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ABSTRACT

Motion-based recognition is the approach taken for the recognition of moving objects
or their activities based on direct information from the patterns of motion they exhibit
in a sequence of images. This requires (a} the extraction of appropriate information
from the images, (b} the use of this information in the creation of motion models, and
(¢) the matching of the information extracted from the images with that of the models.

This work explores a unified approach to motion-based recognition, where artificial
neural networks are used for both the extraction of information from a sequence of im-
ages and the creation of motion models based on the extracted information. Through
our study we evaluate the suitability of artificial neural networks for motion-based
recognition and identify the architectures for performing specific tasks. In addition,
as the operations required for motion-based recognition are computationally expen-
sive we explore the parallel implementation of artificial neural network architectures
on a SIMD machine.

To extract information from a sequence of images we use artificial neural networks
to determine the discontinuities in an optic flow field and compute the centroid of
objects. Subsequently, we show how artificial neural networks can be used to create
non-linear motion models that are invariant to translation, rotation and spatial scale.
Such motion models can be used to (a) predict and track the positions of moving
objects in a sequence of images and (b) verify whether the observed movement in an
image sequence corresponds to the motion model.

In particular, this thesis includes experimental results on the ability of (a) linear
resistive networks and Hopfield models to compute the optic flow field from a sequence
of images and determine discontinuities in the computed field, (b) feed-forward net-
works to learn from examples how to compute the centroid of objects and (c) partially
recurrent neural networks to create motion models based on example sequences of ge-
ometrical positions of a moving object. To test the former we compute the apparent
2D motion produced by the movement of a rigid object using a hybrid parallel model.
This model combines an algorithm for computing a smoothed motion fleld with the
detection of motion discontinuities using a Hopfield model. The centroid of a class of
non-rigid objects is computed from image intensities using feed-forward neural net-
works. The Hopfield models and the feed-forward networks are both implemented
on & parallel SIMD machine. Finally, models of motion trajectories are built using
certain variations of partially recurrent networks and the effects of memory and data
representation in tracking object locations are examined.
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Chapter 1

Introduction

1.1 Motion-based Recognition: The Perception of
Visual Motion

From the evolutionary point of view the perception of physical motion is of decisive
importance. The concept of a motionless animal in a totally static environment has
hardly any biological significance [63]. In many lower animals, efficient perception of
moving objects seems to be the most essential visual function. A frog or a chameleon,
for example, can perceive and catch its prey only if the prey is moving. A motionless
fly, even within easy reach, goes quite unnoticed [64]. Evidence for a similar depen-
dence on changes in the visual stimulus pattern can also be demonstrated in man.
Motion perception helps us recognize different objects and their motion in a scene,
infer their relative depth or their rigidity. We have the ability to recognize a person
walking at a distance from his or her gait, a particular dance step and flying birds,
even though they are all made up of a complex sequence of movements [18]. Even
when objects are standing still, their images on the retina are not static since the
eyes and the head are never entirely still. It is therefore not surprising that a growing
body of evidence has accumulated to suggest that the visual system has a special

sensitivity to moving images and that the eye has evolved to function essentially as
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a motion-detecting system [15, 60, 63],

The perception of motion has been studied extensively in psychology. From as
early as the beginning of this century, Wertheimer, among other Gestalt theorists,
investigated the phenomenon of apparent motion [142]. In particular, he discovered
that the allernative exposure of two stimuli at an optimum rate and distance is
perceived as a continuous translation of the retinal image. In this case, what is
seen is not a moving stimulus, but simply movement per se. This experience of
pure movement is called the “phi” phenomenon and arises as the result of temporal
and spatial relationships between stimuli [42]. Wertheimer and his colleagues and
followers also studied the effect of motion in spatial organization and demonstrated
several principles by which moving stimuli organize themselves. Examples are the

perception of grouping produced by the common or relative motion of stimuli.

More recently, in the 1970’s, motion perception was studied by Johansson and
his colleagues [62', 63, 64]. They studied the perception of complex light patterns
produced by the movement of articulated bodies as shown in Figure 1.1. Johansson
referred to the movement of human or other animals as biological motion. He was
particularly interested in studying the visual interpretation of motion patterns of hu-
man bodies when the pictorial form aspect for these patterns was removed. Johansson
carried out his studies by first recording the motion patterns produced by illuminated
points placed on the main joints of actors ! and then filming their movements in the
dark. As 6niy the illuminated points on the actors were visible, the perceived motion
patterns did not carry any information about the figure of the human bodies and
gave the impression of Moving Light Displays (MLDs). Later, subjects that did not
know about the nature of the experiments were told to interpret the context of these

films. When the actors were stationary, subjects found that the patterns of points

IThe illuminated points were placed on the hips, kﬁees, ankles, shoulders, elbows, and wrists of
the actors [63].
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Figure 1.1: Complez light displays produced by the movement of a human body [117].

were meaningless, but as soon as the actors moved, their human shapes could be
perceived, and the nature of their movement, such as walking or running, accurately
described. More rigorous experiments conducted by Cutting and Kozlowski [22, 78]
showed that the subjects could recognize the gender of a person and even the gait of
a friend based solely on the motion of the illuminated points. The phenomenon of
recognising behavioural patterns and activities based purely on 2D visual motion is

known as Motion-based Recognition [134].
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Performance of motion-based recognition by machine vision systems would be
useful in many applications. For example, such systems would be essential in realis-
ing effective and efficient automated visual surveillance [40], face recognition [41, 115]
and biomedical image sequence understanding {113]. However, machine motion-based
recognition has received relatively little attention in the literature. Influenced by
David Marr’s {85] theory of computational vision, most research on motion under-
standing has in fact been focused on issues concerned either with structure-from-
motion, where a sequence of images is used for the reconstruction of the 3D geometric
structure of objects and scenes [96] or 3D model-based recognition, where an image
sequence is used to verify the existence of objects based on known 3D shape models
(52, 75, 84, 148, 149]. Few studies have considered specific aspects of motion-based
recognition computationally [23, 39, 41, 70, 88, 105, 110, 111, 113, 115, 151].

In the following two sections of this chapter we will see how analysis of psycho-
logical experiments can provide an insight into the nature of the mechanism involved
in the perception and the interpretation of 2D visual motion and suggest possible

computational models.

1.1.1 Psychological Explanations

A number of psychological studies on motion perception have been concerned with

the following issues (22, 32, 33, 35, 78, 124, 128, 133, 138, 142}

1. Whether the perception of motion depends on establishing correspondence be-
tween different retinal snapshots or on extracting continuous spatio-temporal

correlations.

2. Whether the perception of motion depends on the recovery of the underlying 3D
geometric structure of moving objects, or if it can be inferred from 2D apparent

visual motion information.

3. Whether the perception of motion is independent of cognitive control.
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Regarding the perception of motion as that of establishing correspondence be-
tween different snapshots can be partly justified by the experiments of the Gestalt
theorists, where with the “phi” phenomenon they showed that it is possible to per-
ceive movement in the absence of continuous translation [142]. However, J.J. Gibson
in his theory of direct perception categorically denied that visual perception involves
computation or inference from static retinal snapshots (32, 33]. Based mainly on the
analysis of the perception of textured outdoor scenes, he showed that any movernent
on the part of the observer or the objects in the world produce changes in the en-
tire retinal image that follow patterns of optical flow. Gibson claimed that from the
spatio-temporal patterns of optical flow, we can directly specify the 3D structures in

the world, and detect the patterns of an observer’s movement.,

Physiological studies on the human vision system favour the assumption that the
starting point of vision is a spatio-temporal pattern, rather than the a,cquisitioh of
static snapshots [60]. However, there is no evidence of exact neurophysiological and
cognitive processes that are applied in the recognition of objects and their movement.
Because the human vision system has to perform a very wide range of different tasks
it is possible that it uses multiple sources of information which may be processed
in parallel by different but interacting modules [35]. Cutting and Kozlowski pro-
vided evidence that the recognition of objects and their movement may not require
the recovery of their structure [22, 78]. Analysis of their experiments showed that
the subjects who correctly recognised the gait of their friends used criteria such as
“bounciness” and “arm swing”. Conversely, subjects that used the height of ‘their
friends as a discriminating factors of the MLDs did badly in recognising their friends.
This suggests that (1) our recognition of MLDs may be based on motion information
rather than the structure of the moving objects and (2) we make use of previous
knowledge, therefore suggesting a degree of cognitive control in the perception of

visual motion.
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Experiments conducted on motion perception of MLD’s by Sumi [128] and God-
dard [35] suggest similar conclusions. Sumi showed that MLDs presented upside-down
are usually not recognised but informal experiments conducted by Goddard found
that people seem to be much better at interpreting inverted MLDs when the dots are
connected. The connection of the dots produces a stick-figure that can be perceived
as the structure a human body. Goddard argued that since subjects can interpret the
inverted stick-figures and not the inverted MLDs, it cannot be the case that MLD
interpretation is performed by an input-driven structure-from-motion process. This is
because the structure of the MLD is simply the connectivity of the moving stick-figure
underlying the MLD, which does not depend on whether the image is rotated in its
own plane. Therefore, if the visual system is cotputing a bottom-up structure-from-
motion transform, it is one that is not powerful enough to derive the full structure of
a MLD [35]. This suggests that: (1) even if the structure was extracted additional
information is required for the interpretation of MLDs, (2) this information could be

stored models of movement.

1.1.2 Computational Models

Some researchers in machine vision have produced computational models based on
the psychological explanations outlined. For example, Ullman proposed a model
for establishing correspondences between static retina snapshots and recovering the
structure of moving objects [133). Johansson, on the other hand, argued for a mo-
tion perception model that depends on the extraction of hierarchical components of
projective invariances from the optical flow field (62, 63]. However, although enlight-
ening and original at the time, their models failed to account for sufficient examples

of motion perception.

A successful model for motion perception needs to explain not only “what” infor-

mation is computed and “how” it is computed, but “why” it is computed. More recent
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work in active vision has taken the view that vision is highly selective and purposive
and is defined by the tasks an organism needs to perform [7, 11]. With this approach,
interpretation of a dynamic scene does not necessarily require the reconstruction of
objects and the scene. It can be achieved from the understanding and interpreta-
tion of the moving patterns of the objects. This involves having expectations of the

moving patterns of the objects.

observation

matching expectation

model

Figure 1.2: A closed loop representation of visual motion perception.

Motion perception in the framework of active vision can be seen as the closed loop
process shown in Figure 1.2. Tt consists of (1) an observation of motion, (2) a motion
model, (3) a process that matches an observation with the model and (4) a process
that delivers an expectation of the motion or its interpretation. In this framework

each process can have the following computational interpretations:

Observation An observation can be:

o The position of an object in the scene.
¢ The photometric temporal changes in the image.

o The optic flow induced by a movement in the scene.
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Motion model The model of movement depends on the nature of the observation

extracted from the scene. Accordingly a motion model can be:

¢ A sequence of the positions of a moving object defining a motion trajectory.
Computationally it can be described as a sequence of coordinate values or

curvature measurements.
¢ A sequence of the photometric temporal changes in the image.

* A sequence of the changes in the pattern of optic flow in the scene.

Expectation An expectation usually has the same representation as the observation
or it can simply be the interpretation of the motion. A useful consequence of the
expectation process is that it drives our attention and allows effective tracking

of the position of the objects or other dynamic changes.

Matching This is a comparison between the current observation and the past ex-

pectation of the model.

The closed loop representation of visual motion perception provides an efficient
and effective computational model for motion-based recognition, where the expecta-

tion process is used for tracking and recognising moving objects or their activities.

1.2 A Neural Network Approach

The motion perception models outlined in section 1.1.2 are computationally demand-
ing. The typical computations involved, such as tracking and measuring optic flow,
are costly and time consuming, whilst human vision can separate one person’s “walk-
ing” or “running” from_another with little difficulty and almost immediately. What
is the discriminating factor? How can we build models of motion that describe such

large classes of movements? -
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The poor performance of traditional rule-based models, and the apparent effec-
tiveness of biological vision systems, has driven researchers to look to the brain as an
inspiration for some successful methods for analysing images. Biological vision sys-
tems have been studied both in neurophysiology and psychology with computational
models being proposed [51, 85). Such models are often complex with several levels
of processing and with different representations at different scales. Some of these
models have been essentially neural in nature, and there is a very strong relationship
between computational models of vision and neural networks [51]. The difficulty of
discovering any explicit rules that govern such an intuitive and unconscious human
capability inevitably draws research in the study of methods for learning implicit

rules from examples.

It was the re-emergence of the neural computation paradigm in the late 1980’
that motivated the work described in this thesis. In particular we were interested in
exploiting the characteristics of artificial neural networks 2 for robust and fast com-
putation in performing motion perception tasks such as the tracking and recognition
of moving objects and their activities. For this, we were seeking a unified approach,
where neural networks are used for (1) extracting observations, (2) building motion
models through examples, (3) matching observations with motion models and (4)

delivering expectations.

1.3 Outline of the Thesis

In this thesis we seek to explore the potential of neural networks in the perception of

motion and answer the following questions:

?In the remainder of this thesis we will refer to “artificial neural networks” as neural networks,
but they should not be confused with their biological counterparts to which they are an over-
simplification. )
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¢ How effective are neural networks in the extraction of visual observations? We
address particularly the issue of locating distinctive features and computing

optic flow.

® How effective are neural networks in building motion models and providing

expectations on the geometric position of feature observations?

The data used throughout this thesis is largely synthetic as the emphasis of this
study was not on delivering a working system but rather, to investigate the limits
and potential of modelling motion-based recognition by neural networks. To start
with, synthetic images are developed to compute optic flow. Next a set of medical

images of biological cells is used for the extraction of features. Motion models are

then built by using simulated motion sequences for tracking the position of objects 3,

In Chapter 2, the implications of the dynamic nature of motion in the construction
of motion models is discussed, followed by a presentation of the data representation
and model matching techniques used in the interpretation of visual motion. The
existing algorithms are critically reviewed and finally the need for investigating the
use of neural networks in the modelling of the process of visual motion perception is

justified.

After an introduction to the paradigm of neural computation, Chapter 3 examines
the network architectures that are relevant to the process of motion-based recognition.
As matching, and the derivation of expectation are intrinsic characteristics of neural
networks, the networks that can be used for the computation of observations and the
construction of motion models are presented. In particular, we look at the extraction
of features from images and concentrate on the diffculties presented by cytological

im'a.ges. A discussion on an algorithm for the computation of optic flow and the

SMore recently, we have built motion models for the dynamic recognition of faces by using se-
quences of face images [41, 115].
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modeling of general time-varying information concludes this chapter.

In Chapters 4 and 5 we concentrate on the use of neural networks for the computa-
tion of observations from image sequences. Optic flow can be used for estimating the
centroid of a moving object [110], or for creating motion models of the changes of the
apparent 2D motion in the image sequence. Aitemativeiy, the location of non-rigid

objects can be estimated by the extraction of invariant features.

In Chapter 4 the mapping of an optic flow algorithm on a Hopfield network of
linear processing elements is presented and the detection of motion discontinuities
using continuous valued line processes modelled on a Hopfield model is discussed.
Finally, their implementation on the AMT DAP (now manufactured by CPP), an

SIMD parallel computer is presented.

In Chapter 5 the extraction of the centroid of cancer cells from a set of time-lapse
cinemascopic cytological images is described. In particular, the potential of two feed-
forward networks, which we refer to as “all connected” and “locally connected”, for

fulfilling this task is examined and their parallel implementation is presented.

The centroid of objects tracked in time can form motion trajectories. In Chap-
ter 6 the requirements of a motion model based on motion trajectory information
is presented and appropriate data representations and neural network architectures
for its construction are proposed. In particular we show how a partially recurrent
network can “learn” motion models that correspond to trajectories whose curvature
varies along their length and have sharp curvature discontinuities. Finaliy, the effec-
tiveness of the motion models is discussed by evaluating their performance under the

conditions of spatio-temporal scale and positional variance.

Chapters 4, 5 and 6 reflect the fact that the approach taken in this work towards

motion-based recognition is a unified one. In particular, Chapters 4 and 5 describe
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how Hopfield models and feed-forward networks can be used for the extraction of
information from a image sequence and Chapter 6 describes how partially recurrent
neural networks can be used to create motion models based on such information.
However, it should be emphasised that, although the work described in Chapters 4,
5 and 6 correspond to modules of a unified motion-based recognition system, the

implementation in each chapter is independent.

Finally, in Chapter 7, the contributions of this thesis in the application of neural
networks in motion-based recognition and their implementation on an SIMD ma-
chine are stated and we conclude with a discussion on future work on motion-based

recognition using neural networks.

1.4 Notes on the Time-scale and the Aim of the
Thesis

Most of the work described in this thesis was carried out in the period of 1988-1992.
Two important events of this period were (1) the re-emergence of the paradigm of
neural computation [123] and (2) the use of parallel architectures for the efficient
implementation of computatlonally expensive processes [37, 118]. As the need for
alternative computational paradigms for computer vision applications was evident,
we looked at the benefits neyral networks have to offer in this area, coupled with their
implementation on an SIMD machine. The work on Hopﬁeid models was carried out
in the period of 1988- 1989, the work on the feature extraction using feed-forward
neural networks was carried out in the period of 1990-1991 and most of the work on
partially recurrent neural nefworks for the construction of motion models was carried
out in the period of 199141992. From todays perspective, it is the work on motion

models described in Chapter 6 that is really novel.




