ﬁ CORE Metadata, citation and similar papers at core.ac.uk
Provided by Queen Mary Research Online

&
wQf Queen Mary
University of London

Data Parallel Algorithms for Solving Least Squares Problems by QR

Decomposition
Kontoghiorghes, Erricos

For additional information about this publication click this link.
http://gmro.gmul.ac.uk/jspui/handle/123456789/4629

Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact scholarlycommunications@qgmul.ac.uk

https://core.ac.uk/display/30696749?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/jspui/handle/123456789/4629

Data Parallel Algorithms for Solving Least
Squares Problems by QR Decomposition

Erricos John Kontoghiorghes

Department of Computer Science, Queen Mary and Westfield
College, Mile End Road, London El1 4NS, UK.

Summary

The QR decomposition is an important operation for solving least squazes
problems. Data parallel algorithms for forming the QRD are described.
‘The algorithms are based on the Householder, Givens rotations and Gram-
Schmidt methods. Using regression, accurate timing models have been con-
structed for measuring the performance of the algorithms on a massively
parallel 8IMD system. A comparison of the timing models reveal the su-
periority in performance of the data parallel Householder algorithm, when
the orthogonal matrix is not formed.

Keywords: QR Decomposition; Data Parallelism; SIMD Systems; Timing
Models;

Introduction

The application of the QR Decomposition {QRD) for solving least squares
problems is well known [1, 8, 12]. The data matrix A is transformed into
the upper triangular matrix B after it is premultiplied by the orthogonal Q¥
matrix. Throughout the paper, the QRI} has the form

s = (§). (1)

where 4 € R™*", @ ¢ R™™ R € R™™™ and m > n. It is assumed that
A has full column rank and the orthogonal matrix ¢ is not required to be
stored.

Within the context of the standard linear model

y = Az+e; e~N(0,0I)

after computing (1), the least squares estimator of x is derived as the solution
of the triangular system Rz = y;, where 3, consists of the first n elements of
QTy. If e ~ N(0,0%2), where € is non-diagonal, then the QRD can be used
to derive the best linear unbiased estimator of & by treating the estimation
problem as a restricted linear least squares problem [5, 6, §].

Householder, Givens rotations and Gram-Schmidt are the main methods
for computing the QRI. Compound Givens rotations are normally considered
appropriate for zeroing targeted individual elements of A while Householder
method compute the QRD of A by annihilating elements on the grand scale.
The (classical and modified) Gram-Schmidt method derives the upper trian-
gular matrix R by orthogonalizing the columns of A.

In this paper we describe data parallel algorithms for forming the QRD
and compare their performance on a massively parallel SIMD (Single Instruc-
tion, Multiple Data) system using accurate timing models. The massively
parallel computer used is the MasPar MP-1208 with 8192 processing ele-
ments.

Data Parallelism and the MasPar SIMD System

In a data parallel programming paradigm, the program instructions are ex-
ecuted serially, but instructions operate (optionally) on many elements of
a large data structure simultaneously. Data parallel paradigm is not con-
straint to a particular paraliel architecture and provides a natural way of
programming parailel computers. The programmer does not explicitly man-
age processes, communication or synchronization. However, it is possible to
describe how data structures such as arrays are partitioned and distributed
aInong processors, since mapping of the data can affect performance signific-
antly. Examples of languages that support data parallelism are Fortran 90
and High Performance Fortran (HPF) [14].

The MasPar SIMD system is composed of a front end (a DECstation 5000)
and a Data Paraliel Unit (DPU). The parallel computations are processed by
the Processing Element {PE) array in the DPU, while serial operations are
performed on the front end. The 8192 PEs of the MP-1208 are arranged in a
&1 X eg matrix, where e; = 128 and e = 64. The default mapping distribution
in the MasPar is cyclic. In a cyclic distribution, an n element vector and an
m x n element matrix are mapped on [n/ejez] and [m/e;]fn/ez] layers of
memory respectively. Figure I shows the mapping of a 160 x 100 matrix
and a 16384-element vector on the MP-1208. Other processor mappings are
available for mapping efficiently arrays on the PE array, when the default
cyclic distribution is not the best choise [10].

