
Features and Fluents for Logic Programming: Non-simulative Algebraic

Semantics
Brandano, Sergio

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/4737

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/30696771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/jspui/handle/123456789/4737

Features and Fluents for Logic
Programming: Non-simulative
Algebraic Semantics
Sergio Brandano

Department of Computer Science

Research Report No. RR-00-05 ISSN 1470-5559 September 2000

Features and Fluents for Logic Programming:

Non-simulative Algebraic Semantics

Sergio Brandano

Department of Computer Science
Queen Mary and Westfield College

University of London
sb@dcs.qmw.ac.uk

Abstract
A Non-simulative Algebraic Semantics is defined and its range of applica-

bility is proven to be the K-RACi class of the Features and Fluents framework.
The comparative assessment reveals the semantics epistemologically equiva-
lent and ontologically stronger than the Abductive Logic Programming, the
Action Description Language A and the PMON entailment. The semantics
is shown to be decidable.

Keywords: Features and Fluents, Logic Programming.

1 Introduction

The reasoning method of van Emden and Kowalski’s algebraic semantics for the Horn
Clause Logic is adequate for solving non-monotonic temporal-reasoning problems
within the Ksp-IAd class of the Features and Fluents framework [2]. What is
characteristic of this method, as shown in the assessment result, is the ability to
simulate the ego-world game for K-IA when the world player has a fixed strategy,
leading to the proven restricted range of applicability.

In this paper, we design the converse non-simulative method and we study the
range of applicability of the resulting definition. The comparative assessment reveals
non-simulative algebraic semantics (NAS) both epistemologically and ontologically
stronger than the simulative algebraic semantics. The comparison also reveals NAS
epistemologically equivalent and ontologically stronger than the Abductive Logic
Programming [5], the Action Description Language A [6] and the PMON entail-
ment [10]. The overall range of applicability is proven to be the full K-RACi [1, 3]
class of the Features and Fluents framework, a superclass of K-IA [10] where strict
inertia in continuous time applies, together with continuous change and alternative
results of possibly concurrent and independent actions. The semantics is shown to
be decidable. In order to get acquainted with all its aspects, the reader may find
helpful experimenting with the given meta-interpreter. A companion web-site to
this paper and its software can be accessed via the Internet address given at the
end of the paper.

2 The Language

The language is identical to the language described in [2, section 4]. Let T be
the timepoint domain, F the set of all feature symbols, V the domain of all feature

1

values, and E the set of all action symbols. Let 〈H,v〉 be the lattice which elements,
called observations, are members of H = T×F×V and the order relation v applies as
follows: 〈t1, f1, v1〉 v 〈t2, f2, v2〉 iff t1 v t2 and f1 = f2. The tuple 〈t, f, unknown〉
is an abbreviation for

∨
i〈t, f, vi〉, varying i over all possible tuples 〈t, f, vi〉 in H.

Let 〈D,v〉 be the lattice which elements, called rigid occurrences of actions, are
members of D = T ×T ×E and the order relation v applies as follows: 〈s1, t1, A1〉 v
〈s2, t2, A2〉 iff s1 v s2. The order relation @ is an abbreviation for v ∧ 6=. The
relation 〈s1, t1, A1〉 = 〈s2, t2, A2〉 simply means that A1 and A2 start at the same
timepoint, while 〈s1, t1, A1〉 @ 〈s2, t2, A2〉 means that A1 starts earlier than A2.
Finally, let Υ be a scenario description.

• The OBS part of Υ is a sub-lattice of 〈HΥ,v〉, which elements are members
of HΥ = T ×FΥ×V ⊆ H, where FΥ is the set of all features occurring in Υ.

• The SCD part of Υ is a sub-lattice of 〈D,v〉. Each tuple in SCD specifies the
starting time, the ending time and the action symbol of an action scheduled
for execution.

• The function V:D → 2HΥ maps each schedule’s occurrence in a set of non-
empty lattices of observations. The function V is parametric on the action
type, and the LAW part of Υ consists in the definition of V as a set of action
laws in Full Trajectory Normal Form, one law for each action type.

The Full Trajectory Normal Form for the action laws is a mapping 〈s, t, A〉 V∨n
i=1

∧m
j=1 Sij for which the action occurrence 〈s, t, A〉 is expanded into a for-

mula in Full Disjunctive Normal Form, that is into a disjunction of conjunc-
tions of trajectory formulas Sij , each of which corresponds to the feature fj

in the alternative i. A trajectory formula for a given feature fj in F is the
first-order formula ∀ τ ∈ [s, t] ⊂ T . [τ]fj =̌ ϕj(τ) where the descriptor ϕj is a
partial fluent defined over D ⊆ [s, t] ⊂ T , and s 6= t.

A scenario description is a recursive definition for problem domain specification,
where observations in OBS and occurrences of actions in SCD are regarded as
being true propositions, and action laws in LAW are regarded as being rules which
from a number of true propositions they permit to infer other true propositions.
In the specific case of action laws, inferred propositions can only be observations,
i.e. tuples in H.

3 The Semantics

Let Υ be a scenario description and let 〈τ, f, v〉 be a tuple inH. The decisional prob-
lem we are about to address consists in assigning a proper truth value to the tuple
〈τ, f, v〉 using the information Υ. The problem is equivalent to asking whether Υ,
augmented with 〈τ, f, v〉 in its OBS part, is a consistent set. As more than one
intended model is possible, we also want to identify that single set V of values in V
such that for any v ∈ V the tuple 〈τ, f, v〉 is true in at least one intended model.
The ultimate task is to conclude everything about the values of features at different
points in time.

