View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Queen Mary Research Online

&
wQf Queen Mary
University of London

Resource-distribution via Boolean constraints (extended abstract)
Harland, James; Pym, David

For additional information about this publication click this link.
http://gmro.gmul.ac.uk/jspui/handle/123456789/4564

Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact scholarlycommunications@gmul.ac.uk

https://core.ac.uk/display/30696718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/jspui/handle/123456789/4564

Department of
Computer Science

Technical Report No. 733

o
W)
QUEEN MARY

AND WESTFIELD COLLEGE
UNIVERSITY CF LONDORN

ISSN 1369-1961

Resource-
distribution via
Boolean
constraints
(extended
abstract)

James Harland &

David Pym

April 1997

To appear: Proc. CADE-14, W. McCune,

editor,

LNCS, Springer-Verlag, 1997,

Resource-distribution via
Boolean constraints
(extended abstract)

James Harland! David Pym?®

! Department of Computer Science, Royal Melbourne Institute of Technology
? Queen Mary and Westfield College, University of London

Abstract. Proof-search (the basis of logic programming) with multi-

plicative inference rules, such as linear logic's @R and L, is problematic

because of the required non-deterministic splitting of resources. Simi-

larly, searching with additive rules such as &L and &R requires a non-

deterministic choice between two formulae. Many strategies which resolve
/ such non-determinism, either locally or globally, are available.

/ ‘We present a characterization of a range of strategies for distributing and
selecting resources in linear sequent calculus proof-search via a sequent
calculus annotated with Boolean constraints. Strategies are character-
ized by calculations of solutions of sets of Boolean equations generated
by searches. Our characterization encompasses lazy {or local), eager (or
global) and intermediate (mixed local and global} strategies.

1 Introduction

The formulation of linear logic [4] as a sequent calculus (3, 4, 13, 2] makes
essentiol use of the multiplicative formulation of binary rules, in which the re-
sources available to derive the principal formula in each of the premisses must
be combined to form the resources available to derive the principal formula of
the conclusion. For example, in each of the rules for ® on the right and '» on
the left, .

FybFp1, 81 Pabope, by Prupr Ay Topy b Ag

R d. J?Ll
P1.I‘2Fp1®pz.A1,A2‘® an P, T, p19p2e b A1 Az

the antecedents I'; and I's and succedents A; and A, must be combined to form,
respectively, the antecedent and succedent of the conclusion.

From the point of view of proof-search, in which rules are read as reduction
operators from conclusion to premisses, multiplicative rules are problematic be-
cause they are (highly) non-deterministic.' Faced with a sequent I F p; ®ps, A,
and having decided to apply the ®R rule, it is necessary to split each of I' and
A so as to determine the premisses Ty F p1, Ay and I’y F pa, Ag such that
' =14T; and A = A, Az The number of such splittings is exponential in

1 Such non-determinism causes the search space to be disjunctive.

the sizes of and T and A. Similar problems arise with the —oL and ®L rules.
Tt is clear that there are many possible strategies for determining multiplicative
splittings.

A second source of non-determinism in proof-search arises in reducing the

@R and &L rules,
ThFpi A

It pr@®p2, &

e kb4
f oo . d e U]
{(i=1,2) &R an B o 2 o (1=1,2) &,

in which we must choose between p; and pa.

Closely related to each of the two sources of non-determinism we have dis-
cussed so far is that arising from the structural rules® of weakening and contrac-
tion,

T+ A T,lplpt A T'kp, 1o, &

- A
WL, ? Liplpr & oy L BBB
F.pr A Froph WIR and —p=n © Trma OR

In fact, we cannoi fully analyze the behaviour of the multiplicative rules with-
out, considering weakening and contraction. Contraction cannot, in general, be
permuted upwards past ®R. For example, consider the following derivation:

TilpFpndr Talptope,Ae oR

Ty, Fo,lplpb p @ p2. b1, B2 oL,

Ty, Ta,lp bk p1 ® p2, B, Az ’

The order of the inferences cannot be reversed because we must put a copy of ip
on each multiplicative branch. This aspect of the linear sequent calculus has been
discussed elsewhere; there are sequent calculus systems in which such occurrences
of weakening and contraction are encoded into the other rules {12, 10]. Hence we
do not explicitly consider them here.

Two sources of non-determinism in proof-search remain: (i} the choice of a
term ¢ in the quantifier rules IR and VL; and (i) the choice of rule instance, i.e.,
which rule on which formula. Neither (1) nor (ii) is addressed in this paper: (i)
because it can be treated independently via unification and has been addressed
by Lincoln and Shankar [8]; and (ii) because it would take is into the realm
of permutation theorems, which have been addressed by Pym and Harland [10],
Andreoli [1], Miller [9}, Lincoln and others, thereby interacting non-trivially with

i).3 Our focus, then, is the distribution of propositional resources for a proof
of fixed shape.® The main technical consideration is to make explicit the non-
determinism implicit in the sequential rules, @R, L, ~ol, &L and ®&R.

Our technique for doing this is to attach a Boolean variable to each formula in
a sequent. The rules of the calculus are then extended to include the relationships
between these Boolean variables. Consequently, we do not need to determine the
way in which the formulae are split between multiplicative branches at the time
that the rule is applied. Rather, we can specify what constraints must be satisfied
in order for the rule to be applicable. Different strategies will then correspond
to different methods of solving the resulting set of Boolean equations.

2 The rules 1L and LR also belong to this class of non-determinism.
3 Such considerations would take us in the direction of a matzix characterization of provability
in linear logic.

4 Note that we generally consider only propositional formulae for simplicity; there no inherent
problem with quantifiers {see Definition 5 below}.