Chapter 2

Motion Models for Motion-based
Recognition

Motion-based recognition is a general approach that favours the use of visual motion
information for the purpose of recognition. However, the emphasis on visual motion
as a means of quantitative reconstruction of world geometry [95] has tended to obscure
the fact that motion can also be used for recognition. As a result, the analysis of a
sequence of images for the recognition of continuous motion, like “walking”, has in the
past been driven by structural models of the moving object (3, 52, 102]. For example,
in Hogg’s work the output description of each frame of an image sequence depicting
a walking person is an instance of a 3D model of a class of human walkers [52].
An ordered set of such instances creates a spatio-temporal description of the image
sequence that facilitates an interpretation of the movement. However, this approach is
computationally very expensive as it requires the delineation and labelling of objects
and recognition of their subparts in each frame of the sequence. Furthermore, in
many cases the search for the location of the model in each frame is driven only by

information from the previous frame and by constraints on the structure of the ob ject.

It is possible, however, to use motion information as a means of recognition di-
rectly. For example, the orientation and displacement of movement to derive motion

models of the trajectories of moving objects has been suggested [38]. These models

13
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have been used to drive the analysis of image sequences by delivering expectations
of an object’s positions. Such models can find numerous applications in automatic
surveillance where motion recognition can be used to predict the path of moving
vehicles [39], to remove ambiguities between possible or allowable types of motion
from a non-desirable motion in a particular scene, or to distinguish between station-
ary and moving obstacles in planning the path of a moving piece of machinery [44].
Similar models can also be used to drive the analysis in a sequence of cytological
images and interpret the dynamic behaviour of cells. For example, the dynamic char-
acterisation of a class of cancer cells can be performed by assessing, from time-lapse
cine-microfilms, the shape and speed of morphotype changes as well as the rate and
directionality of cell migration [113, 137, 153]. Furthermore, models that use optic
flow information have also heen proposed for lip-reading [88] and the recognition of

activities such as wind-blown trees and ripples of water [110].

Motion can also be recognised by modelling other time varying information, for _
example the photometric temporal changes in a sequence of images. Such techniques
have been applied to the recognition of human activities [151], speech recognition
[70, 105], recognition of gestures [23] and faces [41, 115]. In an alternative approach,
Baumberg and Hogg .[12, 13] have been looking into the automatic extraction and
modelling of closed curve contours that correspond to moving objects in a scene. They
have been successful in automatically grouping closed curves that correspond to the
same instance of movement and associate each group with a direction of movement.
This approach can be extended to the recognition of movements by relating a sequence

of shape changes of the closed 2D curves to a sequence of motion patterns,

In order to use motion information successfully in the recognition of moving ob-
jects or their activities we need to identify the properties that motion models need
to possess. The motion exhibited by a moving object can be described either by the

path it foiIows or by the changes of properties along that path. In this respect the




Chapter 2. Motion Models for Motion-based Recognition 15

description of motion is similar to that of the shape of a 2D boundary of an object
where each position along the path is indexed by the frame number of the time se-
quence. However, there are some difficulties in the formalisation of a motion class
that could be used for the model representation of similar motions. These difficulties

are intrinsic to the nature of motions and can be attributed to the following reasons:

L. Motion is dynamic and uncertain The representation of motion is suscepti-
‘ble to “noise”. This “noise” can arise from factors that are internal to a moving
object or from unexpected circumstances where parts of an object’s movement
are (1) changed in order to adjust to changes that occur in the environment or

(2) occluded due to changes occured in the environment.

2. Motion can be of undetermined extent Since motion is dynamic, its tem-
poral scale cannot be predicted. Therefore, the recognition of motion cannot be
constrained to a temporal window and it may be necessary to partially recognise

it by using other already accumulated information.
3. Motion is spatio-temporal Not only the spatial location of the movement

may change, but also its occurrence in time.

The difficulty of formalising motion suggests that for an effective motjon-based recog-
nition, an appropriate motion representation should have the following properties:
1. Allow the creation of models through the presentation of examples,
2. Account for spatial and temporal scale invariance.
3. Account for spatial and temporal position invariance.
In the remainder of this chapter some of the approaches used in the recognition of

moving objects or their activities from motion or other time varying information are

surveyed by identifying:
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e The appropriate representation of motion information necessary in the organi-

sation of motion models;
¢ The matching techniques employed in the comparison of unknown information

with stored motion models,

The motion representation and matching schemes are then evaluated in the light

of the properties that they need to possess for an effective motion-based recognition.

2.1 Motion Representation

There are three commonly adopted methods for representing motion information:

1. Trajectory representation
2. Optic flow

3. Photometric temporal changes in a sequence of images.

A diagram depicting different motion representations is shown in Figure 2.1.

Sequence of Images

Trajectory Representation Optical Flow . Photometric Temporal Changes

Binary Image Grey -level Image
Features Features

Velocity Speed&  Motion  Curvature
Direction Events

Figure 2.1: Representation of motion information [18].
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2.1.1 Trajectory Representation

Trajectory representation requires the extraction of the position of significant features,
known as tokens, in an image that can be tracked in time. This results in a motion
trajectory in the image domain, i.e. a sequence of locations (#i,4:) for i = 1...n,
where n is the number of frames in a sequence. The tokens need to be distinctive
enough for easy detection and stable enough in time so that they can be tracked.
Trajectories can be parameterised in several ways. For example, Gong and Buxton
used discrete relative orientation and speed information along the trajectory of a
moving vehicle to model its movement at an airport landing dock [39]. The speed
and relative orientation represent-a,tions of a trajectory are spatially invariant as they

are independent of the position or orientation of the motion.

In another example, Gould and Shah parameterised trajectories using velocity and
acceleration curves [44]. The velocity and acceleration curves along the trajectories
were convolved with a set of second derivative of Gaussian functions with different
standard deviations, This transformation smoothes the representation of the trajec-
tories and detects discontinuities in motion at different scales. The position of any
motion discontinuity in different scales is described by a curve known as the Trajec-
tory Primal Sketch (TPS) curve. Each TPS curve corresponds to an important event
in a motion trajectory and a sequence of such curves can be used to define primi-
tive trajectories. Gould and Shah showed that by studying the velocity, acceleration
and TPS curves it is possible to discriminate motion characteristics of four types
of primitive trajectories: translation, rotation, projectile and cycloid. For example,
they showed that the TPS acceleration curves of the rotation and cycloid primitives
exhibit a sine or cosine relationship to each other. This property is not shared by a
trajectory corresponding to translation. The aim is to express an arbitrary trajec-
tory as a composition of these primitives. This representation of information with

respect to scale is also known as scale-space. The scale is of temporal nature and the
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representation possesses temporal scale invariance, as well as spatial and rotational

invariance.

In the trajectory parameterisation described above, absolute values of speed, direc-
tion, velocity and acceleration were used. However, absolute values might sometimes
be inadequate. In the case of human body motion the absolute velocity of a body
part has less significance than the relative velocity between moving parts, and relative
joint angles with respect to time carry important information. For example, relative
angles can be computed between pairs of points relative to a given axis, or as the
joint angle between three points, in each frame. The difference in angle is then deter-
mined between successive frames, which can be considered as angular velocities if we
assume that the time between each frame is constant. In Goddard, the motion events
in the interpretation of Moving Light Displays were described by the angle and the
new angular velocity at the joints [35, 36]. The representation of relative motion is
invariant to rotation, translation and spatial scale, but it is very difficult to compute

as the correspondence between different parts of objects needs to be extracted.

| trajectory parameterisation | on-line computation | invariances |
sequences of relative orientation yes translational, rotational
and speed
velocity and acceleration no | temporal, translational,
scale-space curves rotational
angular velocities yes rotational, translational,
spatial scale

Table 2.1: Trajectory representation schemes and their properties for motion-based recog-
nition.

Table 2.1 summarises the invariances possessed by the trajectory parameterisa-

tion schemes reviewed above. In this table the property of on-line computation is
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also included. This indicates whether the data representation can be used for on-line
tracking and recognition of moving objects or their activities. Not all applications in
motion-based recognition require on-line computation. For example, motion textures
such as the ones derived from wind-blown trees are best recognised from past accu-
mulated information. However, in many applications, for example automated visual
surveillance [40] and face recognition, [41, 115] on-line tracking and recognition is

required.

The scale-space representation of trajectories possesses useful invariances but does
not allow for on-line motion-based recognition. On the other hand, the representation
of trajectories as sequences of relative orientation and speed possesses only spatial
invariances. Combination, however, of the latter representation with an appropri-
ate matching technique can result in temporally invariant and on-line motjon-based

recognition.

Motion-based recognition of articulated bodies is not considered in detail in this
thesis. However, recognition of human bodies or activities using trajectory represen-
tation on movements of joints is particularly difficult as it requires the correct pairing
of joints. Approaches that use a holistic representation of human bodies are more

promising (12, 13, 151).
2.1.2 Optic Flow Representation

The computation of optic flow is based on the spatio-temporal intensity changes in
a sequence of image frames. In motion-based recognition, optic flow can be used
for estimating the centroid of a moving object or for creating motion models of the

changes of the apparent 2D motion in the image sequence.

Polana and Nelson use optic flow for the recognition of motions that are char-

acterised by spatial and temporal uniformity [110]. In particular, they showed that
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certain statistical spatial and temporal features derived from approximations to the
optic flow have invariant properties and can be used to classify regional activities
such as wind blown trees. In their system, they considered features based on the
magnitude and direction of the component of the optic flow normal to the intensity
gradient. The four types of features chosen were (1) the mean flow magnitude di-
vided by its standard deviation, (2) the positive and negative curl and divergence
estimates, (3) the non-uniformity of flow direction and (4) the directional difference
statistics in four directions. The feature values were arranged into a vector that was
used for classification. This method is computationally expensive but it may provide

the stability and invariance needed for a good classification.

Mase and Pentland used optic flow to perform recognition of spoken words from
images of lip movements [88]. They observed that the most important features that
affect mouth shape relate to the elongation of the mouth, and to the mouth opening.
The average optic flow was computed in four windows around the mouth of the
speaker, in successive pairs of frames. A principal component analysis was performed
and two functions O(t), expressing mouth opening in time and, E(t), reflecting the

elongation of the mouth as a function of time, were then created:

O(t) = vy + v + v,

i
Et)= %~ w + u,

where v,, vy, vy, v, are the vertical components of the flow vector of the upper, lower,
left and right windows and ur, u; are the horizontal component of the flow in the right

and left windows, respectively [18].

O(t) and E(t) were computed in each frame, then smoothed and normalised to
a fixed variance. A sampling of these two functions was used to create a vector for
input and model comparisons, and a match was established with the model that gave

the smallest weighted squared difference.
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One problem with optic flow in general, is that it is susceptible to the aperture
problem, which only allows the precise computation of the normal flow. Problems also
arise with boundary over-smoothing and multiple moving objects where segmentation
can be difficult to achieve [18]. Despite all this, optic flow is a very rich source of
information and with an appropriate representation can be used in motion-based

recognition. However, its on-line use requires an efficient parallel implementation.

2.1.3 Photometric Representation

Another method for recognising moving objects or their motion path is to model
their photometric temporal change. However, this kind of representation is sensitive
to translation, rotation and scale and requires an accurate segmentation of objects in
each frame of the image sequence. If large areas in the images that are used contain
significant background rather than object information, then the extracted distribution
would “say” more about the statistical properties of the background than that of the
objects. Yamato et al [151] and Polana and Nelson [111] have used photometric
representation to build motion models for representing and recognising activities. On
the other hand, Darrell and Pentland {23} and Gong and Psarrou et ol [41, 115] have
used photometric temporal changes to recognise objects from a sequence of images

taken from different viewpoints.

Yamato et al classified observed low-level image feature sequences into human
action categories [151] . In his approach, time sequential binary images expressing

human actions are transformed to a sequence of image feature vectors by extracting

a feature vector from each image. A mesh feature ! is used as the image feature.

The feature vectors of the sample data set for training are vector quantised and

each vector is assigned to a symbol which corresponds to a codeword in the code

YA mesh feature as used by Yamato is the number of black pixels/ number of pixels in a neigh-
bourhood [151]. -
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book created by vector quantisation. Consequently the time sequential images are
converted to a sequence of symbols. Yamato showed that this representation was
able to recognise normalised sequernces of tennis strokes, but he did not refer to the
limitations of this approach and ways of overcoming them. For example, such a
representation depends on the accurate figure-ground segmentation of Images and
the precise thresholding of the intensity values. Furthermore, the representation does

not account for translational, scale and rotational variance.

A different approach for modelling activities using photometric representation
was proposed by Polana and Nelson [111]. They used the representation of spatio-
temporal cubes to detect activities that are periodic. In their approach, the first part
consists of providing the approximated location of the centroid of an ob ject in time.
The frames are then aligned with respect to the centroid of the object, such that it
remains stationary in time. However, if the object presented any periodic motion,
for example a person walking, the motion of the legs and arms remains. This motion
would create certain periodic grey level signals over the image, especially around the
centroid. The periodic motion can be extracted from the grey level signals using a
Fourier transform. The periodic detection is invariant to the magnitude of motion,
speed of the activity and is fairly robust to small changes in viewing angles, Their
approach has not yet been demonstrated in the recognition of activities. However,
this would require the fast computation of the Fourier transform in every pixel in
the image, or at least in the area that includes the human body in a sequence. This
is computationally very expensive. Another limitation of this approach is that it

cannot be used on-line as the Fourier transform requires a complete presentation of

the activities.

The two approaches are completely different in the way they use photometric rep-
resentations for the recognition of activities. Yamato's technique is holistic, whereas

that of Polana and Nelson depends on the values of single pixels. However, both tech-
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niques have fundamental limitations to their application in the realistic recognition

of activities.

Darrell and Pentland [23] presented a new method for learning, tracking and
recognising human gestures from a sequence of images. The same approach is also
used for the recognition of objects given a set of ordered viewpoints. They have
implemented a system which automatically builds a view-based ob ject model and its
contextual dependencies while tracking the object through space and time. The model

views of an object are built using normalised correlation. The first view is chosen

- by the user as one of the images from a sequence. The object in the subsequent

input images is tracked, and when the correlation score drops below a predetermined
threshold, a new model view is created with the current input image. Once all views of
an object have been gathered, gesture models are created. A gesture is a set of views
over time and is correlated with each stored view of the object and the correlation
score plotted for each view with respect to time. Several examples of the same gesture
are used, and the mean and variance of the correlation scores with respect to model
view m are used to represent the particular gesture g. The gesture models need first
to be adjusted to the same sequence length, and this is done through dynamic time
warping. To compare a new gesture captured by an image sequence, each frame of
the new sequence is correlated with a model view and its score determined. F inally

the results with the input gesture are compared with all the gesture models.

Gong and Psarrou et al [41, 115] proposed motion models based on eigenfaces
[69, 126, 131] to recognise the “temporal signature” of faces. With this approach
the variation in a collection of face images is captured by computing the eigenvectors
of the covariance matrix of a set of face images. FEach face is then represented by
a linear summation of the eigenvectors, called the pattern vector. However, as the
approach is both scale and viewpoint dependent, current eigenface based face fecog»

nition models are limited to registering only single face images [131]. In the work



Chapter 2. Motion Models for Motion-based Recognition 24

of Gong and Psarrou the environmental layout and the physical freedom in human
head movement, that limits the possible changes of a moving face, are exploited as
contextual constraints. They are used to encode any view invariant face features and
recognise face images using information from sequences of viewpoint differences. In
this system, a moving head from an on-line camera input is first detected and tracked
before segmenting and normalising the face images. Then the time sequential images

are converted to a sequence of pattern vectors.

Darrell-Pentland and Gong-Psarrou’s approaches are similar in that they use a
sequence of viewpoints to create models of objects. In the case of Darrell and Pent-
land, the viewpoints may span large viewpoint differences, which they interpolate,
whereas the motion model of Gong and Psarrou, depends on continuous change in
the viewpoints. However, in the case of Gong and Psarrou the data representation is
smaller as it only requires to store pattern vectors, and therefore is more efficient in
matching. The eigenspace approach has also been used by Kirby et al [70] to represent
a sequences of lip images for the recognition of words by creating “signature” graphs.

However, no precise method for recognition was described using such graphs.

2.2 Motion Matching

Once the motion information is extracted and organised, matching between a model
and an input needs to be performed in order to recognise the moving object or its
activity. Most algorithms use clustering techniques. _sin.cé the.ir.modells and inputs are
encoded by feature vectors, but other methods have also been proposed, including
a probabilistic method of Hidden Markov Models (HMMs) [116] and a connectionist
method [10, 28]. Another potential approach is that of Bayesian networks described
in [16].
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With feature vector representation of motion, matching by vector clustering has
often been employed. The approach is based on the assumption that similar motion
sequences will generate similar feature vectors. Motion models are then built by
using any kind of classifier based on vectors and the matching process involves the
computation of the distance between an input and a model feature vector. The model

that gives the smallest distance is chosen as the most likely representation of the input.

Yamato et al took a probabilistic approach to the classification of different mo-
tions [151]. They used a sequence of symbols, one per frame, derived from a mesh
feature to train HMMs and create motion models for each activity, each HMM cor-
responding to one model. Matching of an unknown sequence with a model is done
through the calculation of the probability that an HMM could generate thé partic-
ular unknown sequence. The HMM with the highest probability is the one that has
most likely generated that sequence. The advantages of an HMM are that it can deal
with time-sequential data and can provide time-sc;ﬂe invariability as well as learning
motion models from examples. The limitation is that although the a priori proba-
bility distribution estimation required for modelling information in an HMM can be
learned through examples, the ana,iytic determination of the hidden states required
is a computationally expensive process. A pair of HMM models was also used by
Gong and Buxton [39] in the derivation of motion models using the information on

the orientation and displacement of motion trajectories.

