View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Queen Mary Research Online

&
wQf Queen Mary
University of London

Precomputed visibility ordering for a constrained viewpoint
Chrysanthou, Yiorgos

For additional information about this publication click this link.
http://gmro.gmul.ac.uk/jspui/handle/123456789/4620

Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact scholarlycommunications@gmul.ac.uk

https://core.ac.uk/display/30696738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/jspui/handle/123456789/4620

Precomputed visibility ordering for a constrained viewpoint
Y. Chrysanthou

Department of Computer Science,
QMW University of London,
Mile End Road,

London E1 4NS, UK.

e-mail: yiorgos@dces.gqmw.ac.uk

Abstract

An algorithm for determining an invariant visibility ordering valid from any point on a
predefined area is presented. The application for which this algorithm was initialy developed

is the ordering of polygons in respect to an area light source and it is presented in that context.

1 Determining the Order in Respect to an Area

One of the principle uses of the BSP tree is for ordering the scene polygons, either for visible
surface determination from the viewpoint or from the point light source for shadow calculations.
Ordering from area light sources is not as easy. We are not dealing with just one point but a finite
area that might fall on both sides of a plane defined at a BSP node.

Previous researchers dealing with area light sources realised this problem but being unable to
find a satisfactory solution, their methods resulted in unnecessary processing (see Section 77):

o Campbell and Fussell [1] did not attempt at all to find an order, assuming that it is not
possible, their method requires two passes over the polygon set. One for building the unified
shadow volumes, umbra and penumbra, from an unsorted set of polygons using merging and
the second for calculating the shadow boundaries by inserting the polygons in these volumes.

o Chin and Feiner [2] simplify the problem of ordering in respect to the area source to one of
ordering from a point by splitting the light source whenever it is found straddling the plane
of a scene polygon. Thus they can combine the two passes mentioned above into one but
performed multiple times, once for each source fragment.

e Gatenby and Hewitt [5], use the BSP tree to find the polygons lying between the source and
a receiver but not by getting an absolute order. Rather they take the union of the polygon
sets derived by traversing the BSP tree from each source vertex to the receiver and get an
over-estimation of the set of polygons between the receiver and the whole of the source.

The reason traversing a BSP from an area light source (or viewing area) is not the same
as for traversing the tree from a viewpoint is because the viewing area cannot necessarily be
unambiguously classified against the root plane at each node. Take for example the simple scene
of Figure 1(a). Traversing the tree of Figure 1(b) front-to-back from different points on A gives
different orderings: al gives {2, 1, 3} while a2 gives {3, 1, 2}. But the different orderings do
not imply that there is a cycle or that an order valid for all points on A cannot be found. In fact
because we are dealing with oriented polygons and we are only considering a limited viewing space,
commonly there will be an invariant ordering, for example {1, 3, 2} here.

\ 1 2
AN
NV e N

.| 1
". al-> {2, 1, 3} al-> {1, 3, 2}
| a2-> {3 1,2} al-> {1, 3, 2}
(a) (b) (c)

Figure 1: {a}, (b) When the plane of an internal node cuts the area (A) different orderings are
produced for different points on the area. (¢) If the cutting node is placed at the leaves then the
ordering is the same for every point on A

As we can see in Figure 1(c) a different tree can be constructed that when traversed gives that
ordering from any point on A. The reason why a tree like 1 does not work is because different
points on A He in different subspaces of polygon 1 and hence produce different orderings on the

children of 1. In 7% this still holds but since both children of 1 are now empty their ordering is
irrelevant.

So an apparent solution to the problem of ordering from a viewing area, is to push all polygons

that intersect the viewing area to the leaves of the tree and the traverse it from any point on the
area.

1.1 Definitions

An interesting study related to this problem can be found in: the list priority algorithms for visible
surface determination that use pre-processing to induce priority relations among the scene polygons.
Of particular interest is the work of Schumacker [7, 8]. He applied graph theory to find an invariant

order for a set of polygons (a cluster). Along the same lines was also the work of Fuchs [4] and
Naylor [6].

Before proceeding let us refrase some adapted definitions and theorems from the above litera-
ture. In what follows s, and s; denote polygons:

Definition 1 Actual visibility obstruction: s; can have an actual visibility obstruction on s;, with
respect to o viewing vector v, if the vector goes through poinis t; on 5; and t; on 55, and t; is closer
to the origin of v thon t;, and both polygons are front focing w.r.t. the origin of v.

The actual obstruction gives us the visibility priority of two polygons from a particular view-
point. This can be generalised by the following definition to give the priority relation of two
polygons from any point in space.

Definition 2 Potential visilility obstruction: s; can have o potential visibility obstruction on §;
if 3 a vector v that relates s; and s; under actuol visibility obstruction.