According to the fixpoint semantics [2] an interpretation for Υ is any subset
of HΥ and the model for Υ is the least fixpoint of a continuous transformation
TΥ : 2HΥ → 2HΥ , where 2HΥ is a complete lattice under the partial order of set
inclusion. The reasoning method is model-theoretic. It consists of a step-by-step
approach to temporal inertia, where the ordinals are used as timepoints and the
upward inductive process is used as master-clock. The model is built by means
of successive approximations, iterating from the origo of timepoints up to the limit

2

ordinal. The decisional problem is then solved by deciding whether the tuple 〈τ, f, v〉
belongs to the set TΥ ↑ ω. What is characteristic of this method, as shown in the
assessment result, is the ability to build the preferred history of the ego-world game
developments for K-IA when the world player has a fixed strategy, leading to the
proven restricted range of applicability.

In this section, the converse non-simulative method is designed. The reasoning
is proof-theoretic. The decisional problem is answered immediately, by focusing
the reasoning on the set of all action alternatives that are strictly relevant to the
feature of interest. The method relies heavily on the order relation of the basic
time structure [1], so that the time is assumed as “given” and no master-clock is
necessary. The notion of relevant action alternative is as follows. Let A be an
action scheduled for execution, that is exists 〈s, t, A〉 in SCD for some temporal
expressions s and t. Let 〈s, t, A〉 V

∨n
i=1

∧m
j=1 Sij be the corresponding action law

in LAW , and let θ be a valuation such that θ = {s/M(s), t/M(t)}. An instantiated
alternative of the action A (iaa), for some alternative i, is the tuple

〈sθ, tθ,
m⋃

j=1

Sij(θ)〉 ∈ T × T × 2H

For a given feature fj we say that 〈sθ, tθ, Sij(θ)〉 is relevant per fj if and only
if 〈τ, fj , v〉 ∈ 〈sθ, tθ, Sij(θ)〉, that is the iaa may change the value of fj either
deductively or abductively during the time interval [sθ, tθ]. The change takes place
only if the action alternative is successfully executed. Let I = T × T × 2H be
the set of all iaas. The order relation v associated with the basic time structure
applies as follows on members of I: 〈s1, t1, S1〉 v 〈s2, t2, S2〉 iff s1 v s2, for any
〈s1, t1, S1〉 and 〈s2, t2, S2〉 in I. The order relation v is a partial order on 2I , in
fact for any I1 and I2 in 2I is I1 v I2 iff for any occurrence i1 ∈ I1 and i2 ∈ I2 is
i1 v i2. Also, 2I is a complete lattice under v, in fact the least upper bound (t) of
a collection of subsets of I is their minimum element and the greatest lower bound
(u) is their maximum element 1. Furthermore, the function Min: (2I ;v) → (2I ;v)
is a monotone (order-preserving) function since I1 v I2 ⇒ Min(I1) v Min(I2) for
any I1, I2 ∈ 2I . The Min function is also complete, since Min(tI) = t(Min(I)) =
Min(I) = t(I) for every directed subset I of 2I . The similar property clearly holds
for Max: (2I ;v) → (2I ;v) too.

The following is the bottom-up scheme underlying the overall top-down con-
struction: (1) for every 〈t, f, v〉 in OBS, 〈t, f, v〉 is true in every model; (2) for
every 〈t, f, v〉 that may be generated as the effect of at least one alternative of an
action law without antecedents, 〈t, f, v〉 is true in at least one model; (3) for every
〈t, f, v〉 that may be generated as the effect of at least one alternative of an action
law for which every antecedent is satisfied, 〈t, f, v〉 is true in at least one model;
(4) for every 〈t, f, v〉 that may be generated as the abductive effect of at least one
alternative of an action law for which every consequent is satisfied, 〈t, f, v〉 is true
in at least one model; (5) for every 〈t, f, v〉 for which none of the above hold, 〈t, f, v〉
is true in every model. Requirements at points 3 and 4 are then weakened by allow-
ing not every antecedent (consequent) satisfied, but a non empty subset of them,
while others must correspond to unknown feature values. The scheme is actually
an extension of the fixpoint scheme to the case of backward and forward reasoning
about actions with alternative results.

The converse top-down construction consists in (1) analyzing the contribution
of feature values at τ and at past timepoints with respect to τ , gathered under the

1In our specific case, namely K-RACi, the time structure is linear and (T ,v) is a complete
lattice too. In general, however, the basic time structure as defined in [1] is not a complete lattice;
this is easy to see, as the structure can be branching and the greatest lower bound of a collection
of subsets of T may consist of more than a single maximum element.

3

name of greatest lower observations (glo) for f at τ ; (2) analyzing the contribution
of feature values at future timepoints with respect to τ , gathered under the name
of least upper observations (luo) for f at τ ; (3) determining the solution to the
decisional problem 〈τ, f, v〉 as the consistent union of glo(τ, f) and luo(τ, f), which is
properly the non-simulative History. A number of complete lattices are associated
to Υ, sub-lattices of (2I ;v) and hence referred to as causal chains, so that temporal
priorities will determine the candidate answers glo(τ, f) and luo(τ, f).