Another approach is that of the connectionist network proposed by Goddard [35].
His representation consists of an ordered sequence of events which are coordinated
by temporal and motion events. Each event is represented as a node of a digraph,
which represents order by the direction of edges and temporal distance by associ-
ating a time with each edge. With such a connectionist network, each graph node
becomes a processing unit, and each directed edge a link with an associated delay,

thus representing time implicitly. In general, the kinematics of a complex object may
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be described by a sequence of events that each part of the object undergoes, together
with information coordinating these sequences. The sequence of events for a single
body part is represented by a set of graph nodes and links, and the coordination be-
tween sequences by more links. Thus a hierarchy is used: A low-level feature triggers
an event which is sent to the layer above in the hierarchy; a combination of events
at that level trigger other events at yet higher levels, and so on until the coordinated
sequence of events of a body in motion can trigger one motion model at the highest
level. This is the output level which represents the global motion of walking, running
or skipping. However, it is not at all clear how such an architecture can be used for
learning motion sequences from exafnples, and how it can adjust to different time

scales.

2.3 Neural Computation for Motion Models

The construction of models that fulfill the requirements of motion representation,
described on page 15, and allow for on-line computation depends on the effective
combination of data representation schemes and the matching techniques employed.
Data representations that account for temporal invariances can not be used for on-
line motion recognition. From the approaches reviewed, is evident that on-line and
temporally invariant motion-based recognition is best addressed by the combination
of HMMs and the parameterisation of motion trajectories or feature vector represen-

tation of images.

The main disadvantage of the latter approach is the computational cost in de-
termining the hidden states of HMMs. An alternative approach is to use neural
network architectures. In this case, however, we propose that neural networks are

not seen as a framework for connectionist representation 2 but rather as a frame-

2Goddard used a connectionist representation for the interpretation of MLDs [35].
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work for optimisation, where the best possible motion model is computed through
the presentation of examples. In particular, neural network would be suitable for ad-
dressing the problems encountered in motion-based recognition because they possess

the following properties:

e They can learn from examples and therefore we do not have to specify explicitly

the analytical definitions of the motions of objects.

¢ They can deal with noisy data, both in creating motion models and in the

comparison of unknown data with a model.
¢ Recurrent neural networks can achieve temporal scale invariance.

¢ The recognition can be performed on-line and can deduce results from partial

information.

e It is possible to build an integrated architecture of cascaded neural networks
with modules responsible for the computation of an observation and its predic-

tion (see Figure 2.2).

2.4 Summary

In this chapter we introduced the notion of motion models in motion-based recog-
nition and reviewed data representation schemes and matching techniques for their
construction. The motion data representations were based on: (1) absolute or pa-
rameterised trajectories, (2) optic flow and (3) photometric temporal changes in a
sequence of images, and the most popular matching techniques employed were HMMs

and centroid classifiers.

The dynamic nature of motion dictates that an appropriate motion representation

should have the following properties:
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Observation

(feature extraction)
(optic  flow)
(photometric representation)

Representation

. Prediction
of Observation

Motion Model

(matching and prediction of
next observation)

Recognition

Figure 2.2: A cascaded network consisting of the observation and prediction modules.
e Allow the creation of models through the presentation of examples,
o Account for spatial and temporal scale invariance.

o Account for spatial and temporal position invariance.

Furthermore, many applications in motion-based recognition require on-line com-
putation. This excludes the use of temporally invariant motion representation schemes
in the construction of motion models. Alternatively, temporal invariance in motion-
based recognition can be addressed by the matching techinique employed. A com-
bination of such a technique with a motion representation scheme that accounts for
translational, rotational and spatial scale invariance can provide a temporally invari-

ant, on-line motion model.
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We concluded this chapter by indicating that the requirements of motion models
can be addressed by using neural network architectures and suggested how a cascaded
form of neural networks can be used for building an integrated system for motion-

based recognition.

In the next section we introduce the paradigm of neural computation and discuss

the neural network architectures that can be applied in motion-based recognition.






Chapter 3

Neural Computation for
Motion-based Recognition

We approach the problem of motion-based recognition by looking at the paradigm
of neural computation. Under this approach, motion-based recognition requires the
implementation of two distinctive processes:

1. The computation of observations from an image sequence.

2. The modelling of a sequence of observations in such a way as to construct motion

models.
In this chapter we discuss the computation of two types of observation:

1. 2D feature extraction

2. 2D apparent motion

In the case of motion models, we address the issue of modelling a sequence of obser-
vations for the purpose of tracking moving objects and concentrate on the modelling

of motion trajectories.

30
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The paradigm of neural computation is realised with networks of highly intercon-
nected simple processing elements (neurons) called Neural Networks (NNs) [47, 50].
Instead of performing a program of instructions as in a von Neumann architecture,
NNs explore many competing hypotheses simultaneously using parallel but local com.-
putation at their processing elements. NNs are also known as “connectionist models”
[10, 28] or “parallel distributed models”[123]. They denote a computational paradigm
that is inspired by the functionality and the architecture of biological nervous systems
but have very little physical resemblance to their biological counterparts. Through-
out this thesis, the processing elements that comprise the NNs will also be referred

as elements and the links between thermn as weights.

w
Y
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Figure 3.1: A schematic diagram of a McCulloch-Pitts processing element.

3.1 Characteristics of Neural Networks

Existing NN models are similar in the following respects:

* Information processing occurs for many elements simultaneously by the appli-
cation of an activation function to the weighted sum of their inputs: A typical
processing element is that of McCulloch and Pitts [89] shown in Figure 3.1.

This is a binary threshold element, ¢, whose output y depends on the Wefghted
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sum of its inputs &;

N
¥ = 00D wi il — 6;) (3.1)
==l

where N is the total number of inputs, w;; is the weight between elements i
and 1, §; is a threshold value for element i and ©(z) is a step function, acting

as the activation function of the element, given by:

1 ifz>0
6(3:) = { 0 otherwise (3'2)

In most NN models, the step function is replaced by a more general sigmoid
nonlinear function ¢(x) that is differentiable. (z) is usually given by the
logistic function:

1
1+ exp(~28z)

-0 < T <00

p(e) = fo(z)

where f3 is the steepness parameter. The logistic function is non-symimetric and

bounded between (0, 1) or the hyperbolic tangent function:

1 — exp(—pfz)

I+ exp(—Ba)’ -0 <z <00

¢(z) = tanh(Bz) =

which is asymmetric and bounded between (—1,1). In general, some networks
learn faster when the sigmoidal activation function built into the proceésing

element of the networks is asymmetric than when is non-symmetric 147].

Signals are passed between any two elements through their connections, which
are associated with real velues called weights: Negative weights denote an in-
hibitory interaction between two elements, whereas positive weights denote an

excitatory interaction.

Elements are usually grouped in layers: The flow of the signals in NNs is either
(i) feed-forward from the input (first) layer towards the output (last) layer of
a network (Figure 3.2), or (ii) recurrent with all or some feedback signals in

the network flow (Figures 3.3 and 3.4). The output value of an element of a
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output layer l N l I I

hidden layer

-+ -
- " .

A AZTITS

input layer

Figure 3.2: An illustration of a maulti-layer feed-forward network.

recurrent network at time ¢ is given by an update equation of the following

forms:
N
yi(t) = (P(;Owi,jyj(t”“l))"*‘@i (3.3)
" N
yi(t) = @(g}wz‘.jyj(t“1)+§wa.j§j(f)) (3.4)

where L is the total number of output elements.

Networks with symmetric connections whose output values are updated using
Equation (3.3) converge to a stable state. An example is the Hopfield model
[54, 55] shown in Figure 3.3 which is typically used for modeling associative
mem(;ries or solving constraint satisfaction problems. Networks with similar

properties but different architectures have also been proposed [6, 106, 121].

The 'bzé.haviour of most of the networks that iearn how to recognise or reproduce
temporal sequences is described by equations similar to that of {3.4). Examples
of such networks can be found in [27, 65, 93, 104, 119, 127, 145, 146]. The main
disadvantage of such networks is that they do not converge to a stable state
[47, 50]. An example of a single layered recurrent neural network [27] is shown

in Figure 3.4.
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o Information in NNs is stored in the weights and is distributed over the whde
network: Most of the networks acquire information through either supervised
or unsupervised learning procedures. With a supervised procedure, learning
is done on the basis of direct comparison of the output of the network with
known correct outputs [122, 123]. In an unsupervised procedure, learning is not
defined by specific input-output pairs. Instead, the only available information
to be learnt are the correlations in the input data. A network is expected to

extract meaningful information from these correlations [17, 49, 73, 82, 100].

Output

Input

Figure 3.3: The Hopfield model is a fully connected recurrent network.

The main advantages of the NN models compared to that of von Neumann are:

® The NN model is highly parallel: Most importantly, once the weights between
the elements of a network have been assigned, a learned task can be performed

very fast.
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o The information is distributed in the weights of the network: This gives a greater

degree of robustness or fault tolerance [123).

o Most networks collect their information through the adaptation of the weights
between the processing elements: With NNs, instead of having to specify every
detail of a calculation, one simply needs to compile a training set of represen-

tative examples.

OQutput -

O

Recurrent
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O
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Context
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— Al connected trained — One -~ to - one constant
connections connections

Figure 3.4: A typical single layered recurrent network.

In the remainder of this chapter, we describe in detail the architecture and func-
tionality of NNs that can be used for motion-based recognition. As the scope of this
thesis does not allow for the detailed description of the neural computation paradigm,
interested readers should look at the work of McCulloch and Pitts {89] on the mod-
élling of the first processing element; Hebb [48] on the physiological learning rule
for synaptic modiﬁcation between two neurons; Rosenblatt [120], Widrow and Hoff

[143, 144] on the first NN models: Perceptron and Adaline; von Neumann [98, 99] on
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the redundancy in the representation of information in NNs; Winograd and Cowan
{147] on the use of distributed redundant representation on NNs; Minsky [90] on the
introduction of the idea of feedback connections in neural networks for the represen-
tation of sequences and Minsky and Papert [91] on the computational limitations of
Perceptrons. Other interesting work and reviews on NNs can be found in various

articles [8, 20, 21, 46, 83] and the books by Hertz ef al [50] and Haykin [47].

3.2 Feature Extraction

Automatic extraction of closed contours from grey-level images irrespective of their
position, orientation, scale and deformation has long been one of the main concerns
of researchers. Some of the most notable applications are the extraction of features
such as eyes, nose or mouth from face images [79], recognition of characters [30, 81}
and cells from biomedical images [113]. Effective extraction of closed-curve features

requires three distinctive processes:

I. The construction of a parameterised feature model.

2. The delineation of the feature’s boundary in the image and computation of its

properties such as edge orientation, contour curvature, binding energy of the

contour.

3. The matching of the information extracted from the image to that of the model.

In some cases the last two stages of computation are integrated into a single process,
as for example in the representation of the shape of a feature on the Generalised
Hough Transform {GHT) [9, 25, 61] or the Active Contour Model [14, 66, 67]. Both
techniques are widely used for the modelling and detection of 2]) shapes with irregular

contours. With GHT, a parametric description of the contour is constructed based on
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sample features. This information is then used to locate similar features irrespective
of their position, scale or orientation. In active contour models, the contour of a
feature is defined as an energy-minimising spline, also known as an “active snake” as

it exhibits dynamic behaviour. However, both these methods have serious limitations:

1. GHT requires a complete specification of the exact shape of the contour.

2. A solution using the active contour models requires an interaction that must
specify an approximate shape and a starting position for the snake somewhere
near the desired contour. This a priori information is then used to push the

snake towards an optimal match.

3. They are computationally very expensive. GHT requires a lot of storage and
extensive computation whilst active contour models seek an optimisation of a

set of linear equations by iteration,

4. The solutions suffer from numerical instability. Active contour models de-
pend on the designation of numerous parameters and the initialisation process

whereas GHT depends on the “peak” detection in a parameter space.

3.2.1 Cytological Image Interpretation

For various applications, automatic extraction of features from cytological images
is particularly important but also challenging. It is important because the manual
interpretation of cytological images is time consuming and requires the use of highly
skilled cytotechnicians which is prone to human misinterpretation. There have been
instances where cell characteristics that are not easily identified by the human eye
have been discovered by automated systems [77]. It is challenging for two main

reasons:
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1. Microscopic and cinema-scopic techniques provide bad imaging quality.

2. The shape of the cells is dynamic as it changes according to the phase status of

the cell and its interactions with the environment.

Existing cytological image interpretation systems that use image processing tech-
niques for image segmentation and feature enhancement were developed for chromo-

some analysis and cervical smear screening [24, 45]. These systems involve a primitive

' image analysis concept, poor knowledge representation, and depend heavily on user

interaction in order to function. An example of such a system is given by Graham
where the image is segmented using thresholding based on global or local grey level
values which depend on the task [45]. The aim of the sys‘cem is to count chromosomes
and when the enhanced image quality allows, to classify well formed and separated
chromosomes. During the classification, problems encountered with “difficult” cells
are overcome by recourse to operator interaction as in the case of composite chromo-

somes or displaced centromeres.

More recent specialised medical and biomedical applications use artificial intel-
ligence techniques [103, 107}, representation of a priori knowledge [150], and math-
ematical formulation [101].7 In particular, Wu used a priori knowledge in a model
based contour analysis technique in order to recognise and resolve composite chro-
mosomes [150]. However, the models are not generic and do not include uncertainty
measurements. Consequently, there has to be a model for each different chromosome
configuration in order for the algorithm to cope with the cases that have not been
explicitly specified. In another attempt, Oliver used a mathematical formulation in
order to correlate the position of the centre of the cell with deformation parameters of
the cell boundary [101]. However, it was recognised that the “snake” method used to

mark the cell boundaries does not work in areas of poor resolution, minimal gradient,

or subjective contour. Furthermore, the process of mapping the boundaries using an
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energy model was proved to be computationally expensive.

3.2.2 Neural Networks for Feature Extraction

It is therefore not surprising that many researchers have found the application of NNs
to the analysis of cytological images particularly attractive. In the work reported
by Dytch and Wied, a neural network classifier for binary cells has achieved 20%
improvement compared with the results from a statistical classifier [26]. In another
example, Turner ef al used a series of cascaded neural networks to extract features

and classify chromosomes [132].

A popular network architecture for feature extraction is the feed-forward multi-
layer perceptron such as the one shown in Figure 3.2. It consists of a set of input
elements, one or more hidden elements and output elements. The input elements
are linear, the hidden elements are non-linear and the output elements are either
linear or non-linear depending on the application. In most applications that use
neural networks for image extraction, the networks are trained by associating a set
of images with a feature class. A common way to train such networks is to use the
error-back-propagation learning algorithm [122). This is an iterative algorithm whose
objective is to adjust the weights of the network so as to minimise an overall cost
measure £, given by the sum of squared error between the expected and the computed
outputs of the network. After each epoch ! n, & is given by:

1 P
£=5 3 T - o) (35)

p=14{cl

where P denotes the total number of example features, the set C includes all the
elements in the output layer of the network, ¢f is the expected output of element i
for pattern 4 and of(n) is the output computed by the network for pattern u at epoch

7.

'The presentation of all training examples to the network constitutes an epoch [47].
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An efficient way to minimise £ is to use an approximation of the steepest descent
algorithm that is based on the instantaneous estimation of a cost function £(u), where

 is an example feature:

E(p) = =D (¢t = of)? (3.6)

ieC
In this case the weights of the network are updated on a feature-by-feature bagis

and the adjustments are made in accordance with the respective errors computed for

each example feature presented to the network using the Delta rule:

Awji(p) = wné%&% (3.7)

where 7 is the learning rate and w;;(¢) is the weight between elements 7 and j. This
incremental learning is called on-line learning. An alternative é,pproach only updates
the weights after all examples have been presented. This is known as batch learning.
Although the effectiveness of these two different approaches depends on the problem,

the on-line learning seems superior in most cases [47].

A momentum term is usually added to smooth the weight changes over time. This

is given by the Generalised Delta rule:

b= "afm) (38)

where « is the momentum constant and should be restricted to 0 < |a| < 1. Details

Aw;i(p) = abw;ip —

on the performance of this algorithm and the determination of the parameter values

can be found in [47, 50].

An alternative way to classify features is to use unsupervised networks, where the
network creates classes according to “common features” of the presented examples.
Examples of such algorithms are Kohonen’s self organising map [74], and Carpenter

and Grossberg’s ART [17].

The feed-forward layered architectures discussed so far do not encode any a priori

knowledge about the geometrical or topological properties of the input data. An
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alternative architecture has been introduced by Le Cun [80, 81] referred to here as

“locally connected”, shown in Figure 3.5.
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Figure 3.5: A “locally-connected” network was designed to recognise handwritien ZIP codes
from the U.S. mail [81]. From bottom to top we have the input layer, first layer of “locally
connected” feature detectors, second layer of “locally connected” feature detectors, a layer
of “all connected” elements and the output layer.

Each layer in this network is divided into overlapping tiles and the elements of
each tile are connected to one (or more) element(s) in the next layer. This approach
is particularly applicable to image pattern classification since in the construction of
the network architecture it uses knowledge about the spatial arrangements of the
image intensities. Furthermore, this network decreases the degrees of freedorm in the

network, thus reducing the training time and improving its generalisation ability.
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In Chapter 5 we illustrate the extraction of the centroids of cancer cells from

cytological images using similar feed-forward architectures.

