&
wQf Queen Mary
University of London

Parallel Process Techniques for 3D Model-Based Vision
Usoh, Martin

For additional information about this publication click this link.
http://gmro.gmul.ac.uk/jspui/handle/123456789/4698

Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact scholarlycommunications@gmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/4698

T,

A

Parallel Process Techniques for 3D

/ Model-Based Vision

by
Martin Usoh

A thesis submitted in accordance with the
requirements for the degree of

Doctor of Philosophy

Queen Mary and Westfield College,
Department of Computer Science,
Mile End Road,

London, E1 4NS.

QMW Vision Group December 1991

Parallel Process Techniques for 3D Model-Based Vision ii

Abstract

Visualisation and closed-form testing of algorithms are vitally important in the
development of model-based vision systems. The general idea is that, if we can specify the
models in their own coordinate frames, their subsequent transformation (in terms of their
translation, rotation and scaling), and the camera geometry, we can then generate images for
which the results of our visual recognition and localisation algorithms are known 4 priori.
The fully tested and validated models and algorithms can then be used to analyse scenes
where the details of the idAentity, position, orientation, scale and motion are not known, but
where we have a range of models with which to form our interpretation of the scene, that is,

maodel-based vision.

The work we describe is concerned with the parallel implementation of techniques
involved in 3D model matching. Essentially, these are carried out on the AMT DAP
(Distributed Array of Processors), a fine grain, highly parallel array computer. It provides a
natural solution for many problems which cannot easily be solved on conventional computers

with associated serial languages due to their computational complexity.

For the closed-form testing of our matching algorithms, we implement a generalised
parallel ray tracer which can render Constructive Solid Geometry models and incorporates

spatial subdivision and anti-aliasing for the fast generation of high resolution data images.

The geometrical model matching approach of Grimson and Lozano-Pérez has been
used for the recognition of polyhedral objects and scenes containing planar curves. We describe
a method using the data edges and surface normals of planar curves recovered using structure
from stereo. We use constraint-based pruning of an interpfetation tree to generate the feasible
interpretations which are then validated. The problem is mapped onto the DAT architecture
which requires the reformuiation of the matching to use logical matrices rather than trees.
Results have been obtained from closed-form testing of curved surfaces and projections of
developable surfaces. The subgraph matching to deal with large models, parallel data
validation and refinement, and dealing with spurious data using the bin are then elaborated

with results from the closed-form testing of models.

Parallel Process Techniques for 3D Model-Based Vision i

Acknowledgemen’ts

In completing this research I am forever grateful to Dr Hilary Buxton who has proved a first
rate supervisor by still finding time to discuss problems when her schedule has been very
tight. Also, for her suggestions, support, patience, and seemingly endless proof-reading, I am
indebted.

Many thanks also go out to Dr Bernard Buxton for his mathematical support and enlightening

conversations.

To Shu Chang and Jan Wysocki of the Vision Group I am grateful for their help and
suggestions offered including support on the DAP. Also, to the other members of the Vision

Group I wish ‘clear sight’.

In originally taking up this PhD" I very much wish to say “thank you” to Anna Bara. Without

her initial suggestion I may now be wearing a suit and not a metaphorical ‘white coat’.

e

* L
‘This research project was supported by a Cooperative Award in Sdence and Engineering (CASE) from the Science
and Engineering Research Council in conjunction with British Petroleum, Information Technology Division.

Parallel Process Techniques for 3D Model-Based Vision

iv

To my parents who have always shown
me love and encouragement.

To my brothers.

To Anna.

Parallel Process Techniques for 3D Model-Based Vision v

Table of Contents

ABSHFACE wooiiovrivee it eevrsvesanbrareesrrsrenns ferertseaserrteaeaeitrenrnasaann evrierrieshaeennne ii
Acknowledgements........ocoeniiiinenns e rereaar e e e OISR iii
Table of Contentfs......cooeevinniiinnnns teteeinrereabereenrnatbhat e T n s e sttt aEa s et ereetereeriraesrrarran WV

List of Figures...........c.. S DS s e X
List of Tables.....cccccooicinnnnns et reens reverren e breerhesrareannaarans ireerrirnaaeaesies xii

List OF Plates .ooccoiiirierinnrrininsicssinimnisninens erreraeenns cererereneans feerrte e et saerienean rveieasrreniearans

Chapter1 Introduction and Overview cetbarses e SOOI bessanaeas 15
1.1 Introduction........... PR e e s e o 15
1.2 Bottom-Up or Top-DownZ........ TR s e 16
1.3 Classic Early Model-Based Systems........oviineniinnes, ettt RUPORRO 17
1.4 Objectives....... Ve TSR Fherrererr e Cae b e 18
1.5 Thesis Outline........cooniiinins R et s eree s w19

Chapter2 Model-Based Recognition: Activities and Advancescooe. errrrr e 22
2.1 Introduction.........c.oenne b PO U PO OTO I OPPT OIS 2
2.2 The Problem in Perspective ...c.ooiviviiiiiiiiennn ereas e e bebasre e 23
2.3 Sensing Techniques.........o Ceveee e RPN rerisernssinrenen s 20
2.4 The Grimson and Lozano-Pérez Matching Paradigm...........ccooees FOPPR e 26
2.5 Tarallel Implementations in ReCOgMHOMN...coiiiii PPTORR 29
2.6 The Method of Geometric Hashing........ccooecenn ceesesr e e rve e w32
2.7 The Invariant Theory [STRRRORO et rererereeniesasrr s et 33
2.8 Work with Curved Surfacesccoven. e e et er bt 36

2.9 Conclusion........ rerreeriararaene beererreerevenrans ersiserareanaanns fvrisasresrreaenes UUTUTT TR

Chapter 3 Parallelism and Tools in Computer Vision.........cocovnn. ORPR R FRONPRN 39
3.1 Introducnon
3.2 The Distributed Array of Processors.......ee tevereeeresesinen vervarrernreereerenansas 40

3.2.1 Internal Configuration............
3.2.2 DAP Programming..........coeveene Crvsbenre e e Chesreareenaanes PR R
3.2.3 The Array Store......cccccovennes rrreerere s teveernea e rererrereasararens pereeneen .43

Table of Contents vi

3.2.4 Application of the DAP ..o 44
3.3 The Connection Machineccviviimininniicn s s 44
3.4 The Disputer: An SIMD/MIMD Hybrid Architecture ..o 45
3.5 The Use of Parallelism in Vision and Displaycocooconnniiinniin 47
3.5.1 Edge Detection and Model Representation. ... 48
3.5.2 Towards Higher Levels ..., 49
3.6 WINSOM - A 3D Solid Modeller ..o persss e, 50
3.7 Edge Detection. ..ottt b e 51
3.7.1 The Roberts and Sobel Edge Operators......ieimimnas 52
3.7.2 The Canny Edge Detector.....coccineiniiniiiiininnn e 54
3.8 Principles of Three Dimensional Image Reconstructionccovrveiviiins Leerereersan vren 55
3.9 The ISOR System - A Structure from Motion Toolset ..o 57
3.10 TINA - A Stereopsis Based Recognition Systeml.........viiminn., 58
3.10.1 Reconstructing 3D Primitives ..o 60
3.10.2 Model Matching and Verification........cccviiinnn 61
3.10.3 RECOVETING CUIVES oovvuvvsersreseserasesssesseressenssisteosssssssmsasesssssessssasssssiesssosroes 62
31T COMCIEBION coiivvervee vttt erer e ecre s srasss e sr s ssnran et enes OO 62
Chapter 4 Parallel Visualisation for Recognifion........ccoovvriiiin 64
4.7 IRITOAUCHOT . ettt eeiir et et s e s s r e s bbb s st b s st 64
4.2 Ray Tracing and Ray Castingcoccveiiiiiii 65
4.3 Parallel Ray Tracing on the DAP ..o 69
4.4 Representation Of Ray...im s 70
4.5 Tllumination and ShadoWs.....coccimiii ittt s s 70
4.6 Alias and Anti-allasing i 72
4.7 Primitive Representation and Intersection Calculations.......ocoovnviiiiiiin 74
4.8 Constructive Solid Geometry (CSG) .o e 78
4.9 Spatial SubdiviSIOn. .o 82
4.10 Modelling LangUage. ..ot e 83
4.11 Program SEHUCHUTE ..ot ereir e sn e st e s s 84
4,12 Closed-Form Testing for ViSiON..ioi 85
4.13 Experimental Results. ..o i 86
4.13.1 Serial ys Parallel - A Brute Force Approach......c.innnn 92
4.132 Serial vs Parallel - The Tiling AppProach ... 93
4.13.3 Parallel vs Parallel - Comparing Brute Force and Tiling....... BOPPPP 94
4.14 CONCIUSION .ovvvvviiiiieciiiceciiar e e rvar s e n s et verererea e 101

Table of Contents vii

Chapter 5 Paraliel Aspects in Model Matching ..., 103
BT TPOQUCHON eteiee it isbsrt st b e e e e e 103
5.2 A Serial Approach to Model Matching.....c.cooniinniinnnii i 104
5.3 Generating Feasible Interpretations ... 105
5.4 Sensing Errors and the Term ‘Ideal Data’......c.cccvvviiiiiiiiniiiiennnniecnene 106
5.5 TPruning the Interpretation Tree . 108
5.6 Validation of Interpretations....viiiinis e m
5.7 Parallel Model MatChing.....cuimreiiniriniiiimie s 115

5.7.1 The Importance of Match Ordering.... e, 118
5.7.2 Direction Sign Managementcoevivniiiiminiiiii 120

5.8 Subgraph Matching of Large Models....o i 120
59 Parallel Data ValidatioN.. .. i e rscesansssnssenne 123
5.10 The Bin and its Implementation ... 124
5.11 Experimental ReSultS ..o e 126
5.11.1 The Pruning Constraints - A Comparison of Effectivenesscoconeiicnns 130
5.11.2 The Effects of SOTHRE . .oviirieiiniier et 131
5.11.3 The Matching Process....cc.uccvvvenniiimee i e 134
5.11.3.1 Matching Features ~ The Case for Ideal Data.....covniiecnnnnes 134

5.11.3.2 Serial ys Parallel - A Comparison of CPU Expenditure............... 135

5.11.3.3 The Cost of Determining Direction Signs..........cccciiiniiinniinin 139

5.11.3.4 Matching Features - The Case for Non-Ideal Data..................... 140

5.11.3.5 Matching Using Realistic Data..........ccconinniiniiinnn, 143

5.11.4 The Valdation Process. ... s 144
5.11.4.1 Veridical Transformatons from Model to Sensor Space.............. 144

5.11.4.2 Serial vg Parallel - Validation of Ideal Matches.....ccccevreunnnnnn. 145

5.11.4.3 Validation of Non-Ideal Data Matches..........c..occiiniinniinnn 147

5.11.5 Subgraph Matching of a 3-Pin Plug..cin, 148
5.11.6 Applications of the Bin to Matching ..o 151

512 CONCIUSION 11ereiitee ittt e rit e s st s s r v rrn e s s bae1essae s i e abe bbb e e nedaan g s bnas e s s een 151

Chapter 6 From Polyhedra to Planar Curves.. ... 153
6.1 Introducton......oiiiiiiiinies e PV ORIPPIOPPIe 153
6.2 Curved Object Recognition Systerns - A Brief Overview ..o 154
6.3 Extension of the Edge-Based Matcher for Planar Curves........coiinininicnnin 156

6.3.1 The Planar Curve Normal as a Recognition Aid.......comiiinnniinn. 157
6.3.2 Addition of Axis of ROIAHON c.cvivrvviiiiriiieir i e 158
6.4 Recovering the Pseudo-Edge Match Features......nnnn, 159

6.5 Sensing Error of Pseudo-EAges......cocoerinciiiimniiiii 160

Table of Contents viii

6.6 Pruning and Match Look-Up Tables ... 161

6.7 Validation of INterpretations.....ciiiiii e e 163
6.8 Experimental Resuits......... PP PPPIURO P PPRPRN 163
6.8.1 Matching With Pseudo-Edge Features.......cccciiiniiinannnin, 166

6.8.2 Validation of Interpretations ..o it i 168

6.9 Real World Determination i g e e s 170
6.9.1 Experiments in Real World ..., 170

6.9.2 The Matching Results ..ot 172

6.9.3 Validation to Determine Pose.........cccccvinvinrenininninnen PN 173

6.10 ConclUusiOnooeeevivvininiiiie i s U 173
Chapter7 Contributions and Conclusionscccoooviiininc 175
7.1 INtrOdUCHON. .. oois it e s s bbb s e s 175
7.2 Why Use SIMD Parallelism?. ..o 176
7.3 CONEIDUHONS ..oi vttt s e s e e e e et e e a s e 178
7.4 PULUTE WOTK ot i s s e e e 180
7.5 Conclusions.......... eterernerarueteeesoenaarrens by ie i A EELen e AR AE e A E AT A et e R TR T et TRV OO e e 000 182
Appendix A Ray Tracing Code for the DAP ..., 183
Appendix B Ray Tracing Combination Proceditreoccovnineiiviinicnniiin . 185
AppendixC DAP Implementation for Model Matching........cccooovivniiinnnnnn 187
AppendixD Published Papers and Technical REPOTtS .ovvveiiitiieiieie st 190
REFETEICES 1ot tivviiiiiit i eiiicetictee s eerasereenesesesasertrre et bbasastaasssanteeed errvereereaaan et beserenes 192

Parallel Process Techniques for 3D Model-Based Vision ix

Figure 3.1:
Figure 3.2:
Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 3.6:

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6
Figure 4.7:
Figure 4.8:

Figure 4.9:

Figure 4.1(:
Figure 4.11:
Figure 4.12:
Figure 4.13:
Figure 4.14:
Figure 4.15:

Figure 4.16:

List of Figures

PE connections of DAP..........co... OO O OO O ORP PSR 41
MCU and ProCeSSOT AITAY ...ovuerrrorrmrruersrssinresssinsrsesssesitsssssmnisasiansssssssensssonsesnss 41
DAP array store........ e e et e e e 43
Principles of Stereo gEOMETY ... 56
Example of the aperture problem ... 57
TINA o018 user fIONt N .. vvvvvvvvviirrerrine e e 59
Path of light through pixel interacting with objects in the scene................... .65
RefleCtion LFE.....civiiiiiiiiiiiis et sse s sass sty a e s v rs s e s st e 66
Serial ray tracing algorithMu....ovimerninenn. et e 67
IMustration of light rays.....ii 71
Production of pseudo-PiXels....ciiiiiriiii s 73
Representation of OBJECS c.vvvvviieiinieest it 75
Formation 0f CSG Tt sttt s e sab s 78
Classification of ray passing through 3 primitives ... 79
Classification of left and right rays........cvimmn 80
Combinaton Of TaYS...ci s 80
Resulting solids after application of Operators ... 80
COG data Fle. .ot e e b 83
Program modules ...l 84
Chipped block CSG tree and model ... 85
Percentage of visible pixels In SCENE .o 91

Total CPU expenditure of serial and parallel naive implementations............. 92

List of Figures X

¥

Figure 4.17:

Figure 4.18:

Figure 4.19:
Figure 4.20:

Figure 4.21:

Figure 4.22:

Figure 4.23:

Figure 4.24:

Figure 4.25:

Figure 5.1:
Figure 5.2:
Figure 5.3;
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:
Figure 5.10:
Figure 5.11:
Figure 5.12:
Figure 5.13:
Figure 5.14:
Figure 5.15:
Figure 5.16:
Figure 5.17:

Figure 5.18:

Total CPU expenditure of

the serial and parallel Tiling implementations.......coviniiininninn, 94
Total CPU expenditure of

parallel Brute Force and Tiling implementations.....ccocovvninion, 95
Total scene tiles rendered as Percentage.....c oo, 95
Average no. of primitives per 32 X 32 DAP matrix.......cocconnnin i 9
Mean rendering time (ms) per 32 x 32 DAP matrixccccoviiniiniinnenncnnn . %
Total intersection calculations performed........ccviiiniinin 97
Total number of nodes traversed ... 97
Total number of combine operations performed...........oiiinn s 98
Profile of procedures of Brute Force and Tiling implementations..........ccooeeiine 100
Interpretation TTeE....ouiiiiiiriirira st 105
Work done during searchu.....iimmmi o 106
Sensing errors of recovered data edge......c.coous e 107
Rotation and translation of line in space.......... OO T o 113
Logical look-up table of matches.....i 116
L-shape model.......cocviinin i s 17
List of matches, . ..o E R 117
Quadrant tree............. e eeetteetteteeee e trrtee Y bbb b AR teeeetaraaeearaterhbrraeaecnnnnr b anan s 121
List of quadrant fables.......vv i 122
Interpretation tree with bin B 125
Logical look-up table of bin assignments..........cciiin e 126
THE tESE SCEMES....iiiiiiiriir ittt e e ss st 128
Stereo pair for view 1 of Computer model Cbietetee Ayt daa e bR e e e rean e 128
Comparison of run times for various sorts..... .. 132
Number of U-U data pairs encountered during search................ vesreraa cerraren 132
Number of matches for 1st ten levels of sorted match Hstooovriinininnn 133
Search effort (levels traversed)....ocerrvcrnisroressenrons et 133

Total CPU matching time for test SCenes ...t 136

.List of Figures _ xi

Figure 5.19: Profiles of matching process fOr Various SCENES ... 138
Figure 5.20: Run times with and without sign determinatioﬁ ... 139
Figure 5.21: Search effort with and without sign determination ..o 140
Figure 5.22: Recovered data edges for test scenes.......... SRR UUUUPTUUUETO T OIPPT SO 142
Figure 5.23: Matching time using non-ideal data........ccoomiiim 143
Figure 5.24: Run times for serial and parallel validation ... 146
Figure 5.25: Validation profile for 3 data SCeNesvueirmienimninics e 147
Figure 5.26: Views 1 and 2 of the 3-pin Plug...ccoco.. St eSS e R s R s RS 148
Figure 5.27: Recovered data edges for Plug :- Model - View 1 - View 2 149
Figure 5..28: Run times with spurious data ... 151
Figure 6.1: Normal ‘edges’ for various primitives ... 158
Figure 6.2: The distinguishing feature of a boX.....ines 158
Figure 6.3: Axis ‘edges’ for various Primitives. ... 159
Figure 64: Extended range of planar curves...........c O T UU OO PPTPPPII 159
Figure 6.5: Ambiguities of surface normal direCtonsc.covmiiiiimm e 160
Figure 6.6: Logical match feature tables...n e 162
Figure 6.7: Test scenes containing Planar CUTVES.....mim s 164
Figure 6.8: Potential edge information available from cylinder primitivesc.ccoviiennnnec 166
Figure 6.9: Recovered edge features fOr @St SCEMES....mmmamirenmn iy 167
Figure 6.10: Matching times fOr teSt SCENESooviisrnisiminsn b 168
Figure 6,11: Stereopair of Widget SCENE ..o 171
Figure 6.12: Model - Widget]l - Widget2 feattires ... 172
Figure 6.13: Match times for widgets ..o e 172
Figure 6.14: Extension to non-developable surface Primitive ... 174
Figure 7.I:l Time required to complete a job in SIMD and MIMD processing modesooneeen. 177

181

Figure 7.2: True and spurious scene data........n SO OOV SUOPIPP PRI PP

Parallel Process Techniques for 3D Model-Based Vision xii

Table 4.1:
Table 4.2:
Table 4.3:

Table 4.4:

Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:
Table 5.6:
Table 5.7:
Table 5.8:

Table 5.9:

Table 5.10:
Tabile 5.11:
Table 5.12:

Table 5.13:

List of Tables

Surface equations Of PriIItIVES. ..o e 76

Result of ray combinations .. eeeeniim 81

Complexity Of teSt SCENESvvuvrritriii s 91

Total scene tiles rendered..........iiiiiii 95

Complexity of test models in terms of CSG primitives......ccocncniiiinn. 128
Generation time of stereo pairs using parallel tracer..........‘............... 129
Complexity of models in terms of matching features..........co... et 129
The pruning effects of the constraints on the match list ... 130
Pruning power Of CONSIIAINESocveiieniiiiiiirie e s 130
Model and data edges fOr test SCENES.....cciiiiiiiririninie e 134
Relation between traversal of IT and number of data pairs........ccconiencinnnn 136
Non-ideal data INfOrmation ... s 141
Veridical transformations from model to Sensor space.......cccccvvisviiminniin 145
Transformations for non-ideal data scenescoocvninicin 147
Run times for Fortran* and subgraph implementationsc..cociin. 149
Veridical transformations for PIUZ....cciciiiivniiimme e 150

Validated transformations for Plug...n, 150

List of Tables ‘ xiii

Table 6.1: Matching features of test MOEIS ...cvveirinoiini e rnnn. 165
Table 6.2: Complexity of scenes in terms of data FRatlireS covvviiriiivir s V165
_ Table 6.3: Match SENSING BITOTS .evvvvressesesinrsrssm it s b bbb e 165
Table 6.4: Veridical and computed transformations........ccovinviiii 169
Table 6.5: Complexity of widget scenes in terms of features..........ocovvnniininnee 171
Table 6.6: Widget match sensing errors ..o 171

Table 6.7: True and computed widget transformations ... e eeoeeenier e 173

Parallel Process Techniques for 3D Model-Based Vision : xiv

Plate 4.1:

Plate 4.2:

Plate 4.3:

Plate 4.4:

Plate 4.5:

Plate 4.6:

List of Plates

Table SCENE . ..ciiiiiiiecirrrreeireerrerertenne e eeeennaaes Cerreeneienaane e e verenn 87
Coverplate 5Cene ...c..ccvviiicninimncnnnnicnnenes TSRO OUOP PPN . 1.
Recursive Cubes SCeNe...iiiiniieniniieiiiareeeieccineninens SO UUUUUUURURITORY . .
Ol Rig SIUCHUTE SCEIME.....cviieiivierreeiinasiianissinse ittt r e e 89
Robot Arm SCONE.coovovrrmi s sersnnss e eNEeereeertirer ety banbaaan eyt bt aen e 89
Geneva Wheel scene.....ccovvviiecniinnens fe e Aberes e Trieer it raarrntea s ens s peasananenans v 90

Parallel Process Techniques for 3D Modei—Bééed Viéioﬁ |

Chapter 1

Introduction and Overview

1.1 Introduction

Computer Vision, as a subfield of Artificial Intelligence, is still in its evolutionary
infancy since being pioneered by the work of Roberts in the early 1960s. It is often the case
that the phrases “computer recognition™ coupled with “artificial intelligence” conjures up
visions of intelligent robots and machines which are able to recognise and interact with
humans. Behind the scenes of a film production studio, this may be easily achieved.
However, in reality, such a system is far from the norm. For example, systems have been
produced which can determine or recognise instances of human faces using invariant features

[WLT89, CJCM86, Kana77). However, these are currently not as robust or as fast as if the task

was undertaken by a human!

The recognition of objects is an essential step towards the development of intelligent
autonomous machines. Immediate applications for such systems are apparent. The general
class of factory robots are unable to perceive their environment and can only exist in a highly
defined, static domain. The problem with the determination of full scene descriptions is the
computational bottleneck which exists due to the numerous possible interpretations of a set of
recognition features. A possible widening of this bottleneck is by the use of a number of
sophisticated pruning constraints to reduce the interpretation search space. An alternative,
though not a difect method, is the use of a faster machine architectures and, hence, parallel
computing. Using this, as reported in this dissertation, means that recognition tasks may be

remapped to achieve a faster, more efficient, solution procedure.

The field of Computer Vision includes not only the determination of objects in a scene
but also the understanding of the scene or an event in the scene. This may range from locating
simple geometric objects to the interpretation of incidents for use in automatic surveillance
systerns. Model matching is at the lower-level of such complex event understanding systems
and is the main area of work discussed in this dissertation. As a subset of recognition, it is the

determination of an instance of an object from a scene using an internal model representation.

15

Chapter 1: Introduction and Overview 16

Such queries may include “Is model X present in the view?" and, “What is the 3D location of
model Y?". For these to be successfuily answered, we require a range of models in a database
and a method for determining their presence in an image. They may be répresented using low-
level features such as 3D edges, points, or vertices, or some combination which may be
efficiently computed. From the database, models may be retrieved for comparison with image
data, or for unidentified objects, constructed from image data and added back to the database
for later matching. As the process is dependent on the use of models, it may, in general, also be

classed as model-based.

1.2 Bottom-Up or Top-Down? "

In recognising objects, two basic strategies exist - bottom-up and top-down. The
bottom-up approach to recognition is data-driven and is the most common method. This
involves the matching of instances of the data to the model to determine higher-level full 3D
volumetric or surface based descriptions. Top-down, however, uses knowledge to drive the
recognition process from high-level model hypothesis to. low-level instantiation. This
includes the model primitives being matched to the scene primitives. We note that different
combinatorics exist in the two methods. Given m model entities and s data features, m®
possible iﬁterpretations exist using the bottom-up approach and s™ interpretations exist using
the top-down method. As an examplar, if m = 10 and s = 2 then for bottom-up matching
102 = 100 interpretations exist and for top-down 219 = 1024 interpretations are possible. Also,
as a data item is not permitted to pair with more than one model item in a single
interpretation for bottom-up matching, and vice versa using a top-down approach, there exist
interpretations in one approach which are not present in the other given that m=s. Thus,
assuming that model entities are labelled alphabetically and data items are labelled

numerically, the interpretation
{(1,a), 2,a), 3b)}
is not possible using a top-down approach and similarly
{(1a), 2b), 10}
is not valid with bottom-up matching,

With knowledge of the difference in combinatorics, a bottom-up or a top-down
approach may be taken. Grimson and Lozano-Pérez {GL-P84}] in their work using sparse data
obtained from tactile sensors or the like assumed that s<m and grew their scene

interpretation tree in a data depthwise manner so that the maximum number of leaf nodes

Chapter 1: Introduction and Overview - | 17

(interpretations) was m®. Faugeras and Hébert [FH83], however, opted for the top-down tree
structure when using data obtained from a laser range-finder. By taking advantage of s™<m®
for s>m>2 they grew the tree in a model feature depthwise manner to constrain the search.
However, several paths in the tree may be mutually consistent, and these must be combined to
~ produce a final interpretation. This is best done after a globally consistent transformation has
been found for each path (interpretation) and the improvement in combinatorics must

outweigh this overhead.

1.3 Classic Early Model-Based Systems

The early literature in the field contains some classic examples of model-based
programs which give some idea of what can be achieved. Brooks’ ACRONYM is a
“comprehensive domain independent model-based system for vision and manipulation related
" tasks” [Broo83]. It represented a significant advance over earlier matching technologies such
as that of Roberts and used a hierarchical description of models in terms of their subparts and
interrelationships. Using a top-down approach, high-level descriptions of the data may be
matched to high-level descriptions of the model. The use of these high-level descriptions

has the advantage that the combinatorics are reduced due to a relatively small number of

primitives.

The models in ACRONYM were constructed using generalized cones or cylinders as
primitives in the hi.erarchy. These are defined by a spine (a 3D sweep axis), a 2D cross-
section, and a sweeping rule with which the cross-section sweeps along the spine. However,
in this case, they were restricted to straight line and circular arc spines. From the image
domain, ACRONYM was able to construct a similar description of the data as for the model
using the same rule for generalized cylinders. The edge elements were identified and linked
into extended edges with descriptions such as ribbons and ellipses, where a ribbon is a 2D
analog of a generalized cylinder. Again, these descriptions were restricted, but here, to
straight lines and linear sweeping rules. The model and data descriptions were fed into a
matching process which used interrelationship constraints between the model and data
subparts to drive the search. The system has been applied to several tasks including the
identification of stationary airplanes from aerial views. It’s performance has been reported
as robust to occlusions due to the use of the high-level descriptions. However, the computa-

tion of such representations is expensive.

Similar work to Brooks” ACRONYM, but allowing image sequences, is the WALKER
modet due to Hogg {Hogg83]. This again used a hierarchical approach to determine instances

Chapter 1: Introduction and QOverview 18

of a walking person from a sequence of camera images. The hierarchy is described with a

structure such as

arm

lower-arm

forearm hand

In the choige of modelling approaches, the scheme should be capable of representing major
aspects of a person walking such as the flexibility at limbs and the constraints of posture.
These limited the mappings of say, an arm to a leg and, thus, pruned out inconsistent
associations. Movement constraints were also incorporated by matching the rate of change for
variable posiﬁonél parameters. Thus, the 3D structure of the WALKER model is composed of
elliptical cylinders which are constrained indirectly with respect to one another through the
model hierarchy. Like ACRONYM, these were recovered from the image data and the

positional and posture constraints were used to drive a tree search procedure.

1.4 Objectives

As the thesis title suggests (“Parallel Process Techniques for 3D Model-Based
Vision”), the project is concerned with the implementation of parallel methods for tasks in
the model-based recognition of three dimensional objects. However, the solutions are also
easily applicable to 2. The main reason for using parallelism for the solution of any task is
usually the quest for speed although much image data is intrinsically parallel and parallel
solutions can be more satisfying. Parallel architectures have a great speed advantage over
uni-processor Von Neumann machines. Such speed of processing may not be necessary in many
circumstances but, in the real-time application of a process which requires a vast number of
computations, it can be very useful. As this work is concerned with the recognition of real-
world objects with a view to real-time applications, the parallelism is essential. We have
chosen a Single Instruction Multiple Data (SIMD?} architecture for fast, effective computa-
tions. In particular, we used, the AMT Distributed Array of Processors (DAP) for the
implementations. This is a workstation based parallel array computer with 1024 processors

and fast video output for program development.

Our prime objective is to implement a self-contained parallel system which is
driven by (non-sensor specific) data in the matching process. In pursuing this, we aiso propose
a means of closed-form testing of the recognition algorithm by the fast generation of image

data. This 3D visualisation process is achieved using the technique of ‘ray tracing’. The

Chapter 1: Introduction and Overview 19

method is very effective as a means of rendering realistic images but suffers greatly from a
vast computational overhead. We attempt to reduce this rendering time by a significant
factor by mapping the algorithm onto the processors of the DAP. To further reduce the
overall processing time, we will adopt a two dimensional spatial subdivision of the image
space. This procedure, along with the mapping of the algorithm onto the DAP processors, is
then an effective method of reducing the total rendering time as we show by comparison to an

equivalent sequential implementation of the technique.

For the recognition system, we will adopt the serial matching paradigm of Grimson
and Lozano-Pérez [GL-P84b] and its subsequent parallel implementation due to Holder and
Buxton [HB89a). This is shown to map well onto the DAP processors with significant speed
ups when compared to its serial counterpart. We will improve on the parallel implementa-
tion by introducing a new data sorting technique and show how this reduces the search space
considerably when compared to the sorting implemented by Holder and Buxton. The
recognition process we will describe is bottom-up and uses the 3D edge features of target
objects. The edge features are used so that the process may easily be extended from
polyhedral objects to objects containing planar curves. We present this extension and show
that the adaptation of planar curve surface normals in an edge-based fashion is robust in
determining model to sensor space transformation parameters. Finally, in confirming the
stability of the system, we present results obtained from closed-form testing of the matching
process"using data derived from artificial scenes by means of the parallel ray tracer. Being
artificial, however, it can only be guaranteed'that the system is stable under synthetic
conditions. Thus, we introduce a further degree of stringency by testing with data obtained

from a real-world environment.

1.5 Thesis Qutline

The thesis is organised so as to initially introduce the reader to relevant concepts
and related work before detailing the approaches taken. In an attempt to lay down
appropriate background and to give a wider view of theories in model-based recognition, we
present a selective review in Chapter 2. This puts forward early concepts and ideas with
arguments expressed by workers in the field. We discuss the work of Grimson and Lozano-
Pérez upon which the research in this dissertation is based, In addition, we discuss adapta-
tions of this method by Murray and Cook and introduce authors who have attempted to
remap the algorithm onto parallel architectures. These have included Holder and Buxton on

the DAP and Flynn and Harris on the Connection Machine.

Chapter 1t Introduction and QOverview 20

Chapter 3 is a second background chapter, here concerned with tools used in this
work as well as the idea of parallelism. We present the DAP architecture along with a brief
outline of its programming languages. This is necessary as examples and implementation
details may be more easily understood by the reader when acquainted with this style of
parallelism. We also present the Connection Machine (CM), a fine-grain, massively parallel
computer and discuss works in the area of parallel processing for vision and display. The
WINSOM, ISOR, and TINA toolsets, all of which are complete systems, are also introduced.
These serve as tools for 3D visualisation and recognition and may be used, as here, for three
dimensional data recovery. We also introduce basic edge detection algorithms and briefly
discuss the Canny edge detector which is implemented in both the ISOR and TINA systems. A
basic description of the principles of motion and stereo reconstruction algorithms is also

presented.

After Chapter 3, the reader should have gained enough background for the
visualisation process which is discussed in Chapter 4. This is the parallel implementation of
the ray tracing algorithm due to Whitted {Whit80]. We present this as a generalised ray
tracer which includes a Constructive Solid Geometry datatype and an extension for Digital
Terrain Maps for the fast generation of realistic images. We show that the DAP is well
suited for such a task (ESpeciallf ray casting) as each ray, being independent of any other, can
be mapped onto a processor in the array structure. We also show that a two dimensional
spatial subdivision of the image space further improves the image generation time. This is
confirmed with experimental results from serial and parallel implementations, and from

parallel brute force and parallel subdivision approaches.

In Chapter 5, we investigate the Grimson and Lozano-Pérez matching paradigm and
its parallel implementation on the DAP. We discuss the local pruning constraints and derive
a new data sorting technique which we show to produce a more effective traversal of the
interpretation tree. Verification of hypothesized interpretations are also discussed along
with the parallel implementation of the validation process to compute model to sensor space
transformations. As a major hindrance to the recognition process, spurious data can lead to the
failure of the matcher in returning successful interpretations. To overcome this, the idea of a
‘bin’ is introduced. We show, through experimental results, that the new sorting technique,
when applied to the bin, is more effective than the data sorting adopted in earlier works.
Also, through experimental results, we show the accuracy and time efficiencies of the
parallel method using comparative tests with a serially implemented version. We discuss
the costs of using edges rather than faces as matching features and present a novel procedure
for the successful matching of models which are too large to map onto the array processors

directly.

Ch'apfei"lz' Introduction and O.verview 21

An extension of the polyhedral algorithm discussed in Chapter 5 is presented in
Chapter 6 with an overview of systems implementing curved object recognition. We discuss
the use of the surface normal at the centre of circles and ellipses and their treatment in an
edge-based manner for incorporation into the polyhedral matcher. The axis of rotation of
cylinders and cones are used as additional edge matching features. We show that these
pseudo-edges may be effectively used in edge-based recognition and confirm this through
experimental results. We also present an experiment based on a real-world scene in order to

show the effectiveness of the system under such conditions.

Chapter 7, the concluding chapter summarises the contributions offered in the
preceding chapters. We discuss the advantages and pitfalls of SIMD parallelism and put

forward future directions for improving and extending the system.

Parallel Process Techniques for 3D Model-Based Vision

Chapter 2

Model-Based Recognition: Activities
and Advances

2.1 Introduction

In order to recognise an object one must have some prior imagery or knowledge of it.
An account of this is given by Gregory [Greg78] in which a man, blind from birth, has his sight
restored by a surgical technique. When shown a simple lathe, similar to one he worked on
when blind, he could not comprehend its structure. However, when allowed to feel it with his
hands he was able to see it replying, “Now that I have felt it, I can see”. This also shows that
the representation of an object for a recognition system may be of many forms. Although, when
shown the lathe, the man could see it, he was not able to recognise it as his representation of
it (by touch) was different from his new found ‘sensors’. This points to the importance of the

‘internal model’ or representation of an object.

In machine vision, the task of recognising objects and scenes has generally been
investigated using the example of human perception. Processing is conducted on several
levels; a strategy used for recognising pebbles is generally different from that required to
determine a coastline. For a dinner table scene, high-level abstractions are needed to reason
about the relationship between the crockery and cutlery, or cutlery to napkins, and more low-
level processes undertake the task of distinguishing between the different classes of objects. In
machine recognition these low-level processes perform tasks such as edge and feature

detection {Cann86, NB86] and scene segmentation [MCB89).

The grouping of features to form perceptual structures is basic to many machine
vision applications. Model matching, a subset of recognition, is typically a ‘low-level’
approach to the recognition problem using low-level features to make high-level
abstractions. Much work has been done in this field [GL-P84b, MC88, HB89a] and avenues of -
investigation have been wide and varied. A hypothesis that an object is in the scene is

generated and then a search is performed to find a combination of orientation and viewpoint

22

.Chapter 2: Model-Based Recognition: Activities and Advances 23

which gives a close approximation to the actual image. Matching can converge efficiently if
the object has strong features. When dealing with geometrically well defined objects,
analytical techniques can be employed. At other times, more pragmatic rules of thumb are
used, for example an object might be matched by its colour and image area. Whatever the
' method, matching is truly model-based: segments of the image are matched against an

accurate representation of the model.
The work on object recognition and matching may be split into two classes:

1) Bottomn-up - Those that use low-level matching features to make high-level

interpretations, e.g. [GL.-P84b]

2} Top-down - Those that use high-level hypotheses to match to low-level

features, e.g. [Hogg83].

The more commonly used strategy, however, is bottom-up. By keeping the features
simple, the algorithm itself can be kept simple which increases its efficiency in terms of
speed. This speed factor is an essential consideration especially when the system is expected
to perform interactively or in real-time. Along with simplifying the algorithm, other
methods for reducing the time spent on the problem have been developed [HB894, SRS90,
FH85]). These have been by implementation on parallel architectures. However, the most
established algorithm is that of Grimson and Lozano-Pérez [GL-P84b] originating from work
by Gaston and Lozano-Pérez [GL-P84a]. This has itself been adopted and extended by other
workers in a variety of ways. Although the algorithm is essentially serial, workers such as

Holder and Buxton [HB8%9] have attempted to parallelise it.

In recent years, much of the work on model matching has been on polyhedfa with up
to six degrees of freedom. However, in the literature, numerous applications to curved surfaces
can be found {0583, Fj90, BCZ90]. In the following sections we will outline the base work, that
of Grimson and Lozano-Pérez, and its adaptation. We will also review the recent literature

which attempis, or sets out the foundation, for the solution of the problem of curve matching.

2.2 The Problem in Perspective

The problem definition reads thus:

i) Given a representation of a known object, identify and recover it from a scene

containing other objects (known or unknown).

Chapter 2: Model-Based Recognition: Activities and Advances 24

ii) Recover its pose, i.e. the rotation and translation that would transform the

object from the model world to the scene world.

Or in a more colloquial form:
“Here is an object. Find it and tell me where it is”.

For humans, this instruction, along with its solution, is fairly simple. For a
machine, however, it is very complex. Given an object, a person would survey it and see if
there are any special markings or features to distinguish it before searching for it. If the
object is of a simple geometry (according to the individual’s perception) or has strong features,
this is a trivial task. For a machine, even a simple scene can have a large number of possible
interpretations. For a model with m model features and s recovered data features, m® possible
interpretations exist [GL-P84b]. We can therefore see the extent of the problem faced by a
vision system. According to Faugeras et al. [FHPP83] the solution may be divided into three
main problem groups. The first is the representation of a priori knowledge, i.e. an accurate
geometric description of the model world. This is generally very complex as few things are
known about ways of representing and organizing the corresponding database. The second
problern group is the reconstruction from the sensor’s output of a symbolic (and fairly accurate)
description of the information necessary for solving the problem. Finally, the output of the
- first two tasks must be combined to find a solution for the recognition of the object. Separating
the original problem in this way allows us to identify potential bottlenecks in the solution.
The complexity of each individual task can be defined by a number of parameters such as; 1)
the quality and accuracy of the sensor signal, 2) what a priori knowledge is available and, 3)
how different the objects or observed phenomena are. We can see that problem (2) is mainly a
knowledge representation problem, whereas (1} is mostly a signal processing problem, and (3)
has a bearing on the search or control strategy problem. By fixing one or several of the task
parameters and varying the others in a controlled manner, a methodology for solving the
corresponding problems in a variety of situations in each group may be outlined. A number of
workers have tried to keep the knowledge representation problem as simple as possible by
working with objects with a relatively simple geometric characteristic {SRS90, MCB89].
Also, with the availability of accurate sensing equipment (tactile or laser range-finder),

problem (1) becomes easier with a direct consequence in making problem (3} generally simpler.

‘ Representation of the models adopted by different workers have again been varied.
Planar objects may be reconstructed from their 3D edges or faces [MB90]. Patterns of tactile
contacts have also been taken as a representation scheme [Broi79, OT77]. Shankar et al.
[SRS90] have shown the feasibility of vertex representations and Faugeras and Hébert

{FH83] illustrate how their matching algorithm may be extended to quadrics. Matching

Chapter 2: Model-Based Recognition: Activities and Advances - 25 .

approaches have also included clustering in parameter space [MT87, 5toc87], searching a tree
structure for corresponding model and image features [GL-P87, MC88, FH86, FJ90], and the
direct searching of model-to-image transformations [HU90]. Verifying that the
hypothesiied matches of data to model features hold under transformation of the model is
addressed by [GH90, FH83, HB89b]. What now follows is a survey of the approaches taken by

different researchers and extensions for a solution to the matching problem.

2.3 Sensing Techniques

The sensing techniques adopted by various workers for the recovery of data features
have been diverse. Gaston ef al. [GL-P844] and Grimson et al. [GL-P84b] have obtained data
using tactile sensing apparatus. The simplest of these tactile devices is a microswitch which
is able to detect when the force over a small area exceeds a threshold. An important extension
of this is the matrix tactile sensor and, as the name suggests, is composed of an array of
sensitive points. A simple form is an array of microswitches. These produce a 2D map which
is a function of the pressure distribution over the sensors. A review of tactile sensors may be

found in {Harm82] and their designs in [Hill82}.

Tactile information is useful for identifying and locating objects in terms of the
texture, hardness, temperature, and even slipage of the grasped objects. Such immediate
circumstances are when visual information is not available such as in underwater or reduced
lighting conditions. Information from a number of tactile sensors may be used to determine
which object from amongst a set of known objects has been grasped and to determine the objects
position and orientation relative to the hand [GL-P844]. This is still a definition of our
original problem. Workers such as Broit [Broi79] and Okada et al. [OT77] have relied on the
contact patterns of matrix sensors. Their assumptions being that the individual data elements
are not repeatable and only their statistical patterns remain stable. The measured statistics
are compared to the reference statistics for known models. These, however, are limited to
discriminations between a few simple types of objects. A second approach to statistical tactile
recognition uses patterns of the positional sensors which are mounted on the fingers of
articulated hands which come to rest on the objects. A number of workers have used the joint
angles of the fingers as their sensory data {Mari81, OT77]. Gaston and Lozano-Pérez [GL-P844a]
illustrate that tactile recognition and localization may be achieved without resorting to

statistical pattern recognition or global feature-finding. Also, their method uses very sparse

tactile data - one point for each sensor.

Visual range sensing has also received a large amount of interest. Jarvis {Jarv83]

gives a detailed review of techniques as applicable to vision. Possible methods include edge-

Chapter 22 Model-Based Recognition: Activities and Advances 26

based stereo methods [MF81] which provides three-dimensional positions of sparse sets of
points in the image. This may be used to reconstruct a surface representation from which
surface normal estimations may be made. Laser range-finding techniques, used by Faugeras et
al., have shown a fair accuracy in the data reconstruction [FHPP83). Others have
concentrated on techniques of structure from motion [MB90, MCB89] and structure from stereo
[PMF85, CPPMF90].

2.4 The Grimson and Lozano-Pérez Matching Paradigm

Many of the recognition algorithms in recent years have adopted a tree search
procedure [GL-P84b, MC88, HB8%9a, SRS90, FH83]. Many are based on the Grimson and
Lozano-Pérez matching paradigm {MC88, HB89a]. The algorithm {GL-P84b] is non-specific to
the sensing technique and is illustrated by analyses of the surfaces of simple polyhedral
objects. The aim was to use local measurements of 3D positions and surface normals to identify
and locate objects from amongst a set of known objects. The objects are modelled as polyhedra
with up to six degrees of freedom relative to the sensor. This was an advance on that of
Gaston and Lozano-Pérez [GL-P84a] where objects were permitted 3 degrees of freedom (2
translational, 1 rotational). By using local constraints, inconsistent hypothesis about pairings
between sensed points and object surfaces can be efficiently discarded. The local constraints
chosen act on the distances between faces, angles between face normals, and angles of vectors
between sensed points relative to the surface normal. The number of possible interpretations
consistent with the constraints is very small relative to the number of potential
interpretations. Given s sensed points and n surface normals this would result in #* potential
interpretations [GL-P84b]. The local information about sensed points is also used to determine
the set of positions and orientations of an object that are consistent with the sensed data. The

object is considered unmatched if there are no consistent positions and orientations.