Let O1 and O2 be sets of candidate partial-states for a world at time t. For
example, let σ11 = {〈 , f, true〉, 〈 , g, true〉}, σ12 = {〈 , f, true〉, 〈 , g, false〉}, σ21 =
{〈 , f, true〉} and σ22 = {〈 , f, false〉} be candidate partial states. If O1 = {σ11, σ12}
and O2 = {σ21, σ22}, the consistent union of O1 and O2 is the set {σ11 ∪ σ21, σ12 ∪
σ21}. The operator

∗
∪ : 2H× 2H → 2H of consistent union is then defined as follows:

for any O1 and O2 non-empty sets of candidate partial states, O1

∗
∪ O2 is the set of

all σ1 ∪ σ2 ∈ 2H such that σ1 ∈ O1, σ2 ∈ O2 and σ1 ∪ σ2 is consistent. If both O1

and O2 are empty sets, we impose O1

∗
∪ O2 as being H itself. The reason for having

H rather than the empty set, as one would otherwise expect, is due to the under-
lying semantics itself, as shown by proposition 4.3 of the assessment result. The
operator of non-simulative history History : T ×F → 2V is then defined as follows:

History(τ, f) = {v ∈ V : 〈t, f, v〉 ∈ glo(τ, f)
∗
∪ luo(τ, f)}

For any scenario description Υ and tuple 〈τ, f, v〉 ∈ H, we say that 〈τ, f, v〉 is true
if and only if v ∈ History(τ, f). We observe that History has its values in 2V ,
while the function history of the underlying semantics 2 has its values in V. For
a given feature f , in fact, the aim of NAS is to collect all the values that are
intended for the feature f at the given timepoint τ . For example, in the tossing-
coin scenario, the underlying semantics reports two possible developments as the
effect of tossing, namely 1 and 0 for the head and the cross respectively, so that
if τ is the timepoint at which the action of tossing the coin terminates, the function
history(τ, face) reports the feature value 1 for one ego-world game simulation,
and 0 for the other. According to NAS is History(τ, face) = {1, 0}, for which there
exists at least one intended development where the coin shows the head and another
where the coin shows the cross. The problem of specifying in which development the
certain feature has the certain value at the certain timepoint, it is addressed by glo
and luo themselves, which definition is given below, after some due preliminaries.
Before getting to the actual definition of glo and luo, the following three important
functions can be given, as they are strictly defined in terms of History, the third
of them formally defining NAS itself.

Fluent(f) = {〈t, v〉 ∈ T × V : v ∈ History(t, f)}

Given a scenario description Υ and a feature f ∈ F , Fluent(f) is the set of all
values per f on flowing time, according to Υ.

State(τ) = {〈f, v〉 ∈ F × V : v ∈ History(τ, f)}

Given a scenario description Υ and a timepoint τ ∈ T , State(τ) is the state of the
world at timepoint τ , according to Υ.

Comp(Υ) = {〈t, f, v〉 ∈ H : 〈f, v〉 ∈ State(t)}
2We remind that history is the mapping H from T to a set of tuples in F ×V as state, so that

if t is in T , H(t) is the state of the world at timepoint t, and if f is in F , H(t, f) is the value of
the feature f at timepoint t.

4

Given a scenario description Υ, Comp(Υ) is the set of all states of the world on flow-
ing time, according to Υ. Comp(Υ) defines the Non-simulative Algebraic Semantics
for Υ. Comp(Υ) is referred to as the Completion Set of Υ.

In order for the definition of NAS being complete, and gain that insight on the
reasoning method which is needed for the subsequent assessment result, we shall
now construct the glo(τ, f) and luo(τ, f) sets for the feature f at timepoint τ .

3.1 Successfully Executed Actions

We shall firstly define the method which determines whether an action alternative
is successfully executed, that is whether features may be influenced by its execution.
Let remind the method adopted for the fix-point semantics:

TΥ(I) = {〈τ, f, v〉 ∈ HΥ :
〈τ, f, v〉 ∈ OBS and τ = 0, or
exists 〈s, t, A〉 ∈ SCD,
exists 〈s, t, A〉 V

∧m
j=1 Sj ∈ LAW and

exists a valuation θ = {s/M(s), t/M(t)}
such that:
〈τ, f, v〉 ∈ Consequents(sθ, τ, tθ, Sj(θ))
and Antecedents(sθ, τ, tθ, Sj(θ)) ⊆ I }

where

Antecedents(s, τ, t, S) = {〈s, f, ϕ(s, s, t)〉 ∈ S : s v τ v t }
Consequents(s, τ, t, S) = {〈τ, f, ϕ(s, τ, t)〉 ∈ S : s @ τ v t }

According to the TΥ operator, the action A is successfully executed if and only
if Antecedents(τ,A) ⊆ I. Differently from TΥ, NAS does not perform a purely
deductive temporal reasoning (from premises to consequences), but a combination
of abductive and deductive temporal reasoning. Furthermore the OBS part of
the scenario description is intended to be a subset of the model set (point 1 of the
bottom-up scheme, and point 4 of the definition of Complete Development Set [10]),
so that some additional tests are required.

Sat Obs : I → {true, false}

Sat Obs(〈s, t, S〉) succeeds if and only if for any 〈τ, f, v〉 ∈ OBS such that
s v τ v t is 〈τ, f, v〉 ∈ S. The effect of Sat Obs is analogous to the intersection of
[[OBS]] with Min(�, [[LAW [SCD]]]) in filter preferential entailment.

Sat Pre : I → {true, false}

Sat Pre(〈s, t, S〉) succeeds if and only if Sat Obs(〈s, t, S〉) succeeds and exists at
least one 〈s, f, v〉 ∈ S such that 〈 , f, v〉 ∈ glo(s, f). An empty set of preconditions
is allowed. The remaining preconditions in S are either in glo or correspond to
unknown feature values.

