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Abstract

The combinatorics of proof-search in classi-
cal propositional logic lies at the heart of
most efficient proof procedures because the
logic admits least-commitment searck. The
key to extending such methods to quantifiers
and non-classical connectives is the problem
of recovering this least-commitment princi-
ple in the context of the non-classical/non.
propositional fogic; i.e., characterizing when
a least-commitment (classical} search yieids
sufficient evidence for provability in the (non-
classical) logic.

In this paper, we present such a characteri-
zation for the {D, A)-fragment of intuitionistic
logic using the Au-calculus: a system of real-
izers for classical free deduction (¢f natural
deduction) due to Parigot.

We show how this characterization can be
used to define a notion of uniform proof, and a
corresponding proof procedure, which extends
that of Miller et al. to multiple-conclusioned
sequent systems. The procedure is sound
and complete for the fragment of intuitionistic
logic considered and enjoys the combinatorial
advantages of search in classical logic.

1 Introduction
1.1  Proof procedures and search

A proof procedure for a logic is an effec-
tive method of computing evidence for
or against putative consequences in the
logic. The traditional decomposition of
proof procedure into inference system
and search strategy, as discussed for
example in [11], reflects the computa-
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tional reality that logical consequence
in logics of interest is typically semi-
decidable. The inference system serves
as the major organizing principle for
the proof procedure, and is the primary
focus when seeking gains in efficiency.

When tableaux rules, or inverted se-
quent rules, are used as the basis for
an inference system, standard modi-
fications are swiftly introduced with
the aim of reducing redundancy in the
search space; Skolemization and unifi-
cation (e.g., [8, 4]) being the two most
favoured.

These modifications focus on the
combinatorics of quantifiers and are
particularly easy to justify in the case
of classical logic owing to the extensive
equivalences available in that setting
which support a complete separation of
the propositional and quantificational
structure of a formula. This prop-
erty is summarized variously by the
Prenex Normal Form Theorem, Her-
brand’s Theorem {6], Gentzen's Mid-
sequent Theorem [5], or Smullyan’s
Fundamental Theorem [24]. The ex-
istenice of most general unifiers then
permits the least-commitment proper-
ties of classical propositional search to
be recovered in the quantificational set-
ting. _

Extension of these methods to quan-
tified non-classical logics has been con-



.sidered problematic since a separation
of propositional and quantificational
structure is not achievable while main-
taining the principle that the construc-
tors for the staies of search, i.e., the
inverted inference rules, remain sound.
Indeed, interest in tableaux methods
for non-classical logics can be said to
stem from the fact that such meth-
ods permit local treatment of propo-
sitional structure by means of formu-
lae on the tableau, together with a
global treatment of quantification using
the tableau structure itself. This ap-
proximates the efficiency achievable for
classical quantifiers. Various authors
- have explored the limits of these hybrid
-techniques in non-classical logics while
respecting this restriction 4, 3, 23].

We pointed out in [25] that this
restriction to propositional fidelity in
tableaux and inverted sequential meth-
ods is a curious half-way-house; the
benefits of replacing local conditions
on quantifiers (eigenvariable conditions
and local choice of instantiating terms)
with global ones (the occurs-check and
unification) is a general technique ap-
plicable to the problematic proposi-
tional structure in a non-classical logic.
This observation was developed in [26]
and [27] to give a comprehensive treat-
ment of first-order modal and intuition-
istic logics, and subsequently applied to
a system of first-order dependent types
18, 21]. |

Such an approach makes the least-
commitment combinatorics found in
classical propositional logic available
for organizing the search space in a
non-classical logic such as intuitionis-
tic logic. From the point of view of ef-.
ficiency, this is important since many
disjunctive choices in the naive intu-
itionistic search space can be repre-
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sented by a single state in the classical
search space. The local propositional
soundness of the naive approach is re-
placed by a global condition on the in-
formation associated with each {classi-
cal) state in the search space. In effect,
the proof procedure calculates classi-
cal realizers (see below) which are then
subject to a soundness check specific to
intuitionistic logic.}

Our aim in this paper is to study
this relationship in a little more detail
for the (O, A)-fragment of intuitionis-
tic logic, making some of these notions
explicit, and to apply the understand-
ing gained in the design of a resolution
proof procedure,

1.2  Overview of the paper

In § 2, we review the idea of proof
objects and realizers, outline the Ay
caleulus [14], and extend it by adding
conjunctive {or product) types and an
operation of explicit substitution. The
extended term calculus we call Ape.

The formulation of logic with proof-
objects in place has certain advantages
from the point of view of proof-search.
Specifically, it is possible to determine
from the structure of the realizing ob-
ject whether or not a classical search
has determined (the existence of) an
intuitionistic derivation. This is the
global soundness condition referred to
above. The details are developed in § 3.

