ﬁ CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queen Mary Research Online

&
wQf Queen Mary
University of London

Protection of shared objects for cooperative work
Coulouris, George; Dollimore, Jean

For additional information about this publication click this link.
http://gmro.gmul.ac.uk/jspui/handle/123456789/4628

Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact scholarlycommunications@gmul.ac.uk

https://core.ac.uk/display/30696746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/jspui/handle/123456789/4628

G-

Protection of shared objects
for cooperative work

George Coulouris and Jean Dollimore

Technical Report 703

Department of Computer Science
Queen Mary and Westfield College
University of London

Mile End Road London E1 4NS

Email: {George.Coulouris, Jean.Dollimore } @dcs.qmw.ac.uk
WWW: http://www.dcs.qmw.ac.uk/research/distrib/
Keywords: Cooperative work, group task, distributed objects, shared persistent objects, security,

protection, access control.

Abstract

This paper discusses the design of a system for the protection of shared persistent information
objects that are intended to provide a basis for building cooperative applications. A task-based mode!
of cooperative work is adopted and user and task requirements are based on an earlier case study
undertaken by the authors.

The key problem addressed is the mapping of user-level protection specifications onto groups of
programming-level objects. A design for a two-level protection model to address this problem is

outlined.

© George Coulouris and Jean Dollimore September 5, 1995

Coulouris and Dollimore: Protection of shared objecis for cooperative work 1

1. Introduction

This paper discusses the requirements for the protection of information in cooperative work
and describes an approach to the design of a protection system. The design is intended for use
in an otherwise open software environment in which cooperative tasks are carried out using
cooperative applications accessing shared long-lived information objects in a distributed
environment. Application software is assumed to be object-oriented, but it carries no
responsibility for the protection of the information objects that it accesses.

The protection schemes found in current operating systems such as Unix are often too
limited to support cooperative work effectively. Most existing protection schemes are
designed for use with single-user applications in which users carry out individual tasks
making use of private objects which require protection against misuse by other users. In
contrast, the users involved in a cooperative task require the ability to share objects in a more
cooperative manner, providing one another with more access rights than would be desirable
for individual tasks.

The design proposals in this paper are based on an earlier study of the requirements of
security-critical applications [Coulouris and Dollimore 1994]. Our study suggests that it is
useful to define the security requirements for the separate tasks in an organisation in a generic
manner in terms of the roles of the users that participate in these tasks. The use of symbolic
(unbound) names for roles enables tasks to be defined before it is known which users will
assume the roles.

1.1. Aims

We are concerned with cooperative tasks that are carried out by people working in
organisations and supported by a distributed computing system that enables persistent objects
to be shared.

Our aims are strongly influenced by the fact that cooperative work is carried out in the
context of organisations, which suggests that the way shared objects are protected should be
determined by the security policies of the organisation. In addition, the users in the
organisation must be provided with a convenient means for specifying how the security
policies should be applied in the various tasks that arise.

Examples of cooperative tasks:

» Writing a joint report in which each participant is responsible for a different part. For
example in a financial report, one participant might supply the financial data in the form
of charts and graphs, while another would make future projections.

+ Maintaining and using medical records in situations in which different fields are available
for viewing or updating by the different people involved. For example, patients can see
only their own records, receptionists can view and update the appointment times whereas
doctors can view and update all the medical details.

» Preparing an examination paper; collecting and collating marks from several
examinations; preparing a directory of courses for a university.

+ Computer aided design of products whose new features are to be kept secret from
competitors. :

QMW CS Technical Report 703 September 5, 1995

Coulouris and Dollimore:; Protection of shared objects for cooperative work 2

Limited trust

‘It Is a vice to trust all and equally a vice to trust none’. Seneca the younger (4BC — 65AD).

It should be possible to specify different rights for the various roles involved in a
cooperative task. This is necessary to support cooperative work in which the participants are

not equally trusted.

In addition, it should, where appropriate be possible to prevent users other than those
playing the roles in a task from having access to the objects used by a task. In some cases it
may be appropriate to provide limited access to the objects used in a task to users other than
those with roles in that task.

1.2. Protection should support an organisation’s security policy

Since cooperative work generally takes place in an organisation, the security policy of that

organisation should be taken into account in defining the appropriate protection for the

objects required to carry out a cooperative task. Security policies are often expressed at a high

level; for example: ‘no student can read an examination paper prior to the examination’.
Organisations have security policies that define the degree of security required for the

information that they maintain and use. The policies state requirements for secrecy and

integrity.