2 A calculus with constraints for resource-distribution

In this section, we present a sequent calculus for linear logic in which the non-
deterministic splitting of resources (side-formulae) at multiplicative reductions
is explicit. This is done in order to provide an inference system which is inde-
pendent of any strategy used to distribute the formulae, but which makes the
necessary constrainis explicit. Such a calculus will facilitate theoretical analyses,
and systematic mechanical implementations, of resource-distribution. Whilst the
ordinary sequent calculus satisfles the independence requirement, the lack of an
explicit specification of the constraints involved makes it impossible to analyse
strategies in such a framework. Hence our system will make this aspect of the
non-determinism in the sequent calculus explicit, so that it can be analysed and
various approaches to it can be compared.
We begin with an informal account of our intended class of resource-distribution

strategies and proceed to establish our calculus with explicit constraints. We re-
cover a formal account of our intended class of resource-distribution strategies.

!ﬁ.l Strategies for resource-distribution

‘;We give an informal account of our intended class of resource-distribution strate-
gies via a selection of examples. This class divides conveniently into three: lozy,
intermediate and eager. We illustrate these three cases by applying each of them
to searching for proofs of the following sequents: (1) p,p,¢,. ¢+ (PR @ (PR q);
2)ppeet (PR &{(p®¢; and 3) (p@) ? P F PR ¢, p® ¢ These
examples are not intended to illustrate any efficiency concerns. Rather, their
purpose is to iilustrate our analysis of different types of strategy in the presence
of (1) multiplicativity, (2} additivity, and (3) multiple conclusions. Clearly, there
are classes of sequents for which each type of strategy is likely to be the most
efficient.

L.azy distribution. Firstly, consider {1). Here we distribute the formulae p,p, ¢, g
in a lezy manner, i.e., we first pass the entire collection to a chosen branch,
which consumes the formulae needed, and passes on any excess to the next cho-
sen branch (cf. [14]). This strategy is the one most commonly used in linear logic
programming languages such as Lygon [6, 14] and Lolli [7]. ‘

Initially, we divide (p ® ¢) ® {p ® ¢) into two copies of (p ® ¢), and then one
of these is further divided into p and g. Hence we arrive at the leaf p,p, g, & p,
where it is clear that the formulae p, ¢, g are in excess, and are passed to the next
branch, which then becomes p,q,4 b q. Here it is clear that p,q are the excess
formulae, which are then passed to the next branch, giving us p,g+p®q.

This process is represented in the diagram below, in which each §; represents
an as yet unknown multiset of formulae and ~» denotes the evaluation consisting
of closing a leaf and passing on the unconsumed resources, marked by crossing
out with /:

hip b p Sabg pkp pAatg
PPt p@q SiFep®e ppgabr®g S1-p@q
’mdel (PRB (PR q) Pt gk (P@qQ(p@q)

phkp qka
pgtp@q pmatp@q
ettt (PR (PO)

Following the remaining uncompleted branch, the leaf — p, ¢ - p®g — of which
has now been generated, it remains to calculate a proof of p,g - p ® ¢:

pAbrp Sabte o opbp g¢tao plkp gqkag
- pmetp@q mel-p@q vl p@q

Such & lazy strategy, as outlined above, amounts to a depth-first traversal of the
proof tree, with the constraints on the distribution of formulae being propagated
sequentially from one multiplicative branch to the next.

Secondly, turning to an example of an unsuccessful search, we see how our
view of strategies handles an additive connective, namely &. Consider (2), the
unprovable sequent p,p,¢q,¢F (PR ¢) & (p® q).

b0, A Ak S1g prp P Aabg
7o etp@yg mpaibr®s P, 08,9 P@Y mp e p®y
poagh (PR &P@9) ottt (P®a) & {Fp®q)

At this point the computation (search) terminates with foilure: ail of the leaves
on the lefi-hand branch of the derivation have been closed but unconsumed
resources, p, g, remain. A similar problem would arise on the right-hand branch,
which the lazy strategy never expiores.

Thirdly, we give an example involving multiple conclusions. Consider (3), the
provable sequent (p® ¢) % (p® g) - p ® ¢,p © ¢. Solving the left-hand branch,
we pass the surplus p ® ¢, crossed out with p g, to Ry:

Aptpe Re 4 b ap By pkp gbtg
.2 p@p@9q gGpirp@gq
r@atp@gpD4 p®gkFRy P®akFp®y pRatp8y

P®) P (R FpRq,p®y (PR (PO rPRuLP&yg

It now remains o solve p® g - p® g, just as for (1).

Looking ahead to the formal account of resource distribution in § 2.2, the
important observation is that this process amounts to finding appropriate as-
signments to Boolean expressions of the form vy.v3, where each v; is either a
Boolean variablé or its negation. We use the axioms to select which formulae
are to appear on which branch and this selection is reflected in the assignments
o the Boolean variables. From this point of view, the lazy distribution strategy
solves a minimal set of equations. To begin to determine the distribution, we
must have found a leaf in the proof tree. However, once we have found one such
leaf, we can begin to make progress in the calculation of the distribution. S0 a
lazy distribution takes into account just one multiplicative branch at a time.

Fager distribution. Lazy distribution represents one extreme of our class of
strategies, 7.e., finding just 2 minimal set of equations to be solved before propa-
gating the resulting assignments to other multiplicative branches. The opposite
extreme is one in which all multiplicative branches are explored in parallel, with
the co-ordination of resources between branches being handled by a central man-
ager, i.e., the system of Boolean constraints. This means that the entire tree is
found before any constraints are solved. This strategy amounts to using an un-
bounded amount of parallelism to explore all the multiplicative branches before
solving only one, maximal, set of equations.