In § 4, we consider briefly an appli-
cation to (hereditary Harrop) analytic
resolution.

lAn alternative view, sufficient for non-
classical logics with a classical propositional
basis, is to view the relationship as one of
embedding the truth conditions for the non-
classical logic in classical logic. See [13].



2 Proof-objects and Ap-calculus

~iaplicationsl types, We ihelude on T

2.1 Proof-objects and realizers

For the (D, A, V)-fragment of intuition-
istic logic proofs of a sequent I' — 4,
within a single-conclusioned calculus
of sequents LJ, can be interpreted as
constructions of natural deductions of
the succedent formula A from the an-
tecedent formulae in I" [28, 17, 1]. Such
a natural deduction ¢ can be seen as
a proof-object realizing (i.e., providing
evidence for) the consequence I' ¥ A.
¢ describes how to obtain natural de-
duction proofs of A from natural de-
duction proofs of the formulae in T,

In such a fragment of intuitionis-
tic logic, the relationship between the
proof-object ¢ and the formulaein T F
A is particularly intimate. Specifically,
if I'= Aq1,...,An and if each 4, is la-
belled with an assumption marker, z;,
then A corresponds to a A-term of type
A, built out of variables z1,...,Zm.-

This correspondence, between natu-
ral deduction proofs and A-terms on
the one hand and propositions and
types on the other, does not hold for
classical natural deduction. However,
Parigot’s Ap-calculus [14] provides an
elegant language of proof-objects based
on an algorithmic interpretation of
classical sequent calculus provided by
cut-elimination. The proof-objects are
realizers for muliiple-conclusioned se-
quents I' —+ A, A, where A is a distin-
guished, or active, formula. Au-terms
provide combinatorial evidence for the
existence of classical sequent deriva-
tions.

2.2 The Ay-calculus.

We begin by introducing a variation
on Parigot’s Ap-calculus [14}, which we
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shall refer to as Aupe. In addition to
junctive types and explicit substitutions
u{t/z}. The latter are used in the
analysis of search below to give suit-
able representatives for possibly incom-
pletable sequent derivations.

The raw terms of the Ape-calculus
are given by the following grammar:

t z | Amd.t ] it |

| {&,8) | =(t) | ='(t)
o]t | pet | t{zt/y}

The rules for well-formed terms are
given in Figure 1. The reduction rules,
which are those of Ap together with
those necessary to avoid interference
between MAu-reductions and explicit
substitution, are given in Figure 2.
Note that the non-interference reduc-
tions, second column Figure 2, do not
have a base case of the form z{yt/z} ~
yt: we do not reduce the e-construct,
{—/—1, itself. Moreover, there is no
case of the form t{ys/z}{y't'/z'} ~
we do not compose explicit
substitutions. Informally speaking, e
constructs occur in nermal Ape-terms
either (i) immediately to the right
of variables, or (i) immediately to
the right of another e-construct, e.g.,
(i) (zt){ys/z} ~ z{ys/x}t’, where
t{ys/w} ~* t' (the normal form of
Hys/w}) or (i) o{ys/wHy's'/v').
The Ap-calculus provides an account
of classical free deduction, which is
natural deduction extended to multi-
conclusioned sequents: i.e., the terms
are realizers for a calculus in which
multiple-conclusioned sequents can be
derived without impure constraints [2].
Consequently, the form of the typing
judgment in the Ap-calculus is I F
t: A, A, where T is a context famil-
iar from the typed A-calculus and A
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The second instances of the rules [] and p model contraction and weakening respectively.

Figure 1: Rules for well-typed Aue-terms

B (Az: At)s ~ t[s/z] . 2} b A

pov fIR0s o it/ (RO A ile/)

H—n pofols ~+ s if o not free in s ([2dt){ys/2} ~ [ojt{ys/z)

g [)(pas) ~ sly/al (poct){ys/z} ~» pont{ys/z}

p—prod 7:(#&‘4)(8-8} ~ I-L,@B-t[iﬁ]‘”’(ﬂ}/[o‘]“; . Also obvious cases for conjunctive
‘ ' (e 8) o~y Sty () (o] terms. Standard variable-capture

proj ”f((ts 3)) ot : conditions assumed.,

®'{{t,s}) ~ s

The term £[s/[a]u] indicates the term ¢ with ali oceurrences of a subterm of the form [a]u
replaced by s.

Figure 2: Reduction rules of the Ape-calculus

FA=As A2

C4,B— A 't — A, 40 T's — B, Ay

FAAB A N FrTs > AR B, AT Ay AR
I'A— Ay '3, B— As VL "— A BA VR
Iy, T2, AV B — Ay, Ay I —AVEA
Ty ey A A I'a, B — As SE I'NA,— B SR
I, 2, ADB — Ay, A0 I'— ADB A
L AA rA— R
,-A— A I'— -AA

.Figure 3: Cut-free multiple-conclusioned sequent calculus for intuitionistic logic
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is a context containing types indexed

" by names, «, 5, ..., which are distinct

from variables. The idea is that each
Ap-sequent has exactly one principal
formula, A, on the right-hand side, the
leftrmost one, which is the formula upon
which all introduction and elimination
rules operate. This formula is the type
of the term ¢.

