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Abstract

MACNET is the name of a language developed by Agre and Chapman as part of their programs
PENGI [2], BLOCKHEAD [7], and SONJA [8]. Here we explore some of the background that
lies behind this language and address some of the problems encountered while re-implementing
MACNET. The re-implementation necessitated finding out more about how MACNET really
works, the results of which are given here.

1 Introduction

In this paper we describe one interpretation of the MACNET language designed by Agre and
Chapman [1, 2, 7, 8] that is used for specifying routines in terms of loosely connected rules, The
description given by Agre and Chapman does not fully explain how MACNET can be imple-
mented and the purpose of this paper is to fill in some of the details, so that the performance
of MACNET can be understood. The descriptions given here may not be identical to those of
Agre and Chapman because, although Chapman [8] provides a syntax and a semantics, given
in an informal manner with examples, there is ambiguity in how what is described might be
implemented and what it means.

MACNET is on the one hand intuitively simple and on the other surprisingly complex to
specify and implement, requiring a much larger amount of code than initial considerations
would envisage. To begin with, one useful “coarse” interpretation is to think of MACNET
as being a language for expressing an expert system’s set of rules together with a built in
conflict resolution strategy. Notice we have fwo things here: the specification of the rules and
its run-time execution.

Agre and Chapman’s work is frequently referenced and in some respects their PENGI paper
f2] is important for initiating the “reactive planning” field. However, the operation of the un-
derlying system {i.e., MACNET) is not always understood, for example, see Vera and Simon
(39]. This lack of understanding illustrates the need for some attempt at clarifying the MAC-
NET approach. This description advances the current state of understanding by making more
accessible the underlying foundations of an Al approach based upon deictic representation, and
which can be used for developing situated Al systems (such as the HIVIS-WATCHER system
described in Howarth [17, 18]).

This paper begins with a discussion of background details providing the context for the
MACNET langunage. Following this, general details of the execution form called GATE and the
specification form called MACNET are given.
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2  Background

The motivation behind the development of MACNET is to provide a knowledge representation
with which to describe the behaviour of a prototypical everyday agent. In this section we
begin by describing how routines, those repreated elements of everyday behaviour, provide a
basis for developing the agent model. Following this we consider the various properties of a
computational model that are used to support routines.

2.1 Routines

MACNET is used to describe the rules performed by an agent who is engaged in some activity
that is situated in the environment, for example, drinking coffee, driving home, etc. We are
making the assumption that a system’s behaviour and its understanding of the world can be
defined by the program designer {see Dreyfus [11, page zziif] for discussion of this problem).
Also, more details about situated activity are given by Norman [28] in his introduction to a
recent special issue of the journal Cognitive Science. Basically it provides a link between social
science and Al which is important in research concerning how an agent interprets the world.
Winograd and Flores [41, pages 27--37] describe how the interpretation of the perceiver is not
neutral, it is fundamentally social. The activities of the agents are not planned out in detail,
instead they are in a state of what Heidegger calls “thrownness” (for details see [41]). When
interacting it is not possible to step back, reflect and plan. This has been investigated by
Suchman [35] who identifies plans as something that can evolve out of situated activity, so
that previous experience can be used to structure future activity. This distinction between
thrownness and planning is similar to the difference between deictic temporal representation
(e.g., previous, now, next) and McDermott’s [23] useful observation that in most Al models of
temporal reasoning we reason from the side, taking a step back and representing the past and
the future, which allows us to give names to time points, such as dates, and measure temporal
durations. van Benthem [38, pages 6-7] discusses why deictic representation is not suifable
for temporal reasoning, in summary, this is because the policy being studied is typically to
formalise only those notions about which questions are to be answered and for which results
are to be proven. This does not mean that deictic representation cannot be formalised, for
example, Subramanian and Woodfill [34] discuss one approach that converts deictic-forms to
the situation calculus [22]. One advantage of using a deictic representation is that it allows
a propositional theory to be developed that is proportional to the number of properties of
interest (e.g., previous, now, next}, as opposed to the number of propositional objects in the
world (e.g., all time points). Deictic representation is an important component of modelling
routine behaviour and the MACNET language.

As identified by Winograd and Flores, an important influence upon our understanding of the
environment and the use to which it is put comes from our social context. Garfinkel (see {14]
and also Heritage [16]) has performed experiments that demonstrate the presence of “normal”
behaviour or “maxims of conduct”, which help keep an agent’s perceivedly normal conduct “on
the rails” because it enables the agent to anticipate some of the interpretations that its exercise
of the options will give rise. Garfinkel’s work provides a framework in which to describe routine
and situated behaviour. Most activity is routine in nature, being that regular, practiced and
unproblematic activity that makes up most of everyday life. We can approximate this by using
MACNET to describe simple local models that express the normal or typical routine behaviour
of our system that is embedded in the social world.

2.2 Embedded systems

An agent is an example of an embedded reasoning system, i.e., one that is sitnated in the world
and which operates effectively given the real-time constraints of its environment. Georgeff and
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Ingrand [15] describe an embedded reasoning system called the Procedural Reasoning System
(PRS) which uses means-ends reasoning to govern future behaviour. PRS explicitly represents
attitudes of belief, desire and intention, allowing them fo be manipulated and reasoned about,
providing complex goal-directed and reflexive behaviour. The system consists of a database
holding current beliefs and facts about the world, a set of current goals to be realised, a set of
procedures or rules, and an interpreter for manipulating these components. At any one moment,
the system also has a process-stack containing all currently active plans, which can be viewed
as the system’s current intentions for achieving its goals or reacting to some observed situation.
The rules describe how certain sequences of action and tests may be performed to achieve given
goals, how to react to particular situations, and also includes meta-level knowledge that enables
manipulation of the system’s own beliefs, desires and intentions.

