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PARALLEL STRATEGIES FOR RANK-K UPDATING OF THE QR
DECOMPOSITION

ERRICOS. J. KONTOGHIORGHES*! AND DENNIS PARKINSON*

Abstract. Parallel strategies are proposed for updating the QR decomposition of an n x n
matrix after a rank-k change (k < n). The complexity analysis of the Givens algorithms is based on
the total number of compound disjoint Givens rotations (CDGRs) appled. The first algorithm is an
extension of the rank-one updating method. It computes the updating using 2(k +n — 2) CDGRs with
elements annihilated by rotations in adjacent planes. A second rank-one (greedy) algorithm that
applies rotations in non-adjacent planes is found to use approximately half CDGRs compared with
that of the serial rank-one algorithm, when n == 29, For k < g the efficiency of the greedy algorithm
which applies approximately {1 — 2-%)2(8+1 cpeRs, decrenses as k increases, while for k > g it is
found to require more steps than the first parallel algorithm. Block generalization of the serial and
greedy rank-one algorithms are also presented. Both algorithms are rich in level 3 BLAS operations
that make them suitable for large scale parallel systems.,

Key words. QR decomposition, Givens rotations, parallel algorithms

AMS subject classifications. 15A23, 65F05, 656F25, 65Y05

1. Introduction. Given the QR Decomposition (QRD) of a non-singular n x n
matrix A

(1) A=QR
the problem of recomputing the QRD of
k
(2) ﬁmA+Zwiy?mA+XYT
=1

is considered, where z;,4; € B, X = (1.2}, ¥ = (yy...y), B € ™" is
upper triangular and Q € R*** is orthogonal. The matrix XY” has rank k and
the problem is known as the rank-k updating of the QRD (hereafter rank-k UQRD)
problem. Observing that 4 = Q(R + QTXYT), the rank-k UQRD problem is the

reduction of
(3) A=R+2YT

into upper triangular form by orthogonal transformations, where Z = Q7 X. An al-
gorithm for updating the QRD after rank-one change, that is £k =1 in (2), has been
described in [6, 7). The purpose of this work is to develop and analyse parallel strate-
gies for fast rank-k UQRD, which is very important for applications where repeated
updating is required [18].
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2 E. J. KONTOGHIORGHES AND D. PARKINSON

The algorithms will be based on Givens rotations and Householder transforma-
tions. Throughout the paper GE? denotes a Givens rotation in plane (7, ) that reduces
to zero the element w;, when it is applied from the left of W € 7%, Tt is assumed
that the maximum of |n/2] disjoint Givens rotations can be applied simultaneously.
The product of these rotations is called CDGR, short for compound disjoint Givens
rotation [4, 10, 11, 13]. A single step equivalent to one time unit is required to con-
struct and apply a CDGR on matrices of any size, while the time required to compute
the rank-k updating B+ ZY7T in (2) is assumed to be negligible for any % and n.
Under these assumptions the simultaneous application of the ¢DGR on the orthogonal
matrix @7 in (1) will not have any affect on the time complexity of the algorithms.
Therefore, for simplicity the construction of the orthogonal matrix in the updated
QRD will not be shown.

In §2 a straight-forward parallelisation of the algorithm in [6] for solving the rank-k
UQRD problem is presented when k > 1. In §3 a greedy algorithm based on recursive
doubling is proposed for solving the rank-one UQRD problem. The generalization of
the rank-one algorithms and the adaptation of the block-parallel algorithms in [2, 9]
are investigated in §4 for solving the updating problem where & > 1. Finally, the
conclusions and future work is presented in §5.

2. Parallelization of the rank-one updating algorithm. The parallelization
of the rank-one UQRD algorithm in 6] is considered for the rank-k case, where 1 <
k < n. The first stage of the rank-one algorithm in [6] is to apply the n — 1 Givens
rotations V7T = Gg% . -GS_)__l’n_2GS.3;L_1 irto the augmented matrix (Z R) such that
VT(Z R) = (Ce; H), wheve ¢* = ZTZ, e is the first column of the n x n identity
matrix I, and H is an upper Hessenberg matrix [7]. After computing H = H +
Ce: YT, the second stage of the algorithm computes the n — 1 Givens rotations U7 =
Gmﬁ; G’QGSQ to retriangularize the Hessenberg matrix H. Thus, the UQRD

of A= A+ XYT = QVUR, = Q.R,, where R, is upper triangular and (2, is
orthogonal. A total of 2(n — 1) steps have been applied using this algorithm.