For (1), eager distribution involves attempting to solve all four leaves at once
and noticing that the assignments obtained are all mutually compatible. Hence
an eager derivation would have the following form:

g b b btr A bd hdte Ao b hdbe bb ety
S1p@®q 2 p@gq
20PN @(rGQ)

At each leaf, the resources available on the left-hand side are p,p,q,¢. Closing
egch leaf requires exactly one of these. Noting that the choices at all four leaves
gre mutually compatible, i.e., each formula is needed in exactly one place, we
‘conclude that this derivation can evaluate to

pkp qgtq prkp gqkFg
p.abp@yg P.gFp®g
e 2 6GaF{(pS@{p®q)

For (2), we produce the entire tree, only to find that there is no proof. This
results in the tree below.
ISV NIS I YRV IS YV LYY XL
nphetr®q nptebpQa
nehar (@0 &(pR9)

Note that in each of the & branches, the formulae p, ¢ are in excess.
For (3), we also produce the entire tree,
pAbFp patg phFp pgkg
pebp@y Pgtr@yq
P ¢k r@gt S
(rR)®R(E@IF(pBa)(r®9q)

Again, all the allocations to leaves are compatible, so we have a proof.

Intermediate distribution. An intermedicle distribution strategy is one in
which more than one multiplicative branch is explored at once up fo some speci-
Jfied mozimum number of branches. Such a strategy amounts to a bounded paral-
lelism — we have a fixed maximum number of search-agents {e.g., processors),
each of which can be allocated to a multiplicative branch.

Returning to (1), if we allow at most two multiplicative branches, we first

generate the derivation
S hpRg BokFpBg
Ppdet (PR @(peq)

Then, having reached our limit (two branches), we explore each of the subse-
quent multiplicative branches, above the two first found, sequentially. The main
difference here compared with the lazy strategy is the “distance” which the con-
straints are propagated. As above, we will find that only p is needed on the
leftmost leaf, and as a result of this, we know that it will not be used on any
other leaf. In addition, a parallel search has identified that the other occurrence
of p is needed on the third leftmost leaf. We close these two leaves, and then
switch our attention to the two remaining ones. Here ~» denotes the evaluation
consisting of calculating the resources required to close both of the leaves.

pb A firp Batag pphAbe SaFg o phP . 4AFg php Aabg
1 bhp®yq S22 Fp@gq popRg patp®q
- 7Pt (PO OO P&Q) nnGak{p@a@peq)

The strategy above amounts to applying a breadth-first search until the Hmit
{two branches) was reached; then searching in a depth-first manner. A slightly
different approach would be to reverse this order once it has been determined
that the limit would be exceeded were the breadth-first search to continue. In
particular, when it is found that at least three multiplicative branches would
be needed, we could then calculate the distribution for the two leftmost leaves
in parallel, and then for the two rightmost ones. This means that the choice
of the two multiplicative branches to be explored is not to use the first two
encountered, but the two “closest” ones, i.e., the ones with the least common
ancestor closest to the leaves. Following this latter strategy would result in the
following derivation:

pb A Ae BB AFY
S bpByg Gabp®yq
RN mmaeh(P@q)@(r®q)

With $; now determined as p,q, we then solve the remaining two leaves in
parallel to get
ptp abtqg pAFp pabg pkp gqtqg pkp gqblg
et p@yg meblp®e ol p@yq patp@g
e et (p®9)@(pda) it (PO ®(p®a)

For (2), note that we will first produce two additive branches, each of which
then splits into two multiplicative ones. Hence we follow essentially the same
process as the lazy one, but we search two multiplicative branches in parallel,
rather than sequentially, in order to find that this sequent is unprovable. This
gives us the tree

ﬂbipx;éh»é%—p /ﬁ,/ﬁ»q,;@?"fl
I A A X nhhatpOyg
2aet (P8 & (PO

At this point, as in the lazy case, we halt with failure, as all the leaves have
been closed, but there remain the unconsumed resources p,q: for multisets,
{p.p0.q} # {p, g}
For (3), we proceed as follows:
P, g+ pgk S
p®gET1 p®qlk D
(r2q) B (@) {(p@a)(pr®@9)

At this point, we note we can solve the distribution of the succedent of the
endsequent, but that the next application of a rule on each branch will exceed
the limit of 2. Hence we then explore each remaining in a lazy manner,

p,hFp Si1kq phFp Sytg pFp 4Fq pkp abg
Pt p®gq petr®yq P p®g Py p®q
p@gtp®a pRqet-p®g - p@gtpBqg pOglpig
PP F2q9),»8q) (P8 v (eoant{ree.{roqg

/ For the alternative intermediate strategy, we have the same tree up to the
point where the limit is reached, and then we explore in turn each remaining
subtree, which we are able to do entirely eagerly in each case,

pAFp pabtyg php gta pAtp poi g
P, g S P, g - Fo mabtp@yg ot p&aq
p@qhk By p@qk 9 ., P®aFp®g PReFp@yq

redwEeadr{ireq.{(roq PR e @90, (P8 q)

2.2 A caleulus with constraints

The informal account of resource-distribution strategies we have provided in § 2.1
is intuitively satisfying. However, in order to a facilitate theoretical analyses, or
systematic mechanical implementations, of resource-distribution we must have
a formal account. We provide a sequent calculus for linear logic in which the
non-deterministic splitting of resources at muitiplicative reductions is explicit.

Definition 1. An annotated formula is a formula F' together with a Boolean
expression e, denoted as Fle].? We denote by exp(F) the Boolean expression
agsociated with the annotated formula F'. A sequent consisting entirely of anno-
tated formulae is known as a resource sequent.