The term [a]t realizes the introduc-
tion of a name. The term po.[G]f re-
alizes the exchange operation: if A%
was part of A before the exchange,
“then A is the principal formula of the
succedent after the exchange. Taken
together, these terms also provide a
notation for the realizers of contrac-
tions and weakenings on the right of
a multiple-conclusioned calculus. It is
also easy to detect whether a formula
B? in the right-hand side is, in fact,
superfluous, i.e., that there is a deriva-
tion of I"  #: A, A" in which A’ does
not contain B; it is superfluous if 3 is
not a free name in ¢, This observation
is exploited in the sequel.

Qur extension of the Au-calculus in-
volves adding conjunction and a form
of explicit substitution. The former ex-
tension is trivial; the latter deserves
some discussion. The presentation of
the Ap-calculus in [14] is as a system
of linearized natural deduction for mul-
tiple conclusions, with implicational
types both introduced and eliminated
on the right-hand side. An alternative
formulation of Parigot’s system, not af-
fecting the structure of the derivable
terms, would be as a sequent calcu-
lus, with the elimination of implica-
tional types on the right replaced by
the introduction of implicational types
on the left, as follows:

TwBF&C, A 'HsiA L
Do ADBF tlzs/wj: O, A

ApDL

S

Such a rule is admissible in Parigot’s

system since the cut rule,

T4 A DuwAFGB A
Tk t{s/w]: B, A '

ApCut

is also admissible. In these rules the
substitution [t/x] is the usual implicit,
meta-theoretic one. An analysis such
as this for a system of first-order de-
pendent function types is presented in
[19] and exploited as a basis for a the-
ory of proof-search in [21],

The rule (eL) of Figure 1, which
introduces the explicit substitution
u{zs/w}, corresponds exactly to the
usual left rule for implication, but with
explicit substitution replacing implicit
substitution. The Ape-calculus, pre-
sented in Figure 1, contains this left
rule for explicit substitution together
with the usual introduction and elimi-

‘nation rules for the implication.

Aue terms are thus Ap terms en-
riched by the presence of explicit sub-
stitutions and pairing. If the substi-
tution were implicit, and so carried
out when introduced, some parts of a
derivation would not be represented by
the corresponding term. This happens
if the variable being replaced does not
occur in the term. The rule for explicit
substitution (el)) can thus be used to
model the DL rule of the classical se-
quent calculus directly. In {22], a simi-
lar analysis is provided for a proof sys-
tem for SLD-resolution over proposi-
tional implicational Horn clauses. Her-
belin {7] also uses explicit substitu-
tions, for a similar reason, in his ver-
sion of a translation of intuitionistic se-
quent calculus (LJ) into a modified A-
calculus. His concern, however, is to
restrict LJ 50 as obtain a bijective cor-
respondence between A-terms and LJ-



derivations.

The choice of a distinguished formula
on the right hand side of the sequent is
enough to ensure strong normalization
and confluence. Parigot’s proof [16] ex-
tends to the conjunctive types and ex-
plicit substitution.

Theorem 1. The
strongly normalizing.

Ape-coleulus i

Proof sketch. Since there are no
reductions ~+ that introduce nested
explicit  substitutions, Parigot’s
reducibility proof [16] of strong nor-
malization can be extended to Aue.
Local confluence can be checked by
joining all critical pairs which are
generated by the rules for explicit
substitution.  Strong normalization
then implies conflugnce (by Newman’s
Lemma {10]). 0

3 HRepresentation of sequent
derivations in Aue

In this section, we describe the use of
the Aue-calculus to represent sequent
proofs. The classical nature of Aue-
caleulus influences the way in which
it can be used to represent intuition-
istic sequent derivations. Hence we be-
gin with some observations about the
relationship between intuitionistic and
classical sequent derivations.

In general, every intuitionistic
derivation arises as a subderivation
of a classical derivation. Because the
DR rule allows multiple succedents in
the premiss, two different intuitionistic
sequent derivations, which are not
identical up to a permutation of in-
ference rules, can be subderivations of
the same classical sequent derivation
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-B — ADB,DDE.

up to a choice of axioms. For exam-
ple, consider the two intuitionistic
derivations?
e 4 23
B,A— B }
—o e DR
B — ADB,COB

and

e A, 3
B,C —B
e ¥ -
B~y CDB,ADB

They arise as restrictions to intuition-
istic logic from the following classical
derivation:

T A
B AC-—BEB

oR
B, — AnBB, B

SR,
B - ADB,CDB

In this case, both derivations are
proofs even in intuitionistic logic, and
hence the order in which the DR rules
are executed does not matter. In gen-
eral, however, this order matters [27)].
As an easy example, take the sequent
If the formula
AD B is reduced first working from root
to leaves then the search succeeds, oth-
erwise it fails. However, in classical
logic the order does not matter. So
it becomes apparent already that the
search in the classical sequent calcu-
lus, when viewed as a search for intu-
itionistic proofs, proceeds in paraliel:
one classical sequent derivation may
have many intuitionistic subderivations
which are not permutations of each
other.