Potential visibility obstruction makes no assumptions on the position of the viewpoint so any
ordering obtained under that relation is valid for the whole space. This relation between two
polygons can be determined using the following theorern.

Theorem 1 s; can have o potential visibility obstruction on s; if end only if 3 o point on 3; in

the front half-space of s; and 3 a point on s; in the back half-space of s;. (See [6] for proof of the
theorem).

1.2 Small Viewing Areas
In the research mentioned above, the aim was either to find an invariant order for the whole of
3-D space, or one order for each viewpoint {or sets of viewpoints). Here we are dealing with a
. sub-problem since we are only interested in the set of viewpoints lying on a pre-defined planar

polygonal space. Note that in what follows we assume this area to be convex. For a concave area,
it will still hold # we use its convex hull.

Let us now state clearly what it is we will try to achieve:

Given a set of polygons § = {s1,...,8,} and a viewing area 4 we want to build a tree T that
when traversed from left to right! will give a front-to-back priority ordering <o, ..., 05> valid from
any point on 4, where Vo;, 0; C s;, some 1 < 7 < n. For convenience we will call such a tree
ordered.

This ordered tree is equivalent to a linear list of the polygons as seen front-to-back from 4. As
we will see later it is not always possible to generate this tree without splitting A since cycles may
be present. In general, however, under the conditions we will be assuming it will be feasible. Any
unbreakable cycles will be reported.

The method has two stages. First a BSP tree T” is constructed in the conventional way but only
with the polygons in S that have A totally in their front half-space. The polygons that intersect
A with their plane are stored in & list L, while those that embed A4 or have A totally behind their
plane are ignored. We will refer to the polygons that have A totally in-front as area-facing and to
those that cut A with their plane as offending. Clearly traversing T from any point on A gives
the same ordering. Any point on A is in-front of the plane defining each node so traversing the
tree from left-to-right is equivalent to a front-to-back traversal.

The second step is to construct T™ by inserting the polygons in L, into 7. It is easier to
understand why 7" is ordered by thinking of T” as an ordering of subspaces C; (cells) as seen from
A. Any additional polygons inserted into T” will further subdivide the celis but cannot change
their relative priorities. Thus it suffice to show that polygons within each C; are ordered.

Since the area we are considering is the light source, which is relatively small, the number of
polygons cutting it with their plane are expected to be few compared to those facing it. So the
polygons in L, will probably reach different cells or maybe few in the same cell. When an offending
polygon is the only one to reach a leaf node of 7" then we just create a tree node and add it there.
For cells with more than one offending polygons, we use a graph theoretical approach, described
below, to order them and produce a subtree to replace the cell.

Each polygon in the cell forms a node of the graph and has ares connecting it to all other
graph-nodes that it has priority over. The priority relation is determined using Theorem 1. We
will denote this relation using ~», s; ~» s; meaning that &; has a potential visibility obstruction
(PVO) on s;. Once the graph is built it is searched using a depth first search (DFS) to order the
nodes and check for cycles. If cycles are detected a second DFS is performed on the transpose
of the graph (the arcs are reversed) to locate the cycles and reduce it to its strongly connected
components [3]. In the scenes we used for Chapter 77 this second search was never needed. If the
eycle is a trivial one involving only two polygons (Figure 2) then it can be resolved by cutting one
of the polygons along the plane of the other. A method for dealing with other cycles is suggested
in Section 1.4.

Building & tree using the arcs in the graph is an O(n?) process, where n is the number of
polygons involved, but as these are very few this is not detrimental to the speed of the whole
algorithm.

Such a graph theoretical approach wag used by Schumacker [7] to order the polygons in each
cluster. It was also used in [6] for generating a total ordering on the whole set of polygons but it
was found impractical due to the large number of eycles involved. Our problem, however, is not
as demanding since we are only interested for visibility priority from a limited area.

The tree we have constructed here excludes any back-facing polygons, with respect to A. This
is not a requirement of the algorithm and if the tree is to be used for other operations then the

! Assuming that the left is the front subtree and the right is the back

Figure 2: Cycle of two polygons Figure 3: Cycle of more than two

complete set of polygons can be included. In this case the back-facing polygons are marked so as
to traverse the right subtree before the left, when getting the order with respect to A,

The order for visible surface determination from any point in space, can be obtained by a
normal back-to-front BSP traversal (classifying the viewpoint at each node) on the nodes of 77
and right-to-left on the offending subtrees.

To use such a complete ordered tree from a different viewing area A, all that is needed is to
identify the offending polygons for A’ and push them down to the leaves. They do not have to
be reinserted at the root of the tree but rather from the node where they lie. The priorities on
the previously-offending subtrees are still valid but if the addition of the now-offending polygons
creates cycles they will have to be rebuils.

