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Abstract

KL1 is a language in which parallelism is inherent, and abstract: it is not tied down to any
particular architectural model. In this paper we show how it may be used with ease to
implement parallel versions of standard search algorithms, including best-first search,
branch-and-bound search, and alpha-beta search. We investigate some of the problems and

opportunities which parallel implementations of these algorithms provide.

The language KL1

KL1 originates from the Japanese Fifth Generation project [Sh & Wa 93]. While this project
is often said to have chosen the Prolog as its basis, in fact it chose the more abstract concept
of logic programming . The relationship of Prolog to logic programming is like that of Lisp
to lambda-calculus: an early attempt to base a programming language on an abstract concept
of computation, adding several features which did not correspond to anything in the
abstract model to aid efficiency and turn it into a practical programming ianguagé. Both
prospered through having been first on the scene and having some reasonably efficient

early implementations.

KL1 has a syntax very similar to Prolog, but an operational behaviour very different, of the
form characterised by Kowalski [Kowa 79] as “don’t care” non-determinism, where Prolog
has “don’t know” non-determinism. In XL1 attempis to match goals against all clauses for a
predicate are made in parallel (OR-parallelism), rather than in textual order with
backtracking as in Prolog. Once a goal has matched against a clause it is said fo have
“committed” and cannot backtrack to another. This is accomplished by, in effect having a
cut in every clause, with only system prmitives allowed to the left of the cut. The cut is
written | when the set of system primitives to its left is non-empty, but is unwritten
otherwise. There is no concept of goal ordering, rather any goal may be expanded with any
matching clause at any time (AND-parallelism). Some control limitation on the AND-
parallelism is imposed by making unification one-way: a goal only matches against a
clause if it can match against its head without requiring any binding of its variables, and
commits to a matching clause only when any variables are also sufficiently bound for any

system primitives before the cut to execute and succeed. Any goal insufficiently bound to
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commit to a clause stays suspended. Variables passed into a clause may be unified only by
means of the system primitives =, which binds a variable on its left-hand side to its right-
hand side, and : = which binds a variable to the evaluation of an expression on its right-
hand side {evaluation being suspended if the expression contains unbound variables). The
usual logic programming convention that once giver a value a variable may never be

reassigned another holds.

In fact KL1 is one of a family of concurrent logic programming languages {surveyed in [Shap
89]) which differ only in fairly minor details. More details on the derivation of these
languages from Prolog, and some consideration of programming techniques in them is given
in [Hu & Ri 95]. An efficient implementation of KL1 on multiprocessor systems is available
[RNIC 96]; nearly all the programs in this paper are transferrable to the similar language
Strand [Fo&Ta 89], which has been marketed as a practical language for parallel systems.
In this paper we shall concentrate on using them to implement simple search algorithms of
the sort used in Artificial Intelligence applications, with particular attention given to the
problems and opportunities provided by the parallelisation of these algorithms given by

implementing them in a concurrent logic language.

Search

The idea of search had a starring role in early work on Artificial Intelligence. Early
textbooks on the subject (e.g. [Nils 71]) gave over a great deal of space to it, improved search
methods had a major place in Artificial Intelligence conferences and journals. More
recently, consideration of search in the abstract has tended to move from the field of
Artificial Intelligence to mainstream Computer Science and Operational Research. Search
continues to be an important tool for artificial intelligence workers, less likely to be
discussed because now taken for granted. Parallelising search continues to be an active field
of research in computer science, much of the interest coming from the fact that search
algorithms designed for sequential computers rarely map easily onto parallel
architectures. The challenge for the programming language designer offered by research in
parallel search is to come up with languages which free the programmer from having to
consider low level details of the architecture in order to concentrate on the more abstract
aspects of parallel algorithms, while retaining sufficient control to efficiently exploit the

parallelism available in the architecture.

In the field of logic programming, Prolog was notable for incorporating a search mechanism
as a built-in part of the language. The inderminate logic languages like KL1 have been
criticised for abandoning this built-in search, resulting in various attempts to create hybrid
languages which can revert from indeterminism to nondeterminism [Cl & Gr 87], [Hari 90].

However, the lesson that can be picked up from any good Prolog textbook (e.g. [Brat 86]) is
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that Prolog’s search must be subverted and search explicitly programmed in if search is to
be at any more than a trivial level. Thus it is the symbolic nature of Prolog rather than its
built-in search which makes it suitable for artificial intelligence programming, and this

symbolic nature is inherited by the stream parallel logic languages.