2These two inferences can either be consid-
ered to be instances of DR in our multiple-
conclusioned intuitionistic sequent calcuius
given in Figure 3 (cf. [27]) or combinations of
explicit weakenings and DR instances in Dum-
mett’s system {2].



.. Although inferences in classical logic

can be freely permuted [9], the prop-
erty of a classical sequent derivation
having an intuitionistic subderivation
is not always invariant under permuta-
tion. Examples of this phenomenon are
a bit more complicated. Consider the
sequent

z:ADB,y: (ADB)DB — B,

where we have attached variables to the
antecedents to make it easier to refer
to a specific formula. If first = is re-
duced and then y, there is no way of
identifying an intuitionistic subderiva-
_tion. However, if we reduce first y, and
then z, then we obtain an intuition-
istic derivation. Both derivations are
shown in Figures 6 and 7 respectively
{3ee page 17). ,
Below, we show how to formulate
a condition on classical derivations to
determine when they have intuition-
istic subderivations. This is formu-
lated as a condition on a Aue-term that
interprets the classical derivation (see
Definition 4). Subsequently, we show
how transformations on the Ape-terms
can be used to characterize the search
space over a given endsequent (see The-
orem 11). We prove the completeness
of a particular search strategy for clas-
sical logic with respect to intuitionistic
provability. Again, the formulation of
this strategy uses Ape-terms (see The-
orem 15).

3.1 Translation into Aue

We start by giving the translation from
classical sequent derivations into the
Aue-calculus. Note that the classical
sequent derivations have to be suitably
annotated for the definition. Firstly,
each sequent has one principal formula
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in the succedent together with an ar-
bitrary number of additional formulae.
We introduce a name for each addi-
tional formula in the succedent and a
variable for each formula in the an-
tecedent. Secondly, the translation has
to take the explicit exchange rule in
the Aue-calculus into account. For ex-

- ample, the axiom I'z:A — A,BF

can be translated to the variable z; on
the other hand, the axiom I',z: 4 —
B, A™, must be translated to the Ape-
term po[f)z.

We shall use the following notation:
if ¢ is a derivation whose last rule is R
applied to the derivations ¢i,...,9n,
we write (¢1,...,¢n); R for é.

Definition 2, Let :T' — A A be
a clagsical sequent derivation and sup-
pose that each occurrence of o for-
mule i I' and A has o lobel, ie.,
we have I' = zy:14,..., 2040 and
A= Blﬁl, . ,ij,‘“. (These labels turn
inte variables and names in the Ape-
calculus, hence we olso use them for
the derivations.) We define a Aue-term
[#] by induction over the structure of
¢ as follows (note the clause for the ex-
change rule):
Axiom: Suppose ¢ : I'mA — A A
i3 an aziom, then [¢] et o
Exchange: Suppose ¢:T — A, BP A,
and

¢ = pexc:T' — B, A% A,

We -define [¢'] to be the contrac-
tum of the term pfB. (][] with re-
spect to the rules p-v and p-1;

AL: Suppose we have the derivation

oAy B — A A
AL,

ATt AAB — A A



then the corresponding Aue-term is
[ ALD = [9lin (=) /2,7 () 9):

AR: Suppose we have the derivation
T — A A
(g, s AR — AAB A

@il = B, A

AR,

then we define
[(#, %) AR] % ([6]. [¥]);

O L: Suppose we have the derivation

D= A,C7, 4 Wl w B - C A

oL
(9,020, ADB = C A

then we define [(¢,9);DL]
to  be the contracturm  of

pr W] {elol/w} with respect
to the reduction rules p-v and
$-11,  via appropriate reductions

for {z{g]/w};
D R: Suppose we have the derivation

o A —tr B, A

OR,
¢ DR —> ADB, A

then we define [¢;DR] to be

Az Ao].

The labelling of the assumptions has
one important consequence, namely
that there are several possible trans-
lations for the same classical sequent’
derivation. As an example, take the
sequent derivation
Ax

B,C A= B, B
DR

B,A— C2B,B
DR,

B — ADB,COB

There are two possible Ape-terms cor-
responding to this derivation, namely

Az A.uB.[yhy: C.ud b

and
Az Apf.lyv]Ay: Ch,

where we use the name b to denote the
variable corresponding to the formula
B on the left-hand side. (We will often
use the lower-case version of the name
of a formula as the name of the cor-
responding variable.} The first proof
term uses the second occurrence of B
at the leaf for the axiom, whereas the
second uses the first oceurrence of B in
the succedent. In this case the differ-
ence does not matter — both deriva-
tions contain infuitionistic subderiva-
tions - but this is not generally true.