1.3 Maintaining the Order During Interaction

For interaction we assume the use of the algorithm described in Section 77: the polygons of the
transformed object are removed from the tree and they are added back at their new positions.
When removing polygons from leaf-nodes or from nodes with one non-empty subtree it can be
shown trivially that the ordering in the tree is not affected. But while putting two subtrees
together in the restore function or as the new polygons are added, area-facing polygons might
reach an offending subtree. To maintain the assumptions we made earlier, area-facing polygons
must go before any offending polygons in the tree. So when inserting an area-facing polygon, if
it meets a subtree with offending polygons then the area-facing one is placed at the root of the
subtree and the offending polygons are pushed down past it one by one.

1.4 A Generalisation of the Method

As mentioned earlier the visibility is restrained to a particular area, even if the area is large, the
fact that it is Hmited and planar places an extra constraint on the visibility relation which can be

used o resolve most of the cycles.

The arcs in our graph denote the potential visibility obstruction. This relation is very broad,
we are not interested in whether there exists a point in space for which two polygons can have an
actual visibility obstruction but what we are interested is if there exists such point on 4. We will
give a new name to this relation in the following definition:

Definition 8 Distributed wvisibility obstruction: two polygons, s; and s;, are reloted under dis-
tributed visibility obstruction with respect to a planar polygon A, if 3 o point p on A such that s
and s; are related under actual visibility obstruction with respect to that point.

Obviously, distributed obstruction is a subset of potential visibility obstruction. It cannot
create any extra arcs that are not present already. But by validating the existing arcs against
this new relation their number can be reduced and cycles resolved. The existence of distributed
visibility obstruction (DVO) can be determined by the following theorern:

scene N.pol F.area O.area Max O N_cycles
officel 139 58 17 4 0
office2 211 96 19 3 0
office3 333 147 28 4 0
el L U388 6 B i
office4™ 751 327 70 6 0

Table 1: Visibility from the light source

Theorem 2 Given & polygons A, s; and s;, 8; con have distributed visibility obstruction on s; if
8; has potential visibility obstruction on s; and 3 a point on s; behind all of the exiremal penumbra
planes from A and s;.

Proof: By definition (see Section 77), the extremal penumbra planes have the “source” totally
in the front half-space and the “occluder” totally in the back half-space. Here the source is 4 and
the occluder is s;. If s; falls in front of any penumbra plane then {4, s;} and {s;} are linearly
separable by that plane. This implies that there can be no line going through a point on A and a
point on s; that can be intersected by s;. Thus there is no point on A from which s; and s; can
have an actual obstruction. !

Using the same reasoning we can also show that DVO between A, s; and s; can exist only if
A has some intersection with the subspace defined by the intersection of the extremal penumbra
planes of s; and s; and the front half-space of s;. This penumbra structure is similar to the
obstruction polyhedron defined in [6)].

The test for distributed obstruction is more expensive than checking for potential obstruction.
If we are expecting only few cycles then we can build the arcs in the graph using only PVO, and
only apply DVO to verify them after the polygons involved in the cycle are found. Also we can
create fewer splits if we verify an obstruction before cutting a polygon involved in a cycle of size
two, mentioned in the previous section.

We might find examples, such as the one in Figure 3, where cycles occur that can not be resolved
by splitting the polygons or otherwise. In this case the actions taken depend on the application.
For example in the area sources algorithm described in Chapter 77, we can assign the same priority
number to all elements of a cycle. When deciding the shadow relations, polygons with the same
numbers will be compared both ways (see the inner loop in Figures 77 and 77).

Tf this is to be used for rendering with the viewpoint moving on 4, then we can find the
polygon(s) whose removal will break all the cycles and use their planes to split A. The BSP nodes
of these polygons are marked and their planes are checked when crossing from one fragment of A
to another. The subtrees of the node whose plane is crossed are then switched (left goes right and
vice-versa,).

To use a tree constructed using DVO from a different viewing area A’ the offending subtrees
should be rebuilt. Also it can not be used for rendering from any viewpoint not on A.

1.5 Results

For evaluation of the method the office scenes were used. A relatively large Hght source was placed
at the center of each room, near the ceiling and the tree was built with respect to that source.
In Table 1 we give statistics on the total number of polygons (N_pol) in the scene, the number
of polygons that have the area totally in their front half-spaces (F_area) and number of polygons
that cut the source with their plane {O_area). The next field (Maz_() gives the maximum number
of offending polygons in any cell of 77. As we can see this number is very small, not exceeding 6
in any of the scenes. Finally we give the number of cycles found. For determining the visibility
relations between the offending polygons, we used only potential visibility obstruction (Theorem
1). We can see that no cycles were present in any of the scenes.

scene Npol Foarea O.ares Max O N_cycles*

officel 139 51 41 8 0
office2 211 74 64 11 0
office3 333 110 108 31 0
el PR 54D S 0
officed* 751 227 259 46 1

Table 2: Visibility from & light source with haif the dimentions of the ceiling

scene N.opol Foarea OLarea Max O N_oycles®

officel 139 26 91 32 0
office2 211 39 143 64 0
office3 333 59 225 96 0]
office4 751 129 497 227 17
officed” 751 122 509 191 25

Table 3: Visibility with the ceiling as the source

The corresponding trees for these scenes officel, office3 and officed are shown in Figures 4 and
5. To show clearly the double structure of the tree, the BSP (T”) nodes are marked with white
squares {these are from the area-facing polygons) while the graph theory based nodes are marked
with biack squares (the offending polygons).