The main languages for programming the MasPar are the MasPor For-
tran (hereafter MF) and MasPar Programming Language. The language used
for implementing the algorithms was MF, which is based on Fortran 77 sup-
plemented with array processing extensions from the standard Fortran 90.

Q1656 1100

@11

- s
Layer
#0

0129 T f— @129 100 agi29 =) = 48192

a e

G160 Tueed - 0150 100 aﬁéﬁ? :E_E 256
Layer
#1

@129 65 Q1321 mmeedm] [16384

Figure 1: Cyclic mapping of a matrix and a vector on the MasPar MP-1208.

These array processing extensions map naturally on the DPU of the MasPar.
MF also support the forall statement of HPF, which looks most like a parai-
lel do loop. For example given the vectors h € IR™ and z € R, the product
A = hzT can be computed in parallel by

forallli=1:m, j=1n) A;; =hsx 2 (2)
or
A = spread{h, 2,n) * spread(z,1,m). (3)

The computations in the rhs of (2) are executed simultaneously Vi, 7. In (3)
the spread commands construct two m X n matrices. Each column of the
first matrix is & copy of h and each row of the second matrix is a copy of
z. The matrix 4 is computed by multiplying the two matrices element by
element. In both cases, the assignment on matrix A’s elements can be made
conditional using a conformable logical matrix to mask with true values the
elements participating in the assignment [7].

The time to execute a single arithmetic operation such as #, + or sqrt
on an m X n matrix {m,n < ejez)}, depends on the number of memory layers
require to map the matrix on the DPU, that is [m/e1][n/ez]. If however a
replication, reduction or a permutation function such as spread or sum is
applied to the m X n matrix, then the execution time also depends on [m/e;]
and [n/ex] [2]. This implies that the execution time model of a sequence of
arithmetic operations and (standard) array transformation functions on an
m % n matrix, is given by

$1(m,n) = co+elmfer] + ealnfen] + ca[m/er]in/esl, (4)

where ¢; (i = 0,...,3) are constants and they can be found by experiments.
The above model can describe adequately the execution time of {2) and (3).

If m or n is greater than ejep, then the timing model (4) should also
include combination of the factors [/e;es] and [n/ejes], which correspond
to the number of layers required to map & column and a row of the matrix
on the DPU. In order to simplify the performance analysis of the parallel
algorithms, it is assumed that m,n < ejez and the dimension of the data
matrix is multiple of e; and ey,

The Householder Factorization Method

The orthogonal matrix Q7 in (1) is the product of the n Householder trans-
formations H™, ..., H? H®, The mxm Householder transformation H %
is of the form H® = (%-1 5}, where H@ = L,_s4y — hRT /b, b = hTh/2
and a zero dimension denotes a null matrix. It can be verified that HY is
symmetric and orthogonal, that is H®T = HG and H? = I,,. If A® = 4
and

i m—1
© R
. N RS
AW = & AG-1) (R A6) _, Qsi<n), (5)

where R{’ 1) is upper triangular, then H+Y is applied from the left of A®
to annihilate the last m — i — 1 elements of the first column of A®. The
transformation H+) AW affects only A® and it follows that A = (&)
A complete discreption of the Householder factorization method can be found
in [1, 12},

The steps for computing the QRID (1) by data parallel Householder trans-
formations are given by the compact Algorithm 1. A notation similar to that
of Fortran 90 has been used for sectioning arrays. The matrix references A, ;
and A, ; denote the ith column of A and the submatrix Ali-1) respect:vely
The application of H®AU—Y) is activated by line 3 and the time required
to compute this transformation is given by ¢1(m ~ 4+ 1,n — i + 1). Thus
the total time spent on computing all the Householder transformations is
Ba(m,n) = 30 di(m —i+1,n—i+41). It can be observed that the ap-
plication of the ith and jth transformation have the same execution time if
[(m—i+1)/er] = [(m—j+1)/er] and [(n~i+1)/e2] = [(n—j+1)/ e2].