Sat Post : I → {true, false}

Sat Post(〈s, t, S〉) succeeds if and only if Sat Obs(〈s, t, S〉) succeeds and exists
at least one 〈t, f, v〉 ∈ S such that 〈 , f, v〉 ∈ luo(t, f). An empty set of post-
conditions is not allowed. The remaining postconditions in S are either in luo or
correspond to unknown feature values.

5

3.2 Causal Chains

This part of the reasoning is inspired to the ordinal powers of the TΥ operator. The
resulting definition is affected by a number of extensions which purpose is to allow
for a possibly unspecified initial state of the world, observations at later states than
the initial one, continuous time, continuous change and disjunction in the action
laws of possibly concurrent and independent actions. A number of recursive calls to
that part of the definition of NAS which is entitled for backward temporal reasoning
are also involved (via Sat), as it has been recognized [10] that both backward and
forward reasoning are needed in order to handle the full class. The method neatly
differs from the fixpoint operator as it does not build the partial model from the
origo of timepoints up to τ . The method in fact exploits the order relation with the
given temporal structure, rather than beating time with the master clock. This is
done by selecting all the relevant action alternatives that have successfully occurred
before (v) τ , and therefore influenced the value of the feature of interest. The
collection of all such action alternatives is called the set of all the lower causal
chains for f at τ , or lcc(τ, f).

lcc : T × F → 2I

Given a timepoint τ and a feature f , lcc(τ, f) is the set of all iaas 〈s, t, S〉 such
that 〈s, t, S〉 ∈ Max(P(τ, f);v) union the set of all iaas 〈s2, t2, S2〉 such that
〈〈s1, t1, S1〉, 〈s2, t2, S2〉〉 ∈ P(τ, f) × P(τ, f), is t2 v s1 and for all 〈s1, f, v〉 ∈ S1

is 〈t2, f, v〉 /∈ S2. Given a timepoint τ and a feature f , P(τ, f) is the set of all
iaas 〈sθ, tθ, Sθ〉 of actions A such that (1) 〈s, t, A〉 ∈ SCD and either tθ @ τ or
sθ @ τ v tθ, (2) 〈sθ, tθ, Sθ〉 is relevant per f and (3) 〈sθ, tθ, Sθ〉 is successfully ex-
ecuted. If conditions 1b,2 and 3 hold, we say that f ∈ Influence(τ, 〈sθ, tθ, S(θ)〉).

glo : T × F → 2H

Given a timepoint τ and a feature f , glo(τ, f) is the union of the following three
disjoint sets: gloobs(τ, f), glopas(τ, f) and glocas(τ, f). glopas(τ, f) is the set of all
tuples 〈t, f, v〉 ∈ H such that 〈s, t, S〉 ∈ lcc(τ, f), t @ τ and 〈t, f, v〉 ∈ S. glocas(τ, f)
is the set of all tuples 〈τ, f, v〉 ∈ H such that 〈s, t, S〉 ∈ lcc(τ, f), s @ τ v t
and 〈τ, f, v〉 ∈ S. Finally, gloobs(τ, f) is the set of all tuples 〈t, f, v〉 ∈ H such that
〈t, f, v〉 ∈ OBS, t @ τ and the following restrictions apply. For all 〈s, f ′, v′〉 ∈ S such
that 〈s, , S〉 is relevant per f , it must be the case that glo(s, f ′) \ {〈 , f ′, v′〉} 6= ∅
where f ′ 6= f , i.e. the relevant iaa has failed. This ensures that no relevant iaas
were successfully executed during [t, τ] that may have influenced f . If no relevant
iaas are available, then no influencing actions occur during [t, τ], so that inertia
applies and 〈t, f, v〉 ∈ gloobs(τ, f). If relevant iaas are available and they all have
an empty set of preconditions (i.e. the set of all 〈s, f ′, v′〉 ∈ S is empty), then they
all were successfully executed (point 2 of the bottom-up scheme), the value for f as
from the tuple 〈t, f, v〉 is then influenced during [t, τ] and 〈t, f, v〉 /∈ gloobs(τ, f).

This is all there is to it. The definition of ucc ad luo are symmetrical to lcc
and glo. The only difference worth mentioning is that current activities are not
involved, so that the set of all upper causal chains (ucc) for f at τ consists of all
and only those relevant action alternatives 〈s, t, S〉 that have successfully occurred
after τ (τ v sθ) and therefore exert backward abductive influence on the feature of
interest. Figure 1 shows the result of applying the given definition to the celebrated
Russian Shooting Scenario. The definition applies to uncountably many different
scenarios, to which the assessment result in the next section provides exhaustive
insight.

6

Figure 1: The Russian Shooting Scenario

A turkey is initially alive and the gun is not loaded. Successively, a load,
a spin of the chamber and a shoot event occur. One expects the turkey
to be dead afterwards, if the gun was loaded at the time of firing, alive
otherwise.