3.2 Intuitionistic provability

We consider a sequent calculus presen-
tation of intuitionistic logic with multi-
ple formulae on the right with weaken-
ing built into the inference rules, as in
[27]. The rules are given in Figure 3.
They are a restriction of the classical
sequent calculus in which DR and ~R.
are permitted for only for, respectively,
singleton and empty succedents.

In deciding when a classically deriva-
tion indicates that its endsequent is
intuitionistically provable, the require-
ment is to detect superfluous infer-
ences. Consider again the sequent
B ~+ ADB,DHE. This sequent has
an intuitionistic proof in which A B is
reduced first. There is also the follow-
ing classical proof of this sequent:

————— A .
B,AD— B E

- DR
B, A— B, DOE

OR.
B — ADB,DDE



We want to be able to detect that the
use of the DR rule to reduce the for-
mula DDE is superfluous by using the
Ape-term corresponding to this proof,
we can then conclude that there is an
intuitionistic proof of this sequent. The
Aue-term representing this derivation

Az: A.pf.[y)Ay: D.pe.[B]b

this amounts to determining when a
subterm (here the M-abstraction over
D) models weakening on the right. The
technical details follow below.

Definition 8. We define weakening
terms and weakening occurrences of
names by induction over the structure
of terms as follows:

(i) pa.t is o weakening term if
all occurrences of & in t are weak-
ening occurrences;

(i) (t,8) is o weakening term if
t and s are weckening terms;

(i) Az At is o weokening term
if t is o weakening term and if T
18 not free in t;

(iv) The outermost occurrence of
a in [a]t is a weekening occurrence
if t is a weakening term;

(v) t{u/z} is a weakening term
if t is o weakening term.

Now we can define our first crite-
rion for when a classical sequent deriva-
tion determines the existence of an in-
tuitionistic one.

Definition 4. Cuall o Ape-term intu-
itionistic if in any subterm Az A. ¢
which is not a weakening term, all oc-
currences of free names are weakening
OCCUTTENCES.

the beginning of this section.

. Let us reconsider the examples at
There
are two Aue-terms corresponding to the
two derivations of B — ADB, DDE.
The first one, which corresponds to re-
ducing ADB first, is the term

Az: Ay Ay D.pe.[B]b

and the second one, which correspbnds
to reducing DD FE first, is the term

Ay: D.pd.la)Az: Ab .

In both cases we have an intuitionis-
tic A-term because the A-abstraction
over [} is a weakening term. This ex-
ample shows the parallelisim obtained
by using a classical sequent calculus:
both intuitionistic subderivations of ei-
ther of the classical proofs are consid-
ered simultaneously without any need
for backtracking.

As an example of a non-intuitionistic
term, consider Peirce’s formula,
((ADB)DA)DA. The classical proof
of this formula is

—— A

A— B, A

e 7 R, Az

ey ADB, A A s A
oL
{ADB)DA —+ A
- DR,

— ((ADB)DA)DA .

If this proof is translated into the Aue-
calcalus, the term obtained is

Az {ADB)D A pafale {z(Ay: A.up.aly)/a}.

The name « has a non-weakening oc-
currence in the A-abstraction over A;
hence this term is not intuitionistic.

Next we show the correctness of the

criterion. The crucial point is that a
weakening term corresponds to a su-
perflucus subderivation. The following
lemma makes this precise.



Lemma 5. Let ¢ be a derivation
¢1F,A1,...,An — A,Bl,...,Bm,ﬂ
such that I'yay:Ay,...,0n 4, F
[¢]: 4, BY, ..., B8 A holds.  If
the variables a; do not occur in [o]
and if the B; have only weckening
occurrences, then there is a procedure
to construct a sequent derivation of
' — A A Moreover, if [¢] is
a weakening term, then there is a
procedure to construct o derivation of
I' —> A. These procedures transform
sequent dertvetions which have an
intuitionistic subderivation into those
with the same property.

Proof. By induction over the strue-
ture of sequent derivations. We give
the case of a 2 L rule to iilustrate
the argument. Suppose we are given
a proof ending with

T CAY A T,D— AA

oL
o CoD — A A

and suppose that its Aueterm is
pofalt {zs/w}. The only interesting
case arises if this term is a weak-
ening term. In this case, the name
« has only weakening occurrences
in ¢t and in s, and ¢ is a weakening
term. By the induction hypothesis, we
obtain derivations of ' — C, A and
[, D — A and hence also a derivation
of [,CoD — Al |

Finally, we are in a position to
show the correctness of the criterion.