Although PRS is embedded in the world it is not really situated in the sense of thrownness.
This is because PRS uses means-end analysis which involves stepping back, reflecting and
planning. Agre’s [1] program RUNNING ARGUMENTS provides a more situated approach.
This technique is difficult to describe because there are at least two intertwined theories at its
core. The first is to do with planning, which we describe here, and the second is about the
separation of program components, which we describe below in section 2.3. The RUNNING
ARGUMENTS technique does not develop plans as such, although they do exist in the form
of hardwired “action-descriptions”. These action-descriptions are written in MACNET! and
expresses what the program is to do given the data of the current and previous clock tick.
The rule based form used to define the action-descriptions makes a comparison to the standard
production rule form inevitable. The main difference is in how conflict resolution? is addressed.
In the RUNNING ARGUMENTS system conflict only occurs when two or more “proposals”
try and “fire” the same operator, and any occurrence is resolved by assigning rule precedence
to the rule definitions. This approach allows a number of operators to be fired on each clock
tick as opposed to the usual one per clock tick in production systems. This language is not
suitable for planning, but can be used to describe routines (those plan like elements introduced
in section 2.1).

Rosenschein and Kaelbing [32, 33] present a more complex representation language called
REX that is similar to MACNET in that it too is compiled to provide a combinatorial logic
circuit. The REX language is attractive because it is based on a formal logic that is similar
to that of Moore [25], however, the implementation details provided in [33] are difficult to
understand. In [32], Rosenschein describes how an additional layer of compilation can be added
to enable proof correctness to be performed upon the supplied rule specification. This involves
re-expressing the rules as clauses in a new language £. The rules are now generated as a
side-effect of performing a proof analysis on the clauses written in £, with this proof analysis
indicating the completeness of the specification, at the cost of an additional layer of compilation.

Nilsson [27] describes an alternative to MACNET and REX called “teleo-reactive” (T-R)
programs, which like the original version of the RUNNING ARGUMENTS program [1] delays
constructing the required circuitry until it is needed.

MACNET, REX and T-R are all more appropriate than PRS for developing a situated Al sys-
tem because they do not use means end analysis. Next we investigate an alternative architecture
to means end analysis which also provides the second part of RUNNING ARGUMENTS.

1The language used by RUNNING ARGUMENTS is really a forerunner of MACNET. We discuss the differ-

ences in section 4.
2See Charnizk and McDermott [9, pages 439-440] for a descziption of how conflict resolution operates.
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2.3 Modularity

Fodor [13] describes the traditional separation made in cognitive science between input- /visual-
/peripheral- systems and the central-system (see figure 1). This view is not held by all re-
searchers, for example, Brooks [5, 6] provides a different view that uses an orthogonal separation
based on task-achieving behaviours. Agre [1] and Chapman {8] are both proponents of Fodor’s
input/central split, (see their descriptions for further details}. A brief description follows. On
the input side we have a collection of perceptual and motor processes, each of which are to a
large part innate, localised to specific brain areas, and task- and domain-independent. Each
element of this collection is a module of the input-system. Fodor argues that the central side
is different, saying it is not modular, being instead a single homogeneous central-system. The
justification for this is that anything you know can potentially be used in any cognitive task.
Agre uses this split in RUNNING ARGUMENTS, with the central-system holding the rules
and the visual-system holding a collection of information gathering operators.

The visual-system is based upon Ullman’s argument [37] for the integration of multiple visual
operators that perform particular sorts of perceptual work such as tracking, representing shape
properties and spatial relations. We discuss this further in sections 2.4 and 2.5 below.

The central-system contains rules of the form described in section 2.2, which are used to
select when an operator is to be used and what arguments are to be supplied to an activation.
Crafting the rule-operator pairs into sequences (constructing routines) is done by making the
result produced by one operator fulfill the input requirement of the next rule. However, this
is not the only way a particular rule can be fulfilled, thus allowing the mechanism to react
to similar situations that arise via a different route. A routine provides an abstraction for
a common pattern of interaction between an agent’s central-system and visual-system. This
reduces “planning what to do next” to a matter of deciding what to do “now” based upon
how the world is “now”. Only the operators have access to the “world” data structures and
the central-system only receives the results of the operators. This allows the central-system to
use a simplified description of the world, that only needs to have the information necessary for
making its action-selection. This restricted state ensures that the system can only reason about
the current situation.

This separation of input- and central-system and the tight coupling between them provides
one possible foundation for the situated approach, allowing us to address control without fra-
ditional planning or plan recognition (see Allen et al. [3] for example). Nilsson [27] discusses
the importance of the continuous feedback provided by this tight coupling, pointing out why it
seems to conflict with sequential execution.