¬l,¬a

l, a

〈s3,t3,F ire〉

OO

¬l, a

l, a

〈s2,t2,Spin〉

OO

〈s2,t2,Spin〉

;;wwwwwwwww

¬l, a

〈s1,t1,Load〉

OO

gloobs(t3, l) = ∅ gloobs(t3, a) = {〈0, a, 1〉}
glopas(t3, l) = {〈t2, l, 0〉} glopas(t3, a) = ∅
glocas(t3, l) = {〈t3, l, 0〉} glocas(t3, a) = {〈t3, a, 0〉}
glo(t3, l) = {〈t3, l, 0〉, 〈t2, l, 0〉} glo(t3, a) = {〈t3, a, 0〉, 〈0, a, 1〉}

gloobs(t2, l) = ∅ gloobs(t2, a) = {〈0, a, 1〉}
glopas(t2, l) = ∅ glopas(t2, a) = ∅
glocas(t2, l) = {〈t2, l, 0〉, 〈t2, l, 1〉} glocas(t2, a) = ∅
glo(t2, l) = {〈t2, l, 1〉, 〈t2, l, 0〉} glo(t2, a) = {〈0, a, 1〉}

gloobs(t1, l) = ∅ gloobs(t1, a) = {〈0, a, 1〉}
glopas(t1, l) = ∅ glopas(t1, a) = ∅
glocas(t1, l) = {〈t1, l, 1〉} glocas(t1, a) = ∅
glo(t1, l) = {〈t1, l, 1〉} glo(t1, a) = {〈0, a, 1〉}

gloobs(0, l) = {〈0, l, 0〉} gloobs(0, a) = {〈0, a, 1〉}
glopas(0, l) = ∅ glopas(0, a) = ∅
glocas(0, l) = ∅ glocas(0, a) = ∅
glo(0, l) = {〈0, l, 0〉} glo(0, a) = {〈0, a, 1〉}

7

4 Comparative Assessment

According to the Features and Fluents systematic methodology, we shall now pro-
ceed to the assessment of the range of applicability of NAS. To keep in short with
the notation, we write 〈t, f, v〉 ∈ Σ (Υ) instead of “exists an interpretation 〈M,H〉
such that the development 〈B,M,H,A, C〉 is in Mod(Υ) and H(t, f) = v”.

Let FΥ be the set of all features occurring in Υ. By comparison with the simu-
lative approach, the first result shows that the non-simulative approach is correctly
applicable to any Υ in Ksp-IAd.

Proposition 4.1 For any Υ ∈ Ksp-IAd and for any 〈t, f, v〉 ∈ T × FΥ × V, the
following relation holds: 〈t, f, v〉 ∈ ΣKsp-IAd (Υ) ⇔ 〈t, f, v〉 ∈ Comp(Υ).

Proof. The relation 〈t, f, v〉 ∈ ΣKsp-IAd (Υ) ⇔ 〈t, f, v〉 ∈ TΥ ↑ ω holds by [1,
theorem 4]. We need to prove that 〈t, f, v〉 ∈ TΥ ↑ ω ⇔ 〈t, f, v〉 ∈ Comp(Υ).
Since Υ is inKsp-IAd, we assumed complete knowledge about the initial state of the
world. This knowledge is represented by means of observations 〈0, f, v〉 in the OBS
part of Υ. Per definition is TΥ ↑ 0 = {〈t, f, v〉 ∈ BΥ : 〈t, f, v〉 ∈ OBS ∧ t = 0} and
glo(0, f) = gloobs(0, f)∪glopas(0, f)∪glocas(0, f) = {〈t, f, v〉 ∈ OBS : t = 0}∪∅∪∅.
Then 〈t, f, v〉 ∈ TΥ ↑ 0 iff 〈t, f, v〉 ∈ glo(0, f). Suppose 〈t, f, v〉 ∈ TΥ ↑ (τ − 1) iff
〈t, f, v〉 ∈ glo(τ − 1, f). We shall prove that 〈t, f, v〉 ∈ TΥ ↑ τ iff 〈t, f, v〉 ∈ glo(τ, f).
One of the followings may hold:

• SCD = ∅. Then is TΥ ↑ τ = TΥ ↑ (τ − 1) = . . . = TΥ ↑ 0. As glocas(τ, f) =
∅, then is glo(τ, f) = glo(τ − 1, f).

• SCD 6= ∅. Let 〈s, t, A〉 be one of its elements. If Antecedents(τ,A) ⊆ TΥ ↑
(τ−1) then TΥ ↑ τ = TΥ ↑ (τ−1)∪Consequents(τ,A); otherwise is TΥ ↑ τ =
TΥ ↑ (τ − 1). Concerning NAS, exists 〈s, t, A〉 V

∧m
j=1 Sj in LAW and exists

a valuation θ = {s/M(s), t/M(t)} such that f ∈ Influence(τ, 〈sθ, tθ, Sj(θ)〉)
and glocas(τ, fj) = {〈τ, f, v〉 ∈ H : 〈s, t, S〉 ∈ lcc(τ, f), s @ τ v t and 〈τ, f, v〉 ∈
S} = Consequents(τ,A); otherwise is glo(τ, fj) = glo(τ − 1, fj) because
glocas(τ, fj) = ∅.

In each of the above situations is glo(τ, f)
∗
∪ luo(τ, f) = glo(τ, f), in fact for any

〈t′, f, v′〉 ∈ luo(τ, f) such that 〈t′, f, v′〉 /∈ glo(τ, f), then also 〈t′, f, v′〉 /∈ TΥ ↑ τ . �

The following result shows NAS adequate for an image-level world with contin-
uous time, continuous change and alternative results of actions.

Proposition 4.2 For any Υ ∈ Ksp-RA and for any 〈τ, f, v〉 ∈ T × FΥ × V, the
following relation holds: 〈τ, f, v〉 ∈ ΣKsp-RA (Υ) ⇔ 〈τ, f, v〉 ∈ Comp(Υ).