For the solution of the rank-k UQRD problem when k£ > 1 the above algorithm
can be repeated & times using 2k(n — 1) steps. However, computations on z;, the ith
column of Z, can commence after the last two elements of z1 (¢ = 2,...,k) have
been annihilated. Therefore, the annihilation of the elements in z; can start at the
(2i — 1}th step and will fill-in successively the ith subdiagonal of R. Once z; has been
reduced in the form ;e; the rank-one updating R+ ;e y? is performed. This method
is a variation of Sameh and Kuck annihilation scheme (hereafter VSK algorithm) in
(17] and requires 2k + n — 3 steps to perform the first stage of the rank-k UQRD
problem. Alternatively, the annihilation of the elements of z; can stop once the ith
subdiagonal of R has been filled-in, since at this stage the updating R + z;yf could
be performed without creating any further modification of the structure of R. This
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(SK algorithm) is equivalent in computing the QRD

« R.\k
@ QTZ:(O)n_k

using the SK annihilation scheme and H = QTR. The matrix resulting from the
rank-k updating

) A= H+ (fz”) y7

will have the same structure as H, that is, its last n — k — 1 subdiagonals will be
zero. The first stage in Fig. 1 illustrates the transformations on Z and the fill-in of
R, where n = 8. At the first stage the integers ¢ in the matrix Z and 7 in matrix
R denote, respectively, the elements annihilated and the fill-in after applying the ith
CDGR.

For the retriangularization of H a total of k4 n — 2 CDGRS can be used. At step
k + 1 — i the elements of the ith (i = 1,...,k) subdiagonal start to be annihilated
successively by the n — ¢ Givens rotations Ggi)l’z-, Gf;j_)% IR ,GE::“;i)l. In the case of
the VSK algorithm, the triangularization of H can start after the (k+n — 1)th CDGR
has been applied into Z. That is, the VSK algorithm requires one step more than the
SK algorithm. The total number of CDGR applied using the SK algorithm is given by

Tolbyn) = 2(k + 1 2).

Alternatively, the H matrix can be triangularized by the series of n — 1 House-
holder transformations POV, P2 P(n=1} where P annihilates the elements i+1
to min(k + 4,n) of the ith column of H (i = 1,...,n ~ 1) by using the ith row of
H as a pivot row. Observe that the last Householder reflection is equivalent to a
single Givens rotation. Furthermore, the parallel algorithms are identical to the se-
rial rank-one Givens algorithm in [6] when k = 1. The second stage of Fig. 1 shows
the annihilation pattern of both methods. In the case of Householder reflections an
integer ¢ (i = 1,...,n — 1) denotes the elements annihilated by the ¢th Householder
transformation.

Z e [Cre1] 2 — R, R—H H - R, B R,
siele slele sleieinfeicle]e s[e[elnela]sle sie[e|e|e|e|n]e
Tiehl Tiel® Fia[oia|eie|e]e sle[eis[eleleie 1[eleelelula]e
ailaid clafe Fideielele|ele 2|a[einlain]eie 1|2]ee|e]e:s]e
5|7i9 578 FHEHIRNNN 1|z[siejein|aie 1[z]ale]e]wie]w
EIGIE 1|68 Flaid|e(e|ele Z]4i0ieinieie 2|sldje|e:n|e
a|5[7T 3|57 HEIEDAOD ainlTieleie slalc|eiele
z|s|e 2lala CEEIEI0 4igiginie ai5(aiele
FEIL 13|85 w ¥ ¥|e si7iele BlaiT|e
V8K SK fill-in Givens method Householder method

First Stage Second Stage

Fic. 1. Renk-k updating of the QRD by ¢DGRs and Householder iransformations.