A Naive Prolog Solution to the 8-Puzzle

The 8-puzzle is a familiar example used to illustrate state space search problems [Nils 71].
The problem consists of a 3x3 arrangement of eight cells marked with the numbers “1” to “8”
and one blank space. A state represents a particular arrangement of the cells, its successors
are generated by the four different ways in which a cell may be moved onto the blank
space: from the left, right, and from up and down, although only if the blank space is in the
centre will all four ways generate a valid successor. The aim of the puzzle is to find a list of
moves which will change the arrangement from the given initial state to the desired goal

state.

The goal state conventionally used is:

As an example, there are three possible moves from the following state :

218
R
-
The three successor states are:
21813 21843 218
11415 1
716 716 714
Left Right Down

A complete solution to the problem is the sequence of moves

[Left, Down, Right, Down, Right, Up, Left].

1t is usually the case that the state information includes the last move made, so that the
move which reverses this is not counted as a legitimate successor, thus further reducing the
size of the search tree, but not to the extent that it is trivial. In fact in our case, we wiil
assume that the state information includes all the moves made to reach the state from the
initial state, so that if the state is found to be a solution, an answer can be returned straight
away. The alternative would be to add the moves as the solution is passed up the search
tree, leading to less memory usage, but a more complex program; this leads to the “layered

streams” [Ok & Ma 87] approach which we discuss later on.
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Part of the search tree for the problem above, including the paths taken to reach the states

is given below:
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Let us consider a naive Prolog program to solve this puzzle:

search{State, State) :— solution(State).

search (State, Soln) :- left(State,Left), search(Left,Soln).
search (State, Soln) :~ right(State,Right), search(Right,Scln).
gsearch (State, Soln) :- up{State,Up), search(Up,Scln).

search (State, Soln) - down(State,Down), search{Down,Soln).

The predicates left, right, up and down give the successor states of the state given as

their first argument, or fail if there is no such successor state.

This program, though entirely correct declaratively, will most likely fail to terminate
since it can in effect gives a depth-first search of an infinite tree. We could extend the
information stored at each state to record the intermediate positions passed through on the
way to that state, and make the movement predicates fail if they return to a previously
encountered position. This would limit search to a finite tree, but would still be grossly
inefficient. In fact there are well known heuristics to direct the search for this problem
[Nils 71]. The naive Prolog program works badly because it transfers the left-to-right
depth-first scheduling of Prolog directly to the search of the problem which actually

requires a more sophisticated search scheduling.
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A Naive KL1 Solution to the 8-puzzle: OR-parallelism simulated by AND-
parallelism

Notwithstanding the naive nature of the program above, let us consider a similar solution

m KL1:

search{nostate, Soln) :- Soln=none.
gearch{State,Soln) :- State#none |
issolution (State,Flag), expand(Flag,State,Soln}.

expand {true, State, Soln) :- Seoln=0tate.
expand (false, State,Soln) :-
left (State,Left), search{Left,SolnkL),
right (State,Right), search(Right,SclnR},
up {State,Up), search(Up,SolnU;},
down (State,Down), search(Down,SolnD),
choose (Solnl, SolnR, SolnU, SolnD, Soln) .

choose (Solnl, _,_,_,S0ln}) :- Solnl#none | Scln=Solnk.
chooge (_,SolnR, ,_,Soln) :- SolnR#none | Scln=SolnR.
choose( ,_,SolnU,_,Soln) :~ SolnUsnone | Soln=S%clni.
choose(_,_,_,SolnD, Soln} :- SolnDgnone | Scln=SolnD.
chooge {none, none, none, nene, Scln) 1~ Soln=none.

A number of points may be noted here. Firstly, the OR-parallelism which was implicit in
the Prolog program is converted to KL1 AND-parallelism with the failure of an
OR-parallel branch indicated by the return of the dumumy solution none. Secondly, the
predicate choose is introduced to make a non-determinate choice between solutions in
OR-parallel branches, returning none itself if none of the branches returns a solution. This
technique of converting conceptually OR-parallelism to AND-parallelism is a cliché in
concurrent logic programming, introduced by Gregory [Greg 87] and Codish and Shapiro
[{Co & Sh 86].~In fact, the same technique is used in Prolog if we want to return all solutions
to some problem, naturally, since returning all solutions from a situation where a solution is
obtainable by method A or method B is equivalent to combining the solutions obtained from