Proof. By proposition 4.1, the relation holds for the sub-class Ksp-IAd. However,
the SCD part of the scenario description is a discrete sub-lattice of (D,v) in fact,
per definition, every action has a non-empty length. As such, there are at most
as many timepoints in SCD as the natural numbers. Then the relation holds also
for that subset of the intended model set for scenario descriptions in Ksp-RAd
where strict inertia in continuous time and discrete deterministic change are allowed.
In order to capture the full Ksp-RA class we need to show that NAS properly
handles the continuous change and the alternative results of actions. Let 〈M,H〉
be an intended model in Σ (Υ) such that exists 〈s, t, A〉 in SCD, exists 〈s, t, A〉 V∨n

i=1

∧m
j=1 Sj in LAW and exists a valuation θ = {s/M(s), t/M(t)} such that

sθ @ τ v tθ, f = fj , fj ∈ Infl(A,H(sθ)), and H(τ, fj) = ϕij(sθ, τ, tθ) = v, that is
〈τ, fj , v〉 ∈ H � Sij(θ). The following holds:

8

fj ∈ Infl(A,H(sθ)) ⇔ fj ∈ Influence(τ, 〈sθ, tθ, Sij(θ)〉)
⇒ 〈τ, fj , v〉 ∈ glocas(τ, fj)
⇒ 〈τ, fj , v〉 ∈ glo(τ, fj)

Therefore, by definition of consistent union, v ∈ History(τ, fj), 〈fj , v〉 ∈ State(τ)
and 〈t, fj , v〉 ∈ Comp(Υ). �

Proposition 4.3 For any Υ in K-RACi, FΥ = ∅ implies Comp(Υ) = H.

Proof. Let agree that Υ is “empty per f” if and only if Υ contains no obser-
vations in OBS and occurrences of actions in SCD involving the feature f . The
set of all features f such that Υ is empty per f is then F \ FΥ. The thesis is a
straightforward corollary of the following statement: 〈τ, f, v〉 ∈ ΣK-RACi (Υ) ⇔
〈τ, f, v〉 ∈ Comp(Υ) for any 〈τ, f, v〉 ∈ T ×F \FΥ ×V. Let first prove that for any
〈τ, f, v〉 ∈ T × F \ FΥ × V is 〈τ, f, v〉 ∈ ΣK-RACi (Υ). Per definition of ego-world
game, the game starts with the board in an initial configuration, where the initial
state H(0) is a certain non-deterministically given σ0. Due to the non-determinism,
a whatever value v could be assigned to f . During the game the world will persist
in that value per f until an action is invoked by the ego that influences the feature.
As Υ is empty per f by hypothesis, no such action will be invoked. At the end of
the game, the value per f will be the non-deterministically assigned initial value
v. As no specific choice is made on this initial value, no tuple 〈0, f, v〉 appears
in the OBS part of Υ that may restrict the number of models, so that for any
〈τ, f, v〉 ∈ T × F \ FΥ × V is 〈0, f, v〉 ∈ ΣK-RACi (Υ) by point 4 of the definition
of complete development set. On the other hand, for any 〈τ, f, v〉 ∈ T ×F \FΥ×V
is also 〈τ, f, v〉 ∈ Comp(Υ). In fact, as f ∈ F \FΥ, both glo(τ, f) and luo(τ, f) are
trivially empty, so that 〈τ, f, v〉 ∈ Comp(Υ) via the definition of History and, in
particular, via the operator of consistent union. �

The following is the main assessment result. It shows that for any scenario
description Υ in K-RACi algebraic and underlying semantics coincide, that is the
model set obtained via NAS is equal to the intended model set.

Theorem 4.1 (soundness and completeness) For any Υ ∈ K-RACi and for
any 〈τ, f, v〉 ∈ H, the following relation holds:

〈τ, f, v〉 ∈ ΣK-RACi (Υ) ⇔ 〈τ, f, v〉 ∈ Comp(Υ)

Proof. By proposition 4.3, the relation holds for any 〈t, f, v〉 in T ×F\FΥ×V. Let
now prove the relation for features in FΥ, where FΥ 6= ∅. By proposition 4.2, via
the glo function, the relation holds for any Υ in Ksp-RA, that is for pure prediction
problems. We need to prove the relation for chronicles in K-RACi \Ksp-RA, that
is for pure post-diction and pre-post-diction problems. The former case is straight-
forward. By construction, in fact, the definition of luo is symmetrical to that of glo,
so that proposition 4.2 proves the relation for pure post-diction problems too, al-
though with similar converse technique. Concerning pre-post-diction problems, the
following case holds according to the definition of image-level world and Complete
Development Set (we strictly refer to [1]): exists 〈s, t, A〉 in SCD and an intended
model 〈M,H〉 such that M(s) @ τ v M(t), f ∈ Infl(A,H(M(s))), H(τ, f) = v,
and exists 〈M(s), g, w〉 precondition of A such that H(0, g) = H(M(s), g) = w
and, since Υ ∪ {〈τ, f, v〉} is a pre-post-diction problem, Υ is empty per g for any t
in [0,M(s)). Therefore, the problem of determining whether 〈τ, f, v〉 belongs to
Comp(Υ) reduces to the problem of determining whether 〈M(s), g, w〉 belongs to
Comp(Υ), which is a pure post-diction problem. �

9

It is now assessed that the range of applicability of NAS is the full K-RACi
class of reasoning problems, and History(τ, f) is then the set of all values v of the
feature f at timepoint τ such that 〈τ, f, v〉 is true in at least one intended model.
The following corollary holds:

Definition 4.1 (Sandewall, [10])
Let Υ and Υ′ be scenario descriptions.