Theorem 6. Let &:T — A A be o
classical sequent derivation. If [o] is
an intuitionistic Ape-term, then there
exists an infuilionistic derivation of
I' —+ A4, A,

Proof. We proceed by induction over
the structure of derivations of sequents.

[0

Suppose the last rule is the rule DR
to obtain a sequent I' — ANB, A,
By the induction hypothesis, we have
an intuitionistic sequent derivation of
VA - B,A. Let [¢] = Aa: A.t. Ei-
ther [¢] is a weakening term, in which
case Lemma 5 implies that there is also
an intuitiopistic derivation of ' — A,
and hence also of ' — ADB,A. If
[¢1 is not a weakening term, then
there are no free names in [¢] that
have a non-weakening occurrence.
Hence by Lemma 5 again, there is an
intuitionistic derivation ' A — B,
Now the intuitionistic DR rule yields
the result. O

3.3 Representation of uniform
proofs

In this subsection and the next, we
show that a certain classical proof pro-
cedure is sound and complete for in-
tuitionistic provability in the fragment
{0, A). The proof procedure is a exten-
sion of Miller’s notion of uniform proof
to multiple-conclusioned systems.

A uniform proof [12] is a sequent
derivation in which, when read from
root to leaves, all right rules are applied
whenever it is possible so to do, except
for axioms with non-atomic principal
formulae.® We call a proof fully uni-
form if right rules are preferred even
over axioms. The notion of a uniform
proof leads to a simple, highly deter-
minsitic search algorithm: first apply
all possible right-rules; then select an
appropriate left-rule. Note that Miller
et al. define uniform proofs for the full,
single-conclusioned calculus LJ [5]. In

3 An axiom is said to be atomic just in case
its principal formula is atomic.




_this case, not every LJ-provable propo-
sitional sequent has a uniform proof.
The reason is that it may be necessary
to apply the VL rule before the VR
rule to obtain a proof. In the (D,A)-
fragment this argument fails and we
will be able to show that every provable
sequent in this fragment has a uniform
proof. If we were to add V a restric-
tion to hereditary Harrop formulae, as
used by Miller et al., would seem to be
necessary.

As a first step we examine how the
‘Ape-calculus models uniform proofs.
We start with important properties of
Ape-terms which are the translations of
uniform classical proofs.

Definition 7. Let ¢ be ony Aue-term
such that ' £ A, A. A uniform term
CA(ty,...,tn) for £ is a Ape-term with
parameters (holes) t1,.. ., t, defined by
induction over the structure of A as fol-
lows: -

(i) If A is o base ifype, then
CA(t) = s, where s is the normal
form of t;

(ii)
define CA2B(ty, ... tn)
A A.CB(ty, .. tn),
CB(ty,...,tn) is the
term for tx;

(iii)

For o function type ADB,
to be
where

uniform

For a product type AAB, de-

ﬁne CAAB(tl-p'-'stnvsl?"-vsm)
to be

(CA(ty, . 2, CB (51,0 8m)) s
where CHty,...,tn)  and
CB(sy1,...,8m) are the uni-
form terms for my(t) and m2{f},
respectively.

Lemma 8. Suppose t {zs/w} is a sub-
term of [¢], where ¢ is o fully uniform

classical proof. - Then s is equal to its
uniform term CA(s1,...,8m).

Proof. By induction over the struc-
ture of derivations. |

The notion of a uniform classical
proof generalizes the corresponding no-
tion for intuitionistic logic {12]. This is
made precise in the following:

Proposition 9. For the (D,A)-
fragment: every LJ sequent derivation
¢ translates under [—] inte o Ape-term
with no names. Moreover, if ¢ is fully
uniform, then [¢] is a A-term in long
pn-normal form (after replacing all
occurrences of t {zsfw} by tizs/w}).

Proof. The absence of names in [¢]
is & direct consequence of the absence
of any structural right-rules in ¢. The
uniform term of a A-term is its long
Br-normal form, which is well-typed
in the usual simply typed A-calculus
[1]. m|

3.4 Permutations

We shall now analyse the effect of per-
mutations on classical uniform proofs.
This is important because there are
{well-known) non-permutabilities in in-
tuitionistic logic. We have seen ex-
amples of this already, namely with
the sequents B —» ADB,DDE and
(ADB)DB,ADB — B. The first
case covers the exchange of two right-
rules. There, the order in which the
two right-rules were executed did not
matter. The second case concerns the
exchange of DL rules. Whereas in the
first case, where there is a general strat-
egy which renders an exhaustive search



of all permutation variants superfluous,
in the second case we do have to take
into account all possible permutations
of DL rules for completeness. The in-
variance under right-rules is covered by
the following lemma.

Lemma 10, Let ¢ be o classical se-
quent derivation such that [¢] is an in-
tuitiondstic Ape-term.

(1)  Ifv is the derivation resulting
Jrom interchanging two DR rules
in @, then [¥] is an intuitionistic
term.