A security policy for a task with respect to secrecy may require that:

o users other than those involved in the task should see the state of a particular object, or

* no users other than those involved in the task should be aware of the existence of a
particular object.

A security policy with respect to integrity may require that:
+ particular objects are created and altered only by the relevant roles and their delegates
+ that a particular object must be signed (finalised) by some set of the roles.

Organisational security policies can include both generic and task-specific policies.
Examples of generic policies include:
+ a ‘need-to-know’ security policy: this allows members of an organisation to access just
the information that they need in order to perform their jobs — in most organisations such
a stringent policy would not be applied generically, but selectively in some security-
critical tasks;

+ a ‘one-level delegation’ policy: states that work may be delegated, but the delegates
cannot further delegate it;

+ a ‘preselected delegates’ policy: requires that delegates should be chosen from a specified
group. ‘

For an example of task-specific policies, we refer to the task of preparing an examination
paper, in which two of the rules might be: ‘The paper and comments on it must be created
and altered only by the relevant examiners and their delegates’ and “The finalised exam paper
must be designated as such by the relevant examiners and transmitted to the examination
without subsequent alteration’.

A security policy for a task specifies the secrecy and integrity requirements for each of the
information objects required to carry out the task. A policy can be stated in terms of the roles

QMW CS Technical Report 703 September 5, 1895

Coulouris and Dollimore; Protection of shared objects for cooperative work 3

in the organisation who will carry out the task and their rights to access the information. The
rights specify which parts of the information they are allowed to create, to see or to update in
various ways.

1.3. Protection should be specified in terms of generic operations

Users can only specify a security policy in terms of operations that they can recognise.

The detailed structure of the shared objects used in groupware applications and their
interfaces (the sets of operations that they support) are not always known to users. For
example, each paragraph of a document may have its own operations such as display, change
style, replace word. However users of a shared editing application will generally have a
different, larger-grained perception of the available operations. Our aim is to design a
protection model in which users need not be aware of the operations on the individual shared
objects used in cooperative work, but in which each object can be protected individually.

The security policies for a task may need to be described before the applications for
carrying out the task have been chosen. Besides, these policies may be described by people
who have little knowledge of the details of the operations in the available applications.

We therefore suggest that the use of ‘generic operations’ would enable security
requirements to be specified at a level that is independent of the applications used. In
addition, the use of a common set of generic operations to specify security requirements for a
variety of tasks should be a simplifying factor and a basis for a common approach.

Examples of generic operations for a wide variety of applications based on editing
activities might be Edit, Format and Read. A different set of generic operations might be
required for other types of applications (for example a graphical application might require
operations such as Scale or Rotate).

We shall address the distinction between the generic operations and the specific operations
of objects by adopting a two-level model for protection. Each groupware application must
include a specification of the mapping between a set of generic operations of which the users
are aware and the actual operations in the interfaces of individual objects. Users specify the
protection required for a task in terms of the generic operations. These are subsequently
translated to access rights for actual operations on the relevant objects.

1.4. Outline of the paper

In Section 2 we define our assumptions about the system environment that provides
protected objects. Section 3 gives some definitions and outlines related work on security
models for cooperative work.

Section 4 outlines the security requirements we identified in our case studies and explains
how tasks, roles and delegation were derived from them. In Section 5 we describe how object
protection may be specified in a security template in terms of generic operations. In Section 6
we describe a two-level model for security and discuss the implementation of the two-level
model in a client-server architecture. Section 7 draws conclusions.

QMW CS Technical Report 703 September 5, 1995

Coulouris and Dollimore: Protection of shared objects for cooperative work 4

2. Assumptions about the system environment

Security policies are defined in terms of principals™, objects and their operations. They are
designed to answer the question: ‘Should a principal be allowed to perform a particular
operation on a given object? We adopt the access control model of security [Lampson 1991],
in which each object has a guard that decides whether to grant a request to perform an

operation.

2.1. A programming model that supports protected objects

This work assumes that groupware applications are implemented in a software environment
in which shared persistent objects encapsulate their state and provide interfaces through
which their operations may be executed. Objects protect themselves according to a predefined
set of access rights that define the operations on the object that should be permitted to each
principal.

Protected objects can be implemented in client-server distributed systems by applying
access control to the operations in the interface of a service. This approach can be extended to
apply to services that maintain multiple objects with their own interfaces.