3.3 Computing Optic Flow

Optic flow is the spatio-temporal disparity in the retina that is largely caused by the
relative motion between textured objects and the observer. Therefore, it is also known
as two-dimensional retinal apparent motion and it is one of the main sources of infor-
mation for motion-based recognition. The computation of optic flow is based on the
detection of spatio-temporal changes in the intensity from a sequence of images [37].
In particular, it relies on the measurement of spatial and temporal image gradients to
estimate the apparent speed and direction in which each image pixel moves. Based
on the Constant Illumination Assumption, i.e. apparent motion is only caused by
physical motion in 3D without any change in lighting conditions, Horn and Schunck

[59] proposed a scheme that constrains the computation of optic flow as follows:

ol
VI-U+-3—i~—0 (3.9)
where [ is the image intensity, VI is the spatial gradient of the intensity and u is

the optic flow displacement vector. Equation (3.9) is known as the motion constraint

equation,

Equation (3.9) alone is not sufficient to determine both components of vector u.
It only constrains their values to lie on a straight line in the motion space. This is
known as the “aperture problem” which states that only the normal component of
optic flow along the direction of the intensity gradient can be measured locally. The

normal component of the optic flow is given by:

1y

T EE e

N

—+
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where 7 is the unit gradient vector and I, = 87/5¢.

In order to determine both components (u,v) of u, the following additional con-

straints have been proposed in the literature:

o Local smoothness exists in flow field variation {591,
o Optic flow is constant over certain segments of an image [68].

o A multi-constraint method which relies on the motion constraint Equation (3.9)
and the use of several other functions of intensity. Candidate functions include
directional derivatives or various spatial operators like contrast, entropy, average

and power content [1, 92].

In Horn and Schunck’s algorithm, a full optic flow field is computed by using
global optimisation techniques to minimise an error function based upon the motion
constraint equation and the assumption of local smoothness in flow field over the
entire image. As we will show in the remainder of this section such a formulation

lends itself naturally to an implementation on a linear resistive network [71].

3.3.1 Horn and Schunck’s Algorithm

The error function in Horn and Schunck’s algorithrm is given by:

E{u,v) f (uly + vl + I,)? +)\[(gu) ( )2 (Bv) ( 1 dzdy  (3.10)

where (u,v) is the optic flow vector and I, I, and I; are the partial derivatives of the
intensity I with respect to x, y and t. The minimisation of the first term in (3.10)
constrains the final solution to be as close as possible to the measured data, whereas
the minimisation of the second term imposes the local smoothness constraint oﬁ the

solution. The degree of smoothness is governed by the parameter A,
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The error function E(u,v) can be approximated by a finite-difference scheme [58].
Using the values of the optic flow at grid point (¢,7) and its neighbours, one can

approximate the smoothness constraint as:

sij = Tl(ivrs — uig)? + (uigen — wi)? + (vigrg — viy)? + (Vs jor ~ vij)?]

W |

and the difference between the true and the estimated (u,v) by:

g = (Lpwij + Lui; + 1)°

where I, I, I; are estimates of the rates of change of intensity with respect to z,y

and t at point (¢,7). Then, the true velocity (u;;,v:;) can be derived by minimising

€ = ZZ(Ci’j + )\35,3') (311)

Minimising functional e (3.11) gives a set of two linear equations:

(Lottij + Lyvis 4 T)Ip ~ Muij — @) = 0 (3.12)

(I$uz-,j + va,;,j -+ It)fy - /\(vz-,j - f?,',j) = 0 (313)

where #;; and #;; are local averages of u;; and v; ;. The set of values (1,4, vi ) that

minimise e is given by the following two iterative equations:

Lug; + Lol + 1

wif =g - TR (3.14)
ot =y, - 2 L A L (3.15)

A D W
3.3.2 Locating Motion Discontinuities in Optic Flow Field

The disadvantage of Horn and Schunck’s algorithm is that it smoothes the field over
the boundaries of objects that move differently, and therefore is unable to ideﬁtify

motion discontinuities and thus distinguish motion boundaries {59]. One solution to
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this problem is to introduce additional terms in the error function, E(w,v) that mark
the object boundaries in images and therefore break the global smoothness in the
optic flow field. These terms are modelled as binary valued vertical and horizontal
line processes because of the “all-or-nothing” character of the discontinuities [31, 50].
Therefore, a motion discontinuity between two neighbouring pixels (4,4 + 1) in the
image is indicated by I; = 1, whereas I; = 0 indicates that there is no discontinuity

present {Figure 3.6).

0 O O
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Figure 3.6: The location of the horizontal (1) and vertical (I¥%) motion discontinuities
relotive to rectangular motion-field grid.

An energy function using horizontal and vertical line processes to detect the ob ject
boundaries in the image while computing the optic flow is introduced by Koch et al
[71]. Given that [*,{"" denote the horizontal and vertical line processes respectively,

the energy function that needs to be minimised takes the following form:
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E(u,v, lh,lw) = Z(Izuij + Lyvg; + 1)
+)\ Z(l I(Wirrg — i) + (Vigr; — 03 )7 (3.16)

+A Z D 8 (W jn — wi)® + (vijgn = v3)7] (3.17)

+c, zzgfj +e ) I (3.18)
- —~

+cp21 RPN (3.19)

+cp§:lw (B +17_0) (3.20)

e Zl zy+1 — =)

+(1—l§j ~ I = 15207 (8.21)
+c:2f”‘ (=B~ 1 =1 )

+H1-07, - l:im:{g iy J+1)7 (3.22)

where (3.16) and (3.17) determine whether there is a discontinuity in the optic flow
field; (3.18) is a penalty for the introduction of line variables in the energy function;
(3.19) and (3.20) are penalties for the formulation of parallel lines; (3.21) and (3.22)
are penalties for line intersections. ¢,, €p, ¢; are parameters that determine the relative

contribution among various terms.

For the computation of the discontinuities two sets of parameters are important:
First, the ratio between weights (c,, ¢;, ¢;) which describe the interaction between the
line processes and the weight A, which determines the smoothness in the optic flow.
Decreasing the importance of the line interaction terms versus the smoothness term
encourages the formation of lines at smaller and smaller optic flow gradients. Second,

the relative weight of the individual components of the line interaction terms.
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From term (3.21), the cost of the various line intersections for a horizontal line

process If; is illustrated by Figure 3.7.

! 6 (i) (i
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Figure 3.7: Cost of the intersections of the line processes given the presence of a horizontal
line process (I* = 1), '

Given that l;‘”; =1, the cost of the line intersections is similar.
The solution can be found by minimising E(u,1*,I') for a given arrangement of

the line processes (1%, 1'") by varying u, since u, /", " are independent variables.

3.3.3 Computing Optic Flow on a Resistive Neural Network

Hardware realisations of networks that exhibit behaviour similar to that of neural

networks are very popular because:

¢ The computation in such networks is much faster than simulations on digital
computers.
® They are more realistic implementations of the biological neuron system.

Koch et al [71] has shown that optic flow can be computed using a pair of simple

linear resistive networks [71, 72]. Figure 3.8(a) shows a discrete two-dimensional grid,
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on which Equations (3.12) and (3.13) can be modelled as:

Luig + Ledyosj — Mg g + uignn — dug j + wimyj + uij-1) + LI =0 (3.23)

I;"Uz"j + Ixfyui,j — )\(’Uz'+1,j + v 41 — 4;?)3"3; + v+ 't)z‘,j_I) -+ IyIt =0 (324)

Figure 3.8 (b) shows a linear resistive network for computing one of the components
of the optic flow. The combination of the capacitance C, the conductance gi; and
the battery E;; can be thought of as a processing element, whose output is given by
the voltage at node (7,5). In this case the voltage at each node (7,7} denotes one of
the components of optic flow (u,v). Using Kirchoff’s current law to the center node
of the resistive network we have the following update equation:

du,-,j

Cdt

= T(tipr; + wiger — Qg+ vicrg +uigo) + 685 ( By —wiy)  (3.25)
The optic flow is computed by using two such superimposed networks, where corre-
sponding nodes are connected via a variable conductance 7._; ;, as in Figure 3.9. We

then have two equations similar to Equation (3.25) with a coupling term:

CT = T(uipry + vigan — g+ vimyj + v jo1)
+9i5(Fig = wig) + Tomij(vig — uij) (3.26)
dvz- 1
C dt’J = T(vig1,5 + vigpr —dvij +viq; + Vij-1)

+9:5(Eig — i) + Tomij(vij ~ vij) (3.27)
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Figure 3.8: Left: The sum of squares of the first partial derivatives of u and v at position
(4,7) can be estimated using the differences of the optical flow components at neighbouring
points. Right: Part of the resistive network minimising the discrete version of the error
function given by Equation (3.10). The conductance T connecting neighbouring nodes is
constant. Each node connects to a variable battery E; ; via a conductance gi;- The final
network consists of two such resistive networks superimposed via a varieble conductance
Ti—ijs as is shown in Figure 3.9. Once the batteries E; ; and conductances gi; and 955
have been set, the network will converge, following Kirchhoff’s laws, to the state of least
power dissipation that corresponds to the solution of the error Equation (8.10) [71].

Both Equations (3.26) and (3.27) are identical to Equations (3.23) and (3.24) if we

associate:

Tc—z',j s *IEIy
9i; — L{I,+1)

g::j - LI+ 1)
L
(Iz + 1)
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AN

Figure 3.9: The hybrid resistive network, computing the optical flow field in the presence
of discontinuities [71].

Once the batteries E;; and conductances g}; and g} ; have been set with appro-
priate values related to the precomputed intensity gradients I,,I,, I, of the images,
the network will converge, following Kirchoff’s laws, to the state of the least power

dissipation that corresponds to the solution of Horn and Schunck’s error function

given by Equa,tion (3.10}.

To find the motion discontinuities in a sequence of images, Koch et al used a
purely deterministic algorithm based on solving Kirchoff’s equations for a mixed
analog and digital network [71, 72, 86]. The algorithm exploits the fact that for
a fixed distribution of line processes, the energy function defined above is quadratic.

Accordingly, the resistive network is first initialised with no line processes on, and the



|
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network converges to the smoothest solution of the optic flow fleld. Subsequently, the
line processes are updated by deciding at each site whether the overall energy can be

Jlowered by setting or breaking the line process.

The algorithm always accepts the state of the line processes that correspond to

the lowest energy configuration. For example [* will be turned on if
E(u,v, " = 1LY < Blu,v, b = 0,

Otherwise {* = 0. After the completion of one such analog-digital cycle, they reiter-
ate and compute the smoothest state of the analog network for the newly updated

distribution of line processes.

Although there is no guarantee that the system will converge to a global minimum,
the system will find near-to-optimal solution in about 10 to 15 analog-digital cycles
[71]. Furthermore, the algorithm must converge, because at each step the energy E

1s always reduced and E is bound from below.

3.4 Modelling Time-varying Information

As was described in Chapter 1, an activity or an object may be recognised directly
from motion without structure recovery and this phenomenon was referred to as
motion-based recognition. An ordered set of motion measurements from an image
sequence constitutes a motion pattern which is associated with a particular movement
6f an object. Knowledge about the motion patterns allows us to construct motion
models that can be used in the tracking and recognition of moving objects and their

activities,
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We also discussed in Chapter 2 that depending on the structure of an ob ject and

its movement, a motion model can be represented as:

1. The trajectory of a moving object [18, 39].

2. Temporal events that are seen as particular occurrences happening in the motion
[35, 36, 44, 76], such as a change of direction or a stop at a particular time

instance in the image sequence.
3. Optical flow measurement [87, 110].

4. Time-varying information on the photometric temporal change of a moving
object. Such a representation may be based on the principal component analysis

on the intensity values of the image [70] or on feature vectors {105, 151].

As motion constitutes information that is dynamic by nature and therefore time
dependent, any representation of a motion model can be perceived as a temporal
pattern. Assuming that a well defined relationship exists between the past and future
values of the temporal pattern of a motion, then a motion model can be created

through the presentation of a set of motion examples.

The most common solution to represent temporal information has been to give
it a spatial representation. However, as we shall show in the next section, this rep-
resentation has many disadvantages. A better approach would be to represent time
implicitly, that is, to represent time by the effect it has on processing and not as an
additional dimension of the input. Such a representation can be modelled by using
temporal information from examples on Hidden Markov Models [39, 151]. However,
this method requires the determination of the @ priort probability distribution of the
elements of the temporal patterns and that of their relationship. This can be difficult.
An alternative approach is to use neural networks [47, 50]. Successful applications

have been reported in the reproduction of gramma:rs [34, 43] and prediction of financial
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markets [94, 140]. In the remainder of this chapter we introduce some representations
of temporal patterns on neural networks and present a network architecture that is

suitable for motion-based recognition.

3.4.1 Representing Time in Feed-forward Neural Networks

A major limitation of feed-forward networks of the type trained using the back-
propagation algorithm is that they are only suitable for learning input-output map-
pings that are static. This means that the input £ and the output O represent patterns
that are independent of time. The most straightforward way for a feed-forward net-
work to perform recognition of a temporal sequence is to turn the sequence into a
spatial pattern which is to be taken as the input of the network. In this case, the
input & to a network is defined from the past samples {(n —1),£(n ~2),...,£(n ~ P)

as follows:

£ = [é(n" 1),§(n -"2),...,5(7?,“-1))]

The output responding to input ¢ (n—1) is an one-step ahead prediction ¢ {n) whereas

the actual input £(n) represents the desired response.

In practice, temporal patterns could be fed into a delay line which is tapped at
various intervals. The resulting architectures are sometimes called time-delay neural
networks. An example is shown in Figure 3.10. The spatial representation of temporal

patterns by parallelising time involves several drawbacks [27):

1. It only allows a fixed window size on the temporal pattern representation.
2. Tt requires large amount of Imemory.

3. The network cannot easily distinguish the relative temporal position of an ele-

ment in a sequence from its absolute temporal position.
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Figure 3.10: A time-delay network.

For a neural network to learn how to predict and classify temporal patterns pro-
duced by motion models, we need to add dynamic properties to networks that make

them responsive to time-varying signals [47].

One way in which this can be achieved is to introduce time delays in the con-
nections of a network [140] and to adjust their values during the learning phase. A
modified McCulloch-Pitts element that includes temporal properties is shown in Fig-
ure 3.11. The temporal model of this element is used to construct a feed-forward
network that can be trained with a gradient descent algorithm called temporal back-
propagation {139] . This is a supervised learning algorithm in which a desired response
is provided at each instance of time. The main drawback of this approach for motion-
based recognition is that the network requires the input of several elements of the

temporal pattern before it can start to predict the next element.

Another way in which a network can assurne dynamic behaviour is to make it

recurrent.
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Figure 3.11: A modified MecCulloch-Pitts element to include temporal properties.
3.4.2 Representing Time in Recurrent Neural Networks
It was stated in the introduction that objects move purposefully in an environment
and effective prediction of their trajectories can be achieved by modelling the spatio-

temporal regularities associated with such motions [16, 39, 114]. Temporal prediction

and recognition require:
¢ A short-term memory that retains aspects of the input sequence relevant to
prediction and recognition.

* The specification of a function that combines the current memory and the cur-

rent input in order to form a new temporal context [94].

¢ The identification and learning of regularities from temporal sequence.
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These tasks require a network architecture that:

o Accepts discrete time-varying input signals.

o Can form internal states with transition loops among them that can be traversed

with the application of time-varying signals.

To accomplish this, we need to utilise a system that is capable of storing internal
states and implementing complex dynamics. Neither a feed-forward network nor a
network with symmetric connections will do, because they necessarily converge to a
stationary state [50]. However, in a recurrent network with asymmetric connections,
the state of the system can be encoded in the activity pattern of the elements and a

wide variety of dynamical behaviours can be programmed by the weights.

Qutput
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Figure 3.12: A typical single layered recurrent network.

An example of a Single Layered Recurrent Neural Network (SLRNN) was shown

in Figure 3.12. It consists of a set of L recurrent elements, some serving as output
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elements and the rest as hidden elements, and a set of N non-recurrent input elements
which receive data from outside the network. Let &(t) denote the N x 1 external
input vector applied to the network at discrete time t, and let 8(¢ + 1) denote the
corresponding L x 1 output of the recurrent elements produced at ¢+ 1. The input
vector &(.t) and the one-step delayed vector s(t) are concatenated to form the (N +
L) x 1 vector u(t), whose ith element is denoted by ui(t). Let A denote the set of
indices ¢ for which w;(t) is an external input, and let B denote the set of indices s
for which w;(#) is the output of a recurrent element. The dynamics of the system are
then described by the following recurrence equations:
S(t+1) = (hi(t))

N+L
hit) = 37 wiuy(t) + 6,
;

where:

fi(t) if e 4
w(t) = { s(t) ifeB

and 8 is a vector of biases, whilst ¢ is a nonlinear activation function.

In general an error function similar to that of the feed-forward networks is defined
in recurrent networks and its gradient with respect to the weights is derived. The
main differences from the feed-forward networks are that (1) input and output data
are not static vectors, but temporal patterns and (2} a change in a weight can affect
the future behaviour of the entire network. Two algorithms that do not involve the
use of approximations in the computation of gradients which may be used to train a

recurrent network are:

* Back-propagation through time [123]: The idea behind this approach is that
for every recurrent network it is possible to construct a feed-forward network
with identical behaviour over a particular time interval. For temporal patterns

spanning timesteps ¢ = 1,2, . .. , T, we need to duplicate all T elements, so that
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a separate element s! holds the state s;(¢) of the equivalent recurrent network at
time ¢ (see Figure 3.13). In this algorithm we define the following error function:

3 )

n=ng je6A

gtotaz(no, nz) =

where ngp and ny denote the start and end time of an epoch, A is the set of indices
§ pertaining to those elements in the network for which desired responses are
specified and e;(n) is the error at the outputs of such elements measured with

respect to the desired response.