2.4 Operators
As introduced above, the visual-system is composed of a collection of operators.

Definition 1 An operator op; is a function of the form
op; 1 args — results X side-effects

and is used to obtain the 1" primitive property value.
In general each operator takes a set of args and provides a set of results and/or side-effects to
some global storage. ‘

Previous work on operators also includes: Romanycia’s [31] description of a programming
language that uses visual operators to commute properties and relations present in 21 images
of simple geometric shapes; Mahoney and Ullman’s [21] description of low-level visual operators
that operate on more complex shapes and curves to identify “image chunks”; and Chapman’s [8]
description of visual operators used in a video game context. No one has used visual operators
in a natural task domain with access to camera image data in the way described by Chapman
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{warp-marker! m n doit?) move marker m to
location of marker n .

(track! m n doit?) move marker m to location
of marker n and track the object at this lo-
cation.

effectors arguments

(marker-m-assigned?) is true when m is unas-
signed. There is an operator for each marker
that inspects the data “under” the marker to
see if it 1s “on” an object.

(markers-coincident? m n doit?) tells when
the distance between two markers is zero.

Figure 1: The input central split

Figure 2: Example operators.

(such as those which use “activation planes”?®). However, there is related work, including that
on tracking?, and work on “active contour models™®. Chapman’s work can be seen as an initial
step towards the objective of defining a set of appropriate visual operators for use in real world
application domains. On their own, these visual operators do not do much, but combined via
rules held in the central-system, enable the system as a whole to respond to changes in the
“world”.

The collection of operators that we describe here are not able to store information, although
they can change external global memory by side-effect. To perform perceptual reasoning deictic
references are used called “markers”. In the central-system associated with each marker is a
set of rules that select which operators to run on the object indexed by that marker. Different
markers may use different operators which obtain different object properties. This provides an
example of how expectation can affect interpretation. Some example operators are given in
figure 2. In addition to markers, Chapman [8] describes other primitive elements, such as, lines,
rays and activation-planes, and has operators for things like: follow a line; shade a region; pick
out the red bit and put a marker on it; and tell whether the red bit is moving.

2.5 Peripheral-system

The peripheral-system contains the operator processor (OF) which is a collection of operators
(see definition 1) that are all given arguments and executed in parallel (i.e., there is no depen-
dence on sequential execution). We will call this “OP-execution”. Each operator performs a
simple operation that in itself does not do much, so that all the operators in OP should complete
quite quickly. The usefulness of the OP becomes apparent when it is coupled to another system
that repeatedly and sequentially performs OP-executions, with the operators in OP given new
arguments for each OP-execution.

As described in definition 1 the general form of each operator in OP is (op; arg;...arg,),
where op; and arg; denote domain relevant symbol names. The last argument position can be
given a special meaning if it has the name doit? which demotes a boolean flag. When present,
it states that op, is selectable and is only to be executed when doit? is set to true. When the
doit? flag is not present as the last argument then op; is always run on each OP-execution.

8 Activation planes are used to keep track of interesting regions of the image, as in Ullman’s [37] routine for
computing containment.

*See for example Murray et al. [26].

® Active contour models have been used to define outlines (Kass et al. [20], Cohen [10]} and dynamic regions
distinguished by a particular visual property, e.g., texture and/or colour {Ivins and Porrill [19]}.
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The operator op,; is defined by a self contained set of instructions, and does not return a
result. Instead op; side-effects the execution environment by setting specially allocated memory
addresses as well as common areas of memory. Operators use a specially allocated memory,
called “aspects”, where each selectable operator typically has two addresses called “sop,*” and
“#register-op,*”. The address called “xop,*” is given the return value from operator op;’s
execution, usually an integer or a boolean, and “*register-op;*” is set to say that “xop;*” has
been given a value. In a truly parallel implementation a “*op,-ready*” would also be needed
to say when the operator has completed. The set of aspects from the peripheral-system have
an injective {one-to-one} mapping to the set of result wires registered by the central-system
(this can be described by the function B : aspects ~ wires). There is also a corresponding
mapping from central-system effector-commands to peripheral-system operators.

These operators do not form a nice functional language because of their use of side-effects,
which can also make them difficult to define and debug. The OP-execution environment is
in effect shared by all the operators with this environment passed onto future executions and
leaving a thread of environments as the OP-execution history. As discussed in section 2.3 we
need this continuous flow of execution to allow situation driven processing.

There are two constraints upon the description of operators. The first constraint concerns the
amount of computation that needs to be performed by each OP-execution. This is dependent
upon the selected rate chosen for the clock-ticks, which like a metronome “marks time”. If
we hold the total amount of computation performed by the system constant, then the amount
of computation that needs to be performed for each OFP-execution is proportional to the time
between clock ticks. A large temporal interval between clock-ticks means that more computation
needs to be performed by the operators and more assumptions and interpolations made about
the data. The second constraint is the parsimony of having a small set of operators that can
act upon the available data.

The solution to these constraints is application domain specific, however, in general, if we
minimise the time between clock-ticks we can help reduce the number of operators by encapsu-
lating common functionality in an often used operator. This is rather like the idea behind risc

chips.

2.6 Summary

This has covered the general principles that lie behind MACNET. We have covered: routines,
which is what MACNET is used to express; RUNNING ARGUMENTS, the initial system
methodology from which MACNET was extracted; the input-/central-system split, the role
each plays, and the position of MACNET within this system. Next we provide a more detailed
description of MACNET starting with a discussion of the basic language primitives and then
building up to the full version of the langunage.