Algorithm I has been implemented on the MP-1208 and a sample of
approximately 400 execution times has been generated for various M and
N, where m = Me; and n = Ney. Evaluating ¢o(Mey, Neg) and using
regression analysis, the estimated execution time (sec x 10%) of Algorithm 1
is found to be

Tv(M,N) = N(14.15+ 3.09N — 0.62N? + 5.71M + 3.6TM N).

The above timing model includes the overheads which are mainlty the refer-
ence to the submatrix A, i in line 3. This matrix reference results in the

1 def Househ QRD (A, m, n} =

2 for i:= 1 until n do

3 apply transform (A e,m—~ i+ Ln—241)
4 end do

5 end def

6 def transform (4, m,n) =

7

8

A= Ay
8 = sqrt{sum(h s h))
9 If (hy < 0.0) then 5= —3s
10 hyi=hy-+s
11 bi=hixs
12 z = sum(spread(h,2,n) = 4,1}/b
13 forall{(i==1:m, j=1:n) Ay =Ai; —hi% g
15 end def

Algorithm 1: Data parallel Householder factorization of an m x n matrix A.

assignment of an array section of A into a temporary array and then when
the procedure transform in line 6 has been completed, the temporary array
is reassigned back into A. The overheads can be reduce by referencing a
submatrix of A only if it uses less memory layers than a previous extracted
submatrix (see Algorithm 2). This slight modification improves significantly
the execution time of the algorithm which now becomes

To(M,N) = N(14.99+ 2.09N — 0.20N? +3.19M + 1L.1TMN).

The accuracy of the timing models is shown in Table 1.

The Gram-Schmidt Orthogonalization Method

The Modifed Gram-Schmidt (MGS) method derives the upper triangular
matrix R row by row and constructs an orthogonal basis @p of A [1]. With
A overwritten by @p, the algorithmic steps of the MGS are

1 for i ;= 1 until n do

P Rz = sqrt(AE{;- A;'-,g)

3 A=A/ Rig

4 Rij = AT A (je=ti4+1,...,n)
5 A= Ay — Rigdy =i+ 1,...,0)
6 end do

As in the case of Algorithm I, the performance of the straightforward
implementation of the MGS method will be reduce significantly by the over-
heads. Therefore, the n = Ney steps of the MGS method are applied in NV
stages. At the ith stage, e steps are applied to orthogonalize the (i—1)ex +1
to ey columns of A and also comstruct the corresponding rows of R. Each

step of the ith (i = 1,..., N) stage have the same execution time, namely
dr{Mer, (N —i+1)es) = cot+orM +ea(N—i+1)+osM(N~i+1).

Thus, the execution time of a%})lying all Nep steps of the MGS method is
given by ¢a(Me;, Nep) = e 37, d1(Mey, (N — i+ L)es).

The data parallel MGS orthogonalization method is shown in Algorithm
2. The logical matrices maskR and maeskA are used so that computations
are performed only on the affected parts of the A.;; and Ry ;. submatrices.
It can be observed that the latter submatrices are referenced only N times.

The total execution time of Algorithm 2 is given by
Ta(M,N) = N(9.15+3.12N — 0.01N? + 4.95M + 1.31MN).

1 def MGS_.QRD {4, Me,,Nep) =

2 for i := 1 step ey until Ne; do

3 apply orthogonal (A. ., R s, Mey, (N — ¢+ ez
4 end do

5 end def

6 def orthogonal {4, m,n) =

7 maskR = true

8 maskA = true

9 for ¢ := 1 until e; do

10 maskR; := false

11 maskA, ; ;= false

12 Ry = sqri(sum{A, ; x A.))

13 Ay = AcifRig

14 where(maskR} Ry, 1= sum(spread(A;.,2,n} = A4,1)

15 forall{j ==1:m, k=1 :n, maskA ;) Ajr = Ay — Big * Ajs
16 end do

17 end def

Algorithm 2: Data parallel MGS orthogonalization method for computing
the QRD.