(i

PA— B, C. A

If & is the derivation

DA e B.D, A
AR

CiA v BT.CAD, A

T == ADB, CAD A

then the derivation ¢ obtained by
permuting the DR rule over the
AR rule, towards the leaves, has
an intuttionistic Aue-term [yf.
Conversely, if we start with a ¥
such that [4] 4s an intuitionistic
Ape-term, and permute the rules
other way around, then at least
one of the Aue-terms that results
from a different choice of azioms
in the permuted derivetion is intu-
itionistic.

Proof. By induction over the struc-
ture of derivations. The additional
statement in (#4) arises from the fact
that if the term Az: A.u8.{v]t is not a
weakening term, then in [y}t the name
v has only weakening occurrences.
Now we use Lemma 5 to show that in
this case I', A — B has a intuition-
istic sequent proof. The derivation is
now obvious. a

12

There are cases in which moving
an DR rule below a AR rule can lead
to a derivation which has no intu-
itionistic Ape-term assigned to it. As
an example, consider the (permuted)
derivation

Am Az

B.D A~ B.C .0 A s B, D

AT
B.DA-—BCAD

B.D —— ADB.CALD

If we choose the axiom with principal
formula D to close the second leaf se-
quent, the resulting Ape-term is not in-
tuitionistic. However, with the other
choice, namely the axiom with princi-
pal formula B, we do obtain an intu-
itionistic proof.
We have completeness:

Theorem 11. If the sequent
P~ AA is intuitionistically
provable, then, for any possible order
of right-rules applied to the succedent,
there erists o fully uniform (classi-
cal} proof ¥ of the sequent with this
order of right rules such that [] is
intuitionistic.

Proof. Since the sequent I' — A4, A
is intuitionistically provable, there ex-
ists a formula Bin A, Asuch that ¢ isa
fully uniform LJ-proof of I' — B, and
where each leaf of ¢ is atomic. Note
that Proposition 9 implies that [¢] has
no names. Now show by an induc-
tion over the structure of formulae that
for any such derivation ¢ and any an-
tecedent IV and succedent A’, any or-
der of right rules applied to B, A/, there
is a fully uniform proof ¢ : I''T" —
B, A’, with the order of the right rules
such that the following three conditions
are met: ‘

(i)

[} is intuitionistic;



..(t) % has only weakening occur-

rences of free names except pos-
sibly a name for the formula B,
and all subterms corresponding to
right rules reducing formulas in A’
are weakening terms;
(iii) the variables occurring in [V do
not occur in J¥]. '

The proof is concluded by setting
Al = A" where A" is obtained from
A by possible exchange of A and B. O

This proof does not extend to the frag-
ment containing Vv rules. The reason
is that Proposition 9 no longer holds
as the uniform proof of the sequent
AV B — AV B introduces a non-
weakening name for B.

4 Application to (hereditary
Harrop) analytic resolution

In this section, we apply the above
results to an analytic resolution pro-
cedure for intuitionistically provable
hereditary Harrop formulae based on
the DL rule. The restriction to the
hereditary Harrop fragment facilitates
the search procedure: in an application
of a DL rule to the formula BDA, the
formula A is always atomic, and hence
can be matched with a formula in the
succedent. There is no loss of gener-
ality in this restriction because every
intuitionistically valid formula over 5
and A is equivalent to a hereditary Har-
rop formula.

The definition of propositional
hereditary Harrop formulae in the
absence of disjunction {(cf. [12, 20]} is
as follows:

3

Definition 12. Define goal formulae
G oand definite formulae D by

G u= A|GAG | D>G
D u= A|CGDA|{DAD,
where A is atomic. Call o sequent

I' — A hereditary Harrop if ' con-
sists of just D-formulee and A consists
of just G-formulae.

Definition 13. A segquent derivation
is called o resolution derivation if it
satisfies the following constraints for
rule applications:

(i)  An DR rule is applied only if
no formula on the right-hand side
18 o congunclion;

(i) An DL rule, with principal
formula GDA, is applied only if
all formulae on the right-hand side
are atomic and A occurs on the
right-hand side;

(iii) A AL rule is applied only if
all formulae on the right-hand side
are atomic;

{iv) An DL rule ¢s applied only
if no formula on the left-hand side
.18 @ conjunction.

We include condition (iv) only for
consistency with the usual definition
[12, 20}. It is inessential for the analysis
presented here. _

The primary difference between a
fully uniform preof and a resolution
proof is the requirement in the latter
that the atomic matrix of the principal
formula of each DL rule match with an
atom on the succedent of the conclu-
sion of the rule. Note also that the
application of both the left and right
rules has to be in a specified order -



conjunction first — in the case of the
latter.

Lemma 10 implies that if the re-
stricted order in which the right rules
are applied does not succeed in ob-
taining an intuitionistic proof, then no
other ordering will. Moreover, resolu-
tion proofs are complete for intuition-
istic provability of propositional hered-
itary Harrop formulae without disjunc-
tions.