3 GATE language

The GATE description language provides the user with a collection of functions for constructing
various data~structures that can be recursively combined with one data-structure providing an
argument for another. Figure 3 provides an example of an adder, showing how sub-circuit
forms can be assigned to variables that are used in more than one place. The important
gates in this example are andg, org and invert, which correspond to the usual combinatorial
logic meanings of A, V and — respectively. The general GATE language syntax is given by
tuples of the form (foog arg;...arg,) which defines the gate foo. Each gate takes one or
more input wires depending upon the gate’s meaning and all gates have a single output wire.
Figures 4 and 5 express the adder code in pictorial terms, making clearer the relationships
between the components and sub-circuits. In figure 5 the labels A and B represent the binary
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{defun make-adder {(*a* *b% #cink *cout#® *gum*)
(izbels
{({halfadder {inl in2 outl out2)
{let ({x (andg inl in2)))
(sequ (set-wire! outl {andg (invert x) {org inl in2)))
(set-wire! out2 x)))))
(let ({wl {gentemp "WIRE")}) (w2 (gentemp "WIRE")})
(w3 (gentemp "WIRE")) (wé (gentemp "WIRE")))
(sequ (halfadder (interface-node *b*) (interface-node *cin*) wl w2)
(halfadder (interface-node *a%) (interface-wire wl)} w3 w4)
{set-node! *sum* (interface-wire w3})
{set-node! *cout* (org (interface-wire w4)
(interface-wire w2)))))})

Figure 3: Adder circuit given in the Lisp implementation.

B A half SUM
B half adder
adder B cout
Cin

Figure 5: A full adder unit.

Figure 4: A half-adder unit.

bits at corresponding positions in the two numbers to be added, and Cip is the carry bit from
the addition one place to the right. The circuit generates SUM, which is the sum bit in the
corresponding position, and Coyut, which is the carry bit to be propagated to the left. We call
the boxes that enclose a sub-circuit a “unit”.

The tree structure that is created by the Lisp functions is shown in figure 6, even for this
small example, it is quite large, and not very illuminating. However, it does give some idea of
how the gate langnage can be composed to produce a tree of gates.

3.1 (GATE primitives

In addition to the andg, org and invert gates already described above, other gates include
{interface-node input-symbol} which “reads” the current value held by the specified input
symbol. (set-node! outpui-symbol input) which “writes” the value of the input wire to the
specified output symbol. (interface-wire name) which accesses the named wire, this wire
acts like a variable holding its set value during the clock tick. At compile time a check is made
to ensure that the wire is set before it is used via the (set-wire! name input} gate which sets
the named wire to a new value. The jobs performed by these node and wire functions could
be combined into one pair of functions, however keeping them distinct clarifies the interval
wire operations from the node links of the circuit with the external world. A (latch input)
gate that provides a one clock tick delay function which is used to supply the value from the
previous clock tick and hold the current value. (saym &rest input) is used to print warnings
and error messages. To allow switching between inputs there are three gate forms based on an
ifm primitive. An if-then form (ifm test input), an if-then-else form (ifm test inputl input2}
and also a condm macro that has the usual Lisp cond syntax and expands into a collection of
nested ifm gates. The condm is to make specifying complicated ifm’s more understandable and
is used in the construction of arbiters (which we describe in section 4). In the adder example
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#3(SEQU :NAME 3 INPUT
{ #S(SEQU :NAME 1 :IKPUT
( #5(SET~WIRE! :BAME 1 :INPUT
( WIRE470
#S(ANDG :NAME 2 :INPUT
( $SCIBVERT :NAME 1 :INPUT
( #8(ANDG :NAME 1 :INPUT
( #S(INTERFACE-NODE :NAME 1 :INPUT (#B%))
#8 (INTERFACE-NODE :NAME 2 :INPUT (#CIE#))))))
#SC(ORG :NAME {1 :INPUT
( #S(INTERFACE~NODE :NAME 1 :INPUT (%B})
#3(INTERFACE~NODE :NAME 2 :INPUT {(*CIN#))))))))
#S(SET-WIRE! :NAME 2 :INPUT
{ WIRE4T1
£S(ANDG (NAME 1 INPUT
{ $S{INTERFACE-KODE :NAME 1 :INPUT (*B%)}
#S(INTERFACE~NODE :NAME 2 :INPUT (#CIN%)))})))))
#S({SEQU :NAME 2 :INPUT
{ #S(SET-WIRE! :NAME 3 :INPUT
{ WIRE4T2
#SCANDG :BAME 4 :INPUT
{ $S(IBVERT :NAME 2 INPUT
( #S(ANDG :NAME 3 :INPUT
( #3(INTERFACE-NODE :NAME 3 :INPUT (#A%})
#5 (INTERFACE-WIRE :NAME 1 :INPUT (WIRE470))))))
#S(ORG :NAME 2 :INPUT
{ #S(INTERFACE-NODE :NAME 3 :INPUT (#A%})
#S(INTERFACE-WIRE :NAME 1 :INPUT (WIRE470))))}))}
#3(SET-WIRE! :NAME 4 :INPUT
( WIRE4TS
#S(ANDG :¥AME 3 :INPUT
{ #S(INTERFACE-KODE :NAME 3 :INPUT (#A%))
#S(INTERFACE-WIRE :NAME 1 :INPUT (WIRE4T0X)))IN)) v
#S(SET-NODE! :NAME f :INPUT
{ #SUM
#S (INTERFACE-WIRE :NAME 2 :INPUT (WIRE472))))
#S{SET-EDDE! :NAME 2 :IKPUT
( *COUT=
#S(ORG :NAME 3 :INPUT
( #SCINTERFACE-WIRE :NAME 3 :INPUT (WIRE473))
#S (INTERFACE-WIRE :NAME 4 :INPUT (WIREAT1))))1)))

Figure 6: The tree structure formed from the adder example. Note that for simplicity the
slots for LEVEL (and also for OUTPUT and RESULT from the gates set-wire! and set-node!
respectively) have been removed, because they are not used until we create the linear form.

we also use (sequ &rest input) to collect together a sequence of subtrees written in the GATE
language. The gate sequ acts like a “progn” in Lisp, allowing sequential execution, but does
not return any value.