The main limitation of this algorithm is the need for large computer resources
as we need to duplicate all the elements of the network. For long temporal
patterns and for temporal patterns of unknown length, the approach becomes

impractical [50].

o Real-time recurrent learning (RTRL) algorithm [145, 146]: By using this learn-
ing algorithm, recurrent neural networks are trained without duplicating the
units. If C denotes the set of output elements of a network and d;(¢) denotes
the desired response of output element 7 at time ¢, an error function &g is

given by summing E(t) over time t:
gtozal = Z g(t) aJld
t
1
E(t) = 5 > e2(t)
Jjec

where:

_ _ dj(t)—Sj(t) lfj e€C
ej(t) = { 0 otherwise

Similar to the error-back-propagation algorithm, described in section 3.2.2, &oral

1s minimised by computing the gradient V&, as follows:

8 gtotczl
ow

= Z.ngt
i

vw gtotal =
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where V&, is the gradient of £ (t) with respect to the weight matrix w. The
storage requirements of this algorithm are also very large and proportional to
the length T of the temporal pattern. They can be reduced if we approximate
the solution of the error function Eiotal bY updating the weights of the network
after each time step. Nevertheless, in the case of a fully interconnected network
with a total of L recurrent elements and N external inputs, we need, at each

time step, to store a total of L(L? + NL) values [47].

(a) : (0

Figure 3.13: (a) A fully recurrent network with two processing elements. (b) The network
unfolded in time.

¢ Partially Recurrent Networks: Some learning schemes of recurrent networks take
into account the network dynamics for only one step back in time. Examples are
the partially recurrent networks of Elman [27], Jordan [65] and others [94, 127].
These architectures operate only in discrete-time and the weight of the feedback
connections is fixed. A set of context elements holds a copy of the activations

of the hidden or the output units. The trainable weights are all on feed-forward




Chapter 3. Neural Computation for Motion-based Recognition 60

connections, and can therefore, be trained by the conventional back-propagation
method. In the case of temporal patterns this is done at each time step. Two

examples are shown in Figure 3.14.

Ouatput Output

(AN 7 \

Context Input Context Input
(j Q/
————  fixed connections weewa  {rainable connections

(2) (b

Figure 3.14: Ezamples of partially recurrent networks: (a) Elman network (b) Jordan
network.

In these architectures, the network consists of N input elements, L context
elements, K output elements and S hidden elements. The context elements
remember some aspects of the recent past, and so the state of the whole network
at time ¢ depends on the aggregate of previous states as well as on the cun;e;qt
state. The pattern of activation of the hidden elements represent an “encoding”
of the features of the input patierns that are relevant to the task and therefore,
hidden elements can now encode information about the relevant features of
successive input data. Thus, in Elman networks the pattern of activation of the
context elements represent an “encoding” of the relevant features of the past
input elements [27]. Furthermore, the short term memory of.the network can

be augmented by convolving the context elements with an appropriate function
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[94]. The main purpose for this is to give the context elements individual
memory or inertia. An example is when the values of the context elements
becorne an exponential encoding of the activation values of the hidden elements.
The context elements maintain moving averages of past hidden value activations

according to the equation:

y(8) = (1 — p)z(t) + wiy(t — 1) (3.28)

where y; lies in the interval [~1,1] and represents averages spanning various
ntervals of time, z(t) represents the vector of the hidden elements activation
values at time f and, y(t) represents the context vector i at time ¢ This is

equivalent of convolving the context elements with the function c(t) = (1 -

H

4 ) 4.

The main advantages of recurrent networks over feed-forward networks are:

¢ The temporal pattern can now be processed sequentially without the need for

a buffer.
¢ There is no requirement for absolute temporal position of an element.

¢ The transition between the states of a network can be described by a finite state
machine [19, 43]. For a quintuple (1,0,8,6,)) where I is a set of inputs, O is
a set of outputs and § is a set of states, the evolution of the network can be

described by the state transition function 8 and the outpuﬁ function A
6:1 x5 — S isthe state transition function

ArIxS§—0 is the output function

In addition, the advantages of partially recurrent networks for motion-based recégnim

tion are;
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e One step prediction can be used to track movement of objects.

e Evaluation of the differences between the predicted and computed values can

be used to recognise movement of objects.

In Chapter 6 we show how partially recurrent neural networks based on Elman’s

architecture can be used to construct motion models for motion-based recognition.

3.5 Summary

As shown in the previous chapter, neural networks are suitable for addressing the

problems encountered in motion-based recognition.

In this chapter we looked at the characteristics of neural networks and identified
the network architectures that can be used for the computation of observations and
the construction of motion models. In particular we showed (1) feed-forward neural
networks that can be used for feature extraction, (2) resistive neural networks that
can be used for the computation of optic flow and (3) fully and partially recurrent

neural networks that can be used in modelling time-varying information.

In the following chapters of this thesis we present our work in the parallel im-
plementation of neural networks, and their application in (1) the computation of
the centroid of cancer cells, (2) the hybrid computation of optic flow and (3) the

construction of motion models from motion trajectories.






Chapter 4

Hybrid Parallel Computation of
Optic Flow Field

The measurement of optic flow from a sequence of images is an expensive process that
requires an efficient parallel implementation, if a real-time computation is needed [37].
Furthermore, the detection of motion discontinuities near object boundaries requires
the introduction of additional constraints that further add to the computational cost.
As shown in Chapter 3, one way of introducing such constraints is the use of line
processes in the energy function that describes the optic flow vector. Koch ef al [71]
mapped Horn and Schunck’s algorithm [59] onto a linear resistive network (see Fig-
ure 3.9) and computed the motion discontinuities by using a deterministic algorithm
on a mixed analog and digital network. In this case, the line processes correspond
to a regular grid of serial programmable processors that communicate locally with
the linear resistive network. The digital processors can break the resistive connection
between two neighbouring analog processors thus denoting a motion discontinuity.
Finally, to accurately compute the locations of the motion discontinuities they were

required to coincide with the locations of intensity changes,

In this chapter we present a software implementation of Horn and Schunck’s al-
gorithm on an SIMD parallel machine (the AMT DAP) and show the similarity of

Horn and Schunck error function with that of the Liapunov function that describes

63
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the behaviour of the Hopfield model. Furthermore, we exploit the properties of the
DAP and the Hopfield model to deliver an efficient parallel computation of motion

discontinuities using binary and continuous valued line processes.

4.1 The Hopfield Model

Hopfield has shown that the dynamic behaviour of a discrete recurrent network with
symmetric weights (w;; = w;;), no self-connections (w;; = 0), and processing ele-

ments with step activation functions can be described by a Liapunov function

1
H = ~5 sz‘,jyz‘yj - Zfiyz' + Zﬁiye
5 7 i

where y;,y; are the outputs of the elements ¢, 7 respectively, I; is the bias and 8, is

the threshold value of a processing element ¢ [54, 55].
The output values of the elements change iteratively by using the following rule:

yi — 03wy + 10 < 6;

This would reduce the value of H until it reaches a stable state. The discrete Hop-
field model can solve constraint satisfaction problems by appropriately representing
the constraints through certain combination of the initial network state, externally

supplied inputs and both excitatory and inhibitory connections between the elements.

A similar architecture has processing elements with continuous outputs which are
monotonically increasing functions of the inputs and are limited to 0 < yi <1 [55].
This is known as the continuous Hopfield model [56, 57]. The update rules for the

elements are given by the following set of equations:

() = g+ (i) (4.1)
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where 7; 1s a suitable time constant and w(z) is a non-linear function.

In an equilibrium, y;(¢) ceases to change and dy;/dt = 0 for all 5. In this case the

output of all units in the network is given by y; = W3, wi ju5) -

The energy function that describes the behaviour of the continuous Hopfield model

is given by:
1 L [¥%
H=—3Twy+ 53 [ o)y (42)
3 %

where A is a finite positive number, ¢~ is a monotone increasing function and y;, y;

are the output of elements ¢, j respectively.

Networks with this basic organisation can be used to compute a solution to an
optimisation problem if it can be formulated as an energy function that corresponds

to the Liapunov function of the Hopfield model.

The behaviour of these networks can either be simulated by solving the set of
equations given in (4.1) or realised by analog computational networks 156, 57]. In
the latter case the processing elements are modelled as amplifiers that have a sig-
moid input/output curve a,nd the connections between the elements are modelled
using resistors. The time constant 7 is modelled using a capacity C. This analog

implementation is similar to that of the linear resistive network of Koch et al [71].

4.2 Horn and Schunck’s Algorithm on a Hopfield
Model with Linear Elements |

Based on Equation (3.11) the discrete form of the error function £ (u, v} for measuring

optic flow is given by:
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e(u,v) = Z(Ixm,j e vag,j -+ It)z

i
A
7 2 (Ui = vi)® + (wijar — uig)?
¥
ik = 00)" + (Vi1 — 1)) (4.3)

Using the gradient descent rule we can determine the values of (u,v) that minimise

Equation (4.3) by:

du,-,j _ 58
Tmc;ft— - ~8ui,j (4'4)
d’vgj ae
s L TE 5
7 dt avg,j (4 )
From Equations (4.4), (4.5) and (4.3) we have:
duz-,- A
"&i = ”“[5(4%5,1' Ui,y T Uil T Uiy u‘i,j—l)
—§—2(I§u,',j + I+ wayvz-‘j)] (46)
d’()@', i A
+2(I2vi; + L1 + Lu: )] (4.7)

Equations (4.6) and (4.7) are similar to Equation (4.1) but with linear elements

¢(u) = u. From the first terms in Equations (4.6) and (4.7) we see that:

L WEN (L) T WG, (-1, =

w("'hf)v(ir.?"'l) = w{i,j}'{i,j._]_) ==

D] S 1D | D

In addition, LILi+1.1Iv;; and L+ I v, ; are extra constant terms. Equations (4.6)
and (4.7) are similar to Equations (3.26) and (3.27) which define the optic flow in

the resistive network implementation with their solution given by Equations (3.14)

~and (3.15). Therefore, Equation (4.3) corresponds to the Liapunov function of a
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continuous Hopfield model and the values (u;;,v:;) that satisfy du;/dt = 0 and
dvi;/dt = 0 would minimize Equation (4.3). Figure 4.1 shows an example of a
synthetic sequence that has been used in the parallel computation of optic flow using

Equations (4.6) and (4.7).

Figure 4.1: A synthetic sequence used for the computation of optic flow. Twe overlapping
squares that are moving away from each other,
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Figure 4.2: The computed optic flow from the two overlapping squares after 1 iteration
(left) and 240 iterations (right).

|

Figure 4.2 shows the computed flow field using Equations (4.6) and (4.7) after 1
and 240 iterations respectively. The result is similar to that of the computation of the
optic flow using Equations (3.14) and (3.15), but the equations converge to a higher

energy minima.
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4.3 Continuous Line Variables for Motion Discon-
tinuities on a Hopfield Model

Koch et al [72] defined an energy function that included continuous line variables,
to interpolate depth values in the image. The method is based on the work of Hop-
field [55, 56] for solving combinatorial optimization problems by allowing the binary
variable to vary continuously between 0 and 1 and $o introduce terms in the energy
function that force the final solution to one of the corners of the hypercube [0,1] . Fol-
lowing [55], the binary line processes I* and I*" are mapped into continuous variables

bound by 0 and 1. The associated energy function is defined as:

E(u,v, 1", ") Z(Ixuz,J + L ; + I)?

4 .
+t7 Z [(is15 = i) + (viva,5 — vi,)7]
+ 7 2(1 = Bl jan = ui3)? 4 (Vi — vi)?]
+ chlfJ + chlw
+ cpZ 3(lz+1,3 + l?—-l,j)
+ szlw l”3+1 +17 )
+ c,,Z e (4.8)
+ e, Zzw 1) (4.9)
+ ¢ Z Fim =15 =, )
+(1_ 1,51 lzﬁ; 1 lwlg 1)]
+ ¢ ZJW ~ =l — l&ﬂl)z
S (N L I 15 I 1J+1) ]

+cg§: / i (i) dit (4.10)
+~ch/ Sy (4.11)
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where the terms (4.8) and (4.9) force the line variables to the corners of the hypercube
[0,1]. We introduce the terms (4.10) and (4.11) to define the activation function of
the processing elements of the Hopfield model. The values of (u,v)} that minimise

E(u,v,l* ") are given by the following update rules:

aii = 2(L2u;; + LI + L1 ;)

PR = ) 2y = vy = usery)

+%(1 — B 2ui — i — uigo) (4.12)
iﬁ = 2T0vi; + LI+ L Lu: ;)

4500~ 1) 205~ vira — i)

FA (L~ ) (200 — 541 — vegom) (4.13)

To compute the value of the line variables we follow Koch et al [72] by using the

update equations:
dm,-'j _ BE and dn,-,j — 6E
d T el Tar T o

where m;; and n;; are the internal state variables for the processing elements that
correspond to the horizontal and vertical line processes respectively. Furthermore,

I}; = g(mi;) and I = g(n; ;). Therefore, 2E is given by:
L.

oE A
o = gl = i)+ (vigag — 0i)’]
2%
+ee

+26,(Iyy,5 + 1)

+ey (1 = 20F))

Fel(1 = By = 15— B )+ (1 - Bir = Wi = Hagma)']
el (I — 1 =15 = 17, )

“%"2@'1?54«1(15} R (S HOWRY

F2e, 07 (I ~ 1 — By — lﬁi+1)

+eag3 (1) ' (4.14)
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Similarly for 9F / ol

The solution of the equation E{u,v, " 1) should approximate as closely as possible
the state of lowest energy. Since u, v, I*", [* are independent variables, the solution can
be found by mini’mising E(w,v, ", I") for a given arrangement of the line processes by
varying u,v. In a similar manner as above, the smoothest velocity field is computed
while the line variables are set to zero. Then the line variables are updated by
keeping the velocity values constant. Figure 4.3 shows a synthetic sequence that
has been used for measuring optic flow and the detection of discontinuities based
on minimising E(u,v,1",1*"). It shows a square moving diagonally downwards and

Figure 4.4 shows the computed optic flow and detected motion discontinuities.

TTTTTET

Figure 4.3: One square moving diagonally downwards.

From Equation (4.14) we can see that the update of the line variables must be
asynchronous. Since each line variable depends only on four of its neighbours, the
update of the network can be performed in two cycles, each cycle updates half of

the elements in the network. The method does not guarantee that the network will
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Figure 4.4: Computed optic flow (left}) from a square moving diagonally downwards and
the detected motion discontinuities (right).

converge to the state of lowest energy. Therefore, the fact that the relative costs
between the various intersections are defined closely may affect the convergence of
the network to the state of the lowest energy. Furthermore, a disadvantage of the
multiple cost terms is the symmetric or relative cost that is assigned to the line

processes. This makes the search for suitable constants harder.

4.4 Parallel Implementations on DAP

The AMT DAP (Distributed Array of Processors) used for the parallel computation
of optic flow and the continuous Hopfield models is an SIMD machine consisting of
1024 processors connected as a 32 x 32 2D array. A sketch of the DAP architecture
is given in Figure 4.5. Each processor has its own 16K of RAM and is connected to

each four nearest neighbours.

The DAP is programmed using the parallel Fortran*®, known as DAP-Fortran

that supports the parallel processing of both one dimensional and two dimensional
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Figure 4.5: A sketch of the DAP architecture. Each processor has interconnections to its
four nearest neighbours and has access to its own 16k RAM [97].
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structures, called “vectors” and “matrices” respectively, thus making it ideal for the
implementation of early vision algorithms and artificial neura} networks. Also, among
the benefits of DAP-Fortran is the inclusion of vectors and matrices of unconstrained
size ' and the introduction of new functions for indexing vectors and matrices that
assist in the assignment and reading of new structures. Consequently, from the pro-
gramming point of view it would appear that the layers of a neural network and their
inter-connections can be mapped into the vectors and matrices supported on a DAP
and their weights can be processed in parallel regardless of their size. A nﬁmber
of neural network applications have been implemented on the DAP. Forest has used

the DAP for the restoration of binary images [29]. Psarrou and Buxton have used

'In earlier versions of DAP-Fortran, vectors and matrices had to be multiples of 32 elements.
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the DAP extensively to implement Hopfield models [112], feed-forward and recurrent

neural networks [113].

In the next sections we discuss in detail our experiments on the parallel com-
putation of optic flow and the detection of motion discontinuities. In particular, in
section 4.4.1 we show how Horn and Schunck’s algorithm can be mapped onto a DAP
and in section 4.4.2 we show the mapping of Koch’s resistive network onto a DAP.
In section 4.4.3 we discuss the computation of binary line variables on a DAP using
the chessboard approach. This approach is later used in section 4.4.4 to compute the
line variables modelled on a continuous Hopfield model. The computations on sec-

tions 4.4.2 and 4.4.4 consist the two components of the hybrid parallel implementation

of optic flow.

4.4.1 Implementation of Horn and Schunck’s Algorithm

Optic flow is extracted from different positions that objects occupy in an image be-
tween time t and t 4+ dt. Accordingly, the input in Horn and Schunck’s algorithm,
takes two images that differ by one time step. In our implementation, 32 x 32 images,

are mapped directly onto a DAP architecture.