Corollary 14. IfI' — A is an intu-
itionistically provable hereditary Har-
rop sequent, then there exists o reso-
lution proof i of this sequent such that
[w] is intuitionistic.

Proof. From Theorem 11, since any
resolution proof is uniform. a

So, in order to search for an intu-
itionistic proof of the sequent I' — A
it is enough to construct a resolution
proof and then check, for all possible
axiom instances and all possible ex-
changes of DL rules, whether the cor-
responding Ape-terms are intuitionis-
tic. Working on the Ape-terms, the first
step ceonsists in replacing a variable z
by pa.[Bly or wice versa. The second
step is a lot more complicated to cap-
ture. The reason is that the DL rules
introduce arbitrarily complex formulae
in the succedent: these formulae must
be decomposed.

To see the necessity of exchanging
DL rules, consider the sequent

z:ADB, y: (ADB)DB ~+ B .

One possible derivation is given by
Figure 8, in which z is reduced first.
The derivation in Figure 7 is obtained
from the first one by exchanging the
two occurrences of the DL rule, i.e,

|4

exchanging the order of reduction of
z and y, and then pushing the right-
rules to the root of the derivation,
thereby obtaining a uniform deriva-
tion. The corresponding Aue-terms are
#8816 {x{pa (816 {y(Aa: A.p8.[ala)/b})/b}
and b {y(Aa: A.b{za/b})/b}. The
first is not an intuitionistic Aue-term
because the A-abstraction over 4 is
not a weakening term, and yet the
occurrence of [a] is not a weakening
occurrence.  The second one is an
intuitionistic Ape-term because there
are no names (in fact, it is the uniform
derivation in the single-conclusioned
calculus L),

Note that both derivations are not
only uniform but are also resolution
derivations. This implies that the sec-
ond premiss in the DL rule is always
an axiom. However both premisses of
the D L rule are important for deter-
mining when a resolution derivation is
intuitionistic. The reason is that the
choice of the axiom at the right pre-
miss matters. This is not the case for
single-conclugioned intuitionistic reso-
lutions.

Now we describe the general situa-
tion. Consider Figures 4 and 5. The
former is intended to be a classically
valid uniform derivation.. The latter
is intended to be an intuitionistically.
valid uniform derivation obtained from
the former by permuting DL rules with
respect to one another and by inserting
any right-rules so induced.

Theorem 15. Let ¢ be the uniform
derivation given in Figure 4 and let

' {yCO(t;)/v}
{z(CH{(s: {vC% (ui3) v }) fw}

be the corresponding Ape-term. Then
the Ape-term corresponding to the ez-



changed dertvation, given in Figure 5,
is the term

t' {zCA{s:)/w}
{Y(CC; {20 (u

-
3

yfwi)/v)

where ), is the uniform term cor-
responding to po[yjus;. If the first
derivation 1is a resolution derivation, so
is the second one.

Proof. By induction over the struc-
ture of the formulae A and C. O

5 Conclusions

‘We have presented a characterization
of provability in the (D, A)-fragment of
intuitionistic logic in terms of the Ape-
calculus — a variant of Parigot’s Au-
‘calcutus. This calculus provides a sys-
tem of realizers for the {cut-free) clas-
sical sequent calculus. Moreover, we
have formulated a condition on the re-
alizers for when a classical derivation
yields sufficient evidence to judge the
provability of the endsequent in infu-
itionistic logic.

The characterization allows us to ob-
tain search procedures for intuition-
istic logic from search procedures for
classical logic. We have exploited this
by showing how an analytic resolution
procedure for intuitionistically prov-
able hereditary Harrop formulae can
be obtained by extending the notion
of uniform proof [12} to a multiple-
conclusioned setting. The conbina~
torics of the classical calculus can then
be used to compute realizers on which
the test for intuitionistic provability
can be performed.

There are at least two directions
for further work. A first is to ex-
tend the treatment to V and first-order
quantifiers. The restriction to heredi-
tary Harrop formulae would then be-

1S

come essential for formulating a sound

and complete analytic resolution pro-
cedure. The addition of v requires ad-
ditional work in the Ape-calculus be-
cause the introduction of formulae of
the form A vV B to a sequent effects
the properties of the names occurring
in the sequent, When we add quan-
tifiers we encounter a variety famil-
iar issues (cf. [27, 21]} connected with

the calculation of witnesses via unifi-

cation. For example, we must identify
suitable global correctness criteria that
do not require significant backtracking
[21, 23, 27}

A second direction concerns applica~
tions. One promising line is to anal-
yse the intuitionistic force of standard
classical proof procedures such as var- -
ious resolution methods, model elimi-
nation and tableaux methods, by rep-
resenting these procedures as methods
for constructing classical proof-objects
(i.e., Ape-terms).
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