3.2 GATE evalvation

Standard theorem proving technigues are not used to evaluate a circuit, instead it is run by
a program based on a Digital LSI Design simulator (Terman [36]). The simulator uses the
observation that a circuit of gates forms a tree structure that can be post-order tree-walked
to evaluate the values held at each node, starting from the root (or final output) gate. This
approach is fine for a single network execution however, there is a more efficient way of evaluating
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a circuit tree that is to be repeatedly run with new leaf (or input gate) values.

This second method separates out from the “evaluation phase” work that can be done as
a pre-process, which we will call, “network analysis”. Network analysis performs a tree-walk,
from the output node, not descending any further when an input node or dead end is reached.
During the tree-walk all switches are assumed to be on, since the tree-walk is performed before
any node values are calculated. During this tree-walk a linear runtime structure, called the
“code-array”, is constructed, which holds the gate nodes in post-order, ensuring that when we
iterate through the code-array beginning from address 0, all arguments for each gate node are
evaluated before they are used.

This constructs our network ready for simulation. A simple approach to running the simulator
is to have two node-value arrays; one to hold the current values of each node, the other to collect
new valtes as they are computed. Each node is assigned an index which can be used to access
its current value in the first array or to store its new value in the second array. The algorithm

for this is:
1. For each input node, set its current-value array entry to the designated input value.
2. Execute the simulation subroutine. This fills the new-value array.

3. Compare the current-value and new-value arrays. If their contents are identical the network
has settled and the simulation step is over. Otherwise copy new-value array to old, and
goto step 1.

This method can be simplified by taking advantage of the post-order present in code-array.
Instead of using two value arrays, we can make do with a single value array, because the values
of a node’s inputs are calculated before the value of the node itself is calculated. The new
algorithm, called Cascade is:

1. Set counter i to 0.
2. If i > length of array, exit.

3. Execute the simulation subroutine for node[i] using its specified input addresses from the
value-array (or elsewhere). Puf the result in value-arrayl[i].

4. Goto step 2.

Terman [36] describes a more complex version of the Cascade algorithm that can also cope with
loops such as would be present in a flip-flop however, the gate language does not need this form
of feedback, allowing us to ignore such issues.

3.3 Summary

This outlines an informal description of the GATE language, we present a more formal de-
scription is given in Howarth [17] appendix E. Here we have covered the format of the GATE
language primitives and described the Cascade algorithm that is used to evaluate a circuit com-
posed from these gates. Next we describe the relationship between the GATE language and

MACNET.
4 MACNET language

In this section we describe how the GATE language can be enriched to allow the expression
of rules. These rules could be written directly using the GATE language however, this task is
likely to be complex due to the number of gates involved. The MACNET language is designed
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to make this task easier by providing functionality that replaces repeatedly used collections of
gates. The MACNET language is based upon Agre’s RUNNING ARGUMENTS which involves
putting forward proposals and objections that can support and override one another reflecting
the dynamics of the knowledge they represent. The RUNNING ARGUMENT rules themselves
take two forms, if rules and unless rules, that correspond to combinatorial logic with an if
being an AND and unless being a NOT-AND. Figure 7 depicts two example rules which in addition
to providing examples of the if and unless form also show two different ways in which the
argument structure of the RUNNING ARGUMENT rules affects the circuit created.

The MACNET language does not use the RUNNING ARGUMENT’s rule form instead it
uses arbiters. The rules expressed in MACNET form the central-system, which operates in
conjunction with the set of operators in the peripheral-system which perform actions and obtain
new values, This top-level-loop does one iteration of

1. run peripheral-system

2. run central-system

each clock tick. At any one time a subset of selected operators are run providing input values
for the MACNET rules that are used during run central-system. When the MACNET rules
are tTun they provide output that selects which operators should be run on what values for
the next clock tick. Figure 8 shows the interface between operators and MACNET, showing
the ready and enable flags that indicate when an operator result or MACNET rules result is
available, respectively. Note that a rule consists of an arbiter combined with other MACNET
components, and that an arbiter’s result is the argument input to an effector, which in most
cases is an operator that has the same name as the arbiter.

Arbiters are similar to a combined form of the if and unless rules although not as intuitively
simple. The if rule in figure 7 captures an essential arbiter property concerning how proposed
wire values are selected. In figure 7 we have the choice from three values of foo (a, b or c}
that are to be passed onto the wire bar. The arbitration language provides a declarative way of
stating how an “agent” in the world may react when given a certain input. The values given to
an agent do not need to be boolean, we can also use integers and symbols. Inside the network
there are two types of wire: wires that hold input signals, and wires that hold the internally
generated boolean values. The circuit language primitives that primazily operate on the input
signals are gates like gtm and eqm, that can compare boolean and non-boolean (e.g., integer)
values producing a boolean result that can be used by the other gates (e.g., andg, etc). These
primitives provide some flexibility in the form of the declarations made.