The QRD of an n x n matrix using the SK annihilation scheme requires 2n — 3
obaRs. Therefore, after explicitly computing the updating R+ ZY7T the QRD of A
in (3) requires (2 + 1) less steps than the SK rank-k algorithm, when & > 1.
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3. The greedy rank-one algorithm. The reduction of the n-element vector Z
into the form (e; can be obtained by applying the minimum |n/2] CDGRs using the
recursive doubling or greedy method [4, 9]. The Givens rotations are not performed
on adjacent planes and generally, the application of the single Givens rotation Gg?
from the left of the augmented matrix (Z R) fills-in the elements j to (i—1) of the ith
row of R {i > j}. However, a sequence of CDGRs can be found which retriangularizes
R fast enough so that the total number of steps needed to solve the rank-one UQRD
problem is less than the number of steps required by other algorithms.

Assume for simplicity that n = 29, At the sth ({ = 1,...,g) step of the greedy
algorithm the elements 2089 4+ 1 to 29419 of Z are annihilated by the 29 x 29 CDGR

ofgtl-d)
%, _ i
R
ge=plo=i) g
which can also be written as
. (’!’r—-l,g——l)
clhg) ¢ 0 for i > 1.
0 Lho-u

It can be proven that the matrix ) = Clo:9) ... (Lo R and H) = H@ 4 (e VT
has a special recursive structure which facilitates the development of an efficient
Givens algorithm for triangularizing H(9).

THEOREM 3.1. The structure of the matriz H9) = 09} || GO R is given by

olg—1) alg=1)

©) H® Hle~-1  Ble-1) \ gte-1
IR N el e

where B9~ and Bl9-1) are full dense matrices, RO~ is upper triangular, Hs~1)
has the same structure as H but with g replaced by g — 1 (g > 1) and H® is o
non-zero scalor.

Proof. For g = 1 the matrix H!) = C(LUR = G;QR is a 2 x 2 dense matrix
which satisfies the structure (). The inductive hypothesis is that the structure of
H®) defined in (6) is true. Now, it remains to show that the structure (6) is also
true for n = 29T1), given that is true for n = 29. The application of the first CDGR
from the left of the R gives

P
) Lot g — R B@) | :
Bl Bla) J2f

where R(9) and R(9) are upper triangular and B and B® are full dense matrices.
This is obvious since the Givens rotation Gg,lj}ng fills-in the elements (§ — 29) to
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{j — 1) of the jth row of R (§ = 29 + 1,...,29%1). That is, the fill-in of R from the
application of C9+1) is a parallelogram of height 29. For B = []L, Ch9) Blo)
the application of the CDGRs from the left of R can be written as

1 i = o
g+ = hC‘("’QH)Rz ( i 069 0) (R(Q) B(g))

e} 0 s ] \R(®) B
[, CERS B
= Rl B@{’

and using the inductive hypothesis H{9) = | (49 B(9) the latter can be expressed

in the form
) - Hie)  Bla)
AR BW [}

which completes the proof. O
Clearly H) has the same structure as H'9). Figure 3 shows the recursive struc-
ture of H(9) and the process of reducing (Z R) into ({1e; H®) for g = 4.

Z - (e R~ H@® 12 4 8 16
m;« S:io|v|e:oin|eid|e|Riaitn|aae 1'.-
(4] [Zie[s[eioia|a[ois|sininalaien 27}:30 = (2)
(2] [gigle|eieielelelaisalnle]ela]e o B
i Fly|e|oie|e|eisin:ninsoiaie QR'.B ..(3)
(2] [ziz|x[z[e[e]e|e|oieie nleaie]e < B
2 27|zl Z|vie[oivinjeisin(oinie . P’
[z 27l z|z]e[oieioinininloinie R(?? B@
E Flz|#lz|ejeio[ninin|ainie 8 T,
ER R AR ARAbARARARAFALIL LI IL AN IL AN !
1] yly|vlel[xlg|zlvie[eioie|elnie
kX PARAR AR SR AFAEA RALILILALILAN] -,
1 ¥l eie[xlxiy[x[eie[ole]e : -
n vlxly[wiriz[g[xie]ejele M@_ B®
|2 FI¥|HIXi¥| Ky yie|e e ’
2] ¥lelriy[e[xiz|z[e]e
[1] Ylrirlelyiyivlv]e 16
The reduction of (Z R) into ({1e; H)) T'he recursive structure of %)

