View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Queen Mary Research Online

‘aQs! Queen Mary

University of London

Programming in Lygon: an overview
Harland, James; Pym, David; Winikoff, Michael

For additional information about this publication click this link.
http://gmro.gmul.ac.uk/jspui/handle/123456789/4577

Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact scholarlycommunications@gmul.ac.uk

https://core.ac.uk/display/30696731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/jspui/handle/123456789/4577

Technical Report No. 720

Departmentof |

Computer Science

Queen Mary and Weslfield College

Programming
in Lygon:
an overview

James Harland

David Pym
Michael Winikoff

e A
EVBVERSITY ONF 1996

1z

. TO appear Proc CANAST 66 M Wirsing (ed.). LNCS, &pringer, 1996 .

James Harland! David Pym?

Michael Winikoff®

! RMIT, GPO Box 2476V, Melbourne 3001, Australia
? Queen Mary & Westfield College, University of London, UK
3 University of Melbourne, Parkville 3052, Australia

Abstract. For many given systems of

logic, it is possible to identify, via sys-

tematic proof-theoretic analyses, a frag-

ment which can be used as a basis for a

logic programming language. Such anal-

yses have been applied to linear logic, a

logic of resource-consumption, leading

to the definition of the linear logic pro-

gramming language Lygon. It appears

that (the basis of) Lygon can be con-

sidered to be the largest possible first-

order linear logic programming langnage
derivable in this way. In this paper, we

describe the design and application of

Lygon. We give examples which illus-

trate the advantages of resource-oriented
logic programming languages.

1 Introduction

Logic programming languages are based
upon the observation that certain se-
quents can be interpreted as a program
together with a goal: if I" is a set of
program clauses and Hz.¢ is a goal
clause, the existentially bound variable
z being a “logical variable”, then the
sequent I' - Jx.¢ is interpreted as
a request to search for a term f, ‘e,
an answer substitution, together with
a proof of the sequent I' - ¢[t/z].

In order to identify the fragment of
a given system of logic which can form
the basis of a logic programming lan-
guage, one must have an independent
notion of what is meant by a logic pro-
gramming language. Whilst any defi-
nition should include the use of Horn

l

clauses in classical logic as a special
case, it 1s not clear exactly what char-
acterizes a logic programming language.
For example, precisely how does a logic
programming system differ from a the-
orem prover 7 An obvious point of de-
parture is a consideration of the amount
of non-determinism inherent in the se-
arch for a proof. Implementations of
(logic) programming languages must be
tolerably efficient: roughly speaking, the
lesser thé non-determinism, the greater
the efficiency. Furthermore, the require-
ment of “minimal” non-determinism is
also motivated by certain “definiteness”
requirements (see, for example, [16]).
So it is appropriate to consider design
principles that limit the non-determin-
ism in the search for proofs.

One such principle is that of goal-
direcied provability, in which the search
strategy is determined by the struc-
ture of the goal and which the pro-
gram supplies the context of the (puta-
tive) proof. Once we have determined
an appropriate notion of goal-directed
provability, we can look for classes of
formulae for which goal-directed prov-
ability is complete for the given conse-
quence relation. Such classes of formu-
lae then form logic programming lan-
guages. The analysis of logic program-
ming languages based on this criterion
has been carried out for various logics
and classes of formulae, including in-
tuitionistic logic [16], higher-order log-

ics [16] and linear logic {7, 17, 12, 19].
Logic programminglanguages based on
linear logic allow a notion of resource-
oriented programming: by default, a
clause in such a program must be used
exactly once. This makes the writing
of many programs simpler and more
intuitive than in a language, such as
Prolog, based on classical logic. For ex-
ample, the resource-sensitive nature of
linear logic means that path-problems
in graphs can be solved simply and el-
egantly even in the presence of cycles
in the graph. Moreover, the standard
transitive closure predicate can be used,
with a very minor modification, which
will find any path in a graph, whether
it is cyclic or not.

In this paper we give an overview of
the linear logic programming language
Lygon. Lygon is based on a fragment of
classical linear logic [7] (of which we as-
sume a basic knowledge) identified as a
basis for logic programming via a sys-
tematic proof-theoretic analysis [17].

In common with other linear logic
programming languages, Lygon allows
clauses to be used exactly once in a
computation, thereby avoiding the need
for the explicit resource-counting of-
ten necessary in Prolog-like languages.
Just as linear logic is a strict exten-
sion of classical logic, Lygon is a strict
extension of (pure} Prolog: all (pure)
Prolog programs can be executed by
the Lygon system. Hence all the fea-
tures of classical pure logic programs
are available in Lygon, together with
new ones based on linear logic. These
include a theoretically transparent no-
tion of state, a notion of resources and -
a form of concurrency. All of these fol-
low from the basis of Lygon in linear
logic and do not require extra-logical
features for their definition.

2

2 Goal-directedness and
resolution in linear logic

In order to obtain a logic programrming
language based on linear logic, we must,
according to the criteria of § 1, iden-
tify a class of formulae for which an
appropriate notion of resolution proof
is complete. Qur analysis, presented in
detail in [17], appears to provide as
broad as possible an interpretation of
goal-directedness and thereby appears
to allow the broadest possible linear
logic programminglanguage. Although
the details are beyond the scope of this
paper, we briefly review the key ideas.