The algorithm consists of computing the spatial and temporal gradients in the
two images and iteratively updating the velocity components (u,v) of the optic flow

field:

CALL DERVS(Image_i, Image_2, Ix, Iy, It)
CALL ITER(U_new, V_new, Ix, Iy, It, U_init, V_init)
PO 10 I = 1, COUNT

CALL MEANVEL(U_new, U_mean)

CALIL, MEANVEL(V_new, V_mean)

CALL ITER(U_new, V_new, Ix, Iy, It, U_mean, V_mean)
10 CONTINUE

where subroutine DERVS computes the intensity changes in the image; subroutine
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ITER computes the velocity components (u,v) of the optic flow field; subroutine
MEANVEL gives the average velocity estimation at each point in the image taking

into account the four nearest neighbours.

Since only local information is involved in these computations, they are imple-
mented in parallel using the special programming features provided by DAP-Fortran.
Each velocity component (u,v) is mapped to a 32 x 32 DAP matrix. Initially the
velocities are set to zero, and then updated iteratively until they converge to a stable

state.

4.4.2 Koch’s Resistive Network

The type of networks proposed by Koch et al {71, 72, 108] are usually referred to
as neural circuits. The main advantages of these networks are their fast computa-
tion, and their ability to simulate human neuronal functionalities. Figure 4.6 shows
an implementation of Koch’s linear resistive network on the DAP based on Equa-
tions (3.26) and (3.27). The top layer computes the u component of the optic flow,
whereas the bottom layer computes the v component. The coupled term Teij of
Equations (3.26) and (3.27) is implemented by a one-to-one connection between the

processing elements u; ; and v, ;.

4.4.3 Computing the Boolean Line Variables

As discussed in Chapter 3, Koch ef al augmented the energy function for the computa-
tion of optical flow field to include terms for the detection of ob ject boundaries. These
additional terms consist of boolean line variables, that are set using a deterministic

model described by the algorithm:
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Figure 4.6: Mapping optic flow vectors (u,v) onto DAP loyers of processors.

DOT =1, MAXITER
CALL FINDVELOCITIES(U_new,V_new,U_o0ld,V_old,H_lines,V_lines,COUNT)
CALL LINEPROCESS(New_hlines,New_vlines,U,V,01d_hlines,0ld_vlines)
CONTINUE

where subroutine FINDVELOCITIES computes the smoothest velocity field given a
certain distribution of lines. This is a parallel simulation of the resistive network.
Subroutine LINEPROCESS computes the new estimated values for the binary line
processes. This serves as the digital cycle of the network. MAXITER holds the
number of times the two cycles are performed and COUNT holds the number of

iterations performed in each cycle in order to reach a smooth velocity field.

Here we compute the line variables by using a parallel approach on the DAP.

Following Murray, Kashko and Buxton [97], we used a chessboard pattern approach to
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exploit the local information that is needed for the computation of the line variables.
Consider the horizontal and vertical line variables mapped to two DAP 2D arrays
and each array arranged alternately into white and black squares as in a chesshoard

pattern, shown in Figure 4.7. The center element of the chessboard corresponds to

line variable [, ;.

Figure 4.7: The horizontal and vertical line variables mapped to two DAP 2D arrays and
each array is arranged alternately into white and black squares s in o chessboard pattern.

The deterministic method used for the computation of the line variables searches
for the lowest energy configuration by changing the value of one of the line pro-
cesses while keeping the rest constant. .In this case, synchronous updating of the
line variables will be disastrous. By updating, the black squares separately from the
white ones, however, an asynchronous update of the line variables can be achieved
and, therefore, line processors that change simultaneously are not neighbours. On an
SIMD machine one can change every other row and column synchronously, and so
all the line processors can be visited in just two synchronous updates. On the DAP
it is easy to prevent broadcast commands reaching certain processors using a logical
mask similar to that of the chessboard pattern in Figure 4.7. For computing the line

variables we can first only update the black squares for the horizontal line processes:
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Horizontal_oldlines = H_lines;
Vertical_oldlines = V_lines;

/% the values of the horizontal lines associated
with black squares are inversed */

Board{Black, H_lines) = NOT(H_lines);

/* evaluation of the new energy value */

Qut = ENERGY(H_lines,V_lines,Const);

/* evaluation of the old energy value */

Qutold = ENERGY(Horizontal_oldlines,V_lines,Const);
Not_accepted = FALSE;

/* find out which line setting lower +the overall
value of the energy function */

Net = DOut - Out_old;

Not_accepted(Net.ge.0) = TRUE;

/* the lines that don’t lower the overall value of
the energy function and are associated with black

squares are given their old value */

H_lines(Not_accepted and Black) = Horizontal_oldlines;

Then we follow the same procedure for the vertical lines, before repeating these for

the white squares of the chessboard.

4.4.4 Computing the Continuous Line Variables

In section 4.3 an energy function was described that includes continuous line variables,
for the detection of motion discontinuities in the image. The best values of the line
variables are computed using Equation (4.14) for the horizontal and vertical line
variables. Asshown in section 4.3 Equation (4.14) corresponds to the update equation
of the continuous Hopfield model. Therefore, treating (u,v) as constants the Hopfield

model will converge to the values of {*, 1" that minimise the function E(u,v,*, ['").
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In a way similar to the computation of the boolean line variables, the smoothest
velocity field can be computed by initially setting the line variables to 0.5. Then
the values of the continuous line variables are evaluated so that the overall energy
is lowered. The line variables are mapped onto 32 x 32 2D DAP arrays, and Equa-
tion (4.14) sets the elements (line processes) to the value that minimise the overall
energy in the Hopfield model. The minimisation of E(u, v, ", {*") using this approach
is described as:

DO I = 1, MAXITER
CALL OPTIC_FLOW(Net_Constants, H_Lines, V_Lines, U, V, COUNT)
CALL HORIZONTAL(U, V, Constants, H_Lines, V_Lines)

CALL VERTICAL(U, V, Constants, H_Lines, V_Lines)
CONTINUE :

where subroutine OPTIC_FLOW computes the smoothest velocity field given a cer-
tain distribution of lines; subroutine HORIZONTAL sets the horizontal line variables
to the values that minimise the overall energy value; subroutine VERTICAL sets the
vertical line variables to the values that minimise the overall energy value; MAX-
ITER holds the number of iterations the two cycles are performed; COUNT holds

the number of iterations performed in each cycle to smooth the velocity field.

The network that computes the optic flow field is iterated (COUNT = 10) for
every single update of the line process network. Functionally, this is equivalent to
assuming that the line process network is stationary or substantially slower than the

optic flow network.

4.5 Summary

As stated in Chapter 2 optic flow is a rich source of information which can be used for
estimating the centroid of moving objects and consequently creating models of their

motion trajectories. This requires an efficient computation of optic flow and motion
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discontinuities,

In the previous chapter we showed how optic flow can be computed on resistive
neural networks. In this chapter we presented a hybrid parallel implementation on
the DAP that consists of Horn and Schunck’s optic flow algorithm and the detection

of discontinuities on a continuous Hopfield model.

In particular we showed that the process of determining the optic flow vector
(u,v} by minimising the error function in Horn and Schunck’s algorithm is similar
to the behaviour of a continuous Hopfield model with linear processing elements.
Furthe.'rmore, in section 4.4.2 we presented an implementation of Koch et af linear
resistive network on the DAP and showed that the components u and v of the optic

flow can be mapped on layers of DAP processors.

Next we showed how the error function for the computation of optic flow can be
augmented to include continuous line variables that detect motion discontinuities. A
solution to the value of such continuous line variables is given by mapping them to

the processing elements of a continuous Hopfield network.

Finally, we presented how the value of both binary and continuous line variables
can be computed on the DAP by using a chessboard approach. As the determination
of the lowest energy configuration requires the asynchronous update of neighbouring
line variables we exploit the masking capabilities of DAP to alternatively update the

white and black squares of a chesshoard pattern.

The results from measuring optic flow and detecting motion discontinuities with

synthetic data on the DAP were shown.

{







Chapter 5

Feature Extraction for Cell
Recognition in Cytological Images

As stated in Chapter 2 one source of information in motion-based recognition is the
motion trajectories of objects. These can be computed by tracking distinctive features

of objects, and therefore the efficient and effective extraction of features is particularly

important.

In this chapter we examine the extraction of features from cancer cells using feed-
forward neural networks. In particular, we are looking at a class of cancer cells that
has a high probability to metastasize. The behaviour of such cancer cells in vitro
is usually described in terms of a number of phenomena. Among them, in vitro
migration is considered the most important. The migrational activity of these cells
is assessed by a measure of direction defined as the ratio of the net displacement
(ND) of the cell to the total distance travelled (TDT) by the cell, i.e. directionality =
ND/TDT.ND and TDT can be computed by determining the position of the cells and
capturing their spatio-temporal motion paﬁterns [135, 136, 153]. As the migrational
activity of the cells with a high potential to metastasize is distinctive different to that
of the cells with a low potential to metastasize [152], motion-based recognition can be

used to discriminate between these two classes of cancer cells !. The motion models

This requires a large amount of cytological images that were not available at the time this thesis

80



T

Chapter 5. Feature Extraction for Cell Recognition in Cytological Images 81

of their behaviour can be also be augmented by taking account of changes in their

shape and texture[135, 136, 153).

The automatic extraction of features from cytological images is important but
also challenging. It is important because the manual interpretation of cytological
images is time consuming and requires the use of highly skilled cytotechnicians which

is prone to human misinterpretation. It is challenging for the following reasons:

1. Microscopic and cinema-scopic techniques provide bad imaging quality.

2. The shape, size and texture of the cells is dynamic as it changes according to

the phase status of the cell and its interactions with the environment.

3. The effective detection of the shape of the cells is reduced by the limitation of

the images processing techniques, such as those described in Chapter 3.

To identify the position of cells and model their spatio-temporal patterns we need
to extract their centroid [113]. This process differs from the feature extraction de-
scribed in section 3.2.2 because instead of associating a set of images to a class we

need to compute the centroid of the features presented to a feed-forward network.

In the following sections, we present our experiments in computing the centroid
of cancer cells using the feed-forward network architectures described in section 3.2.2

and trained with the back-propagation learning algorithm.

5.1 Characteristics of the Training Data

Training feed-forward networks to compute the centroid of cancer cells can be achieved

by associating each cell with an image of its centroid area. The input images were

was carried out,
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obtained from time-lapse sequences and show cancer cells in various phase and con-
tact states. They are preprocessed and segmented into 50 x 50 pixel images each
containing one cell only. The output images depicted a grey-scale area around the
centroid of the cancer cells that we refer to here as centroid area. The centroid areas
were precomputed using Walker’s algorithm [137] and resulted in a set of 50 x 50
dutput images. Walker used a Canny edge detector to delineate the boundaries of the

cells and subsequently compute their centroid. The actual centroid of the cells in the

output images is referred to as centroid coordinate and is computed by calculating the

center of mass [125]. An example of the cell images used for the computation of the
cell centroid and its associated centroid computed using the algorithm from Walker

is shown in Figure 5.1.

Figure 5.1: A typical cell { left) and the computed centroid ( right) using Walker’s algorithm.

Since the number of training data available was small, we scaled both input and
output images down into 10 x 10 pixel images in order to reduce the degrees of

freedom of the network.

The training set consisted of 100 images and the test set consisted of 20 images. To

train the network we used the batch back-propagation learning algorithm described
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in Chapter 3. In this case the weights of the networks were updated after the presen-
tation of all 100 images, using Equation (3.8). The value of the momentum parameter
was kept constant at o = 0.9, and the learning rate n was varied manually depending

on the state of the training process.

5.2 “All Connected” Feed-forward Neural N etworks

For training an “all connected” network with 10 x 10 pixel images a two layer ar-
chitecture was used consisting of a 10 x 10 element input layer, a 10 element hidden
layer and a 10 x 10 element output layer. This resulted in a network that consisted

of 210 (100 + 10 + 100) elements and 2000 (1000 + 1000) weights.

To measure the performance of the network, an average displacement of the cen-

tro1d coordma,ﬁes of the cells is used. The’ centrozd dzsplacement is defined as the

| dlstance between the expected (mea,sured from’ the output data) a,nd the comnputed

(calculated by the neural network) centroid coordma,tes of the ceIIs The compu-

tation of the training and test error depends on the one~to—one difference between
' the grey “scale plxel value of the computed and output centroid area images. The
average centroid d1splacement is the sum of the centrmd chsplacements in each image

| dzwded by the total number of i images. 'As the computa,tlon of a centroid takes into

account the distribution of the grey-scale in the images, measuring its displacement is
a more accurate reflection on the lea,rnmg performance of a network. We have three

categories to descrxbe the centroid displacement of cells:

on the pixel which indicates that the position of the expected and the computed

cell centroids coincide in the image and that the centroid displacement is equal

to 0.0.
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one pixel away which indicates that the position of the expected and computed cell
centroids differ by one pixel. The centroid displacement is equal to /2 if their

positions are on the same diagonal, otherwise it is equal to 1.

2 or more pixels away which indicates that the position of the expected and com-
puted cell centroids differ by two or more pixels. In this case the centroid

displacement is greater than /2.

Since the centroid displacement does not provide sub pixel information, the com-
puted centroid coordinates that are at most one pizel away from the actual centroid
coordinates are regarded as positive results. In Figure 5.2 we plot the success percent-

age from the results of the “all connected” network against the number of iterations.
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Figure 5.2: The percentage of the success for both the training and test cell images when
applied to an “all connected” network. A success includes both “on the pizel” and “one pizel
away” resulls.

This graph shows that the success rate of the network on the training data in-

creases almost monotonically and reaches a 100% success rate after 8,000 iterations.
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step  iterations || training av. displacement test  av. displacement
error in training images || error in test images

0.01 10 66.19 3.85 14.92 3.39
0.01 100 14.15 1.00 5.00 1.67
0.009 1000 12.23 0.86 4.77 1.56
0.009 5000 5.71 0.45 6.02 0.92
0.009 8000 4.06 0.41 7.59 0.84
0.009 10000 3.42 0.42 8.46 1.03
0.008 15000 2.28 0.30 9.66 1.00
0.008 21000 1.48 0.25 10.59 1.14
0.004 159000 0.30 0.13 14.07 0.93

Table 5.1: Results after training an “all connected” network with 10 x 1 0 pizel images.

The graph of the success rate of the test data shows, however, that.there is a different
evolution. It starts increasing monotonically after 4,000 iterations until it reaches
100% success rate after 8,000 iterations. Then, the success rate fails to 90% wuntil it
is restored again to 100% after 159,000 iterations. An explanation of this behaviour
can be given by comparing the change in the training and test error with the change

in the average displacement of the cell centroids after each iteration.

Table 5.1 shows that with each iteration, the training error decreases with the
decrease in the average displacement of the cell centroids. Although, the relation
between the training error and the average displacement is not linear, this tendency
continues until the network converges. However, in the case of the test images, the
error initially decreases but after 8,000 iterations it starts to increase. This is consis-
tent with the training character of feed-forward networks, where a large number of
iterations during training overfits the network to the training data. However, in the
case of the test data, changes in the average displacement of the cell centroids do not
always correspond to similar changes in the test error of the network. Furthermore,

the results on the test images after 10 and 159,000 iterations shows an error of 14.92
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and 14.07 but with corresponding average displacements of the centroids of 3.39 and

0.93 respectively.

8,000 iterations 159,000 iterations

training images | test images || training images | test images
on the pixel 61% 30% 87% 15%
one pixel away 38% 70% 13% 85%
2 or more pixels away 1%

Table 5.2: Percentage of the average centroid displacements obtained using an “all con-
nected” network after 8,000 and 159,000 iterations.

The difference between the test error and the average displacement of the test
data is due to the different characteristics of these two measurements: one depends
on the pixel by pixel difference in intensity values, while the other is related to the
distribution of the intensity values. Table 5.2 shows how the network has learned the

intensity distribution after 8,000 and 159,000 iterations respectively.

8,000 iterations 159,000 iterations

training images | test images | training images | test images
average displacement 0.41 0.84 0.13 0.93
best displacement 0 0 0 0
worst displacement 2 1.4 1 1.4

Table 5.3: Average, best and worst centroid displacement of the fraining and test images
using an “all connected” network after 8,000 and 159,000 iterations.

In the case of the training data, after 159,000 iterations, the network computes the
exact position of the cell centroid for 87% of the input images, compared to 61% after
8,000 iterations. However, in the case of test data, after 159,000 the network computes

the exact position of the cell centroid only for 15% of the images compared to 30%



o T Taeense

Chapter 5. Feature Extraction for Cell Recognition in Cytological Images 87

after 8,000 iterations. However as is shown in Table 5.3 the average displacement of

the cell centroids in the test images has not increased considerably.

The results shown on Tables 5.2 and 5.3 are consistent with the problem of over-
fitting the network. On the other hand, the success in computing the cell centroids
can be explained by examining the distribution of both the centroid coordinates in

the images and the computed ones from the network.

The 10 x 10 grid shown in Table 5.4 represents the size of a ceil image
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Table 5.4: Centroid distribution in the 10 x 10 test images and the average displacernent
between the actual and the computed centroid coordinates after 8,000 iterations using an
“all connected” network.

The Lower numbers in the elements of the grid indicate the number of cell centroids
that are found at this location in the image. Therefore giving a measure of the

cell centroid distribution in the images.

The Upper italics numbers in the elements of the grid indicate the average cen-

troid displacement between the expected and the computed positions of the cell
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centroids at this position after 8 000 iterations.

From Table 5.4 we can see that the average centroid displacement of the test
cancer cells that are found near the centre of the image is of sub pixel value, whereas
there are five cases of centroid coordinates away from the centre of the image where

the centroid displacement is 1.4.