Protected objects can also be provided within systems designed to support access to shared
and persistent distributed objects in which all objects are potentially sharable. Sharing in
systems of this type can be achieved either by remote invocation (Arjuna [Shrivastata et al.
19911, SOS [Shapiro et al. 1989] and Distributed Smalltalk[Bennett 1990]) or by means of
distributed shared memory (Guide [Balter et al. 1994], Opal [Chase et al. 1992]). In the case
of remote invocation, access control may be applied by the operation dispatcher. We have
discussed the implementation of our protection model in a distributed shared memory model
elsewhere [Coulouris and Dollimore 1994a]. In the latter case, the memory mapping
mechanism can be used to apply access control at the level of read and write operations.

In principle, a shared persistent object environment based on groups of object replicas
should also be able to support protected objects. We are currently investigating the protection
of object replicas [Achmatowicz and Kindberg, 1995}.

Our model of protection for cooperative work is applicable to all the above styles of
implementation for shared objects.

2.2. Applications are built from protected objects

Cooperative tasks may be carried out by users employing a variety of applications such as
editors, spreadsheets, databases and drawing packages. We assume that all of these
applications make use of shared protected objects. ‘

Thus, the applications are not responsible for the security of the objects that they
manipulate. Instead the protection is applied at the level of the protected objects from which
applications are constructed. This ensures that applications cannot disobey the protection
defined by the access rights of protected objects and enables different applications to share
objects without endangering their protection.

This approach is similar to the situation in a UNIX environment in which the only shared
persistent objects are files. Files are protected objects whose operations can be invoked only

We follow the common practice in computer security work of using the term principal 1o refer (o an active agent that
performs operations on information objects. A principal may be a person or program (such as a service or an
application). Principals may also be defined indirectly, for example as 2 member of a group, or as 2 delegate of another
principal (see Section 3).

QMW CS Technical Report 703 September 5, 1995

Coulouris and Dollimore: Protection of shared objects for cooperative work 5

Objects
O.
; access rights
L of P j o Q i
4
Aij

Principals P}

Figure 1. The form of an access matrix.

if they are permitted by the access rights. All applications must be constructed from files and
applications that share files are subjected to the same access rights.

3. Definitions and related work

In this section we explain the access matrix representation that is often used to define
protection models in computer systems and we review the existing models for security in
cooperative work. We shall later introduce a variant of the access matrix, called a security
template, as a basis for the specification of security policies in cooperative work.

3.1. Access matrices

The access matrix was originally introduced as an abstract model for the description of
protection in operating systems. An access matrix contains the rights of principals to access
protected objects (Figure 1). Each column is labelled with an object and each row with a
principal. A cell in the matrix contains the rights of the principal associated with the row to
access the object associated with the column. The rights specify which of the object's
operations the principal is permitted to perform.

The access matrix is generally too large and too sparse for use as a concrete representation
of access rights. Two alternative data structures have been used to represent the information
that it contains: access controls lists (ACLs) and capabilities. The ACL of an object specifies
the principals that may access it and the operations allowed to each one. A capability
specifies an object that a principal may access and a set of permitted operations.

3.2. Protection models for cooperative work

Greif and Sarin [1986] discuss the requirements for access control amongst other issues of
sharing data in group work. They were perhaps the earliest to suggest that group working
requires a more sophisticated means for defining principals and permitted operations than that
provided by the UNIX model. In particular, they propose that:

i) access rights should be associated with a user’s role when performing an operation, and

ii) access rights should be expressed in terms of the operations in the interface of an object
instead of just the file operations read and write.

They also suggest that access rights may need to be related to (a) the contents of an object
(e.g. entering in a diary a meeting that conflicts with existing meetings) or (b) the relationship
between the user or role requesting an operation and the properties of an object whose values
are user or role identifiers (e.g. who created it). A requirement similar to (b) also arises in

QMW C8 Technical Report 703 September 5, 1995

Coulouris and Dollimore: Protection of shared objects for cooperative work 6

[Dollimore and Wang 1993]. For example, only the user who created an entry in a diary for a
meeting should be allowed to alter or cancel it.

Objects typically have many operations, so the variety of possible rights can be huge. To
manage complexity and improve performance, in Guide [Hagimont 1994, Balter et al. 1994]
the operations available on an object are grouped together into ‘views’ to which principals
may gain or be denied access. Views are similar to the views used in databases to grant users
the right to access selected information. Views are defined statically as part of the class of an
object. This does not allow views to be defined as required during use in a particular
application as suggested in [Dollimore and Wang 1993].