In the cut-free {linear) sequent cal-
culus, goal-directed proof can be ach-
ieved via uniform proof [16, 17]. The
basic idea, introduced in [16], is to use
the left- and right-rules of the sequent
calculus as reduction operators (in the
sense of [13]) and proceed as follows: if,
at any stage, some right-rules are ap-
plicable, then one of them must be ap-
plied; otherwise, i.e., if all goal-form-
ulae are atomic, proceed to apply a
left-rule. In linear logic with multiple
conclusions, this basic notion is not qu-
ite adequate, A slightly weaker notion
of goal-directedness, characterized by
simple locally LR proofs [17], is required.
In simple locally LR proofs, certain,
highly restricted, occurrences of —oL
are permitted helow occurrences of right
rules.*

Resolution proof is a refinement of
uniform (simple locally LR) proof so
that only one left-rule, the resolution
rule, is required. Completeness of uni-
form proof depends on a restriction to
hereditary Harrop formulae, i.e., just
definite-formulae on the left and just

* In {17}, uniform proofs are defined to be
simple locally LR proofs,

goal-formulae on the right. Complete-

“'Hess of resolution depénds on definite”

formulae being expressed in a suitable
clausal form. Full detail of the resolu-
tion rule and ita proof-theoretic prop-
erties can be found in [17]; a sketch is
provided below.

2.1 Definite formﬁlae and goal
formulae

Goal-directed (uniform [17]} proof is
sound and complete for linear heredi-
tary Harrop sequents, I - A, in which
I" and A are composed, respectively,
of the following classes of D-formulae
and G-formulae:

Du=Al1|L|D&D|DeD
| D9 DI|Ve.D|ID
|G A|G—o L{G—1

Gu=A|1|LITIG&G|G®G
|G GiGaG|Ve.Gl3e.G
[{G1?G|D =G

where A ranges over atomic formulae

This class of formulae is compared the

language Forum {15} in § 5.

% Qlight extensions to this class are pos-
sible. Note that definite formulae of
the form G — ([8 D2} are equiv-
alent to (G —c .L) w Dy D I Iy
and I} are atomic, then the equiva-
lence is goal-directed. Weaker notions
of goal-directedness, parameterized on
classes of definite formulae, are possi-
ble. For example, we can choose not to
enforce the reduction of a tensor prod-
uct of atomic formulze, so obtaining
goal-directedness “up to 4: @ 42", Un-
der such a choice, the equivalence above
is goal-directed even if Dy and [»; are
permitted to be of the form 41 @ As.
See also Footnote 12,

8 0= Gt and G = D' are implicit.

For single-conclusioned sequents, the

~goal-directed Tnterpretation of linear ™

hereditary Harrop formulae is deter-
mined by the right-rules of the linear
sequent caleulus and is explained in de-
tail in [17]. We review a few important
cases. (Note that for multiple-conclus-
ioned sequents, which are forced by the
presence of '¥ in goals, the situation is
complicated by the need to consider lo-
cally LR proofs [17].).

— (1 @Gy is a consequence of I” only
if 1 is a consequence of I, G
is a consequence of Iy and I' =
Iy, I';. The resources in I” must be
divided into those available to solve
(7; and those available to solve Gy.”

— (1 &Gy 15 a consequence of ' only
if G and G5 are consequences of
I'". 'The resources in I' must be used
to solve each of (7 and Gs. .

- D —o (3 is a consequence of I" only
if G is a consequence of I, [D]. The
clausal form {D] of the formula D
must be added to the program I
The definition of the mapping [—]
is related to our definition of reso-
lution: it is discussed below.

- (#;9 9 is a consequence of [only
if G1,Gy is a consequence of I
The program must have sufficient
resources to solve both G and Gy
simultaneously. For example, I' in-
clides a clause of the form Dy @
D, then a resolution step (see be-
low) driven by such a clause will
cause both program (and goal) to
be split, thereby dividing the pro-
gram into those resources available

7 In general, for multiple-conclusioned se-
quents, we must divide the resources
in the succedent {other than G; ® Gz)
as well, but we omit this for simplicity
here.

3

to solve each of 1 and G5, A sim-
ilar splitting is required for the for-
mulae in the succedent.

Discussions of the remaining connec-
tives can be found in {17, 22].

So the right-rules of the linear se-
quent calculus provide us with an oper-
ational interpretation of goal formulae.
For resolution preof, we must also pro-
vide an operational account of definite
formulae.

Essentially, in goal-directed proof,
we invoke a left-rule only if no right-
rule is applicable, with an exception in
the case of —oL. Consider, then, —ol,

NDré, A Ik Ay
Iy Dg—e -4y, A7

In resolution proof, we require a spe-
cial case of this rule in which the right-
hand premiss is an axiom,

I't¢, A $Fg
Lig—dbyg A

Note that although resolution proof re-
quires that ¢ be atomic, non-atomic
formulae are permitted in A. In this
sense, resolution proof is characterized
by locally LR proof.

We also require that resolution be
the only left-rule required. This is ach-
ieved by restricting formulae in the an-
tecendent to be clausel In our setting,
the resolution rule codes up instances
of —oL, 2L, &L, VL and !L, as well
as contraction on the left (via 1) that
can occur in locally LR proofs. Note
that ®L is absent from this list. Qut-
ermost occurrences of @ on the left are
removed by the mapping [—] which re-
duces (multisets of) linear definite for-
- mulae to clausal form in such a way
that logical consequence is preserved.

s

Briefly, the general form of the resolu-
tion rule is

NrAL.. . Tt A,
'k A !