It can be seen from Table I that the Householder method performs better
than the MGS method. The difference in the performance of the two methods
arises mainly because at the ith step the MGS and Householder methods work
with the m x (n — £+ 1) and (m ~ i+ 1) % (n — 4 + 1) matrices respectively.
An analysis of T2{M, N) and T3(M, N) reveals that for M > N, Algorithm 2
is expected to perform better than the efficient implementation of Algorithm
1 only when N =1 and M =2,

The Givens Rotation Method

The orthogonal matrix @7 in (1) is the product of a sequence of compound
disjoint Givens rotations {edgr), with each compound rotation reducing to

zero elements of A below the main diagonal by preserving previously anni-
hilated elements. Figure 2 shows two sequences of cdgr for computing the
QRD of a 12 x 6 matrix, where a number denotes the elements annihilated by
the corresponding cdgr. The first Givens sequence (hereafter GS-1) has been
proposed by Sameh and Kuck in {13]. It applies m+n —2 cdgr and elements
are annihilated by rotating adjacent rows. The second Givens sequence (8-
2) applies fewer cdgr than G8-1, but when it comes to implementation the
advantage of the GS-2 is offset from the communication overheads occure
during the construction and application of the compound rotations [2, 11].

s & & & & @ * & & & & »
11 o o » » 4 o o » o »
1012 6 o & » 36 0 ¢ 0 @
01113 e o » 258 e s o
8101214« » 24 7310 »
7 9111315 & 246 912 e
6 810121416 13681114
57 9111315 135 71013
4 6 8101214 1357912
357 91113 1246 811
246 81012 i 246 810
1357911 123579
(a) (b)

Figure 2: Examples of Givens rotations schemes for compusing the QRD.

Tha adaptation and implementation of the GS-I to compute various forms
of orthogonal factorizations on the SIMD AMT DAP-510, has been describe
in [2, 4, 6]. Although a different massively parallel system has been used, the
computational details are general for SIMD array processors. On the MP-
1208, the execution time of computing the QRD of an Me; x Ney matrix
using the GS-1 annihilation scheme, is found to be

Ty(M,N) = N(25.64+ 551N —~7.94N% + 11.1M + 15.99M N) -+ 41.96M .

Clearly, the implementation of the GS-1 has the worst performance compared
with the Householder and MGS data paraliel algorithrns.

- Discussion

The performance of three algorithms to compute the QRD of a dence matrix
on a massively parallel SIMD has been compared. The Householder factoriz-
ation method was found to be the most efficient in terms of speed, followed
by the MGS algorithm which was only slightly slower than the data parallel

Algorithm 1 Trrproved Algor. | Algorithm 2 [¢}:]
M N Exoc. Ty (M, N) Exec. To (M, N) Exoc, Ta (M, N3 Exoc Ty(M, N}
Time x 1072 Time x 10772 Flme x 392 Timo » 102
10 8 5.48 555 .58 2.69 3.2%1 3.22 21.18 2L.04
7 22,156 77.84 2,28 9.84 E2.07 12.08 67.73 §7.508
10 © 33.80 342.00 18.80 13.92 18.49 18.48 82.606 82.82
4 5 17.48 1r.54 v.86 7.85 2.30 .30 82,27 82.38
14 & 4T.86 458,08 18.75 18.68 24.52 24.50 150.05 180.1%
14 13 80.30 80.58 g4.28 34.54 46.84 48.84 242.68 242.88
18 5 22.84 22.38 8.314 9.15 1%.80 E1.59 &2.08 82.25
i8 o 81.90 G1.98 28,77 23.79 80.88 20,82 207.4% 207.81
18 17 ise.l8 189.03 o842 ae.81 B4 B4.268 503.44 BOE.ET
22 T 48.81 48.71 18.10 18.90 23.98 25.98 1756.886 176.96
22 18 LB8.79 188.49 68,58 48,57 88.8¢ 89.82 585.56 58684
2219 287.23 268,33 108.32 102.81 138,50 188.27 805,45 B05.71

Table 1: Times (in sec) of computing the QRD of a 128M x 64N matrix.