In general, the state of the knowledge of the distribution of the formulae
is characterized by the state of knowledge of the Boolean variables, with the
distribution of the formula known iff the corresponding Boolean expression has
been assigned a value. Hence in addition to the proof tree, we maintain an
assignment of the Boolean variables which appear in the proof tree.

% We require the following grammar of Boolean expressions: ¢ =z | T | w2 | T.e

T

o,

Definition 2. Given a multiset of annotated formulae A = {Fi[e1],... F[en]}
and a total assignment [of the Boolean variables in A, we define A[I] =
{F1[v1], . Fu[va]}, where e; has the value v; under I. We denote by A[/]* the
multiset of annotated formulae Fle] in A[J] such that e evaluates to 1 under I.

We will often identify an unannotated formula F' with the annotated formula
F[1] (for instance, in Proposition 8); it will always be possible to disambiguate
such anmotations from the context.

Definition 3. Let V = {z1,%2,.. .Zn} be a set of Boolean variables. Then we
denote by V the set of Boolean expressions {Z7,%3,...Tn}- We denote by {e}"
the multiset which contains n copies of the Boolean expression e.

Definition 4. Let T' = {Fi[e1], Falez], ... Fulen]} be a multiset of annotated
formulae, and let {z;,%2,... , 2%} be a set of Boolean variables not occurring in
[. Then T.{z1,22,... 2.} = {Filer. 1], Blea.xs], . .. Fulenznl}

Definition 5. We define the following seguent celculus with constraints:
e = ep = 1 Vey € exp(l'U A)(ea =0)

T, Aer] - Alea], & Asxiom
ey = t,e3 =0 Vez € exp(T' U A) 't A
1R
F il r & L weTA
THA g i e = 1,62 = 0 Ves € exp(TUA) e =
0 iR TR
Firall roErat Fr e, A Tr T A
r, Fife.e], iFel - A Pt Fife],A T+ Fife],A %R
I {(Fi & Fz)[e} A 't (Fy & Fale], A
U, Aelt A D Ele]l- A &L P Fyfx.e], Fff.e], A SR
P (F1L@ Fa)fel b O PR & el A
DV, ffel - AW TV, Ryle] - AW oL T+ Fule], Fale}, &
T {Fy g Fadle] B & TrF (F)_’?Fg){ﬂ],ﬂ

T.VE File,aw [V B, AW
I'H (R & Fa)fel, A
T, Fyle] + Falel, A

I, Pylel, Fale] F A
r, (F] @ Fg}[e} A
LV R, AW TV Rt a W

®L

@R

T, (F = P - A L Frm R R
I+ Fyle], A i ' Fife] F A Ly
T (PR - A T (Fieh A~
P (Fly/a]ie] - & ‘ L(Fit/=Dlel A - TF (Fit/ale]A o LF (Fly/elie], &

T, {(2aF)[e] F A T, (Ve el F A I Az F)e], & Tk (VoF)e], A

T, Fi] FA | I, Fie] F7A 0+ Fle], 78 | [Fle], A |

TR F A IT, (2F)e] FTA Tk (1F)[e], ?A° I+ (2F)e], &

I'kA I, 1F[e], |Fle] i & 'k A T +2F(e], 7F{e], &
PIFFA Wik T, 1Fle] F A L IHIF A Wik [F7Fe], A ¢TR

where the rules ®R, »L and —oL have the side-condition that V' and W are
disjoint sets of Boolean variables, none of which occur in I', A, Fy or Fy, and
the rules @R and &L have the side condition that « is a Boolean variable which
does not occur in I', A, Fy or F3. In 3L and VR, x ¢ FVI{I', A).

Definition 2. Given a multiset of annotated formulae A = {File;],... Falen]}
and a total assignment I of the Boolean variables in A, we define All]l =
{Fi[o),. .. Fulvn]}, where e; has the value v; under /. We denote by A[{]* the
multiset of annotated formulae Fle] in A[/] such that e evaluates to 1 under .

We will often identify an unannotated formula F' with the annotated formula
F[1] (for instance, in Proposition 8); it will always be possible to disambiguate
guch annotations from the context.

Definition 3. Let V = {z1,m2,...2n} be a set of Boolean variables. Then we
denote by V the set of Boolean expressions {71, %3, .. .Fn}. We denote by {e}"
the multiset which contains n copies of the Boolean expression e.

Definition 4. Let T' = {Fi[e;], Palea], .. Fulen]} be a multiset of annotated
formulae, and let {z1,22,...,%n} be aset of Boolean variables not cccurring in
. Then T {z1,22,.-. ,Za} = {Fi[er.21], Falea-22], ... Folen@nl}.

Definition 5. We define the following sequent calculus with constraints:

ey = ez = 1 Yes € exp(DU AMes = 0)
T, Ales] b Ales], A

Axiom

e1 = 1,62 = 0 Ve € exp{ITUA) THA
PR I e S
TFOH e=1 ey = 1,82 = 0 Vep €exp(l'UA) e=1 T
FITAY Tolral T i, A R TR
L Ao BalTelba e Rlel, & [F Fleld &R
I‘,(Fi&Fg}[e]l“A I‘F(Fl&Fz}[e],A
T, Pafe] A T, Blel kA T Byle.e], FafE.el, & o R
I‘,(Fl & Fz}[e} A i (F], [43] Fz}[e},A
DV, e F AW TV, Pl AW oL T+ Fyfe], Falel, & R
I {(FA® Fapile] - A {5 Faile], &
L, Pile] Fale] A o PV F R, AW TV Fale], AW oR
T,(F @ Fa)le] F A CE(F ® F2)le], A
PV R, AW TV, Bldr AW L T, Fife] b Fale, &
T, (7 —o Fa)fe] F A v (F — F2)e]. A
P e, & iy T, File]l - A _ip
L (F)el A TH{F")e A
T, (Fly/=lel &4 L. (Flt/zDlelr A, Tk (Fit/=Dlela . Lk (Fly/=Dlel. & p
T, (FeF)[e] - A& T, (YaF)e] + A T b (3zF)e], A T F (YaF)e], A
L, FlefbA T, Fle] 1A Tk Ple], 74 TEFA
T, (Rl F & T, (2F)e] F1A T+ (1F)e), 7 T F(7F)e], A
I'- A T, !F[e], 1 Fle] - A rea T +1F[e], TFlel, A
et WL ! 7 P rofle, THeh A oy
I‘,!FPAW TP F A CH I‘I—?F,AWR T ETF[el, A CTR

where the rules ®R, ®L and ~ol, have the side-condition that V and W are
disjoint sets of Boolean variables, none of which occur in T', A, Fy or Fy, and
the rules @R and &L have the side condition that z is a Boolean variable which
does not occur in T, A, Fy or Fy. In 3L and YR, © € FV(T, A).

Definition 6. A resource-derivation is a tree regulated by the rules of the resource-
calculus in which formula of the endsequent is assigned. a distinet Bollean vari-
able, together with a partial assignment of the Boolean variables appearing in
the derivation. A resource-derivation is totalif its assignment of the Boolean vari-
ables is total. Otherwise, the resource derivation is partial. A resource derivation
is closed if all of the leaves of the proof tree are axioms i.e., one of the rules
Axiom, IR, 0L, LL, TR. A resource-proof is a total, closed resource-derivation
in which all the Boolean variables in the endsequent and all principal formulae
are assigned the value 1.

For notational simplicity, a lack of annotation in any of the rules of the
resource-calculus implies that the constraints currently applicable to the formula
are not changed. For example, the &R rule (see Definition 5) does not alter the
constraints applicable to the formulae in I' and A.

Definition 7. Let R be a total resource-derivation, with proof tree I' and Boolean
assignment I. The linear proof tree corresponding to R is the proof tree obtained
b}& deleting from T all formulae whose Boolean expression evaluates to 0 under
£

There may be many resource-proofs which have the same corresponding linear
proof — for example, the linear proof corresponding to a resource-proof of I' b A
will be the same as one corresponding to I', F[0] F A.

Resource-proofs are sound and complete with respect to linear sequent cal-
culus. As usual, soundness consists in showing that our global conditions are
strong enough to recover proofs from the locally unsound systemn.

Proposition 8 (soundness of resource-proofs). Let I' A be a resource-
sequent. If I' - A has a resource-proof R with Boolean assignment I, then the
linear proof tree corresponding to R is a linear proof of T[I)* + A[I]*.

Proof. By induction on the structure of resource-proofs. We describe just the
case for @R, the remainder being readily constructible by the reader.

If the last rule of the resource-proof is @R, then we have that A = (F ®
B)1LA and T.V - Fy, A" W and TV + Fy, A’ W both have resource-proofs
for some disjoint sets of Boolean variables V' and W. By the hypothesis, we have
that there are linear proofs of (I.V)[II* + (F)[I]}, (A" W)t and (TVY[I +
(F)[I]L, (A" W)H[T} (recall that | must be an assignment of all Boolean variables
in the proof), and so there is a linear proof of (D.VYIY,(CWV)I' + (F1 @
E)IY, (A WP (A W) which is just TP + (B ® F)[I]Y, AT}, as
required.

Note that resource-proofs do not allow us to construct a “proof” of p&@ g &
p ® ¢ in which the right-hand tensor is reduced first: such a proof is prohibited
by the requirement of the ®L rule that each of p, ¢ and p & ¢ be assigned the
same value.

Completeness says that all proofs of all consequences provable in linear se-
quent caleulus can be found. We require the following simple lemma:

Lemma9. If I' b A has o closed resource-derivation, then T',F{0] + A and
'l F[0], A also have closed resource-derivations.

Proof. Immediate from the definition of (closed) resource-derivations.

Proposition 10 (completeness of resource-proofs). If I' b A has a proof
® in the linear sequent coleulus, then there are disjoint sets of Boolean variables
V and W such that .V = AW has a resource-proof B and the linear proof tree
corresponding to R is &,

Proof. By induction on the structure of proofs in linear sequent calculus. We
describe just the case for @R, the remainder being readily constructible by the
reader.

If the last rule in @ is @R, then we have that ' =T1"{, T3, A = FL @ Fy, Ay, Ho
such that Iy F Fy,4A; and Ty + Fy, As both have proofs in the linear se-
quent calculus. Hence by the hypothesis there are disjoint sets of Boolean vari-
ables Vg,V,;,Wl,Wg such that I‘1V1 - F1,A1.W1 and Fg.Vg (o Fg,Ag.Wg have
resource-proofs, (and moreover the linear proofs corresponding to each resource-
proof is the appropriate subproof of @) and so by Lemma 9, there are closed
resource-derivations of I'y . V5, T {0} b Fy, AWy, Ag {0} and Ty {0}, T V2 -
Fy, A1.{0}", Ay.Ws. Hence there are new disjoint sets of Boolean variables (i.c.,
not occurring anywhere in the above two resource sequents} V and W and a total
assignment] of V U W such that (I'1.V1, T2 Vo).V & Fy, (A Wy, Ap W)W and
(T1. V1, T2 Vo).V + By, (A Wi, As W)W have resource-proofs, and so there
is a resource-proof of I'1.V;,Te. Vo F (Fi ® E»)[1], A1 Wy, Ay W, ie., DV
(Fy ® F2)[1], AW’ for some disjoint sets of Boolean variables V' and W', and
clearly the linear proof corresponding to this resource-proof is @,

2.3 Strategies via the calculus with constraints

Our intended class of resource-distribution strategies can be described formally
via the calculus with constraints, resource-derivations and resource-proofs. Our
discussion of the lazy, intermediate and eager strategies will also serve to provide
examples of resource-derivations and resource-proofs.