where [{Ii F A;} is a resolvant
of I't+ 4, a resolvant being a multiset
of sequents that decomposes the séruc-
ture of the conclusion of the resolution
rule according to the structure of a se-
lected clause. Propositionally, the ba-
sic units of clauses are atomic formu-
Iae and the iraplicational definite for-
mulae, e.g., G — A. However, in or-
der for resolution to code up the re-
quired instances of &L and ?L, these
basic units must be combined by cer-
tain instances of &, ¥ and ®. For ex-
ample, if we let ¢ denote the clause
{(p —)% ({41 ® g2) —o 8), then

epp=rtr . pka®@e
g g, {(p)8 ((nn®¢) —os)krs

is an instance of resolution, in which
¢ is the selected clause. In this case,
the resolvant has two components, i.e.,
m = 2 because the clause ¢ has as
subformulae two basic clauses, p —o r
and (g1 ® ¢2) o s, combined by a 7.
In this instance of resclution, the ba-
sic clause (¢1 ® ¢2) —o s has driven
the rule, by matching its head s with
the s in the succedent. Since this basic
clause is connected in ¢ by a 9 to the
basic clause p —o r, this latter must
now also be used. In this example, it is
available for use-on the left-hand branch.
Since ¢ has a ! as its outermost connec-
tive, it can continue to be available on
both branches, t.e., resolution builds in
contractions. The details of clauses and
resolution can be found in [17].

To understand the mapping [-], de-
fined fully in in {17], consider a few ex-
amples. Firstly, (p®q] =qet {p,q}, 50

that .when querying the program p @

g with the goal p ® ¢, we search for
a proof of the sequent pg F p @ g,
which has a goal-directed proof. Sec-
ondly, [(Vz.(p —o ¢(2))) ® (r —)]
=def 1P~ q{z),7 —o 5 }. Finally, {1D]
=det {!Qcep)Cl-

Resolution proof is complete for con-
sequences of the form [D]+G. 8

2,2 Searching for resolution
proofs

Whilst resolution proofs provide a ba-
sic strategy for finding proofs for the
above class of formulae, there is still a
significant amount of non-determinism
in them. In particular, the problem of
“splitting” programs, as specified by
the following rule for introducing ® on
the right, when read as a reduction op-
erator from conclusion to premisses, is
not addressed:

DG, A RFGe A
Ny b G @G, ALl

The main preblem here is how to
“split” a program and goal along the
lines specified by this rule. As there is
an exponential number of sub-multisets
of a given multiset, an exhaustive ap-
proach is not feasible. Hodas and Miller

(12} have proposed a lazy sequentiel ap- -

proach to this problem, in which the
first conjunct is given all the resources,
and those which are not consumed are
passed to the second, which must con-
sume all remaining resources.®

& The current Lygon interpreter [22] im-
plements resolution proofs via one-
sided sequents [7].

% The so-called “input/output model of
resource constmption”.

In the input/output model, the con-

straint that each formula must appear

in exactly one branch is maintained by
evaluating the conjuncts sequentially.
As the class of formulae considered by
Hodas and Miller is somewhat more
restrictive than the class of formulae
above, it is not obvious how this tech-
nique can be systematically applied to
the class of formula used in Lygon. It
turns out that this approach requires
some significant revisions to the proof
systermn. A full description of this pro-
cess, which is beyond the scope of this
paper, can be found in [22]. A brief
summary can also be found in [10].
An important point to note that
this method of implementation provides
us with a method of “state-passing”,
in that we can think of the passage of
“excess” resources from one branch to
another as a means of state transition,
As we shall see, there are some restric-
tions placed on this process, in accor-
dance with the rules of the logic, but
nonetheless this process has many in-

" teresting and useful applications.

3 Programming techniques

- and examples

In this section, we discuss various pro-
gramming techniques which distinguish
Lygon from Prolog (see also [9, 23, 22,
21]), including several examples of Ly-
gon programs. We begin with brief re-
marks on Lygon syntax [22].

3.1 Lygon syntax

The current implementation of Lygon
(Version 0.4) is an interpreter written
in BinProlog!® The interpreter com-

19 Yersion 0.4 of Lygon is available from
the anthors by email or via the World

V)

prises about 500 lines of code, includ-
ing comments and whitespace. Version
0.4 supports a limited form of program:
clauses are limited to the forms atoms,
VE. (G -0 A) and I[(VZ.(G — A)).
Universal quantifiers are excluded from
goals. Universal and existential quan-
tifiers in programs and goals, respec-
tively, need not be written explicitly,
Prolog-style (upper case) logical vari-
ables being acceptable. We use the fol-
lowing mapping = between logical con-
nectives and ASCIIL:

® = * & = & T o= #
G = @ [I —"I"-_~>nes_
1 = one T = top 1 = bot

Predicates are as in Prolog. The Lygon
equivalent of the Prolog : =~ is <-.

3.2 Resource allocation

It can be useful sometimes to ignore
certain resources, so that rather than
requiring that they be used exactly once,
we only require that they be used at
most once. Whilst in general this would
require a different logic (known as affine
logic, i.e., linear logic with an unre-
stricted weakening rule), the effect of
this less restrictive approach can be sim-
ulated in linear logic. For example, to
ensure that the clause C can be used
at most once, we can write C'&1. Then
we can either use C as normal, or in-

stead use the linear constant 1, which

we can interpret as the empty dat_xse.
Note that this is similar to allowing the
weakening rule but not contraction, so
that we refer to this as affine mode.

A similar trick can be used to spec-
ify that a goal need not consume all of
the available resources. Consider a pro-
gram P and the goal G® T. In order

6

Wide Web [21].

for this goal to succeed, we must be
able to divide up the program so that
P=PuPs, Pr - Gand P T. Now
as the latter sequent is provable for any
program P (including the empty pro-
gram), the goal 7 need not consume
all of the resources of P, as any “left-
overs” will be accounted for by T.