In a review of issues in groupware, Ellis, Gibbs and Rein [1991] state that access control
must take into account that the likelihood of conflict between users for the use of shared
objects is higher than in individual work. An important factor is that access rights are not
static: they must be able to be granted and revoked. It should be easy for users to specify
changes and to negotiate with one another for rights. The ability to negotiate for rights to use
parts of a document is supported in the Griffon shared structured editor [Decouchant et al.
1693].

In cooperative work it may be convenient to specify access rights for groups of users
instead of individuals. A problem that generally arises is that the users eventually define a
very large number of different groups. The Andrew File System [Satyanaraynan 1989] which
is designed for large numbers of users rather than cooperative working attempts to address
this issue by allowing group membership to be transitive.

Shen and Dewan [1992] have proposed an access control model for collaboration in which
users can assume multiple roles, in the context of editing shared objects. To simplify the
management of organisational roles, they are arranged in a hierarchy through which the rights
of roles are inherited. They note that there can be many different sets of rights in shared
editing, for example if one user formats some text, which other users can view the result?
Their model uses inheritance to simplify the specification of access rights. A fixed set of
editing operations is arranged as a hierarchy of views. In addition, negative rights are
provided to simplify the definition of policies.

Note that negative rights have been used elsewhere, for example in the Andrew File
System [Satyanaraynan 1989} and in BirLix [Kowalski and Hartig 1990). The designers of
the latter systems state that their motivation for including negative rights is to provide the
ability to revoke access to sensitive objects rapidly and selectively. In the absence of negative
rights, revocation can be done by removing a principal from all of the relevant ACLs and user
groups but this process may be time-consuming in cases where the principal belongs several

groups.

4. Case studies

In our case studies [Coulouris and Dollimore 1994], we analyse the security requirements of
two cooperative tasks, both of which come from a university setting. The first is a study of
the preparation of an examination paper, in which the security of the shared information is
highly critical. The second study concerns the preparation of the college course directory with
cooperation between the academic registrar and the lecturers in the departments.

In each of these studies we used an approach in which:

i) we identified the roles of the users and the information objects required to carry out the
task;

QMW CS Technical Report 703 September 5, 1995

Coulouris and Dolfimore: Protection of shared objects for cooperative work 7

i) we identified the security threats and specified the security policy with respect to the
secrecy (who is allowed to see or be aware of the existence of certain information) and
integrity (who is allowed to create, alter or finalise certain information);

i} specified the security requirements for each task in the form of an access matrix.

An example of roles and objects

The roles for the examination task include a member of the Exam Board and its Chair (Board
and Chair), the first examiner (Ex/) the second examiner and the external examiner. The
objects include a series of versions of the paper created by Ex/ and the comments on them
created by Chair and the other examiners. The examiners need to be able to read the versions
of the paper and the comments in order to produce the paper. The members of the board also
need to be able to read them to maintain consistency with other papers. The paper is finalised
by the Chair and the other examiners.

Security policies

In the examination case study the security policy states that no student must see any
version of the examination paper before the date of the examination, that the paper must be
finalise by Ex1 and that delegates must be taken from a set of clerical staff selected in
advance by the Chair. In addition, delegated tasks cannot be further delegated.

An access matrix to specify security requirements

We specified the security requirements in the case studies with respect to integrity and
secrecy for a task in the form of an access matrix, which shows the rights of each of the roles
to perform operations (e.g. create, edit, read or finalise) on an object.

The access matrix is defined in terms of generic roles, (rather than names of users). When
the same security requirements apply to a series of similar tasks (e.g. the other examination
papers) the same access matrix can be used for each task, but with different users bound to
each of the roles. For example there were five rows for the five roles in the access matrix for
the examination task.

Objects with similar rights are specified in the same column of the access matrix, for
example in the examination task all the comments created by the various examiners require
the same rights, irrespective of who created them. The access matrix for the examination task
used three columns - for initial and later versions of the paper and for the comments.

4.1. Requirements derived from the case studies

In the case studies we identified the following clear requirements:

Roles: As the tasks involved in administrative work are generic, their security requirements
should be defined without using the names of specific principals (e.g. users). This can be
achieved by stating security requirements in terms of the rights of roles to access the
objects required for a task. An access matrix defined in terms of roles can be used for
several instances of the same task.

Rights are role dependent: Each of the roles involved in a task may require quite different
access rights.