As mentioned above, resource proofs are intended to be independent of a
particular strategy, but to contain an explicit specification of the distributive
constraints. Hence we consider an n-strategy to be one which solves the equations
from at most n multipticative branches at a time. Hence, the lazy strategy is a
I-strategy, intermediate strategies are n-strategies for 2 < n < k for some finite
k, and the eager strategy is an w-strategy.

Lazy distribution. In terms of the calculus introduced above, the lazy strat-
egy solves one multiplicative branch’s worth of Boolean constraints at a time,
and propagates the solution (as well as any remaining constraints) to the next
multiplicative branch. This may be thought of as a pessimistic strategy, in that
ag only a minimal set of constraints is solved, if the derivation turns out to be
unsuccesstul, then only a minimal amount of work has been done.

10

Eager distribution. The eager distribution is an w-strategy, in that an un-
bounded number of eguations can be solved, and so we wait until all leaves
are closed before attempting to solve the set of constraints. Then there is one
(large) set of constraints to be solved. This may be thought of as an optimistic
strategy, in that if one of the branches leads to failure, then the work done
on evaluating all the other branches in parallel has been wasted. In general we
do not have sufficient information to solve any of these constraints until a leaf
is reached; however, we shall assume that an eager strategy whenever possible
solves constraints as soon as they arise (see Example (3) below).

Intermediate distribution. Intermediate strategies are n-strategies, where
n 2> 2. As discussed above, the precise way in which a proof which involves
7 -+ 1 multiplicative branches may be either an eager search for the first n such
branches (proceeding from the root), and then lazy searches from then on (effec-
tively performing n lazy searches in parallel), or to “switch” the eager version to
a place further from the root (effectively performing a number of lazy searches,
one of which is a n~way eager search).

As in general it is not possible to predict in advance where the leaves in a
pf’foof will be found, it would seem intuitively reasonable in a bottom-up system

to adopt the policy that the eager behaviour occurs towards the root, and once

the bound of n is reached, n multiplicative branches are chosen to be explored
in a lazy manner. However, this may result in sub-optimal behaviour, as the
“locality” of the constraints is lost (see the example (3) below). The alternative
would require extra analysis, as initially search would proceed as above, but once
the limit is reached, it is necessary to re-assign the n searchers to work on the
sub-branches of a particular multiplicative branch in some appropriate way.

For example, consider a 2-strategy with the sequent p,p, ¢,9 F (p@q)® (p@9g).
It is easy to see that as there are 3 occurrences of @ in the formula in the
succedent, there will be (at least) 4 multiplicative branches in the ensuing proof.
Hence it would be reasonable to use the lazy manner for the first occurrence of
®, and then solve each generated branch in an eager manner.

Examples. We return to our earlier examples. For {1}, resource-proof of this
sequent is of t}}? form
1

Py Py Py
ploi], ple2l, glws] alwal 2 @ ¢ plEtl, piwal. gl@sh q[Eal F 2 © ¢

moheF{P@)R (@)

where the leaves are as follows:
Pr: plzran), ploe-yel, glza-val, glzaga] F p Py : pl@r.z1], plF2.22), 9[73-23], g[ma.24] - p
Py : pled.70), plee 53], 9les T3], glza 7a) + ¢ Py : pl@1 70, p[F2.55), ¢[F3. 58], ¢[F1.F0) b ¢

The lazy strategy yields the following sequence of constraints and solutions:

Leaf Constraints added Solutions
P oz = l,eoyp = 0,23.43 = 0,494 = 0 ey =1, =1
Py 2252 = 0,23.y3 = 1, 24,74 =0 wg = l,yz = 0,22 = 0,4 = 0
Py By =1, 2y 2 2o =m 1,24 =0
Pz; :’D—‘{.Ez 1

1t may also be useful to check that the current constraints have a solution (as distinct from
actually solving them}, as happens in many constraint logic programming languages.

11

which gives us the overall solution

si=lLazg=hog=lza=0, pp=ly2=0,ya=0,p4 =9, 21 = 0,22 = L,z3=0,23 =90

where y2,94, 21 and 23 have been arbitrarily assigned the value (. Note that we
can conclude from the equations mz.y4 = 0 and 7477 = 0 that z4 must be 0,
and similarly for zs.
The eager strategy collects the entire set of equations below, and then solves
it o produce the same overall solution.
zyy1 =1, 2.9z = 0,533 = 0,34.y4 =0 Ef.2
2. YT =0, =0, 2305 = L, 2455 = 0 T1.
The first variant of the intermediate strategy first solves the equations for Py
and P; in parallel, and then those for Py and Py:
Leaf Clonstraints added Solutions
PP sian=Lzoy »0,eays = 0,2a.9 =0 2y =1,y =1
Fl.ze = 0,522 = 1, 8523 = 0, Fg.24 =0 s =0,2p =1
P, Py 22.9% = 0, 3. %3 = I, eq.Pg = 0 za3 = 1,93 =0
®3.73 w 0,@g.8g 2 1 2y = 0zq4 =10
The second variant of the intermediate strategy first solves the equations for P
and P in parallel, and then those for P; and Py:

Leaf Constraints added Solutions
PPy wran = 1wy = 0, 03,93 = 0, za.9a = 0 #y =i,y =1

2131 =0, w2z =0, w3y = L24 P =0 2g=liya=0ny =0, z2 =1
Py, Py Zo w1, 2y e O zo =l 2420

Z2=1,Zg =1

Note that solving the equations for P) and P, in parallel generates more of the
solution than solving those for Py and P in parallel.