Axn important application of this no-
tion of resource allocation is graph prob-
lems. Graphs are an important data
structure in computer science. Indeed,
there are many applications of graph
problems, such as laying cable networks,
evaluating dependencies, designing cir-
cuits and optimization problems. The
ability of Lygon to naturally state and
satisfy constraints, such as that every
edge in a graph can be used at most
once, means that the solution to these
problems in Lygon is generally simpler
than in a language such as Prolog. The
solutions presented are, we consider,
concise and lacid.

One of the simplest problems in-
volving graphs is finding paths. The
standard Prolog program for path find-
ing is the following one, which simply
and naturally expresses that the pred-
icate path is the transitive closure of
the predicate edge, in a graph.

path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z),
path(Z,Y).

Whilst this is a simple and elegant
program, there are some problems with
it. For example, the order of the predi-
cates in the recursive rule is important,
as due to Prolog’s computation rule, if

the predicates are in the reverse order,

then goals such as path{a,Y) will loop
forever. This problem can be avoided
by using a memoing system such as
XSB [20], or a bottom-up system such

~as Aditi [18]. However, it is common -
to re-write the program above so that

the path found is returned as part of
the answer. In such cases, systems such
as XSB and Aditi will only work for
graphs which are acyclic. For example,
consider the program below.

path(X,Y,[X,Y]) :- edge(x,‘[).
path(X,Y,[XIPath]l) :
edge(X,2), path(Z,Y,Path).

If there are cycles in the graph, then
Prolog, XSB and Aditi will all gener-
ate an infinite number of paths, many
of which will traverse the cycle in the
graph more than once,

The main problem is that edges in
the graph can be used an arbitrary num
ber of times, and hence we cannot mark
an edge as used, which is what is done
in many imperative solutions to graph
problems. However, in a linear logic pro-
gramming language such as Lygon, we
can easily constrain each edge to be
used at most once on any path, and
hence eliminate the problem with cy-
cles causing an infinite number of paths
to be found.

The code is simple; the main change
to the above is to load a “linear” copy
of the edge predicate, and use the code
as above, but translated into Lygon.
Most of this is mere transliteration, and
is given below.

graph <-
neg edge(a,b) # neg edge(b,c)

neg edge(c,d) # neg edge(d,a).

trip(X)Y; [an'}) <~ edge(ng).
trip(X,Y, [XIP]} <~
edge(X,2) * trip(Z,Y,P).

path(X,Y,P) <~ top * trip(X,Y,P).

The extra predicate trip is intro-
duced so that not every path need use

every edge in the graph. As written

‘above, trip will only find paths which

use every edge in the graph (and so
trip can used directly to find Eulerian
circuits, i.e., circuits which use every
edge in the graph exactly once). How-
ever, the path predicate can ignore cer-
tain edges, provided that it does not
visit any edge more than once, and so
the path predicate may be considered
the affine form of the predicate trip.
The goal graph is used to load the
linear copy of the graph, and as this is
a non-linear rule, we can load as many
copies of the graph as we like; the im-
portant feature is that within each graph
no edge can be used twice. We can then
find all paths, cyclic or otherwise, start-
ing at node a in the graph with the goal

graph # path(a,.,,P).

This goal yields the solutions below.
Note that in the foliowing and in other
interactions with the Lygon system we
elide irrelevant system responses such
as More? (y/n).

{a,b,c,dl
fa,b]

[a,b,c,d,a] P
[a,b,c] P

P
p

i
[E I |

We can also find all cycles in the
graph with a query such as

graph # path(X,X,P).

which yields the solutions:

X=¢, P=[c,d,a,b,cl
X=4d, P=I[d,a2,Db,c¢,4]
X=b, P=[bec,d,a,bl
X=a, P=[a,b,c,d,al

Note that we are not restricted to
only one copy of the graph; if we wanted
to do some further graph processing we
could use a goal such as (graph # (qi
+ top)) & (graph # (g2 * top))..

’_}-

This provides one copy of the graph to
the subgoal q1., and a separate, inde-
pendent copy to the other subgoal g2..
This example suggests that Lygon
Is an appropriate vehicle for finding “in-
teresting” cycles, such as Hamiltonian
cycles, i.e., those visiting every node in
the graph exactly once, which involve
counting. We can write such a program
in a “generate and test” manner by us-
ing the path predicate above, and writ-
ing a test to see if the cycle is Hamil-
tonian. The key point to note is that
we can delete any edge from a Hamil-
tonian cycle and we are left with an
acyclic path which includes every node
in the graph exactly once. Assuming
that the cycle is represented as a list,
then the test routine will only need to
check that the “tail” of the list of nodes
in the cycle (i.e., the returned list mi-
nus the node at the head of the list)
is a permutation of the list of nodes in
the graph. Hodas and Miller [12] have
shown that such permutation problems
can be solved simply in linear logic pro-
gramming languages by “asserting” each
element of each list into an appropri-
ately named predicate, such as list1
and 1ist2, and testing that 1istt and
1ist?2 have exactly the same solutions.
The full Lygon program for finding
Hamiltonian cycles is given below.

go{P)} <- graph # (top =
(nodes # hamilton(P))).

graph <- neg edge(a,b) #

neg edge(b,c) # neg edge(c,d) #
neg edge(d,a).
nodes <~ neg node(a) #

neg node(b) # neg node(c) #
neg node(d).

trip(X,Y,{X,Y]) <~ edge(X,Y).
trip(X,Y, [XIP]) <- edge(X,Z) *

8

trip{Z,Y,P).

all_nodes{[]).
all nodes([Node|Rest]) <-
node(Node) * all_nodes(Rest).

hamilton{Path) <~ trip(X,X,Path)
* eq(Path,[_|P]) # all_nodes(P).

eq(X,X).