As a key to their matching algorithm, they generate a set of feasible interpreta-
tions. These are generated by pairing each sensed point with some object surface of the known
object. Inconsistent pairings are discarded using-local constraints. The recovered
interpretations are further tested for global consistency with the surface equations of the
model requiring that an interpretation is only legal if it is possible to solve for a rotation and
translation that would place each sensed point on the appropriate object surface. The

approach is an example of the classic paradigm of Al - generate and test.

The range of possible pairings of sensed points and model faces for an object are
repreSented in the form of an interpretation tree {IT). The number of descendants at each node

of the tree is equivalent to the number of model faces. The sensed data points are then

Chapter 2¢ Model-Based Recognition: Activities and Advances 27

required to pair onto these branches, one at each level. It is noted that, from the structure of
the tree, it is possible for several data points to be paired onto the same model face which
means that it deals well with fragmented data. The top-down, model driven approach,
however, is not appropriate for such data since, here, several data features cannot pair onto

the same model feature.

The local constraints used to prune the IT have been adopted and modified by other
workers [MC88, HB8%). Four are used, namely an angle constraint, a distance constraint, a
direction constraint, and a triple product constraint (see GL-P84b for details). These typically
serve to prune out the non-symmetric interpretations of the data. Murray [Murr87) approaches
the matching problem as Grimson and Lozano-Pérez. Using 3D information obtained from most
visual motion systems, the depth/speed scaling ambiguity means that absolute depth and
size is unavailable. He shows that shape data alone, without absolute size, is enough for
reducing the search space of the interpretation tree. By modifying the local constraints of
Grimson and Lozano-Pérez he shows how this is possible. The angle constraint, however, is
identical. The unit vector of the surface normals are taken in pairs to determine the angle
between them, The direction constraints of Grimson and Lozano-Pérez are concerned with the
range of values for the component of a vector between sensed points on faces # and j in the
direction of the sensed normal at { and j. This must intersect the range of componénts of
possible vectors between points on the faces assigned to { and j. This requires the full
displacement vector between the points on the faces. Murray gives alternative direction
constraints (classified as direction constraints 1, 2, and 3) using unit direction vectors obtained

from the normal of face {, the normal of face j, and the unit vector in the direction of their

vector product.

Grimson and Lozano-Pérez point out that the efficiency of the IT pruning is
improved with presorted data. This ensures that the most effective pruning occurs near the
root of the tree. They sorted the data in terms of distance (pairwise separation) with the
furthest points encountered first. This, along with the ordering of the local constraints in
terms of effectiveness (distance constraint first), greatly improved the pruning procedure as
detailed in their results [GL-P84b]. Although the distance constraint of Grimson and Lozano-
Pérez was not used by Murray, he was able to show a similar result when sorting by pairwise
scaled separation. Of course, the loss of absolute distance or range, and its replacement with
scaled depth, makes the matching paradigm less effective but not disastrously so. Also, as
may be expected, Murray shows that sensing data from the edges rather than the centre of

the faces, proved more effective. This is because more extreme measurements of angles and

directions are being considered.

. Chapter 2: Model-Based Recognition: Activities and Advances 28

Estimation of the rotation by Grimson and Lozano-Pérez is performed using an
averaging technique in preference to the least-squares method adopted by Faugeras and
Hébert [FH83]. This, they consider as computationally expensive. Murray adopts an
equivalent rotation estimation but chooses a least-squares method for estimation of the
translation and scale [Murr87]. A modification of the method of Murray to an edge-based
system can be found in [MC88]. Here 3D fragmentary segments of polyhedra recovered by
structure from motion techniques are acted on using the same local constraints as in the
surface-based algorithm. However, an important feature of the constraints was their ability
to attach direction signs to the sensed data fragments corresponding to those of the model
edges. This proved an overhead during the early stages of matching but progressively
increases the power of the constraints and assists in determining the transformation between
model and sensor spaces. Again, by presorting the sensed edge fragments by length so that the
longest fragment would be encountered first, they found that the overall search space is
reduced. In addition, presorting the model edges in a similar fashion increased the
likelihood of the search delivering a valid interpretation sooner, although, the overall
quasi-exhaustive search time remains unchanged. The combination of several visualisation
algorithms (including Murray and Cook) into a complete recognition system (ISOR) can be
found in [MCB89]. Using 3D matching cues (obtained from visual motion) from a sequence of
images, the system is able to recognise the recovered geometry of a polyhedral object from a
database of 3D wireframe models, The difficulties and ambiguities in going ‘from image
sequences to recognized moving polyhedral objects’ are clearly shown even though the

algorithms presented perform well.

Faugeras and Hébert's work on recognition and positioning using geometrical
matching between primitive surfaces [FH83] uses data from an accurate laser range-finder in a
recognition algorithm which is essentially a simple tree-search. This, again, is an example
of the class of algorithms which rely on dynamically growing and pruning an interpretation
tree structure that describes the correspondence between model and data features. Bray
[(Bray90] criticizes these tree-search formulations and concludes that their performance does
not degrade gracefully with respect to robustness and speed under noisy conditions. That is to
say, a single missing feature causes substantial problems for the search, and multiple missing
features greatly increase the search space with the possibility that an interpretation may
not be found within a given period of time. Solutions to the problem of missing edges or
features have been suggested. One such idea is the null pairing or null face hypothesis [CD86,
Goad83] where an unmatched feature is permitted to remain unpaired or pair to a non-existent
feature. This, however, has the disadvantage of expanding the search space which is

wholly undesirable.

Chapter 2: Model-Based Recognition: Activities and Advances 29

The tree-search paradigm is essentially sequential and well suited to conventional
Von Neumann machines, Attempts have been made to parallelise them [HB89, SRS90] as
Bray recognises saying that “it is certain that a tree-search can always be performed using a
parallel algorithm in such a way as to exploit parallel facilities” but he duly points out that
the solution is easier and more flexible when dealing with an intrinsically parallel
algorithm [Bray90). Goad [{Goad83] describes how his tree-search algorithm may be unwound
and how optimal search paths can be pre-computed from models off-line. Bray maintains
that this is simply a modification to what is ‘essentially a depth-first sequential search’.
Bray also argues on the predictability of tree-search formulations. The time taken for a
correct solution to be found can vary enormously depending on the location (of the solution)
within the tree. Heuristics may be used to guide these searches but, as heuristics, they will
prove to be effective some of the time. There would be an uncertainty in whether the system
can arrive at a valid solution within a given time which can cause a problem in real-time
systems requiring the ‘best solution so far’ after a given degree of processing. With heuristics,
it is also true that they require some form of parameterization. The bounds of these are
generaily a matter of trial and error which is always time consuming. Bray further presénts a
new formulation for object recognition as an alternative to the tree-search paradigm which
does not rely heavily on heuristics. It uses the same 2D information recovered from an image
and transforms the problem from tree-search to signal detection. The algorithm is inherently
parallel and is demonstrated to cope well with poorly segmented images that would cause
major problems with conventional algorithms. This parallelism makes it potentially fast
and contributes to its robustness. It uses local geometric constraints between 2D line segments
obtained from segmented 2D images in order to recognise 3D polyhedral objects and adapts to
use with either 3D line data or 2D polyhedral objects which, in either case, increased its
efficiency. By accumuiating information available from the local constraints (an angle
constraint and a direction constraint), it forms match hypotheses subject to two global
consistency checks that are enforced using the competitive paradigm. The local constraints

can cope with the types of errors in the data commonly associated with occlusion, bad edge

detection, and poor lighting.

2.5 Parallel Implementations in Recognition

As mentioned above, any sequential tree-search algorithm is exploitable on a
parallel computer architecture. An early algorithm, proposed by Grimson and Lozano-Pérez,
allowed the search space to be explored in parallel on a Connection Machine {GL-P84c]. They
exploited the router feature of the Connection Machine because there is no inherent locality

to the recognition problem. New levels of the tree were generated and pruned in parallel by

Chapter 2: Model-Based Recognition: Activities and Advances 30

having processors hold bit arrays which represent consistent pairing of points to faces. Flynn
and Harris have improved on this approach [FH85]. By having a Connection Machine
processor hold bit arrays which represent consistent pairings of points to faces means that a
separate processing element is required for every interpretation which results in the
algorithm being highly dependent on the size of the interpretation tree. Given s data poiﬁts
and m model faces, m® interpretations are possible and this is, therefore, the number of
processors required by the algorithm. When compared to the small number of data points
generated when using tactile sensors, laser range-findérs can produce as much as a 100 times
the number of data points. This, along with fairly complicated objects, quickly makes the
algorithm redundant on even a large machine with 256,000 processors. They propose a
dynamic algorithm (unimplemented} which copes with the inevitable problem of processors
being overrun. The idea was to genérate enough levels of the tree to fill the machine, perform
the pruning step, generate new levels of the tree to fill the tree, perform the pruning step, and
so on. The machine is required to find unused processors to represent new branches of the tree

and deallocate processors which no longer represent consistent pairings.

Holder and Buxton [HB894] in their work on the DAP parallel architecture took a
different view of the problem. Efficient parallelism, in their algorithm, comes about from
the initial determination of consistent matches between model and data features. This is the
key step to the algorithm and is performed in parallel for all data points. Therefore, given m
data points on a polyhedral model with n faces, the method exploits n x n parallelism in
establishing the possibilities of a geometric match. The computation is performed off-line
and stored in binary 2D look-up tables. These are very efficient to manipulate during the
tree-search local consistency phase. The search is still sequential but now acts on a very
heavily pruned interpretation tree. The effectiveness of the algorithm outweighs the array
memory required to stored the look-up table matches. For an object having 32 faces and 8 data
points a store of 28 32 x 32 two dimensional arrays are required. The serial search becomes a
recursive process which simply checks that at any level of the search the matched pairs must
be consistent with the preceeding partial interpretation. Parallelism can again be exploited
here as the test must be performed on matched pairs at that level. This algorithm maps very
well onto the processors of the DAP with the (partial) limiting factor being the dimensions of

the 2D array store.

In accord with Grimson and Lozano-Pérez and, Murray and Cook [MC88], Holder and
Buxton have observed that the efficiency of interpretation tree search is improved when the
data is presorted so that the most effective pruning occurs near the root of the tree. However,
because all data points are checked against model faces in parallel, sorting these in order of
pairwise separation will make little difference to the search time. They proceed to show

that the most effective pruning constraint is likely to result in the least number of paired

Chapter 22 Model-Based Recognition: Activities and Advances 31

matches in the look-up tables. The solution (they suggest) is therefore simply to sort the data
into ascending order of geometrical matches before commencing to check for consistent
assignments of data to model faces. However, we will show (in Chapter 5) that sorting in
order of ascending number of matches is only effective for small amounts of data. They note
(conveniently) the efficient implementation of sorting functions capable of performing such

operations on large array data structures in the DAP programming language.

A demonstration of the algorithm is compared with that of Flynn and Harris on
data obtained from a chipped brick. This showed very large gains in speed after seven
pairwise comparisons even though the method of Flynn and Harris was reported to run four
times faster than an implementation of the sequential algorithm [FH85]. The null pairing
hypothesis [CD86, Goad83] may be efficiently implemented using the technique of Holder
and Buxton. This is simply a matter of increasing the dimensions of the array look-up table by
one (this being the null pairer). The obvious combinatorics observed by other workers has a
reduced effect here. The heavy pruning action of the algorithm, along with the sorting in

order of most effective constraint, ensures the extra overheads are kept to a minimum.

A parallel implementation of a vertex-pair matching algorithm [MT87] can be
found in [SRS90}. The implementation is on the Connection Machine and simultaneously
computes the transform between a vertex-pair in the model and all vertex-pairs in the scene
in parallel. The vertex-pair feature is defined as two vertices and two edges intersecting at
one of the vertices. Scene vertex-pairs are stored one per Connection Machine processor. These
are able to be compared in parallel against each model vertex-pair. A further parallel
method is described in [NLC90]. This is an implementation on a Hopfield neural network
which uses the parallelism and distributed processing of the network to globally match all
the object data in the sensor space to all the object models in the model space simultaneously.
The models are constructed as a graph structure with nodes (model features) connected by arcs
which represent the relationship or compatibility between them. Object recognition results in
matching a global model graph (representing all the models) with a scene graph
(representing a single object or several overlapping objects). A 2D Hopfield binary neural
network implementation obtains the optimal compatible matching features from the two
graphs. This proceeds using excitatory and inhibitory supports at the synaptic
interconnections between neurons. The state of each neuron in the network represents the
possibility of a match between a node in the model graph and a node in the scene graph. That
is to say, matched features belonging to the same model receive excitatory supports, and
matched features belonging to different objects receive inhibitory or mutual support

depending on whether the input scene is an isolated object or an overlap of several objects.

Chapter 2: Model-Based Recognition; Activities and Advances 32

2.6 The Method of Geometric Hashing

While many recognition algorithms have adopted a tree search procedure, others
have used the idea of look-up tables to determine instances of a model from image data.
Advantages exist for either method. A particular approach which uses the scheme of look-up
tables is Geometric Hashing. This is based on the indexing into a hash-table to recover
precomputed transformation invariants of models in the database. The method [Wolf90,
LW88, L5W88, RH91] is a general model-based recognition approach for partially occluded
objects with noisy data. It is applicable in both 2D and 3D and is divided into a

representation phase and a matching phase.

The key step lies in the off-line precompilation and storage of representations of
the models in the database in terms of all possible transformation invariant coordinate
frames. This representation uses groups of interest points in the model such as vertices or lines
and the procedure builds a hash-table based on these representations. During the matching
phase, interest points in the image are used in the same manner as in the representation

phase to determine an index with which to enter the hash-table.

The approach is viewpoint independent and is able to recover the model to sensor
space transformation. Lamdan and Wolfson [LW88] illustrate the methodology for the
representation scheme. The interest points chosen must be invariant to rotation, translation,
and scale. These are taken in pairs (for the 2D case} or triplets (for the 3D case) and a local
coordinate frame is defined by them. For the 2D case the positions of the pair of points or
basis pair are assigned the coordinates (0,0) and (1,0) for the first and Second points
respectively. This vector (from (0,0) to (1,0)) is taken as the unit vector in the x-direction of a
new coordinate frame. The y-axis is now defined using the unit orthogonal vector of the same
length in the anti-clockwise direction to the x-axis. After defining the new coordinate frame,
the m-2 remaining interest points are determined with reference to this frame, where m is the
number of model interest points. Each interest point coordinate, after appropriate
quantization, is used as an entry into a hash-table where the basis pair at which the
coordinate was derived and the model are recorded. In order to cope with the likelihood of
one or other of the basis pair being occluded or absent in the image data, the process is
repeated with all possibilities of basis pairs for all models in the database. The matching
process is now reduced to determining interest points in the image, choosing an arbitrary basis
pair, and determining a coordinate frame with which the s-2 remaining interest points can be
located, where s is the number of sensed interest points. For each coordinate, the appropriate
entry in the hash-table is checked and for every {model, basis-pair} record at that entry, a
tally is maintained. After determining all the coordinates in all possible frames, the (model,

. Chapter 2 Model-Based Recognition: Activities and Advances 33

basis-pair) records scoring a high number are taken as possible matches. The matches may

then be confirmed by determining the best model to sensor space transformation.

Comparisons have been made between the method and other similar approaches
[LW88] and the results have been favourable. As the hash-table is computed off-line, the
method can be efficient in terms of search time. Also, extension to the 3D case simply involves
defining the (x, y) plane using three point bases with the z-axis defined by the normal to the
plane. However, in checking the sensitivity of such a method, Grimson has found it to
perform well for simple images or exact data but rapidly degrades for cluttered scenes or in
the presence of sensor uncertainty [Grim90]. This may be partly attributed to the method’s
dependence on a relatively sparse hash-table which quickly fills up and, thus, generates
incorrect matches with the addition of spurious data features, The effects of this, however,
can be reduccd by coupling the process with a selection method that can reduce the ratio of
spurious data to real data to a more manageable level. As the method is ‘parallel in a
straightforward manner’ [LW88], an option also exists to exploit this parallelism on an SIMD

or MIMD architecture [BM90].

2.7 The Invariant Theory

The theory of invariants has been around for many years [GY03, DC71, Spri77] but
has recently received new attention [FMZB90, ZMFMR90, Wein89]. An invariant, in vision
terms, is a factor which, as the name suggests, does not vary with respect to pose or camera
position. It may be defined as a function which, when it acts on a point, has the same result
irrespective of the coordinate frame [FMZ90]. Thus, area and curvature are invariant under
translatioii‘[‘“énd rotation in a plane but are not under projective transformation. Recent work by
Forsyth éf al. has demonstrated the theory using real data on planar and curved surfaces
[FMZB90]. As the shape of objects vary with viewpoint, they demonstrate how invariants

can be used to construct descriptors for such surfaces.

Many properties are invariant to projection. For example, straight lines project to
straight lines and collinearities and intersections are preserved. It is noted that this
invariance makes possible polyhedral model-based vision. For smooth curves and surfaces,
invariants such as the zeros of curvature, cross ratio, and Gaussian curvature are available.
These do not offer such a strong set of constraints as the edges of polyhedra for vision. Another
publication by Forsyth et al. investigates a way of expanding the use of curves for vision by
the use of invariants {FMZ90]. It is, at present, able to do this for coplanar curves but 3D
extensions have been found to be more difficult. Other invariant schemes for the recognition of

planar curves may be found in {Lin87, CCOD871.

Chapter 2: Model-Based Recognition: Activities and Advances 34

A set of invariants for a model may be constructed and placed in a model database.
This might be the point scalar invariant for a pair of coplanar conics (as might be found on a
pair of scissors). The technique then proceeds using an image containing varying conic data.
For two sets of coplanar data points, the joint scalar invariants are computed to produce a
projectively invariant descriptor. This is done by fitting an approximation of a conic to the
data using “the invariant fitting theorem”. It is possible to determine if the curves are
coplanar by constructing the invariants from two different views and checking to see if they
have changed significantly. It must be noted that the object must have at least two coplanar
curves that will both be visible at the same time, The technique then reduces to fitting a conic
to every available curve, computing the projectively invariant descriptor and extracting the
appropriate set from the model database. The system is fast as the search is merely a case of
indexing into the model database. However, it suffers greatly from occlusions. In tests
conducted, Forsyth ef al. demonstrate how various image data have been correctly identified
and labelled [FMZB90, FMZ90]. Examples such as gears, spanners and a pair of scissors were
used. From the invariants of four parailel lines, they are able to recognise pallets in images,
the invariants being the cross ratios of four collinear points. They also show how the system
could be used to index into a parameterized model database to identify and recover various
states of an open pair of scissors. Problems with ambiguities, however, have arisen using
model representations. The representation is very sparse; one number for a paliet, iwo numbers
for a gear and scissors. The robustness, however, may be increased by defining a model with a

system of curves, for example, four or five conics in the description.

The extra constraints which are géined from an identified object may be exploited in
determining the transformation parameters from model to sensor plane [ZMFMR90]. The
invariant fitting allows a pair of coplanar curves to be modelled by a pair of coplanar conics.
By this, the modelling conics undergo the same projective distortions as the original curves.

Given this, the determination of the transformation becomes:

Given a known pair of conics on the world plane, and their corresponding conics in

the image, determine the transformation between the two planes.

This is achieved by back projecting the known conics. Zisserman et al. [ZMFMR90)
give the results for a mouse, rotated by ~90° and translated slightly. There seems to be good
agreement between the actual and computed rotation. They conclude by pointing out several
generalisations of the work. To disambiguate models which ﬁave the samne representations in
terms of projective invariants, they suggest including values for pairs taken from a range of
nearby features. To overcome the occlusion problem they suggest using the projective
~ differential invariants (as in [FMZ90]) or éxpioiting the projectively invariant function

associated with one of the conics. On the subject of 3D modification, it is viewed as

Chapter 2: Model-Based Recognition: Activities and Advances . 35

“uncertain” in its practicality, as it either requires the elimination of an extremely large

number of variables from a system of polynomials, or solving very large polynomial systems.

Weinshall [Wein89] puts forward the case that the sign of the Gaussian curvature
of a surface is a more concise representation of a surface for storage and recognition than the
relative depth map of the surface, i.e. the exact 3D coordinates of the surface. Koenderink
and van Doorn have also acknowledged this [KD75, KD76] showing how various qualitative
properties of objects and the motion field relate to the optical flow or stereo disparity field,
i.e. invariants of the vector field. This includes the sign of the Gaussian curvature. However,
the sign of the Gaussian curvature does not provide a complete classification of a surface with
respect to the viewer. That is, it does not distinguish between concave and convex. The
tocation of the focus of expansion (FOE) can be used to complete the classification of local
surface patches and distinguish between patches which are convex, concave, parabolic (i.e.
cylindrical), hyperbolic (saddle point), and planar. The FOE is the point towards which (or
away from which) the camera’s motion is dirécted. Thus, in perspective projection (where the
motion is translational only), the optical flow takes the form of vectors which intersect at a
single point, the FOE. Regardless of the location of the FOE Weinshall shows that the sign
of the Gaussian curvature may be computed. Weinshall also shows that is is not necessary to
perform computationally expensive processes to recover the exact function of the surface and

the motion parameters in determining the sign of the Gaussian curvature.

These claims for invariants as “a new framework for vision” have recently been
challenged by Moses and Ullman [MU91]. They investigate the limitations of non model-
based recognition schemes with respect to viewing position and illumination conditions and
propose that non model-based recognition schemes produce the same recognition function for
every set of models. Here, a recognition function is defined as a function from 2D images to a
space with an equivalent relation. This means the function is universally consistent, Le. it
has an identical value on all images of the objects within the recognition scheme’s scope.
They show that all consistent universal recognition functions, with respect to viewing
position, are a constant function, in that they do not make any distinctions between objects.
This has also beén concluded by Burns ef al. [BWR90} and Clemens and Jacobs {C]90] and means
that the function cannot be relied on for object recognition. Therefore, a scheme not limited to
a specific class of objects must be model-based, and the invariant approach to recognition
cannot be apptlied to generalised 3D objects viewed from arbitrary positions. To exemplify
this, they demonstrate how a wire object projects in one direction as a triangle, and in another
asa squére. This means that any invariant function must have the same value for a pyramid
and a box, which means that a non model-based recognition scheme with a universal scope

will not be able to discriminate between any two objects. They go on to show that even if it is

Chapter 2: Model-Based Recognition: Activities and Advances 36

permitted to make errors on a significant number of images, a non model-based scheme with a

universal scope still cannot discriminate between objects.

2.8 Work with Curved Surfaces

The utilisation of surfaces, thus far, has been limited to polygonal and planar
curves. However, it is important that arbitrary curves be considered when dealing with real-
world objects and data. Such curves can describe surface markings or curvatures of contours.
Representation of these surface curvatures have been investigated by Tanaka and Lee [TL90]
who point out that a good representation must, amongst other qualities, be stable under small
perturbations, invariant under changes in view point, and local s0 as to be robust to occlusion.
In determining matching features for curved object recognition, Fuageras [Faug90] reports on
extending previous work on stereo and motion which were limited to points and lines, to
curvilinear (non-planar) features. The work is primarily concerned with the 3D motion of a
curve to its observed image motion. Several recognition systems using scene data obtained from
range-finders have been implemented for the determination of curved objects. A brief

overview of these may be found in the later section of 6.2.

The idea of motion parallax, that is, the relative motion of nearby image points due
to camera motion, has been investigated by several workers for the realisation of surface
curvatures [BC89, BCZ90, BB88, RL85, L-HIP80]. It is known that qualitative information
about curvature can be obtained from a static view. Also, from orthographic projection, under
planar viewer-motion, quantitative information for the curvature is available from spatio-
temporal derivatives of flow [BC89]. Earlier literature has shown that the surface
orientation along an extremal boundary can be computed from image data. Koenderink
[Koen84] has also found a relation between the curvature of an apparent contour and the
intrinsic curvature of the surface (the Gaussian curvature). The sign of this Gaussian curvature
is equal to the sign of the curvature of the contour. Given some known local motion of the
viewer, the Gaussian curvature of a surface at a point on its extremal boundéry can be
determined. The curvature is computed from spatio-temporal derivatives of image
measurable quantities. Blake and Cipolla [BC89] report on their extension of earlier theories
to the general case of curvilinear viewer motion under perspective projection. As it is difficult
to determine whether the Gaussian curvature along the contour is bounded or not while
moving around a smooth featureless object, their work is carried out using feature-rich
(patterned) objects. Image features are then seen being “sucked” over the extremal boundary at
a rate which is dependent on the curvature of the surface. Differential measurements of
curvature across two nearby points are shown to be independent of uncertainties in the viewer

rotational velocity. Typically, the two points consists of one fixed surface point, and the

Chapter 2: Model-Based Recognition: Activities and Advances 37

other, possibly on the extremal boundary. Unlike single point measurements they are also
independent of the viewers acceleration. In short, differential measurements based on two
points are insensitive to errors in rotation and translational acceleration. This is because it is

a function only of the differential motion of the image features.

The use of motion parallax is therefore revealed as a robust geometric cue for the
computation of relative depth and surface curvature on specular surfaces and at extremal
boundaries. Using the relative motion between a specular highlight and an image feature,
Blake and Brelstaff [BB88] have shown that the parallax of specularity is also a robust
geometric cue for the estimation of surface curvature. The human visual system appears to use
this cue when dealing with curvature on specular surfaces [BBS0). Earlier, Reiger and Lawton
[RL85] implemented an algorithm using motion parallax for estimation of relative depth and
direction of translation from real image sequences. They were able to show the degradation of

the estimations with increased separation of the two points.

Experimental results for differential measurements based on two points are reported
in [BC89]. From a sequence of three images of a scene taken from a camera mounted on a robot-
arm (calibrated), they were able to to estimate the radius of curvature for a point on the
extremal boundary of a cup, B, and a surface marking on another cup, A. A surface marking is
considered as a point with infinite curvature and, therefore, its radius of curvature can be
stated as zero. The estimated curvatures agreed with the actual measured curvatures
although the results were very sensitive to errors in the motion parameters. They show this:
an error of ITmm in a translation of 55.3mm in the determination of the camera position
produces an error of about 190% in the estimation of the curvature at point B. Similarly, an
error of Imrad in the camera rotation was found to produce an error of 70% in the estimation of
the radius of curvature at point B. These are reduced to 17% per mm, and 8% per mrad using
the differential measurements of curvature computed between points A and B. The errors in
estimation of the curvatures were again found to be further reduced for ratios of differential
curvatures. Compared with the values obtained for the differential curvatures, the
sensitivities were further reduced to 1.5% per mm and 1.1% per mrad respectively.

Additional results on a real-time tracking system based on deformable contours (snakes) can

be found in [CB90).

Chapter 2: Model-Based Recognition: Activities and Advances 38

2,9 Conclusion

We have presented a review of the main resuits to be found in 3D model-based
recognition. However, since we have a primary experimental approach to the research, this
has been very limited with a concentration on the Grimson and Lozano-Pérez based
methodologies which are often referred to in our work. We have, however, attempted to give
@ general background to model-based vision both with polyhedral and arbitrary curved
objects. For the reader wishing to gain a wider view, detailed reviews are abundant in the
literature (CD86, BJ85, Bieds7).

Parallel Process Techniques for 3D Model-Based Vision

Chapter 3

Parallelism and Tools in Computer Vision

3.1 Introduction

A recognition system, apart from being highly dependent on an accurate matching
process, is also dependent on a large class of processes which compose the system. Like any
precise system, the accuracy of the scene interpretation relies on the accuracy and effective-
ness of the processes at the lower end of the system pathway. These components may range
from the hardware to the algorithms used to recover the matching features. In terms of the
hardware, we must be careful that we do not constrain ourselves too much by the machine
architecture. Several implementations of visual systems have been carried out on fast
processor serial architectures. Due to the size of the search space and the fact that real-time
applications are sought, speed of processing is a very important factor which cannot be
overlooked. In the quest to reduce the processing time of the matching phase, our work is
implemented in parallel. A highly parallel array computer, the AMT Distributed Array of
Processors (DAP) is used. In choosing such an architecture, we were careful not to limit
ourselves and to ensure that the algorithms and approaches taken may equally well be
ported to any array structured machine. The use of the DAP was also advantageous in that

many serial algorithms are inherently parallel and may easily be described in an array type

manner.

Other important components to consider in the recognition system are the data
recovery processes. These must be able to accurately segment the scene and reconstruct the
appropriate matching features from image data. Popular techniques include structure from
motion or stereo. They involve an initial recovery of the 2D data edges using some type of
edge detection algorithm, e.g. Canny or Sobel, followed by a 2.5D reconstruction of the scene

pulling out the 3D relationships of visible surfaces and edges.

In the following sections, we describe the architecture of the DAP along with a brief

outline of its programming languages. We also introduce the Connection Machine, a powerful

39

Chapter 3: Parallelism and Tools in Computer Vision | 40

and popular SIMD machine, along with an SIMD/MIMD architecture which attempts to be
more applicable to a variety of problems, Next, we introduce systems which have been used
as tools in the development of various recognitions algorithms, namely, the WINSOM solid
modeller, and the ISOR and TINA visualisation and recognition systems. Prior to the latter
two, we introduce the Canny edge detection aigorithm which is implemented in both systems

and describe the basic principles of the motion and stereo reconstruction algorithms.

3.2 The Distributed Array of Processors

The AMT DAP (Distributed Array of Processors) is a fine-grain, highly parallel
array computer. Current techniques of VLSI technology have made it possible to allow a large
number of simple processors to be integrated with memory to achieve what is known as active

memory, hence AMT (Active Memory Technology).

The DAP provides a natural solution for many large problems which cannot easily
be solved on conventional computers with associated serial languages. Primarily, these were
not constructed to handle arrays of data and/or the manipulation of variable word lengths.
The DAP, therefore, targets problems which require the manipulation of large volumes of
data which have inherent parallelism. This covers a wide area of tasks which may be found
in fields such as graphics, image processing, neural network simulation, and computer aided
design (CAD). The parallelism also proves useful in problems of computer vision where a

real-time analysis is desirable.

At present there are two versions of the DAP. A 500 series and a 600 series, both
with an operational speed of 10 MHz. They are constructed with an SIMD (Single Instruction
Multiple Data) architecture and operate on vector and matrix arrays of memory. Therefore,
the DAP is ‘data-parallel’ as opposed to ‘task-parallel” which is the case for an MIMD
(Multiple Instruction Multipie Data) machine. The difference in the DAP series is given by
the number of processors in each machine; 1024 for the 500 series, and 4096 for the 600 series.
These processors or, as they are better known, processing elements (PEs) are not as
sophisticated as in single processor machines. They are simple single-bit processors which
operate on bits of data simultaneously. This is the principle of the SIMD architecture in
which the PEs execute the same instruction simultaneously, each in its own local memory.
Processor elements can, however, be turned off and a particular advantage of the DAP, apart
from its speed, is its ability to operate on a selection of data using conditional instructions.
The DAP therefore overcomes the problem found in vector processors where conditional

instructions interrupt the vector flow.

Chapter 3: Parallelism and Tools in Computer Vision 41

3.2.1 Internal Configuration

The processor elements of the DAP are arranged in a square array of ES x ES, where
ES (the number of PEs in each row and column) denotes the edge size. Currently two edge sizes
'exist: 32 for the DAP 510, and é4 for the 610. The DAP 510 therefore has 32 x 32 = 1024 PEs,
and the 610 64 x 64 = 4096. Each PE has connections to its four nearest neighbours in a North,
East, West, South configuration. This provides rapid data broadcasting and fetching and
gives the high level of connectivity required for many applications. A bus system also
connects processors by rows and by columns. Connections of PEs at edges are wrapped around to

appropriate PEs on the opposite end.

North

| | |

PE PE PE [}
column ¥ : 1

x
West = PE [PE PE £5- East
1 I L
— PEEL—{PE pE L™

Ll il 11

I H T L}

South
Figure 3.1:. PE connections of DAP

Commands to the DAP are received by a Master Control Unit (MCU) which
overlooks the PEs. This is, in fact, a conventional CPU except that it does not execute all the
commands it receives as in single processor machines. Parallel instructions are received and
decoded by the MCU from the code memory. These are, in turn, broadcast to the processor
array to be executed in parallel by each PE. This execution is conducted in the local memory of
the PE which is constrained by the present architecture to between 32 Kbits and 1 Mbit. This
gives a potential memory range for the DAP 510 of between 4 Mbytes and 128 Mbytes (for 1024

—r

Pprocessors).

Local
memory

PE

Figure 3.2: MCU and processor array

Chapter 3: Parallelism and Tools in Computer Vision 42

The MCU is a 32-bit central processing unit with many conventional features such as
registers, instruction counter, branch instructions, arithmetic unit, etc. The object code of the
DAP is loaded into the code memory from which the MCU fetches and interprets instructions.
Some instructions will be executed wholly within the MCU (such as scalar operations using
MCU registers and control instructions), others will be broadcast to the processor element

array to be obeyed by the individual PEs in parallel.

There is an option to increase the processing power of both DAP series by using an
array of 8-bit co-processor chips. The array is ES x ES and is reported to enhance the
performance of the systems by an order of magnitude [AMT90]. The 8-bit co-processors work
alongside their respective 1-bit processor for complex arithmetic such as floating point
operations, whilst the single-bit processors continue to be used for memory access, fast
input/output, and Boolean logic operations. As an example of the processing power of the 610
DAP with co-processor (610C), a factor of 40 in computing power is reported over the DAP 510
(without co-processor) as it can perform 8-bit integer multiplications at a rate of 2.4 billion

per second and has a rate of 560 MFLOPS for 32-bit addition.

3.2.2 DAP Programming

A DAP program resides in the code memory of the MCU. The DAP may be accessed
through a SUN or VAX computer which is termed the ‘DAP host’. To the host, the DAP acts
purely as extra memory. As two computers are used in DAP programming (i.e. the DAP and
the host), a working program must be constructed in two parts. A host section which runs on
the host machine, and a DAD section which runs using the DAP hardware. At run-time, the
DAP program is initiated and controlled by the user program on the host. Depending on the
application, it may be better to run a program almost wholly on the DAP or to run only highly

data-parallel routines on the DAT leaving the host program predominantly in control.

The DAP unit may be programmed using one of two languages. These are an extended
version of Fortran called Fortran-Plus and a powerful macro-assembler APAL (Array of
Processors Assembly Language). Operations on vectors and matrices are constrained by the
edge size of the DAP. Recently, however, an extended version of Fortran-Plus, Fortran®*
{Fortran star, or Fortran-Plus enhanced) has overcome this limitation, The most important
feature of Fortran-Plus and Fortran* is their ability to manipulate complete data structures
called vectors and matrices. These are extensions of Fortran arrays with parallel operations
defined upon them. A ‘matrix’ corresponds to a two dimensional array, while a ‘vector’

corresponds to a one dimensional array. Data items in a vector or matrix are distributed over

Chapter 3; Parallelism and Tools in Computer Vision 43:

the DAP processors, each being processed by a single processor. Operations are (conditionally)
performed by all processing elements at once. If the size of a vector exceeds the number of DAP
processing elements, the system reorganizes the vector so that each processing element
operates on more than one data item. With matrices, however, this happens if either of the

sides exceeds the edge size of the DAP.

3.2.3 The Array Store

To facilitate parallel operations, scalars (non-parallel objects) are stored
horizontally across a DAP bit-plane and vectors and matrices are stored vertically. For
vectors and matrices this means that the bits of each component are stored at the same
position in successive bit-planes. Therefore, the bits of each component are within the
memory of the same processing element. A bit-plane is a plane in the array store. This means
that each bit-plane is associated with the corresponding PE in the matrix of PEs and all bits

in a plane have the same plane address. This is shown below.

PE
£
- i /z bit in an
array memory T ore bl
(at feast 32K planes) oo array stare plane

array store plane
Figure 3.3: DAP array store

To touch briefly on the SIMD aspect of the DAP, consider the following. If we have
~a matrix A of dimensions 32 by 32, to sum its contents with the corresponding components of a
matrix B of equal dimensions would result in a loop executing 1024 times on a conventional
machine. On the DAP however, each component of the matrix is mapped onto a single PE
which executes the command in its own local memory. This will mean that all components are
executed simultaneously under the command: A + B. It is not necessary for every PE to execute
the instruction. If we choose, we may turn PEs off with the aid of a ‘mask’, Our problem may

then be carried out on, say, every even column or where the components of A are less than the

components of B.

_ Chapter 3: Parallelism and Tools in Computer Vision 44

3.2.4 Application of the DAP

In the work carried out, a DAP 510 was used in conjunction with a SUN 3/160M or
SUN 4/260 host running under the UNIX operating system. The DAP had a local memory of
128 Kbits per processor and a high resolution colour monitor on the fast data channel. The
host programs were usually written in C. Fortran was sometimes used as it made things easier
when transferring data from the host to the DAP as they both had the same common block
structure. As an early vision and graphics tool, the DAP is very useful. Its array structure
makes it ideal for image processing and graphics techniques such as ray tracing where many

pixels need similar processing operations.

3.3 The Connection Machine

Although many parallel machine architectures can be found on the market, some
have been more popular than others in the research field. The Connection Machine (CM) is
one such massively parallel supercomputer which has aided in many research works both in
graphics and viston [CDHMS89, RH92, FHSS]. The architecture is fine-grained SIMD and is
so named because it is able to configure the topology of the machine to the topology of the
problem [Hill85]. Being SIMD, it is often used for well-strictured problems with regular
patterns of control. Its power is achieved with the use of a very large amount of simple
processing cells (PEs) e.g. the MIT Connection Machine contains 256,000 processors. These PEs
can be connected to form active data structures such as sets, trees, butterflies, strings, arrays
and graphs. These are then able to represent and process the data. Like the processors of the

DAP, the CM also provides for the manipulation and switching off of individual processors

for conditional instructions.

Currently two generations of the Connection Machine exist; the CM-1 and the CM-2.
These differs mainly in the number of PEs and local memory available per PE. The CM-1 has
65,536 processor/memory cells each with 4096 bit of memory to give a total of 32 Mbytes. In
contrast, the CM-2 has 8 Kbytes per processor which results in 128 to 512 Mbytes per machine.
The architectures support routers which are interconnection networks constructed from
autonomous switching elements. The routers are not all connected to each other. They are
wired in a relatively sparse pattern which is the topology of the network and aid
communication between processors by forwarding messages from router to router. The
processors, which are connected in a nearest neighbour and router configuration, are then able
to form a general intercomfnunications network that can connect to cells in any arbitrary

pattern, i.e. a processor stores a pointer to the next processor cell. Being so small, the cells are

Chapter 3: Parallelism and Tools in Computer Vision 45

incapable of computing a significant computation on their own. Therefore, by connecting
multiple cells as active data structures, complex calculations can be achieved by interaction
of thousands of cells through communications networks. For example, all cells in a certain
state may be directed to add together two of their memory locations and pass the result to

another cell.

As in a conventional computer, the Connection Machine has no processor/memory
bottleneck since the PEs do the processing. That is, as larger tomputers are built, the
processing power to memory ratio decreases due to the overhead in maintaining the larger
memory reducing the processing power. It supports parallel data structures such as the xector
which is a parallel form of a 1D array. The architecture also supports a virtual processor
capability. Here, each real processors memory is divided into equal parts each devoted to a
different virtual processor. Instructions are then repeatedly executed with a different base
address until all virtual processors have been served. This technique is used when the amount
of data strongly outweighs the number of processors. If we consider a 512 x 512 pixel image, 16
virtual processors per real processor on a 16K processor machine is sufficient for rendering on a

pixel to processor basis.

As with most fine-grained architectures, the CM is designed to run in conjunction
with a single processor host machine (here 2 DEC VAX or Symbolics Lisp Machine). This is
due to parts of the code being able to run faster on a single processor machine. Like the DAP,
the CM is programmed in an extension of a sequential language CmLisp (Connection Machine

Lisp) a version of Common Lisp designed to support parallel operations of the CM.

Applications by different workers have been varied [RH92, FH85, BM90, BS88].
Crow et al. describes an implementation of ray tracing on the CM [CDHMS89]. The image is
divided into 128 x 128 patches thus providing a pixel to processor mapping of 1:1 for a 16K
processor machine. The PMF stereo reconstruction algorithm of Pollard, Mayhew, and Frisby
[PMF85] is reported to have potential for implementation on a suitable large scale parallel
computer [Poll88]. Such an implementation by Drumheller and Poggio on the CM is further
reported in the introduction of [Page88al.

3.4 The Disputer: An SIMD/MIMD Hybrid Architecture

In view of its design, the SIMD architecture is more suited to data-parallel tasks
where a large number of simple processors are used. With the processors arranged in an array,
great performance advantages may be gained as only one processor controller is required for

the whole array, e.g. the MCU for the DAP. However, the processors are constrained in that

Chapter 3; Parallelism and Tools in Computer Vision 46

operations are performed in strict lock-step which means that the architecture is suited for
tasks requiring similar computations over a number of regular data items. The MIMD idea on
the other hand frees and relaxes some of the often severe restrictions imposed by the SIMD
architecture by using a network of conventional von Neumann processors. This, however, is at
‘the cost of the controller and program memory being replicated for each processor and the
expensive irregular non-local processor communication. Such advantages and disadvantages
of the two architectural paradigms have often acted in directing SIMD machines to be used in
low-level, early vision tasks and MIMD machines for higher-level vision problems where a
more natural, independent analysis, may be desirable. Page [Page88b], however, reports work
on implementation of a dual SIMD/MIMD paradigm which attempts to bridge the gap
between the two architectural extremes. This hybrid, called a Disputer, is also suited for
other tasks such as graphics where the SIMD paradigm can exploit the data-parallel
operations found in image processing and analysis, and the MIMD sector may exploit the

task-parallel computations such as ray tracing.

This hybrid architecture consists of a 16 x 16 array of single-bit processing elements
with bi-directional data communication to its North, South, East, and West nearest
neighboufs. This square array of PEs is coupled to a transputer network in a rectangular array
of 6 x 7 transputers. It is reported to have an SIMD computational bandwidth of about 0.5
Gigabits per second and an aggregate MIMD execution instruction rate of 200 MIPS with 10

transputers. The whole system is programmed in Occam 2 with control overlooked via a

control transputer.

Implementation of a Mandelbrot set browser on the Disputer is reported [Page88b].
Here, the transputer network is used as a linear pipeline of 42 processors. The control
transputer sends work packets sequentially down the pipeline and these are taken up by the
transputers in the network. They compute the Mandelbrot set for the pixel in the work packet
and send a run-coded result packet to the control transputer. These are then directed to the
SIMD processor array which renders the pixels. Up to 64 4-bit pixels in a row may be rendered
in 3 SIMD instructions {about 500ns per instruction). Thus, with an iteration limit of 250 on the
Mandelbrot equation, a 512 x 512 image may be tcomputed and displayed in around 3 seconds.
The worst case image, i.e. completely black, is reported to take around 25 seconds. In this
implementation, however, the 42 transputers were found to be the bottleneck which makes
fast rendering of the SIMD array somewhat superfluous. Page reports more recent examples of
a dual-paradigm program for simulation of interaction of Newtonian particles, low pass
filtering, and edge detection [Page89). Depending on the nature of the algorithm, processing
may weigh mostly on the SIMD or MIMD portion of the architecture.

Chapter 3: Parallelism and Tools in Computer Vision 47

For the reader interested in hybrid machines for image processing, a recent article
reports on Adapt, an architecture-independent language based on the split-and-merge

programming model [Webb92].

3.5 The Use of Parallelism in Vision and Display

In recent years, many workers have realised that parallelism is the step forward in
many computer based tasks. Numerous machines now exist which are based on the SIMD or
MIMD parallel architectures. Even more algorithms exist for mapping serial problems onto
these architectures, thus, exploiting the inherent parallelism to achieve a faster, more
efficient program execution. We note that although an algorithm may be mapped onto
several parallel machine architectures, many workers have tried to dedicate such machines
to a particular field, be it image processing, graphics, or vision. This is so as to exploit as
much of the parallelism as possible in the research area. Such dedicated architectures in the

field of image processing may be found in [TM89, NS89, Gree89].

