$ �(x) if � and �(x) do not mention
the predicate �.

Proposition 4.2 [8, page 341, proposition 7.1.1] Let � be
the tuple of predicate symbols �1; : : : ; �n. If all occurrences



in � of the predicate symbols in � are positive 4, then

CIRC[�; �] = CIRC[�; �1] ^ : : : ^ CIRC[�; �n]

Theorem 4.1 (assessment) For all � 2 Ksp-IA and
ht; f; vi 2 H�, the following relation holds: ht; f; vi 2
EC(T (�)), ht; f; vi 2 �Ksp-IA (�).

PROOF. The following standard reduction ap-
plies. By proposition 4.2, the second-order formula
CIRC[S1; Initiates; T erminates;Releases] reduces
to the second-order formulaCIRC[S1; Initiates] ^
CIRC[S1;Terminates] ^ CIRC[S1;Releases]. By
proposition 4.1 eachCIRC minimisation, including
CIRC[S2;Happens], reduces to first-order predicate
completion. In what follows, this reduction is used at each
EC-evaluation, and the reference to an EC-axiom involves
the application of the Uniqueness of Names Axioms inS3.
The proof is by induction.

1. The ego-world game starts at time� = 0. The ini-
tial state of the world is represented by means of tu-
plesh0; f; truei or h0; f; falsei in theOBS part of�.
This results either inHoldsAt(f; t) 2 EC(T (�)) by
axiomA1, or in:HoldsAt(f; t) 2 EC(T (�)) by ax-
iomA4.

2. The world player persists until the ego player commu-
nicates its intention to perform an action, so that no tu-
ples occur inSCD whose starting time is the present
time � . This trivially results in temporal inertia, by
either axiomA1 or A4 depending on howf was ini-
tialised, or by axiomA2 orA5 depending on how was
it last modified.

3. The ego player, suddenly, adds the tupleh�; Ei to the
current-action setC, where� is the point in time where
this update occurs. Then the world player executes
the action and terminates it at� 0 by removing the tu-
ple h�; Ei from C and adding the tupleh�; � 0; Ei to
the past-action setP . The ego may also decide to
terminateE earlier, let say at� 00 2 (�; � 0), so that
it may autonomously remove the tupleh�; Ei from C
and addh�; � 00; Ei to P . Let show what are the cor-
responding logical consequences of EC, pointwise.
By definition 4.1, we know it exists a single formula
Happens(E; �; � 0) (or Happens(E; �; � 00)) to refer
to. If the featuref does not belong to the set of those
features which would be modified by a successful ex-
ecution ofE (i.e. f =2 Infl(E; �t)), thenthe feature
is neitherClipped nor Declipped, and the situation
described at point2 then occurs up to� 0 (or � 00). Oth-
erwise,

4An occurrence of a predicate symbol in a formula� is positive if it is
in the scope of an even number of negations in the equivalent formula 

that is obtained by eliminating the connectives! and$ from �.

(a) If all preconditions for the actionE are suc-
cessfully met (i.e. allHoldsAt and:HoldsAt

test conditions forInitiates, Terminates and
Releases clauses are met by axiomsA3 andA6),
or no precondition exists at all (in which case the
above tests are trivially met), thenactionE is
successfully executed. Only one of the follow-
ing three situations may then occur.

� t = � : then is either InitiallyP (f)
by T (�), :Clipped(0; f; t) by axiomA3
and HoldsAt(f; t) 2 EC(T (�)) by
axiom A1, or InitiallyN(f) by T (�),
:Declipped(0; f; t) by axiom A6 and
:HoldsAt(f; t) 2 EC(T (�)) by ax-
iomA4.

� � < t < � 0: then is either
Declipped(�; f; � 0) (if Initiates(a; f; �) _
Releases(E; f; �)), orClipped(�; f; � 0) (if
Terminates(a; f; �)_Releases(E; f; �)),
so that it is neitherHoldsAt(f; t) 2
EC(T (�)) by axiom A2, nor is
:HoldsAt(f; t) 2 EC(T (�)) by ax-
iom A5 respectively, i.e. inertia is not
assumed in(�; � 0) (occlusion).

� t = � 0: then is either (1)Initiates(a; f; �)
by T (�), then is HoldsAt(f; � 0) by
axiom A2, (2) Terminates(a; f; �)
by T (�), then is :HoldsAt(f; � 0) by
axiom A5, or (3) Releases(a; f; �)
by T (�), then is bothDeclipped(�; f; � 0)
andClipped(�; f; � 0), so that it is neither
HoldsAt(f; t) 2 EC(T (�)) by axiomA2,
nor is :HoldsAt(f; t) 2 EC(T (�)) by
axiomA5, i.e. inertia is not assumed after
� 0 (nondeterminism).