The réle of the top in go is to make
the edge predicate affine (i.¢., not ev-
ery edge need be used). Given the query
go(P), the program gives the solutions:

P
P

{c,d,a,b,c] P
fb,c,d,a,b] P

{d,a,b,c,d]
{a,b,c,d,a]

[E I {}
o

A problem related to the Hamilto-
nian path is that of the travelling sales-
man. In the travelling salesman prob-
lem we are given a graph as before,
However each edge now has an associ-
ated cost. The solution to the travelling
salesman problem is the (or a) Hamil-
tonian cycle with the minimal total edge
cost. Given a facility for finding ag-
gregates, such as findall or bagof in
Prolog, which will enable all solutions
to a given goal to be found, we can use
the given program for finding Hamilto-
nian cycles as the basis for a solution to
the travelling salesman problem. This
would be done by simply finding a Ha-
miltonian cycle and computing its cost.
This computation would be placed wi-
thin a findall, which would have the
effect of finding all the Hamiltonian cy-
cles in the graph, as well as the associ-
ated cost of each. We would then sim-
ply select the minimum cost and re-
turn the associated cycle. Note that as
this is an NP-complete problem, there
is no better algorithm known than one
which exhaustively searches through all
possibilities,

In order to directly implement the

solution described above, aggregate op-
erators in Lygon are needed. As these
are not yet present (but their effect
can be simulated by some more lengthy

code), we do not give the code for this
problem here. ’

3.3 Representing states and
actions

When attempting to find a proof of
P+ G & Ga, G, we use the technique

of passing the unused resources from
one conjunct to the other. This can

be used as a kind of state-mechanism,

in that the flest conjunct can pass on

information to the second. In partic-

ular, we can use this feature to simu-

late a memory. For example, consider a

memory of just two cells, represented

by two instances of the predicate m,

the first argument being the address

and the second the contents of the cell.

The state in which these two cells con-

tain the values ¢; and {3 would then be

represented by the multiset of clauses

{m(1,t1), m(2,t3)}. A (non-destructive)
read for cell 2, say, would be given by

the goal m(2, 2)®(m(2, 2) —o G), where
G is to be executed after the read. The

states in this computation are (i) that

m(2, z) is unified with m(2, {2), (i) that
the latter atom is deleted from the pro-

gram, and then (iii) added again via

the —o connective, before G is executed.
Note that a similar sequence occurs for

the goal m(2,z) ® m1(2,2).} Simi-

larly, writing the value ¢’ into the mem-
ory can be done using the goal m(2, z)®
(m{2,#') — @), where it is possible

that #' can contain z, so that either the
‘new value can be dependent on the old,

1 We write mJ'(Z,:c), rather than

m(2,) ~oL, for brevity.

9

or ' can be totally independent of the

‘old value. In this way we can use the

“delete after use” property of the lin-
ear system to model a certain form of
destructive assignment,

Using a continuation passing style
to encode sequentiality, with a predi-
cate call to invoke continuations, we
can create an abstract data type for
memory cells using the operations
newcell/3, lookup/3 and update/3.

newcell(Id,Value,Cont) <~

neg m(Id,Value) # call(Cont).
lookup(Id,Value,Cont) <~
m{id,Value) * {neg m{Id,Value)
call(Cont)).
update{Id,NewValue,Cont) <~
m{Id,_) * (neg m{Id,NewValue)
call{Cont)).

For example, consider summing a list
using a variable which is updated: the
top in the second clause is needed to
consume the cell once it is no longer
needed.

sum{List,Result) <-
newcell(sum,0,
sumlist(List,Result)).
sunlist([],Result) <~
“lookup(sum,Result,top).
sumlist([NINs],Regult) <~
lookup{sum,S, (is(S1,5+N) *
update{sum,S1,
sumlist{Ns,Result)))).

We can then run the program using
a goal such as sum({1,5,3,6,7],X)
which yields the solution X = 22.

The notion of state present in Ly-
gon can also be applied in planning
type problems where there is a notion
of a state and operators which change
the state.

The Yale shooting problem [8] is
a prototypical example of a problem

involving actions. The main technical
challenge in the Yale shooting problem
is to model the appropriate changes of
state, subject to certain constraints. In
particular:

1. Loading a gun changes its state from
unloaded to loaded;

2. Shooting a gun changes its state
from loaded to unloaded;

3. Shooting a loaded gun at a turkey
changes its state from alive to dead.

To model this in Lygon, we have
predicates alive, dead, loaded, and
unloaded, representing the given states,
and predicates load and shoot, which,
when executed, change the appropri-
ate states. The initial state is to assert
alive and unloaded, as initially the
turkey is alive and the gun unloaded.
The actions of loading and shooting
are goveérned by the following rules:

Joad <~ unloaded * neg loaded.
shoot <~ alive * loaded *
(neg dead # neg unloaded).

Hence given the initial resources alive
and unloaded, the goal shoot # load
will cause the state to change first to
alive and loaded, as shoot cannot
proceed unless loaded is true, and then
shoot changes the state to dead and
unloaded, as required.

Note that the rules for load and
shoot can be written in the following
manner:*?

load # loaded <~ unloaded.
shoot # (dead * unloaded) <-
alive * loaded. .

2 The first clause load # loaded <~
unloaded. can be considered an ab-
breviation for { bot <~ unloaded)} #
loaded # load.. See Footnote 5.