Although MACNET uses a simple value set, the operators that it works with can use a more
complicated model of the world. The MACNET langunage has four main components: registrars,
arbiters, conditions and proposers. In addition to these main components are operator and
pkg (which is short for package) components. operators were described in section 2.4 and are
really outside MACNET being those functions that a MACNET rule is designed to select, and
who also provide the input that MACNET runs upon.

pkgs are used as a structure within which we construct a collection of MACNET rules. A pkg
allows MACNET components to be added incrementally, to build a single MACNET identified
by its pkg name P. The three main pkg language functions are: (make-pkg) which creates
and returns an empty pkg structure, (with-pkg P &rest body) which opens pkg P allowing
MACNET language declarations to be added in the with-pkg body. (compile-pkg P) which
compiles the arbiter language definition held in P into an executable form which it returns.

4.1 Language components

We begin by describing the various components that make up the MACNET language. This
description is based on that given by Chapman [8] and to which the reader is directed for further
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(if (foo 7x) (bar 7x))

)

{bar a)
(foo ) :}—- PERIPHERAL CENTRAL
SYSTEM SYSTEM

OPERATORS MACNET RULES

: (bar b)
(foo b) T
C:Z argument

L (bar ¢)
<: argument

4~ gnable

(fooc)

(untess (moving Tx) all-steady) result :3

ready —-t

(moving 2) O all-steady
O
{moving b) J
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terface.

Figure 7: An example of different gate con-
structions based upon different rule patterns
and rule types. From Agre [1].

details. The description given here differs a little from Chapman’s where we have attempted to
make things more explicit by the introduction of the arbiter construct. In the main, these are
superficial differences, just a little syntactic sugar.

4.1.1 Registrars

Registrars are used to provide an interface between aspects, the output from operators, and
the internal circuitry of a pkg. These components have the form (registrar register-name
wire). The input values from the outside world are fed through registrars, which perform any
initial calculations, to produce a result that can then be used by more than one arbiter. This
provides a useful pre-processing stage, making rules written in the MACNET language clearer
by allowing the use of each register-name instead of the set of gates it represents. We can also
use the register-name in the definition of other registrars, as long as, no depeandency loop is
created.

4.1.2  Arbiters

Arbiters are important elements in this language because they facilitate the selection of which
set of values are to be assigned to a given set of wires. There are two forms of arbitration: (1)
the abstract-arbiter which allows internal value selections to be made that can be used in
further arbitration, and (2) the arbiter which selects which set of values should be given to
the operator that it represents. Figure 9 shows the ordering between abstract-arbiters and
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Figure 9: Control flow.

arbiters. The abstract form (abstract-arbiter name arglist &rest body) produces a result
that can be used inside the pkg it is defined in. The argument list of the abstract arbiter defines
the names of the arbiter’s ports which can be accessed by using (port abstract-operation-name
port-name). As shown in figure 10, port returns the bus that is the port named port-name of
the abstract operation named abstract-operation-name.

An arbiter (arbiter name arglist &rest body) produces a result that is exported as the result
for the operator, name, which is given the selected values for arglist. Once either arbiter form
has been created it can later be added to, at a later date, by using the form (with-arbiter
name &rest body). All these arbiters have the same form and we describe next how they allow
proposals to be put forward and overridden.

4.1.3 Proposals

Each proposer has an identifying name and gives the result variables of its arbiter a pro-
posed value or (more correctly) a circuit that will evaluate to a value. A proposal is the set
of actual parameters that a proposer thinks the named operator should be given at a par-
ticular time. For example: {(propose marker-behind :marker *nearest-marker¥ :testfor
(constant :overlap) :doit? {constant *t*)) A proposal can take one of two forms, a
default (propose-default proposer-name &rest key-arglist) or a general proposal (propose
proposer-name &rest key-arglist) which can be supported by the use of one or more conditions.
The difference between these two forms of proposal lies in their precedence. Propose-defauit has
zero presidence and is overridden by any other proposal. If more than one propose is satisfied
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at any one time, the proposal with the highest presidence is selected. This precedence or-
dering is defined by a declaration using the function (override-proposer overriding-proposer
&rest overridden-proposers) which ensures that overriding proposal has a higher presidence
than the other named overridden-proposers. override-proposer ensures that the named pro-
poser is preferred to its overridden-proposers. The ability to override is determined by assigning
presidence to the proposals that interact. Sometimes proposals are mutually exclusive, so no
additional ordering is required.

To ensure that one proposer is valid for an arbiter at any one time, runtime error checking is
performed. This error checking takes two forms which produce a message whenever: (1) more
than one proposer is satisfied, and (2) no proposer is satisfied. The first case can be solved
by using override~proposer to better define the precedence order or by using (indifferent
&rest proposers) which removes error checking for the given case and instead arbitrarily chooses
one of the satisfied proposers.

4.1.4 (Conditions

The condition is a separate clause stating the name of the proposal that it is a condition of
and the circuit that is to be evaluated to produce a boolean result. Proposals are satisfied
by their conditions being met. Conditions are defined separately from a propose function by
using (condition proposer-name wire). A condition specifies the situation under which the
named proposer is satisfied, e.g., (condition marker-behind (andg *registered-nearestx
*nearest-behind-me*) ). If more than one condition is present they act conjunctively, so that
if any of them are false the proposer does not propose anything.