Sleigh et al. [SRHB88], in an attempt to analyse these varying methods, have
examined three architectures in the context of computer vision systems. These are the DAP,
the Reconfigurable Transputer Processor, and the DIPOD system which is a multi-processor
MIMD architecture. They implement several typical computer vision algorithms on these
amongst which include the Sobel, Roberts, and Marr-Hildreth operators and confirm that in
each case, processing speeds were significantly faster than on conventional machines. They
also note that low-level algorithms which involve local interaction between data and
regular computations are suited to the SIMD architecture and MIMD architectures are
generally more accommodating to higher-level data dependent algorithms. Manning ef al.
IMDWS88] and Morrow et al. {MP88] have also reported on the analysis of different image
processing algorithms when implemented on a programmable VLSI processor array such as an

array of transputers or CMU Warp processing elements [AKMS85].

The scope of recent parallel machine vision implementations have been varied.
Kriskelis and Lea [KL89] in the work on image convolution and histogramming, discuss the
implementation of these using the parallel SIMD architecture of the Single Chip Array
Processing Element (SCATPE) chip [Lea86a, JL87] which is an implementation of the
Associative String Processor (ASP) [Lea86b, Lea86c] optimized for numerical computation. It
is constructed as a string of 256 identical PEs each comprising of 37-bits of contents-
addressable memory. SCAPE chips may be linked to form a chain which increases the

processing power of the system linearly. In addition, multiple groups can support control

Chapter 3: Parallelism and Tools in Computer Vision 48

configurations such as Single Instruction control of Multiple SIMDs (SIMSIMD) and Multiple
Instruction control of Multiple SIMDs (MIMSIMD). However, a problem with the application
of string architectures to computer vision tasks is primarily with the mapping of the structure
onto the image data structure. Kriskelis and Lea propose such a method which divides the
image into patches with concatenation of patch lines. Muitiple patches may then be

processed simultaneously on the same string,

Continuing the theme of concurrency in image processing, Forrest [Forr88] describes
exploitation of the parallelism inherent in the image restoration algorithm of Geman and
Geman [GG84] on the DAP. This is an algorithm to enhance the gray-scale pixel images
which have been corrupted by some noise process and seeks to find the most probable estimate
of the uncorrupted image based on the corrupted image. Murray, Buxton, and Kashko [MKB86]

have similarly used the DAP to exploit the parallelism of the Geman and Geman algorithm.

3.5.1 Edge Detection and Model Representation

In the lower-level, early stage of vision systems, image processing tasks show
inherent massive parallelism. This is due to the independent nature of the data which can
lead to a natural mapping of the algorithm onto a parallel architecture. Early low-level
parallel vision implementations have included gradient operators such as Sobel maximum
difference filters. This requires fairly little computation. Implementations, however, of more
computing intensive processes such as the Canny operator can be found in the literature. Ruff
[Ruff88] describes a parallel implementation using a pipelined architecture. It is able to
operate at video rate but the architecture is not applicable to higher level vision processing
which involves unpredictable, long-range support of the data. Another parallel
implementation of Canny is presented in [Wyso89]. This exploits SIMD parallelism on the
DAP which is ideally suited in that the operator relies extensively on the neighbourhood
pixel operations. The DAP version was reported to perform 64 times faster when compared to
an implementation on a Sun 3/160 serial machine. Also, in contrast to the serial version , the

DAP timings were found to be largely unchanged for a complex image containing many edges.

In working on image data, Reddaway [Redd88] examines possible mappings of such
data onto processor arrays as this is critical when implementing algorithms on SIMD
machines. Such mappings onto 2D processor arrays may be sheet or crinkled or a mixture of
both. He describes implementations of this on the DAP and presents performance results for
an example Sobel edge detector. The importance of the mapping technique is revealed here

when we realise that in the experiment conducted, the Sobel operator when mapped onto a

Chapter 3: Parallelism and Tools in Computer Vision 49

512 x 512 image in a crinkled, combined, and sheet manner was executed in 2.4, 4.9, and 8.0

msec respectively.

As the effectiveness of any vision system is not only dependent on the recognition
and reconstruction algorithms but also on an adequate means of representing the two and three
dimensional models, Brady and Scott {BS88] review two such representation schemes:
Symmetric Axis Transform (SAT) and Smoothed Local Symmetries (SLS) which was designed
to overcome some of the problems of SAT. They note that difficulties arise in developing a
parallel algorithm to compute the SLS and introduce an algorithm, implemented on the

Connection Machine, to compute the reflectional symmetries of the SLS.

3.5.2 Towards Higher Levels

According to Lamdan and Wolfson [LW88], the Geometric Hashing algorithm has
potential for parallel implementation. A recent article [RH92] describes such an
implementation on the Connection Machine architecture. Here, Rigoutsos and Hummel
explore two parallel hashing algorithms: 1) a parallel hypercube to route information
through a series of maps, and 2) a buﬁding«b!ock algorithm which used the CMs large
memory resources to achieve parallelism through broadcast facilities from the front end.
Rather than assigning each hash table entry to a separate processor, the entire list of entries
for a hash bin is stored in a single processor’s local memory. This makes the preprocessing
phase of creating the hash tables far less efficient due to the fact that the processors need to
randomly access local memory as entries are appended to the lists. However, as the this
phase is computed off-line, it does not present too great a problem provided that no single list
becornes s0 long as to demand an exceptional amount of memory. During recognition, the entries
in the hash bins which receive votes are counted. Rather than histogramming (i.e. counting)
by sorting, the authors choose a message passing strategy which involves each hash bin that
receives one or more votes from the scene points concurrently traversing its list of entries and
sending messages to the corresponding buckets [RF192]. This, however, accounts for 9% of the
recognition phase execution time. They suggest two possible enhancements which employ a

rehashing function along with the use of certain symmetries in the hash table to reduce the

entry lists.

The system was enhanced by running C code on the front end with system calls to the
CM using its Paris package which includes many of the building-block and routing algorithms
used. The model examples used are dot patterns of 16 points each. These were to be located in

scenes of approximately 200 dots after subjection to rotations, translations, and scalings.

‘Chapter 3: Parallelism and Tools in Computer Vision 50

Along the same lines, Wallace ef al. [WMMW?92] present recent work which
exploits MIMD architectures in intermediate and high-level vision including segmentation
and model-based interpretation. They analyse different approaches in developing parallel
algorithms and illustrate direct implementation, i.e. implementation employing a parallel
language specifically designed for a parallel environment. This is performed by
implementation of the Hough Transform for feature detection in 2- and 3D images. As this is
expensive in both computation and storage requirements, they further modify the basic

algorithm to exploit the greater flexibility of an MIMD network of transputers.

. Finally, an interesting report on the use of parallelism in high level vision systems
is discussed in [MBLSB92]. Here, Marsh et al., at the University of Rochester, present a
checkers playing system in a multimodel parallel programming environment. This is an
active vision system in that observer-controlled input sensor are used and action is taken
dependihg on the visual reports. Each module in the multimodel program may be
implemented under a different parallel environment including MultiLisp, Lynx, the Uniform
system, or Uthread. This integrated wvision architecture is controlled under the Psyche

operating system which was specifically designed to support multimodel programming.

In concluding, it can be seen that the use of parallelism in the areas of vision and
display has not been restricted to any particular level. The problems tackled have, however,
been strongly affected by the machine architecture. Lower-level issues have generally been
implemented on SIMD architectures, with higher-level control-dependent tasks usually, but
not exclusively, implemented on MIMD networks. As parallelism has not become popular
untill recent years, a lot of work is still necessary to bridge the gap between the two extremes
of machine architecture. Future constructions such as the hybrid of Page could therefore offer

a more flexible and natural basis for concurrency.

3.6 WINSOM - A 3D Solid Modeller

In designing and testing any recognition strategy, it is important for test data to be
readily available. Efficiency and ease of generation are factors important in the production
of the data. If a camera image is the source of the scene visualisation, a 3D solid modeller is
an effective tool in the production of such images. As it generates images artificially, we are
able to determine parameters of the camera geometry precisely. Also, the lack of noise in the
image makes the task of segmentation and 3D reconstruction more robust, therefore providing
more accurate data necessary for the matching process. As the penultimate step to real-world

scene recognition, the solid modeller is a very effective tool.

Chapter 3: Parallelism and Tools in Computer Vision 51

WINSOM [Quar84} is such a solid modeller. It allows the user to build raster
pictures of objects which are defined by Constructive Solid Geometry (CSG). This means that
compiex‘scenes may be created using basic primitives such as blocks, cylinders, and spheres.
.Objects may be combined using the binary algebra operators union, difference, and intersect,

and manipulated under a number of transformations. For example,
pair = ball UNION tube AT (100, 20, 50)

will combine two predefined objects (ball and tube) using the union operator and translate the
result {pair) by (x=100, y=20, z=50). Using this, it is therefore possible to determine precisely
the pose of any defined object.

The rendering of the objects uses a light simulation technique known as ‘ray tracing’.
This is a powerful method in realising artificial scenes but suffers in that it is
computationally expensive and, therefore, slow, especially when implemented sequentially
(as in WINSOM). Using it, however, we are able to define and manipulate various light
sources in the scene and assign surface properties to the objects. In determining images suitable
for stereo processing, WINSOM provides two operators: STEREO and DISPARITY. In the case

of structure from motion processing, the object may be translated step-wise for each image

frame.

3.7 Edge Detection

The detection of edges is usually one of the first processes undertaken in any vision
system implemented with camera image data. The need for this is obvious - it simplifies
image analysis by significantly reducing the amount of input data to be processed. A careful
balance must, however, be established between the amount of image data retained and the
preservation of structural information pertaining to object boundaries. After the initial edge
detection, the 3D reconstruction can be performed. It is, however, essential that the edge
detector exhibits a low error rate as the performance of modules requiring its output are
hampered by inaccurate or spurious responses. Thus, in consideration, three criteria exist for

the effective performance of any edge detecting algorithm [Cann86]:

1) The detection must be of a standard that it does not fail to respond to true edge
points and falsely detects non-existent edges. This critetion is maximized by

_ maximising the signal-to-noise ratio.

Chapter 3: Parallelism and Tools in Computer Vision 52

2) A detected edge point must correspond to within a small deviation to the

centre of the true edge point.
3) Multiple responses to a single edge are not permitted.

This extraction of edges from gray scale images is dependent on two procedures, first:
the detection of edge elements - edgels, and second, the linking of these edgels to form edge
strings or edges. The extraction may either be via a parallel method - whereby processing of
parts of the image does not depend on any other, or sequential - where processing in one region
is dependent on the results of an earlier region. The type of operator used in detecting the edge
depends on the type of edge sought. The profiles produced by an edge are affected by the
illumination and may be positive or negative step, roof, or edge-effect edge types depending

on whether the object is illuminated from far away, from nearby, or by specular rays.

3.7.1 The Roberts and Sobel Edge Operators

Most edge detecting procedures consist of a mask or operator applied over the
intensity map of a gray scale image. By computing a gradient function in respect to image
intensity, intensity discontinuities produced at object boundaries may be identified on the
basis that a high local intensity gradient, thus indicating a sudden intensity transition, is
likely to be the cause of an edge discontinuity. Many edge operators for this task can be found
in the literature. A one-dimensional operator may be used to find edgels at an edge whose
direction is predicted. When the directions of the edges are not predicted, a two-dimensional
operator is used to determine edges of all directions. The Roberts operator is a simple two-
dimensional operator for step type edges and uses a 2 x 2 window to determine the gradient
function g(x,y) for each pixel at (xy). The convolution involves the summing of neighbour-
hood intensities multiplied by the operator values to obtain weighted averages at each pixel
location. The operator window is defined in terms of x and y using two templates g, and g, for

gradients:

mapped to the pixels

(x,y+1) (x+1,y+1)

(x,y) (x+1,y)

~ Chapter 3: Parallelism and Tools in Computer Vision 53

This gives the image gradient function:

gl = N [fxy) - foerLy+ DI + {flxe1y) - fey+ D)2

where f(x,y) is a function of the intensity. It can be seen that the operator is based on
comparative intensities in orthogonal directions across the window diagonals with the
gradient function ranging from zero - indicating that all four pixels are of equal intensity, to a
large positive number dependent on the neighbourhood pixel intensities. Therefore, the
larger the gradient function value, the greater the possibility of an edge boundary. However,
a particular disadvantage of an operator with such restricted neighbourhood comparison is
that it becomes more sensitive to noise and, therefore, prone to misidentification of edge
pixels. The Sobel operator uses a larger processing window in an attempt to reduce the
sensitivity to noise. Unlike one-dimensional operators, a degree of neighbourhood smoothing
is achieved by applying the operator in both x and y directions. Like most operators, it is

defined in a 3 x 3 window as this can contain all the neighbours of the centre pixel:

11011 11211

2101 2 010

“1] 011 ~11-21-1
& &

and delivers the gradient function

gy = [{(fa+ Ty+T) + 2fe+ Ly) + flxely-1) - (f-Ly+1) + 2fCe-1y) + foe-1y-D)?
+ ([(foe-1,y+1) + 2fCey+ 1) + flx+1y+1)) - (fx-1y-1) + 2f(x,y-1) + For+1,y-IN2 15
At detected edges the convolution signal is used to derive estimates of edge
magnitudes and direction. The direction gives an indication of the alignment of the edge and

is measured as an angle a, given for the Roberts operator as

2 fxely) - fy+1)
*= 8 = tan U(x,y)~f(x+1,y+1) '

and for Sobel (for large angles) as

g [y)+ 26y D) + flar Ly D) - (fa-1y-D) 2fCe,y-1) + flar1,y-1))
o =t T e) ¢ 2fat 1) + flxrd,y-1) - (el ye1) + 2fx-1y) + fely-D)f

The Roberts operator is not appropriate for the detection of roof type or edge-effect

edges. For these, Laplacian operators are used where the Laplacian is defined for the

function f(x,y) as

VI(x,y) = dYxy)/9x + Pfxy)/oy*

Chapter 3: Parallelism and Tools in Computer Vision 54

After applying the edge operator, a thresholding procedure is performed on the
edge value image array. Thresholding attempts to pick out edgels by prefemng (xy)
locations whose edge values are above a threshold level (therefore indicating the greater
possibility of an object discontinuity being present). Being simple, this is not always effective
in determining edgels as, if the threshold is too low compared with the contrast, many pixels
are indicated as composing edgels. A more robust method is to detect the local maxima which
corresponds to the centre of the edge when the edge intensity profile is smoothed and the
operator applied to it. Since noisy profiles may have fluctuating positions of local maxima,
the method is usually applied to a pre-smoothed image or by using an operator with a
smoothing effect. The local maxima may then be detected by the zero-crossing method of
Marr and Hildreth {MHB80, Marr82j. In their work, they propose that after an initial
application of the Gaussian operator to the image for smoothing, the local maxima may-be

determined by the application of the Laplacian™ operator and then extracting the zero-

crossings.

3.7.2 The Canny Edge Detector

The detector due to Canny has proved popular for the recovery of edge data. In
[Cann86} he presents a procedure for the design of edge operators for arbitrary edge profiles
and presents mathematical forms for the first two criteria of edge operators given in Section
3.4, Given an operator with a response f(x) at an edge G(x) and assuming that the edge is

centred at x = (), the signal to noise ratio is determined as

j*“’ G(-x) fix) dx
-W

W o2
nm”w f«x)dx

where the numerator is the is the response of the operator to the edge at its centre with the

| SNR = m

assumption that the operator has a finite impulse bounded by [-W, + W], and the denominator
is the root-mean-squared response to the noise n(x). Here, ng? is the mean-squared noise

amplitude per unit length. The localization is given as

f”’ G'(-x) f'(x) dx
-

Localization = 2)
no[[£ 200 dx

* . -
This produces the procedure which is known as a Laplacian of a Gaussian.

Chapter 3: Parallelism and Tools in Computer Vision 55

where for the responses, a local maximum in the total response is assumed to be at x = 0. As
simultaneous maximization of these two criteria is sought, it is achieved by maximizing

their product

j*“’ Gl-x) flx) dx
-w

p [" P dx n [T 1300 dx

which is achieved when f(x) = G(-x) in [-W, +W]. However, Canny notes that it will be
almost impossible to find a closed form for the function f which will maximise (3) given that
the operator is only permitted to give one response to a single edge and shows that a

numerical optimization may be performed directly on the sampled operator impulse response

J'j: G'e-x) f(2) dx

3)

to find optimal roof and ridge edges.

In concluding this section, we feel that the work described by Canny cannot be

summarized effectively without going into detail. We therefore direct the interested reader

to the reference [Cann86).

3.8 Principles of Three Dimensional Image Reconstruction

Many methods exist for the determination or reconstruction of 3D information from
camera image data. Depending on the constraints on the scene and the input data available,
the structural determination may be from stereo, motion, shading, or texture. In this section
we describe briefly the principles of the first two techniques - structure from stereo and
structure from motion. These are very useful procedures in vision systems and their accuracy is

important in such systems.

The advantage of stereoscopic vision is that the position of a point in three-space
may be recovered from 2D images. The principal idea is the use of disparity data of points in
the left and right images based on the geometry of stereo vision. The disparity is the
difference in the position of a point in one image compared to when observed in the other
image. Using it, and the properties of right-angled triangles, the depth information may be

recovered from an image pair. Consider Figure 3.4 below.

‘Chapter 3: Parallelismand T ools in Computer Vision : 56

P(x,y.z)

Figure 3.4: Principles of stereo geometry

Given two cameras Cj and C; placed in a world coordinate space with positive x to
the right, positive z into the scene, and positive y vertically upwards (out of the page), a
point P at (x,y,z} will be projected onto the image plane of each camera as Py and P; for the
left and right cameras respectively. If the interocular separation of the cameras is 2d and
each is defined in its own local systern, here, with the image centre at x; = 0 and x, = 0 for left
and right cameras respectively, then the 3D coordinate of P may be determined from similar
triangles. Note that P; and P; are measured in their respective camera coordinate systems.

Note, also, that P,C) and C;P form the hypotenuses of a set of similar triangles such that we

can state for the left camera
Py/f=-(d+x)/z (4)
where f is the camera focal length. A similar case exists for the right camera
P /f=(d-x)/z (5)
Combining (4) and (5) to eliminate x and then rearranging we obtain

z = 2df/P-P (6)

We can see from () that P;-P is the disparity between the projections of the point
P. As this approaches zero, z—e and becomes less reliable. Once z is determined, x and y may
easily be obtained. The major problem, however, is finding corresponding points in the left
and right images in order to compute the 3D positions of the points in space. The
correspondence process usually involves extracting feature points in the left image and finding
their corresponding points in the right image. A point is regarded as a feature point if, in the
abscence of noise or specularities, gray scale intensities change considerably in its

neighbourhood region. These points must be selected so that unambiguoﬁs matches can be

determined.

Chapter 3: Parallelism and Tools in Computer Vision 57

Like the stereo matching algorithm, a similar correspondence problem may be found
in determining structure from,motion. Here, visual motion or optical flow is used. This is the
velocity observed (from a set of image sequences) with each point on a 2D image plane when
the scene, the observer, or both, move with respect to each other. If the velocity of the
observer (or scene) is known, it is possible to recover 3D information from the images. Two
techniques exist for the computation of this motion. The first, gradient or intensity-based
schemes, use spatio-temporal processing of image irradiance gradients to compute the
component normal of imége motion along the gradient direction (or moving edge). This leads
to the aperture problem which is the ambiguity experienced in determining the motion
component of a selected area of the image. From Figure 3.5 we can see that although the
motion of the triangle is from left to right, the motion component as viewed in the selected

area is in a north-easterly direction perpendicular to the edge.

.. selected area

.........

Figure 3.5: Example of the aperture problem

The second technique, token tracking, however, makés use of image features and
suffers from the correspondence problem found in stereo matching in that a feature point in one
image must be located (tracked) in a sequence of images. The displacement of feature points
from frame to frame Ar is related as

Ar =1t At

- to the visual motion I, where At is the interframe time. Although this technique is much

simpler than gradient schemes, it can yield the full visual motion [MB90].

3.9 The ISOR System - A Structure from Motion Toolset

The ISOR system (Image Sequence Object Recognition) developed at GEC Hirst
Research Centre for the Alvey project: ‘Spatio-Temporal Processing and Optical Flow for
Computer Vision’ is a complete system for the recognition of polyhedral objects from a set of
image sequences [MCB89]. It is a 3D model-based, image recognition system that functions in a
restricted blocks-world type of domain. Three dimensional data, recovered from a set of time

varying images of a polyhedral object, is matched to an edge or face-based model

Chapter 3: Parallelism and Tools in Computer Vision 58

representation. A single camera is used to generate this image sequence and both structure and

motion are obtained from optic flow.

Three time varying image sequences of the data are fed into the system. Processing

is maximal for the central image. The system is described in four main phases:

1) Low-level image processing and recovery of visual motion;
2) Image and visual motion segmentation;
3) Structure from motion;

4) Model matching and validation of interpretations.

Since there is no stereo disparity, differential focus, or range-finder data, the
depth/speed scaling ambiguity cannot be resolved bottom-up. Instead, the ambiguity is
resolved at the stage of model matching, The matching is performed by a serial
implementation of the Grimson and Lozano-Pérez algorithm using modifications of the
pruning constraints. The matching data may be edges (for edge matching) or faces (for face
matching). The models are stored as hand-coded vertex maps representing model edges and
faces. For edge matching, model edges are sorted in order of decreasing length from which
constraint look-up tables are produced. Four main constraints are calculated which use the
angles between the edges and between an edge and a line drawn to a point on a second edge as
the matching invariants which are used to prune the interpretation tree. For face matching,
the constraints are applied to planar sections. Matching commences using the data edges
(sorted in order of increasing length) or the data face sections, along with the constraint look-
up tables to generate a set of feasible interpretations. These interpretations are refined by
testing the global consistency of each match with the model. A program, edgerst for edges, or
facerst for faces performs this step using a simple least-squares fitting to determine the
rotation. Implementations of the quaternion method of Faugeras and Hébert [FHB83] in the
form of the programs edgegrst and facegrst offer a more accurate computation of the model to
sensor space rotation. The translation and scale of each interpretation relative to the sensor
are also computed. These are done by a simple averaging procedure. The interpretations are

then passed or failed depending on how close the data features maps onto their respective

model features.

3.10 TINA - A Stereopsis Based Recognition System

The TINA vision system (There Is No Alternative) is a complete visualisation and

recognition system implemented in a SunView environment on a SUN workstation. It is built

Chapter 3: Parallelism and Tools in Computer Vision 59

with the ability to recover 3D descriptions from binocular stereo images and, at present, these
descriptions consist of point, straight edges, and planar curve primitives. The toolset is
composed of a mouse driven front end consisting of a comprehensive set of tools for the
processing and manipulation of stereo data and camera set up. Figure 3.6 illustrates the user

interface with the main process tools.

Detailed usage of the system has proved it robust in the recovery of geometric
descriptors and their subsequent construction into partial 3D wire frames. As opposed to full
wire frames, these are permitted to include descriptors which arise from surface
illuminations such as specular highlights. The system also includes a process for the
segmentation of planar curves using both global and local behaviour analysis applied to
edge-based stereo data [CPPMF90].

Mad fes bean 550 P 7 STl by R
beis EEm]acrs N) Croe) N E
Ta0Ls Ty (Tagea Ty (Yienara) {UREatet) (RutcRor) (Wi mavie) (Fhav mavie)

(3-0 toal} [Staree } { Ve) (Sepeant) (CF¥FC)

R el

Dirsetory: -~y
Basu rare: unknaun %EBQ- Ol::uu; u;;u roem
Viow parase: view.params ground L gaize " b

PARBN QO insize © 256 Tdqe vook

CAMVAS SIZE Sterss 3296 Throsd 256 (progese) (eepny) (ackal) CRTEE) (o)

i (Cnear7) (geon 3 (_prof 3 (_pely) (rectify)i
PARMMS 2 loutheas t 6.20000

=8 LEFT O athar RIGHT O othar PICK FUNCTION OF athor

Fign

AR A Anvag

FIESE
= - =

W AT Y 2 S i 2
prektune O tocus ;
(TRFT) (Wvmods) (3% c1iche) (netonar) {aetdd) {outgrasp) ((go rex)

"

Rintoo! neching: 4111130

: 8.e00009,
NOUSE €Y othee PICK O print
e Corth ITVLE Cwire® Onalebel

{7nTt) {at sirirgs) {Fick stringa)

{cTagTay} {overTay] [curves] (out curves)

PICK 20 O Other

coares 05 pe

oerth O 3mple

SMOOTH & Hore

PARAMS T amoothosiges !
T knot apace :

£ _look {ecint J(stats }
Comt) (FRne) (i) GRme) () O et

{vertax] { join |} [surface) { face }

f wauni] {paralliei] {_orth:

1.Dl¥

Calib stimuluer /grouchol/sbp/axpurt/caletinuli/atin

Figure 3.6: TINA tools user front end

The edges are generated to sub-pixel accuracy from gray scale images using a Canny
edge operator with further improvement by thresholding. The stereo matching algorithm is
an improved version of PMF [PMF85] which prefers matches between left and right image
edges if the ratio of the difference in their disparity to their actual physical separation is

below a threshold level (here taken as 0.5). They must also satisfy a number of higher level

Chapter 3: Parallelism and Tools in Computer Vision 60

group constraints amongst which are uniqueness, figural continuity, and ordering along
epipolar lines. The number of possible matches between edges in the left and right images is
reduced using 4 priori information about the geometry of the cameras. In saying that, no a
priori assumptions are made about the qualitative organisation of the cameras such as the
need for the principal axis to intersect at a single point. However, permitting the field of
view and the images obtained from each camera to be as similar as possible, and ensuring
that the ratio of the viewing distance to the interocular camera separation is fairly large
(about 5:1), greatly assists the matching process. It alsp improves the accuracy and robustness

of recovered 3D features.

3.10.1 Reconstructing 3D Primitives

The strings of edge primitives obtained from the stereo processing are grouped into
higher level primitives and combined with stereo rﬁatching and calibration data to obtain
the 3D primitives. In recovering plane curve primitives, eatly versions of TINA began by
obtaining estimates in a disparity space from sub-pixel estimations of individual edge
primitives by way of their off-epipolar differences and, subsequently, fitting a plane to the
disparity data by orthogonal regression [PPM87]. However, the algorithm did not recover an
accurate esiﬁl'rnate of the disparity between matched edges in the two images. In the current
version, higﬁ-levei grouping into 2D features such as edge strings, straight lines, and conic
sections are performed prior to disparity detection [CPPMF90]. The disparity may then be
obtained for each matched edge point from the intersection of the 2D descriptor with the

epipolar corresponding to the sub-pixel location of the matched point.

The edge primitives are segmented with various parameterizations depending on
whether straight lines or planar curves are sought. For straight lines, this is performed by a
recursive fit and segment method, the fitting being carried out by orthogonal regression. This
results in a set of 2D straight line sections which are combined with stereo matches to obtain
3D sections using least-squares fitting of disparity to line. The recovered 3D primitives are
described with respect to the left-handed coordinate frame of the left parallel camera. They

may subsequently be transformed to the coordinate frame of the physical left camera.

Various combinations of 2I) segmentation and 2- and 3D fitting algorithms are
permitted by the system for the realization of 3D planar curves. An initial 2D segmentation
combines adjacent edge primitives into curves provided that their combined edge strings are
sufficiently closely approximated by a circle. After this, the curved edge strings may be
fitted by higher level primitives which, at present, are interpolating cubic splines and conic

sections. The fitted 2D curves may then be interpreted in one of four ways into three-space by:

Chapter 3: Parallelism and Tools in Computer Vision 61

1) using the edge disparity data directly,

2) fitting an interpolating 3D spline,

3) projecting on the *best fit’ plane in 3D,

4) finding the best affine transformation between left and right images.

Combinations of 2D fitting with an interpolating conic fitted using a Bias Corrected
Kalman Filter and 3D interpretation by projecting on the best fit plane in 3D tends to lead to

much more accurate curve interpretations.

3.10.2 Model Matching and Verification

The model matcher of the TINA system is, at present, restricted to polygonal
structures. It uses pairwise relationships to prune the interpretation tree and a focus feature,
chosen from the group of features, which is required to have a good match at all times. This
reduces the complexity of the search space. Cliques above a threshold cardinality between
the match features are identified. These are used to determine transformations between
model and sensor spaces. In building or correcting test models for the matcher, a statistical
geometry package ‘Geomstat’ may be used. This allows wire frames to be built interactively
such that geometric constraints such as orthogonality of faces, edge-vertex intersections, and
parallelism of edges are satisfied. Corrections to the whole structure may be necessary to
make the constraint linearised. This is true for the orthogonality constraint in which the

corrections are optimally determined using an extended Kalman measurement filter.

Hitherto, the system has been limited to straight lines and circles as matching
primitives. Cai et al. propose a planar curve segmentatibn method based on the analysis of
curvature and the local and global behaviour of these curves [CPPMF90]. This would make it
possible for matching to occur using conic and various forms of generic curve descriptors such as
splines. By fitting descriptors in the left image, the 3D curves may be projected.into space
using the disparity data from the right image. This is more robust than the direct fitting in
three-space of Pridmore et al. [PPM87]. This bottom-up approach aims to locate generic
segmentation points (such as corners and smooth joins) and produces a symbolic description of
the curve as a set of knots which are joined by arcs with descriptions such as straight,

corncave, or convex.

:'Chép”te'r' 3: Parallelism and Tools in 'Cc}mput'er“Vi'sibﬁ' - - '62'

3.10.3 Recovering Curves

‘As curvature is invariant under rotation and translation operators, it is widely used
as an indicator of corners, smooth joins, and curved objects. Sharp changes in orientation along
a line produces a high curvature and indicates a corner at that point. These may be as a result
of the intersections of two straight lines, a straight line and a curve, or two curves. However,
because of corner-rounding effects due to data smoothing and finite differencing, this is not
sufficient in locating the corners. Local behaviour analysis is used to overcome this. Local
analysis cannot, however, foresee events accompanied by small and gradual shape changes.
An example is a long curve segment with low curvature of which a short part results in a near
straight line. Here, global analysis must be used to track the behaviour of the curve. Using

. the mean polygonal area enclosed by the curve and its chord (as the global analysis
description), long running arcs with low curvature may be distinguished from straight lines.
Note, however, that for corner segments formed by two straight lines, or a straight line and a
curve, the mean polygonal area is nearly zero and these may be distinguished from the

corners formed by two convex curves, two concave curves, or a convex and a concave curve,

The segmentation algorithm initially proposed reduces data noise with the B-
spline smoothing of Cai [Cai89]. Using a high/low two-level curvature classifier, a rough
segmentation of the curves is produced. This is refined with a high/low/zero three-level
curvature classifier thus separating low curvature arcs from zero curvature straight lines. A
set of semantic descriptions of the curve is then obtained using a knot/straight/convex
/concave shape classifier. This also produces a set of critical knots for all segments. The final
symbolic representation is obtained with a linear or quadric curve approximation applied to
each segment. It is noted, however, that the segmentation method proposed is not always
successful in extracting an elliptical curve as a whole, but experimental results have

succeeded in several cases using the same choice of low and zero curvature thresholds.

3.11 Conclusion

In recent years the effect of parallelism in both vision and display has been most
evident. We have reviewed some of the work describing implementations of once serial
algorithms on parallel architectures. These architectures have included the DAP and the
Connection Machine, both popular in the field in view of their massive parallelism.
Networks of transputers have also been populaf’ due to their flexibility in higher level tasks.
We have also described some of the processes that are necessary in the visual interpretation

of image scenes. These have been integrated into systems implementing 3D primitive recovery

Chapter 3: Parallelism and Tools in Computer Vision 63

from both stereo and motion. However, we must stress that this is a qualitative rather than
quantitative description of the tools available. A more detailed analysis of the procedures
and tools available in Computer Vision can be found in the papers and technical reports listed
in the bibliography at the end of this dissertation. We have concentrated here on the camera
imaging and not, on other methodologies such as data retrieval using tactile or range-finding

techniques. as we are principally interested in vision.

A very important procedure in any system using camera images is an edge detection
or feature finding process. This drastically reduces the amount of input data and, in doing so,
contracts the search space for further processing. The Canny edge operator has become
popular in view of its speed and accuracy. However, work is still progressing and
improvements are sought as higher-level vision procedures may be highly dependent on this
lower-level processing. This is true in bottom-up systems such as TINA and ISOR. However,
other systems have used a top-down approach where a high-level control architecture

regulates lower-level processing.

The procedure and tools reviewed in this chapter have been restricted to those
encountered during the project. In conjunction with the model-based vision review of

Chapter 2 they form a background for the research work which is to be described.

Parallel Process Techniques for 3D Model-Based Vision

Chapter 4 :

Parallel Visualisation for Recognition

4.1 Introduction

Visualisation and closed-form testing of algorithms are vitally important in the
development of model-based vision systems. The general idea is that, if we can specify the
models in their own coordinate frames, their subsequent transformation in terms of their
translation, rotation and scaling, and the camera geometry, we can then generate images for
which the results of our visual recognition and localisation algorithms are known a priori.
The fully tested and validated models and algorithms can then be used to analyse scenes
where the details of the identity, position, orientation, scale and motion are not known, but

where we have a range of models with which to form our interpretation of the scene, that is,

model-based vision.

Ray tracing, or ray casting, is an effective method of generating such 3D scene
images. However, this is very often time consuming and therefore is not practical for many
image generation purposes. Introduction of parallelism is likely to effectively reduce the
time impracticalities, and make the method more suitable for a system where several
slightly different images of a scene must be generated efficiently. We present an SIMD
parallel version of a generalised ray fracer which includes a Constructive Solid Geometry

datatype, and an extension for Digital Terrain Maps.

)

In the following sections, we present the background for the work, its parallel
-implementation, and comparison with serial versions of the algorithm. We show that, for
efficient image generation, the ray casting (and ray tracing) algorithm is suited to the SIMD
architecture of the DAP. This is achieved by a 1:1 pixel to processor mapping which can

readily be applied to other SIMD machines.

Chapter 4: Parallel Visualisation for Recognition 65

4.2 Ray Tracing and Ray Casting

Ray tracing [Appe68, Whit80], as the name suggests, is a technique in computer
graphics where complex images can be generated by ‘tracing’ the path of light rays which
are received by the eye. The early ray tracing algorithms of Appel have been extended by
Whitted and other workers [Whit80]. This has resulted in probably the most powerful
technique for rendering realistic pictures and can exhibit such light phenomena as soft
shadows, reflected illumination (where an object is reflected onto another), and mirror-like,
specular reflection. Transparency effects of refraction and fuzzy blur are also possible. Using
this, naturally occurring phenomena such as clouds, fog, and flames may be realistically
modelled [KV-H84].

The popularity of the technique also stems from its conceptual simplicity. The
general principle is the projection of simulated rays emanating from a defined eye position
through every pixel in the image into the scene world. The computer screen may be viewed as
a window through which the observer is looking to see a collection of objects held behind it.
Each ray may be reflected and refracted to some degree by the objects until they eventually
reach the light source or reach the limit of the tracing. The fundamental idea is, then, to
obtain the global illumination information for each pixel which is dependent on the degree
to which the ray passing through the pixel has been absorbed on interaction with the various

surfaces in the scene,

light
source

ays
pasition

surlaces 51 and 53 are transparent

Figure 4.1: Path of light through pixe] interacting with objects in the scene

This is analogous to the real world where rays emanating from a light source are
repeatedly reflected and refracted by objects in the scene. The ray tracing problem then
reduces to the fundamental calculation of finding the intersection of 3D lines (rays) with

object surfaces.

Chapter 4: Parallel Visualisation for Recognition 66

On interaction with certain materials, a proportion of the ray will be refracted and
also reflected. This will create two rays of a now reduced intensity. These rays will go.on to
make subsequent interactions with other objects in the scene. Eventually some will find their
way to the eye position whilst the majority will not. However, an infinite number of rays
.will be produced by the light source and to follow up all of these proves unfeasible.
Fortunately, this is not as fatal as it first seems. The key is to reverse the search and follow a
relatively small number of rays - those that reach the observer. For this reason, the trace is
worked from the eye position to the light source, immediately eliminating a huge number of

‘dead end’ traces.

The intensity of the ray reaching the eye position must be computed to set the
colour/intensity of the pixel through which it passes. This is deduced from the intensity‘of
the original ray and then by calculating the intensities of the subsequent rays after
interaction with the objects. Of course, some rays may completely fail to collide with an
féb]ect surface. The pixels of these rays must then assume the background colour. The ray trace

"and intensity determination may best be represented in the form of a tree structure. Each node
of the tree represents a ray-surface intersection, and each branch of the tree represents the
ray reaching the eye position. At each node of the tree, at most two sub-branches representing
the specularly reflected and refracted rays are generated. We note that diffusely reflected
rays are not to be traced since there are an infinite number of them. The effect of these
diffusely reflected rays is approximated by an ‘ambient’ term in the lighting function. The
radiosity method deals with such effects in a more systematic way and calculates the
radiosity of surfaces in a viewpoint independent'fﬁénner [GTGB84, NN85]. The tree is

processed in a post order fashion and the intensity of the ray is not decided until all the

intensities of the ray sub-branches have been computed.
eyeposition

light source
Figure 4.2: Reflection tree

From the reflection tree in Figure 4.2, all rays excluding R5 are required for the

calculation of the colour/intensity of the light reaching the eye position.

bt '3

Chapter 4: Parallel Visualisation for Recognition 67

A simpler form of ray tracing, which does not have the effects of reflections and
refractions, is ray casting. Instead of following the paths of the rays as they collide with
objects in the scene, the ‘tracing’ is stopped on the first collision. The illumination intensity of
this object is then calculated. This will, therefore, give the effect of all objects in the scene as
being opaque and non-reflective. As a consequence, this technique is much faster for rendering
a scene but does not produce the realistic images seen in the full ray trace, a definition of
which is given below.

procedure rayirace scene

for each pixel from bottom _left to top_right do

ray = make_ray{from_observer, to_pixel)

first_object_hit = recursive_trace{from_observer, ray, object_rgb)

if (first_object_hit is valld_object) then

display_pixel{pixel, object_rgb)

else

display_pixal{pixel, background_rgb)
fi

od
end

function recursive_trace{from_point, ray, object_rgh) : object_number
begin
min_t_value = FAR_AWAY
for each object from first to last do
current_t_vailue = t_value of intersection
if (current_t_value < min_t_value} then min_t_value = currené ¢ _value i
od
hitpoint = point of intersection of min_t_vajue
normal = surface normal at hitpoint
object rgb = shade_object(hitpoint, ray, normal)
return{object number of object with min_§_value)
end

function shade_oblect(hitpeint, ray, normal) : object_rgb
begin
cbject_rgb = ambient Light contribution at hitpoint
object_rgb = object_rgb + diffuse light contribution at hitpoint
object_rgb = object_rgb + specular light contribution at hitpoint
if {ray hit object && maximum trace level not reached) then
in
1f (object surface is reflective} then
begin
increment trace level
reflected_ray = calculate reflected ray
first_object_hit = recursive_trace(hitpoint, reflected_ray, new object_rgt)
if (first_cbject_hit is valid object) then
object_rgh = object_rgb + reflected light contribution*of new_object_rgb
else
object_rgh = object_rgh + reflected light contribution of background _rgb

decrement trace level
end
i
if {objeci surface is transparent) then
begin
increment trace level
transparent_ray = ray
first_object_hit = recursive_trace(hitpoint transparent_ray,new_object_rgh}
if (irst_object_hit is valid object) then
object_rgb = object_rgb + transparent light contribution of new_object_rgh
else
object_rgh = object_tgb + transparent light contribution of background_rgb

decrement trace tevel

E‘“%

return{object_rgb)
end

Figure 4.3: Serial ray tracing algorithm

Chapter 4 Parallel Visualisation for Recognition 68

Note that the shade_object function is defined recursively (indirectly via the
recursive_trace function). Modification of this algorithm for ray casting will simply involve
limiting the maximum trace level to one. This ensures that after initial collision with an
object, the trace is terminated and the colour/intensity of that point computed. On tracing any
reflected rays however, it is most important to realise that testing all the objects with the
reflected ray (via recursive_trace) will inevitably produce a valid intersection point with
the object from which the ray is reflected from! This is due to floating point precision and is
overcome by simply ignoring any such intersection with the source object, for once a ray exits
from one of the standard objects (box, sphere, cone, plane), it will not normally intersect again

unless after a further reflection from another object.

Although ray tracing has been the primary technique where the production of
superior images is concerned, it has often been rejected when there are considerations of speed
as it is very expensive in terms of CPU usage. In Whitted’s original 1980 paper he estimated
that about 90% of the time is spent on intersection calculations. Thé time taken for complex,
multi-object scenes can stretch into hours, or even days! For example, consider rendering a
scene of dimensions 1024 x 1024 containing 100 primitives with an average of 2.75 intersection
calculations per primitive (derived from a sphere, cone, box, and cylinder). Testing each
pixel ray against all primitives results in 288 x 10® intersection calculations for the complete
image! For this reason, attempts to reduce the number of intersection calculations as a means
of reducing the overall ray trace time have been varied. Bounding volumes provide an
effective method of decreasing the amount of time spent on intersection calculations for
complex objects. Models which are relatively complex to test may be enclosed in a bounding
volume whose intersection calculation is less expensive. Such volumes have included the
sphere [Whit80], ellipsoid [Bouv85], and box [Roth82]. A tighter bounding volume is given by
[KK86] which is defined as a set of infinite slabs each defined by a pair of parallel planes

which bound the object. An object need not be tested for intersection if the ray fails to intersect

with its bounding volume.

Attempts to reduce the large usage of CPU time have included the process of beam
tracing [HHB84], cone tracing [Aman84], and pencil tracing [STN87]. They are based on
Whitted’s suggestion that unweighted area sampling should be used to avoid the drawback
of point sampling a regular grid as in conventional ray tracing. The algorithms tend to
accomplish anti-aliasing (see later section), and at the same time reduce rendering time by
taking advantage of coherence between neighbouring pixels. Williams, Buxton, and Buxton
[WBB87] have also been successful with an SIMD implementation of a ray tracer which

makes use of parallelism in reducing the scene rendering time,

Chapter 4: Parallel Visualisation for Recognition : 69

Another approach proposed by Dippe and Swensen [DS84] uses a subdivision
algorithm on the scene space. This was implemented on an MIMD (Multipte Instruction
Multiple Data) architecture. The space is divided into cells, each of which is monitored by
some working processor Or processors, A processor is only responsible for those rays entering
the cell. On intersection of a ray with a surface within the cell, the processor computes the
intensity corresponding to the intersection and generates children for the ray. When a ray
leaves the cell without intersection it is passed to the processor responsible for the region
which it will next enter. However, the performance of this approach depends on the uniform

distribution of load to each working processor [LS88].

4.3 Parallel Ray Tracing on the DAP

The ray tracing algorithm of Whitted has been shown to map well onto the
processors of the DAP {WBB87]. This is due to the planar nature of the processor array where
each processing element (PE) simultaneously obeys a stream of instructions broadcast by the
Master, Control Unit (MCU). The serial host machine is responsible for all 1/O operations,
reading in data files and setting up formats for the subsequent operations. The DAP is, itself,
responsible for the computationally expensive calculations required for the ray tracing.
These are the ray-surface intersections, determining shadows, and computing the
illumination of visible surfaces. These are easily implemented as functions simultaneously

operating on matrix arrays.

The 32 x 32 planar arrangement of processors makes it very convenient for the
process of distributed ray tracing using sliced mapping {WBB87]. The principle is inherently
simple. If each processor is assigned to a pixel, then the PE can ray trace the light through
that pixel. In effect there is a 1:1 pixel to processor mapping in blocks of 32 x 32 = 1024.
Assigning one ray per pixel in this manner permits 1024 rays to be sent into the scene
simultaneously, thus, allowing the concurrent determination of colour/intensity for 1024
pixefs. This is possible because the behaviour of each simulated light ray is independent of
any other. Therefore, no local neighbourhood operations are required between the processors.
On completion of each job, the processor may be shifted to the next patch. This is performed
until the entire image is traced. The ray tracing aigorithm of Figure 4.3 can easily be
transported onto an SIMD architecture. However, although the DAT hardware can perform
recursion, its organisation makes it inefficient owing to misuse of storage space. Iteration
usmg a simple stacking system has been used to overcome this, i.e. data from each level in the

recursion corresponds to data at an equivalent level in the stack. Unwinding the recursive

- Chapter & Parallel Visualisation for Recognition VAR

segments in this manner ensures the parallelism is maintained as efficient as possible. This is

demonstrated in Appendix A.

Using the mapping methodology of one pixel to one processor, large images may be
traced with a great reduction in time. For example, if a single processor required 1 unit of time
to trace a light source through one pixel, then in order to trace a 512 x 512 pixel image, 262,144
units are required. If 32 x 32 = 1024 pixels can, however, be traced in a single time unit
(concurrently), then only 256 units of time are needed to trace the entire image! However, we
should note that a factor of 1024 speed up is not obtained since the single bit processors used in
the DAP 510 are not as sophisticated as those in single processor machines. Also, there is the

additional overhead of uniform termination on an SIMD machine so many of the processors

can be idle towards the end of the tracing process.