F1a. 2. The computation of {(1e; H™®) using th greedy algorithm and the structure of AW,

"The reduction of the matrix H(# (g > 1} into upper triangular form can be
obtained by forming the orthogonal factorizations

— o (H(-1) Ble-1) wie-1  Bl—D\ su-v
®) QTHY = QT ( =

Rle-1  Ble—1} Rle-1)  Blo=1) | otemy?
and

(w1 pla-D

T * =
) “ ([g{g—l) Bl-1 T B,

where only the first row of (ﬂT (a-1) Blo "1)) is different from its corresponding sub-
matrix in (6) , W1 and R9~1) are upper triangular matrices and (QQ)R,, is the
QRD of A,
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The factorization of (8) can be computed in 29-2) steps using a Givens sequence
similar to that in [9]. At the jth step the pth subdiagonal of (9~ is annihilated by
applying simultaneously for g =1, ..., j—1+2(¢=2) the Givens rotations Gﬁg g2le=1)>
where p = 209~%) 4 1 . j. Notice that prior to the rotations some of the elements of
the subdiagonal will already be zero and that the factorization (8) can start after the
second CDGR on Z has been applied. The computation of factorization (9) is divided
into two stages. In the first stage the upper triangular matrix R~1) is reduced
to zero by applying 209~V opGRs. At the jth (5 = 1,...,209~1)) step the Givens
rotations G;T;f;l}), apy AT€ applied simultaneously for p = 1,...,2(=%) — j + 1 in
order to annihilate the jth superdiagonal of Rl9~1) where within this context the
main diagonal is equivalent to the first superdiagonal. In the second stage the matrix
B,(f s triangularized using 29 — 3 ¢pGRs by employing the SK annihilation scheme.
However, the second stage can start after the last two rows of £(9~1) have been zeroed.
That is, the annihilation of B starts after the second step of the first stage. Hence,
29 — 1 steps are needed to compute factorization (9) . Therefore, the total number of

steps required to solve the rank-one UQRD using the greedy algorithm is given by

Tolg) = 2+20072 429 - 1=5x20"D 41 forg>1

and by omitting additive constants it follows that T%.(g)/2@0*1) ~ 5/8. The latter
shows that the greedy algorithm is (approximately) doing 5/8 of the steps performed
by that of the serial Givens rank-one algorithm which is equivalent to the SK anni-
hilation scheme for £ = 1. Figure 3 illustrates the annihilation pattern of the greedy
based parallel Givens strategies for solving the rank-one UQRD problem, where g = 4.
The element @ denotes a zero element of H9~1) that remains unchanged from the
application of the CDGRs.

Z -+ {e1  Computing (8) Computing (9)
[w] sle[e[e[elnlss eleisla[alnjalnfals]ein]alele]e
[a] Gl[e|a[einale Seieeisinieiaeeisienele
3] siale[e[eieiele sle[aieiniefa|e[sisenals
3] sle[e[eislaie s[slaislafa[a[wln[a wee
[2] 3la|5|alelelele eleisiefe[e[e[e[esefe
[2] ald[s[sle{stie sisislafe[als[eialnle
2] AABEOD siejele[eisleninle
2] 3[aiciels slejs[ela[siels]s
%] siejele[eiese 7818 oL de(nle[aleninie
[1] s[elejaisiee 75913‘%3150000‘..
13 alofe|aine TIB: B0 celejeiajsie
H s[elainie 73913%%%00000
] s|aleis 7815 Hele[eie
1] slen Tislof de(ele
[1] aie 785 ELE0D
1] » RN ETGTE R0

FiG. 3. Annihilation pattern of the greedy rank-one UQRD algorithm, where g = 4.
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Recursive derivation of the QRD of H) for g > 3 . Substituting g by g—1
in H9), it gives
iy (g (g ;lg~1) -
H~2  Ble=2) | B9 la—2) E’gg“l}