To see how the algorithm behaves when we use large sources (or viewing areas}, two more sets
of experiments were run: one with a source having sides equal to half that of the ceiling and one
with using the ceiling as the source. The data of these experiments are shown in Table 2 and Table
3. The columns in these tables are the same as in Table 1, apart from the last column {(N_cycles™).
This corresponds to the number of cycles in the tree with the arcs created on distributed visibility
obstruction (Theorem 2) rather than potential obstruction.

As the size of the source becomes larger the number of polygons intersecting it with their planes
(offending) grows rapidly (O-ares). Also the number of offending polygons reaching the same cell
of T' grows (Maz-0), making their ordering, using only potential obstruction impossible. This
is the same problem recorded by Naylor in [6). However, using the extra constraint provided by
DVO, we can see that almost all of the cycles are resolved. Only in experiments with officed and
officed” do cycles remain. The reason for that is that the area used for visibility (the source) here
is much larger than in the other experiments and in particular it is very large compared to its
distance to the other objects in the scene. In further experiments using the same data but pushing
the ceiling to twice the height we found that all the cycles disappeared.

The tree for office4 in Table 2 is shown in Figure 6 and for officel, office3 and officed of Table
3 in Figures 7 and 8. As we can see the double structure of the tree is almost lost in the trees for
Table 3. Also in the latter tree cycles were present. These cannot be seen on the tree because we
stored all polygons in each cycle on the same node. So the nodes of the tree are ordered but some
of them hold polygons that form a cycle.

We will not give the timings for building the tree as the purpose of the experiment was not
to build the tree fast but to show that an ordering in respect to an area was attainable. Also in
applications the tree would be built in the pre-processing stage so it would not affect the run-time
performance. But to give an idea of the times involved we can say that for Table 1, where the
veference area is a normal light source, the timings were less than building a normal scene BSP
tree. This is because the back-facing polygons were excluded. For Table 2 it took slightly longer,
while for Table 3 it took many times longer than for building a normal tree. These results were
predictable since, as we said in Section 1.4, ordering the polygons in a cell is an O(n?) operation
and in Table 3 n is very large.

T =~
T P
s SN

. g '
']
S S S -} .-/:./.,- .
o _,:’_33.5-

e

Figure 4: Trees of officel and office3 from the area light source

Figure 5: Tree of office4 from the area light source

Interpolating from the above results we can draw the following conclusion: that even for complex
scenes an ordering from an area light source can be derived using this method with few or even no
splittings of the source.

References

1] A. T. Campbell. Modelling Global Diffuse Hluminetion for Image Synthesis. PhD thesis,
Department of Computer Science, University of Texas at Austin, December 1991,

[2] N. Chin and S. Feiner. Fast object-precision shadow generation for area light sources using BSP
trees. In ACM Computer Graphics (Symp. on Interactive 3D Graphics), pages 21-30, 1992,

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, 1990.

[4] H. Fuchs, Z. M. Kedem, and B. Naylor. Predetermining visibility priority in 3-D scenes (pre-
liminary report). ACM Computer Graphics, 13(3):175-181, August 1979.

[5] N. Gatenby and W. T. Hewitt. Radiosity in computer graphics: a proposed alternative to the
hemi-cube algorithm. In Second Eurographics Workshop on Rendering, 1991.

[6] B. I'. Naylor. A Priori Based Techniques for Determining Visibility Priority for 3-I) Scenes.
PhD thesis, University of Texas at Dallas, May 1981,

[71 R. Schumacker, B. Brand, M. Gilliland, and W. Sharp. Study for applying computer-generated
images to visual simulation. Technical Report AFHRL-TR-69-14, NTIS AD700375, U.S. Air
Force Human Resources Lab., Alr Force Systems Command, Brooks AFB, TX,, September
1969.

[8] L. E. Sutherland, R. F. Sproull, and R. A. Schumalker. A characterization of ten hidden surface
algorithms. ACM Computing Surveys, 6(1):1-55, March 1974.

Figure 6: Tree of office4 with light having half the dimensions of the ceiling

Figure 7: Trees of officel and officed from ceiling

Figure 8 Tree of officed from ceiling