4.4 Representation of Ray

The viewing model used is the pinhole camera model (the standard in image
processing) with the +Z axis inside the screen (left handed coordinate system). Rays
projected out of the screen converge at the focal point - the eye position. A ray is simply
represented as a line in 3D space with an origin and direction vector [Roth82]. The origin is
given in a parameterized form as (Ox, Oy, Oz) with the direction as (Dx, Dy, Dz). Since the
algorithm is performed in parallel, each processor holds the origin and direction vector for
its individual ray. The t-value, which is used to reference a point along the ray, can be used
to determine the position at any point (X, Y, Z) in world coordinates. Thus:

X=0Ox+txDx
Y=0Oy+txDy

Z=0z+txDz
Note that the t-value is the distance from the origin to the point (X, Y, Z) along the
ray. The direction vector is maintained as a unit vector by normalisation. This simplifies

later ray-surface intersection calculations.

4,5 IIlumination and Shadows

A point in shadow is due to the path of a ray from the light source to that point
being obstructed by another object in the scene. This is determined by firing a ray called a
shadow feeler, from the point, towards the light source. If the ray collides with an object

before reaching the light source then the point is in shadow. Self-shadowing occurs when the

Chapter 4: Parallel Visualisation for Recognition 71

cosine of the angle between the surface normal and the ray to the light source is less than
zero, i.e. the surface is facing away from the light source. When this occurs, the point must be

taken as being in shadow.

The illumination model used is a modified Phong distribution [Kuch88]. It models

ambient as well as diffuse and specular lighting effects. Ambient lighting is the effect
produced by a diffuse, non-directional light source in the scene and is assumed to impinge on
all surfaces from all directions. The amount of ambient light reflected by a surface is
therefore dependent on the material properties of that surface. Diffuse and specular effects,
in contrast, are dependent on the position of a point light source with the object surface. This

positioning of the surface is related to the surface normal at the point in question.

surface normal

ray to light
intersection ray

reflection ray

transparency ray

Figure 4.4: Hlustration of light rays

The reflection ray from the surface is obtained from the intersection ray and the
surface normal with the angle between the intersection ray and the surface normal being

equal to that between the normal and the reflection ray.

The intensity/colour of the point is the summation of each ‘component of the
ambient, diffuse, and specular lighting. The initial colour of the intersection point is that of
the ambient light. The diffuse component is then added to this as obtained from the dot
product of the surface normal and the ray to light vector. If this is less than zero, then the
surface is facing away from the light and so no diffuse light contribution is present. This dot
product when multiplied by the brightness of the light (1.0 maximum, and 0.0 minimum) and

the diffuse surface colour gives the diffuse light contribution.

The specular highlight is computed in a similar way, as the dot product of the
reflection ray and the ray to the light. If greater than zero, this dot pfoduct is raised to the
power of the surface specular coefficient which determines the ‘shininess’ of the surface. The

specular lighting contribution is then the product with the specular surface colour.

Chapter 4: Parallel Visualisation for Recognition L 72

If ray tracing, the colour/intensity of the transparency and reflection rays must also

be included to the present evaluation of the colour/intensity at the point being shaded. For

reflection,
Colour, = Colourp + R x Coloury

where Colourp is the present evaluation of the colour for the point and Colout, is
the colour at the point of intersection of the reflected ray with another object. If no
intersection is encountered, the background colour is used. R is the reflectivity of the surface

being shaded and ranges from 0.0 (non-reflecting) to 1.0 (a perfect mirror}.
The transparency contribution is included in a similar fashion using
Colourp = (1.0 - T) x Colourp + T x Colour

where again Colourp, is that for the point being shaded, T is the transparency factor
of the surface - 0.0 for opaque to 1.0 for completely transparent. As with reflection, Colourtis
the colour at the intersection point of the transparency ray with a corresponding object.
Again, if no intersection is detected, the background colour is used. Note that, in this
particular research theme, no internal reflection is possible and a transparency ray passes

directly through the object generating it.

As each lighting component is added, the illumination of the surface increases
differentially, and a more realistic picture of the surface emerges. The image can be further
enhanced with the addition of multiple light sources. They can create shadows and all round
illumination of a scene which increases depth and realism. The illumination algorithm must

then take into account the effect of each light source by iteratively testing the point of

interest against them.

4.6 Alias and Anti-aliasing

An ‘alias’ is a term used in signal theory to describe the unwanted correlations in a
signal produced when a high frequency signal is sampled at too low a rate. Alias is,
therefore, produced in ray traced images when too few rays, with respect to the level of
detail, are used to represent each pixel. The information returned by this ray will not contain
enough detail for the colour/intensity of the object point with which it collides. This is
especially relevant at object boundaries, where a pixel may represent the background and its
immediate neighbour represents an object surface. The low sampling rate will result in a

jagged look to the object boundaries.

Chapter 4: Parallel Visualisation for Recognition ' 73

Techniques for correcting this, ‘anti-aliasing’, generally involve increased sampling
of the scene. This is well suited to the DAP’s distributed ray tracing technique. A bundle of
rays are sent out into the scene. These rays check for collisions with objects and return with
the object-id of the object with which it collided, if any. Zero is returned if there was no
collision. If this object array contains greater than one object-id the whole patch of scene is
re-sampled at a higher resolution. This was originally achieved by sending a ray through
the centre of each quadrant of a pixel. The average of the four pseudo-pixel’s intensities was

then taken as the intensity of the true pixel as shown below [S587].

Pl P2

" /
true pixel /
P P3 - P4

e

pseudo pixels

Py =P+ KPD + P32 + (P4
4

Figure 4.5: Production of pseudo-pixels
Although this gives a more accurate intensity for the pixel, it suffers in that:

i) the computation involved increases more than linearly.

ii) the ratio of the increase in resolution to the work done is low.

iii) objects smaller than the pseudo-pixel size are not sampled correctly.

iv) straight forward averaging does not take into account the fact that
pseudo-pixels nearer the centre of the true pixel should give a greater

contribution to the intensity than those at the boundary.

For these reasons (especially (iv)), sampling was performed by a weighted
averaging scheme put forward by {Crow81]. This was based on statistical theory to give a
greater weighting for central pseudo-pixels. Each pixel is divided into a 3 x 3 pseudo pixel of

the following weights.

et 11

The intensity of the true pixel will therefore be:

= (g + Ty # Dng + Lyg) + 2(0gg + Iy + Doz + Ig) + 4lp) / 16

Chapter 4: Parallel Visualisation for Recognition _ S

Not only does this cater for point (iv), but the —=— 2

the work done becomes more favourable.

4.7 Primitive Representation and Interse= ey =8

Objects in computer graphics may be
nipuﬁ_at‘ﬁ@

representation sought must be one suitable for ma ¢
e = imPp i

important when factors such as speed, storage, &

representations which are frequently used include sweg=—>t =7
representations. Here we choose to model the primitiv=" T =5
the form:

f(x,y,2) = Ax? + 2Bxy + 2Cxz + 2Dx + Ey?2 + 2F By =

or alternatively in matrix form

PIQP=0 where P=

2

They are quite straightforward to describe == T Em o
IO EE
Our computations are made more convenient by the use=== &= = o ¢ pri
e O
The representation aiso has the advantage that a widck. -e== e AT E> .
nits O

and defined in a uniform manner by altering the cO- ~=m== - B v
pwEer [Flect

planes, spheres and cylinders are a subset of the total
mations when applied to quadrics generate new quach g v T - = or st
tion matrix,
| let q=MP and P —_— A
then

qT(M’E)nl OM1g=0
q'Qq=0

Note, however, that the class of quadrics
instance, a cylinder may become a cone, and a sphere
drics may be combined into othe=——— """

The qua e E
11‘5' '

consisting of six quadric planes or three parailel pl &-— T % .
_ﬁ.iﬂunve

coordinate system and intersections of a ray with ===
—n =mnatesy

the ray from the world coordinate system to the O O U=

Chapter 4: Parallel Visualisation for Recognition 75

solving the equation of the quadric [WBB87, Roth82]. This transformation of the ray into the
coordinate system of the primitive simplifies the calculations as it is easier to transform the
ray than to transform the object. Here, only point and vector transformations are important.
Consider a 4 X 4 transformation matrix T and a point in 3-space P = (X, Y, Z). Transformation

of P by T would result in
P=P*T, or XY, Z2,10=XY,Z1=+T
where ' = (X', Y', Z'). Transformation of the vector V = (Dx, Dy, Dz) by T becomes
Vi=V+*T, or (Dx,Dy,Dz,0)=(Dx,Dy,Dz,0)*T

where V' = (Dx', Dy’, Dz'). The transformation of a ray or line is achieved by simply

transforming its origin O, and direction vector D. Thus

(Ox, Oy, Oz} (Dx, Dy, D2) * T= ((Ox, Oy, Oz, 1) * T) ((Dx, Dy, Dz, 0) * T)
= (0x, Oy, Oz) (Dx, Dy', Dz)

The line parameterizations, or t-values, are found to be independent of the
coordinate system when transformed in this way. That is, a point P'(t) = P() * T for all t,
where P(t) is a point in the original ray and P'(t) is a corresponding point on the transformed
ray for the same value of t. The parameter independence ensures that we do not need to
transform parameters or points between coordinate systems but just the rays. This relieves us

of the greater problem of transforming object models or surface equations.

As already mentioned, each primitive is defined in its own local right-handed

coordinate system as in Figure 4.6.

Y Y
Z v
X X

Block Sphere
Y Y
Z Z
X X
Cone Cylinder

Figure 4.6: Representation of objects

Chapter 4: Parallel Visualisation for Recognition - - : R 76

Ray-quadric intersection calculations within the local coordinate frame of the
primitive‘ are simplified by defining them with unit dimensions and vertices, ends, or centres
at the origin, i.e. all primitives are bounded. The block is defined as a unit cube in the

_ positive octant with a vertex at the origin. The cone also has its vertex at the origin and lies
along the positive Z axis with unit radius and length. The sphere is defined with unit radius
and centre at the origin, and the cylinder primitive similarly has unit radius and length and
again lies along the positive Z axis with one end at the origin. The effects of translating,
rotating, and scaling a primitive is achieved by translating, rotating, and scaling the ray

with the appropriate transformation matrix.

With the exception of the sphere, at least two ray-quadric intersection tests must be
made for each object. For examnple, in order to determine the entryl exit points of a ray with a
block, six ray-plane intersection tests must be made. For the cylinder, this reduces to two ray-
plane ‘and one ray-quadric intersection test. One ray-plane and one ray-quadric test is
required for the cone. The intersection point where the ray meets the object (if any) is
obtained by solving the surface equation for the quadric and applying the bounds test (as

given in Table 4.1) where necessary.

Primitive Surface Equations Bounds Test
Block
plane 1 X=0 0sY,Zx<1
plane 2 X1 02Y,Z<1
plane 3 Y=0 0 X, Z <1
plane 4 Y=1 0 X Z <l
plane 5 Z=0 02X Y =1
plane 6 L=1 0 X, Y <1
Cylinder
plane 1 Z=0 X2+¥2g1
plane 2 Z=1 X2+YZ<t
curved surface X2+Y2=1 0s Z sl
Cone
plane Z=1 X2+¥2<1
curved surface X2+ ¥2-22=0 0gZ <1
Sphere

X24Y2y 221 none

Table 4.1: Surface equations of primitives

Given a ray definition

P=0+tD
expressed as
x7 [Ox Dx
YI_{OY], Dy
z Oz Dz
1 1 0

Chapter 4: Parallel Visualisation for Recognition 77

2] =[] ++[o] -

then substituting into the equation of a quadric PTQP = 0 produces the expression

or in partitioned form:

t2(DTQD) + (DTIQO + OTQD)I+ OTQO =0

since Dy is zero by definition [WBB87]. This is a quadratic equation of the form

at? + 2bt + ¢ = 0 and has solutions

_~b+\/b7-ac b-Vb2-ac
e —

{1 and tH= a

Thus if
i) (b% - ac < 0) : the ray does not intersect the quadric.
ii) (b? - ac = 0) : the ray is tangential to the quadric.
iii) (b? - ac > 0) : the ray may intersect with the quadric - calculate t; and t).

For case (iii), if both t; and t; are less than zero, the surface is not visible as it is
behind the viewpoint. If only one is less than zero then the viewpoint is inside the object and
the positive t gives the ray-quadric intersection. And obviously, if both are greater than
zero, the smaller ¢ gives the entry intersection into the quadric, and the larger t the exit

intersection point.
Thus, to intersect a parameterized ray:
(Ox, Oy, Oz) (Dx, Dy, Dz}
with the Y-Z plane of the block, simultaneously solve:
X=0 and X=Ox+t*Dx fort.
We can see that the result, t = -Ox/Dx defines the point of intersection:
(0, Oy + t* Dy, Oz + t * D2).
The ray would have only hit the solid if this point complies with the bounds test,

i.e. it lies within the bounds of the primitives, where the bounds test for this point on the

Y-Z plane of the block is:
(0<(Oy+t*Dy) s and (0<(Oz + t+ Dz} £1).

In order to determine the intensity of the surface, the outward surface normal at the

point of intersection must be known. Once the t-value is available, this normal vector is

Chapter 4: Parallel Visualisation for Recognition : : 78.

easily calculated as the partial differential of the quadric function of the surface, thus the
vector [df/dx, df/dy, df/dz) for a function f(x, y,).

- 4.8 Constructive Solid Geometry (CSG)

Although various types of primitives may be created using quadric functions, a
greater and more complex formation may be created by the application of Constructive Solid
Geometry. This involves the combination of the primitives using the binary algebra
operators UNION(+), INTERSECT(&), and DIFFERENCE(-). Each CSG operator requires two
arguments, although either or both of them may be NULL. The order in which the operators
are applied is determined by constructing a binary tree in which the terminal nodes represent
primitives, and the non-terminal nodes the CSG operators. The composite object at the root of

the tree will, therefore, represent the final object as shown below.

A+B

A-B

A&DB

a) Application of C5G b) Example of CSG Composition
operators Tree

Figure 4.7: Formation of CSG tree

The CSG tree is defined recursively as follows:

<CSG tree> = <primitive> |
<CSG tree> <operator> <CSG tree> |

<CSG tree> <rigid transformation>

where <primitive> is a solid primitive such as sphere, cone, box, or plane, and is defined
using the quadric representations. <operator> gives the binary operator +, &, -, and <rigid

transformation> is a combination of the translation, rotation, and scaling transformations

Chapter 4: Paralje] Visualisation for Recognition

7

which can be applied to the tree, It is noted that, as the binary operations cannot destroy

boundedness, the C$G models are guaranteed to define bounded sets.

tree. This remodelled tree is passed to the DAP TREE_WALK module which is responsible

for applying the combination operators. Asg the module parses the tree nodes’ list, each

element is checked for an Operator. If the node Tepresents a primitive, i.e. it is a terminal
node, a bundle of rays {32 x 32 = 1024) is sent into the scene. These return with the entry and

]

Ll R, - - e i oo | i

P4

out in out in out

- o ey -~ — -

Figure 4.8: Classification of fay passing through 3 primitives

{

“Chapter 4: Parallel Visualisation for Recognition " 80

A ray classification must be generated for each branch of the CSG tree, i.e. one for
the left branch and one for the right. Thus, for a simple case, the classification of two rays
with the left ray passing through two objects, and the right through one are shown in Figure

4.9. Note that the solid lines represent the in classification and the dashed lines the out

classification.

Figure 4.9: Classification of left and right rays

Using this in-out classification of rays, the composite object results from
combination of the two rays with the appropriate CSG operator (Figure 4.10). Note that the

difference operator (-) specifies the “in’ values which are present in the left ray but not the

right.

. e At e S——————— o e A i —— - S S

Figure 4.10: Combination of rays

The composite solid after applying each operatdr is shown below.

L3 o 55

Figure 4.11: Resulting solids after application of operators

Chapter 4: Parallel Visualisation for Recognition 81

Combining the classifications is just simple boolean algebra with the composite

result as in Tabie 4.2.

Operator Left Right Composite

iN IN iN

+ IN ouT IN
our IN IN -
QUT OUT OuUT
iN IN IN

& iN QuT ouT
ouT IN ouT
OuUT OuUT OuT
IN IN ouT

) IN ouT IN
ouUT IN OuT
ouT OUT QUT

Table 4.2: Result of ray combinations

The combination of the rays is outlined in three steps. First, the lists are merged
and sorted into ascending order, i.e. the entry and exit points of both lists are combined to
determine the order with which objects are met. Second, the resulting list is then scanned
from minimum entry point to maximum exit point and the points are classified in or out
according to the operator. The third and final stage involves noting only the initial and final
entry points of each composite solid. The resulting list obtained from the combination is then
pushed back onto the stack. After the tree has been traversed, the final list of the entry/exit
points determines that for the top-level object. From this list of 32 x 32 rays, the very first
entry point of each ray is taken. This determines the object which is visible to the eye. This
entry point, the object-id at that point, along with the surface normal are all passed to the
shading routine of the ray tracer which returns the colour/intensity at the point. An example

of the parallel combination procedure is demonstrated in Appendix B.

Points in shadow are determined by traversing the CSG tree again but this time
sending rays out from the light source towards the point. If, after traversing, the object-id of
the point is the same as that ‘seen’ from the light source, the point is not in shadow. If it is
different, and the surface is not transparent, the pdint is classified as being in shadow as the
light is clearly not reaching the nearest object surface to the observer. On interaction of the
shadow feeler with a transparent object, the intensity of the light eventually reaching the
point of interest is reduced by a factor dependent on the transparencies of any object

encountered.

A simple optimization procediire for CSG traversal, termed as ‘early outs’ by Roth
{Roth82] can be seen from Table 4.2. If at a composite mode the left ray subtree is classified as

out, the composite classification will also be out irrespective of the right subtree

Chapter 4: Parallel Visualisation for Recognition = o o s 82

classification. Thus, classifying the right subtree is unnhecessary. This not only reduces the

number of ray-surface intersections performed, but also the number of nodes traversed.

4.9 Spatial Subdivision

A major step in reducing the processing time during a ray tracing procedure is the
reduction of the number of ray-surface intersection calculations [Whit80]. This may be
achieved using a priori knowledge about which surfaces a ray is most likely to intersect and
then testing only these. If reflection and refraction are required (ray tracing), then a 3
dimensional spatial subdivision is required to reduce the number of intersection calculations.
For our closed-form testing, however, ray casting is sufficient and we may use a two
dimensional space subdivision. This is the basis of the Tiling algorithm [Slat86] which was
previously proposed as a solution for damage repair of geometrically defined objects on bit
mapped display devices. It involves tessellating the two dimensional view plane into an
divx x divy grid, where divx is usually equal to divy. Each grid cell is referred to as a ‘tile’
and maintains a list of all primitives intersecting or contained by it from projections at the
eye position. These are obtained by a preprocess stage where rays are sent from the eye
position into the scene checking for possible intersections within a tile. Hence, during ray
casting, only those primitives whose identities are held by the tile through which the ray is
passing need be tested for a possible intersection. This immediately suggests that empty tiles

- are not tested for ray-primitive intersections and may be assigned the background colour.
Since f)hly a limited number of primitives are likely to pass through a tile, this greatly
reduces the number of intersection calculations during ray casting and solves the problem of

testing all primitives against each ray.

The previous SIMD implementation of the C5G rendering procedure can be enhanced
by permitting tiles generated by the two dimensional spatial subdivision 'tobe mapped onto
the processors of the DAT. Since the space subdivision process prodﬂces?.i?ﬁ series of tiles, it
would be appropriate to generate a much reduced CSG tree for each tlie As each tile will
contain a subset of the primitives, these pruned trees will generally i:)e much smaller than the
overall C5G tree. By identifying which surfaces are local to the tiles, the overall combined
rendering times for the tiled CSG trees is much less when compared to the u‘ﬁ_tiied scene,

.:“The C5G preprdcess phase responsible for generating the pruned tt"ées consists of one
main pro&edure to localize primitives for each tile. It is possible to calculate the vertical and
horizontal ranges over which the primitives are visible and cdnsequently determine the tiles
which are intersected without the need to scan the entire screen [Malh90a]. The intersected

region will be within the silhouette of the primitive where the sithouette edge is formed

Chapter 4: Parallel Visualisation for Recognition 83

when the Z-component of the normal is zero when projected into view space. The intersected
primitives can then be stored per tile as appropriate. The preprocessor then traverses the
main C5G tree for each tile checking for ray-surface intersections. At each leaf node, if the
primitive is present in the tile it places a true value, T, at that node in a new tree. If not
present, a false value, F, is inserted. When combining branches of the tree according to the
operators, the result is dependent on whether the original primitives exist in that tile. If not,
the whole branch and, hence, subtree may be pruned off. The efficiency of the Tiling
algorithm is most evident when rendering large CSG trees, say, for example, upwards of 20
primitives. Each tile may contain 2-3 primitives (or more depending on the dimensions of the
tile). This would immediately reduce the time devoted to ray-surface intersection
calculations by a factor of 12. Serially, an optimal tile size has been shown to be 8 x 8 pixels
[Malh90b]. However, this is not a universal tile size for all solid models, since this
parameter is highly dependent on the composition of the CSG tree. On the DAP 510, it is best
to use 32 x 32 tiles. Using Fortran®, 8 x 8 pixel tiles are possible, but this is futile as it will

result in 960 redundant processors.

4.10 Modelling Language

As closed-form testing of a vision system was the main application of the ray
tracer, we required a language which was simple to use even when modelling quite complex
objects. A WINSOM type modelling language [Quar84] was developed for this. It allows the
user to specify a complex CSG tree as a collection of simpler operations. The primitives
BLOCK, CYLINDER, SPHERE, and CONE are understood and transformations such as
rotations about the x-, y-, and z-axis are given by values of XROT, YROT, and ZROT
respectively. Information such as the primitives’ surface properties, including reflection and
transparency, are also provided in the user specified data-file which is read in and processed

by the host machine. A skeletal example for the model shown in Figure 4.8 is given below.

higtube = CYLINDER (8,0, 0,25} XROT {-80} AT {10, 0, 13);
smalltube = CYLINDER (4,0,0,10) YROT (90) AT (45, 16, 18);
tallbox = BLOCK {185, 25, 16) AT (30, 0, 10);

tlatbox = BLOCK (50, 5, 26);

pait1 = bigtube UNION flatbox;

pair2 =tallbox UNION smalitube;

object =palrt UNION pair2;

DRAW {object) AT (0, 0, 109)
Figure 4.12: C5G data file

As discussed earlier, the tree structure of interest is converted to a post ordered list

of primitives and operators. Operations, or properties, such as surface type can easily be

 Chapter 4: Parallel Visualisation for Recognition =~ o 84

applied to any defined tree structare and tree structures may be combined using any of the C5G
operators. The symbolic association of ‘names’ with the CSG constructions makes it possible

to reuse a particular tree structure several times and maintains this as a powerful language

for solid modelling,

4,11 Program Structure

The program is structured as modules, each one handling a different data-type.
They are linked to the ray tracer via the TRACER module. This is responsible for controlling
the generation of rays and their subsequent firing into the scene. Additional data-structures
such as Digital Terrain Maps (DTM) may be included in the program structure. The module

must, however, convert the data-structure to a list structure compatible with the tracer.

On entering the program, the module handling the appropriate data-structure is
invoked. It processes local information to a standard format necessary for the TRACER
module. This, then, determines which rays have intersected with which objects in the scene
and returns the colour/intensity of the pixels at these points. Non-intersection points are

masked with the background colour.

% PRIMITIVE C8G Ve
(TP T) clae tak - 9 TG TS 1u L6 URETUT S
h
EVAL GET_HITS fatled LM
! modnle l 1 incdduds I ip.«\nsﬂx l I PARSER {

EVAL
module

EVAL
medule

COMBINE
medule
BYaX,
module

!

Ty EGer
- e eermirrapepassaner e Tarmat
e

!

TRACER
aadule

!

SHARE
malule

{

autgral
"

repent
o

sereciy

Figure 4.13: Program modules

From Figure 4.13, the data for each data-structure is processed by it's own
evaluation function which is located in the EVAL module. This returns scene data in a format
which is acceptable to the ray tracer. The TRACER module acts as a common link between

the various evaluation modules. It sends rays into the scéne as 32 x 32 bundles to be processed

Chapter 4: Parallel Visualisation for Recognition 85

in parallel and returns with a map of t-value intersections. If no intersection was found a
value of zero is returned. The normals at these points are computed and passed to the SHADE
module which determines the colour for that pixel. This information is then directed to the

screen. The process s cyclic and is repeated for subsequent 32 x 32 tiles.

The EVAL module of the CSG data-structure is constructed with three major
modules; CSG PARSER, TREE_WALK, and COMBINE. The CSG PARSER module is
responsible for the generation of the CSG tree and it’s conversion to a postordered list of
objects and operators. The list is scanned by the TREE_WALK module to produce left and
right subtree lists of entry/exit points. These are combined according to .the CSG operator by
the COMBINE module. The key to the generality is the clear division between model
specification, and generic surface renclering, where the depths and surface normals of the

nearest surfaces have been calculated as above.

4.12 Closed-Form Testing for Vision

Images of polyhedral objécts which are required for closed-form testing of the
vision system can be produced efficiently by the parallel ray tracer. However, the ray tracer
is limited to a single level search (i.e. ray casting) for the specific purpose of the closed-form
testing. Image data may be produced and translated, rotated, and scaled at will. This makes
for a very effective visualising technique for a system where several images of the same
model, taken from slightly varying viewpoints, may be required. The ray casting (when
compared with ray tracing) is very fast making it possible to produce sets of image sequences

in a few minutes.

The classic chipped block model often found in computer vision is able to be
produced using just two block primitives and the difference operator. It’s matching features

are the 7 faces or, where edge matching is utilised, 13 edges.

B
>

Figure 4.14: Chipped block CSG tree and model

Chapter 4: Parallel Visualisation for Recognition A -86

More complex models can be efficiently generated using the modelling language.
Plate 4.4 (in Section 4.13) shows a model of an oil rig stmcturé produced using 44 block type

primitives. This has 498 edges and is a fairly large model where matching is concerned.

The images are stored in the form of image file format (iff) files. The model
features such as vertices, edges, or faces, required for the model-based recognition algorithm
must, at present, be obtained by manual computation. Automation of this step and the
recovery of matching features directly from the CSG tree is possible but is beyond the scope of

this thesis.

4.13 Experimental Results

We now present results obtained from the integrated solid modelling system
described in the preceding sections. Plate 4.1 illustrates the power of the ray tracing
algorithm. The ability to include the properties of reflection and transparency into a
primitive surface is demonstrated in 4.1(a) with the addition of shadows in 4.1(b). They
were generated using 100 primitives illuminated by 3 light sources. These images, produced
using a 2 level deep trace are, however, too ‘flamboyant’ for our purpose which is specific to
closed-form testing. The shadowing and properties of transparency are somewhat
unnecessary. However, this does not mean that we cannot use such images in our tests. On the
contrary, such scenes may be included in more detailed investigations to truly demonstrate

the vision systems accuracy and robustness in a computer generated, ‘real world’ scene.

Aside from the unnecessary addition of reflections and transparencies in the Table
scenes, the time required in rendering is of great importance for our application. Plate 4.1(a)
was produced in 20 minutes and Plate 4.1(b), with the additional overhead of shadow
computation, was generated in 75 minutes. They may, however, be reproduced (though less
aesthetically) in a shorter period of time by limiting the trace level to a single level search
(ray casting). Plates 4.2 to 4.6 show test scenes rendered by ray casting using the parallel ray
tracer. Each scene is illuminated by three light sources and has a resolution of 512 x 512 pixels

thus requiring 256 32 x 32 DAP matrices to render.

Chapter 4: Parallel Visualisation for Recognition

87

(b) Properties of reflection, transparency and shadowing

Plate 4.1: Table scene

Chapter 4: Parallel Visualisation for Recognition

8%

Plate 4.3; Recursive Cubes scene

Chapter 4:

Parallel Visualisation for Recognition

89

Plate 4.5: Robot Arm scene

Chapter 4: Parallel Visualisation for Recognition

90

Plate 4.6: Geneva Wheel scene

Chapter 4: Parallel Visualisation for Recognition o1

The complexity of the scenes, in terms of primitive content and halfspaces, is shown
in Table 4.3. Here, a ‘halfspace’ is the surface which is able to be represented by a quadric
function. Figure 4.15 demonstrates the percentage of those pixels in a scene which are required

to render it, i.e. the number of pixels containing a visible primitive.

Scene Number of Primitives | Number of Halfspaces
Coverplate 25 93
Recursive Cubes 42 147
(il Rig Structure 44 264
Robot Arm 63 258
Ceneva Wheel 38 147

Table 4.3: Complexity of test scenes

40
35
30
25
Scene (%) 20 -
15 4
10

7 - N
04

Coverplate Recursive Oil Rig Robot Arm Geneva
Cubes Structure Wheel

Figure 4.15: Percentage of visible pixels in scene

In the following text we compare and contrast the ray tracing algorithm as
implemented on the parallel architecture of the DAP 510 to that implemented serially, in
the C programming language, on a Sun 3/160 workstation running under the UNIX operating
system. The two ptograms are coded as similarly as possible to ensure an accurate
representation of the comparative times. Comparisons are also made between the two
dimensional Tiling versions of the algorithm implemented on both architectures. We show
that the introduction of the Tiling algorithm produces significant speed ups of the scene

rendering times of each test image.

Chapter 4: Parallel Visualisation for Recognition 92

Note, however, that due to the large difference in timings of the serial and

parallel implementations, many of the results have been plotted logarithmically for

display purposes.

4.13.1 Serial ys Parallel - A Brute Force Approach

In this section we compare the experimental data obtained from test runs of the ray

tracing algorithm as implemented on the Sun 3 workstation and on the parallel DAP 510,

This is a Brute Force implementation (non-tiled) whereby a ray is fired into every screen

pixel. As expected, the parallel implementation greatly out-performs its serial equivalent.

Figure 4.16 demonstrates this for the five tests scenes. It can immediately be seen that the

parallel version appears favourable for the visualisation task, rendering scenes in minutes

rather than hours! On average, it shows an 83.8 fold speed up over the serial version. The

. minimum speed up is exhibited by the Recursive Cubes with a value of S6.6 times, and the
maximum is shown by the Oil Rig structure with 145.4 times.

& Serial Version

Run Time
{min)

e Parallel Version

Coverplate Recursive Off Rig - Robot Arm, Cmeva'f:‘j
Cubes Structure + Wheel

Figure 4.16: Total CPU expenditure of serial and' pérailel naive implementations

This very significant speed up for the Qil Rig gcene is directly related to the vast
number of intersection calculations made by the serial version. With an average of 5.7 ray-
surface tests per primitive, this contributes gredtly to the rendering time when compared to
an average of 1.6 ray-surface tests per primitive for the Recursive Cubes. This large average
value for the Qil Rig scene is due to the majority of the primitives being Blocks (which
require 6 intersection calculations). Thus, even though the Oil Rig and Recursive Cubes have
roughly the same number of primitives, 44 and 42 respectively, and the Recursive Cubes

adopts a larger proporfion of the scene than the Oil Rig, the difference in the total number of

Chapter 4: Parailel Visualisation for Recognition 93

intersection tests made is most significant in affecting the rendering times. The vast speed up
of the parallel version for the Oil Rig scene may therefore be explained by realising that
during the intersection tests, 1024 intersections can be determined in paraliel. For a Block
requiring 6 intersection tests, this parallelism becomes more effective. Note, however, that
- although a speed up of 145 may be considered large, it is far from the ‘target’ of ~1024 which
may be naively expected. This is because of the simple bit processors of the DAP which are
not comparable with the serial machine's CPU. However, we note that the new DAP 510C, a
32 x 32 DAP with additional 8-bit parallel co-processor chips for complex arithmetic is able
to deliver a times ten speed up over the single-bit DAP 510. In order to put the different
architectures in perspective, we also note that a Sun 4/ 260 workstation was found to give a
mean speed up-of 17 over the Sun 3/160 for the test scenes.

4.13.2 Serial ys Parallel - The Tiling Approach

Pixels necessary to render a scene are generally considered to be those which contain
‘visible’ primitive surfaces. A primitive which vanishes from the scene using the difference
operator may be thought as being non-existent as its visibility is the prime property in which
we are interested. From Figure 4.15 in Section 4.13, it is obvious how much of a scene is white
space, i.e. background. Time spent in these pixels is wasteful and futile, only being able to
return the background colour. The two dimensional Tiling algorithm, however, can be used not
only to reduce the size of the CSG tree traversed by each ray, but can also be used to prevent

the uﬁnecessary execution of ‘empty’ tiles.

A serial and parallel implementation of the Tiling algorithm is compared here for
the five‘ test scenes. Tiles of 32 pixels square are used. However, we also present results
obtained using 8 x 8 tiles in the serial implementation as it was found to be an effective tile
size (see Section 4.9). From the results obtained, the time expenditure of the preprocessing
phase necessary to construct, and build, the much smaller tile trees is insignificant when
compared to the total CPU time expenditure, especially when considered in conjunction with
the speed up it produced. An average value of 1.01 seconds was recorded for the combined cost

of building the tiling array, and the subsequent generation of the tile trees.

Figure 4.17 illustrates the results of the total CPU expenditure times of the two
Tiling implementations. As expected, these run times are considerable less than the Brute
Force method in the previous section. For the serial version, scenes are rendered in 10's rather
than 100's of minutes. Also, as expected, the parallel version shows a significant speed up

over its serial counterpart in all the test scenes. The average was found as a factor of 89.0

Chapter 4 Parallel Visualisation for Recognition IR 94

times, with the minimum being 63.8 times for the Robot Arm, and the maximum, 105.7 times

for the Geneva Wheel (using 32 X 32 tiles).

B Serial - 32x32

Run Time
(sec)

E Sertal - 8x8

24 Parailel Version

Coverpiate Recursive QilRig RobotArm Geneva
Cubes Structure Wheel

Figure 4.17: Total CPU expenditure of the serial and parallel Tiling implementations

Note, however, that the Oil Rig structure does not demonstrate the greatest speed
up (74.4 times) unlike in the Brute Force experiment (1454 times). This can be explained by
noting that the Tiling algorithm does not any longer investigate ‘empty” sections of the scene

which before contributed so much to the Brute Force technique’s drawback.

Also, even though using 8 x 8 tiles is found to improve the speed of scene rendering

for the serial implementation, it still does not compare with the results delivered by the

parallel version.

4.13.3 Parallel vs Parallel - Comparing Brute Force and Tiling.

We have shown, in the previous sections, how a parallel implementation of the ray
tracing algorithm is considerably superior toan equivaleﬁt serial method using both Brute
Force and Tiling methodo!ogies. We now investigate in more detail the implementation of
the two techniques using SIMD parallelism in terms of those factors which most greatly

effect their ability to render a scene efficiently.

Initially; we can compare the overall CPU time expenditure in the two techniques.
Figure 4.18 demonstrates this. From these results we can see the effectiveness of the Tiling
algorithm over the Brute Force method. Speed ups of a factor of 18.1 are evfdent. The

minimum speed up factor of 8.7 is exhibited by the Coverplate, and the maximum, of 31.6, is

shown by the Robot Arm.

Chapter 4 Parallel Visualisation for Recognition 95

B3 Brute Force

Run Time
(sec)

Bl Tiling

Coverplate Recursive OilRig RobotArm Ceneva
Cubes Structure Wheel

Figure 4.18: Total CPU expenditure of parallel Brute Force and Tiling implementations

In an attempt to explain the above findings, we consider the proportion of the scene
actually rendered in the Tiling version. Table 4.4 shows the number of tiles rendered for each

scene, and Figure 4.19 shows these values as a percentage of the 256 potential scene tiles.

Scene Total Tiles Rendered
Coverplate 95
Recursive Cubes 93
Qil Rig Structure 90
Robot Arm 50
Geneva Wheel 77

Table 4.4: Total scene tiles rendered

& Brute Force
Scene

(%) B3 Tiling

Coverplate Recursive QilRig RobotAmm Geneva
Cubes Structure Wheel

Figure 4.19: Total scene tiles rendered as percentage

Chapter 4: Parallel Visualisation for Recognition -~ - : _ 96

We can now see (though, maybe naively) that the calculated speed ups have some
relationship with the number of tiles rendered in a scene. Indéed, the tessellation of the scene
into tiles, and the subsequent generation of tile trees (which are much smaller then the
originél scene CSG tree) proves very effective given the speed ups obtained, and considering
that the tiling procedures account for an average of 1.01 seconds of the overall rendering time

for each scene.

Figure 4.20 shows a comparison of the average number of primitives rendered per
32 x 32 DAP matrix for the two techniques, Figure 4.21 shows the mean rendering time for

each rendered DAP matrix.

70 o
80 4
50 4o
No.of 40 L B Brute Force
Primitives 5 El Tiling

Coverplate Recursive OilRig RobotArm Geneva
‘Cubes Structure Wheel

Figure 4.20: Average no. of primitives per 32 x 32 DAP matrix

B Brute Force

Tiling

N @

Coverplate Recursive = OilRlg RobotArm Geneva
Cubes Structure Wheel

Figure 4.21: Mean rendering time (ms) per 32 x 32 DAP matrix

Chapter 4: Parallel Visualisation for Recognition 97

The Tiling method displays a much smaller tile tree compared to the original CSG
tree - an average of 12.5% of the original CSG tree. This is significant when compared to the
100% value of the CSG trees rendered by each DAP matrix in the Brute Force version. This
pruning preprocess of the Tiling algorithm proves very effective in reducing the overall size
of the CSG trees traversed and, thus, the number of intersection calculations made. To show

this, we consider the data given in Figures 4.22 and Figure 4.23,

100000
10000
No. of 8 Brute Force
Intersection
Tests Tiling
1600
-
L]
——
[
100 _ .
Coverplate Recursive OilRig RobotArm Geneva
: Cubes Structure Wheel
Figure 4.22: Total intersection calculations performed
160000
10000
No. of 8 Brute Forcee
Nodes
Traversed & Tiling
1000 4
100 -

Coverplate Recursive OilRig Robot Arm Geneva
Cubes Structure Wheel

| Figure 4.23: Total number of nodes traversed

The total number of intersection calculations have been greatly reduced in the
Tiling method - by a factor of more than 90% in all cases, and 98.1% in the case of the Robot
Arm. This clearly confirm the speed ups over the Brute Force method shown earlier. These

values are a direct consequence of the heavily pruned CSG tree which results in far fewer

Chapter 4: Parallel Visualisation for Recognition - -~ e o8,

nodes being traversed in the Tiling version. Again, reductions of the number of nodes traversed
of greater than 90% of the Tiling method over the Brute Force approach are seen for all test

models.

Also, the relative size of the CSG tree is related to the total number of combine
calculations needed for evaluating it. We can see from Figure 4.24 the relationship of the

total number of combine calculations made during rendering of the test scenes in the two

technicues.
No. of EZ Brute Foroe
Combine
Operations Tiling

Coverplate Recursive OilRig RobotArm Geneva
Cubes Structure Wheel

Figure 4.24: Total number of combine operations performed

An average percentage reduction of 68.6% of the total number of combine
calculations of the Tiling method over the Brute Force procedure is found. A maximum

reduction of 80.4% is demonstrated by the Geneva Wheel.

In order to accurately determine in what manner the Tiling algorithm is faster than
the more naive, Brute Force approach, we must consider the time spent in the various
procedures and the percentage of this over the total CPU expenditure (Figure 4.25). We note
that the total rendering time for a scene is composed of Tiling Preprocess, Rendering Model,
and Rendering Background. The time required for Intersection and Combine Operations

account partly for the Rendering Model expenditure.

Chapter 4: Parallel Visualisation for Recognition

% of
Total
Rendering
Time

% of
Total
Rendering
Time

% of
Total
Rendering
Time

Tiling Preprocess

B Intersection Operations

il Combine Operations

B Rendering Model

IJ Rendering Background
Brute Force Tiling
a) Coverplate Scene
100
Bl Tiling Preprocess

B Intersection Operations
B Combine Operations
Rendering Model

O Rendering Background
Brute Force Tiling
b} Recursive Cubes Scene
100
B Tiling Preprocess

8 Intersection Operations
Bl Combine Operations
Rendering Model

O Rendering Background

Brute Force Tiling

¢} Qil Rig Scene

Chapter 4 Parallel Visualisation for Recognition o 100

100
100 o 2638
ElTiling Preprocess
o of Esi Intersection Operations
R ;3251 g B Combine Operations
Time 8 Rendering Model
i Rendering Background
Brute Force Tiling
d) Robot Arm Scene
100
100 - A g %07
90 + f ‘
80 - Tiling Preprocess
70 -
% of 50 B Intersection Operations
Rezgzilng :g -+ & Combine Operations
Time I 8 Rendering Model
30 4
20 4 [J Rendering Background
10
g

Brute Force Tiling

e) Geneva Wheel Scene

Figure 4.25: Profile of procedures of Brute Force and Tiling implementations

It can be seen, for the Tiling implementation of each scene, that the total time
required to render the tile trees approaches 100% of the program execution time. This
confirms that, in the case of Tiling, the preprocess and house keeping procedures necessary for
the technique are, in fact, very conservative in their demands of the CPU. This is indeed
evident from the graphs where the average percentage time required by the Tiling

preprocessor is 5.5%.

We can see in all the test scenes, and in both ray tracing techniques, that the
intersection procedure accounts for the largest expenditure of CPU processing time. This
confirms Whitted's observation that about 90% of ray tracing time is spent on intersection
calculations. For the Brute Force approach, their values are indeed close to this even though
the trace is a single level search. In the case of the Tiling algorithm, this value is reduced

primarily because of the tiling CSG tree pruning phase.

Chapter 4: Parallel Visualisation for Recognition 101

We must stress, at this point, that the values obtained for the proportion of the
time required by the CSG tree combination procedure is somewhat deceptive. In actual CPU
time, the Tiling implementation’s combination procedure requires much less of the CPU than
its Brute Force partner. However, because of the large increase of the total rendering time
{i.e. Brute Force over Tiling), their values, as a percentage of the total rendering time, does

not maintain the raw differences seen in the comparisons of the CPU expenditure.

4.14 Conclusion

It seems that SIMD distributed ray tracing is suited to the DAP by mapping each
pixel to a processor but, in some ways, the technique is made more difficult due to the
~organisation of the DAP hardware. Recursion may be performed but at the risk of inefficiency
owing to the mis-use of storage space. However, an iterative method using stacks has been
successfully implemented here. A single level ray trace (ray casting) remains a very powerful
method of image generation on SIMD processor arrays. In particular, for our closed-form
testing which requires image sequences,.or pairs of images, this is the technique that is most
appropriate as it produces rendered scenes of sufficient quality in a very reasonable length of

time.

The developed program has been used to produce images of hi'gh quality especially
when anti-aliased. As aliases are most evident at object boundaries it seemed most logical to
apply the anti-alias function only at such points. The overall quality of the image is
improved and, at the same time, the speed of rendering is not reduced as much as would have
been the case if the whole scene were anti-aliased. As speed is of the essence, rays were not
traced for longer than necessary. This was achieved by first examining each bundle of rays for
intersections. If no intersections were found, then the bundle was immediately returned with
the background colour. This was the case for the Brute Force implementation of the

algorithm,.

Also, a parallel implementation of the Tiling algorithm has been shown to exhibit
significant speed ups over the more naive version. However, reducing the number of
primitives per tile by reducing the edgesize of each tile is considered to produce a more
efficient execution of the algorithm. This, however, would have left a significant number of

processors idle.

A major hindrance of the parallel algorithms was the difficulty in uniform

processor termination. Often, especially along model boundaries, a large number of processors

_Chapter 4: Parallel Visualisation for Recognition ‘ 102

are idle because a lesser proportion have active ray intersections. A method of overcoming

this would significantly enhance the speed ups recorded.

Summarising, we have described a generalised ray tracer developed using the
SIMD parallel technique of Williams, Buxton, and Buxton. We have enhanced the technique
by introducing anti-aliasing and, implementing a version of the Tiling algorithm which was
shown to produce significant speed ups, We have also included various surface and lighting
properties such as transparency and reflection, and specular, diffuse, and an approximation of
ambient lighting. The generalised ray tracer also includes bounded primitives which is
essential for realistic image production but was not implemented by Williams, Buxton, and
Buxton. The completed software represents a substantial improvement for paraliel‘ray
tracing and allows the synthesis of realistic image sequences for closed-form testing with a

fast, effective tool.