(10y B9 =| R~ B~ B~ he-n  where E(g_i)m( itg—1} )
Re-10 B0 fae-» "

Initially the orthogonal factorizations

(11) Flo-2) = § 4 Rlo—2

and

o or Rla~2)  Blg~2) I 3&9‘1) {0 W2 l BN\ ae-m
(12) @5 Rls—1) | Blo~1) | Ris—1) 1}_@59”1) gls—1)

are computed, where R(9~2) W{e=2) and R4~ are upper triangular. For

'E(ﬂwl): Qﬂg{lg_l} and Wie—1 = Rlo=2) Qgégg_Q)
i B{zg“l} 0 wie—2) |

the upper triangular factor of the QRD of H(9) is derived after computing the orthog-
onal factorization

(Wl ple-D
T 1 —
(13) @ (R(gwx) Bl = B

As in factorization (8) the factorization (12) can be computed in 2(9-2) steps.
The orthogonal matrix Q% is defined as the product of the CDGRs cR¥ M) Loy,
where (9 = Hf:;m Gfﬂzw(g_z) for p =i+ j — 1. The QRD {11) is derived in
To{g ~2) = 5 x 26079 11 steps and factorization (13) is computed in 2¢ — I steps.
Factorizations (11} and (12} can start, respectively, after the 3rd and 2nd cDGR
has been applied from the left of Z. Hence, the total number of steps required to

triangularize H(¥) using the above method is given by

‘fm(g) = max(l + TE,(g - 2,2+ 2(9_2)) 429 -1
= 21x260"9 41 forg>3

and T..(9)/T(g) =~ 21/20. This indicates that the latter method requires more
cpGRs for solving the rank-one UQRD problem compared with that of computing the
factorizations (8) and (9). The same conclusions are expected to be drawn if the
above method is used with g replaced by ¢ — 2 (i = 0,...,¢g ~ 1) in (10) . Observe
that at least 2092 steps will be required to compute simultaneously the factorizations
equivalent to (11} and (12) , and 29 — 1 steps are needed to form the final factorization
which corresponds to (13). That is, the recursive triangularization of H@ will at
least require the same number of steps as T,.(g).
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4. The greedy and block rank-k algorithms. The greedy Givens sequence
described in [4, 13] can be used to reduce the n X k matrix Z into upper triangular
form using g -+ (k — 1)log, ¢ steps, where n = 29 >» k and we only consider the
case k < g. However, the greedy algorithm will result in H having a non-full dense
structure that is difficult to exploit. This can be overcomed by using a variation of the
greedy algorithm called log-greedy. At each step the log-greedy algorithm annihilates
2liogz 21 glements of the 4th column by preserving previously zeroed elements, where
x; is the maximum number of elements in column ¢ that can be possibly annihilated.
When [log, z;] < log, @i, the rotations are chosen so that there is less fill-in in R.
Obviously the log-greedy algorithm requires more steps than the greedy algorithm
when & > 1, while for £ = 1 and n = 29 both algorithms are equivalent to the greedy
rank-one algorithm. The difference in the number of steps between the two algorithms
are negligible for & < g.

The method has k stages and each with a number of steps. In stage § the algorithm
deals with column (k — j+1) of the update. Let G{7) and F{&9) denote, respectively,
the CDGR applied at step ¢ in column 7 of Z and the fill-ins of R resulting from the
application of G(»9) | where i > 5. All the fill-ins of R resulting from the application
of GLA) G238 are denoted by FGIY A fill-in has a parallelogram shape and
the maximum height of the parallelograms corresponding to F{+) is 2(9=9) At the
jth (j < k) stage the fill-ins F(*+1~3) are annihilated simultaneously. Using the
Givens strategy for computing the factorization (9) a parallelogram of height 27
can be annihilated in 2(°*1) — 1 steps. Therefore, the jth stage is completed in
2(9=k+3) _ 1 steps. After the first k — 1 stages the matrix H will have the same
recursive structure as H(9) in (6) . However, the computation of factorization (8) can
start prior to the complete annihilation of F'3%). The number of steps required by
the log-greedy algorithm to solve the rank-k UQRD problem (k < g and n = 29) is
given approximately by

k
T‘iogr(kag) = 2(2(9“’“4“3’}) = (1 v 2‘k)2(9+1)