Delegation of rights: In both of the case studies, delegation of work to clerical staff occurs on
a substantial scale and in both cases it is important that the rights conferred on delegates

OMW C8 Technical Report 703 September 5, 1995

Coulouris and Dollimore: Protection of shared objects for cooperative work 8

should be restricted to the task at hand. The first case study suggests that a delegate
should not be allowed to delegate the rights further.

Objects should be created by particular roles: It should be ensured that each of the objects
used in a task is created by a role with the right to do so.

We also identified other requirements likely to arise in some tasks, which included the
following:

Concealment: Some objects should be concealed from principals other than those playing
roles in the relevant tasks. The actual existence of an object can sometimes convey
information to unauthorised people, even though they cannot see its contents.

Organisational roles versus task roles: Organisational roles are often assumed by the same
users in several different tasks. But a principal’s rights within a task do not include the
rights held by the same role when performing other tasks.

Dynamic rights: The specification of access rights changes with time and in response to
events.

Finalising an object: Finalising prevents further modification, even by users who are allowed
to update the object, and attaches the authority of the role to the ‘finalised’ object. This
can be done by attaching a digital signature to the object.

Participation of objects in multiple tasks: Objects are shared (rather than copied) between
tasks in order to ensure that up-to-date versions are available in all of the tasks sharing
them.

5. Object protection in cooperative tasks

In this section we discuss a view of principals that we believe is appropriate for security in
cooperative work and then describe how a security template can be used to specify the
requirements for object protection in terms of generic operations.

We assume that the principals accessing the protected objects are acting within a task
structure. Therefore the access rights of objects are defined according to the needs of the roles
within a task. In this context, a principal without a task has no access rights.

In addition, a principal with a role in a task can delegate its access rights to another
principal. Qur discussion of principals is derived from, and intended to be compatible with
the work on authentication and compound principals described in [Lampson et al. 1992 and
Wobber ef al. 1994]. In that work, the notion of compound principal is fully formalised, and
the authority of principals is encapsulated in the form of a set of unforgeable credentials. In
this paper we shall use some of Lampson et al's notions, but we present our usage of them in
an informal manner.

5.1. Principals

A program acts with the access rights of the principal on whose behalf it is running. In our
model for cooperative work, access rights are associated with roles in tasks. This section first
discusses roles in tasks as principals and then discusses how delegation fits into this

framework.

QMW CS Technical Report 703 September §, 1995

Coulouris and Doliimore: Protection of shared objects for cooperative work 9

Task T
Objects created by role.
Roles {Role 4 Role Role;
il e ole access rights of Role;
. Role1 e }
Principals intask T

Role, :
¥ to objects created by

Role; A Rolej

Figure 2. Security template specifying access rights of roles on objects

Playing a role in a task

Access rights for the objects used in a task are defined in terms of the roles involved in that
task. Users can participate in cooperative tasks by adopting the roles for which they are
authorised. Several users may be authorised to adopt the same role (for example, ‘member of
the examining board’). The access rights of a user playing a particular role in a particular task
do not include any additional rights available in other roles they can adopt, for example in
other tasks.

We refer to a principal whose access rights are just those of a user playing a role in a task
as: ‘role R intask 7°. We abbreviate: ‘role Rintask 7’ as R in T. This principal has the
properties:

* it corresponds to a group of one or more authorised principals (e.g. users) and

« it can be adopted by a user, U provided that U is a member of the group of authorised
principals.

Delegation

Note that we relate access rights to tasks and that we intend the rights conferred by delegation
to be restricted to a work undertaken within a specific task. Any principal U that is allowed to
adopt ‘Rin T’ can transfer the corresponding access rights to another principal. The
mechanism for doing so may include a check that the recipient comes from a specified set of
principals (for a ‘preselected delegate’ policy). We suggest that as in [Lampson et al. 1992],
delegation requires the participation of both parties - the delegator delegates and the delegate
accepts the delegation by quoting the delegator in all its requests. '

5.2. Specification of protection by users

In this section we describe the security template for a family of tasks of the same type, for
example the security template for the examination task can be used for the task of preparing
each of the papers. A security template is similar to an access matrix in that it specifies the
access rights of each of the roles in a task to perform operations on objects in a task, but
access rights are specified for generic operations and the objects are grouped, initially
according to the role that created them.

Figure 2 illustrates the general form of a security template for a task. The rows correspond
to roles and the columns correspond to the sets of objects created by each of the roles that
may create objects. Elements of the security template specify the rights of the roles to access
the objects in each of the sets in terms of generic operations.