Tarallel Process Techniques for 3D Model-Based Vision

Chapter 5

Parallel Aspects in Model Matching

5.1 Introduction

Computational vision may be thought of as the 3-dimensional interpretation of a
2-dimensional image or images. Many situations exist where it is advantageous for machines
to accurately perceive the 3D nature of their environment and possibly take action according
to the information received. An immediate example is robotic vision where ‘the key task for
the robot’s vision system is to supply the control unit with a quantitative and symbolic
description of its surroundings’ [MC88]. This may range from the visualisation of simple
geometric objects to complex multivaryiﬁg scenes. Even a simple problem definition ‘to
identify an object from amongst a set of known objects and to locate it relative fo a sensor’ can

break down into a set of extremely demanding operations [GL-P84b].

The major problem with any recognition system is the task of investigating a vast
number of possible interpretations of a scene, and to do so in real-time. 'i"’he ability of humans
to do this is often thought of as trivial but, on consideration, this is definitely not the case.
Attempts have been made to reduce the process time wasted on spurious scene interpretations
by adopting a number of local constraints which are applied to an ‘interpretation tree’ of the
scene space. Other methods have included the introduction of parallelism on SIMD machines,
namely the AMT DAP [HB89%], and the Connection Machine [FH85, SRS90]. A problem of the
present implementation of Holder and Buxton is that the matching algorithm is applied to
the faces of polyhedral objects with a limitation of 32 faces. The aim here, however, is to
match to edges, not faces, and increase the number to a value dependent on the memory
limitations of the machine. This will be achieved by matching the data to portions of the
model and the information coalesced in the form of subgraph matching. The data edges may
be recovered using the ISOR system [MCB89], or the TINA toolset [TINA] or an appropriate
data recovery system. Viz, the data may be presented in a form with, or without, absolute
length information. Another problem with the Holder and Buxton implementation is found in

the ordering of matches between data and model which determines their subsequent traversal

103

~ Chapter 5: Parallel Aspects in Model Matching 104

order during the search for consistency. We show that such ordering is weak and proves to be
inefficient with any increase in the complexity of the model or the number of recovered data
items. In addition, we present a new improved sorting for finding consistent interpretations

which can result in speed ups of over a thousand times for the test scenes considered.

We note that the general model matching procedure we describe is closely related to

that of Murray and Cook and some of the terms and definitions are much the same as those

described earlier by them.

5.2 A Serial Approach to Model Matching

Many algorithms have been developed in recent years to match scene data to object
models held in memory. They have relied on dynamically growing and pruning an
interpretatién tree built up from information received from the scene. The problem in most
cases has been to identify and retrieve the orientation and location of an object from a set of
known objects. The objects are modelled as polyhedra with six degrees of freedom
(3 rotational, 3 translational) relative to the sensor. Information about the scene can be
recovered with the aid of various sensing devices and techniques. These include tactile and
three dimensional range sensors. Structure from motion and structure from stereo algorithms
can be used to recover the 3D geometry of the data. The matching can be performed using the
face or edge information of the polyhedra. The algorithm is basically the same, the only
noticeable difference being that there will be more edges than faces in a particular model,
and the constraint look-up tables will be different. An accurate geometric representation of

the model is stored in memory and recovered scene data is compared systematically to this.

The basic procedure is outlined:

1) Build an accurate geometric representation of the model in memory.

2) Recover the data edges of an object in the scene of interest using an appropriate
reconstruction algorithm.

3) Put the data in the form of an interpretation tree (IT).

4) From the IT generate a set of feasible interpretations using local constraints.

5) Validate the feasible interpretations by testing the global validity of each

match for compatibility with the model.

Step 1 is a simple procedure merely involving the calculation of the 3D positions of
the vertices (endpoints) and determining the edges of the model. The recovery of the
geometry of the data edges in step 2 is achieved using a structure from motion algorithm

applied to a set of three time varying image sequences obtained from a single camera, as in

Chapter 5: Parallel Aspects in Model Matching 105

the ISOR system [MCB89], or a structure from stereo algorithm applied to an image pair using
the TINA toolset. In contrast to structure from motion algorithms, the TINA toolset may be

used to recover absolute size. The edges are recovered to within a cone of uncertainty.

5.3 Generating Feasible Interpretations

A feasible interpretation is one which is possible but has not yet been tested for
global consistency. After sensing an object with e real edges, we can recover up to s sensed data
edges. This can be formed into an interpretation tree with each node bearing e children down
to a level of s-plys.

Data Edges Model Edges

1

Figure 5.1: Interpretation Tree

Note that this is a bottom-up data based approach whereby the scene data is
matched to the model primitives in the interpretation tree. This means that there may be
multiple data edges on a single model edge and, therefore, the number of branches remains
constant at all levels. The path to any leaf node in the IT completes an interpretation of the
tree. Several interpretations are possible. Consider the path formed by the dashed lines in
Figure 5.1. If there were 5 model edges, then the partial interpretation down to level 3,
(where an interpretatioﬁ is a path from the root node to any leaf node), concludes that it is
possible for data edge 1 to be on model edge 2, whilst data edge 2 is on model edge 4, and data
edge 3 is on model edge 1.

To put the problem of matching into perspective, let us consider an example. Given s
number of sensed data edges to be matched against a polyhedral model with e model edges,
the number of possible interpretations is ¢?. Clearly this results in a combinatorial explosion
of interpretations with an increase in the number of sensed edges. For a model possessing 12
edges and being tested with 5 sensed edges the number of possible interpretations stand at
248,832, If the number of recovered edges is increased to 8 there is a dramatic increase of

Chapter 5: Parallel Aspects in Model Matching - 106

429,732,864 alternative interpretations to be considered. It is, therefore, not feasible to apply
a brute-force search of the IT. The number of possible interpretations must be drastically

reduced to a more manageable level.

The interpretations are limited by taking pairs of data edges and applying simple
pairwise constraints to establish facts like:
if data edge & is matched to model edge i
then
data edge b

can/cannot
be matched to model edge f

These constraints maintain a consistency in the interpretation tree which becomes
more powerful as we move to deeper levels. They are very effective in pruning whole sub-
branches of the tree. As we move deeper into the tree, the work done in establishing a
possible match initially increases but then falls rapidly as inconsistent matches are pruned

out as shown below,

computational work

ssosssmmsnnsssd s
depth into search

“Figure 5.2: Work done during search

5.4 Sensing Errors and the Term ‘Ideal Data’

It is obvious that during recovery of the 3D geometry of the data, errors will occur
due to inaccuracies of the sensing equipment or algorithm. These must be taken into account if
the matcher is to be applied to real data. The use of ideal data to test the matching
algorithm cannot be guaranteed to give an accurate performance of the algorithm in the
general case. By ‘ideal data’, we mean that if it were possibie; data which could be recovered

with no or, a negligible amount of error in the sensing equipment.

Chapter 5: Parallel Aspects in Model Matching 107

To account for the sensing errors we assume that the endpoints of the recovered data
edge are located with uncertainty in an ellipsoid with errpar and errper sensing errors, as

shown overleaf.

: E E; recovered data edge
wmmasma!)_

71
44

AmmAmeasaan

TR TI LI LI T Y

- errpary

errpery errpery
Figure 5.3: Sensing errors of recovered data edge

Errpar gives the uncertainty parallel to the data edge, and errper gives the
perpendicular error. The uncertainty volume may easily be defined as a sphere where errpar

and errper are equal.

The direction of the data edge (a vector) will now be uncertain with an error cone

half angle o having a possible maximum value:

o= tan! errper, + errper,
- max[VERY SMALL, (1 E; - E, | - errpar, - errpar,}]

where VERY_SMALL is a very small number used to avoid an illegal division by zero.

These data edge error angles are now included in the constraint tests (detailed in
the next section) to determine matched pairs. Also for the constraint tests, the data edges are

reduced in length by an amount errper; + errper,.

From the above equation, it should be noted that shorter edges are more sensitive to
sensing error and produce a larger error cone half angle. This makes them free in matching to a
larger proportion of model edges when the pruning constraints are applied. For example, a
short data edge with error cone of 90° (which is not improbable) can have its direction
oriented so significantly that it may pair with a large number of model edges which
normally would not have been possible. In order to try and reduce the effects of this, a choice

is given to limit the maximum error cone permissible for all edges.

We realise that the estimation of error.from any sensing method is non-trivial
especially ‘real’ stereo data. We feel, however, that although the quantification of error in
two and three dimensional data is important, it is considered beyond the scope of this thesis.
Experiments to check the performance of the algorithm with noisy or error-prone data have,
however, been realised and may be performed by the addition of randomly distributed noise

to the recovered data.

Chapter 5 Parallel Aspects in Model Matching 108

5.5 Pruning the Interpretation Tree

As only a few interpretations are consistent with the input data, we are able to
establish this consistency by pruning the interpretation tree using local pairwise constraints.
These constraints typically serve to prune out most of the nonsymmetric interpretations of the

data.
The choice of constraints as suggested by [Grim84) and [Marr82] must be:

1} independent of any global coordinate frame;
2) simple and effective in reducing the size of the search tree;
3) made to degrade gracefully in the presence of noise;

4) independent of the particular sensing mode.

When matching is applied to structures obtained from visual motion, absolute size
information is not available and, therefore, the constraints involve unit vectors or directions
only. However, with the availability of absolute size information, full displacement vectors
may be used. This simplifies extrema calculations required in detérmining the ranges of
angles in the constraints tests. Also, an additional constraint may be included which utilises
the length of each recovered edge fragment. The constraints used are referred to as the angle
constraint, and the direction 1, 2, and 3 constraints. The additional constraint offered using

absolute size information is termed as the distance constraint. They are defined thus:

¢+ The Angle Constraint requires that if edge fragments 4 and b are assigned
to model edges i and j respectively, then the range of possible angles

between the sensed fragments must embrace the angle between the model

edges.

e The Direction Constraint 1 requires that if edge fragments a and b are
assigned to model edges i and j, then the range of angles between any
vector Pgp from a point on g to a point on b, and the edge a itself must be
wholly included in the angle between any vector gjj between points on

model edges ¢ and j and the direction of model edge i itself.

e The Direction Constraint 2 requires that if edge fragments a2 and b are
assigned to model edges 7and j, then the range of angles between any
vector Pgyp from a point on a to a point on b, and the edge b itself must be

Chapter 5: Parallel Aspects in Model Matching 109

wholly included in the angle between any vector g;; between points on

model edges i and j and the direction of model edge j itself.

+ The Direction Constraint 3 requires that if edge fragments 4 and b are
assigned to model edges i and j, then the range of angles between any
vector P,y from a point on 4 to a point on b, and a unit vector mutually
perpendicular to both sensed edges must be wholly included in the angle
between any vector g;; between points on model edges i and j and the unit

vector mutually perpendicular to the model edges.

* The Distance Constraint requires that if edge fragments 4 and b are
assigned to model edges i and f respectively, then the range of possible
distances between a point on 4 and a point on b must be wholly included in
the range of distances between any two points on model edges i and §

respectively.

it can be seen that if the labels 4, b and i, j are exchanged but we maintain the actual
data, direction constraint 2 is the same as direction constraint 1, but a{ppiied from the point of
view of the other edge. This means that the direction constraint 2 information can be obtained
from direction constraint 1. Also, an advantage of the size information is that it need not be
applied in a pairwise manner. If data fragment a is assigned to model edge 1, then the
absolute size of fragment a cannot bé greater than the length of model edge i. These
constraints are similar to ones used by Grimson and Lozano-Pérez [GL-P84b} for the matching
of faces and are very efficient in pruning out whole sub-branches of the interpretation tree.
For the maximum efficiency they are used in order of effectiveness, i.e. distance, direction 3,
angle, direction 1, and direction 2. A discussion of this can be found in the Experimental

Results section.

One thing which is important to note when using edges in a matching algorithm is
the ambiguity of direction. As the edge is merely a line in space, its sign and, thus, direction
must be determined. A data edge fragment is termed ‘+' if the choice of start and stop end
positions is consistent with the model edge. If different it is termed ‘-". Thus, a data edge may
have the same (+) or opposite (-) direction to a particular model edge. This sign information
also serves to increase the strength of the local constraints. At the early stages of processing,

it is an overhead but, as the matching algorithm proceeds, it becomes increasingly effective.

It is necessary to ascertain the direction of the data edges relative to their
corresponding model edges for the validation of the interpretation. As we are working with

vectors the directions must be known when calculating the rotation of the model.

Chapter 5: Parallel Aspects in Model Matching 110

The signs are determined during the search of the interpretation tree and, at any
given time, five possibilities exist for a data edge 4. These are (U), (+), (), {+b), and (-b).
The state (U) means that the sign is yet undetermined and all data fragments are'im'tia'lly in
this state at the interpretation tree root. Again, (+) means that the choice of start and stop
positions for the data edge corresponds with that chosen for the model edge and () means
that they do not. The (+b) state denotes that data edge 4 has the same sign as another data
fragment b, and (-b) the opposite. If, at a later, stage the sign of b is determined, for example,
b is found to be (-) when a was labelled (-b), the sign of 2 may be updated as:

(@=b = @=())={H.

When the state is (+) or (-), we say that the sign is known absolutely. It must be '
noted that the scope of a sign is only within the active interpretation and if, at a later stage,

that interpretation is found to be inconsistent, the signs must be re-evaluated.

As we are working with angles between lines in space, two values exist: the angle
and its complement. To evaluate the signs of the data edges, the matcher must take this into
account. We can derive satisfaction conditions s and 4 which determine if the fragments 2 and
b have the same (s) or different (d) signs respectively. For example, the satisfaction
conditions for the angle constraint where the angle between the unit vectors of ¢ and b is . and
the complement n-o is @* are:

5= MAX((o - B}, 0) € Agh < MIN((o + E), nt))

or
d = MAX((0* - E), 0) € Agp < MIN((a* + E), 7))

where E is the sensing error half cone angle, Agp is the angle between model edges 2
and b. Note that the MAX and MIN are used to clip the angles at 0 and n. For a valid pairing,
at least one of the two conditions must be true. However, because of measurement uncertainties

it is possible for both to be true.

Each local constraint has its own satisfaction conditions and before entry into the

constraints tests these must be determined. The tests are given below for each constraint.

Angle Constraint
1) If on entry the signs of a and b are uncertain (U): then if s is true and 4 false,

the pairing is valid and @ and b must have the same sign for that interpretation
and can be relabelled (+b) and (+a) respectively. However if d is true and s is
false the signs are different and the edges can be relabelled (-b) and (-a)
respectively. If s and d are both true the pairing is still valid but nothing can be

Chapter 5: Parallel Aspects in Model Matching 111

learnt about the signs. If both are false the pairing is invalid and the search

backtracks.

2) If onentry the sign of one of the edges is known: if for example the sign of a is
known absolutely and s is true with d fals;e, fragment b must have the same sign
as fragment 4. Conversely, if d is true and s false b must have an opposite sign to
a. Again, if both conditions are true the sign remains undetermined and if both

false the search backtracks.

3) If both signs are known on entry: if 4 and b have the same sign then s must be
true else the search backtracks. Also, if the signs differ d must be true for a valid

pairing.

Direction Constraint 1

1) If on entry the sign of a is not absolute: if s is true and 4 is false the pairing is
valid and 4 can be signed (+). If however 4 is true and s false the sign of a is (-). If

both are true nothing is learnt and if both false the search backtracks.
8
2) If on entry the sign of 2 is known absolutely (+) or (-): for a valid pairing the

appropriate condition must be shown to be true, i.e. s or d respectively.

Direction Constraint 2

As Direction Constraint 1 but with references to edge a to be replaced by edge b.

Direction Constraint 3

As Angle Constraint.

Distance Constraint

Not Applicable

It can be seen that as Direction Constraints 1 and 2 involve only one edge vector they
can determine edge signs absolutely. The Angle Constraint and Direction Constraint 3 merely

propagate the signs as they involve the product of two edge vectors.

5.6 Validation of Interpretations

After a set of feasible interpretations have been obtained, it cannot be guaranteed
that these are consistent with the model. This is because the constraints are applied

successively to pairs of data and are therefore local. As it stands, it is not possible to know

Chapter 5: Parallel Aspects in Model Matching | o 112 |

which interpretations are consistent with a single global transformation between model and

Sensor Spaces.
Each interpretation is therefore tested to:

1) Determine the actual transformation parameters (scaling, rotation, and

translation) from model space to sensor space,

2) Confirm that each data edge lies sufficiently close to its particular model

edge.

The transformation is found as an average of all the data edges by assuming that a

vector vy, in model space is transformed into sensor space by the following:
Vg = S[R}viy + £
where: S is the scaling, R is the rotation, and { is the translation.

The transformation is applied to each datum in turn, requiring that each endpoint,
after back transformation in model space, is sufficiently close to the model edge to which it is

paired within a small degree of error.

From the matching description of data to model features, a geometrical description
of a model M is composed of primitive descriptors P in a set (P, Py,P,) with P, being the
final descriptor in the model set. The descriptors chosen may be vertices or edge vectors, or
approximations of geometrical surfaces such as planes (faces) or quadrics. This set forms a

rigid body which is able to undergo various affine transformations.

Assuming M to be the description recovered from the data in the sensed world (be it
by tactile, range, stereo, or structure from motion techniques), a transformation T must be found
which will map each sensed primitive descriptor of M', i.e. (Py, P;', ...Py") to the
corresponding model primitive descriptor. This transformation must be accurate enough in its
mapping to within a predetermined scope of error for a valid pairing. It provides the

translation and rotation (and possibly scaling) of the identified object of the scene.

The estimation of the best transformation is determined by the least-squares
method. The algorithm was developed by Faugeras and Hébert [FH83] for the matching of
plane primitive descriptors, but can equally be applied to edge vectors. It uses the idea of
quaternions in the estimation of the rotation. An edge E is represented by two parameters w

and d where w is the unit vector normal to the edge, and 4 is the perpendicular distance of the

edge to the origin O.

Chapter 5: Parallel Aspects in Model Matching 113

w
w
w , -
i \ rotation R
i M \ d - - -
¢ d v AN translation
! \
. hY
0Oé L Ne] ¢ 0

Figure 5.4: Rotation and translation of line in space

w determines the orientation of the edge and is directed parailel to 4. By
associating a point M of E, we can see that the distance d is equal to w.OM where ‘. is the dot
product of the two vectors (w being parallel to d, and perpendicular to the edge). When the
transformation T is applied to the edge vector, a new edge is obtained. The rotation R is
applied before the translation . Assuming that the original edge was represented by E(w,d),
the transformed edge vector is given by E'w'd") where w' = Rw and d' = w"t + d. The

derivation of this follows.

Referring to Figure 5.4, as the original distance is d = w.OM then after rotation and
translation this becomes d~ = w~.OM™ and d' = w.OM' respectively. After rotation the
orientation becomes w™ and is equal to that after the subsequent translation. Also, the

distance before rotation is the same as that after, thus the following may be written:

d=d~

w=w"

OM' =OM~ +t where OM™=0M
thus

d=wOM+§ = wOM+uw't
Substituting w'.OM we have

d'=w.t+d

Assuming a match Ma to be composed of pairs of model to corresponding data edges,
then Ma = (E(wjdp), E'wyi 4 i=1..n where n is the number of matched pairs, the rotation

and translation sought is one which will minimize the sum

S lwi-Rwy 12 + W.ldi-di 12
i
i.e.
3 lw; - Rwy 112 + W.ld;-di -wit |2
i

Chapter 5: Parallel Aspects in Model Matching 114

This sum decomposes to two terms; a sum |l w; - Rw;’ |12 to determine the best rota-
tion, and a sum | d;-df - wj.t! 2 for the best translation. Note that W is a weighting factor.

The two sums are minimized using the notion of quaternions for the rotation. A quaternion g
may be defined as a pair (v,s) where v is a vector of E3 and s is a scalar [FHB83]. It may be
regarded as a generalization of complex numbers with the vector v corresponding to the

complex part of 4 + ib. Using this notation, the rotation problem reduces to a quadratic

criterion:

F= Z 9.A;A# gt = 4.B.g*
i

where B= 3, Aff.A; isa symmetric 4 x 4 matrix, and g is of dimension 1x 4.
i
F is minimized with the criterion liglf = 1 where Fpy;y, is the smallest eigenvalue of
B and gymx is the eigenvector of unit normand of positive fourth coordinate corresponding to

the eigenvalue of [y
Estimation of the best translation reduces to a vector which will minimize the sum
S=3% ldy-di +witl?.
i

This is a simple least-squares problerﬁ which can be solved using the pseudo-inverse

method as follows:

If n is the number of match pairs and A is an 71 X 3 matrix of (w1, w2, w.tnl,
and Z is an n-vector of [dy - di, d3' - da, ..dy' - dplt then S = || Z - At |l % The
estimation of the best translation then becomes: iy = (A!A)1 A!Z and the

error Smin = ZHZ - Atmin).

A problem with these two estimation algorithms is that indeterminations may
arise due to an insufficient number of matched pairs. The determination of the transformation
requires at least two pairs of non-parallel edges for the rotation and three pairs of

independent edges for the translation.

The scaling is achieved by firstly determining the scale of each available data
edge and then averaging over the total number. Given the rotation [R] and translation ¢, the
scale of a data edge S may be derived from:

_ (Eaq -1). [R} (Mj x (Tjy x Ti2))

g =
[RITj1. [R] (M x (Ti1 x Ti2))

Chapter 5: Parallel Aspects in Model Matching -

where Eaq is the start position of data edge fragment a,
Mj represents model edge vector i.
Ti1 and T3 represent the start and stop positions of model edge i respectively.

We note that with absolute size knowledge, the scale factor will be unity.

After determination of the rotation, translation, and scale, it is then necessary to
test the actual validity of each edge. For this we need to determine how closely each data
edge maps onto its respective model edge. This is achieved by transforming the sensed data
back into model space where the endpoints are required to fit the model edge to within a
deviation. This deviation is computed from a user sup};Iied fraction fracdev, and the length
of the longest vector between any two model vertices maxdist, as fracdev x maxdist. Fracdev
must however be tuned for the best results. For a valid interpretation all edges must pass the

deviation test.

5.7 Parallel Model Matching

In order to reduce the processing time, two main procedures may be adopted. The
first is to heavily prune the interpretation tree, thus leaving a fraction of the original to be
investigated. The second is the use of a faster machine and thus, parallel processing. The
paraliel matching algorithm devised by Holder and Buxton (H&B) (FB89a] and based on
work by Grimson and Lozano-Pérez {CL-P84b] uses SIMD parallelism on the DAP in order to
obtain a much reduced program run time. Parallel algorithms have also been used by other
authors, namely, Flynn and Harris (F&H) [FH85], and Shankar, Ramamoorthy, and Suk
(5,R&S) [SRSY0]. Both have been adopted on the Connection Machine. Unlike H&B, the

method of §,R&S uses vertex-pairs, not edges for matching,

The parallelism of H&B when compared with F&H is very effective, They found
that with n model faces and m data points, n™ processing elements are required to achieve a
processing time of the same order of magnitude. Also, for 250 objects, each with 10 faces and 3
data measurements, F&H required 250,000 of the 256,000 processors on the MIT Connection
Machine [HB89a). This will rise by a factor of 10 with each additional data point.

The effectiveness in the algorithm is achieved by initially determining matches of
data pairs to model pairs in parallel and then testing these for local consistency. This means
that in one instruction ail the possible pairings of a data pair to model edges can be found.
The order in which the constraints are applied to the data pairs is unimportant here because

we only require the result obtained from application of all the constraints. These are stored in

Chapter 5: Parallel Aspects in Model Matching - ilﬁ o

a logical matrix as in Figure 5.5. Note, however, that this is in contrast to the serial

algorithm where the order of application of the pruning constraints may be significant. This

is because in many serial implementations the constraints are applied in order of
effectiveness s0 as to obtain cutoffs as quickly as possible. The serial algorithm, therefore,
implements non-uniform termination, whereas in the parallel method, we perform an

exhaustive search of the heavily pruned tree.

data edge 2
1 2 3 4 5 6 7
1 T T
23T T
3 TITI|T
data . T T T
edge 1 T
51T T
6
7 T T

Figure 5.5: Logical look-up table of matches

From Figure 5.5 we can see that for the data edges 1 and 2, taken as a pair, possible
matches are achieved where ‘true’ values ‘T’ are present in the matrix. Thus, data edge 1 may
be associated with model edge 2 when data edge 2 is associated with model edge 1 or 3, and
data edge 1 may be matched to model edge 4 when data edge 2 is on 2, 4, 5, or 7. The
effectiveness of the algorithm is achieved by maintaining a large amount of data in the

array store. For n data edges the number of data pairs is given by

m
I.
i=1
This means that for 64 data items 2016 n x n matrices are required, where n is the
number of model edges. It may be considered that a model containing 64 faces is sufficiently
complex but this is certainly not so with edge matching. A model of 200-300 edges is required

to show an equivalent complexity. This is very demanding on the memory requirements.

As well as generating and storing the model look-up tables, the parallel matcher is
also made more effective by maintaining a one dimensional list of matches between data
edges (a data look-up table) for each of the constraints. The length of this list is given by the
number of data pairs. Matches between data edges are therefore calculated once only, and

stored. This significantly improves the performance of the matching process.

Chapter 5: Parallel Aspects in Model Matching 117

Feasible interpretations are achieved by making trial assignments of alternative
data pairs to model edges. These assignments are checked for consistency to assignments made
higher up in the interpretation tree. This must be done because it is not physically possible

for a data edge to be assigned to more than one model edge using bottom-up matching.

To illustrate this serial search for consistency of assignments we consider a list of
possible matches of data pairs to model faces, as shown in Figure 5.7, for five data items
recovered from an L-shape model of 8 faces (Figure 5.6). Note that for the same model, 18
model edges must be considered for edge matching.

Figure 5.6: L-shape model

data 2 data 3 data 4 data % data 3
12345678 123456738 12345678 12345678 12345678
R S o LoaTo o on | S I.....TTT | PN
d Z..0 4 2, 4 2. d 2,. 4 2..7.....
[a 3. a 3. a 3., A 3T i
£ 4. 707 t 4. T 4. oA L
+ 5.7...TTT a 5. a 5. T & 5,.7...7TTT a 9.
5..7.7T.77 & . 6. f G e 6 .
A 1 7. 17, . i 7.. 2 7.
(L1} {L2) (L3) {L4) {L9)
data 4 data § data & data 5 dats %
12345678 12345678 12345678 12345678 12345673
} 1.7...TTT LT« 87T 1I.T,..TTT TLT L. TTT
4 2..,.T.... ¢ 27.....TT d 27,%% a 27 W TT 4 2........
a 3., & 3,..7..7TT a 3...7T..TT & 3...T7T..TT [
E 4. £t 4..7.7T.TT £t 4..7T.7.7T € 4, .T.T.TT t 4....7.1T7
& 5. a 5...T.TTT . 5., .T.TTT A 5. T.TTT a 5.7T...7T7T
6, BT ,..T.TT 1. ..7T.7T &7 JTLTT 6..T.T.TT
2 7. . 2 ITTTTET. . 3 TTTTTIY 3 ITTTTTT.. L S
IO 3TTTTTT. . BTTTTTT .. 3TTTTIT. . B
(L&) (LM {L8) (L9 (L10)

Figure 5.7: List of matches

The serial search algorithm requires that if a data edge is not currently assigned
then it remains consistent for it to be assigned to any model edge along the appropriate row or
column of the match look-up table. That is; for data pair 1-2 in the state Unassigned-
Unassigned, all the 15 matches of the look-up table are consistent. Consider first the match of
data edge 1 to model edge 1, and data edge 2 to model edge 2. For the level 2 look-up table
(data pair 1-3), we can see that to maintain consistency with the above assignments, data

edge 1 must be matched onto model edge 1. Data edge 3, being currently unassigned can match

'Chapﬂt'er 5: Parallel As@ects in Model Matching 118

onto any model edge consistent with data edge 1, i.e. model edge 3. We now have matches of
data edges 1, 2, and 3 to model edges 1, 2,and 3 respectively.'For data pair 1-4, the corisistency
is again enforced by data edge 1 ensuring that it is only possible for data edge 4 to match with
model edge 4. This consistency checking becomes more effective as the search deepens with
maximal efficiency when both data edges are assigned, and minimal effectiveness with an
Unassigned-Unassigned pair, It is therefore important that the data edges are sorted in a
manner which will increase the power of the consistency cutoffs, i.e. the search backtracks

when assignment of a data pair is not consistent with earlier assignments.

An interpretation is an assignment of each of the data items to a model face, The
model faces can be repeated in an interpretation but each data item only appears once and
must be consistent with all the previous assignments of that data item in the interpretation.

From the above example, two feasible interpretations result:

Data Model Data Model
1

I =S L T N Y
[B % I N Ry
OO i LRI e

2
3
4
5
Interpretation 1 Interpretation 2

‘After an interpretation has been found, it is stored and the search backtracks in an
attempt to find more complete pairings. This means that the time taken to find a number of
interpretations is highly unequal. After the first interpretation has been found, the work
needed for the following interpretations is much reduced as the search does not restart from
the root node. A DAP implementation of the algorithm is illustrated in Appendix C.

5.7.1 The Importance of Match Ordering

W

Unlike the serial version of Murray and Cook [MC88) when considering edges, the
data edges need not be sorted in order of length prior to the matching algorithm to achieve
matching efficiency. This is because all data edges are checked against model edges in
parallel. Sorting of the data edges will therefore make no difference to the possible
assignments. However, according to Holder and Buxton, the traversal of the interpretation
tree is made more efficient by considering the data pairs in order of the least number of
matches. The data pairs are thus sorted in a list accordingly. From Figure 5.7 it can be seen
that if the assignments of data pairs 1-3 and 2-4 are considered first and 2-5, 34, 3-5

considered last, the consistency checking would be more effective and result in a faster

Chapter 5: Parallel Aspects in Model Matching 119

traversal of the interpretation tree than if the data pairs were considered in the reverse

order.

We show that, in general, sorting of the data pairs in order of least number of
geometrical matches is inefficient and, in fact, proves to weaken the search as the number of
data edges increases, However, the benefits gained by this type of ordering cannot be
overlooked. A tree with one branch at the root node (data pairs 1-3 or 2-4) will, in general, be
traversed faster than one with 33 (data pairs 2-5, 34, or 3-5). The problem, however, begins
to occur when the ordering causes the generation of Unassigned-Unassigned data pairs during
tree search. If the match list was sorted and traversed according to the least number of

matches, e.g.
[1-3, 24, 14, 2-3, 1-5, 1-2, 4-5, 2-5, 34, 3-5]

as in Holder and Buxton, then immediately, an Unassigned-Unassigned pair is produced at
level 2. Fortunately, in this example, the look-up table contains one possibility, but it could
have easily been more. Consistency can be maintained so that only one Unassigned-
Unassigned data pair (at the top level) is present in the match ordering. This is obtained by
ensuring that a data pair is encountered only after at least one of its data edges has been

earlier assigned. Thus, for our example, the ordering could be:
[1-2, 1-3, 2-3, 1-4, 2-4, 34, 1-5, 2-5, 3-5, 4-5].
This ensures effective consistency cutoffs as the list now reads

[U-U, A-U, A-A, A-U, A-A, A-A, A-U, A-A, A-A, A-A]

EN

where U = Unassigned data edge, and A = Assigned data edge.

Considering the cases of A-U, it can be seen that the consistency maintainance can be
made more effective by ensuring that pairs at this position have the minimum number of
matches for each group. Here, a group is defined as data pairs whose second data edge are the
same, thus, 1-4, 2-4, and 3-4 belong to group 4. Such sorting introduces the additional power
obtained by reducing the number of matched pairs in a data look-up table. It should be noted
that the number of matches at positions A-A is unimportant since only one location in the

look-up table can be consistent.

The initial data pair is also important in the effectiveness of the tree traversal as
was seen in the Holder and Buxton sorting. It can be included here by a further requirement
that the initial data pair contains the least number of matches. This has the disadvantage

that it is now possible to have two cases of U-U during tree traversal but the additional

Chapter 5: Parallel Aspects in Model Matching _ 120

power of reducing the initial branches of the interpretation tree greatly outweighs this. In
the remaining text this will be termed as the ‘Combined sort’ and its implementation is
shown in Appendix C. Further investigations of this are also presented in the Experimental

Results {Section 5.11).

5.7.2 Direction Sign Management

As in the serial version of the model matcher, the direction signs of the data edges
are determined during the search of the interpretation tree. Along with the look-up table for
matches between data pairs, individual matches at the local constraint level are also stored.
This is also performed in parallel. For the five constraints; angle, distance, and direction
constraints 1, 2, and 3, nine look-up tables are required, one for the distance and, two for each
of the other constraints. Of the two, the first contains matches where the data edges both
have the same or both have opposite directions to their corresponding model edges. When
this is so, both data edges are said to be same. The second table holds those matches where
one data edge has an opposite direction to its corresponding model edge and the data edges
are then said to be different. Therefore, (+)(+) and (-}(-) are ‘same’, and (+)(-) and (-)+) are
‘different’. It must be noted that for a match to be possible a corresponding element in one of
these tables must be true, If both are true, however, the pair still match but are unable to give
further information in the determination of sign. To be more precise, a match is only possible

if, for each constraint {excluding distance), a corresponding element in at least one of the two

tables is true.

When traversing the interpretation tree, the local tests are performed at each level
in order to determine data edge signs. Ambiguities, however, may arise on reaching a leaf
node depending on the number of data pairs with directions being termed both as ‘same’ and
‘different’. During the search, information corresponding to which data edge is 51gned and
which is dependent on another is recursively updated in a list at each level. This updating of
the list is performed in one single parallel step where the list is a vector data structure.

During backtracking to a higher level the list is returned to the environment of that level.

5.8 Subgraph Matching of Large Models

A problem with the method of H&B is the large demand on memory for compiex
models, Although this is not as great as that of F&H, it does not allow for matching of
models of greater than 32 edges for a 32 x 32 DAP, and 64 edges for a 64 x 64 DAP. However,

the use of the new Fortran* (pron. Fortran Star) language makes it possible to exceed the limit

Chapter 5: Parallel Aspects in Model Matching 121

of 32 and 64 edges respectively for the DAP without the need of special treatment of the
data. The user is no longer limited to DAP_SIZED parallel structures but may work in
arbitrary numbers or even non-uniform matrices. This does not mean that a computation on a
64 x 64 sized matrix is wholly parallel on a 32 x 32 DAP as the processing is still dependent
on the edge size. It simply means that a user defined loop is not necessary and the execution
can be invoked by one instruction. Fortran* will therefore maintain the parallelism in each
DAP_SIZE X DAP_SIZE matrix but not globaily in the MODEL_EDGE_SIZE X MODEL _EDGE _SIZE
matrix. This pseudo-parallelism works well but is very demanding on memory especially
with temporary variables. To attempt matching 512 data fragments, 130,816 data pairs must
be considered. With each data pair requiring an n x n table, for a large model, this is not

feasible.

We have devised a method, ‘subgraph matching’, for the parallel matching of
large models which can be more memory conservative. This is achieved by attempting to
systematically match to portions of the model. Consider the data from Figure 3.7. If each
table was subdivided into quadrants, then these may be tested for possible matches and the
quadrants checked for consistency. This may be presented in the form of a tree as shown in
Figure 5.8 overleaf.

quadrant
remmrmrtree S

data pairs

Figure 5.8: Quadrant tree

The size of each quadrant must be DAP_SIZE x DAP_SIZE for greatest efficiency.
However, for the sake of simplicity we shall use quadrants of 4 x 4 in this example. If we
consider Figure 5.7 it can be seen that a number of quadrants have no matches and others
contain greater than 50%. By maintaining a list of the number of matches in each quadrant we
may sort the ‘quadrant interpretation tree’ accordingly so that quadrants with less matches

are encountered first, Figure 5.9,

Chapter 5: Parallel Aspects in Model Matching

quadrant table

24
deta 3 dats 2 data 3 data 4 date 4
1234 5678 1234 5678 1234 5678 1234 $8578 1234 SG'JB
Lo Tobe v 1P .TTT 1. P I e de o 1.
d 2. . 4 2. 0o ¢2. T.i. ¢ 2...T1.... 4 2. I
a 3. ol B 3 a 3.T.. 4. & 3.l 2. N
t o4, 1. €t 4. JATLTT t 4. i t 4. o t 4.0,
a —— o a* —_—— - - iy -~ - - a oM o ow we o F.3 e
- JPRF - P B 5. e S, NI 5, 1T
6., 1 6..7.47.77 2 6. N 2 6, i 1 6. [
S IR VI [Tiovsla 7. | 7. i
- RO R |: I R 8, P B. Bl a
(L1} (L2} {L3) (L4) (LS)
dats 4 data & data 5 datas ¥ data §
1234 5678 1234 5678 i234 5678 1234 5678 1234 5674
1.7, 1.777T 1. VELTTT 1. §'l"l"£‘ 1. JbaTeT 1.f.. 40177
4 27 1. .TT 4 2....%. 4 2. I N 4 2'1‘ ' T‘I‘ d 2T...1. ‘I’T
s 3. T1..TT & 3., 00 ... a 3. e a 3, Tl A 3. T%

t o4 T 7. 7T L - SEENE E t 4. T TT t 4. 'Z'!T TT t 4, ‘I‘i'{‘ TT
Y & mewe - 8 e e B wmww meme & sesw oweme
5., TH.TTT 5.T..1.TYT 5.7 L LLTTT 5., T1LETT 5...7F.TTY
3 8T, .. IT.TT I I 4 6..7.0T.77 z S‘Z‘ SAT.TT 3 6'1‘ ETLTY
TTTITHITT. - 7. .i- Tovan e 'fTTTTIT'{' TT?TTETT
STTTTITT 8., Po v - T I BTTTTITT. BTTTTITT,
(L6} (L'n') (L8) (L9) (L10)

Figure 5.9: List of quadrant tables

As discussed in Section 5.7.1, assignments are made starting from the data pair with
the least total number of matches and maintaining consistency between the remaining number
of data pairs. For the example, this means that the interpretation tree will only have a

single branch at level 1 (data pair 1-3).

It is not necessary to enter each quadrant at every level. A number of checks are
performed to determine the probability of consistent matches within a quadrant before
matching is attempted. This greatly reduces unnecessary CPU computations. There are at
present four conditions to determine if the model edges within a quadrant are significant for

the particular interpretation.

1) If the quadrant contains no matches, abandon and move to next available

quadrant.

2) If data edge 1 has been earlier assigned to model edge x and data edge 2 is
unassigned, model edge x must be contained in the edge 1 side of the quadrant.

3) If data edge 2 has been earlier assigned to model edge y and data edge 1 is
unassigned, model edge y must be contained in the edge 2 side of the quadrant.

4) 1f data edges 1&?2 have been assigned to model edges x and y, the edge 1 side

of the quadrant must contain model edge x, and the edge 2 side of the quadrant

must contain model edge y.

Chapter 5: Parallel Aspects in Model Matching 123

It must be noted that the sorting of the qﬁadrants in order of ascending number of
matches, and the sorting of data pairs to maintain consistency, is very important to the
efficiency of the method. The memory limitations of the hardware are now not as drastic as

. feasible interpretations are achieved using the DAP_SIZE X DAP_SIZE matrices of H&B for a

model with n number of edges.

5.9 Parallel Data Validation

Using SIMD parallelism, it is easy to maximize the efficiency of calculations in the
validation of feasible interpretations. The array structure of the DAP makes it possible to

map the rotation matrix directly onto the processors. This would give 4 x 4 parallelism in the

estimation of the best rotation for the sum 2 A;t.A; (see Section 5.6).
i

However, a greater efficiency is obtained by mapping several transformation
matrices onto a single DAP array. For a 32 x 32 DAP the rotation calculations for up to 64
feasible interpretations are possible at each step. The larger 64 x 64 DAP would allow up to

256 interpretations.

Using Fortran* two possibilities exist when determining the best rotation. As
mentioned above, sheet mapping subsequent 4 x 4 matrices onto a DAP array makes it possible
to determine the rotation of several interpretations in one stage. The second method which
was adopted was to map the 4 x 4 matrices onto an n x 4 parallel array where n is 4 times the
number of feasible interpretations. Although this proved more taxing on memory, the
numerous vector and matrix calculations were made more efficient. For example, to multiply
and sum the columns in a series of 4 x 4 matrices in the array A(1..64) of 4 x 4 matrices, the
following would be necessary:

initialise result = 0
forcount =110 64
fori=1to4

forj=1to4

{
result(i,j) = 0
fork=1to4
result(i,j) = result(i) + A(count)(k,i) * A(countXk,j
] . : _ .

and would prove messy. Also, it does not make the most of parallelism when applied to 4 x 4
matrices sheet mapped onto a 32 x 32 array. The problem collapses into a large number of

shift processing operations in an attempt to place matrix components in their correct positions.

Chapter 5: Parallel Aspects in Model Matching _ _ 124

However, by mapping the matrices as an n x 4 array, the parallelism can be maintained as
shown in the following piece of Fortran* pseudo-code:

result =0

fori=1to4

forij=1to4
result(i,j) = SUM(AGD * A(D)

The operation is taken out on each column component of all the matrices and summed

in one single parallel step.

The first method also allowed the estimation of up to 64 rotations to be determined
in parallel for a 32 x 32 DAP but failed to maintain an effective. parallelism in the
calculations of the translation or determinations of scale or “best fit". As in the above
example, the parallelism in the estimation of the rotation was made less effective by the
need to perform a large number of matrix shifts in preparation for particular matrix
operations. As the translation, scale, and best fit was determined for each data edge, and the
overall result obtained by averaging, method number two was able to deliver the results
effectively in parallel. As a large number of vector and matrix operations were required
during these estimations, it proved wiser to map the 1x 3,3 x 3, and 4 x 4 arrays of each data
edge onto a DAP array and determine the translation, scale, and best fit of all the data edges
in a single step. This also applied to calculations in the estimation of the best rotation. By
using this structure, an increase in the number of data edges shows only a fragmentary increase
in the run time. This occurs due to the need to set up the extra edges and when the number of

data edges becomes greater than the edge size of the DAP.

It has been assumed that during the estimation of the best rotation that the
absolute signs of all data edges are known. This is not always so. Under such circumstances,
the data edge cannot yicld any helpful information. It is, however, possible to pull in this
potentially useful data for later refinement of the rotation calculation. After estimation of
the translation and scale, the unsigned data edge is fitted to its corresponding model edge. If
the fitting is successful, the start and stop positions of the data edge may then be deduced and

used for refinement of the rotation estimation.

5.10 The Bin and its Implementation

It was assumed above that all the data edges or data components will be matched to
the model. In practice this is not so. Junk and clutter, noise in the image, or parts of the object
being occluded can all lead to more data components than there are model components.

Spurious models and model primitives that do not show up in the image tend to encourage the

Chapter 5: Parallel Aspects in Model Matching 125

number of model features to be greater than the number of image features. Thus, in general,
the number of model features does not equal the number of image features. The effect of
spurious data will be to make quite legal interpretations invalid. A way of overcoming this is
to introduce the concept of null-pairing or ‘bin’. This means that if a particular data edge
cannot be matched, then it is assigned to a bin and will be unpaired (hence the name). This
requires an extra branch in the interpretation tree for the bin at each level. Thus, for a model
of e edges with s sensed edges, the introduction of the bin will result in (e + 1)% possible

interpretations.

A scene with three data and two model features is shown below. A possible

interpretation may be difficult to obtain without a bin (the third branch).

datal

data 2

data3

Figure 5.10: Interpretation tree with bin

At each level, it is possible for that particular data feature to be paired with the
bin B. This means that interpretations can have various numbers of bin pairings. Obviously,
the interpretation with the minimum number of bin assignments is the most consistent with
the data and, therefore, likely to be the correct one. Suppose that we have an interpretation

of (1, 1) (2, 2) (3, 2). With the bin we can have further interpretations from this:

1binassignment 2 bin assignments 3 bin assignments
1L,DEGEH GLERHGCH (LPRPGH
LHepGey OGHEDHEP

L2232 O,PpEPG22

These may be sorted in order of minimum number of bin assignments. For a particular
interpretation without the bin, seven more are available with the bin in this case! The
original interpretation is preferable than those of 1 bin assignment, which are better than 2

bin assignment, which in turn are better than 3.