J=1

and T, (k, g) /201 = 1 2% where the computation of factorization (8) , the QRD
of Z and small constants have been ignored. Thus, as k increases the efficiency of
the log-greedy algorithm decreases compared with that of SK annihilation scheme or
the direct parallel QRD of 4 in (3). For k > g the triangularization of Z using the
greedy algorithms is inefficient since they result in # having a full dense matrix that
requires O{2(9%2)) oDGRs to be triangularized.

Figure 4 shows the first stage and the whole process for solving the rank-2 UQRD
problem, where g = 4. The non-empty F(>2) (; = 2,4,6) is distinguished by bolted
frames. Notice that the triangularization of H starts before the QRD of Z is completed
and also, the computation which corresponds to factorization (8) starts at step 9.
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Stage 1 Clomplete triangularization of H.

Fra. 4. Solving the renk-2 UQRID problem using the log-greedy method, where g = 4.

4.1. Block parallel strategies. Block generalizations of the rank-one algo-
rithms can be employed to solve the rank-k UQRD problem. The first block parallel
algorithm is based on the the serial rank-one Givens algorithm. Although blocks are
processed one at a time, the computations within the blocks can be performed in
parallel, either by using Householder reflections or ¢DGRs [9, 10]. Partitioning the
matrices Z and R as

] g g
Zl 1 Rn ng PN Rh, ni
Zy . Ry ... Roula
19 z=|_|™ amd BR= A b
Z,] Ry, |~

let the QRD of Z, be given by

(15) 0Tz, = (W) k and  QTR,, = (g) g

0 Ty - k L n, —k

where n = 2;21 n; and n,, > k. Computing for i = v —1,...,2,1 the block-updating

QR factorization
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the upper triangular matrix R, in (4) is given by R, = W) and the matrix H in (5)
has the block-Hessenberg structure

1 ] Thes
Ay Hy ... Hu\e
Rll RIZ FE Rlu k3
(17) .ﬁ = R22 sas R2u nz s
ﬁiuu oy - k

where (J; is orthogonal, W is a k % & upper triangular matrix and

(ﬂrn E]_g ‘e ﬂrlu) = (ng Rlz -ély) e W]_YT‘
For the triangularization of H, initially compute for i = 1,...,v — 1 the factor-
izations
1§ il Ty A Tipi Ty

(18) QA'LT (ﬁgg ﬁg’,i_{_l e I;?}i )k - (Rf'i, sz‘+1 b ~R.?y )m,

Ry Riger o0 Ry Jn 0 Hiptip1 .- Hipno J &

where Q; is orthogonal and R}, is upper triangular. Then the QRD

(19) . @3(%:) = R,
is computed, such that the required upper triangular matrix is given by
Ny Tz Ty
Ry, Biy ... Ri,\n
(20) R, = R
R, )~

The second block-parallel algorithm operates in more than one block simultane-
ously. It is based on the greedy rank-one algorithm and the block parallel algorithms
in [2, 9]. Assume for simplicity that n; = k ({ = 1,...,v) and v = 29. Using the
partitioning of Z and R in (14), initially the QRDs

(21) Oh(z Rs .. Ry) = (W RY .. RD)

are computed simultaneously for i = 1,..., v, where WEG} and Rﬁ‘j.) F=14,...,v) are,
respectively, upper triangular and full dense square matrices of order k. Then in step
i==1,...,¢g the orthogonal factorizations
§r(i—1) pli-1) {i-1) 57 (1) pli) {5
(22 QT Wi Ry B ) (Wi R B} g
Wi o LR o Y. RS
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are computed simultaneously for § = 1,...,2069, where Wg-i} is a k x k upper tri-
angular matrix. After the gth step R, = W&g) is computed. The matrix H in (5)
has a recursive structure identical to that of H¥) in (6), with the difference that
single elements now correspond to k x k matrices. In this case the reduction of H into
upper triangular form is similar to the annihilation schemes employed to compute the
factorizations (8) and (9), but with cDGRs replaced by Compound Disjeint Orthog-
onal Mairices (CDOMs). A CDOM is a product of orthogonal matrices that can be
applied simultaneously and each orthogonal matrix is a product of CDGRs or House-
holder reflections. Notice that a product of disjoint CDGRs is a CDGR and a CDOM is
orthogonal.