• Υ entails Υ′, written Υ Υ′, iff Mod(Υ) ⊆ Mod(Υ′);

• Υ is equivalent to Υ′, written Υ ∼= Υ′, iff Mod(Υ) = Mod(Υ′);

• Υ is consistent with Υ′, written Υ ‖�Υ′, iff Mod(Υ) ∩Mod(Υ′) 6= ∅.

Corollary 4.1

• Υ Υ′ ⇔ Comp(Υ) ⊆ Comp(Υ′).

• Υ ∼= Υ′ ⇔ Comp(Υ) = Comp(Υ′).

• Υ ‖�Υ′ ⇔ Comp(Υ) ∩ Comp(Υ′) 6= ∅.

According to the Features and Fluents systematic approach it is now possible to
compare the range of applicability of the Non-simulative Algebraic Semantics with
that of the language A and the Abductive Logic Programming, as well as all the
methods for which an assessment result is available.

The following results are available from the literature. In [10] the PMON entail-
ment (Pointwise Minimization of Occlusion with No-change Premises) has been de-
signed and proven sound and complete with respect to the full K-IA family. PMON
is the best entailment method defined in [10]; it is equivalent to the Chronological
Assignment and Minimization of Occlusion and Change (CAMOC) and subsumes
the Prototypical Global Minimization (PGM, Kr-IsAz), the Original Chronolog-
ical Minimization (OCM, Ksp-IsAd), the Prototypical Chronological Minimiza-
tion (PCM, Kp-IAex), the Prototypical Chronological Minimization with Filtering
(PCMF, K-IAex), the Global Minimization of Occlusion with No-change Premises
(GMOC, Kr-IsA), and the Chronological Minimization of Occlusion and Change
(CMOC, K-IAe). In [12] the language A [6] has been proven sound and complete
with respect to the K-IbsAd family, and in [2] the Abductive Logic Programming
has been proven sound and complete with respect to the same K-IbsAd family.

With no need to getting straight to the details of each reasoning method (which
has been already fulfilled when proving each assessment result), the comparison
reveals the non-simulative algebraic semantics both epistemologically and ontolog-
ically stronger than all the cited methods. In particular:

• the Abductive Logic Programming (ALP) is epistemologically equivalent to
NAS, as both range on K, but ontologically weaker, as ALP ranges on prob-
lems where actions operate in a single time-step (Is) and all features are
two-valued (Ib), while NAS has no such restrictions;

• due to [2, theorem 5], the comparison of NAS against the Action Description
Language A leads to the same conclusions;

• the PMON entailment is epistemologically equivalent to NAS, as both range
on K, but ontologically weaker, as PMON ranges on problems where actions
have discrete trajectories that take place in integer time, while NAS has no
such restrictions.

10

The systematic approach is useful not only for classifying and comparing the
different logics, but also for immediately establishing which problems can be solved
by each classified logic. For any given reasoning problem, it is possible to say
whether a given reasoning method will solve it or not by saying whether the problem
itself belongs to the class for which the method is provably sound. A list of popular
reasoning problems and their relative classification is given in [10].

5 Computability

Let consider the problem of computing the completion set of Υ.

Proposition 5.1 For any Υ in K-IA, Comp(Υ) is a recursively enumerable set.

Proof. By definition, for any τ ∈ N, State(τ) is the set of all tuples 〈f, v〉 ∈ F ×V
such that v ∈ History(τ, f). The set History(τ, f) is finite; in fact, if a(i) is the
number of action alternatives of the action i and m is the number of action occur-
rences in SCD, the number of relevant and successfully executed action alternatives
for f at τ is at most

∑m
i=1 a(i). As timepoints are recursively enumerable, as they

are natural numbers, we conclude that for any Υ in K-IA, Comp(Υ) is a recursively
enumerable set. �

As real numbers are not recursively enumerable, the similar proposition does
not hold for Υ in K-RACi. The set Comp(Υ) is so extensive that no algorithm
could possibly list all its elements, so that intended models for K-RACi are not
effectively computable models. But would we really ask for more information that
we could ever hope to use? The problem of computing the whole intended model set
for scenario descriptions in K-RACi does not seem indeed a realistic problem, and
neither does for K-IA. In resource bounded situations, in fact, Υ is a finite scenario
description, so that the OBS, SCD and LAW components of Υ are finite sets too,
as well as the set TΥ of all timepoints occurring in Υ and the set FΥ of all features
occurring in Υ. As each action occurrence in SCD has a finite duration, it follows
that in any model of the scenario description changes due to an action are limited
to a finite interval in time. Since no other events are allowed in K-RACi besides
those specified in SCD, the set of all intervals where persistence arise is a finite
set too. History(τ, f) then consists of a finite set of feature values and StateΥ(τ),
i.e. State(τ) for those features occurring in Υ, is a finite set too. The problem of
computing Comp(Υ) then reduces to computing a finite number of finite states:

Ker(Υ) = {〈τ, f, v〉 ∈ {0} ∪ TΥ ×FΥ × V : 〈f, v〉 ∈ StateΥ(τ)}

We will refer to Ker(Υ) as the kernel of the completion set of Υ, namely the
most representative of all decidable subsets of Comp(Υ). When needed, and apart
from the kernel, the value of any feature at any given timepoint can always be
computed via the History function, where computable partial fluents [1] are used for
characterizing features during time periods where their values change. Computing
the set of all timepoints for which a given feature f has a given value v will certainly
require standard numerical-analysis techniques over those periods where actions
influencing f are performed:

Holds at(f, v) = {τ ∈ T : v ∈ History(τ, f)}

Adopting the non-simulative algebraic semantics as proof procedure, a meta-
theoretic extension of the Horn Clause Logic has been defined using the non-ground
representation of the object-level variables. The meta-interpreter consists in the

11

Horn clause representation of the proof procedure. It is built on top of the EP-
SILON system (ESPRIT project P-530 [4]), and is executable as a conventional logic
program by the SLD-resolution rule. The resulting calculus is domain independent
and, due to theorem 4.1, class dependent. A companion web-site to this work can
be accessed via the author’s Internet address at http://www.dcs.qmw.ac.uk/∼sb.