method A and method B. The Prolog all-solutions program is:
search {nostate, {]} :- .
search (State, [State]) :- solution(State),!l.
gearch{State,Sclns} :-
left (State,Left), search(Leit,Solnsl),
right (State, Right), search(Right,SolnsR),
up (State,Up), search(Up,SolnsU),
down{State,Down!, search{Down,SclnsD},
appendd (SolnsL, SolnsR, SolnsU, SolnsD, Solns) .
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where append4 simply appends its first four arguments together to give its fifth. It is
assumed that rather than fail, left (State, Left) will bind Left to nostate if there is
no left successor state, and likewise with the other moves. The same will happen in the

KL1 program.

A third point is, given the flat nature of KL1, the conversion of the Prolog test predicate
solution to the KL1 predicate issolution, which outputs true or false in a second
argument, combined with the introduction of a new predicate to cover the search beyond the
test, which takes the boolean value from issolution and reacts accordingly. For
simplicity here, we have assumed that goal states in the search tree are leaves, hence the
cut in the Prolog program is a green cut. A more complex Prolog program would be required to
deal with cases where goal states in the search tree could have descendants which are also

goal states.

The choose predicate is introduced in order to represent explicitly the independent
binding frames for each non-determinately choosable clause, which are implicit in Prolog.
The indeterminism of KL1 maps directly onto an indeterministic choice of solutions. The
nondeterminism of Prolog is managed by wiping out information in the binding frame on
backiracking. It may be assumed that choose (SolnL, SolnR, SolnU, SolnD, Soln)
will rewrite as soon as any of its first four arguments have been bound to anything but none,

or when all its first four arguments have been bound to none.

The result of executing the KL1 program will be to create a tree of choose processes,
replicating the search tree of the problem itself. The goal search(State, Soln), will
first rewrite to issolution{State,Flag),expand(Flag,State, Soln}, and if
issolution (State,Flag) caused Flag to be bound to true, following the rewrite of

expand (Flag, State, Soln) the situation will be:

SolnL

search search

Left
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using a diagrammatic representation where the nodes are processes and the arcs variables.
Unless either a solution is found, or no further state is generated by the move, each of the

descendants of the root choose process will become a further choose process, and so on:

Saln

GBGPCD GBBI’CD Gearcta GBaI’CTD (3982‘{29 (SBBI'CD (searca

It can be seen that a major difficulty with the program is that the number of processes will

expand exponentially, until any practical parallel system is overwhelmed. Although we
know that in problems like this there are usually heuristics which tell us that a solution is
more likely to be found in one subtree than another, since we are assuming unlimited
parallelism, we have not built in a way of deciding which leaves in the search tree to
expand given a limited number of processors to do the expansion. One solution to this, which

we shall consider later, makes use of the KL1 priority operator.

Speculative Parallelism

Another problem in our naive search is that we have omitted to describe a mechanism for
halting processes which are not going to contribute to a solution. When we have a goal
choose (SolnL, SolnR, SolnU, SolnD, Soln}, as soon as any of the first four arguments
is bound to something other than none, it rewrites, and the continuing execution which is
determining the values of the other arguments is redundant. This sort of parallelism is
known as “speculative parallelism”, since in effect any computation of the solution returned
from a subtree is a speculation on that solution being necessary for the overall solution. In an
ideal parallel processing situation, we make that speculation because we have nothing fo
lose - the processors engaged on the speculative computation would otherwise be left idle,
so they might as well be used on computations which might be found to be needed. Of course,

in practice the overhead of managing speculative parallelism means that it is too glib to
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say there is “nothing to lose”, so speculative parallelism should only be engaged in if the
likelihood of it being needed outweighs the overhead. In fact, as shown by Lai and Sahni
[La & Sa 84], in a search on a multiprocessor system where there are more possible node
expansions than processors and node expansion choice is guided by heuristics, even in the
absence of communication overheads it is possible for anomalous results to occur, ranging
from slowdowns to speedups greater than the number of processors. We shall discuss this

issue later in this paper.

Grit and Page [Gr & Pa 81] discuss the possibilities of incorporating a mechanism for
automatically cutting off speculative computations which have been found unnecessary in a
functional programming language. Without such a facility though, such a mechanism must
be programmed in explicitly by the programmer (the problem is analogous to the
consideration of whether garbage collection should be automatic or programmer-defined).
it is essential that any mechanism which passes on the information that a solution has
been found and further computation on alternative solutions is unnecessary should have
priority over those further computations, otherwise we have the possibility of a node in
the search tree being expanded and taking over the computational resources that would
pass on the message that the expansion is unnecessary, a situation that might aptly be

described as “undeadiock”.