In implementation, the matcher may discard an interpretation depending on the
number of bin assignments in that interpretation. In tests, assignments of 10 - 20% (depending
on the accuracy of the sensor) of the total number of data edges was found fo be quite effective

for bin content. The parallel implementation mapped well onto the processors of the DAP. It

- Chapter 5: Parallel Aspects in Model Matching 126

simply consisted of the increase of the n x n look-up tables to {n+1) x (n+1). The last dimension
is made to contain the matches of the bin. Obviously, these will all be set to true in each table
so that any data edge may be paired with the bin. Thus, a look-up table for a model with 6

edges must contain the assignments below.

data edge 2
12 3 4 5 ¢

data
edge 1

BEER R N R N R N Bl

~3 OOhn o B W R e

Figure 5.11: Logical look-up table of bin assignments

The addition of the bin makes little or no difference to calculating matched pairs as
this step is a parallel one. However, an increase in time occurs during the serial search of the
heavily pruned tree. Cut-offs and backtracking can be made to occur after the number of bin
assignments exceed that of a user set value. In addition, the matrix locations not composing

the bin are encountered first in order to deliver only non-bin interpretations early in the

search.

5.11 Experimental Results

We present in this section experimental results obtained using the parailel model
matcher for scenes of models and data generated using the parallel ray tracer described in the
previous chapter. Experiments conducted on five CSG models are described initially, with a

sixth larger model reserved for subgraph matching.

Each model is viewed from two positions. The first is termed ‘interesting’ and
presents an accurate view of the model. The second is less 5o and aims to be from a more
ambiguous viewpoint. Figure 5.12 illustrates the two views of the models. Each was
generated as a 512 x 512 pixel image in a single level trace and is illuminated using a single

light source. Their complexity in terms of CSG primitive content and halfspaces is shown in

Table 5.1.

Chapter 5: Parallel Aspects in Model Matching

127

¢} Computer: view 1 and view 2

d) L-shape: View 1 and view 2

Chapter 5: Parallel Aspects in Model Matching : 128

e) Wedge: view 1 and view 2

Figure 5.12: The test scenes

Model No. of Primitives No. of Halfspaces
Chipped Block 2 12
Chair 3 18
Computer 9 54
L-shape 2 12
Wedge 3 18

Table 5.1: Complexity of test models in terms of CSG primitives

As the data fragments in these results were obtained using stereopsis, it was helpful
to the stereo processing algorithm that a sharp contrast at edge boundaries was present. This
was achieved by ‘painting’ each face of the model a slightly different colour from its
neighbours. Also, to improve the robustness of the stereo matching algorithm, the ratio of the
interocular separation of the two pseudo-cameras to the viewing distance was kept to about
1:5 [TINA]. The stereo image pairs for each model was produced using the Tiling version of

the parallel ray tracer. Figure 5.13 shows the stereo pair for view 1 of the Computer model

under these conditions.

Figure5.13: Stereo pair for view 1 of Computer model

Chapter 5: Parallel Aspects in Model Matching 129

The generation times of the stereo image pairs was extremely fast, considering the

resolution, and can be seen in Table 5.2,

Model Time to generate stereo pair
{seconds)
Chipped Block view 1 12.6
Chipped Block view 2 10.3
Chair view 1 12.1
Chair view 2 9.6
Computer view 1 : 32.8
Computer view 2 26.0
L-shape view 1 14.5
L-shape view 2 11.9
Wedge view 1 255
Wedge view 2 11.0

Table 5.2: Generation time of stereo pairs using parallel tracer

Each model is defined in a right-handed coordinate system with a vertex at the
origin (except in the case of the Computer model) and the model placed in the -x, +y, -2

quadrant. They are of varying complexity in terms of faces and edges (Table 5.3).

Model No. of faces No. of edges
Chipped Block 7 15
Chair 12 30
Computer 14 32
L-shape 8 18
Wedge 7 15

Table 5.3: Complexity of models in terms of matching features

In the following sections we shall investigate various aspects of the parallel
matching algorithm. Comparisons of the geometrical pruning constraints are made along with
tests for robustness for different sensing errors. A serial implementation of the matching and
validation phases, in the C programming language, on a Sun 4/260 workstation running under
UNIX is compared to the parallel implementations. We show that the sorting algorithm of
Holder and Buxton weakens as the number of data paits and/or the sensing error increases.

* Also, we show that the new ‘Combined’ sorting of the match list (discussed in Section 5.7.1),

in miost cases, shows significant speed ups over the Holder and Buxton sort.

We note here that the serial implementation for the matching algorithm is coded

‘efficiently’ and that timings obtained may be faster than in the general case.

~ Chapter 5: Parallel Aspects in Model Matching 130

5.11.1 The Pruning Constraints - A Comparison of Effectiveness

In this section we compare the geometrical constraints; distance, angle, direction 1,
direction 2, and direction 3, to try and establish which are most effective in collapsing large
sub-branches of the interpretation tree. Comparisons are made using ‘non-ideal’ view 1 data
recovered from the Computer and L-shape models. These contain 26 and 18 data fragments
respectively. By ‘non-ideal’ we mean that the recovery of the data edges are subject to sensing

erTors. ‘Ideal’ data suffers from no, or very little sensing error.

Table 5.4 details the power of the constraints for the two data scenes. In both cases
the angle constraint appears to be the weakest with the largest number of matched pairs.
Next are the direction 2 and direction 1 constraints. However, in the case of the Computer,

the distance constraint appears most effective, whereas in the case of the L-shape it is the

direction 3 constraint.

Data Model | Data | No. of § Potential Pruning Constraints
scene edges | edges | data | matches
ME : 2
pairs | (MEEXDPM byt | Angle | D1 | D2 | D3

Computer | 32 26 325 332800 73032} 181276 | 139694 | 166804 | 131026

L-shape 18 18 153 49572 | 20870] 27864 | 24148 | 25366 | 13600

Table 5.4: The pruning effects of the constraints on the match list

Theoretically, if all constraints were applied and then each is switched off
individually, the constraint which would prodm:e the largest number for the total matched
pairs by this action, i.e. the remammg constram'ts are apphed will in general be the most

effective constraint. The result for this is shown below.

Data Total matched pairs for constraints
scene Allon | Dist off | Angleoff{ DI off D2 off D3 off

Computer 21069 56709 27630 26685 23842 25732
L-shape 3846 8432 7876 6794 6344 8184

Table 5.5: Pruning power of constraints

We can see that in both cases the distance constraint appears most effective and the

direction 2 constraint appears weakest. However, establishing the order of the remaining

Chapter 5: Parallel Aspects in Model Matching ‘ 131

constraints, and in which manner to apply them is not so clear. Fortunately, this does not
affect the parallel matcher. As all constraints are applied at the top level, and the results
stored, the order in which they are applied is not significant, but can be so for the serial

method which implements non-uniform termination.

We note that as the angle constraint involves an absolute measurement, it should be
more effective than the direction constraints which involve calculating a range of angles.
This is evident for the Computer scene whereas for the L-shape the angle constraint is second
to the direction 3 constraint. We may, therefore, conclude that for matching with absolute
size knowledge (structure from stereo), the distance constraint is the most effective constraint,
whereas without absolute size (structure from motion), the angle constraint (or the direction 3

constraint) may be applied first.

5.11.2 The Effects of Sorting

Effective sorting of the match look-up tables is the key factor in the efficient
execution of the serial search during the matching process. Here, we compare several sorting
methods in an aim to determine their effectiveness (or non-effectiveness) for three data scenes
- the Chair (view 1), the Computer (view 1), and the L-shape (view 1). These are fairly
large models with 30, 32, and 18 model edges, and 20, 26, and 15 visible data edges
respectively. In each case, the pruning constraints; angle, direction 1, direction 2, and

direction 3 are applied.

The sorting methodologies compared here are the Holder and Buxton (Hé&B)
ascending order sort, the consistency sort, consistency sort with ordering within groups, and
consistency sort with ordering within groups and minimum matched data pair at level 1 of
the match list - the Combined sort. Also included is the ‘worst case’ sort whereby data pairs

are arranged in descending order of matches.

From the results obtained, all passing tests were able to return the single correct
interpretation. As expected, the Combined sort outperformed the H&B sort in respect of total
matching time (Figure 5.14). For the Chair scene it produces a speed up of 4.25 of the total run
time, and for the L-shape model this reduces to 1.59. The introduction of least number of
matches in the consistency sort produces a more effective ordering in all cases. For the ‘worst
case' sorting, both the Chair and the Computer scenes failed to terminate or return an
interpretation after 36,000 seconds (10 hours!). The L-shape interpretation was returned after

1,360 seconds (22.7 minutes),

Chapter 5: Parallel Aspects in Model Matching

132

36000+ 36000+ 1360
3] I i
i i
16 " | BECombined
1.4 : L
12 22 Consistent + Ordering
Run time E::] - .
(se0) 1 Consistent
08 BH&nr
06 4
0.4 - E] wol'st Case
02 -
0 4
Chair Computer L-shape
Data Scene

i,

Figure 5.14: Comparison of run times for various sorts

In the case of the Computer scene, for the Combined and H&B sort, no significant

difference in run time was observed. This may be explained by realising that although for the

H&B sort two U-U data pairs are encountered during tree search, the average number of
matched pairs for the first ten levels is 2. For the Combined sort the values are 1 and 44.6
respectively. Figures 5.15 and 5.16 illustrate the number of U-U data pairs, and the mean

number of matched pairs for the first ten levels as relating to the search effort made (levels

traversed) during tree search, Figure 5.17.

unknown unknown
[™ : y .
5 u
4
2]
[ossesd
No. of]
u-u 3 4 2
data pai o
pairs jeoeied
et
syt
2 el

7]
-
ey
ST
Wttt

ok
e
4.:‘44
3 o

"
2

L
&,

e

o
A
o
hedaletel

.,
X

L
o

[om]
s
s
ol

Chair Computer
Data Scene

M Combined

Rt
i
-,

e

el

Consistent + Ordering

T
(XD :"
REY

-
0
28305

o

2

B Consistent

o

BEHaB

3 Worst Case

Figure 5.15: Number of U-U data pairs encountered during search

Chapter 5: Parallel Aspects in Model Matching - 133

1000 —

B Combined

Consistent + Ordering

Matches B Consistent
BHeB

I wWorst Case

L-shape
Data Scene

Figure 5.16: Number of matches for 1st ten levels of sorted match list

unknown unknown 1150457
1600 { L 1
o v v v
1200 | B Combined
1000 - L Consistent + Ordering
Search 800 2 Consistent
effort #
600 H&B
400 4 [Worst Case
200 4
g J

Chair Computer

[Data Scene

Figure 5.17: Search effort (levels traversed)

From the above Figures it can be deduced that a most important factor in the
efficient traversal of the interpretation tree is the number of U-U data pairs encountered
during the search. It can be seen that even though the H&B sort has far less matched pairs at
the top levels of the search, it does little to aid it when compared to the Combined sort. A
prime example of this can be seen in the Chair data scene where the mean number of matched
pairs for the H&B sort is 12.5 times less, but the search effort is 5.3 times more! A similaf case
exists for the L-shape where the mean number of top level matches is 8.6. times less, and the

search effort is 1.5 times more.

- Chapter 5: Parallel Aspects in Model Matching 134

5.11.3 The Matching Process

The results to be discussed are those obtained from the matching process for the five
test scenes (view 1 and 2). We compare the performances of the serial and parallel
implementations of the Grimson and Lozano-Pérez matching algorithm when applied to
ideal data. Also undertaken are tests of the parallel algorithm for data recovered by non-
ideal means. This can generally produce more fragmentary data edges. The cost of
determining the direction signs of the data edges is also discussed for the H&B and Combined
sorts, This can give a comparative idea of the performance of the matching algorithm
between edge and face features. We also profile the parallel algorithm in an effort to
establish which procedures make the greatest demand on the CPU. This information may, in
future, be used to improve the performance of the algorithm by parallelising (or improving

the parallelism of} such procedures.

5.11.3.1 Matching Features - The Case for Ideal Data

We present here the data edges recovered from the various views of the test models.
These data edges are ‘ideal’ in that they do not suffer from sensing errors because they are
generated artificially. Table 5.6 demonstrates the number of model edges and how many of

- them are visible from each viewpoint.

Scene Model edges | Data edges | Data pairs Intz;.;fe!:taltaigns
(e) (s) (&%)
Chipped Block view 1 15 12 66 1.30 x 10
Chipped Block view 2 9 36 3.84 x 101
Chair view 1 30 20 190 349 x 10¥
Chair view 2 21 210 1.05 x 10°1
Computer view 1 32 26 325 1.36 x 10%
Computer view 2 17 136 3.87 x 102
L-shape view 1 18 15 105 6.75 x 1018
L-shape view 2 9 36 1.98 x 101!
Wedge view 1 15 12 66 1.30 x 10*
Wedge view 2 8 28 2.56 x 10°

Table 5.6: Model and data edges for test scenes

Chapter 5 Parallel Aspects in Model Matching 135

5.11.3.2 Serial vg Parallel - A Comparison of CPU Expenditure

The utilisation of ideal data can best be used to determine the efficiency of a
matching algorithm. Here, we make comparisons between a Sun 4 implementation of the
Grimson and Lozano-Pérez matching algorithm and a parallel 510 DAP equivalent using
Combined sorting of the match list. In an attempt to show the importance of match list
sorting, we also include results obtained for the H&B sort. In both cases the matching features
are recovered ideally with errpar and errper as unity. The maximum error half cone angle is
set to 1° and the angle, direction 1, 2, and 3 pruning constraints are applied. In each case both

implementations were able to terminate and return a single feasible interpretation (correct of

course), along with the sign of the data edge.

For both implementations, the initialisation and sorting overheads are included in
the timings presented although they appear negligible when compared to the total matching
time. For the sequential version, the sort time is that required to order the data edges by
decreasing length. The time required to apply the pruning constraints to data edge pairs is not

taken into account for the serial version as this is calculated off-line in the parallel

implementation.

18 u
1.6 4
14 <4
12] B Serial
Runtime | B Paraliel-H&B
{sec)

EA Parallel-Combined

Chipped Chair Computer L-shape Wedge
Block
View 1 Data Scene

a) View 1 data scenes

Chapter 5: Parallel Aspects in Model Matching 136

2.5
14
1.2
1
B serial
Run time 08
{sec) B Paratlel-Hé&B

B Parallel-Combined

Chipped Chalr Computer L-shape Woedge
Block
View 2 Data Scene
b) View 2 data scenes

Figure 5.18: Total CPU matching time for test scenes

From Figure 5.18, the parallel Combined sort implementation is found to outperform
the serial, more brute force, version in all cases. This was as expected. However, the H&B
sort did not perform so well. For simpler scenes its performance was equivalent (or marginally
better - Chipped Block view 2, L-shape view 1, and Wedge view 1) than the Combined sort.

However, for the Chair view 2 scene, it is found to be 7.6 times slower than the serial version!

In general, the Combined sort was found to be 5.7 times faster than an equivalent
serial version for all scenes. The greatest speed up is exhibited by the Wedge view 2 scene

with 12.8 times, and the minimum of 3.4 times is shown by the L-shape view 1 scene.

As with the human visual system, a crucial factor in the recognition of a model may
be a single feature. For the Chipped Block this is obviously the ‘chip’. This is found to be so in
the two implementations of the matching process. From Table 5.7 we can 'see-the relationship
between the number of data pairs and the time required to traverse the interpretation tree for

the Combined sort implementation.

Scene No. of data pairs Speed of traversal
' (% increase) {% increase)
Chipped Block view 1 over view2 455 view 2 over view1 104
Chair view 2 over view1 9.5 view 1 over view2 47.1
Computer view 1 over view2 58.2 view 2 over view 1 65.1
L-shape view 1 over view2 65.7 view 2 over view1 39.0
Wedge view 1 over view2 57.6 view 2 over view1 57.8

Table 5.7: Relation between traversal of IT and number of data pairs

_Chapter 5: Parallel Aspects in Model Matching 137

For the Chipped Block it can be seen that even though the view 1 scene has over
45% more data pairs than the second view, the time of traversal for the second view is only
10.4% faster than the first. This is in contrast with the other scenes where a greater speed up
is observed for tree traversal even when there is little increase in the number of data pairs.
The serial implementation shows this ‘crucial feature’ clearly where the total matching
time for view 1, possessing the ‘chip’, is 0.45 seconds, and for view 2, without this feature, the
cost is hardly different at 042 seconds - a speed up of 6.7%. The explanation of this is in terms
of the ‘crucial feature’ on the block, that is, the use of the ‘chip’ allows the constraints to

prune more heavily in the first view.

By profiling the parallel implementation (Combined sort) we can see how the
matching process performs at various phases. The time spent in each procedure is taken as a
percentage of the total matching time. The general trend is found to be the same as can be seen
in Figure 5.19. Note that the Total Matching Time is the sum of the Initialisation, Make
fut's, Sort lut’s, and Traverse free. The time spent in the Traverse tree module is partly

attributed to the time required to determine the Direction signs.

80 7232
Clinitialisation
% of B Make lut's
Total e y
Matching % Sort ut's
Time B Traverse tree
Dirn. signs
view 1 view 2
a} Profile of Chipped Block
80wy 747
70 -
DI initialisati
60 nitialisation
% of 50 B Make tut's
Total oy '
Matching 40 5 Sort lut's
Time 30 L B8 Traverse tree
20+
B Dirn. signs
10 4
0

view 1 view 2

b} Profile of Chair

Chapter 5: Parallel Aspects in Model Matching 138

%0 67.38
HInitialisation
% of B Make lut's
Tot
Matc::ha;i g B sort lut's
Time B Traverse tree
B Dirn . signs
view | view 2
¢) Profile of Computer
80 - 73.68
70 e
60 [Hnitialisation
% of 50 - ’;EIE:E B Make jut's
4’40-‘
Total :é%:% '
Matching W B2 R # Sort lut's
Ti + S
e % 'E:*::' Bl Traverse tree
20 -
&8 Dirn. signs
10 o
0 4
view 1 view 2
d) Profile of L-shape
70 - 54.66 64.51
6{} T A
{initialisation
50 - ; !
% of ?;' B8 Make lut's
40 v L
Total : o ‘
Matching 30 L % & Sort lut's
! tety .
Time 20 e B Traverse bree
. i
10 B Dirn. signs
0 4

view 1 view 2

ej Profile of Wedge
Figure 5.19: Profiles of matching process for various scenes

In all cases, the CPU time expenditure for initialisation of the DAP arrays and

sorting the match lists are negligible. Computing the match look-up tables is, however, a

* Chapter 5: Parallel Aspects in Model Matching . ' ' 139

more demanding process requiring, on average 26.4% of the total matching CPU time
expenditure. We can see, as expected, that the greatest demands on the CPU is made by the
serial traversal process. This has a mean demand of 66.6% of the total matching time.
However, a large percentage of this is the cost of determining the direction signs of the data
edges. This does not mean that by not depending on the signs of the data edges the algorithm
will perform more efficiently. It simply means that the tree search, in the general case, will

be faster. A discussion of this observation follows in the next section.

5.11.3.3 The Cost of Determining Direction Signs

Determining the direction signs of data edges is a factor necessary when using edges
as a matching feature. The cost of this, in terms of CPU expenditure, is noticeable during the
serial search process. It does not mean, however, that the search is any weaker. On the
contrary, the direction signs, in most cases, produce cutoffs which reduce the search effort.
They, therefore, act as an additional constraint with the disadvantage that generating them
is somewhat expensive. However, we note that for the Hé&B sort the CPU time expenditure
for the search is, in most cases, more without direction sign ;:letermination than with! This
can only be accounted for by the assumption that this non-consistency ordering is highly
dependent on backtracking by means of sign cutoffs. For scenes with little or no sign cutoffs, the
unsigned search is more effective, but for scenes with a large amount of cutoffs, the unsigned

search becomes very weak.

For the Combined sort, the unsigned search was able to terminate faster than the

signed search for view 1 of the five test models (with exception to the Computer).

0.5 046
0.45
04
0.35
0.3
0.25
0.2
0.15 4
0.1 4
0.05

0

Run time B Sign

(sec) B No sign

Chipped Chair Computer L-shape Wedge
Block

View 1 Data Scene

Figure 5.20: Run times with and without sign determination

Chapter 5: Parallel Aspects in Model Matching ‘ 140

However, the unsigned search was unable to determine between the correct
interpretation and its symmetry for all but the Chipped Block and returned with two

interpretations.

The additional pruning power of the direction signs can be seen from Figure 5.21.
With exception to the Chipped Block, the signed implementation, possessing greater sign
cutoffs (- the unsigned value is zero), is able to terminate with a search effort less than its

unsigned equivalent.

200 — ﬁ/ 1736

600 4
500 4

Search L Sign

effort

& No sign

Chipped Chair Computer L-shape Wedge

Block
View 1 Data Scene

Figure 5.21: Search effort with and without sign determination

Thus, although the determination of data edge direction signs in real terms slows
down the performance of the matching process, it can in fact behave as an additional
constraint. A means of improving this operation will render the search phase more effective

than at present.

5.11.3.4 Matching Features - The Case for Non-Ideal Data

In order to try to determine the performance of the paraillel‘ matching algorithm, it
is necessary to apply it to ‘real’ data. The data presented here are those recovered for the
various views of the test models using the TINA tools visualisation system. These are prone
to sensing errors and fragmentary data edges. Table 5.8 illustrates the number of data

fragmehts recovered for each data scene. Values for the sensing errors are also presented.

It is important to note that a scene may have more than one data edge composing the
model edge. Under such circumstances, as is the case for bottom-up matching, more than one
data fragment may be paired onto a single model edge. Such examples may be seen in

Figure 5.22 for the recovered data fragments of the various test scenes.

' Chaptér 5: Parallel Aspeéfs in Model Matching 141

Model Data Potential Max.
Scene edges | fragments | Interpretations Errpar | Errper | 1 1f cone
{(e) (s) (e%) error (%)
Chipped Block vl 15 12 1.30 x 10% 5 5 5
Chipped Block v2 9 3.84 x 100 5 5 0
Chair vl 30 21 1.05 x 108! > 3 10
Chair v2 ’ 20 3.49 x 109 5 5 10
Computer vl 32 26 1,36 x 10 5 5 15
Computer v2 18 1.24 X 107 5 5 15
L-shape vl 18 18 3.93 x 104 5 5 5
L-shape v2 9 1.98 x 101! 5 5 5
Wedge vl 15 12 130 x 1018 5 5 5
Wedge v2 8 2.56 X 10° 10 10 15

Table 5.8: Non-ideal data information

b} Chair; Model - View 1 - View 2

Chapter 5: Parallel Aspects in Model Matching 142

e} Wedge: Model - View 1 - View 2

Figure 5.22: Recovered data edges for test scenes

Chapter 5: Parallel Aspects in Model Matching 143

5.11.3.5 Matching Using Realistic Data

The use of non-ideal data can demonstrate the effectiveness of the matching process
in more realistic terms. The data recovered using the TINA stereo processing toolkit is
examined here with all five pruning constraints switched on. This means that the timings
discussed cannot be compared directly to those obtained in the ideal data case. It does,

however, show the potential of the matcher in real terms.

In all tests, the parallel matcher (with Combined sort) was able to return the
correct interpretation along with the direction signs (making multiple assignments where
necessary). However, for both views of the Chair and the Computer view 1, an extra

interpretation was found. These interpretations were composed of a single mispaired edge:

Scene Data Edge Model Edge Sign
Chair view 1 12 18 -
Chair view 2 18 14 .
Computer view 1 18 31 s +

We note that for both views of the Chair using the H&B sort, the parallel matcher
was unable to return an interpretation for varying sensing errors in any reasonable length of

time (i.e. there was a problem with obtaining a fermination).

1.6 o
14
12 .L 5.2%
Run time 0; :: #A View 1
(sec) 06 L. 8 view 2
04 4
0.2 o
o i
Chipped Chair Computer L-shape Woadge
Block

Data Scene

Figure 5.23: Matching time using non-ideal data

Figure 5.23 above shows the total matching times for the various views of the test
scenes. Termination times are reasonably fast although some irregularities occur for view 1 of
the Chair when compared to view 2. In both cases we should expect the angle constraint to
have a weak effect - this is because all model edges are either parallel or perpendicular, and
thus, only three angles are possible. Therefore, a possible explanation for the difference in
matching times could be the fact that the view 1 match list has on average 34.4 matches for

the first ten look-up tables compared to 15.0 for view 2.

Chapter 5: Parallel Aspects in Model Matching 144

5.11.4 The Validation Process

Determining the global validity of a feasible interpretation is an essential final
process for the matching algorithm. Interpretations which may have before been passed as
feasible can, in this phase, be filtered out as not possible. Determination of pose of the data
can be used to eliminate incorrect matching features. For faces, it can be deduced whether
each data face is actually visible given the pose and, for edges, whether each matched edge

accurately maps onto its corresponding model edge after back-projection.

In this section we compare a Sun 4 serial implementation of the validation process
to a parallel DAP 510 near equivalent. The paraliel version implements the method of
guaternions whereas the serial version uses a more simple, less effective, averaging system.
Differences in this approach makes comparison of run times less objective. The power of the
Sun 4 CPU along with the reduced parallelism of this phase (when compared with the
matching process) also adds to make the parallel implementation appear somewhat weak.
We also note that the serial version implements early cut-out when detecting a failed data
edge. The DAP version terminates only when all data edges have been validated - this

therefore gives a view of all failed data fragments.

Feasible interpretations for non-ideal data generated in the previous section are
also validated and the results compared with the actual transformation from modei to sensor

space as obtained from the CSG solid modeller.

5.11.4.1 Veridical Transformations from Model to Sensor Space

The various transformations from model to sensor space for the two views of the five

test scenes are given below. In each case the scale factor is unity.

Rotation Matrix Rotation Matrix
Scene ril ri2 ri3 Translation Scene 11 r12 13 Translation
21 122 23 x y, z) r21 r22 23 x y. 2
r3l 32 3 31 32 £33
YROT{40) XROT(.20} ZROT(9G) YROT(-130)
, . XROT(-40)
Chipped Chipped
0760 02198 0600]| 500, 400, 30.: {800, -50.0, 300.0)
Block v1 (omoo 09397 03420 Block v2 00000 07660 064008
06428 02620 07198 {6428 04924 03888
07660 04132 04924
YROT(0) XROT640) XROT(20) Y?lO?_’(iD) _
Chalr vi (05000 0557 0663 N1 (100, -50.0, 20000 | Chair v2 (o.m' 0.0000 nma)l -20.0, 60, 150.0)
00000 07650 -0.6428 05567 05000 0.£6M4
08660 03214 0380 03214 08650 03830
YROT(E) XROI (40 YROTUA0 XROT-300
CO“:,;; uter ((}.?660 04132 04924 (70,0, -20.0, 300.0) vguter (-0.?660 0304 03567 (0.0, -80.0, 250.0)
000G 07660 36428 00000 08660 -05000
056428 04924 05368 04428 03830 -0.6634

a) Transformations for Chipped Block, Chair, and Computer

Chapter 5: Parallel Aspects in Model Matching

145

Rotation Matrix Rotation Matrix
Scene r1t r12 ri3 Translation Scene ril rl2 13 Translation
21 22 r23 x vy z 121 r22 123 x v 2
r31 32 r33 31 r32 r33
YROTWO} XROT(-30) XROT{180) YROT(40}
L-sh -
S\r'lape 07660 03214 05567 (10.0, -30,0, 150.0 L s‘lj;pe G7665 00000 -0.6428 30.0, 30.0, 120.0)
00000 08660 05000 0.0000 -1.0000 £.0000
COE28 D3B30 0.66M N B6428 00000 07660
YROTEEN XROT-500 RO I8 YROTG0)
Wedge
e (a.sm o0 06 \| ¢30.0, 200, 25000 wﬁge (omso vooo 03000 | 300, 30.0, 200.09
00000 08660 05000 00000 10000 0.0000
07660 03234 05867 05000 00000 0.8660

b} Transformations for L-shape and Wedge

Table 5.9: Veridical transformations from model to sensor space

5.11.4.2 Serial vs Parallel - Validation of Ideal Matches

‘Being ideal data, the parallel validator was able to recover the 3D transformation
from model to sensor space for most interpretations precisely! This was as expected, including
the recovery of the scale factor as 1.0. However, for the L-shape and Wedge scenes (both
view 2}, the validator was able to recover the model to sensor space rotation accurately but
failed for the translation and scale. This was due to the failure of the Gauss-Jordan process
used in the determination of the translation for solving the system of linear equations Ax = b
for x, where A is a non sparse matrix. Being singular, this process was unable to operate on

such rotation matrices.

A small word of caution must be expressed when examining timings obtained from
the serial Sun 4 implementation. Because of the nature of the clock tick - 1 beat every 100th of
a second - timings for very fast processes can be found to be inaccurate and vary for different
runs using the same input data, Several of the processes (translations, scalings, and best fits)
were found to have been executed in zero microseconds! On the DAP architecture, timings are
measured as machine cycles - 10MHz. Figure 5.24 shows the CPU time expenditures for the
validations of the ideal data interpretations with fracdev set to 0.1, It is important to note
that the Jacobi process, implemented on the parallel version, for the determination of

eigenvalues and eigenvectors, on average, was found to require 78.4% of the rotation

estimation time,

Chapter 5: Parallel Aspects in Model Matching 146

Run time 100 4 Serial

ms) 80 4 B Parallel

Chipped Chalr Computer L-shape Wedge
Block

View I Data Scene

a} Validation for view 1

180 w
160 4
140 4
120 -

Run time 100 4 Bl serial
{ms) 80 - Gauss-Jordan B Parallel

fatl

L/ N

Chipped Chair Computer L-shape Wedge

View 2 Data Scene
by Validation for view 2

Figure 5.24: Run times for serial and parallel validation

An advantage of the parallel implementation of the validation process over the
serial version is the lack of effect of the number of data edges on the total validation time.
This is because all data edges are validated in parallel. We can see from Figure 5.24 for the
parallel implementation that aithough view 1 of the Computer contains 26 data edges, it
only takes 1.13 times as long to validate than the Chipped Block (view 2) data scene
containing 9 data edges. This is in contrast with the serial version where a difference of 3.5

times is observed for the same scenes.

Profiling the parallel validator reveals that the majority of the CPU processing
time is given over to the rotation estimation. Of this, as mentioned earlier, a large percentage
is taken up by the eigenvalue evaluation process. Figure 5.25 shows a profile for three data

scenes. The trends seen are similar between the scenes. Set up of the DAP processors averages

Chap_tér 5: Parallel Aspects'in'Mode! Matching o 147

to 3.3% of the total validation time with estimation of the rotation requiring about 69.3% of

the total CPU usage.

80 -
70 o
60 oo Bl Setup
% of 50 v B Rotation
total 40
validation 3 B Jacobi
time 30 4
20 4 B Translation
10 4 H Scaling
0 4 =i} : I3 Fitting
Chipped Block Chair v2 Computer vi
vl
Data Scene

Figure 5.25: Validation profile for 3 data scenes

5.11.4.3 Validation of Non-Ideal Data Matches

Unlike the ideal data matches, interpretations using non-ideal data cannot be
validated to the same precision accuracy. However, results obtained were very similar to
those using artificially generated ideal data when we considex" the sensitivity of the sensing
process. Using a fracdev value of 0.1, each feasible interpretation obtained was passed but
again with the L-shape and Wedge (both view 2} failing owing to a Gauss-Jordan fajlure. For
the Chair (both views) and the Computer (view 1), only the correct interpretation was
passed with the offending dataredges failing when values for fracdev of 0.05, 0.05, 0.037

respectively were chosen. Results for the various data scenes are presented below.

Rotation Matrix Rotation Matrix
Geene r11 r12 r13 Trans. {x, y, 2) Scene r1l riz ri3 Trans. (x, y, 2}
21 122 123 r21 122 23
31 132 33 Scale (5) r3l 32 r33 Scale (S)
YT —— S DAY VA 3
Chipped 07608 -D2171 -06116 61.14, -39.86, 35051) | Chipped 00013 07638 06455 (8032, 48.79, 300.80)
Block v1 00058 09401 03409 Block v2 06426 04952 05847
06490 02629 0.7140 5 = 0.999] 07662 04140 -04915 8= 09590
05062 05568 06569 G, W, BT 07731 00050 06347 §| CIH07 047 15100
Chair vl 00063 07641 -0.6451 Chair v2 G54B6 D467 0.6726
. 08624 0334 0390 S=1.0010 03184 08679 038E2 Su1.0051
(o.msa 04026 -0.506 8L, -ZE50, 3030 07611 03301 D558 Q1,806 2328
Computer 00043 07836 -G6212 (:Dm uter 80041 08584 05130
ng 0.6440 04731 06002 5 = 0.9900 ‘g 04486 03928 -GE50 8= (9869
07665 0187 05876 e M T B2 07631 00008 06463 Causs-Jordan Fall
I-sha 00W6 08704 0492 L-shape 0002 -1O000 00M9
vl pe 06422 03754 06683 S = 09966 VZP 06463 0023 076N § = G-] Fait
06441 (3848 06611 (-29.78, 2017, B51.33) 08643 0002 05030 Gauss-Jordan Fail
Wedge (n.cms 0.8649 -050!?) Wedge 00066 05999 00109
v]g 07649 03212 05577 S = 0,999 ‘Qg 45080 OMY 08647 §=G Fall

Table 5.10: ‘Transformations for non-ideal data scenes

Chapter 5: Parallel Aspects in Model Matching 148

5.11.5 Subgraph Matching of a 3-Pin Plug

Hitherto, it has been shown that the parallel matching algorithmi works well on
models of low to medium range complexity. In this section we investigate the performance of
the matcher on a more complex model - a 3-pin electric plug. We compare the performance of
the subgraph matcher to a Fortran* equivalent, the prime aim being to show that a large
model can be divided into a set of smaller sections to which the match process may be applied
separately. We must note that the subgraph matching of large models was undertaken before
the introduction of the Fortran* language .which makes it possible to use unconstrained
matrices. Matching times for the Fortran* version show a mean 2.4 times speed up over the
subgraph matcher. Again, speed of execution was not the prime aim of this section but merely
to show that the look-up table structure of the parallel matcher may be divided into sectors

to cope with large model scenes which cannot be mapped directly onto the DAP processor

arrays.

Two views of the Plug are presented. The first is unambiguous with the pins clearly

visible. The second is less so and is taken from the back of the Plug with no pins visible.

Figure 5.26: Views 1 and 2 of the 3-pin Phug

The model is constructed with 8 CSG primitives using 48 halfspaces and the stereo
pairs were rendered in 21.7 and 184 seconds for views 1 and 2 respectively. It is composed of 54

edges with 40 being visible in view 1 and 13in view 2.

Figure 5.27 illustrates the data fragments obtained from the two views using the

TINA system.

| Chapter 5: Parallel Aspects in Model Matching 149

Note: The pins of the Model are labelled thus - looking at Plug pin end-on with earth pin at top - edge directions go clockwlise and cutwards,
Key FuFace, N=North, E=East, SaSouth, WaWeat,

Tap pin: W=21, N=22, E=23, =24, FWal5, FN=24, FE=2/, Fi«28, SWail, NWndd, NE=43, SEnid.

Left pin: W=13, N=14, E=15, S=16, FW=17, FN=18, FE=19, F5=20, SW=37, NW=3§, NE=39, SE=40,

Right pia: W=29, N=30, E=31, =32, FW=33, FN=34, FE=35, F5=36, 5W=485, NW=d6, NE=47, SE=48.

Figure 5.27: Recovered data edges for Plug :- Model - View 1 - View 2

For both ideal and non-ideal data matches, the five pruning constraints were
applied. Table 5.11 shows the total matching time for the two data forms with comparisons
between the Fortran* and the subgraph implementations. Note that using the H&B sort, both
implementations of the matcher failed to terminate for the non-ideal view 1 data scene in a

reasonable period of time.

Run time using | Run fime using

Scene Implementation ideal data | non-ideal data
(sec) {sec)
Plug view1 Fortran* ‘ 1.80 15.24
Subgraph 4.54 31.48
Plug view2 Fortran* 0.28 0.28
Subgraph 061 - 0.63

Table 5.11: Run times for Fortran* and subgraph implementations

The correct interpretation was returned in all cases. Not surprisingly, though, both

returned an additional interpretation - the rotation of the Plug for view 2:

oo
At e

Data edge 112131451617 10311112113
Model edge 9 15| 2{8]61}1100151|4}5;52}50
Sign -t + -l -1-t+]-3-1+1 +1 -1 +] -

Lo]

Chapter 5: Parallel Aspecfs) in Model Matching 150

The veridical transformations from model to sensor Space are given in Table 5,72.

Rotation Mairix

ril r12 r13 Translation
Scene (rZI 22 r23) x, y, 2) Scale

r3l r32 33
XROTOn TROTED oTes

Plug v1 (05000 (A7 07054 (-25.0, ~40.0, 110.0) 1.0000
03660 02868 0409

CO000 08192 (5736
YROT(130) XROT2S

Plug v2 (06428 02620 07198 {-30.0, -40.0, 120.0 1.0000

0.000G 09397 03420
07660 02198 -0.6040

Table 5.12: Veridical transformations for Plug

As expected, the ideal interpretations were accurately validated. However, for
view 2 of the Plug, the parallel validator was unable to distinguish between the two

interpretations and passed them with equal values. The additional interpretation of above
was validated thus: '

0.6428 02620 0.7199
Rotation 0.0000 0.9397 -0.3420

-0.7660 0.2198 0.6040
Translation {(-6.7534 -19.8829 175.2710)
Scale 1.0600

Using non-ideal data, however, the validation process was able to pass both
interpretations of view 2 but with the genuine interpretation receiving a greater value.
Results of the validation can be seen in Table 5.13.

Rotation Matrix

Scene (rii r12 rI3J Translation

21 122 123 vy, 2) Scale

r31 r32 r33
(05083 04349 07069

Plug v1 03630 02859 04166 (-24.79, -39.91, 111.03) 0.9991

00041 0806 05715
(06556 -0.2588 -0.7093)

00020 69400 -5.3411
G755 Q20T 5168

(-30.41, -39.48, 121.43) 0.9877

Plug v2

Table 5.13: Validated transformations for Plug

Chapter 5: Parallel Aspects in Model Matching 151

5.11.6 Applications of the Bin to Matching

The null-pairing or bin theory is investigated in this section. Tests are conducted

_using the non-ideal data recovered from the Chipped Block and Wedge data scenes (both

view 1). For each data scene, one and two spurious data edges are included, and the five

pruning constraints are applied. Inclusion of these spurious data edges would normally result

in non-interpretations without the bin implementation. However, here, the correct

interpretation was returned for all cases with the offending data edges correctly matched to

the bin. Figure 5.28 shows the total matching times for the determination of the correct

interpretation using Combined sort for the two data scenes. It should be noted that for the
H&B sort, all attempts to include spurious data edges failed to terminate after 2000 seconds.

45 —

40 4+

54

304
Runtime 254
(sec) 204
15 4

10 -

5

{ -

B 1 spurious data edge

83 2 spurious data edges

Chipped Block Wedge
View 1 Data Scene

Figure 5.28: Run times with spurious data

The returned interpretations were correctly validated with the transformations
equal to those seen for the Chipped Block (view 1) and Wedge (view 1) non-ideal validations
in Section 5.114.3.

5.12 Conclusion

It has been shown that the matching algorithm of Grimson and Lozano-Pérez can be
mapped efficiently onto the array processors of the DAP. The parallel algorithm has been
demonstrated using scenes of varying complexity. Comparison to a serial implernentation on a
Sun 4 workstation showed a marked improvement in run time. A problem with the serial
matching process is knowing how best to order the pruning constraints in order to produce
effective cutoffs. The distance constraint has been shown to be the most effective constraint
and can therefore be applied first. However, establishing the order of the remaining
constraints is not so clear-cut. This is not a problem for the parallel matcher as all constraints

are applied at the top level and the results stored. On the subiject of constraints, although the

Chapter 5: Parallel Aspects in Model Matching 152

determination of direction signs is an overhead which will not be found in a face matching
equivalent of the algorithm, it has been shown to act as an additional constraint.
Experimental evidence has shown that with the determination of direction signs in the
matching algorithm, the search effort in the serial tree traversal is reduced. However, the
processing time required to determine the edge signs is much larger than that saved from the

reduced search effort.

In addition, we have demonstrated the need for effective sorting of the match look-
up tables and presented a sort technique which in most cases shows a major improvement over
the ascending order sort of Folder and Buxton. The time to do this Combined sort process was
also found to be less, so we have achieved two speed ups, the first being to sort the match list,

and the second being the subsequent tree traversal.

Using the array structure of the paralle! algorithm, it is possible to match models
with features larger than the edge size of the DAP. This has been shown both with subgraph
matching and the unconstrained matrices of the Fortran* language. Although the Fortran*
implementation performed better than the subgraph matcher, the subgraph method was not
considered a failure as the prime objective was to demonstrate that l.arge models can be sub-

divided and the parallelism of the algorithm maintained.

We have also shown the H&B sort technique can fail to produce an interpretation in
a reasonable period of time using an implementation of the bin. The Combined sort technique
presented (with the bin) was able to return the correct interpretation with the addition of
spurious data edges. These, however, were recovered after a longer period of time when
compared to ones with no inclusion of spurious data and goes to show how essential it is for

the match list to be effectively ordered.

Some limited experiments with the confusibility of models was also undertaken for
completeness but the results are not presented as they were straightforward. The models were
not confused in ény of the cases with and without the distance constraint. Also, ordering the
constraint sign tests so that constraints which can determine direction signs absolutely (i.e.
direction constraints 1 and 2} were encountered first was found to not have any significant

effect on the tree traversal time.

Using the parallel ray tracer for closed-form testing proved very effective in
producing stereo image pairs in about half a minute. However, one remaining problem is that
it is currently rather tedious to calculate edge positions by hand for the model look-up tables
of the matcher. We know that automated calculation is possible for CAD models and, thus,

such a retrieval of model edges directly from the CSG tree would be very convenient and is an

avenue for future work.

Parallel Process Techniques for 3D Model-Based Vision

Chapter 6

From Polyhedra to Planar Curves

6.1 Introduction

Objects consisting of planar surfaces with their straight line edges are easier to
model than those comprising of less uniform features. The simplicity of the planar faces or
linear edges of polyhedra makes the task of recognition more feasible but not trivial. It is for
this reason that many authors have reported work on the analysis of polyhedral objects.
Using edge and surface normal malching features, the complexity of a model and the
matching process may still be high. Another reason why the recognition of planar objects has
been popular is related directly to current sensing algorithms and equipment. Segmentation
and fitting of straight lines to produce planes is, on the whole, easier and more robust than for
curved surfaces. However, in a world full of curves, a dedicated polyhedral recognition
system is very limited. It is therefore important for such systems to be extended to curved
objects, or objects containing curved features, especially if the system is to operate in a real-

world environment, e.g. a robot visual system.

An obvious problem with the recognition of curved surfaces when thinking in terms
of edges is that they do not necessarily possess real, creased edges. Very often, a simple
curved geometric model has no discontinuities. An obvious example is a sphere. An edge-based
approach would therefore result in occluding edges being found as opposed to ‘real’
polyhedral edges. However, in the case of other primitives, such as cylinders and cones, it is
possible to recover true edges in the form of their planar ends. Using such planar features, it is
possible to apply a polyhedral based recognition algorithm, such as the Grimson and Lozano-
Pérez matching technique, ‘to the primitive. It is, however, still not possible to incorporate

the developable surfaces of such primitives directly.

In the following sections we will present an extension of the polyhedral edge-based
matcher to incorporate curved, creased edges. This will be able to deal with objects containing

planar curves, such as the class of objects defined by a developable surface and, may easily be

153

Chapter 6: From Polyhedra to Planar Curves 154

adapted for face matching. The approach we adopt uses the surface normal of the planar ends
and the axis of rotation of the primitive. These are treated as ‘real’ edges by the matcher and
processing proceeds using the Grimson and Lozano-Pérez matching paradigm of the parallel
model matcher described in the previous chapter. We also present results of this approach

from tests conducted on various scenes including a real world environment.

In general, we can only consider those primitives which can be recovered accurately
from the scene. This is very much dependent on the sensing technique. Using the TINA system,
it is possible to recover the circular ends that define a cylinder. However, recovery of the axis
of rotation is not at present possible using the current version. Therefore, we must determine
the axis of rotation by hand. A simple automation of this step could be to fit a quadric surface
between consecutive planar curves using a set of rules defined by the class of primitives. If the
fitting is possible, the two curves can be taken as belonging to the same primitive and the axis
of rotation may be determined. Other sensing techniques, for example, a range-finder, may be

use to determine this feature more easily.

6.2 Curved Object Recognition Systems - A Brief Overview

In an early 1983 paper, Oshima and Shirai [OS83] describe work on a system which
is able to recognise a set of stacked objects containing planar and curved surfaces. Using scene
data obtained from a range-finder, the system is able to describe the scene in terms of regions

and relations between these regions.