10

Written in this way, the rules above
can be considered as stating that if the
state is unloaded, then on a request to
load, the state is updated to loaded;
that if the state is alive and loaded,
then on a request to shoot, update
the state to dead and unloaded. Hence
this way of writing the rules makes the
state changes a little more explicit than
the previous one, and provides the pos-
sibility of a more flexible execution strat-
egy, such as determining the order into
which to change the state of the gun
from unloaded to loaded, it is neces-
sary to perform a load action.

Note that this program makes es-
sential use of the possibility afforded
by Lygon of positive occurrences of # in
clauses. In languages, such as Lolli [12],
lacking this facility, the second clause,
shoot # (dead * unloaded) <~ alive
* loaded., would have to be written
as two special cases. Although the lan-
guage Forum [15] can represent the first
clause, load # loaded <- unloaded.,
directly, its representation of the sec-
ond clause would necessarily be more
complex and less transparent than Ly-
gon’s. Similar remarks obtain for the
language LO [2].

A (slightly) less artificial planning
problem is the blocks world. The blocks
world consists of a number of blocks
sitting either on a table or on another
block and a robotic arm capable of pick-
ing up and moving a single block at a
time. We seek to model the state of the
world and of operations on it.

The predicates used to model the
world in the Lygon program below are
the following:

— empty: the robotic arm is empty;

— hold(A): the robotic arm is hold-
ing block 4; :

« claar(4): block A does not sup-

_port another block;
— ontable{A): block A is supported
by the table;
-~ on{4,B): block 4 is supported by
block B.

There are a number of operations
that change the state of the world. We
can take a block. This transfers a block
that does not support another block
into the robotic arm. It requires that
the arm is empty.

fake(X) <~ (empty * clear{(X) #*
ontable(X)) * neg hold(}).

We can remove a block from the block
beneath it, which must be done before
picking up the bottom block.

remove(X,Y) <=~
(empty * clear(X) * on(X,Y))
* (neg hold(X) # neg clear(Y)).

We can also put a block down on the
table or stack it on another block.

put(X) <- hold(X) * (neg empty #
neg clear(X) # neg ontable(X)).
stack(X,Y) < (hold(X) #*
clear{Y}) * (neg empty #
neg clear(X) # neg on(X,Y)).

Finally, we can describe the initial state
of the blocks.

initial <- neg ontable(a) #
neg ontable(b) # neg on(c,a)
neg clear(b) # neg clear(c)
neg empty.

Lygon (initial # take(c) # put(c)

take(a) # stack(a,b)

showall(R)).
[empty,on{a,b),clear{a),clear(c),
ontable(c), ontable(b)]
Succeeded.

_The order of the instructions take,

put etc. is not significant: there are ac-

tions, specified by the rules, such as
put(¢), which cannot take place from
the initial state, and others, such as
take(b) which can. It is the problem
of the implementation to find an ap-
propriate order in which to execute the
instructions, so giving the final state.

By allowing clause heads to con-
tain multiple formulae (in the manner
of LO [2}), the rules describing state
transitions become more ¢learly stated
and allow the possibility of more flex-
ible execution. For example, the put
rule becomes

put(x) # (empty * clear(X) #*
ontable{X)) <- hold(X).

This rule can be read as “given that we
are holding block X, we can do a put;
the resulting state has the hold fact
deleted and contains the facts empty,
clear{X) and ontable(X)".

3.4 Concurrency

Qur next example is the classical din-
ing philosophers (or logic programmers)
problemn and illusirates the use of Ly-
gon to model concurrent behaviour.3
This solution is adapted from [4].

For N logic programmers there are
N — 1 “room tickets”. Before entering
the room each logic programmer must
take a roomticket from a shelf beside
the door. This prevents all of the pro-
grammers from being in the room at
the sarne time.

The program uses a number of lin-
ear predicates: rm represents a room-
ticket, Log{X) represents the Xth pro-
grammer and ch(X) the X'th chopstick.

12 This problem is particularly apt — Ly-
gon’s name is of gastronomic origin.

Il

Since the Lygon implementation is
basically unfair, one of the logic pro-
grammers dominates the action. It is
- a simple matter (five lines of code) to
modify the Lygon interpreter to use a
fairer strategy which allows all of the
programmers a chance to dine.

go <= log{a) # neg ch(a)

neg rm # log(b} # neg ch(b)
neg rm # log(c) # neg ch{c)
neg rm # log(d) # neg ch(d)
neg rm # log(e) # neg ch(e).

log{N} <~ hack(N) * rm *
sucemod{N,N1} * ch(¥) * ch(¥N1)
* aat{N) * (neg ch(¥) #
neg ch(N1) # neg rm # log(N)}).

Procedurally, this code is read as: get
a room ticket; get the chopsticks in se-
quence; eat; return the chopsticks and
room ticket; go back to hacking.

succmod(d,e).
succmod{e,a).

succmod(a,b).
succmod(b,c).
succmed(c,d).

eat(N) <- print(’log(’)
* print(N} * print(’)
eating’) * nl.

hack(N) <= print(’Log(’)
4 print(¥) * priat(®)
hacking’) * nl.

We have the following interaction
with the modified system:

Lygon [’phil.lyg’].

Lygon go.
log(e) hacking
log(d) hacking

log(e) eating
log(d) eating

3.5 Counting clauses

Another problem, in which the prop-
erties of linear logic make a significant

simplification and which has been dis-
cussed as a motivation for the use of
embedded implications in the presence
of Negation-as-Failure [3, 5], is the fol-
lowing: given a number of clauses r(1),
...7(n), how can we determine whether
n is odd or even 7 The program below
has been used for this purpose.