For {2), we note that the lazy strategy finds the leaf pla1], plzs], ¢[zs], ¢lza] &
p[1], and finds the solution) = 1,23 = o3 = 24 = 0, and then attempts to close
the leaf p[T1], piF2], ¢[F3), ¢[F2] b ¢{1]. In doing so, it then attempts to solve the
equations Ty = 0,Tg = 0,%3 = 1,73 == 0, which cannot be done as we have that
z1'= 1,25 = 23 = 24 = 0. Hence we {ind that there is no resource-proof (note
that similar behaviour occurs for the other solution o7 = 0,240 = 1,23 = 24 =0
for the first leaf).

The eager strategy is clearly less efficient in this case, as it will generate the
full set of equations below before finding that there is no solution:

x
i

liwg = 0,25 = 0,24 =9 n=ly=0y=0y=0
0,z =023 =2,m4=0 Z3 =023 =0, = 2% =0

|
i

31

The first variant of the intermediate strategy will find solutions for the first
and third leaves, before finding that these are incompatible for the second and
fourth, and so will perform a similar amount of work to the eager one. The other
variant will be similar to the lazy one, exploring the first two leaves in parallel
before finding that there is no solution,

For (3), the resource-proof is of the form

Py Py Py Py
plil gl F (p@ @] (@ g)lwe] 2(1] 0l1] + (p ® 9)[E1], {r ®)[F2]
Rl F ol {p@als] (peq]F (ra] (r o g)l=]
roniR (@) (p&a).{p&q)
where the “leaves” are as follows:

12

Py oplys], qluz) F plen), (p @ @)lzays] Pasopla], gfee] + (p © ¢) BT 23}, p[53)
Po: plgn), ¢lgal - glel, (p @ @)lee §3] Pa: piz], ¢[3] F (p @ 9){F1.73), ¢f72).

Note that we know from the application of the rules that z; = 1 and 22 =)
however we do not explicitly use this information above, as the different strategies
_ will discover this in different ways. For example, the lazy strategy will discover
" that z; must be 1 before it is found that z- must be 0.

The lazy strategy yields the following sequence of constraints and solutions:

Leaf Constraints added Solutions

P m=iL,nn=lype=tay=0 1=l =lLy=0
Py wy = 1,®2.%3 =0 xy =0

By Tg =1,z =1,29=0 z1 = 1,23 =0

Py = 0,72 =1

The eager strategy will produce the full set of equations, given below.
m = 1,2 20,41 =1,92 = 0,22.48 = 0,55 = 0,73 = L,zp.93 = 0,
zye], oo 0,853 = 0, 8] = 0,8 = 1,1 = 0,533 =0

The intermediate strategies both find that 3 = 1 and zz = 0 before the
leaves are reached. The first version produces the constraints yp = 1,yp = 0,21 =
1,ze = 0, and then the constraints 7 = 0,%2 = 1,77 = 1,7 = 0, which merely
require verification rather than solving.

The second version produces the constraints g = 1,y = 0,77 = 0,7z = 1,
and then the constraints z = 1,22 = 0,71 = 0,%7 = 1, which clearly give the
same solution.

Other strategies. Obviously the calculus is able to describe other, perhaps
more ad hoc, strategies. For example, consider the rule application

T.VFR,AW DIVEFR,AW
T'kFF®F2,A

If one of the premisses is an axiom, then clearly it would be reasonable to solve
the equations for the axiom (if possible), and then propagate the solutions to the
other branch.” It may also be reasonable to use an adaptive strategy, such as us-
ing an eager strategy to provide maximal information about future branches, but
then reverting to a lazy strategy when the probability of failure, early detection
of which is desired, is higher.

2.4 Selection

We have not explicitly mentioned the selective non-determinism in using the
above rules, i.e., the choice of formula in the &L and ®R rules. Here we use
the same mechanism as for the binary multiplicative rules, but rather than la-
. belling the occurrences of each formula with a complementary expression on
' ~ each branch, we have two copies of the appropriate formula on the same branch,
‘gach with a complementary expression. Hence, there will be exactly one formula
selected at some point higher up in the proof.

* For example, consider the sequent p,p & g + p® q. Here we get the resource-

derivation b plz.yel dE sl b o o), ple-v2), oE 351 F g
pplzlalEl Fp®q
mp&ab p®yg

&L)

7 Unlike the lazy strategy, a particular order of evaluation is involved here.

13

which gives the solution y; = 1,2 = 0,92 = 0,43 = 0. Note that we cannot solve
the equations ¥y = 0,22 = 1,Tys = 0,7 = 1, 2.9 = 0,T.95 = 1.

It should be noted that this method of dealing with the binary multiplicative
rules is essentially making such rules additive, and recovering the appropriate
provability relation by means of the Boolean constraints.

We can reduce the need for explicit branching in the proof tree if we allow
a more complex system of Boolean constraints to be used. The system used
above is implicitly existentially quantified; we may consider a constraint such
as r2.71 = 1 as an abbreviation for J2;3,2¢ (xe.x3 = 1), and so all we need
to do is to find a single solution to the Boolean constraints {although clearly
different solutions will generate different proofs). However, if we allow universally
quantified Boolean constraints as well, then we may borrow a technique from
proof-nets [4, 5}, and eliminate the need for explicit additive branching.