QMW CS Technical Report 703 September 5, 1995

Coulouris and Dolimore: Protection of shared objects for cooperative work 10

The grouping of objects is necessary because there are likely to be many shared objects in
an object-oriented groupware application. In general, we must retain the ability to control
access to individual shared objects (just as Unix provides control over access to individual
files), but in order to reduce the complexity of the security template, we wish to group objects
with similar access rights. It would be convenient if the same access rights could be applied
to all of the shared objects used in a cooperative task, but our case studies show that there are
cooperative tasks for which this is not so.

We have considered several approaches to grouping objects:

According to the class of the underlying protected objects: We rejected this idea for two
reasons: (i) because each object mentioned in the security template can be implemented in
terms of several objects with different classes and (ii) objects with different access rights
such as ‘comments’ and ‘versions’ in the exam case study might be of the same class;

Associate objects explicitly with named categories: (e.g. ‘comments’ and ‘versions’), We felt
that this approach would be inconvenient to implement because there is no
straightforward way of specifying the category of an object at its time of creation;

According to the identity of the role that created the object: This is our chosen alternative,
illustrated in Figure 2. It is aftractive because it enables us to specify groups of objects
without introducing any new concepts. It is convenient because the role is known when
an object is created. Also it follows the suggestion in [Greif and Sarin 1986] that the
rights of roles to access objects may be related to the roles that created the objects.

Another requirement from the case studies is that particular objects should be created by
particular roles. In the representation of Figure 2, only those roles with the right to create
objects will appear in the columns of the security template. This avoids the need to specify
the rights of a role to Create an object in a cell of the security template.

The following additional aspects of security requirements for cooperative tasks can also be
specified in the security template:

Finalising objects: The roles that are allowed to ‘finalise’ an object used in a task can be
indicated by Finalise operations in the appropriate cell of the a security template.

Controlling delegation: In many tasks, recursive delegation is undesirable. The permitted
number of levels of delegation can be specified in the security template either for each
group of objects or for all objects. Levels can be encoded as numbers - e.g. as zero or
more, where zero means no delegation and one means no recursive delegation.

QMW CS Technical Repott 703 September 5, 1995

Coulourtis and Dollimore: Protection of shared objects for cooperative work 11

6. A two-level model

Task T Secur ity ternplate
Objects croated by role:

05 | Retot Roisel oo

Rolpl iAW | R A

specified rights for Rolef ——————————] rus2| R |V | R
folel] A A A

Specification lavel

Programming level

§ Created by: T Created by:
Program acting gp; Mapping:ﬁo etin 8[37 - Role2in T
onbehalfol: T w | P2 1 o0 A P8 |Mapping:
Role2 in T " |3 Op9 |Op7 = RW
opg J QP2 =R Ops = RW
Op4 = RW
Programmimg-level view' Protected object O1 Frotected object 02

Figure 3. The two levels of the model.

The differing needs of the users and the system environment lead us to propose the two-
level model shown in Figure 3:

At the specification level: users specify access rights on the objects created by each role in
terms of a set of generic operations in a security template for each task.

At the programming level: access control is applied to the operations of the objects in the
execution environment. Access rights for the programming-level objects are derived from
the security templates defined at the higher level.

The major issue to be addressed in such a model is how access control specifications in
terms of generic operations can be translated to access control lists for objects with
programming-level operations.

For example, in Figure 3 a program acts on behalf of a user that has adopted Role2 in task
T. The specification level shows a security template for task T with the generic operations
Read (R) and Write(W). It shows the generic operations permitted to each of the roles on the
groups of objects created by Rolel, Role2 and Role3. For example, within this task, Role2
may perform the generic operation Read but not Write on objects created by Rolel .

At the programming level, each object is accompanied by the following information:

+ the Rin T that created it;

+ amapping from the operations of the object onto the generic operations {Read and Edit }.
This mapping lists for each operation of the object the corresponding generic operations.

In Figure 3, the arrows from the programming level to the specification level indicate the
connection between the role that created an object and a column in the security template for
the task. Thus programming-level object O (which was created by Rolel) allows Role2 in T
to execute the operations Op2 and Op3 but which correspond to the generic Read operation.

QMW CS Technical Report 703 September b, 1995

Coulouris and Dollimore; Protection of shared objects for cooperative work 12

6.2. Protection of objects in a client-server architecture

In this section we illustrate the two-level model by outlining how a server of persistent
objects could implement protection according to the model.