Unlike many reported approaches, the system is autonomous, generating its own
model of the scene. This is achieved in the first of two phases, Here, in the ‘learning phase’,
the systern is presented with a series of scenes containing a single known object, one at a time.
With each, it builds a description of the object. Several views of the object may be taken. In
the second phase, the system is again presented with a scene, this time containing unknown
objects. In this ‘recognition phase’, the scene is described in the same way as in the learning

phase. Using these descriptions the data features are matched to the model features.
Description of the model and data scenes proceeds in five main stages:

1) The depth map recovered using a range-finder is grouped into small surface

elements.
2) These are merged together into regions termed elementary regions.

3) The elementary regions are classified either as planar or curved.

Chapter 6: From Polyhedra to Planar Curves 155

4) The curved regions are extended by merging to adjacent curved surfaces and

quadric surfaces are fitted to them.

5) Finaily, the scene is described in terms of these regions. These include the type
 of surface, the number of adjacent regions, the area of the surface, and the

 mean, minimum, and maximum radius.

The matching then proceeds by determining suitable pairings of data to model
regions. Experimental results have shown the method to be successful with scenes containing .
objects with smoothly curved surfaces such as cylinders and cones. Curved machine parts and

spheres have also been successfully matched.

A system, able to automatically generate an object recognition strategy from a 3D
model, and then recognise the object using this strategy, is described in [KOO90]. As in [O583]
the system is divided into two stages: the strategy generation stage and the recognition stage.
Objects are described from various viewpoints using 2D features such as parallel lines and
ellipses. For example, two ellipses and a pair of parallel lines are the intermediate features
of a cylinder. These features are ranked as to their visibility from various, viewpoints to
generate a strategy graph which is searched for similarities between the model and image
features. Tests using valves and industrial tools containing cylinders have been successfuily
reported. However, the system was sometimes found to detect false objects, i.e. objects which

do not exist in the scene, when the background is complex.

Unlike the systems described hitherto, BONSAI [F]90] uses an inherently Grimson
and Lozano-Pérez algorithm with constrained search of an interpretation tree. Unary and
binary constraints are applied to data obtained from a range image to extend matching to
curved surface primitives. [t compares relational graphs constructed from the data to that
obtained from the model. The use of NULL-matching means that spurious data entities may

be present.

The models are composed of planar, cylindrical, or spherical surfaces and unary and
binary features are calculated using over 300 synthetic viewpoints. Data features are
obtained using regression and curvature-based techniques [Flyn90}. Matching commences with
curved surface p'atches, initially starting with the largest patch, and then planar patches if
necessary. Pruning of the interpretation tree proceeds as the tree is traversed. This is
achieved by the application of predicates to the interpretations as they are generated. At
present three unary and four binary predicates have been imp}emenfed. These return TRUE or
FALSE depending on satisfaction or failure by the interpretations. The predicates are similar
to the description of scenes adopted by Oshima and Shirai [OS83] and are applied to the

Chapter 6: From Polyhedra to Planar Curves 156

‘interpretation so far’. The unary predicates determine area, type, and radii of the surface
patches. The binary predicates are applied to pairs of associations in the interpretation.
These adopt global consistency checks in order to determine correct pair associations. The
rotation validity and orientation predicates take all pairs of associations in the interpreta-
" tion and compare the rotation and orientation parameters of the data to the model pairs. The
visibility of the surfaces are checked by another predicate which is satisfied only if, for ail
non-NULL paired associations, the modet patches can be simultaneously visible from some
view. Finally, a parallel plane predicate is satisfied if, for a parallel data plane pair, the
distance between the parallel model plane pair corresponds within a small tolerance value.
Surviving interpretations are verified by synthesizing a range image with subsequent
segmentation of the generated object. Pixel-to-pixel comparisons of synthesized to input range

images are made to determine the correct interpretation from an area-based matching value.

~ The systems described thus far have all been restricted to data obtained via a range
detector and are, thercfore, sensor dependent. However, the problem with the use of
stereoscopic or motion techniques is concerned with the robustness of curved surface recovery.
Approaches have been documented which use optical flow [BB88, BC89, BCZ90], and
stereoscopic vision [Wein90] in order to recover surface curvature including along the extremal
boundary. These, however, have relied on specular highlights and feature-rich surfaces to

determine the degree of curvature of surface contours.

6.3 Extension of the Edge-Based Matcher for Planar Curves

Using stereoscopic or motion techniques, it is possible to recover the creased, curved
edges at surface boundaries. The recovery does not rely on specularities or a feature-rich
surface, but on contrasts between surfaces. The curved edges may be reconstructed to form a
plane which may be described by the direction of its surface normal and the perpendicular
distance of the plane from the origin of the coordinate systefn of the environment. As is seen
with polyhedral face matching, the surface normal is an important matching feature in
model-based ob}ect recognition. It may be recovered using several image processing
algorithms, e.g. structure from stereo, or structure from motion, or sensing apparatus such as
laser range-finders or tactile sensors. Also important for the use of the planar surface normal
of a primitive as a matching feature is that it can be recovered with a reasonable amount of
accuracy. When considering the recognition of curved objects, it is at present difficult to
recover robust matching features from say, stereopsis, due to the lack of true edges often seen
(or shall we say, not seen) in primitives such as spheres, ellipsoids, and toruses. Using
trinocular vision, however, it may be possible to recover the curvatures.of such objects and,

possibly, use these as matching components. Other curved objects, which may also be

Chapter 6: From Polyhedra to Planar Curves ' 157

described by a quadric function, e.g. cylinders and cones, are not devoid of true edge
boundaries. The ends of these primitives define a plane which, obviously, can be defined by a
surface normal. It is this surface normal which we propose to use in an edge-based planar
curve matcher. The approach is essentiaily the same as in the polyhedral matcher of
Chapter 5 with the surface normal of the primitive being treated as a true edge. Using this
approach, the polyhedral algorithm may easily be extended to a face-based system which
will use the planar faces of the cylinder and cone primitives. Another matching feature
relating to the planar ends of primitives is the axis of rotation. This can be viewed as the line

joining the centres ofrthe planar curves in the case of the cylinder and cone,

The extension of the polyhedral algorithm is explicitly directed at the class of
primitives which can be defined by a developable or ‘ruled’ surface, i.e. cylinders and cones,
although the method still holds for a more general class of planar curved objects. A
developable surface is defined here as belonging to the group of surfaces which has one of its
principal curvatures equal to zero, Using such a surface ensures that an axis of rotation will

exist.

6.3.1 The Planar Curve Normal as a Recognition Aid

The outward surface normal of a planar face is an important feature in recognition as
its direction relative to the model remains constant irrespective of orientation, translation,
and scale. Also, it can be recovered with a reasonable amount of accuracy using standard
visualisation techniques. The use of the planar curve normals in an edge-based fashion means
that on entry to the tree traversal phase, the direction signs of the normals will be known

absolutely and can be used to determine the signs of ‘true’ edges more effectively.

Treating the normal as an edge means that it has a unit length of 1.0 and its 3D start
point at the centre of the circular or elliptical planar curve. With the addition of the planar
curvature, objects containing curved primitives can therefore be represented with a reasonable
amount of accuracy when compared to the simplicity of the method, i.e. the primitives are
defined by surface normals, centres of curvatures, and radii for regﬁiar cylinders and cones.
Figure 6.1 shows a number of primitives which can be represented in this way. We can see

that the normals need not necessarily be anti-parallel.

Chapter 6: From Polyhedra to ?lanarl_Curves ‘ 158

i ¥
(a) (c})

Figure 6.1: Normal ‘edges’ for various primitives

Using this methodology, the elliptical ends of sliced cylinders and cones may also
be represented. In order to improve the representation of the primitives of the above Figure,
each surface normal is defined along with the size of the planar curve. This is merely the
radius of the circle in the case of circular ends, and the major and minor axes in the case of
elliptical sticed ends. Using this, it is now possible to distinguish between the regular
cylinder (a), and the regular cone (c), and also between the cylinder'(b) and cone (d), of Figure
6.1. 1t is, however, not essential that a pair of normals be recovered during the segmentation
process. A circle drawn on top of a box should give a sufficient visual cue to determine the

orientation of the box.

normal

true edges 4 edge

N D

Figure 6.2: The distinguishing feature of a box

6.3.2 Addition of Axis of Rotation

If the segmentation process allows, the axis of rotation of the curved primitive may
be recovered and used in the matching process. Here, the axis of rotation is taken as the line
joining the centres of the planar curves of the primitives. This can be used to impose
additional constraints in the recognition process when we treat it as an edge. Unlike the
surface normal, treating this line as a vector does not produce a unique direction as we se¢ for
true edges. In the case of regular cylinders and cones, this new ‘edge’ can often coincide with

the planar end normals and tan act as the length of the primitive,

Chapter 6: From Polyhedra to Planar Curves 159

(a) (®) (©) () A

Figure 6.3: Axis ‘edges’ for various primitives

We note, however, that this matching feature does not take into account the size of
the planar curves as in the case of the surface normal to the planar ends. Therefore, on its
own, the regular cylinder (a} may not be immediately distinguishable from the regular cone
{c) of Figure 6.3. This, however, does not pose a problem, as in order to obtain the axis of

- rotation, some data relating to the curved surface must be available.

It is not strictly necessary that a ‘real’ planar curve must be present for the described
method to work. The planar curve which is inferred by a cylindrical cut-out may be recovered
and used in the algorithm. This is possible using the TINA syﬁtem. Also, the deduced axis of
rotation of the cylindrical cut-out may also be used (depending on whether recovery is
possible) in this approach. Objects of the type shown below may now be capable of more

accurate determination.

&

Figure 6.4: Extended range of planar curves

6.4 Recovering the Pseudo-Edge Match Features

We understand that it is possible to recover the outward surface normal of a plane
and the curvature of a cylindrical type primitive by a number of means. Immediate examples
are tactile sensors and laser range-finders. In our work, we use the TINA visualisation system. |
This is capable of recovering the 3D planar circle from a stereo image pair. This is achieved
via a segmentation tool within the system which is able to produce sections of a curve using a
number of segmentation strategies. Initially, a linear segmentation algorithm amalgamates

adjacent edge fragments into curves when their combined edge strings can be sufficiently

| .Ch..apter 6: From Polyﬁedra to Planar Curves 160

closely approximated by a circle, After this initial 2D segmentation, the curved edge strings
may be fitted by higher level primitives which at present are interpolating cubic splines and
conic sections. We choose to fit a conic using a Bias Corrected Kalman Filter (BCKF) after an
initial fitting which passes through five well spaced points on the curve. This fitted 2D
curve may be interpreted in 3D in several ways of which we adopt the planar method. This

involves projecting it onto the ‘best fit’ plane in 3D.

The current version of the TINA system is limited to the recovery of circles and does
not, at present, deal with the unique determination of ellipses. In our experiments, we will
therefore be restricted to deal with uniform cylinders and cones which have circular planar
ends. Also, it is not always possible to recover the direction of the outward surface normal

uniquely as the planar face may not nocessarﬂy be visible for the curve to be segmented. This

- can be seen below in Figure 6.5.

Figure 6.5: Ambiguities of surface normal directions

| By treating the surface normals as edges, this is not a problem. It simply means that
the normal can not be used uniquely to determine the direction signs of the axis and true edges
absolutely, i.e. if we know the direction of the normal, we can determine the direction of
subsequent edges taken as a pair with it (see Section 5.5 in the previous chapter). The axis of
rotation is at present recovered by hand as it is not incorporated in the system. However, a

simple meodification of the TINA system may be made to determine this for the more

regularised cylinders and cones.

6.5 Sensing Error of Pseudo-Edges

As was seen in Section 5.4, equipment and algorithmic sensing errors must be taken
into account when considering data recovered by non-ideal means. The error hahdling used
here for the pseudo-edges is similar to that used for the true edge. We assume that the centre
of the planar curve is recovered within a sphere of error, errsphere, which is determined by
by the user in accordance with the accuracy of the sensing methodology. The error half cone
angle for the pseudo-edge normal is also user set. This is obviously because being so short (a

length of unity), it is very easy for the calculated half cone angle to approach 90° (see Section

"Chapter 6: From Polyhedra to Planar Curves . . _ 161

5.4). For the axis of rotation, we calculate its half cone error angle in the same way as for true
edges by simply substituting values of rpar and rper with errsphere. In our experience,

however, using the TINA system, we have found these error values, i.e. for curves and edges,

to be very similar.

Also, to maintain consistency with the edge approach and to ensure that the normal
length is contained within that of the model, we ‘pinch’ its end points inwards by 0.1. This
value is used rather than errsphere (for true edges rpar) due to the value of the latter being so
large (usually a value of 5.0 has been used) that the direction of the normal will obviously

become negated. For the axis pseudo-edges errsphere is used.

6.6 Pruning and Match Look-Up Tables

A problem with an edge-based matcher is that we do not know absolutely the
direction of the data edges with respect to the model edge initially. This required during
validation and must be determined during the tree traversal phase of the matching process,
Using the surface normal of a curve emanating from the centre of the circle we have two
options on how we apply some of the pruning constraints to the data. These constraints are
those described in the previous chapter, i.e. angle, distance, direction 1, direction 2, and
direction 3. The choice comes when we consider the distance, and directions 1, 2, and 3
constraints. These involve running up and down the length of the edges and determining a
range of distances or angles. We can either apply the constraints to the normals, treating
them as an edge, or explicitly target the centre of the planar curve. By the latter, we need
only find the range of distances, or angles from the centre of the planar curve to any point on a
real or axis edge in order to produce the match look-up tables. This means, however, that we
need not be concerned with running along the normal edge and that calculations are
simplified, but it still involves a range of measurements (with the exception of the curve-
curve pair). We therefore adopt the former with the advantage that we can recover the
direction of the planar surface normal depending on the sensing apparatus. This can then be

used to recover the direction signs of subsequent edges more efficiently.

By treating the new matching features as edges, we find we only require one type of
model look-up table (edge-based), not two; 1) edge-based for true and axis edges and 2} face-
based for planar curves, as is also possible. The parallel implementation is equivalent to that
described in Chapter 5 with the exception that given a priori knowledge of match feature
type, a curve edge is only permitted to pair with another curve edge. This also applies to true
edges and axes. The edges are therefore ordered by type and a list idenﬁfying the type of

Chapter 6: From Polyhedra to Planar Curves 162

each feature is maintained in the order
[(true edge) 1..i, (curve edge) 1+1..1+i+, (axis edge) 1+i+j+1...T+i+j+n}
where 1, j, and n are the number of true, curve, and axis edges respectively.

Six logical masks are used to ensure that it is only possible for similar match
features to pair. These are illustrated in Figure 6.6 for a six edge feature model with two of

each data type recovered.

il BN

Iiytrue
TITIT|IT|TIT }edges
data data irlelTlTlrlTlycurve data
adge 1 edgel IT|TITIT|IT| T }edges edge 1
Tl T T T8 T Tiyaxis
RARRREE]edges
(a) (b) (c)
data edge 2 ' data edge 2 data edge 2
== A0 Tlr
TIT T T
Tl T{T TIT
TIT TIT T|T
T T[T T|T
T|T T]T T|T
e ol
true edges curve edges axis edges
(d) (e} H

Figure 6.6: Logical match feature tables

After the pruning constraints have been applied to the data pair, éppropriate
match feature masks are applied to the match look-up table depending on the types of the
data pair. For example, after applying the constraints we find that several locations in the
match look-up table have passed the tests even though it is not valid (given a priori
knowledge) for say, a true edge to pair with a curve. If data edge 1 is say, a true edge, and
data edge 2 is a curve edge, we can eliminate these mispairings by applying masks (a) and (e)
of Figure 6.6 to the match iook-up table. This is a parallel operation where the three logical
matrices are simply AND-ed. Equally, the appropriate masks may be AND-ed and stored
before determining the match look-up tables. This will, however, require the storage of nine
matrix masks. Generation of these masks, including those of Figure 6.6, is also parallel and is

executed efficiently on the DAP.

After this removal of mispaired edges, the match look-up tables (the match list)
may be searched in the tree traversal phase of the matching process. This is equivalent to the

method described in Chapter 3, Section 5.7.

_Chapter 6: From Polyhedra to Planar Curves 163

6.7 Validation of Interpretations

The validation of feasible interpretations recovered here is essentially the same as
the parallel implementation described in Chapter 5, Section 5.9. The only difference is that
" we must take into account the size of the planar curves. No modifications need be made to the
determination of the best rotation. This involves unit position vectors of the edge features
being rotated to correspond to their matched unit model position vectors. The best rotation is
determined by averaging these over all data features. Determination of the best translation

and scale may also remain unmodified.

Fitting of the data edges to the model is again essentially the same as in the edge
validation of Chapter 5. However, we are faced with a minor decision about how to treat the
edge normals. If we apply the deviation computed using fracdev and maxdist (described in
Section 5.6) we will find that the normal edges will very often pass the fitting test as the
deviation is likely to be greater than the length of the normal edge. After consideration,
however, we see that if the data curve edge is badly oriented to its corresponding model curve
edge, say, by 90°(!), it would not have passed the pairwise pruning constraints during the
matching phase. We, therefore, fit curve and axis edges in the same manner as for true edges,

that is, ensure that their endpoints fit sufficiently close to their respective model edges (see

Section 5.6).

After this initial fitting of curve edges, we must ensure that the data curve radii of
matches that pass the local constraints for the look-up tables fit closely to their respective
model curves. This is determined using a deviation calculated as curvedev x maxradius,
where curvedev is a user supplied curve deviation factor, and maxradius is the largest curve
radius determined from the model curves, To pass this test, all data curves must fit their

respective model curves to within the deviation, that is:
pass = MAX(DataRadius - deviation, 0) € ModelRadius £ DataRadius + deviation.

In the case of elliptical ends, we shall use the length of the major axis when
establishing the value of maxradius. Both major and minor axis must fit the ellipse to within

the calculated deviation.

6.8 Experimental Results

In experiments conducted in this section, models composed of, or containing circular

planar curves, were investigated. Three models were used; a CylinderBox, a Lamp, and a set

Chapter 6: From Polyhedra to Planar Curves 164

of Tubes. As in the previous chapter, two views of the models were taken differing in
ambiguity with exception to the Tubes which, using the current recovery technique, was
difficult to obtain enough data features for accurate determination of the correct
interpretation and, more important, the global consistency. We are reminded from Section 5.6
that the determination of the rotation requires at least two pairs of non-parallel edges and,

for the translation, three pairs of independent edges. The views are presented below.

a) CylinderBox: view 1 and view 2

b) Lamp: view 1 and view 2

¢) Tubes

Figure 6.7: Test scenes containing planar curves

Chapter 6: From Polyhedra to Planar Curves 165

The matching curve features are derived from a regular cone and a planar circle in
the Lamp scene, and regular cylinder(s) in the CylinderBox and Tubes model scenes. The range

of matching features are expressed in Table 6.1.

Total edge

Model Pfiaa(::;r True edges (;;1;: Axisedges | "t i ires
CylinderBox 7 12 2 1 15

Lamp 13 24 3 1 28

Tubes 10 0 10 5 15

Table 6.1: Matching features of test models

The models are defined in a right-handed coordinate system with the CylinderBox
placed in the -x, +y, -2 quadrant, and the Lamp and Tubes models centred along the +y axis.
They are defined using {where available) true, axis, and curve edges. The data is non-ideal,
recovered using the TINA system. The planar curve normals were found to be recovered witha
maximum half cone error angle of a reasonable degree (115°) when we realise that the
normals are derived from an estimation of the planar surface. Tables 6.2 and 6.3 illustrate the

data features recovered for each scene and the sensing errors used in the matching process.

Model Data edge features No. of Potential
Model ¢ edge True | Curve | Axis | Total da.ta interprestations
. catures () pairs (&%)
{e) -
CylinderBox vl 15 9 2 1 12 66 1.30 x 10
CylinderBox v2 11 1 0 12 66 1.30x 10%
Lamp vi 28 16 3 1 20 190 8,77 x 1028
Lamp v2 15 2 1 18 153 1.12 x 1026
Tubes 15 0 8 3 11 55 8.65 x 101
Table 6.2: Complexity of scenes in terms of data features
-edges- -curves-
Max. half | Max. half
Model Errpar | Errper | Errsphere i o ooy cone error
) (%)
CylinderBox vl 3 3 3 10 10
CylinderBox_v2 3 3 3 10 10
Lamp v1 3 3 3 10 10
Lamp v2 3 3 3 10 10
Tubes 5 5 5 15 15

Table 6.3: Match sensing errors

Chapter 6: From Polyhedra to Planar Curves 166

6.8.1 Matching With Pseudo-Edge Features .

In recovery of the data features, we are able to obtain ‘edges’ representing the
extremal boundaries of the curved surfaces. However, the stereoscopic 3D reconstruction of
these ‘edges’ cannot be relied upon as an accurate means of recovering such non-creased edges.
The ability to include this information in the recognition process will be very useful in the
early determination of data to model interpretations. Figure 6.8 illustrates the ‘edge’
information recovered from the Tubes data scene. The matching features are shown in Figure

6.9 along with those recovered from both views of the CylinderBox and Lamp.

%O\

~ i

f /\:\\Q\
AN
e

a) 2D edges b) Segmented scene ¢) 3D data

Figure 6.8: Potential edge information available from cylinder primitives

a) CylinderBox: Model - View 1 - View 2

Chapter 6: From Polyhedra to Planar Curves 167

¢) Tubes: Model - View

Figure 6.9: Recovered edge features for test scenes

The five pruning constraints described earlier were applied during processing of the
CylinderBox and Lamp scencs. However, for the Tubes scene, the direction constraint 3 was
switched off as it caused the failure of feasible interpretation recovery. This was thought to
be due to the intersection of the model axes. Data pairs were ordered using the Combined sort.
In all tests, the parallel matcher, with planar curve extension, was able to recover the correct
interpretation of the data scenes along with the edge directions. However, for the Tubes

scene, an extra interpretation was returned. This is shown overleaf,

Chapter 6;: From Polyhedra to Planar Curves 168

Correct Interpretation:

Data 1§{2(314(5}16|7]|8 10} 11
Model 1l2{614({519|8[10]11112115
Sign + | -7 -l +{+] -]+ +]+]+]+
Failing Interpretation:
' Data 1l 213{4[5]6!7}8]9]10}11
Model 11 213Vs514 711018 }11112]14
Sign + -t - P+t +t -]+ +]+]+]+

Figure 6.10 below shows the matching times for the various views of the test scenes.

600

500 o

400 - B Traverse tree
Py
usage 300 [sort lut's
(ms}

200 B Make iut's

Cylilox CylBox Lampvl Lampv2 Tubes
vl v

Figure 6.10: Matching times for test scenes

As expected, the matching times are comparable with those obtained for true edges
alone in the previous chapter. This is impressive when we realise that the planar curve

extension has not resulted in a total matching time penalty.

6.8.2 Validation of Interpretations

The recovered interpretations obtained in the previous section were correctly
validated for global consistency. However, for the Tubes scene both interpretations failed to
terminate due to a Gauss-Jordan arithmetic failure. The correct interpretation (number 2),

however, returned a more accurate estimation of the rotation.

Table 6.4 illustrates the veridical and computed transformations from model to
sensor spaces. Values for fracdev of 0.01, 0.015, 0.01, and 0.02 were chosen for the CylinderBox
view 1, CylinderBox view 2, Lamp view 1, and Lamp view 2, respectively. Curvedev values

of 0.02, 0.04, 0.01, and 0.05 were also chosen.

Chapter 6: From Polyhedra to Planar Curves

169

Veridical Transformations Computed Transformations
Rotation Mairix Rotation Matrix
11 2 13 Trans. (%, Y, z} ril ri12 r13 Trans. {x, ¥ z}
Seene 21 22 123 Scene 2l 22 23
r31 £32 33 Scale (5) r3t r32 133 Scale (S)
YROTA0) XROT(40)
Cylinder 0760 04132 04024 600, 208 180 1 Cylinder 07637 0AIS4 04942 £3030, -2001, 181.17)
Box vl 0000 G660 -0.6428 Box vl 0007 07650 D641
04428 04924 05868 § = LOOKO 06456 04922 05839 5=1,0082
VROT(150) XRO1G0)
Cylinder 08560 IS0 04330 (500, 2060, 1508 | Cylinder 0864 02502 Gddor \] (5044, -19.86 15187
Box v2 00000 08660 05000 Box v2 00056 08646 05024 I
03000 04330 07500 § = 1,0000 05063 04357 -(.7442 5= 1.0004
YROTAD) XROTC30)
Lamp vl 07660 L34 05567 €306, -500, 2008 § Lamp v1 07732 03208 05470) | (3046 S00L 200149
00000 08660 05000 ' 00058 08662 -D4998
056428 0IBI0 0.6634 § = 1.0000 06341 03832 06716 §= 10024
YROT(E) XROT@0)
Lamp v2 07660 04132 .0.4924 (104, -50.0, 130.) Lamp v2 07676 04071 04951 (995, -50.16, 131.76}
00000 57660 06428 0002 07733 06340
056428 -6.4924 05868 $ 5= 1.0000 06410 04861 05940 § = 1.0046
Interpretation 3
. L7099 03529 -0.6096
YROT(S) XROT(-30) ?5 (e Oiis 04)!
(300, 56.0, 25648 07014 03746 06578 Gauss-Jordan Fail
Tubes 07071 03536 06124 Tubes
00000 08660 05000 5= 1.0000 Interpretation 2 § = G-] Fail
07071 03536 0514 07068 03343 -0.623
0016t 08734 D487
07072 03540 05120

Table 6.4: Veridical and computed transformations

The results obtained for the computed transformations are very accurate considering
that 1) the data was non-ideal, and 2) we are using data which is derived, l.e. the surface
normals and axes. With the mean translation error of (£0.31, £0.31, i1.57) for x, y, 2, this
shows that matching using the pseudo-edge features maintains the robustness observed when
using true edges alone. Note, also, that the error along the z-axis (the most error prone axis

using 2D image data) is surprisingly low.

In order to appreciate the accuracy of the method, however, we must consider the
Tubes scene containing only pseudo-edges. Here, the translational result is not available but,
considering the rotation (from which it is derived) and interpretation 2 being the correct one,
we can see that the rotational values for this comply closely to the veridical rotation. A
mean rotational half cone error angle of 0.5° is observed for the CylinderBox and Lamp scenes,

and 1.1° for the Tubes. The failing interpretation of the Tubes scene was found to have a half

cone error angle of 70.9°.

Chapter 6: From Polyhedra to Planar Curves 170

6.9 Real World Determination

The robustness of any system can only be determined by application to a large
number of testing conditions. Initially, however, these conditions are ideal in order to
determine the effectiveness of the algorithm or system pathway. It is therefore helpful to be
able to obtain a large amount of test data, quickly and efficiently. We have described a solid
modeller which is able to render stereo image pairs using CSG combination operators applied
to a number of geometric primitives to realise polygonal and planar curved objects. This is
implemented in parallel for added efficiency in terms of speed. We have, subsequently, used
these images as input to a parallel model matcher with the successful identification of the
objects contained. The images, however, are ideal in that they lack noise and, therefore,
result in much more accurate scene segmentation and 3D primitive recovery than can be the
case for ‘real’ images. In testing the accuracy and robustness of the matching process, we
cannot rely solely on such closed-form tests. They serve, merely, as an indication that the
approach holds under synthetic conditions. We must demonstrate the effectiveness of the

process under ‘real world’ conditions in order to explore its robustness.

6.9.1 Experiments in Real World

Hitherto, we have shown that the parallel implementation of the Grimson and
Lozano-Pérez matching paradigm is ‘robust’ when applied to synthetic data. In order to
determine the accuracy of the system to a greater degree, we must, inevitably, apply it to the
‘real world. Here, we present results of experiments conducted using a real world scene
containing a number of instances of the same object - 3 widgets obtained from Sheffield
University’s AIVRU laboratory. The scene contains planar curves and exhibits shadowing
and regions of darkness equivalent to occlusions. Again, all data recovery processes are
performed using the TINA toolset. The stereopair of the widgets is shown in Figure 6.11.
Detailed tests, however, could only be performed on the left and right widgets as the
transformation for the middle widget was unavailable. We shall therefore refer to the left

and right widgets as widget and widget2 respectively.

Chapter .6:

From Polyhedra to Planar Curves

+y, -z quadrant. It is composed of 32 matching features expressed as 28 true edges, 3 curve

edges, and 1 axis edge.

interpretations being delivered after an extended period of time when implementing the bin
(see Section 5.13.6). We, therefore, select edges belonging to each widget to avoid the
inclusion of spurious features, This, however, does not mean that we are side-stepping the
real world tests. Indeed, the selected data features are not altered in any way, the process
simply ensures that matching will terminate much faster. By including all recovered data
features the matcher should evenfually terminate with a set of interpretations for each
Widget and the non-matching edge features paired to the bin! Tables 6.5 and 6.6 show the

edge features recovered for the two test widgets and the sensing errors used in the matching

process.

Figure 6.11: Stereopair of widget scene

Data edge features No. of
Model True | Curve | Axis | Total da.ta . Poten’ue!l
pairs | interpretations
Widgetl 15 3 1 19 171 2.22 x 10%
Widget2 15 2 0 17 136 9.85 x 10%?

Table 6.5: Complexity of widget scenes in terms of features

-edges- ~Curves-
Model Errpar | Errper | Errsphere Max. half | Max. half
cone error cone error
))
Widgetl 5 5 5 8 12
Widget2 6 6 4 8 5

Table 6.6: Widget match sensing errors

The model is defined in a right handed coordinate system and is placed in the +x,

The presence of spurious data edges in the scene can lead to non-interpretations or

Chapter 6 From Polyhedra to Planar Curves 172

From Table 6.6 we can see that the data features have been recovered with some
degree of accuracy when compared to the sensing errors used for synthetic data in Tables 5.8
and 6.3. Figure 6.12, below, illustrates the model features along with the selected data. It can
be seen that the selected data features are reasonably accurate in represeniing the structure of

the widgets.

Figure 6.12: Model - Widgetl - Widget2 features

6.9.2 The Matching Results

The five pairwise pruning constraints were applied for both widgets and the
Combined sorting technique was utilised. In both cases, the correct interpretation was
returned along with three additional hypotheses. The extra interpretations were a result of
the permutation of the data curve edges matched to the planar curve at the top end of the
widget cylinder. Here, two curve edges coincide as their centres and surface normals coincide.
We can see from Figure 6.13 that the matching times are comparable to tests conducted using
synthetic data. As it would be expected that synthetic data would produce less geometric

matches in the match look-up tables, this also shows the accuracy of the data recovery

process.

B Traverse tree
CPU 400
usage

(ms} 300 4L

I Sort lut's

S Make lut's

Widgetl Widget2

Figure 6.13: Match times for widgets

Chapter 6: From Polyhedra to Planar Curves 173

6.9.3 Validation to Determine Pose
The correct interpretations returned for the two widgets were successfully validated
for global consistency. Although the additional interpretations all delivered the correct
- transformation, they were failed on the basis that after backprojecting, the data curves were

unable to fit to within a threshold degree to their corresponding model curves.

Veridical Transformations Computed Transformations
Rotation Matrix Rotation Matrix
ril 12 113 Trans. (x, y, 2) f11 r12 r13 Trans. (x 2
Scene (rZ] 22 rZS) Scene (rza 22 r23) oy B
r3t 132 233 Scale (5} r31 32 r33 Scale (5)

-14.06, 3544, 487.79)

00162 077H 06349
00295 07945 08066

Widget] (0-7085 0457¢ -05379) (-1349, 35.05, 489.81) Widget1 07246 0A350 5538
07056 L4411 05546 (
04886 DA 05085 $=0,9628

5= 1.0000

(104.03, -7.40, 553.13}

Widget2 00621 0809 05956
00492 07946 0.6052

07442 04348 03001
07449 04328 05077

("0-5531 04117 ‘0-5230) 10239, -6.68, 553.63) Widget2 (04653 04258 _96132)

$=1.0000 S 0.9940

Table 6.7: True and computed widget transformations

Table 6.7 demonstrates the transformations obtained for the widgets when values
for fracdev of 0.03 and curvedev of 0.1 were chosen for widgetl, and 0.17 for fracdev and 0.09
for curvedev were chosen for widget2. The translational error may be viewed as (£0.57, +0.39,
+2,01) and (£1.45, £0.72, £0.50) along x, y, and z for widgetl and widget2 respectively. The
rotational errors, however, are very small considering that the data is not synthetic, with a

mean rotational half cone error angle of 0.6° for widget! and 0.9° for widget2.

6.10 Conclusion

It has been shown that the surface normal of the circular planar ends of regular
cylinders and cones can be accurately recovered using stereopsis. By treating these normals as
edges along with the axis of rotation of the primitives, we were able to include them in an
edge-based parallel matcher using the Grimson and Lozano-Pérez matching algorithm. If the
direction of the outward planar curve surface normal can be recovered uniquely, it may be used

during the tree traversal phase to determine the edge direction signs more effectively.

From the experiments conducted, the pseudo-edges have been shown to be robust
matching features and have been used to accurately determine the model to scene space
transformations. However, in the experimental tests, we have been limited by the data
recovery technique to primitives containing circular planar ends. The principle is easily
applicable to elliptical sliced ends. During validation, however, we must ensure that both

major and minor data axes are closely fitting to the model elliptical axes. Further extensions

.....Chapter 6: From Polyhedra to Planar Curves . . . T 174

may be made to include non-developable surfaces such as in generalised cylinders, but again
we are constrained by the sensing and segmentation approaches. The generalised cylinder of
Figure 6.14 may be included in the range of primitives if we can accurately segment its image -
scene such that a ‘characteristic’ pseudo-axis of rotation may be obtained. If this is not
possible, however, we may still include the primitive by merely using the surface normal of

the planar ends.
pseudo-axis

sweep axis

Figure 6.14: Extension to non-developable surface primitive

Practical applications of the planar curve extension are varied. An immediate
example is for use in a robot’s visual system mounted alongside a conveyer belt where
industrial components, often posscssing regular planar curves, can be found. Objects possessing
more creased edges than planar curves are also suited to the described method. They may be
defined with the curve features as the main match feature which may be determined first
during the matching process. The match list may be sorted such that curve look-up tables are

encountered first. However, to maintain efficiency of tree traversal, consistency must be

retained between the data pairs (see Section 5.7.1).

‘Although the extension we have presented is simple, it has been shown to be
attractive for the recognition of planar curves in terms of matching time. It also retains the
robustness of the polyhedral matcher with very accurate computed model to sensor space
transformations. Obviously, matching termination will be much faster if information
pertaining to the developable surface could be included directly into the matching process.
Nevertheless, the system is fast in the determination of scenes containing polyhedral and

curved planar surfaces and, thus, has potential in real-time applications.

Before such applications, however, it is important to realise the accuracy of the
techniq'ue under real world conditions since this will be the eventual operating environment.
In the experiments conducted to realise real world applicability, we have attempted to show
that the matching procbss holds and that transformation parameters may be retrieved with
reasonable accuracy. From the results obtained, we can conclude that the parallel
implemented matcher, can not only cope with data generated synthetically, but also with
matching features obtained from the real world. Its speed of execution is preserved using the

two data sources (synthetic and real) and, therefore, leads to the algorithm being extremely

capabile for real world tasks given presegmented data.

Parallel Process Techniques for 3D Model-Based Vision

Chapter 7

Contributions and Conclusions

7.1 Introduction

During the past three decades powerful methods for image analysis have emerged
owing to supercomputer production on a cheaper and more powerful scale. Recent advances in
VLSI technology have made it possible for the design and construction of massively parallel
machines. Such massively parallel fine-grain architectures have included the DAP and
Connection Machine. These may utilise several thousand processors. These processors,
however, are simple, making it essential to combine them on a large scale to perform complex
operations efficiently in terms of execution time. Another type of architectural parallelism
has also emerged but, unlike the fine-grain SiIMD architectures, uses more powerful processors
in a coarse-grain independent manner. These MIMD architectures include the BBN Butterfly
and Intel Cube which have individual processors executing their own instructions in local
memory. Advantages and disadvantages exist in both architectural design. Tasks exhibiting
a regular structure of data are usually more suited to the SIMD architecture and those which

are more control-dependent are found to be suited to the MIMD design.

A problem with many image and computer vision tasks is that operations must be
carried out on a large amount of data items. Consider a 1024 x 1024 pixel image. If a set of
computations is performed on cach pixel in unit time then over one million units are required
to process the whole image. Such image data, however, being regular, has inherent
parailelism which can be exploited with the right choice of parallel architecture. Given the
SIMD DAP with 1024 processing elements, the image data may be mapped onto the processor
array in blocks of 32 x 32 pixels or as a 1024 pixel raster-line to achieve execution over the
whole image in a fraction of the time. The introduction of parallelism and, thus, the
reduction in processing time, is desirable in many tasks especially those requiring interactive
or real-time operations. It is primarily for this reason why we chose to investigate the
parallel nature of computer recognition operations which are, essentially, destined to operate

under real-world, real-time conditions.

175

Chapter 7: Contributions and Conclusions 176

In the following concluding sections, we present the contributions offered by this

project as demonstrated in the preceding chapters along with a conclusion of our results. This

is essentially the realisation that uniform parallel processing offers efficient traversal of -
the interpretation tree and reduction of the search space during Grimson and Lozano-Pérez
style matching. In Section 7.2 we discuss the ad\;’antages and disadvantages of the SIMD
architecture and outline the power of parallelism in relation to the work described. This is
followed in Section 7.3 by the contributions offered in both the field of graphics and vision.
Section 7.5 concludes our work preceding which we suggest future directions and enhancements

in Section 74.

7.2 Why Use SIMD Parallelism?

The queétion as to whether to use an SIMD or MIMD architecture in the parallel
solution of a serial problem is largely dependent on the type of problem. The SIMD method of
parallel processing can be advantageous over MIMD in a number of cases. For example, a
single control unit is required to drive the processors which means that there is a minimal
instruction decoder cost compared to MIMD where a decoder is present in each PE. Also, the
MIMD paradigm must support expensive irregular non-local processor communications.
However, MIMD architectures are, in general, more flexible in that there are no constraints
on operations that can be performed concurrently. In addition, conditional statements are more
efficient. For example, in the MIMD paradigm each processing elemént executes as if it were
a uniprocessor whereas this must be serialized on an SIMD machine. The processor execution
time is also more favourable on an MIMD architecture since after execution of a block of
instructions a processor may move onto the next block. From Figure 7.1 the difference in
variable-time instructions is shown between SIMD and MIMD. In SIMD, processors must wait
until the slowest processor has executed the instruction before moving onto the next set of
instructions. We note, however, that this difference in variable-time instructions between

SIMD and MIMD is such only when the data is independent.

Chapter 7: Contributions and Conclusions 177

SIME mode MIMD mode

PEC PE1 PE2.. PEC PE1 PE2..

Job compleiad

Job co:':pleled
Figure 7.1: Time required to complete a job in SIMD and MIMD processing modes'

After consideration of these points however, an SIMD architecture was used in the
work described. The main reason for this was to investigate the applicability of graphics and
vision problems on such a machine architecture. Also, since the problems. undertaken
contained regularly structured data, the solution could be mapped onto the processors in a
very efficient manner. In addition, the inherent SIMD parallelism in such data made the
solution efficient in terms of program execution time. The advantages of implementing such
regular problems in an SIMD manner therefore seems to outweigh the disadvantage of

processors being dependent on the slowest PE.

In the work conducted on parallel ray tracing, the power of the SIMD processing is
most noticeable for a single-level deep search. This is partly due to the inefficiency of
recursion in the DAP along with the difficulty in performing an independent tree-search on an
SIMD architecture. Again, the bottleneck in the reformulation of the Grimson and Lozano-
Pérez serial algorithm to map onto the DAP processors can be seen during the serial tree
search. The effectiveness of the algorithm therefore comes about from the parallel
computation of matches of a data pair to all possible model pairs. This determination is
generated in an optimal manner since the procedure exhibits regularly structured data which
can be operated on cfficiently on the SIMD architecture. We note that a certain degree of
parallelism is still possible during the serial-search in maintaining consistency of an

assignment of a data item with assignments made higher up the interpretation tree.

Although the Holder and Buxton algorithm is effective in its implementation on
the DAP, it would still be desirable to further reduce the total matching time of scenes by

removing the bottleneck of the serial-search, Implementation onto hybrid architectures such

Chapter 7: Contributions and Conclusions o - 178

" as that described in Section 3.4 may be considered. The SIMD portion of the hybrid can be
used to generate the match look-up tables whilst the MIMD section is responsible for

traversing the heavily pruned interpretation tree in a more efficient parallel manner.

7.3 Contributions

The principal direction of this project was in the area of parallel processing for the
efficient determination of models from non-sensor dependent data. In preparation for the
investigation, we required an effective means of data generation for robust testing of derived
processes. Since many vision systems determine matches using camera images, we
implemented such a system for the production of synthetic camera images for closed-form
testing in the investigation of parallel matching techniques. The system is based on the SIMD
parallel methodology of Williams et al. [WBB87] and is able to generate realistic image
sequences or stereopairs. This, in effect, means that it may also be used by other systems as a
fast tool for the generation of synthetic data. The current implementation differs from that of
Williams ef al. in that it includes enhancements such as anti-aliasing and various surface
and lighting properties such as transparency and reflection, together with specular, diffuse,
and an approximation of ambient lighting. These contribute to more ‘natural’ image
properties which can be used in detailed recognition process tests. However, in the

experiments described thus far, anti-aliasing of images was not necessary for accurate 3D

feature recovery.

We have also described an implementation of a 2D spatial subdivision algorithm.
This was shown to be extremely cffective in reducing the total CPU expehditure time for scene
rendering. A mean speed up of 18 times over the more naive, brute force, approach was
reported for the test scenes used. An even greater speed up is observed when the parallel
implementation was compared to an equivalent serial implementation thus making the
system an effective first tool in the production of model matching strategies. We did not,
however, feel it necessary to extend the 2D Tiling algorithm to 3D as in doing so we digress
from the major aims of the project. Realistic images illustrating properties of reflection and

transparency can still be produced using the brute force approach.

We have demonstrated from a number of experiments that the matching paradigm
of Grimson and Lozano-Pérez can be mapped with reasonable efficiency onto the processors of
the DAP. In doing so, we have shown that the parallelism in the algorithm may be exploited
on an SIMD architecture. The interpretation tree data structure is reformulated to map onto
the SIMD processors. We have not, however, undertaken any investigations to determine the

most efficient transposition of the algorithm onto an MIMD architecture. In reformulating the

Chapter 7: Contributions and Conclusions 179

interpretation tree to map onto the DAP processors we have adopted the approach described
by Holder and Buxton [HB89%]. Using this, large models, too big to map directly onto the
processors, may be subdivided by a novel subgraph method. We have also shown, more
importantly, the significance of ordering the data pairs and have derived a new sorting
technique. This is an intelligent sort which maintains consistency between the data pairs in
combination with ordering by the least number of geometric matches. Tests of this Combined
sort technique have proved that it is always superior. Speed ups of 2-4 times over the less
consistent H&B sort have been reported. This, however, was found to increase with increasing

complexity of the scene.

In anticipation of a real world application, we have investigated the nulil pairing
hypothesis by an implementation of the bin. This is able to cope with spurious data features
in the scene. Obviously, the addition of an extra branch at each level of the interpretation
tree results in a much larger search space. We, therefore, attempt to recover the most
probabilistic hypothesis by initially selecting interpretations with no bin matches. The
importance of match list ordering reveals itself here. In all experiments to include spurious

data edges, the H&B sort failed to terminated after 2000 seconds.

In confirming the validity of a hypothesized interpretation we have investigated
the task of extending the polyhedral matching algorithm to include curves, namely, in a
planar fashion. This has been achieved by treating the planar .curve surface normal, taken at
the centre of cylindrical ends, along with the axis of rotation, and treating them as physical
edges. Inclusion into the parallel edge matcher has then been possible with little modifica-
tion of the approach, i.e. face and edge based look-up tables have been amalgamated into a
single true/pseudo edge look-up table. The results have shown a surprising accuracy and

maintains the robustness observed when using true edges alone.

Thus, in sunﬁmary, we have produced a set of tools which have exploited the
parallelism inherent in many model-based vision tasks to greatly reduce the time required to
solve them, On their own, the tools may be included in a system requiring that a particular job
be performed more efficiently. Together, however, they compose a powerful vision system
which is able to exploit full SIMD parallelism. More importantly, the system can
incorporate recognition of objects possessing planar curves without resulting in any additional

ma tching time penalty.