Based on the same convention, Table 5.5 shows the centroid distribution and the
average centroid displacement of the test images after 159,000 iterations. In this

case, the average centroid displacement has increased for cancer cells that are near

- the centre of the image. However, there is only one cancer cell that is located away

from the centre of the image and its centroid displacement is 1.4.
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Table 5.5: Centroid distribution of the 10 x 10 test image and the average centroid dis-
placement between the actual and the computed centroid coordinates after 159,000 iterations
using an “all connected” network.
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Comparing the results in these two tables, it is evident that initially the network
computes more accurately the centroid position of the cells that are located near the
centre of the image. However, after 159,000 iterations the network is specialised to
sparse cells and therefore has a better ability in determining the centroid pbsitions

since it is able now to respond to sparse cells present in the test images.

5.3 “Locally Connected” Feed-forward Neural Net-
works

The “all connected” feed-forward architecture described in section 5.2 does not encode
any a priori knowledge about the geometrical or topological properties of the cell
images. As discussed in Chapter 3 an alternative network architecture that uses
knowledge about the spatial arrangements of image intensities is that of “locally

connected” feed-forward networks.

Figure 5.3: A4 three layer “locally connected” network: From left to right, we have the input
laye_r, first hidden layer, second hidden layer and the output layer. In this case, a 4 x 4 tile
in the input layer is connected to a single unit in the first hidden layer using an overlapping
tile structure. The first hidden layer is again divided into overlapping tiles, each one of
them connected to a single unit of the second hidden layer. Finally, all the units of the
second hidden layer are connected to the units in the output layer. .
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For training a “locally connected” network with 10 x 10 pixel images, the three
layer network shown in Figure 5.3 was used. It consisted of a 10 x 10 element input
layer, a 4x4 element first hidden layer, a 3 x 3 element second hidden layer and a
10 x 10 element output layer. The input layer is divided into 16 4 x 4 overlapping
tiles, the first hidden layer is divided into 9 2 x 2 overlapping tiles. All the elements
of a tile in the input layer or the first hidden layer are connected into a single element
of the next layer. Finally, all the elements of the second hidden layer are connected
to all the elements of the output layer. This architecture bfings the total number of
processing elements to 225 (100 4 16 + 9 4 100) compared to that of 210 elements
in the “all connected” network. However, the number of weights has been reduced to

1192 (16*16 + 9%4 4 9*100) compared to that of 2000 in the “all connected” network.

Table 5.6 shows the results after training the “locally connected” network with
10 x 10 images. Similar to the results from the “all connected” network, the error
computed with Equation (3.5) does not reflect the progress on the training of the
network and instead the. average centroid dispiacement is used. The bold lines shows

that the network achieves its best generalisation ability after 12,000 iterations.

step  iterations || training av. displacement test  av. displacement
_ error  in training images || error in test images
0.009 10 13.63 1.09 4.56 1.75
0.007 100 14.28 0.98 4.9 1.67
0.007 1000 12.32 0.83 4.75 1.64
0.007 5000 5.89 0.52 5.13 1.23
0.007 10000 2.84 0.38 6.59 1.03
0.007 12000 2.41 0.34 7.19 0.99
0.007 15000 1.93 0.32 8.10 1.20
0.007 21000 1.29 0.3 9.00 . 1.22

'Table 5.6: Results after training a “locally connected” network with 10 x 10 images.
g

|
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In Figure 5.4, the percentage of success of the network is plotted against the
number of iterations. In this case the network obtained a high success rate for both
the training and test images after only 10 iterations. However, even though the
success rate for the training images is high, it reaches only 80% success rate in the

test images after 12,000 iterations.
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Figure 5.4: This graph shows the success rate for the training and test images when applied
to a “locally connected” network. Success includes “on the pizel” and “one pizel away”
results.

Table 5.7 shows that in 25% of the test cancer cells the network has computed
the exact position of their centroid. However, for 10% of the test data the position
of the centroid was computed more than 2 pixels away from the expected position.
The results for the training data were similar to those given by the “all connected”

network after 8,000 iterations.
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12,000 iterations

training images | test images
on the pixel 68% 25%
one pixel away 31% 65%
2 or more pixels away | 1% 10%

Table 5.7: Percentage of the average centroid displacements obtained using o “locally con-
nected” network after 12,000 iterations.

12,000 iterations

training images | test images
average displacement | 0.34 0.99
best displacement 0 0
worst displacement 2 .28

Table 5.8: Average, best and worst centroid displacements of the training and test images
using a “locally connected” network after 12,000 iterations.

Table 5.8 shows the average centroid displacements for both the training and
test images. Comparing the results with that of Table 5.2, the average displacement
computed by the “locally connected” network is larger, with a worst displacement of
2.8, for the test images, which indicates the erroneous computation of the location of

a cell centroid more than two pixels away.

Table 5.9 shows the centroid distribution and the average centroid displacement of
the test images after 12,000 iterations on a “locally connected” network. Comparing
this to the results in Tables 5.4 and 5.5, it is evident that the ability of the “locally
connected” network to extract the centroid of the cells is worse than that of the “all
connected” network. This can be attributed to the fact that to accurately determine

the centroid of the cells requires global information in the image.
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Table 5.9: Centroid distribution of the 10 x 10 test umages and the average displacement
between the actual and the computed centroid coordinates after 12,000 iterations using a
“ocally connected” network.

5.4 Parallel Implementation on DAP

For the parallel implementation of the “all connected” and “locally connected” net-
works we used the DAP SIMD machine described in section 4.4. In this section, we

restrict our discussion only to the description of the implementations.

The two network architectures require different implementation strategies. The
experiments carried out to compare the performance of “all connectéd” to that of
“locally connected” network on the DAP have concluded that the DAP is well suited
for “all connected” architectures but less so for the “locally connected” ones, due
to the overlapping tiles discussed in Chapter 3. These overlapping tiles cannot be
processed in parallel, and furthermore, since each tile is smaller than the array size

of the DAP, the processing power of the DAP is not maximised.
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The networks used for the extraction of the cell centroids have been implemented
so that they take advantage of the DAP’s capabilities and are as flexible as possible
for the user to program. In order to achieve this, different data structures have been

used in the implementation of the two networks.

5.4.1 “All Connected” Implementation

In the case of the “all connected” network, the units of the layers and weights are

map;ﬁed into single structures of the form:
layer(*total _number_of units)
Similarly, the weights of the network are held in the structure:

veights(*total _number_of weights)

Wk

where, signifies that these structures are vectors and not arrays of elements.

The implementation of the networks has been so designed that the user can specify
freely the number of layers and the units on each layer without having to introduce

new structures.

5.4.2 “Locally Connected” Implementation

The value of the processing elements and the weights in a “locally connected” network
are held in a different structure as shown in Figure 5.5. In order to make efficient use
of DAP’s storage and its computational abilities, in this implementation the number
of layers used are predefined in the sense that a different structure is defined for each
layer of the network. Consequently, the data in each layer are held in a structure of

the form:
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layer (*Height, *Width)

where Height and Width are the height and width of that layer.

input width

weight
structure

hidden layer
width

Figure 5.5: The structures between the units of the input layer and the first hidden layer in
the “locally connected” network, The input units are held in a height x width matriz and di-
vided into 4 x 4 partially overlapping tiles. The 16 units of each of these tiles are connected
to a single unit in the following hidden layer, thus the weight connection between each tile and
hidden layer forms a matriz of the same size as the tile i.e. 4 X 4. All the weighted connec-
tions between the tiles of the input layer and the units of the hidden layer are held in an array
of matrices that in this case has the form weight(tila_height,tila_width,nompf_tiles),
i.e. (4,4,n00f tiles). ' |

The connections between the units of two layers are held in an array of matrices such
as:
weights(*Rows, *Cols, no_of_tiles)

where no_of tiles is the number of tiles in the preceding layer; Rows and Cols are

the rows and columns of the weights associated with each tile. In the case where each
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tile is connected to a single element of the following layer, Rows and Cols have the

dimensions of the tile.

In a more general form this can be written as:

Rows = (tile_height x no_of_units_the_t ile_is_connected_to)

(tile_width ¥ no_of_units_the_t ile_is_connected_to)

Cols
Even though this implementation limits the number of hidden layers that can be

specified, it allows great flexibility in the tile size of each layer and speeds up the

computation.

5.5 Summary

As stated in the previous chapter, motion trajectories of objects can be formed by
determining their centroid from optic flow. However, the optic flow algorithm can

not be applied to non-rigid objects such as the cancer cells.

In this chapter we showed how the centroid of cells from a set of cytological images
can be extracted by using feed-forward networks, In order to exploit any structure
in the cancer cells depicted in the cytological images we looked at two particular |
architectures: (a) an “all connected network” where all the elements of one layer
of the network are linked to all the elements of the next layer and (b) a “locally
connected” network where the elements in each layer are divided into tiles, and each

tile of a layer is linked with a tile or element of the following layer.

The experimental results showed that the cytological images do not possess any
local structure that can be exploited by the use of “locally connected” networks,
and therefore they produced poorer results in determining the position. of the cell
centroids. However, the training pattern of the “locally connected” networks demon-
strated that networks with fewer degrees of freedom were able to reach a good solution

for the training data after only 10 iterations. The “all connected” networks were able
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to reach a first good solution for the training data after 100 iterations, however, they

showed a 100% success rate 2 in both test and training cell images.

Furthermore, we were able to investigate the behaviour of the “all connected”
network and the significance of the least mean squared error computed by the back-
propagation algorithm. The experiments showed that a much better indication of the
generalisation ability of a network can be given by using error measurements relative
to the task. In our case we used a measurement of the difference between the expected

and computed position of the cell centroids, which we called displacement.

The results have shown that even though a measurement of the least mearn squared
error suggest an over-fitting of the network to the training data, the network was able
to “learn” how to extract the centroid of the cancer cells that were located in positions

away from the center of the images.

This result is attributed to the fact that the least mean squared error of a network
depends on the one-to-one difference between the pixel intensity values of the com-
puted and expected centroid area in the image. On the other hand, the displacement
error depends on the difference between the intensity distribution of the image. The
results have shown that the “all connected” network achieves its best generalisation

ability after 159,000 iterations.

Finally, we discussed the parallel implementation of feed-forward networks on the
DAP and concluded that the DAP is well suited for “all connected” architectures
but less so for “locally connected” ones. This is because the overlapping tiles of the
“locally connected” architecture cannot be processed in parallel. Although, a parallel
implementation of the “locally connected” networks was possible, it greatly limits the

flexibility in the run-time declaration of hidden layers.

2The computed centroid coordinates that are at mast one pixel away from the actual centroid
coordinates are regarded as positive resuls,



Chapter 6

Object Tracking Using Motion
Models

There has been significant interest in computer vision, over the last 15 years in the
analysis of motion sequences in order to recognize an object or its motion patterns
[4, 5, 18, 23, 36, 44, 75, 88, 111, 130, 141, 148, 149, 151]. Most research has concen-
trated on the recovery of the three-dimensional structure of an object from motion
information, and its subsequent use in the recognition of the motion of the object.
Recently, however, researchers have been looking into the direct use of motion infor-
mation for the construction of motion models to represent movements or activities

performed by an object. The purpose of such motion models is two fold:

1. The recognition of activities performed by objects.

2. The tracking of objects in a scene.

In Chapter 2 we discussed the different data, representations involved in the con-
struction of motion models and the pattern matching techniques that can be used
f9r the comparison of a motion pattern extracted from an image sequence with that
of a stored model. Here we address data representation and pattern matching iééues

that are related to the construction of motion models for the tracking of moving ob-
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jects in a scene. The motion models are based on trajectory data representation and
neural network matching techniques. Such motion models can be applied in traffic
surveillance (39, 114] and cell modelling [113] where the trajectories of ob jects corre-
spond to the motion path of their mass centroid. For rigid objects, the position of
the mass centroid can be determined from the computation of the optical flow field
[111]. For non-rigid objects, the mass centroid can also be determined through the

use of feed-forward multi-layer networks as shown in Chapter 5.

In order to track objects in the scene, one of the main functionalities of such
motion models is to predict the next position of ob jects in the scene. Therefore, it is

essential that the motion models possess the following properties:
1. "To be able to associate a set of “similar” motion paths or activities of an ob ject
with a trajectory class.

2. To be able to predict the next position of an ob ject given the current observation.
In this way the motion model aids in locating the next position of the object

by reducing the search space.

For an effective tracking of multiple objects in the scene, it is desirable that the

motion models also fulfill the following requirements:
1. They are able to segment motion patterns in an image sequence.
2. They are able to track ob jects when part of a motion trajectory is occluded.
3. They are invariant to translation, rotation and spatio—tempofa,l scale changes

in the motion trajectories.

In our approach, we use neural networks for the representation of motion models

because the learning properties of neural networks can be used to define classes of
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trajectories through examples instead of explicitly specifying them, and the ability of

neural networks to generalize can help to overcome noise due to occlusion [50, 123] .

Furthermore, as discussed in Chapter 3, partially recurrent networks can be used
to model time variant information, for example, the trajectory of a moving object.
Consequently, such network architectures can be used for sequence recognition, re-
production and prediction [50] and, therefore, for tracking an object by predicting its

next position on the scene.

Fiﬁaliy, the requirements of the motion models for the prediction of motion tra-

jectories have the following implications:

1. Each of the “similar” motion paths or activities that define a trajectory class
may consist of an .unequal number of elements, depending on the speed and
movement of the objects. This implies that the networks that are used for.
representing motion models should be able to deal with input sequences of

varying length.

2. The prediction of the next position of a moving object given an observation

requires on-line operation by the network.

3. The motion model needs to perform only one step prediction in order to track

moving objects.

A simple network that fulfils the requirements of the motion-model and also re-
quires short training time is the Elman network discussed in section 3.4.2 [27] . Such
a network is especially attractive because it can also be used for the modelling of
finite state automata [19, 27, 34], which allows the temporal invariant modelling of

trajectories and the extraction of points of interest [114].

I
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There are many issues that remain to be addressed on the exploitation of fully and
partially recurrent neural networks on time-series in sequence recognition and pre-
diction. Most noticeably these include, data representations, network architectures,
learning algorithms, system dynamicé and the extent to which neural networks can
Jearn and memorize temporal correlations and dependencies. There has been little
work on studying neural networks for motion-based recognition with the exception
of the work of Goddard [36, 35] on a connectionist representation of motion events.
To our knowledge there has not been any work in the use of recurrent networks for
the modelling of motion trajectories for visual interpretations. In the remainder of
this chapter, we will concentrate on the modelling of motion trajectories on Elman
networks and evaluate their use in tracking moving objects in a scene. We specifically
address the issues of (1) representation of trajectories, and (2) memory stored in the
context elements of Elman networks in order to establish the most appropriate data

representation and network architectures for our task.

6.1 Shape of Motion Trajectories

Motion trajectories used in our studies are simulated and represent a set of 2D tra-
jectories of an object tracked in time through sequences of n frames. A trajectory
is defined as a sequence of locations (zi,9:), for i = 1...n, where n is the number
of frames in the sequence. The motion models presented in this chapter represent
motion trajectories with the shape of “figure 8”. They were chosen as a test bed
because such trajectories have curvature that is not constant but varies randomly
along their length. Predicting the evolution of such trajectories from a given point
requires knowledge of the position on the trajectory, i.e. it depends on the spatial
and temporal context of that point. Furthermore, such t.ra,jectories haye sharp cur-
vature discontinuities, which cannot be modeliéd by using analytic motion models.

Examples of trajectories used in the training set are shown in Figures 6.1, 6.2, 6.3
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and 6.4.
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Figure 6.1: Eramples of trajectories of “figure 8” that are used in our training set.

These trajectories were randomly drawn in order to infroduce a degree of noise
and shape variation so that the data are more realistic and statistically sound. Each
trajectory was drawn inside a grid in a clockwise order starting from a similar relative
position but could be centered around any position inside the grid and vary in orien-
tation and size. The generation order of each point of the trajectories was recorded to

create the set of time sequences required for the-experiments. These trajectories were
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also distorted in both space and time !. All the trajectories have a sample length
of 16. From a set of 100 trajectories, 70 were used to train the networks and the

remaining 30 were used for testing the generalization ability of the networks.

6.2 Network Architectures

The network architectures for these experiments are simple Elman networks [27].
They ‘;:onsist of (1) the input, hidden, output and context elements, (2) a set of feed-
forward weights, (3) a set of fixed feedback weights from the hidden to the context
elements and (4) a set of fixed recurrent weights of the context elements. A network

is shown in Figure 6.5.

output next element

!

t+1 fixed connections
. hidden trainable connections

e

t
“Q
contex{ units

o

| B —_

current sequence element

Figure 6.5: A typical architecture of an Elman network used for modelling trajectories. The
contezt layer is an exponential encoding of the hidden elements.

1A trajectory is referred to as “space distorted” when it is expanded or reduced along one or more
axis, whilst “time distortion” occurs when the evaluation of the trajectory is locally speeded-up or
slowed-down.
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The amount of past information held in the context elements depends on the
value of the recurrent weights. In this way the context clements act as an exponential
encoding of the hidden element activation values by maintaining moving averages of

past hidden value activations according to:

y(t) = (1 - p)a(t) + py(t-1)

where  lies in the interval [~1,1] and allows for the representation of average span-
ning various intervals of time; z(t) represents the vector of the hidden element acti-
vation values at time ¢ and y(t) represents the context vector at time ¢ (if g =0, the

context holds a single copy of the previous hidden element activations).

Back-propagation with momentum given by Equation (3.8) was used as the train-
ing algorithm for all networks. The weights were initialised between [-1.0, 1.0] and
the context elements were initialised to 0.5. Typically, the momentum p was set to

0.3 and the learning rate » varied between 0.2 to 0.0001.