Householder algorithm. The implementation of the GS-1 produce by far the
worst performance.

The comparigson of the performance of the data parallel implementations
was made using accurate timing models. These models provide an effective
tool for measuring the computational speed of algorithms and they can also
be used to reveal inefficiencies of parallel implementations [7]. Comparisons
with performance models of various algorithms implemented on other SIMD
systems, demonstrate the scalability of the execution time models presented
in this paper (2, 4]. If the dimension of the data matrix 4 in (1) is not as
it was assumed a multiple of the physical array processor, then the timing
models can be used to give a range of the expected execution time of the
algorithms.

Currently, within the context of SURE model estimation, two new parallel
algorithms are investigated to compute the QRD of & matrix on the MasPar.
The first algorithm uses the partition-updating method reported in [3], while
the second algorithm uses the (vectorized) Householder factorization method,
with the data matrix stored in the PE array as a long vector of order mn.

Acknowledgements

The work was supported by the Bowring Company Ltd. The facilities of the
London Parallel Application Centre and Department of Computer Science at
Queen Mary and Westfield College (University of London) have been used.

References

[1] G.H. Golub and C.F. Van Loan. Matriz computations. North Oxford
Academic, 1983.

2] E.J. Kontoghiorghes. Algorithms for linear model estimation on
massively porallel systems. PhD Thesis, University of London, 1993,

3]

[4]

(9]

[10]
[11]

(12]

E.J. Kontoghiorghes. New parallel strategies for block updating the QR
decomposition. Parallel Algorithms and Applications, 5(1+2):229-239,
1995,

E.J. Kontoghiorghes and M.R.B. Clarke. Solving the updated and
downdated ordinary linear model on massively parallel SIMD systems.
Puorallel Algorithms and Applications, 1(2):243-252, 1993,

E.J. Kontoghiorghes and M.R.B. Clarke. An alternative approach for the
numerical solution of seemingly unrelated regression equation models.
Computational Stotistics & Data Analysis, 19(4):369-377, 1995,

E.J. Kontoghiorghes and M.R.B. Clarke. Solving the general linear
model on a SIMD array processor. Computers and Artificial Intelligence,
1995. {in press).

E.J. Kontoghiorghes, M.R.B. Clarke, and A. Balou. Improving the per-
formance of optimum parallel algorithms on SIMD array processors: pro-
gramming techniques and methods, In Proceedings of the IEEE TEN-
CON’93, pages 1203-1206, Beijing, 1993. International Academic Pub-
lishers.

S. Kourouklis and C.C. Paige. A constrained least squares approach
to the general Guass-Markov linear model. Journal of the American
Statistical Association, T6(375), 1981.

C.L. Lawson and R.J. Hanson. Solving Least Squares Problems.
Prentice-Hall Englewood Cliff, 1974,

MasPar Computer Corporation. MasPar System Overview, 1992.

J.J. Modi and M.R.B. Clarke. An alternative Givens ordering. Nu-
merische Mathematik, 43:83-90, 1984,

C.R. Rao. Handbook of Statistics 9 (Computational Statistics). North-
Holland, 1993.

[13] A.H. Sameh and D.J. Kuck. On stable parallel linear system solvers.

(14]

Journal of the ACM, 25{1}:81-81, 1978,

C.H. Koelbel D.B. Lovemac R.S. Schreiber R.S, Steele and M.E. Zosel.
The High Performance Fortran Hondbook. The MIT Press, 1994,