Chapter 7: Contributions and Conclusions 180

- 7.4 Future Work

As a discipline, Computer Vision is still in its early days, a far cry from the visual
systems created by science fiction writers and movie producers. [n this research, we have only
managed to explore the tip of a machine vision iceberg. A number of research averiues into the

model-based recognition of generalised objects are still open for investigation.

It appears that the major hindering factor in application to the real world is in
ignoring junk and clutter in the scene, i.e. being able to segment individual objects and
concentrating the recognition process on these. The formulation of the problem using
uncertified scene ciements attempts to resolve the problem of spurious data items by
systematically associating non-matching items to a ‘bin’. This, however, is slow as we
immediately get an extra branch at each level of the interpretation tree. Investigations have
been reported on the combinatorics of the search space using constrained search [Grim88,

Grim90]. If all the data is known fo come from a particular object, the search effort is

quadratic and is of order
SE(m? + ams)

where m and s are the number of model and sensed features respectively, and 4 is a small

constant. However, if spurious data is present, the search becomes exponential and is bounded

above with search offort of order

SE(ms2¢ + m2s2[1 +)¢ + bm® + mi1 + 419,

and below with order
SE(m2¢ + ms),

where m1 is the number of model features, s is the number of sensed features, ¢ is the number of
sensed features correct in the model, and @,y $ 1 are small constants. The introduction of
parallelism in the implementation of the bin will greatly increase the ability for recognition
to be pefformed on more realistic data. In our work, the exhaustive serial search of the
heavily pruned interpretation trce is the limiting factor in the parallel implementation. A
possibility may be to try to eliminate any failing items by testing all the matches of the data
pairs in parallel during a preprocessing phase. Data items continuously failing the pairwise

constraint tests may be considered to not belong to the model and, therefore, be excluded from

the tree traversal phase. Consider Figure 7.2.

Chapter 7: Contributions and Conclusions 181

52

s

Figure 7.2: True and spurious scene data

Given that the data items 87, 52, and $3 are spurious to the model, it is likely that they
will fail more of the constraint tests than the data items of C. This, however, is more reliable
when the sensed features corresponding to the model are greater than the spurious items.
Therefore, in order to outweigh the overhead of the preprocessing and for greater efficiency,

this is envisaged for larger models.

Using data obtained from motion, we realise that it is possible to segment such
scenes to obtain features belonging to individual objects [MW85], A possibility then exists for
the use of motion algorithms to recover locally segmented image features. Each group of

features may then be matched to the model separately.

To further increase the scope of the matcher, curvature information may be
incorporated to extend to the model class of generalized cylinders. This can then include
primitives possessing more general cross-sectional planar ends. In dealing with such classes of
curved objects, it will be very helpful to be able to pull out the information contained in the
extremal boundaries. Again, we are limited by the segmentation technique which must be
required to recover accurate curvature information, This, we know is possible using range

finding techniques or trinocular stereo.

These extensions, however, do not make any greater use of the parallelism. As we
suggested earlier, the hindering factor in the Grimson and Lozano-Pérez model-based
approach is the combinatorics experienced when additional model and data features are
included. We feel, therefore, that in order to produce a significant improvement to matching
systemé, this is the area of investigation on which to concentrate and, is therefore, the

direction which rmuch of our future work will follow.

Chapter 7: Contributions and Conclusions 182

7.5 Conclusions

We have investigated parallel techniques in visualisation and model-based
recognition, The main thrust of the work was towards real-time model-based vision up to the

object recognition stage using massive data parallelism.

We have produced a parallel visualisation tool for the generation of camera image
data. Output from this has been used in the testing of an extension of the SIMD parallel
algorithm of Holder and Buxton. The object recognition scope has been extended to deal with
objects containing developable surfaces by incorporating the surface normal and axis of cone
and cylinder primitives in CSG models into the matching scheme. There is no time penalty for
this extension. In addition, an improved sorting for finding consistent interpretations has been
presented which results in matching times of up to 1000 times faster over the earlier sorting
technique to give total matching times of 0.12-0.68 seconds for the example scenes considered.
The geometrical transformations recovered in the validation phase are also found to be

extremely accurate in the closed form tests which promises that the technique should find

practical application.

In combining the parallel visualisation tool with the extension of the parallel
model matcher, we conclude a complete system which can be considered as state of the art.
We note that the choice of an SIMD architecture has meant that tree search routines cannot
be solved effectively in parallel. However, implementation may be possible on a hybrid
SIMD/MIMD architecture which will be able to exploit both data and task parailelism. We
also note that aithough the methods discussed and implemented have been specific to the

DAP, the solutions are general to SIMD arrays and may be ported across such architectures.

Parallel Process Techniques for 3D Model-Based Vision

Appendix A

Ray Tracing Code for the DAP

The ray tracing and anti-aliasing procedures described in Chapter 4 are illustrated
below for implementation on the DAP. Note that this is a skeletal sample of the Fortran*
code.

C *** main ray tracing loop
do liile_y=1,16,1
do2tile x =1, 16, 1

C #=** anti-gifasing loop .. x9
do 3 pixel tile y=1,3, 1
do 4 pixel_tile x=1,3, 1

C ##% pet directions of ray from eye and normalize
ray_x = GET_RAY_X
ray y =GET RAY_Y
ray_z=GET_RAY_Z

call NORMALIZE(ray_x, ray_y, ray_z)

C #%% invoke appropriate module for the data-type
if (data_type EQ.1}
call TRACE(eyep_x, eyep_y, eyep_ 2, ray_X, ray_y, ray_z,
coler_r, color_g, color_b, dist, object_bound_hit)
if (data_type.EQ.2}
call CSG_TRACE(eyep_x, eyep_y, eyep_z, ray_x, ray_y, ray_z,
color_r, color_g, color_b, dist, object_bound_hit)
if (data_type.EQ.3)
call DTM_TRACE(eyep_x, eyep_y, eyep.z, Tay_X, 1ay_y, ray_z,
color_r, color_g, color_b, dist, object_bound_hit}

C *¥* |f no objects hit set to background colour
color_r(dist. LE.G) = floawbackground_r)
color_g(dist.LE.0} = floa(background_g)
color_b(dist.LE.0} = floa(background_b)

183

‘Appendix A: Ray Tracing Code for the DAP : : : L 184

C **+ jump out of anti_allasing loop If not anti-allasing
if (NOT.anli_alias) goto 111

il
store_color_r = store,_ color I+ co]ar r* a.has vai(;)
store_color_g = store_color_g + color_g * alias_val(i)
store_color_b = store_color_b + color_b * alias_val(i)

4 continue
3 continue

C *%% get avernge Intensity for each pixel
color_t = stote_color_r/16.0
color_g = store_golor_g/16.0
color_b = store_color_b/16.0

111 continue

¢ *%* {imit rgb to 0.255
color_r(color, r.GT.255.0) = 235.0

color_r(color_r.LT.0.0} = 0.0
color_g(coler_g.GT.255,0) = 255.0
color_g(coler_g.LT.0.0) = 0.0

color_b(color_b.GT.255.0y = 255.0
color_b(color_b.LT.0.0) = 0.0

C MK
C #%x QUTPUT TO SCREEN

C #%s

2 continue
1 continue

Parallel Process Techniques for 3D Model-Based Vision

Appendix B

Ray Tracing Combination Procedure

The ray tracing combination procedure described in Chapter 4 is iliustrated below

for implementation on the DAP. Note that this is a skeletal sample of the Fortran” code.

€ *** prun along the lists and combine the
C *** objects according to the operaiors
stack_pointer =

do 1001 =1, n, n_of_nodes

if {operator_list(i).NE.'¢) goto 10
stack_pointer = stack_pointer + 1

C #*** get the entry and exit points of the ray with the
C *** ghject and return the sides which are hit
call GET_IN_OUT(source_x, source_y, source_z, ray x, ray_y. 1ay_z,
object_lisl(i}, sidein, sideout, in, out)
 % gtore the entry and exit values
eniry(, 1, stack_pointer) = in
entry(,, 2, stack_pointer) = 0
exit(,, 1, stack_pointer) =oul
exit(,, 2, stack_pointer) =0
¢ *k% gtore object hit and side hit as one
in_object(,, 1, stack_pointer) = object_list(i) * 100 + sidein
out_object(,, 1. stack_pointer) = object_list(i) * 100 + sideout
goto 100

10 continue
left_pointer = stack_pointer - 1

if (operater_list(i).NE.'U"} goto 20
C H¥k corﬁbine the two lists according to UNION operator
call COMBINE(entry, exit, in_object, out_object, left_pointer, stack_pointer, 'U")
stack_poinier = left_pointer
go;e 100

20 continue

185

{

Appendix B: Ray Tracing Combination Procedure _ 186

.C **% combine the two lists according to INTERSECT operator

if {operator_list(i).NE.'T") goto 30 '
_ caﬂ _CQMB_IN E(entry, exit, inﬁobjec;, out_object, left_pointer, stack_pointer, T)
stack_pointer = left_pointer
goto 100

30 continue
if {operator_list(i).NE.'D") goto 100

C *** combine the two lists according to DIFFERENCE operator
call COMBINE(entry, exit, in_object, out_object, lefi_pointer, stack_pointer, 'D")
stack_pointer = left_pointer

100 continue

After traversing the tree, the t-value of the composite object at the root node will

be: t-value = entry(, , 1, 1), and the first object encountered will be in_object(, , 1, 1.

Parallel Process Techniques for 3D Model-Based Vision

Appendix C

DAP Implementation for Model Matching

The parallel algorithm described in Chapter 5 is iilustrated here. This is a

fragmentary Fortran* code of the matching paradigm.

wid define MatchList to be
% (NumberOQfModelFeatures x NumberOfModeiFeatures) x
**% NumberOfbDatapalrs - e.g. MatchLlst(32,32,496)

Qan

C #** determine MatchList by computing data pairs passing the constralnts
DO 101 = 1, NumberQ[Datapairs
MaichList{,,i) = apply pruning constraints
10 CONTINUE

C *** gum the number of geometrlc matches for each data palr
DO 201 = 1, NumberOfDatapairs
MatchSum(i) = SUM(MatchList(,.i))
20 CONTINUE

R

C

C *%% gort the match list for most efficlent traversal using MatchSum to
C #** produce TruverseOrder - see SORTING TECHNIQUES below
C

EL L

C **% traverse the heavily prune Interpretation tree
level =1
count=1
CALL TraverseTree(level)
count = count - 1

C ***% count is the number of interpretations found

E L2

*#% dofine TraverseTree
2

subroutine TraverseTree{level)

anon

C **» geclare variables
i = TraverseOrder(level)

dataedgel = Datum1(i)
dataedge? = Daum2(i)

187

Appendix C: DAP Implementation for Model Mai’Ching _ _ - _ - 188

G OO0

oRe ke

C
40

30

vl

20

#%% Mask for match conslstent with Interpretation so far
ConsistentMatch = (Martch(,,i)
+ .and.({edgel EQ.edge(dataedgel,count)).OR. (eége(damadgel,coum) EQ.0N
+ and.((edge2. EQ.edge(dataedge2,count)).OR, (edge(dataedge2,count).EQ.0)))

¥¥ early backtrack ***
IF (ELN(ConsistentMatch), EQ.0) GOTO 20

*#¥ determine If the data edges are already paired
edgel_clear = (edge(dataedgel,count). EQ.0)
edgel_clear = (edge{dataedge?,count}.EQ.0)

##% lgok for successive Interpretations with regard to data palr |
k = ELN(ConsistentMatch)
IF (kEQ.0) GOTO 20
ConsisteniMatch(k) = .FALSE.

LE 2

#i% do edge directlon tests and store resuit

HOk R

*#% Place object model edge Iabels in the interpretation array

edge({dataedge!,count) = edgel(k)
edge(dalacdge2,count} = edge2(k)

Skd¥ 3f an interpretatlon I8 complete, make a copy before
“*% hacktracking to look for up to NOI interpretations
IF {fevel. LT NumberOfDatapairs) GOTO 40
IF {count. GT.NOI) GOTO 20
K
% store interpretation
LE R]
goto 50

%% move to next level in MatchList
CALL TraverseTree (level + 1)

conlinue
IF {count.GT.NOI[) GOTO 20

¥*¥* prepare to scan for alternative interpretations

#%% reset interpretation array if edges previously unassigned

IF (edgel_clear) edge(dataedgel, count) = 0
[F (edge2_clear) edge{dataedgeZ, count) =0

k]

**k reset directlon signs
L2

goto 30

continue

##% Backtrack to previous data palr
return
end

Appendix C: DAP Implementation for Model Matching 189

Sorting Techniques:

In the above code, the ordering of the match list may be performed in several ways.
Below is a demonstration of the new Combined sort technique along with the Holder and

Buxton ascending order sort.

C **% gxample of Holder and Buxton ascernding order sorting
P20 100 i = 1, NumberOfDatapairs
position = ELN(MINP(MatchSum))
TraverseOrder(i) = position
MaichSum(position) = 9999
100 CONTINUE

C **%¢ example of the Comblned sort
firstpair = ELN{MINP(MatchSum))
firstpairgroup = Datum2(firstpair)
TraverseOrder(1) = firstpalr
IF {firstpair.eq.1) THEN
k=2
ELSE
TraverseOrder(Z) = 1
k=3
ENDIF

DO 200 1 = 3, NumberOfDataltems
fi=i
grouppairs = Datum2 EQ.i
1F (i.EQ.firstpairgroup) THEN
fi=i-1
grouppairs(firstpair) = FALSE.
DIF

mingrouppairs = MERGE{MatchSum, 9999, grouppairs)
position = ELN(MINP({mingrouppairs))
TraverseOrder(k) = position
grouppairs(position) = .FALSE.
k=k+1
DO 200 =2, ii-1

position = ELN{grouppairs)
TraverseOrder(k} = position
grouppairs(position) = .FALSE. -

k=k+1

200 CONTINUE

Note that ELN is a DAP Fortran function which returns the location of the first
‘true’ value from a logical matrix or vector. MINP returns a logical matrix or vector
(depending on its argument) with the positions of the minimum values of its argument marked

‘true’ and all other positions marked ‘false’.

~ Parallel Process Techniques for 3D Model-Based Vision

~Appendix D

Published Papers and Technical Reports

The work described in this thesis has been used to form several technical reports

and published papers. They are summarized here.

Report1
Usoh, M., “A Ceneralised Ray Tracer Using SIMD Parallel Processing”, Technical

Report no. 499, Dept. of Computer Science, Queen Mary and Westfield College, Feb.
1990.

» This report outlines the work described in Chapter 4.

Report 2
Usoh, M., “Parallel Techniques in 3D Model Matching”, Technical Report no. 527, Dept.

of Computer Science, Queen Mary and Westfield College, Feb. 1991.

o This report outlines the work described in Chapter 5.

Report 3
Usoh, M., Buxton, H., “Geometric Matching with Curved Surfaces: Parallel Visual

Evaluation and Display”, Technical Report no. 587, Dept. of Computer Science, Queen
Mary and Westfield College, March 1992,

s This report outlines the work described in Chapters 4 and 6 with real world based

experiments. It has also been submitted to the Visual Computer as an extension and

enhancement to Paper 1.

190

Appendix D: Published Papers and Technical Reports 191

Paper 1
Usoh, M., Buxton, H., “Using Visualisation as a Tool for Model-Based Recognition”,

The Visual Computer (special edition on parallelism), to appear, 1992.

Also as Technical Report no. 553, Dept. of Computer Science, Queen Mary and

Westfield Coilege, March 1991

o This paper is a combination of the reports of 1 and 2 with enhancements and more
detailed results. It describes a parallel visualisation system which, using SIMD
processing, is able to efficiently generate image data for closed-form testing of an

SIMD parallel edge-based model matcher.

Paper 2
Usoh, M., Buxton, H., “SIMD Geometric Matching: From Polyhedra to Planar Curves”,

Proceedings of Vision Interface ‘92, Vancouver, pp. 157-162, May 1992.

Also as Technical Report no. 554, Dept. of Computer Science, Queen Mary and
Westfield College, Sep. 1991.

o This report describes the work performed in Chapter 6.

Parallel Process Techniques for 3D Model-Based Vision

[AKMS85]

[Amang4]

[AMT90]

[Appes8]

[BAB4]

[BB&8]

[BBY0]

[(BC8Y]

{BCZ90]

[Bied87]

{B]85]

References

Arnould, E., Kung, H.T., Mensilcioglu, 0., Sarocky, K., “A Systolic Array
Computer”, IEEE Int. Conf. on Acoustics, Speech and Signal Processing, vol. 1,
pp. 232-235, 1985.

Amanatides,], “Ray Tracing with Cones”, Computer Graphics (Proc.

SIGGRAPHS84), 18(3), pp. 129-135, July 1984.

AMT Customer Newsletter, May 1990.

| Appel, A., “Some Techniques for Shading Machine Renderings of Solids”, § ,'CC,

pp. 37-45, 1968,

Brady, M., Asada, H. “Smoothed Local Symmetries and Their
Implementation”, Int. |. of Robotics Research, 3(3), Fall 1984.

Blake, A., Brelstaff, G., “Geometry from Specularities”, Proc. 2nd. Int. Conf. on
Computer Vision, pp. 394-403, 1988.

Blake, A., Biilthoff, H., “Does the Brain Know the Physics of Specular
Reflection?”, Nature 343, pp. 165-168, 1990.

Blake, A., Cipolla, R., “Robust Estimation of Surface Curvature from
Deformation of Apparent Contours”, Technical Report No. OUEL 1797/83,
University of Oxford, October 1989,

Blake, A., Cipolia, R., Zisserman, A., “Towards Qualitative Vision: Motion

Parallax”, Proc. of BMVC90, pp. 115-120, Sep. 1990.

Biederman, L., “Recognition-by-Components: A Theory of Human Image

Understanding”, Psychological Review, 94(2), pp. 115-147, 1987.

Besl, P.I., Jain, R.C,, “Three-Dimensional Object Recognition”, Computing

Surveys, 17(1), pp. 75-145, March 1985.

192

References

193

[BM90]

. [Bouv85]

[Bray90]

[Broi79]

[Broo83)

[BS88]

{BWRS0]

{Caigy]

{Canng6]

[CBY0]

{[CCODPs7]

{CD8é6]

Bourdon, O., Medioni, G, Ob;ec!t Recognition Using Geometric Hashing on the
Connection Machine”, Proc. Tenth Int. Conf. Patt. Recog., pp. 596-600, 1990.

Bouville, C., “Bounding Ellipsoids for Ray-Fractal Intersection”, Computer

Graphics (Proc. SIGGRAPHSS5), pp. 45-52, 1985.

Bray, A.J., “Object Recognition Using Local Geometric Constraints: A Robust
Alternative to Tree-Search”, First Euro. Conf. on Comp. Vision, pp. 499-515,
April 1990.

Broit, M., *“The Utilization of an ‘Artificial Skin’ Sensoi for the Identificatidn

of Solid Objects”, Proc. Ninth Int. Symp. Industrial Robots, pp. 529-548, 1979.

Brooks, R.A., “Model-Based Three-Dimensional Interpretations of Two-
Dimensional Images”, [EEE Transactions on Pattern Analysis and Machine

Intelligence, vol. PAMI-5, pp. 140-150, 1983.

Brady, M., Scott, G., “Parallel Algorithms for Shape Representation”, In:
Parallel Architectures and Computer Vision, ed. I. Page, Clarendon Press,

Oxford, pp. 97-118, 1988,

Burns,].B., Weiss, R,, Riseman, E.M., “View Variation of a Point Set and Line
Segment Features”, Proc. Image Understanding Workshop, pp. 650-659, Sep.
1990.

Cai, L.D., “Spline Smoothing: A Special Case of Diffusion Smoothing”, Proc.
Bfth AVC Conf., Reading, pp. 273-276, July 1989.

Canny,].F., “A Computational Approach to Edge Detection”, IEEE Trans. on
Pattern Analysis and Machine Intelligence PAMI-8(6), pp. 679-698, 1986.

Cipolla, R., Blake, A., “The Dynamic Analysis of Apparent Contours”, Third
Int. Conf. on Computer Vision, Osaka, pp. 616-623, Dec. 1990.

Cyganski, D., Cott, T.A., Orr, J.A., Dodson, R.J.,, “Development,
Implementation, Testing and Application of an Affine Transform Invariant

Curvature Func_tion”, Proc. ICCV Conf., pp. 496-500, 1987.

Chin, R.T., Dyer, C.R., “Model-Based Recognition in Robot Vision”, ACM

Computing Surveys, 18(1), pp. 67-108, March 1986.

. References

194

[CDHMS89] Crow, F.C., Demos, G., Hardy, J., McLaughlin, |, Sims, K., “3D Image Synthesis

[C190]

{CJCMB6]

[CMSB87]

[CPPMF90]

[Crow81]

[DC71]

[DS84]

{Faug90]

[FH83]

[FH85]

on the Conne;tiq_n_Mach_i_ne", In: _Para_llel_ Processing for Computer Vision and
Display, ed. P.M. Dew, R.A. Earnshaw, and T.R. Heywood, Addison-Wesley
Publishers Ltd, England, pp. 254-269, 1989.

Clemens, D.J., Jacobs, D.W., “Model-Group Indexing for Recognition”, Proc.
Image Understanding Workshop, pp. 604-613, Sep. 1990.

Cannon, S.R., Jones, G.W., Campbell, R,, Morgan, N.W., “A Computer Vision
System for [dentification of Individuals”, Proc. IECON 86 0, WL, vol. 1, pp. 347-

351, 1986.

Castelow, D.A., Murray, D.W., Scott, G.L., Buxton, B.F,, "Matching Canny
Edgels to Compute the Principal Components of Optic Flow”, Proc. of the Alvey
Vision Conference, pp. 193-200, Sep. 1987.

Cai, L.D., Porrill, J., Pollard, $.B., Mayhew, J.E.W.,, Frisby,].P., “Segmentation
of Planar Curves Using Local and Global Behaviour Analysis”, Proc. of

BMVCY0, pp. 247-251, Sep. 1990.

Crow, F.C,, “A Comparison of Antialiasing Techniques”, IEEE Computer
Graphics and Applications, 1(1), pp.40-48, 1981.

Dieudonné, |., Carrel,].B., “Invariant Theory Old and New"”, Acedemic Press,

1971.

Dippe, M., Swensen, |, “An Adaptive Subdivision Algorithm and Parallel
Architecture for Realistic Image Synthesis”, Computer Graphics (Proc,

SIGGRAPHS4), 18(3), pp. 149-158, July 1984.

Faugeras, O., “On the Motion of 3D Curves and its Relationship to Optical
Flow”, Technical Report No. 1183, INRIA, March 1990.

Faugeras, O.D., Hébert, M., “A 3D Recognition and Positioning Algorithm Using
Geometric Matching Between Primitive Surfaces”, Proc. Int. J. Conf. on Al

Karlsruhe, pp. 996-1002, 1983.

Flynn, A.M., Harris,].G., “Recognition Algorithms for the Connection Machine”,
Proc. Ninth International joint Conf. on Al, Morgan and Kaufman, pp. 57-60,
1985.

References

195

[FHBg6]

[FHPP83]

[FJ90]

[Flyn90]

[FMZ90]

[FMZBY0]

[Forr88]

[GG84]

{GH90}

[GL-P844]

[GL-P84b]

Faugeras, O.D., Hébert, M., “The Representation, Recognition, and Locating of
3D Objects”, Int. |. Robotics Research, 5(3), pp. 27-52, 198a.

Faugeras, O.D., Hébert, M., Pauchon, E., Ponce,], “Object Represen-tation,
Identification, and Positioning from Range Data”, In Brady, .M., and Paul, R.,
editors, Proc. Ist Int. Symp. on Robotics Research, MIT Press, Cambridge, MA,

1983. '

Flynn, P.J., Jain, A.K,, “BONSAL 3D Object Recognition Using Constrained
Search”, Proc. Third Int. Conf. on Computer Vision, Osaka, pp. 263-267, Dec.
1990.

Flynn, P.J, “CAD-Based Computer Vision: Modeling and Recognition
Strategies”, PhD Thesis, Department of Computer Science, Michigan State

University, 1990.

Forsyth, D., Mundy, [., Zisserman, A, “Transformational Invariance - A
Primer”, Proc. of BMVC90, pp. 1-5, Sep. 1990.

Forsyth, D., Mundy, J.L., Zisserman, A., Brown, C.M,, “Invariance - A New
Framework for Vision”, Proc. Third Int. Conf. on Computer Vision, Osaka, pp.

598-605, Dec. 1990.

Forrest, B., “Restoration of Binary Images Using Networks of Analogue
Neurons”, In: Parallel Architectures and Computer Vision, ed. I. Page,

Clarendon Press, Oxford, pp. 19-31, 1988.

Geman, S., Geman, D., “Stochastic Relaxation, Gibbs Distributions, and the

Bayesian Restoration of Images”, IEEE Trans. PAMI, vol. 5, pp. 721-741, 1984.

Grimson, W.E.L., Huttenlocher, D.P., “On the Verification of Hypothesized
Matches in Modcl-Based Recognition”, First European Conf. on Computer

Vision, pp. 489-498, April 1990.

Gaston, P.C., Lozano-Pérez, T., “Tactile Recognition and Localization Using
Object Models: The Case of Polyhedra on a Plane”, IEEE Trans. on Pattern
Analysis and Machine Intelligence PAMI-6(3), pp. 257-266, May 1984. '

Grimson, W.E.L., Lozano-Pérez, T., “Model-Based Recognition and Localization
from Sparse Range or Tactile Data”, Int. . Robotics Research, 3(3), pp. 382-414,
Fall 1984.

-References

196

[GL-P84c]

[GL-P87]
[Goad83]

[Gree89]

[Greg78]

[Grim#d]

[Grifn88]

{Grim90]

[GTGB84]

[GY03]
[Harm82}

[HB8%4]

Grimson, W.E.L., Lozano-Pérez, T., “Parallel Algorithms for Computer Vision”,
In Winston, P.H., editor, A Research Proposal to DARPA, Chapter Parallel
Recognition Algorithms, MIT, 1584. |

Grimson, W.E.L., Lozano-Pérez, T., “Localizing Overlapping Parts by Searching
the Interpretation Tree”, I[EEE Trans. PAMI-9(4), pp. 469-482, 1987.

Goad, C., “Special Purpose Automatic Programming for 3D Model-Based
Vision”, Proc. Image Understanding Warkshop, Virginia, USA, pp. 94-104, 1983.

Greenshields, LR., “A Dynamically Reconfigurable Multimodal Architecture
for Image Processing”, In: Parallel Processing for Computer Vision and Display,

ed. P.M. Dew, R.A. Earnshaw, and T.R. Heywood, Addison-Wesley Publishers
Ltd, England, pp. 153-165, 1989.

Gregory, R.L., “Eye and Brain”, McGraw Hill, New York, 1978.

Grimson, W.E.L., “The Combinatorics of Local Constraints in Model-Based
Recognition and Localization from Sparse Data”, Technical Report Al Memo

763, MIT Al Laboratory, Cambridge, M.A., April 1984.

Grimson, W.E.L., “The Combinatorics of Object Recognition in Cluttered
Environments Using Constrained Search”, Technical Report 1019, MIT Al
Laboratory, Cambridge, M.A., 1988.

Grimson, W.E.L., “The Effect of Indexing on the Complexity of Object
Recognition”, Proc. Third International Conf. on Computer Vision, pp. 644-651,

1990,

Goral, C.M., Torrance, K.E., Greenberg, D.P., Battaile, B.,, “Modeling the
Interaction of Light Between Diffuse Surfaces”, Computer Graphics (Proc.

SIGGRAPHS4), pp. 213-222, 1984,

Grace,].H., Young, A., “The Algebra of Invariants”, Cambridge University
Press, Cambridge, 1903.

Harmon, L.D., “Automated Tactile Sensing”, Robotics Res., vol. 1, pp. 3-32,
Summer 1982.

Holder, D., Buxton, H., “Polyhedral Object Recognition with Sparse Data in
SIMD Processing Mode", Image and Vision Computing, 7(1), pp. 71-78, Feb. 1989.

References

197

[HIB89b]

{Heck84]

[HH84]

[Hillg2]

[Hili85]

[Hogg83]

[HU%0]

{Jarv83]

[JL87]

[Kana77]

[KD75]

[KD76]

[KK86]

Holder, D., Buxton, H., “Polyhedral Object Recognition with Sparse Data -
Validation of Interpretations”, Proc. of the Fifth Alvey Vision Conf., Reading,
pp- 19-24, Sep. 1989

" Heckbert, P., “The Mathematics of Quadric Surface Rendering and SOID", New

York Inst. of Tech., Computer Graphics Lab TM4, July 1984.

Heckbert, ., Hanrahan, P., “Beam Tracing Polygonal Objects”, Computer
Graphics (Proc. SIGGRAPH 84), 18(3), pp. 119-127, July 1984.

Hillis, W.D., “A High-Resolution Image Touch Sensor”, Robotics Res., vol. 1,
pp- 33-44, Summer 1982.

Hillis, W.D., “The Connection Machine”, The MIT Press, Cambridge,
Massachusetts, 1985. '

Hogg, D., “Model-Based Vision: A Program to see a Walking Person”, Image and
Vision Computing, 1(1), pp. 5-20, Feb. 1983.

Huttenlocher, D.P,, Ullman, $., “Recognising Solid Objects by Alignment with
an Image”, Int. |. of Computer Vision, 5(2), pp. 195-212, Nov. 1990.

Jarvis, R.A., “A Perspective on Range Finding Techniques for Computer Vision”,
IEEE Trans. Pattern Anal. Machine Intell. PAMI-5(2), pp. 122-193, 1983.

jalowiecki, L.P., Lea, RM,, “A 256-Element Associative Parallel Processor”,

Proc. Int. Solid State Circuits Conf.,, New York, pp. 196-197, Feb. 1987.

Kanade, T., “Computer Recognition of Human Faces”, Birkhauser Verlag, Basel

and Suttgart, 1977,

Koenderink, J.J., Doorn, AJ. van, “Invariant Properties of the Motion Parallax
Field due to the Movement of Rigid Bodies Relative to an QObserver”, Optica

Acta, 22(9), pp. 773-791, 1975.

Koenderink, J.J., Doorn, A.J, van, “Geometry of Binocular Vision and Model for

Stereopsis”, Biological Cybernetics, vol. 21, pp. 29-35, 1976.

Kay, T.L., Kajiya,].T., “Ray Tracing Complex Scenes”, Computer Graphics
(Proc. SIGGRAPHBSE), 20(4), pp. 269-278, August 1986.

References

198

[KL89}

[Koen84}

{KOO90]

[Kuchs8]

[KV-H84]

[Lea86a]

[Lea86b]

[Fea86c]

[L-HP80]

[Lin87]

[LS88]

[LSW88]

Krikelis, A., Lea, R.M,, “Low-Level Vision Tasks Using Parallel String

“Architectures”, In: Parallel Processing for Computer Vision and Display, ed.

P.M. Dew, R.A. Earnshaw, and T.R. I—Ieywc.)dd.,. Addiéén;Wésiey Publishers Ltd,'
England, pp. 103-118, 1989. -

Koenderink, J.J., “What Does the Occluding Contour Tell us About Solid
Shape?”, Perception, vol. 13, pp. 321-330, 1984,

Kuno, Y., Okamoto, Y., Okada, 5., “Object Recognition Using a Feature Search
Strategy Generated from a 3-D Model”, Proc. Third International Conf. on

Computer Vision, pp. 626-635, 1990.

Kuchkuda, R., “An Introduction to Ray Tracing”, NATO ASI Series, vol. F40,
Theoretical Foundations of Computer Graphics and CAD, edited by R.A.
Earnshaw, Springer-Verlag Berlin, Heidelberg, 1988.

Kajiya, J.T., Von Herzen, B.P., “Ray Tracing Volume Densities”, Computer
Graphics (Proc. SICGRAPHS4), 18(3), pp. 165-174, July 1984.

Lea, R.M., “SCAPE: A Single-Chip Array Processing Element for Signal and
Image Processing”, IEE Proc. Pt. E., 133(3), pp. 145-151, 1986.

Lea, R.M., “VLSI and WSI Associative String Processors for Cost-Effective
Parallel Processing”, The Computer Journal, 29(6), pp. 486-494, 1986.

Lea, R.M., “VLS] and WSI Associative String Processors for Structured Data
Processing”, IEE Proc. Pt. E., 133(3), pp. 153-162, 1986.

Longuet-Higgins, H.C., Pradzny, K., “The Interpretation of a Moving Retinal
Image”, Proc. Royal Soc. London, B208:385-397, 1980.

Lin, C., “New Forms of Shape Invariants From Elliptical Fourier Descriptions”,

Pattern Recognition, 20(5), pp. 535-545, 1987.

Lin, T., Slater, M., “Parallel Ray Tracing Using an Integrated Space Subdivision
Scheme”, Proc. SURF 2nd Ann. Meeting, 1988.

Lamdan, Y., Schwartz,].T., Wolfson, H.J., “Object Recognition by Affine
Invariant Matching”, [EEE Conf. Computer Vision and Pattern Recognition, pp.

335-344, 1988,

References

199

[LW8s]

[Malh904]}

[Malh90b]

[Mari81]

[Marr82]

[MB90]

{MBLSB92]

MC88]

[MCB89]

IMDW88]

[MF81]

{MHS80]

Lamdan, Y., Wolfson, H.]., “Geometric Hashing: A General and Efficient
Model-Based Recognition Scheme”, Proc. of ICCV, Tampa, Florida, pp. 238-249,
Dec. 1988.

Malhi, R.K., “Parallel Tiling Algorithms for Visualising Solid Models”, PhD
Thesis, Dept. of Computer Science, QMW College, London, pp. 73-76, June 1990.

As [Malh904] - p. 104, June 1990.

Marik, V., “Algorithms of the Complex Tactile Information Processing”, Proc.
7th Int. Joint Conf. on Al, pp. 773-774, 1981

Marr, D., “Vision”, W.H. Freeman, San Francisco, C.A., 1982,

Murray, D.W., Buxton, B.F,, “Experiments in the Machine Interpretation of

Visual Motion”, The MIT Press, Cambridge, Massachusetts, 1990.

Marsh, B., Brown, C., LeBlance, T., Scott, M., Becker, T., Quiroz, C.,, Das, I,
Karlsson, J., “The Rochester Checkers Player: Mulitimodel Parallel
Programming for Animate Vision”, COMPUTER, 25(2), pp. 12-19, Feb. 1992.

Murray, D.W., Cook, D.B,, “Using the Orientation of Fragmentary 3D Edge
Segments for Polyhedral Object Recognition™, Int. J. Comput. Vision, vol. 2, pp.
147-163, 1988.

Murray, D.W., Castelow, D.A., Buxton, B.F.,, “From Image Sequences to
Recognized Moving Polyhedral Objects”, Int. J. of Computer Vision, vol. 3, pp.
181-208, 1989,

Manning, L., Dew, P.M., Wang, H., “Design and Analysis of Image Processing
Algorithms for Programmable VL3I Array Processors”, In: Paraliel
Architectures and Computer Vision, ed. 1. Page, Clarendon Press, Oxford, pp.
217-242, 1988.

Mayhew, J.E.W., Frisby, J.P., “Psychophysical and Computational Studies
Towards a Theory of Human Stereopsis”, Artificial Intelligence, vol. 17, pp.

349-385, 1981.

Marr, D., Hildreth, E., “Theory of Edge Detection”, Proc. Royal Soc., London,
B207, pp. 187-217, 1980.

References

200

[MKB86]

[MP88]

[MT87}

[MU9S1]

| IMurr87]

{MW85]

[NB86]

[NLC90]

[NN85]

[NS89]

[O583]

Murray, D.W., Kashko, A., Buxton, H., “A Parallel Approach to the Picture

Restoration Algorithm of Geman and Geman”, Image and-Vision Computing,

vol. 3, pp. 133-142, 1986.

Morrow, P., Perrott, R.H., “The Design and Implementation of Low-Level Image
Processing Algorithms on a Transputer Network”, In: Parallel Architectures and

Computer Vision, ed. . Page, Clarendon Press, Oxford, pp. 243-259, 1988.

Mundy, J.L., Thompson, D.W., “Three-Dimensional Model Matching From an
Unconstrained Viewpoint”, Proc. IEEE Robotics and Automation, pp. 208-220,

1987,

Moses, Y., Ullman, S., “Limitations of Non Model-Based Recognition Schemes”,

ECCV-92, to appear.

Murray, D.W., “Model-Based Recognition Using 3D Shape Alone”, Computer
Vision Graphics and Image Processing, vol. 40, pp. 250-266, 1987.

Murray, D.W., Williams, N.8., “Detecting the Image Boundaries Between Flow

Fields for Several Moving Planar Facets”, Pattern Recognition Letters, 1985.

Nalwa, V.S., Binford, T.O., “On Detecting Edges”, IEEE Trans. on Pattern
Analysis and Machine Intelligence PAMI-8(6), pp. 699-714, 1386.

Nasrabadi, N.M., Li, W., Choo, C.Y., “Object Recognition by a Hopfield Neural
Network?, Third Int. Conf. on Computer Vision, Osaka, pp. 325-328, Dec. 1990.

Nishita, T., Nakamae, E., “Continuous Tone Representation of Three
Dimensional Obijccts Taking Account of Shadows and Interreflection”, Computer

Graphics (Proc. SIGGRAPHSS5), pp. 23-30, 1985.

Nagri, A.A, Sandler, M.B., “Performance of the OSMMA Image Processing
System”, In: Parallel Processing for Computer Vision and DisPIa{y, ed. P.M.

Dew, R.A. Earnshaw, and T.R. Heywood, Addison-Wesley Publishers Ltd,
England, pp. 145-152, 1989.

Oshima, M., Shirai, Y., “Object Recognition Using Three-Dimensional

Information”, PAMI, 5(4), pp. 353-361, July 1983.

Okada, T., Tsuchiya, 5., “Object Recognition by Grasping”, Pattern Recognition,
9(3), pp. 111-119, 1977.

References

201

[Page884]

[Page88b]

[PageSQ']

[PMF85]

[Poligs]

(PPM87]

[Quars4]

[Redd8s8]

[RH91]

[RH92]

[RL85]

[Roth82]

Page, 1., “Parallel Architectures and Computer Visibn”, Clarendon Press,

Oxford, 1988.

Page, L., “The Disputer: A Dual-Paradigm Parallel Processor for Graphics and
Vision”, In: Parallel Architectures and Computer Vision, ed. I. Page, Clarendon

Press, Oxford, pp. 201-216, 1988,

Page, 1., “Graphics + Vision = SIMD + MIMD (A Novel Dual-Paradigm
Approach)”, In: Parallel Processing for Computér Vision and Display, ed. P.M.
Dew, R.A. Earnshaw, and T.R. Heywood, Addison-Wesley Publishers Ltd,
England, pp. §9-102, 1989. ‘

Pollard, S.B., Mayhew, J.E.W., Frisby, J.P., “PMF: A Stereo Correspondence
Algorithm Using a Disparity Gradient Limit”, Perception, vol. 14, pp. 449470,
1985.

Pollard, §., “The PMF Stereo Algorithm: Theory and Implementation”, In:
Parallel Architectures and Computer Vision,‘ed. I. Page, Clarendon Press,
Oxford, pp. 61-79, 1988.

Pridmore, T.P., Porril], J., Mayhew,].E.W., “Segmentation and Description of
Binocularly Viewed Contours”, Image and Vision Computing, 5(2), pp. 132-138,
1987.

Quarendon, P., “WINSOM Users Guide”, Doc. no. UKSC 123, Aug. 30, 1984,

Reddaway, S., “Mapping Images onto Processor Array Hardware”, In: Parallel
Architectures and Computer Vision, ed. I. Page, Clarendon Press, Oxford, pp.
269-314, 1988.

Rigoutsos, 1, Hummel, R., “A Bayesian Approach to Model Matching with
Geometric Hashing”, ECCV-92, to appear.

Rigoutsos, 1., Hummel, R., “Massively Parallel Model Matching: Geometric
Hashing on the Connection Machine”, COMPUTER, 25(2), pp. 33-42, Feb. 1992.

Reiger,].H,, Lawton, D.L., “Processing Differential Image Motion”, J. Optical
Soc. of America, A2(2}, pp. 354-359, 1985.

Roth, S.D., “Ray Casting for Modeling Solids”, Computer Graphics and Image
Processing, vol. 18, pp. 109-144, 1982,

References

202

[Ruff88)

[Slat86]

[Spri77]

[SRH88]

[SR590}

[S587]

[STN87]

[StocB7]

{TINA]

[TL.90]

[TMB89]

- Ruff, B., “A Pipelined Architecture for a Video-Rate Canny Operator Used at
~ the Initial Stage of a Stereo Image Analysis System”, In: Parallel Architectures

‘and Computer Vision, ed. I. Page, Clarendon Press, Oxford, pp. 171-185, 1988.

Slater, M., “Segments on Bit Mapped Graphic Displays”, Software-Prictice and
Experience, 16(11), pp. 965-980, Nov. 1986. ‘

Springer, T.A., “Invariant Theory”, Springer-Verlag Lecture Note in
Mathematics, 585, 1977,

Sleigh, A., Radford, J., Harp, G., “RSRE Experience Implementing Computer
Vision Algorithms on Transputers, DAP and DIPOD Parallel Processors”, In:
Parallel Architectures and Computer Vision, ed. 1. Page, Clarendon Press,

Oxford, pp. 133-155, 1588,

Shankar, R.V., Ramamoorthy, G., Suk, M., “Three Dimensional Object
Recognition on the Connection Machine”, Pattern Recognition Letters, 11(7), pp.

485-492, July 1990.

Salmon, R., Slater, M., “Computer Graphics - Systems and Concepts”, Addison-

Wesley Publishing Company inc., pp.420-423, 1987.

Shinya, M., Takahashi, T., Naito, 5., “Principles and Applications of Pencil
Tracing”, Computer Graphics (Proc. SIGGRAPH87), pp. 45-54, 1987.

Stockman, G., “Object Recognition and Localization via Pose Clustering”, Comp.

Vision, Graphics, Image Proc., vol. 40, pp. 361-387, 1987.

Pollard, S.B., Porrill, |., Thacker, BA., “Tina.1 Tinatool User Docummentation”,

AIVRLU Ref. No. 50, University of Sheffield.

Tanaka, H.T., Lee, D.T.L., “Representing Surface Curvature Discontinuities on
Curved Surfaces”, Proc. Third Int, Conf. on Computer Vision, Osaka, pp. 304-308,

Dec. 1990,

Trotter, J.A.,, Moore, W.R,, “MESH: An Architecture for Image Processing”, In:
Parallel Processing for Computer Vision and Display, ed. P.M. Dew, R.A.
Earnshaw, and T.R. Heywood, Addison-Wesley Publishers Ltd, England, pp.

136-144, 1989,

References

- 203

[WBB8&7]

- [Webb92]

{Wein8g9]

[Whit80]

[WLT89]

[WMMW92]

{Wolf90]

[Wys089]

[ZMFMR90]

Williams, N.S., Buxton, B.F., Buxton, H., “Pistributed Ray Tracing Using an
SIMD Processor Array”, NATO Advanced Study Institute, 11 Ciocco, Italy, 1987.

Webb, J., “Steps Towards Architecture-Independent Image Processing”,
COMPUTER, 25(2), pp. 21-31, Feb. 1992.

Weinshall, D., “Direct Computation of 3D Shape and Motion Invariants”,
Technical Report Al Memo No. 1131, MIT Al Lab, May 1989.

Whitted, T., “An Improved Illumination Model for Shaded Display”, Comm. .
ACM, 23(6), 1980.

Wong, K.H., Law, HHM, Tsang, P.W.M, “A System for Recognizing Human
Faces”, Proc. ICASSP, pp. 1638-1642, 1989,

Wallace, A.M., Michaelson, G.]., McAndrew, P., Waugh, K.G., Austin, W.J,,
“Dynamic Control and Prototyping of Parallel Algorithms for Intermediate and
High-Level Vision”, COMPUTER, 25(2), pp. 54-63, Feb. 1992.

Wolfson, H.[., “Model-Based Object Recongition by Geometric Hashing”, First
Euro. Conf. on Comp. Vision, pp. 526536, 1990.

Wysocki, J., “A Parallel Imptementation of the Canny Operator for the DAP”,
Technical Report no. 491, Dept. of Computer Science, Queen Mary College,
London, August 1989.

Zisserman, A., Marinos, C., Forsyth, D.A, Mundy, J.L., Rothwell, C.A,,
“Relative Motion and Pose From Invariants”, Proc. of BMVC90, pp. 7-12, Sep.
1990, ‘