Each request by a client to perform an operation in the interface of an object managed by a
server contains the credentials for a principal such as a user U as ‘Rin T”. The server must
verify that U is allowed to play the role R in T. It does so either by checking with a trusted
task manager (e.g. the Task Service outlined below) or by validating credentials supplied by
the client to this effect.

Thus when a client creates an object in a persistent storage server, the server records the R
in T submitted with the creation request as the identity of the principal that created the object.

Task service

A Task Service manages the secure storage and retrieval of the information related to the
various tasks currently taking place in an organisation.

The Task Service maintains a security template for each type of task carried out in the
organisation. When a new object is created at an object server by a principal Rin7, the
server uses the type of the task 7 in requesting the access rights for that task from the Task
Service. It may either get the entire security template or just the column that specifies the
rights for objects created by role R.

The column of the security template is effectively an ACL for the newly created object.
The server may attach it directly to the new object or it may use an indirect connection
enabling ACLs to be shared between objects. Note that with this arrangement, any changes to
the security template will not affect the ACLs of the objects already created.

Service interface

The operations of the objects managed by a service are defined in the service interface,
generally written in an interface definition language.

Each operation in the service interface may be annotated to show which of the generic
operations it corresponds to.

Example

Suppose that the generic operations are Read (R), Write (W) and Format (F). Then an
interface definition for two of the types of objects used in the examination task could be

annotated as follows:

Interface: BxamPaper {

operations:
ReadPaper (R}
AddQuegtion (R)
EditRubric (RW)

1

Interface: Question {

operations:
ReadQuestion {R)
WriteQuestion (W)
FormatQuestion {F)

}

When the server receives a client request to perform an operation in the interface of one of
its objects it applies the rights of the principal ‘R in T” that made the request in deciding

QMW C3S Technical Report 703 September 5, 1996

Coulouris and Dollimore: Protection of shared objects for cooperative work 13

whether to perform the operation. To do this it looks for ‘R in T in the ACL of the object and
retrieves the generic operations that are permitted to that role. It then checks the permitted
generic operations against the annotation of the operation requested.

The service interface is a good place to put the mapping between generic operations and
operations of the service because clients and server share the information. This allows user
interfaces to show on menus which operations are permitted (e.g. by greying out the others).
Also the client can cooperate in carrying out the security policies, thus avoiding unnecessary
contact with the server.

7. Discussion

In the first part of the paper we identified some problems that arise in the design of a
protection scheme for persistent information objects when they are shared in cooperative
work. The problems were derived from a case study of two cooperative tasks (reported in
detail elsewhere) and some assumptions about a suitable software environment for the
construction and use of cooperative applications ('groupware’).

Two key design problems emerged:

Multiplicity of objects: There are likely to be many more shared objects in an object-oriented
groupware application than there are in a similar Unix file-oriented application. In
general, we must retain the ability to control access to individual shared objects (just as
Unix provides control over access to individual files). But to avoid generating large
amounts of clerical work, the access rights for most objects should be antomatically
generated.

Diversity of operations: Each class of objects used in a groupware application is equipped
with its own set of programmable operations. The detailed nature of the shared program-
level objects and the sets of operations that they support are generally not known to users.
But our aim was to design a protection model in which each object can be protected (and
therefore shared) individually.

The use of task-related security templates described in Section 5 and the two-level
protection model described in Section 6 are our proposals for the resolution of these design
problems.

The security template is designed to enable users to specify their security requirements for
tasks. The grouping of objects in the security template according to their creator addresses the
problem of object multiplicity. It is similar in some ways to the treatment of ‘owners’ in the
Unix model of file protection, but it should be remembered that we are dealing with
protection for specific tasks - if an object is shared between several tasks, its protection in the
second and subsequent tasks in which it was made available might be specified in terms of
the ‘importing role’.

The use of generic operations instead of object operations addresses the problem of
operation diversity, but at the cost of requiring an additional specification for object classes —
the specification of the mapping between generic operations and the actual programming-
level operations of object classes.

We have sketched a possible implementation in a client-server architecture. The model has
yet to be tested and evaluated in practice. Several issues of detail remain to be resolved,
including the following:

QMW CS Technical Report 703 September 5, 1995

Coulouris and Dollimore; Protection of shared objects for cooperative work 14

» Qur case studies indicate that as tasks progress through their phases there may be a need
to change the access rights at the end of each phase. The changing of phases might be
managed by a workflow model.

« Other changes to security templates may be needed on a more ad hoc basis, due either to
a change in policy or to the need to make a task easier to carry out. These changes might
or might not be reflected in existing tasks.