For example, consider the provable sequent p & ¢ F p & g. A resource proof
of this sequent is given below.

plel,aff] P ot plwl, o] F of1]
(p & @] - pi1} {p& a1 41}
(P& 1)+ (p & @)1]

&l
&R.

We find that the system of equations z = 1,7 = 0,w = 0, = 1 has the solution
z = 1,w = {}, s0 we have a resource proof. In the “branchless” version, we would
have the derivation
pl=], o[F] & ply]. offi]
{r & g){z] F plyl, 919
(P& alitl - {p & 9)2]

&L

and we would then have to solve the constraint Yy € {0,1} (3z (y =)}, which
is clearly satisfiable. Hence the sequent is provable.

3 Applications to linear logic programming

The existing linear logic programming languages may be divided into those which
are implemented sequentially (Lygon, LO, Lolii, Forum, LinLog) and those which
are intended as concurrent languages {LC, ACL}. The former languages all use
the lazy strategy to distribute formulae across multiplicative branches, whereas
the latter involve a genuinely concurrent implementation of the multiplicatives.
Hence we may use alazy strategy (such as the one used in Lygon) to model state
changes, or an eager strategy for producer-consumer problems {or other such
multi-threaded computations). Qur framework characterizes all of the strategies
used in the implementation of these languages.

A strategy embodying a lazy-eager duality would be useful in the area of
transaction-processing, where for efficiency reasons it is often desirable to in-
terleave the execution of transactions as much as possible, whilst maintaining
the property that, if necessary, it is possible o reconstruct a total ordering of
the execution of the transactions with the same overall effect as the interleaved
execution (this property is often called serializability). In our terms, this corre-
sponds to executing the transactions with the eager strategy {or perhaps with
an intermediate one), knowing that a lazy execution of the same transactions is

14

possible. In other words, the serializability property is an immediate result for
any transaction processing system expressible in this framework.

Paradigms such as chemical programming (which, in essence, result from a
concurrent interpretation of '8) are easily modelled by the uge of the eager strat-
egy. Purthermore, it is interesting to note that as transitions between states in
this paradigmn are often modelled by linear formulae of the form A;9.. 9 4, —
By .. .% By, together with an initial state C,,’%...°9 Ci, there is generally only
one non-trivial multiplicative branch in a proof, and so the lazy, intermediate
and eager strategies all coincide. Qur framework clearly also provides for a gener-
alization of this paradigm to formulae of the form (G} — Dh)8.. 9 (G, — D,),
in which the distribution problems are not trivial [10].

An appropriate implementation of resource-proofs would be to use a finite-
domain constraint logic programming language in order to provide an appropri-
ate mix of proof-search techniques and Boolean constraint solving methods.

Concerning complexity, we conjecture that it will be possible to exploit the
essential restriction of hnear logic programming languages to hereditary Hor-
rop formulee and the identification of paths [10] (a kind of proof-object [11],
related to proof-nets [4, 5]) to partition the sets of Boolean equations obtained
into smaller, independently solvable collections. Indeed, the techniques presented
herein amount to a formal account of the use of paths to describe and execute
strategies.

Acknowledgements. We thank Michael Winikoff and the anonymous referees
for their comments on this work. Partial support from the British Council, the
UK EPSRC and the RMIT Faculty of Applied Science is gratefully acknowl-
edged.

References

1. J.-M. Andreoli. Logic Programming with Focusing Preofs in Linear Logic. J. Logiec Computat.
2(3), 1992,

2. D. Galmiche and G. Perrier. On proof normalization in Linear Logic, Theoret. Comp. Sci.
135, 67-110, 1994,

3. G. Gentzen. Untersuchungen iiber das logische Schliessen. Math. Zeit. 39, 176-210, 405-431,
1934.

4. J1.Y. Girard. Linear Logic. Theoret. Comp. Sei. 50, 1-102, 1987.

1.-Y. Girard. Proof-nets for Additives. Manuscript, 1984.

J. Harland, I3, Pym and M. Winikoff. Programming in Lygon: An Qverview. Proc, AMAST986,

M. Wirsing and M. Nivat, editors, LNCS 1101, 391-405, July, 1998,

7. J. Hodas and D. Miller. Logic Programaming in 2 Fragment of Intuitionistic Linear Legic.
Inform. and Computal. 110:2:327.365, 1994,

8, P. Lincoln and N, Shankar. Proof Search in First-order Linear Legic and Other Cut-free Proc.
of the IEEE Symposium on Legic in Computer Science 281-292, Paris, June, 1994.

9. D. Miller. A multiple-conclusion meta-logic. Proc. of the IEEE Symposium on Logic in
Compuier Science 272281, Paris, June, 1994,

10. D, Pym and J. Harland. A Uniform Proof-theoretic Investigation of Linear Logic Program-
ming, J. Logic Computat. 4:2:175-207, 1994,

11, D, Pym and L. Wallen. Logic Programming via Proof-valued Computations. In: ALPUKS2,
Proc. 4th U.K. Conference on Logic Programming, K. Broda {editor), 253-263. Springer-
Verlag, Workshops in Computing Series, 1992,

12. F. Tammet. Proof Search Strategies in Linear Logic. J. Auiomai, Rees. 12:273-304, 1084,

13. A. Troelstra. Lectures on Linear Logic. OBLI Lecture Notes No, 29, 1992,

14. M. Winikoff and J. Harland. Implementing the Linear Logic Programming Language Lygon.
Proc. ILPS'95 66-80, J. Lloyd (ed.}, MIT Press, 1895,

oo

This article was processed using the ITEX macro package with LLNCS style

15