If a proposal is not given a condition it may never be fired so we give a compile time error,
however, there are two exceptions to this rule: (1) arbiters that only have one proposal, and (2)
the default-proposal’s condition test which is always true and so does not need a condition.

4.2 Interpretation

Now that we have outlined the main components of the MACNET language, our next step is
to describe how they fit together, providing a computational model of the central-system.

The rules represented by the two forms of arbiter shown in figure 9, are defined off-iine
before runtime and fixed during execution. The set of rules, R, represents the action of a
prototypical object to a given situation, S, and recent history, H, (internal state of one time
step). The rules express relationships between observed situations and effector commands, and
these effector commands are used to select which operators, U, to use on the next clock tick.
The recent history for H, provided by the latch gate makes the circuit context dependent.
The relationship between these elements can be summarised by: R : § x H,.; — O x H,,
which shows the correspondence of MACNET to the “behavioural component” described by
Whitehead and Ballard [40].

In the remainder of this section we briefly consider four different interpretations of MACNET.
The first two work at a more intuitive level, while the third one provides a connection to the
GATE language of section 3 by trying to summarize the more formal operational semantics
given in Howarth [17] appendix E. The fourth interpretation discusses parallelism.

4.2.1 Component level

Let us begin by re-defining the language components of section 4.1 with a slightly more concise
syntax: P is a set of pkgs, and VM € P, M C R where R is the set of rules, and an arbiter is

defined as one of:
arbiter p, (61,...,6n) ¢
abstract-arbiter p,. (61,...,8,) ¢
where ¥r, p, € R; p, is the arbiter name and also the name of the operator to which the
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values of arguments &y,. .., 8, are supplied; and ¢ is the arbiter’s body, a set of the MACNET
components proposer, condition, override-proposer, indifferent. These components are
defined as follows. A default proposer is written

propose-default an[d; = 7,..., 0, = 7]
with the following implicit declarations

By = true A (Yoy; € AN G # h, (override-proposer ¢; o))
where o, is a proposer name; 3, is the corresponding GATE language predicate; A is the set
of processor names of p, Vi, a; € A. Also n, is the number of arbiter names in the pkg M,
Ny 18 the number of proposer names in the arbiter p,, where n,, 0. € Z,, (the set of positive
integers including 0), and & € na,, 7 € 7,.

In the more general case we explicitly state both proposer and condition
propose o[y = 71,. .., 00 = 7]

condition o; 3
and if necessary the indifferent and override-proposer

indifferent o

where o C .4 :
override-proposer ¢ &

where a G (A~ a).

Also @ is the set of all combinations of elements from A (i.e., @ € O). T is the set of tests,
Vi, B; € T. Note that the sets A, O and 7 are scoped by arbiter p,, and that 4,7 € ng,, such
that ¢ might be equal j, or be a member of o describing its relationship to the other members
of A.

We can now define an informal semantics that describes how the rules are interpreted at

run-time:

MecP,Npe M,V8; €T, il 5 then {6 =vy1,...,6, = 70 1)
unless (overridden ;) V (other-indifferent-selected o) (

where

overridden oy = Jay; € A, Ja € O | (override-proposer a; a) A a; € & 2)
A By evaluates to true

other-indifferent-selected o; = if (indifferenta) A € oy A
(compile-time-random-selected-option ) # «;  (3)
AVa; € «, 3; evaluates to true

Fquation 1 describes how for each rule p, in the current pkg M we run each test 3;, a collection of
gates providing a boolean result, which if true, causes the set of values «y in the corresponding
proposer a; to be assigned to the arbiter arguments &8, unless «; is overridden in some way.
Equations 2 and 3 describe how a valid proposition can be overridden. In equation 2, oy is
overridden if there exists another o that overrides a set of processor names of Which oy is
a member and that this overriding member o; has its conditions met. In equation 3, a; is
overridden if it is a member of a set of an indifferent declaration and has not been randomly
selected as the valid proposition from that set and that all the members in the indifferent set
o have had their various conditions met.

This provides an informal semantics for the MACNET language, but does not really bridge
the gap to the GATE language, except for their role as the (3 predicates. Equation I shows
the relationship to the if and unless rules in RUNNING ARGUMENTS as described at the

beginning of section 4.
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Figure 11: The pkg.

4.2.2  Default logic

Here we explore the similarity between MACNET and default logic® (Reiter [30]) where the
elements of the MACNET language can be seen as mapping onto default rule form as follows:
propose being the prerequisite, the conditions and override~proposers being the justifica-
tion, and the arbiter value allocation being the consequent. Using the syntax of section 4.2.1

this can be described as:
B; : ~(overridden ;)

[61 =71,y b = )
Although this mapping fits well in the AT field, the proofs of equivalence are difficult and we
do not follow this route here.