A measure of the sum squared error (SSE) given by X, pattern) T~ O|? was used as
the learning criteria during training, where T is the expected output of the network
and O is the predicted output. With our trajectories of generalized “figure 8” shape,
the best network was selected by comparing their ability to restore the topological

features of the shape of the trajectory using the chord length distribution [129].

6.3 Representation of Trajectories

In learning to predict a trajectory with a recurrent network, it is important to have

‘the input representation reflecting the geometric and topological features of that

trajectory. This partly determines the effectiveness of learning and the network’s

ability to generalize and predict. A few typical representation schemes are as follows:




|

Chapter 6. Object Tracking Using Motion Models 108

1. Representation of trajectories with coordinates of absolute position is transla-

tional, rotational and scale variant.

2. Curvature information provides a representation that is both translationally
and rotationally invariant but is still sensitive to the size of the trajectory unless

fixed sampling schemes are used.

3. Curvature information can also be described by eight qualitative direction vari-
ables, as shown in Figure 6.6. Each variable corresponds to a range of angles
that span 45 degrees. This results in a coarse representation of the curvature of
the trajectory, but ilt is a more appropriate representation for a neural network

as it reduces the degrees of freedom in the training data.

Figure 6.6: The eight directional variables that band-limit the curvature representation of
trajectories.

During our experiments we explored a variety of representation schemes in order
to determine the appropriate one for the trajectories. The representations that we
used were (1) coordinate representation, (2) curvature and speed representation and

(3) discrete curvature representation.

!
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6.3.1 Coordinate Representation

During these experiments, sampled trajectories were represented with the normalised

coordinate values in the range of [0.1, 0.9]. An Elman network (2 input, 8 context,

8 hidden, 2 output) was trained using the back-propagation learning algorithm given

by Equation {3.8). The learning rate n was set to 0.2 and the momentum a to 0.5.

With different experiments the exponential parameter p varied between 0.0 to 0.5.

T T ¥ T T 1 T i o t T T T

Figure 6.7: Three different trajectories of “figure 8” {top row). Predictions of these trajec-
tories by a network without (middle row) and with (bottorn row) exponential memory.
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The network converged in 1500 epochs. However, by comparing the network’s
ability to restore the topological shape of the original trajectories, it was clear that
the network achieved the best generalization after 600 - 1000 epochs. The output of
the network on some of the testing data is shown in Figure 6.7. The first row shows
the original trajectory shape of the testing data. The second row shows the predicted
output of a network that has been trained without an exponential memory (p = 0.0).
The third row shows the output of a network when the exponential parameter y was
set to 0.5. The results given by the second and third rows of Figure 6.7 show that
the network was able to predict the evolution of the trajectories independently of
their position and scale. However, when the network was trained with exponential
parameter g = 0.5, it converged faster and improved its prediction at locations of
high curvature along trajectories compared to those predicted by the network without
the exponential memory. This can be explained as the exponential memory of the
network allows for prediction of the next position by maintaining moving averages of

past hidden value activations.

6.3.2 Curvature and Speed Representation

A more explicit representation of the shape of trajectories is provided by computing
their curvature, which is defined as the rate of change of slope given by 90 / §s, where
d0 = (01 ~ 62) is the angle difference between two position vectors on a trajectory
and Js is the distance between these two consecutive positions along the curve. It
was calculated in clock-wise order and 98 / 9s, was normalised in the range [0.1, 0.9].
Representation of a trajectories based on curvature can be further constrained by
introducing speed. Speed is represented as the distance between two points given by
s| = /(dz)? + (dy)?. In these experiments, trajectories are represented with coupled
curvature and speed measurements. An Elman network (2 input, 8 hidden, 8 context

and 2 output) with exponential parameter u = 0.5 was trained with the learning
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rate of 0.1 and momentum of 0.5 and it only converged momentarily. The outputs
from a trained network on some of the test trajectories are shown in Figures 6.8, 6.9
and 6.10. The top picture shows the original trajectory, the middle picture shows
the trajectory represented by curvature and speed and the bottom picture shows a

reconstructed trajectory by network’s prediction on curvature and speed.
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Figure 6.8: Top: Trajectory examples 1 (left) and 2 (right). Middle: Trajectory represented

by continuous curvature and speed. Bottom: Trajectory reconstruction by network curvature
prediction. ' '
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structed by network prediction.
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Figure 6.10: Ezamples 5 (left) and 6 (right), represented by curvature and speed, recon-
structed by network prediction.

6.3.3- Discrete Curvature Representation

Another way of representing curvature information is to describe it by using the eight
qualitative direction variables shown in Figure 6.11(left). Each variable corresponds
to a range of angles between two successive position vectors (v, B) on the trajectory.

The angles are presented to the network by using the binary representation shown in
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Figure 6.11(right). This results to a coarser representation of the curvature described
in the previous section, but it reduces the degrees of freedom in the training data.
An Elman network (4 input, 12 context, 12 hidden and 4 output) was trained with
learning rate of 0.001, momentum of 0.5 and exponential parameter x set to 0.5. After
a training session of 140000 epochs the network was able to give a good qualitative
prediction on the evolution of trajectories. Some results are shown in Figures 6.12,

6.13 and 6.14. These results correspond to the same trajectory examples used in the

previous section.

binary code angle difference
representation between two vectors
000 -22.5 10225
001 22.5 to 675
010 67.5 to 1125
011} 112.5 to 157.5
100 157.5t0-157.5
—m-————=  position vector ¢ 101 21575 to -112.5
116 -112.5 to -67.5
"""""" * position vector § 11t -67.510-22.5

Figure 6.11: The eight directional variables that band-limit the computed angle representa-
tion between two successive position vectors (a, ) on the trajectory (left) and their coding
on partially recurrent networks (right).

The top picture in Figures 6.12, 6.13 and 6.14 corresponds to trajectories repre-
sented by discrete curvature and an indication of the distance between two points
on a trajectory is also shown. The bottom picture shows the reconstruction of the
trajectories by network prediction. The results verified that a discrete representation
provides a more precise prediction of the changes along trajectories, although the

representation is coarser. A more fine-grain sampling would provide a more accurate
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representation of the trajectories but also increase the training time of a network.
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Figure 6.12: Top: Trajectories 1 (left) and 2 (right) represented by discrete curvature.
Bottom: Reconstruction of the trajectory by network prediction on curvature values.

6.4 Summary

In this chapter we have shown that partially recurrent networks such as the one
proposed by Elman [27] can be used to model complex motion trajectories. The
motion models constructed with the Elman networks can be used to predict fairly
accurately the next position of a moving object, and thus track an object by reducing
the search space in the scene. The prediction of the trajectories is independent of

their position, orientation and spatial scale.
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Figure 6.13: Prediction of ezamples 3 (left) and 4 (right) by discrete curvature represen-
tation.

In the construction of motion models on the partially recurrent networks we ex-
amined two different issues: (1) the memory of the network and (2) the data repre-

sentation of trajectories.

Qur results have shown that a network with exponential memory gives a more
accurate description of the evolution of trajectories. This is attributed to the fact
the exponential encoding of the activation of the hidden elements allows the network
to both “learn” averages of past information from the training data but also esti-
mate future averages using the past information of the test data. This property is

particularly desirable in the case of overcoming scale variance.
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tation.
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(right) by discrete curvature represen-

Furthermore, we used three different representations to encode our motion tra-

jectories on the recurrent networks: (1) coordinate representation (2) curvature and

speed representation and (3) discrete curvature representation.

By using the coordinate representation, the networks were able to predict the

evolution of test trajectories after only 600 iterations. The test data varied in position,

orientation and size. However, such a representation does not provide temporal scale

invariance. An alternative representation is that of the coupled curvature and speed

measurements,
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A network trained with coupled curvature and speed measurement was able to
predict the evolution of trajectories but the infinite degrees of freedom given by the
association of real valued data reduced the generalisation ability of the network. How-
ever, as was shown, a discrete modelling of the curvature coupled with the speed mea-
surement along the trajectories allows for a more accurate prediction of the evolution
of trajectories. This is attributed to the fewer degrees of freedom in the association

between the input and output of the network and the band-limited description of the

curvature.







Chapter 7

Discussions

In this thesis we investigated the potential of neural network architectures in appli-
cations related to image understanding and in particular, to that of motion-based
recognition. Most of this work was conducted at the time of the re-emergence of
the paradigm of neural computation and the realisation that neural networks trained
with the back-propagation learning algorithm can learn complex functions through

presentation of examples.

One of the main goals of computer vision is to establish the relationship between
2D images and the 3D world, and to describe the structure and behaviour of the
objects in the scene. This is an ill-posed problem [7, 58, 86, 109] that requires the
use of a priori knowledge to constrain its solution space. However, even under such
constraints, establishing a function that relates objects shown in 2D images to that
of the 3D world is a non-trivial task and a computationally expensive process. On
the other hand, the machine learning capabilities of neural networks could provide an
attractive alternative paradigm to the development of automated image understand-
ing systems. In addition, due to the computational cost of the recognition of visual
motion and the inappropriateness of the von Neumann architectures for such a task,
we were also interested in exploiting any benefit that neural networks, coupled with

their implementation on an SIMD parallel machine, had to offer.
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For this purpose we examined the main processes required for motion-based recog-
nition. These are (a) the extraction of appropriate information from the images in
the form of observations and (b) the use of such information in the creation of mo-
tion models. Such motion models can then be used to (a) predict an observation in
the next image frame and (b) verify whether the observed movement in an image

sequence corresponds to the motion model.

In this thesis we addressed the problem of motion-based recognition using a unified
neural network approach. In this approach neural network architectures were used
for both the extraction of information from an image sequence and the creation of

motion models.

Elements of this approach were described in detail in Chapters 4, 5 and 6. In
particular, in Chapters 4 and 5 we described the extraction of information from an
image sequence and concentrated on (a) the determination of discontinuities in an
optic flow field using Hopfield models and (b) the computation of the centroid of
non-rigid objects using feed-forward networks. In Chapter 6 we showed how motion
models based on the geometrical positions of moving objects can be created using
partially recurrent neural networks. Table 7.1 gives a summary of the neural network
architectures used in this thesis and their potential in modelling processes required

in motion-based recognition.

The processes required for motion-based recognition are cémputationaﬂy expen-
sive and their parallel implementation is desirable. The SIMD platform provided by
DAP is very suitable to the parallel implementation of both feed-forward and re-
current neural ﬁetwork architectures. The layers of the networks map naturally to
the 2D array processors of the DAP, and maximum efficiency is achieved when the
processing elements of the neural networké. a,re. ltllpldéted syﬁchronously. However, as

was shown in Chapter 4, asynchronous operations can be performed efficiently on the
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Neural network Motion-based | Advantages Disadvantages
architectures recognition

processes

Hépﬁeid models

Feed-forward
networks

Partially recurrent
neural networks

Computation of
optic flow field

Computation of
centroids

Creation of
motion models

Fast minimisation of
energy functions if
implemented in hardware

Learn through examples
Robust and fast
computations

No need for temporal
windows

Create moving averages
from past information
Can change predictions
according to past
observations

On-line recognition
Deduce results from
partial information

Stop at local minima

Long training times

Only one step
ahead prediction

Table 7.1: Summary of the advantages and disadvantages of the neural networks used in
this thesis for the modelling of motion-based recognition processes.

DAP by using the masking and indexing operators available. This results in a very

compact programming code. Partially recurrent neural networks can also be mapped

on the DAP, however their implementation was not attempted because the DAP was

no longer fully maintained by the Department of Computer Science at Queen Mary

College. In addition, at the time the partially recurrent networks were implemented

much more powerful SUN 4 workstations were available, and therefore therefore their

coding on the DAP was not considered to be as vital as before.
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7.1

Contributions of the Thesis

The major contributions of this thesis can be summarised as:

Computation of optic flow on the DAP and the use of Hopfield models
in the detection of motion discontinuities: Optic flow corresponds to the
apparent motion in a sequence of images. It is a computationally expensive
process and its efficient computation is one of the essential requirements in
motion-based recognition. Following the work of Koch et al, we showed how
the algorithm developed by Horn and Schunck and extended by Koch et al can
be seen as the minimisation of the Liapunov function of a Hopfield model with
linear processing elements. Furthermore, following Koch et al[71, 72] we showed
how their energy function that describes depth measurements can be altered for
the determination of motion discontinuities. Finally, we showed how the process
for the detection of motion discontinuities in optic flow can be mapped onto a

continuous Hopfield network.

The use of feed-forward networks in the extraction of centroids of can-
cer cells from cytological images: To determine the location of an object in
a sequence of images requires the extraction of features, such as the centroid of
the cancer cells. In cytological images, this is a difficult and computationally ex-
pensive process because of the bad quality of the images and the computational
limitations of the traditional feature extraction techniques. We used “all con-
nected” and “locally connected” feed-forward network architectures to extract

the centroid of the cancer cells through the presentation of examples. Through

the experiments, we confirmed that the generalisation ability of a network is

better described by error measurements which are related to the function that
the network is trying to “learn”. During our experiments, an indication of the

generalisation ability of the network was given by the difference between the
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expected and computed locations of the centroid of the cancer cells. Finally, we
have shown that the “all connected” network was able to extract the position
of the centroid of the cancer cells and that its generalisation ability was better
than that of the “locally connected” network. This indicated some lack of local

structure in the cancer cell images used.

¢ The use of partially recurrent networks in the construction of mo-
tion models for trajectories that include sharp curvature changes:
A-n important aspect of motion-based recognition is the construction of motion
models. We showed that simple partially recurrent neural networks can be used

for modelling motion models through the presentation of examples. We based

our motion models on both coordinate and coupled curvature and speed repre-

sentations, We experimented with a set of complex motion trajectories of shape

of “figure 8”. Such trajectories contain sharp curvature changes that are diffi-
cult to model by analytic motion models. The best prediction of the evolution
of these trajectories was given by a network with exponential memory and a

coupled discrete curvature and speed representation.

¢ The implementation of Hopfield models and feed-forward networks on
the DAP: The efficiency of neural networks can be further increased when their
processing power is coupled with a parallel implementation. We showed how
the processing elements of a Hopfield model can be updated asynchronously on
a DAP and why DAP is naturally suited for the implementation of feed-forward

networks.

7.2 Future Work

There are many issues that remain to be addressed on the application of fully and

partially recurrent neural networks to the prediction of temporal information and
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particularly, in the context of motion-based recognition. These include data rep-
resentations, network architectures, learning algorithms, system dynamics and the
extent to which neural networks can learn and memorise temporal correlations and

dependencies. In particular, we would like to investigate the following issues:

¢ The extension of the discrete curvature representation to trajectories of varying
length. In this case the temporal variance problem can be overcome by describ-
ing the curvature of the trajectories using regular grammars. This is possible
since most objects in a scene move purposefully in their environment and there
are spatio-temporal regularities associated with their motions [39]. The shape
of “figure 8” can be described with a regular grammar by using eight direction
symbols {G--- 7} that denote the next possible curvature along the trajectory

and four state symbols {51, S, 53; Sy}

S]_ ey 552[652[ < rest > 81
Sy — 5S3I6S3| < rest > Sy
Sz — 284‘354[ < rest > Sy

Sy — 251|351 < rest > 54

where the notation < state >—< symbol >< state > indicates a legal string

in the grammar.

Regular grammars can be recognised by finite state machines (FSM) [53]. Fig-
ure 7.1 shows a trajectory of shape “8” and its representation by FSM using

discrete curvature information.

The states of an FSM correspond to the location of sharp curvature changes
and the symbols on the transition arcs correspond to a set of allowed curvature
changes along the arc. Techniques for learning FSMs using partially recurrent

neural networks were first explored by Elman and Cleeremans [19, 27]. This
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Figure 7.1: A trajectory of figure eight ( left) and its finite state machine representation
(right).

FSM representation of the trajectories has close connections with representation
of moving objects using Hidden Markov Models (39]. However, by learning the
association of the location of sharp curvature changes with the states of a finite
machine, a recurrent network will be able to exhibit a behaviour that is invariant
to temporal scale. Furthermore, analysis of the activation of the elements in the

hidden layer can provide an insight on the positions of sharp curvature changes

along the trajectories.

The recognition of temporally invariant information: This requires the encoding
of long term time dependencies. For this purpose, elaborate networks such as

second order networks [34, 43] may be more appropriate.

The prediction of the evolution of trajectories needs to be investigated in relation
to long term occlusions. Such tasks require networks that behave well in the
case of a large amount of missing data. A promising solution is the use of

time-delay radial basis function networks [2].

e Our experiments on the memory of the recurrent networks have shown that

although memory played a major role in the prediction of the evolution of
trajectories, the predictions did not vary significantly with different memory

functions. This is an area that needs further investigation and a relationship
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needs to be drawn between the predictions of different memory functions.

o Motivated by the work carried out in this thesis, we have already shown that
partially recurrent networks can be applied to the dynamic recognition of faces
[41, 115]. We are currently exploiting a unified approach where faces are both

tracked and recognised using partially recurrent neural networks.

In summary, we showed that neural networks can be used for modelling pro-

cesses for extracting observations and constructing motion models. In the past years,
progress has been made in the computation of optic flow and the extraction of fea-
tures from cytological images. However, only until very recently researchers have
started to exploit the potential of recurrent neural networks and their ability to en-
code structured information. We have shown that partially recurrent networks are
able to model highly structured information, although there are many difficult issues
that remain to be addressed as in the cases of: segmentation in the light of conflicting
information, the use of long term dependencies and prediction for the discrimination

of partially overlapped trajectories.
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