Acknowledgements

We should like to thank our colleagues Tim Kindberg, Richard Achmatowicz and Andrew
Rowley at QMW for discussions on the role and task model and the security of object
replicas. Thanks are also due Victoria Bellotti and William Newman (Rank Xerox Cambridge
Research Centre) for their comments on user perceptions of protection and security and to
Sacha Krakowiak, Jacques Mossiére, Xavier Rousset de Pina, Michel Riveill and other
members of the Bull-IMAG Systémes Laboratory in Grenoble for witnessing the birth-pangs
and assisting with the delivery of these ideas. Responsiblity for the results, however, is
entirely ours.

QMW CS8 Technical Report 703 September 5, 1995

Coulouris and Dollimore: Protection of shared objects for cooperative work 15

8. Bibliography

Achmatowicz, R. and Kindberg, T. 1995, Object Group sfor Groupware Applications: Application
Requirements and Design Issues, ERSADS Workshop, Val d'Isere, April 1995.

Balter, R, Lacourte, S. and Riveill, M. 1994, The Guide Language, The Computer Journal, Vol. 37, No. 6, 1994,

Bennett, J.K. 1990, Experience with Distributed Smalltalk, Software - Practice and Experience, Vol 20(2), 157-
180. Feb, 1990.

Chase, 1.S., Levy, H.M., Baker-Harvey, M. and Lazowska, ED. 1992, How to Use a 64-bit Virtual Address
Space, Technical Report 92-03-02, University of Washington, Scattle 98195, March 1992.

Coulouris, G. and Dollimore, J. 1994, Requirements for security in cooperative work: two case studies,
Technical Report 671, Department of Computer Science, Queen Mary and Westfield College, May 1994.

Coulouris, G. and J. Dollimore 1994a, Security requirements for cooperative work: a model and its system
implications, Position paper for 6th ACM SIGOPS European Workshop, Dagstuhl, September 1994.

Decouchant, D. Quint, V., Riveill, M. and Vatton, 1. 1993, L. Griffon: A Cooperative, Structured, Distributed
Document Editor. Rapport Technique 20-93, Bull-IMAG Systémes, Gieres, France, June 1993,

Dollimore, J. and Wang Xu 1993, The Private Acccess Channel: a Security Mechanism for Shared Distributed
Objects. In TOOLS Europe 93. March 1993, Pages 211-222.

Ellis, C.A., Gibbs, $.1. and Rein, G.L. 1991, Groupware - Some Issues and Experiences, Communications of the
ACM, 34, 1, January 1991, Pages 39-38.

Greif, 1. and Sarin, S. 1986, Data Sharing in Group Work, In Proceedings of First Conference on Computer
Supported Cooperative Work, (Austin Texas). ACM New York, December 1986. Pages 175-183.

Hagimont, D. 1994, Protection in the Guide object-oriented distributed system, ECOOP 94.

Kowalski, O. and H. Hartig 1990, Protection in the BirLix Operating System, PODCS-90. Pages 160-66.

Lampson, B.W. 1991, Requirements and Technology for Computer Security, Chapters 2 and 3 of Computers at
Risk: Safe Computing in the Information Age, National Academy Press, Washington, DC, 1991.

Lampson, B.W., Abadi, M., Burrows, M. and Wobber, E. 1992, Authentication in Distributed Systems: Theory
and Practice. ACM Trans. on Computer Systems, 10, 4, Nov. 1992. Pages 265-310.

Satyanarayanan, M. 1989, Security in a Large Distributed System, ACM Trans. on Computer Systems, 7, 3,
August 1989, Pages 247-280.

Shapiro M., Gourhant, Y. and Habert, S. at al. 1989, SOS: an object-oriented operating system - assessment and
perspective. Computer Systems, 2, pages 287-338.

Shen, HL.H. and Dewan, P. 1992, Access Control for Collaborative Environments, Proceeding of ACM CSCW
92, Pages 51-58.

Shrivastava, S., Dixon, G.N. and Parrington, G.D. 1991, An Overview of the Arjuna Distributed programming
System. IEEE Software, Jan. 1991, pp. 66-73.

Wobber, E., Abadi, M., Burrows, M. and Lampson, B.W. 1994, Authentication in the TAOS operating system,
ACM Trans. on Computer Systems, 12, 1, Feb. 1994, Pages 3-32.

QMW CS Technical Report 703 September 5, 1995