4.2.3 Gate language level

In this subsection we describe the equivalence between MACNET and the GATE language.
To do this we use the box-like unit form introduced in section 3. This is not just the case
of saying what goes on inside each of the unit descriptions, it also involves how the various
unjts are composed within a pkg, which is effected by the declarations for indifferent and
override-proposer detailed in equations 2 and 3. Figure 11 gives the top-level description of
inputs and outputs, which is looked at in more detail in figure 12. As shown in figure 9, the
registrars provide the input wires used by all conditions and proposers. The form these
connections can take is iflustrated in figure 13 with registrars taking input from aspects and
arbiters giving effector commands in the form of a tuple (operator-name args). In the figure,
the internal component level mapping to the GATE language is shown. At the top of figure 13,
we have the arbiter unit where proposal-wires carry the v values from the proposer to the
arbiter; /A generates the run-time constant operator name p, and the job of the arbiter is just
to pass on the ~ values. In the abstract-arbiter, we use the arbiter name to resolve port
indirections, and link up the wires of the port bus to the gates that use them. In the registrar
we just pass on the value. In conditions we use the gate structure given to produce the boolean
result. The proposer looks more complex, with the set of andg gates used to select whether the
bus of args should be passed on or not.

The wire connections within a pkg are sketched in figure 14. To simplify things in figure 14,
only the first letter of the various components has been used. If is interesting to note the
similarity of this figure with figure 1 in Nilsson [27], showing the underlying commonality of
the two approaches. Also the figures 13 and 14 show the relationship of the proposers to the
if gate, and the overriders to the unless gates in RUNNING ARGUMENTS. Figure 15 gives
a more detailed view of the and gate used to express overriders. Also note the correspondence

5 A default inference rule in default logic is written in the form:

a(z) : f(z)

¥{x)

where o(s), #(z) and 7(z) are well-formed formula called the “prerequisite”, the “justification” and the “con-
sequent” of the default respectively. The interpretation of this rule is as follows. If a(z) is known, and f{z) is
consistent with what is known, then ¥(z) may be concluded.
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Figure 12: An outline of the contents of a pkg.

to equation 1 of section 4.2.3, which is what this collection of gates and wires is implementing.

Figure 16 shows the form of the circuit that is used to check for errors described in section 4.1.3
and generate error messages when necessary. In the figure, we have a set of three input wires
a, b and c, and the output wires w and e. This test for correct evaluation of an arbiter has two
parts: (1) an org is used to determine if the arbiter has any inputs, which gives a value to w,
and if w is false then we give a warning to say that there has been no call to this operation; and
a pairing of all inputs {in the example this is ({a b), (a c), (b ¢))) is sent to another org
to check whether fwo or more are true at once, giving the wire e a value, and if e is true then
there has been an ambiguous call to the arbiter. Note that an “indifferent” declaration between
input wires is equivalent to an org that replaces the inputs that are declared indifferent by the
org’s result. In figure 16 if a and b were declared indifferent then we would replace them by
a joint a V b input, so simplifying the check to operate on just two input wires, i.e., c and the
new a Vv b result.

What we end up with is a sequence of translations, from MACNET to GATE, and then
GATE to its execution form, i.e., ML, — GL — EF, which could be replaced by one translation

ML — EF.

4.2.4  Parallelism

Although the implementations described above provide a serial solution, some of the circuit
instructions can be performed in parallel. However, there are constraints on parallel execution
due to various orderings placed on the MACNET components.
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Figure 16: Check the inputs to the arbiter.

e There is an ordering on arbiters and abstract-arbiters such that all abstract-
-arbiters that produce a value used by another arbiter (including other abstract ones)
must be caleulated before it is used. This dependency relationship forms levels of arbitra-
tion, where all arbiters at the same level can be processed in parallel. We can calculate the
levels as follows: '

0, if pis an arbiter
level p = 1 + max[(level 7) | z € RA

. if p is an abstract-arbiter
(gives-a-port-to p z)],

Here, (gives-a-port-to a b) is a predicate that returns true if a supplies b with a port (see
section 4.1.2).

s There is a similar constraint on registrars but this could be precompiled out using the
result from a topological sort on registrar interdependences.

o At a finer grain there is gate sequencing in arbiters. as shown in figure 14. Fortunately
there are no loops within the gate language.

Apart from these issues the central-system could be implemented on a MIMD parallel architec-
ture. The peripheral-system is also a suitable candidate to a parallel implementation because,
as described in section 2.5, the operators should be mutually independent.

4.3 Summary

In this section we have described the MACNET language from a number of different viewpoints
that hopefully capture both the intuitive simplicity and the various complexities encountered
when an implementation is attempted. We do not provide an example of how MACNET can
be applied to a problem, this is covered expertly in Chapman’s description of BLOCKHEAD
[7] and SONJA [8], and discussed in a broader context by McDermott [24].

Both McDermott and Nilsson [27] explore some interesting avenues for developing MACNET-
like approaches including the incorporation of probabilistic techniques and various learning
techniques (also see Whitehead and Ballard [40]). These are necessary if we are to begin
addressing the assumed involvement of the program designer discussed in section 2.1.
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5 Conclusion

Having implemented MACNET and used it for developing deictic systems, it may be surprising
to find that there is little in its definition that makes it a necessary element in the development
of future deictic implementations. Wires and circuits are not needed for deictic reasoning. Their
presence, however, limits the options available, guiding the process of implementation towards
something that may support the deictic viewpoint. Most of the complexity in MACNET sup-
ports ways of taking environmental conditions into account when choosing between alternative
courses of action.

The implementation of MACNET does not require the use of Lisp,” although it does make
some aspects of the implementation easier. Also there is no reason that the “linear executable
form” from the gate language could not be translated to a host architecture’s machine code,
should faster execution be required. After all, when you get the the bottom of it, what we
describe here is a logic simulator that executes a given network of combinatorial logic gates.
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