The case for� 00 in place of� 0 is identical.

(b) If there is at least one precondition which is not
met, then the action is executed without any ef-
fect, and the situation described at point2 occurs
up to� 0 (or � 00).

4. The ego-world game ranges to infinity, where the
intended-model set is defined. Due to the choice of
assumptions, the situations described at point2 and3
repeat themselves to the infinity, for both semantics,
the semantics mirroring the underlying semantics.�

Corollary 4.1 For all � 2 Ksp-IA, is EC(T (�)) � [[�]].

PROOF. EC(T (�)) = �Ksp-IA (�) � �K-IA (�) �

[[�]]. �



The use of this preference logic for solving the Hanks-
McDermott [4, 5] problem and the Russian Shooting Prob-
lem is explained in [17, 16]. Theorem 4.1 gives a more
general insight into how this is done, and guarantees that
the reasoning method indeed gives the correct answers for
these specific reasoning problems, as well as for all other
problems in theKsp-IA class.

5 Conclusion

In this paper, the range of applicability of Shanahan’s
CircumscriptiveFull Event Calculus is proven to be the
Ksp-IA class in theFeatures and Fluents taxonomy. The
assessment is proven by referring to the original definition
of this preference logic, where no adjustments of the lan-
guage or reasoning method were necessary. The result im-
plies that the claims on the expressiveness and problem-
solving power of this logic were indeed correct.

TheKsp-IA class is that subclass ofK-IA where ac-
curate and complete information about actions (K), com-
plete knowledge about the initial state of the world (s) and
no information at any later state than the initial one (p),
together with strict inertia in integer time (I) of possibly
non-deterministic actions (A), are the assumed character-
istics. Time-points are natural numbers, and features are
truth-valued (I). The extension of theFull Event Calculus
so to encompass the fullK-IA class, which is the broadest
class defined in [14], involves allowing backward (abduc-
tive) reasoning. This extension is already available, it is
calledAbductive Event Calculus [18] [16, chapter 17], and
its range of applicability is currently being investigated.
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Table 1. The Language of the Event Calculus

Formula Meaning
What is true when (OBS):

InitiallyP (f) Fluentf holds from time0
InitiallyN(f) Fluentf does not hold from time0

What happens when (SCD):

Happens(a; t1; t2) Action a starts at timet1 and ends at timet2
What actions do (LAW):

Initiates(a; f; t) Fluentf starts to hold after actiona at timet
T erminates(a; f; t) Fluentf ceases to hold after actiona at timet
Releases(a; f; t) Fluentf is not subject to inertia after actiona at timet

Temporal Constraints:

t1 < t2, t1 � t2 standard order relations between natural numbers
Logical Machinery:

HoldsAt(f; t) Fluentf holds at timet
Clipped(t1; f; t2) Fluentf is terminated between timest1 andt2
Declipped(t1; f; t2) Fluentf is initiated between timest1 andt2

Note. The intuition behind Initiates(A; f; s), Terminates(A; f; s) and
Releases(A; f; s) formulae is that the effect of the actionA, starting at times and
ending at timet, is exerted on the fluentf at timet only.

Table 2. The Axioms of the Event Calculus

HoldsAt(f; t) �InitiallyP (f) ^ :Clipped(0; f; t) (A1)

HoldsAt(f; t) �t2 < t ^ (A2)

Happens(a; t1; t2) ^ Initiates(a; f; t1)^

:Clipped(t1; f; t)

Clipped(t1; f; t4) !9 a; t2; t3 [ t1 < t3 ^ t2 < t4 ^ (A3)

Happens(a; t2; t3)^

[Terminates(a; f; t2) _Releases(a; f; t2)]]

:HoldsAt(f; t) �InitiallyN(f) ^ :Declipped(0; f; t) (A4)

:HoldsAt(f; t) �t2 < t ^ (A5)

Happens(a; t1; t2) ^ Terminates(a; f; t1)^

:Declipped(t1; f; t)

Declipped(t1; f; t4) !9 a; t2; t3 [ t1 < t3 ^ t2 < t4 ^ (A6)

Happens(a; t2; t3)^

[Initiates(a; f; t2) _ Releases(a; f; t2)]]

Happens(a; t1; t2) �!t1 � t2 (A7)