The process of solving the rank-k UQRD problem using block-greedy rank-k algo-
rithm is shown in Fig. 4.1 for ¢ = 3. Both B and & denote square dense and upper
triangular matrices of order k, respectively. It is assumed that a single Super-step is
required to apply & cpoM. In the first four Super-steps both the Z and R matrices
are shown, while in the remaining steps the operations are assumed to be performed
on the H matrix.

Buper-step 1

Baieg[edIbalEe]
bl el 2
[ R X

(e8] ]

Super-step 3 Super-step 4

BRERREREE [ l@l@iﬁl@l@
@] %
o2l

=
2]
.

4]

i

@@@@@
B
Sl

] ]

'E*IL‘

4o

(243 v e 3 ] )
LT e

=

b e P el e
[izbaba e o]
i el

Fi1G. 5. Solving the rank-k UQRID problem wusing the block-greedy rank-k algorithm

5. Conclusions. Parallel strategies have been presented for retriangularizing
an n x n upper triangular matrix R after a rank-k change. The first two algorithms
are based on the SK annihilation scheme in [17] and solve the updating problem by
applying 2(k + n — 2) CDGRs. However, these algorithms need more steps compared
with the 2n— 3 GDGRs required to be applied for computing the QRD of 4 in (3) , after
forming the updating B+ ZY7. A greedy rank-one algorithm requiring approximately
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half cpGRs than that of the serial algorithm, has also been presented. The algorithm
efficiently exploited the recursive structure of the H (filled-in R) matrix. However,
the efficiency of a modified greedy algorithm for solving the rank-k UQRD problem
is found to be decreasing for increasing k and performing worst than the SK parallel
algorithm for k > g, where n == 29. Two block parallel strategies based on the serial
and greedy rank-one algorithms have also been described for solving the rank-k UQRD
problem.

The block parallel algorithms will be suitable for multiprocessor MIMD systems
because of their low communication overheads and rich level 3 BLAS operations [2].
On the other hand the greedy parallel algorithms might be found to be efficient for
SIMD systems with thousands of processing elements [8].

Future research can be directed towards the use of Fibonacci schemes for gen-
erating annthilation schemes to solve the rank-k UQRD problem. The analysis of
the algorithms can be more realistically based on the assumption that less than {n/2|
CDGRs can be applied simultaneously (limited parallelism) [3]. Furthermore, the rank-
k updating algorithms can be extended to solve the block downdating QRD problem
and the General linear model (GLM) [5, 10, 11, 12, 15]. One of the methods for
solving the block downdating QRD problem. requires the QRD of the square matrix
B after computing the orthogonal factorization

o (@ Ry _ £ £A\
Z 0 0 B/

where (QT Z7) has orthogonal rows, Z € RF** and R € R**" are upper triangular
matrices, & is orthogonal and A denctes the data deleted from the original data
matrix. Within the context of the numerical solution of the GLM, a generalised QRD
(GQRD) of the full column rank Z € R"** (n > k) and an n X n upper triangular
matrix B is computed [1, 11]. The GQRD of Z and R is given by

@z= (R) * . (@"RP=R.,
0 -k

where ¢} and P are n X n orthogonal matrices, and R, and R, are upper triangular
[14, 16]. It can be observed that the similarity between the rank-k UQRD problem
and the above factorizations is the retriangularization of a triangular matrix after
it has been premuitiplied by the orthogonal matrix of a QRD. Block generalization
of the parallel strategies reported in {10, 11] are currently considered for solving the
downdating and GLM problems by exploiting their special properties.
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