6 Conclusion

This paper continues a new line of work on causal reasoning in Logic Programming.
The new line begins in [2], where the Features and Fluents research methodology
is extended to Logic Programming and the reasoning method of van Emden and
Kowalski’s simulative algebraic semantics for the Horn Clause Logic is proven ade-
quate for solving non-monotonic temporal-reasoning problems within the Ksp-IAd
class of assumptions. In this paper, the converse non-simulative method is designed
and its range of applicability is proven to be the full K-RACi class, a superclass
of Ksp-IAd. The relatively straightforward comparative assessment also reveals
the non-simulative method epistemologically equivalent and ontologically stronger
than the Abductive Logic Programming, the Action Description Language A and
the PMON entailment.

The new line of work goes beyond the current and past work on causal reason-
ing in Logic Programming in several ways. First, it tackles the issue of explicitly
and formally defining the simplifying assumptions that are made when representing
problems. The issue is new to the several Event Calculus approaches and to Logic
Programming itself, where these assumptions are often left implicit. Second, it tack-
les the issue of classifying and comparing the reasoning methods according to their
range of applicability, formally assessed by means of a soundness and completeness
result of the semantics with respect to the underlying semantics that formally de-
fines the simplifying assumptions. The original problem of establishing whether a
given reasoning method solves a given reasoning problem is then reduced to saying
whether the problem itself belongs to the class for which the method is provably
sound. Finally, the overall research task neatly differs from the classical one, as it
encourages the design of logic programming languages for solving whole classes of
reasoning problems, and strongly discourages the drawing of guidelines or recipes
for which logic programs are often claimed to solve non-trivial problems.

Work continues along this line. As noted at page 10, the comparison is only
possible between methods for which an assessment result is available. At the time
of writing, no such general assessment result is available for the more recent Ac-
tion Description Languages [7], for the Event Calculus [8] and its variants, like
the Circumscriptive Event Calculus [11], and for the Logic Programming language
GOLOG [9]. The general assessment would be useful not only in order to compare
these methods against NAS, but also against other formalisms that do not strictly
belong to the Logic Programming approach, as shown in this paper. At the time of
writing, the range of applicability of the Event Calculi is under assessment.

Acknowledgements: I am grateful to Erik Sandewall for the helpful clarifica-
tions. A subtle issue of the underlying semantics for K-IA, inherited by K-RACi,
now justifies proposition 4.3. I am also grateful to Giorgio Levi for the helpful
discussions and comments on an earlier draft of this paper.

12

References

[1] S. Brandano. K-RACi. In Non-monotonic Reasoning, Action and Change,
Proceedings of the International (IJCAI) Workshop, pages 9–16, Stockholm,
Sweden, August 1999.

[2] S. Brandano. Features and Fluents for Logic Programming: Simulative Alge-
braic Semantics. Manuscript, 2000.

[3] S. Brandano. On the meta-theoretic approach to non-monotonic reasoning,
its extension to the continuum case and relation with classical Newtonian Me-
chanics. Manuscript, 2000.

[4] P. Coscia, P. Franceschi, G. Levi, G. Sardu, and L. Torre. Meta-level defini-
tion and compilation of inference engines in the EPSILON Logic Programming
environment. In R. Kowalski and K. Bowen, editors, International Conference
on Logic Programming, Proceedings, pages 359–373. MIT Press, 1988.

[5] M. Denecker and D. De Schreye. Representing incomplete knowledge in Ab-
ductive Logic Programming. Journal of Logic and Computation, 5(5):553–578,
1995.

[6] M. Gelfond and V. Lifschitz. Representing Actions and Change by Logic Pro-
grams. Journal of Logic Programming, 17, 1993.

[7] M. Gelfond and V. Lifschitz. Action Languages. Electronic Transactions on Ar-
tificial Intelligence (ETAI), 3(16), 1998. http://www.ep.liu.se/ea/cis/1998/016/.

[8] R. A. Kowalski and M. Sergot. A Logic-based Calculus of Events. New Gen-
eration Computing, 4(1):67–95, 1986.

[9] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. GOLOG:
a Logic Programming language for Dynamic Domains. Journal of Logic Pro-
gramming, 31(1-3):59–83, 1997.

[10] E. Sandewall. Features and Fluents: The Representation of Knowledge about
Dynamical Systems, volume 1. Oxford University Press, 1994.

[11] M. Shanahan. Solving the Frame Problem: A Mathematical Investigation of
the Common Sense Law of Inertia. MIT Press, 1997.

[12] M. Thielscher. An Analysis of Systematic Approaches to Reasoning about
Actions and Change. In Artificial Intelligence : Methodology, Systems, Appli-
cations, Proceedings of the International Conference (AIMSA), 1994.

13