:= not odd.
1~ select (X},
‘ {mark(X) => aven).
select(X) :- r{X), not mark{X).

even
odd

Note the dependence on the co-exist-
ence of Negation-as-Failure and embed-
ded implications. In the linear case, there
is no need to do the explicit marking,
as this will be taken care of by the Ly-
gon system. This can be thought of as
a simple aggregate problem; a good so-
lution to this would indicate potential
for more involved problems (and possi-
bly some meta-programming possibili-
ties). Clearly the marking step can be
subsumed by the linear properties of
Lygon, resulting in a conceptually sim-
pler program, which is given below.

check(Y) <~
r(X) * (toggle # check(Y)).
check{X) <~ count(X}.

toggle <- (count (even) *)
neg count(odd)) @ (count(odd)
* neg count{even)).

The goal

neg count{even) ¥ neg r(1)
neg r(2) # check(X).

returns the answer X = even.

4 Other techniques

We briefly review the possibility of pro-
grammingin Lygon with notions of glo-

1L

bal variables, mutual ezclusion and pre-
serving coniezt. Other possible notions,

not considered here but briefly discussed
in [9], include “soft” deletes and addi-
tions.

4.1 Global variables

In linear logic, formulae cannot be cop-
ied unless they commence with a !, vari-
ables which appear outside the scope
of a ! cannot be standardized apart;
hence variable names can persist across
clauses. Consequently, we denote any
universally quantified variable which ap-
pears in a clause outside the scope of
any occurrence of ! as a global variable.
Such a variable can oceur in more than
one clause and, in contrast to Prolog,
such occurrences cannot be standard-
ized apart. This is because in linear
logic the universal quantifier does not
distribute over €, ¢.e., that the two for-
mulae Vz. (p(z)®¢(z)) and (Vz. p(2)}@
(V. g(x)) are not equivalent. This con-
trasts with the case in classical logic,
in which the formulae Vz. (p(z) A q(z))
and (V. p(x)) A (Vz.g(z)) are equiv-
alent. So in linear logic, the substitu-
tion generated by a unification must
sometimes be propagated to other clau-
ses. |
Thus when a glebal variable is in-
volved in a unification, the resulting
substitution must be applied to other
parts of the program. In programming
terms, this property can be interpreted
as a {restricted) form of a pointer.
Another possible application of glo-
bal variables is to message passing. In
this case, the variable would be instan-
tiated to a non-ground term, usually a
list, with the ground parts of the in-
stantiating term being interpreted as a
message. The last element of the list

13

would always be a variable, thus en-

suring that the message-list can always

have a further message appended to it.
In this way different clauses can com-
municate by means of this shared me-
ssage-list.

A mixture of global and local van-
ables can have some interesting effects.
For example, consider the definite for-
mulae Ve.!Vy. p(z,y), corresponding
to the clause !p{z,y), in which z is
global and y is local. For the formula
p(t1,12) ® p(uy, uz) to be provable, we
must have that {; = u;; but there is no
restriction on £y and ¢g. Hence we have
that 1p(z, y) F p(a, b) @ p(e, ¢) but not
tp(z, y) F pla, b) ® ple, d).

4.2 Muiual exclusion

The connective & can be thought of
as specifying internal choice; in other
words, when faced with a hinear pro-
gram clause such as Cy & C4q, one can
replace it with either C or . How-
ever, it is not (generally) possible to
replace it with both subformulae. Thus
& can be interpreted as a mutual ex-
clusion operator — the use of one for-
mulae precludes the use of the other.
Logically, this arises from the form of
the &L rule, read as a reduction oper-
ator. For example, in

G — AiF A
LG — A1) &Gy — A2) A

1=1,2,

once we have chosen one of the basic
clauses G; -0 Aj;, the other is no longer
available.

Operationally, it seems most natu-
ral to implement this via backtracking,
which means that & behaves in a sim-
ilar manner to pruning operators. For
example, given the formula C; &C and

the goal &, we first try to prove G us-
ing the formula Cy. If we find that &
" succeeds, we are done. If ¢ fails, then
we can backtrack and use) instead.
However, at no time are both] and
Oy available. '

4.3 Preserving context

As noted above, one of the key features
of Lygon is the linear context that must
be maintained, 7.¢., the current resour-
ces. These resources are generally up-
dated by one goal and passed to an-
other. However, if it is desired o main-
tain the same resources, then & in goals
can be used. For example, to deter-
mine if G; succeeds and then restore
the same original context for the goal
G4, we need only ask the goal 1 & G5,
In general, it can be better to use the
goal (Gt ® T) & (g, so that not all re-
sources need be consumed by the test.

5 Other linear logic
programming languages

As well as Lygon, there are various other
logic programming languages based on
linear logic. These include LO [2], Lin-
Log [1], ACL [14], £C {19}, Lolli {12, 11]
and Forum [15]. |

An adequate comparison of Lygon
with these languages is beyond the scope
of this paper. However, we emphasize
the following points: (i) Lygon is the
result of a systematic proof-theoretic
analysis of linear logic with respect to
the goal-directed account of logic pro-
gramming (17, 16}; (ii) Consequently,
Lygon is (based on) the largest frag-
ment of linear logic of all the languages
given above. Although Forum is descr-
ibed (in [15]) as a logic programming
language for all of linear logic, only a

%

fragment of Forum is a logic program-
ming language according to the goal-
directed account of logic programming
[16, 17], the rest of linear logic being
obtained via equivalences which lack
goal-directed proofs.!* J. Hodas and
J. Polakow have recently made similar
observations.

6 Discussion

One of the main lessons that we have
learnt from writing programs in Ly-
gon is that the programming method-
ology seems to have some significant
differences from Prolog. In particular,
resource-sensitivity is critical, For ex-
ample, in the blocks world program in
§ 3.3, the information that we wish to
extract from the computation is the fi-
nal state of the blocks. This is given ex-
plicitly by the state of the linear predi-
cates rather than by any particular an-
swer substitution. This suggests that
programming in Lygon would seem to
be resource-orienied rather than just
substitution-oriented — it is easy to en-
visage input and output as formulae,
rather than just as terms.

More examples in which the linear
logic basis of Lygon facilitates elegant
solutions to problems are given in [21].
Included are modelling exceptions, pars-
ing visual diagrams using multiset gram-
mars and solving bin-packing problems.
Other possibilities for further investi-
gation include the use of Lygon as an
object-oriented language (cf [2]) and
the use of Lygon for agent.based ap-
plications which combine planning and
concurrency. ‘

The operational model on which the
current implementation [22, 21] of Ly-
gon is based represents only one choice

4 Gee also Footnotes 5 and 12.

_among many. For example, many vari-

ations on the basic input/cutput model
are possible, One possibility would be
a concurrent model in which different
muttiplicative branches of a search, e.g.,
created by a @R, would have access to
the same collection of resources, thereby

ot

necessitating explicit communication be-

tween branches as resources be con-
sumed. Other variations would include
ones motivated entirely by efficiency
cOnCerns.

Acknowledgements

We thank the referees and many coi-

“leagues for their comments this work.
The partial support of the Australian
Research Council, the Collaborative In-
formation Technology Research Insti-
tute, the Centre for Intelligent Deci-
sion Systems and the UK EPSRC is
gratefully acknowledged. Michael Wini-
koff is supported by an Australian Post-
graduate Award.

References

1. J. M. Andrecli. Logic Programming with
Focusing Proofs in Linear Logic. J. Logic
Computdat. 2(3), 1992

2. J.-M. Andreoli and R. Pareschi. Linear ob-
jects: Logical processes with built-in inhers
itance, New Gen. CTomp,, 9:1445-473, 1981,

3. A. Bonner and L., McCarty. Adding
Negation-as-Failure to Intuitionistic Logic
Programming. Proec. NACLP, 681.703,
Austin, October, 1960,

4. N. Carriero and D. Gelernter, Linda in
context. CACM, 32(4):444-458, 1989.

5. P. Dung. Hypothetical Logic Program-
ming. Proc. 3rd. International Workshop
on Extensions of Logic Programming 61-73,
LNCS, Springer, 1992,

6. M. van Emden and R. Kowalski. The
Semantics of Predicate Logic as a Pro-
gramming Lenguage. J ACM 25:4:733.742,
19786,

7. }-Y. Girard. Linear Logic. Theoret.
Comp. Sei. 50, 1-102, 1987.

i1,

12.

13.

14.

15.

16.

17.

i8.

19,

20.

21.

22.

23.

8

0.

5. Honks and D. MacDermott, Monmono-

tonie Logic and Temporal Projection, Ar-
tif, Intell. 33:3:379-412, 1987.

. J. Harland and D. Pym. A note on the

implementation and applications of linear
logic programming - languages. Australian
Computer Science Commaunications 16{1),
647-658, 1594,

J, Harland, D. Pym and M. Winikoff. Pro-
gramming in Lygon: a system demonstra-
tion. This volume.

J. Hodas. Logic Programming in [ntu-
itionistic Linear Logic: Theory, Design
and Implementation. PhBP thesis, Univer-
sity of Pennsylvania, 1994,

J. Hodas and D. Miller. Logic Program-
ming in a Fragment of Intuitionistic Linear
Logic. Inform. and Coemputat. 110:2:327-
365, 1994.

3.C. Kleene. Mathematical Logic. Wiley
and Sons, 1968, .

M. Kobayash and A. Yonezawa. ACL -
A Concurrent Linear Logic Programming
Paradigm. Proc. ILPS'93, D. Miller (ed.),
279-294, MIT Press, 1993.

D. Miller. A multiple-conclusion rmeta-
logic. Proc. LICS'94, 272-281, IEEE, 1994.
D. Miller, G. Nadathur, F. Pfenning and A.
§eedrov. Uniform Proofs as a Foundation
for Logic Programming. Ann. Pure Appl.
Logic 61 (1991) 125-157.

D. Pym and J. Harland. A Uniform Proof-
theoretic Investigation of Linear Logic Pro-
gramming. J. Legic Computat. 4:2:175-
207, 1994.

J. Vaghani, K. Ramamohanarao, F}. Xemp,
Z. Somogyi, P. Stuckey, T. Leask and J.
Harland. The Aditi Deductive Database
System. VLDB J. 3:2:245-288, 1594.

P. Volpe. Concurrent Logic Programming
as Uniform Linear Proofs. In: G. Levi
and M. Rodriguez-Artalejo (eds.), Alge-
braic and Logic Programming, 133-149.
Springer, 1994,

D.S. Warren., Programming the PTQ
Grammar ‘in XS5B. in Applications
of Logic Databsses, Raghu Ramakrishna
(ed.}, Kiuwer Academic, 1994,

M. Winikoff. Lygon home page {subject to
alteration). http://www.cs.nu. oz . au/
“winikeff/1lygon/lygon.atal.

M. Winikoff and J. Harland. Implement-
ing the linear logic programming language
Lygon. In: J. Lloyd (ed.), Proc. ILPS'95,
66-80, MIT Press, 1995,

M. Winikoff and J. Hariand. Some appli-
cations of the linear jogic programing lan-
guage Lygon. Australian Computer Sci-
ence Communications, 18(1), Kotagiri Ro-
mamohanarao {editor), 1996,

This article was processed using the BTEX
macro package with LLNCS style.

IS