Speculative parallelism is associated particularly with OR-parallelism [Burt 88], indeed,
it could be argued that the two are the same thing, the former term being used in a
functional language context, the latter in a logic language context. However, as our search
example shows, speculative parallelism is a real issue in AND-parallel languages, since
we can write predicates like choose which make OR choices between their arguments.
These might be considered generalisations of functional programming’s cond operator
[Turn 79], the operator which with three arguments, a boolean V and A and B, evaluates to A

if v evaluates to true, and to B if V evaluates to false.

In functional languages, the operation cond is usually evaluated lazily, that is its second
and third arguments are not evaluated before the operation is applied. A similar

suspension of evaluation can be programmed in KL1 using its suspension mechanism:

eval cond_lazily(V,A,B,Val) :- eval (V,Vvval), cond{Vval,A,6B,Val).
aond(true,A,_,val) :- eval(iA,Val).
cond (false, ,B,Val) :- eval(B,Val}.

This is not fully lazy evaluation, since either A or B is fully evaluated rather than returned

as an unevaluated reference, but for now serves to illustrate the point. Speculative
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parallelism in functional languages requires a rejection of the evaluate cond lazily
convention, generally involving special language constructs. No special mechanisms are

required in KL1:

eval_cond_speculatively({Vv,6A B, Val) :-
eval(V,Vval), eval(ha,avVal), eval(B,BVal},
cond (Vval,AvVal,Bval,Val).

cond (true,AvVal,_,vVal) :- Val=AVal,
cond(false, ,Bval,val) :- Val=BRVal.

It is clear here that eval_cond_lazily and eval_cond_speculatively
represent two extremes: in the former no potential parallelism is exploited, in the latter
parallelism is exploited perhaps inappropriately. In fact, although it is picked out and
made clear here, these two opposite approaches to potential speculative parallelism may
occur less obviously in KL1 programs in general, and in fact fairly subtle changes to a
program may cause a switch from overabundant parallelism to no parallelism at all. This
is one of the reasons why, as noted in [Ti & Ic 90], a straightforward translation of a
sequential logic program to a concurrent logic program does not always result in a good
parallel program. We shall discuss the issue of over abundant against. no parallelism in
further detail later on, and suggest that a simple middle-way solution is to make use of the
priorities of KL1 in a similar way to Burton’s use of priorities ro control speculative

parallelism in functional languages [Burt 85].

Non-speculative non-parallel linear search ‘

Note that a simple attempt to remove the speculative element from our search program
will result in us losing the parallelism of the search altogether. For example the following
KL program for the 8-puzzle starts search of one branch of the tree only if no solution has

been found in the previous branch:

gearch (nostate, Soln) :- Soln=none.
search{State, Soln) :- State#nostate |
jssolution (State,Flayg), expand(State,Flag,Solution).

expand (true, State, 8oln} :- Soln=State.

expand{false, State, Soln) :~
lsearch(State, Solnl),
rsearch{Solnl, State, Solnz),
usearch(Soln?, State, Sclnd},
dsearch(Soln3, State, Soln) .

lsearch(State,Soln} -
left {State,Left}, search(Left,Soln).
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rsearch (nene, State, Soln) -
right {8tate,Right}, search(Right,Soln}.
rsearch({InSoln, 8tate, Soin) :- InScln#none | InSoln=Soln.

usearch {none, State, Soln} -
up {State,Up), search{Up,Soln).
usearch (InSaln,State, Soln) :- InSoln#none | InSoln=Soln.

dsearch{none, State, Soln; :-
down (State,Down}, search(Down,Solin)
dsearch{InSoln, State,Soln) :- InSoln#none, InScln=Solin.

It will result in a strict depth-first left-to-right search of the search tree, since
consideration of any node in the tree is suspended on the result from consideration of the
previous one in this search order in the tree. The process structure created by execution will
be a chain of processes, all except for the first waiting for either a solution or a none to be
passed in, in the former case the solution is passed straight down the chain and its length is
reduced by one, in the latter the front of the chain is expanded. The process structure after

the first expansion is:

State

Soln

After the next expansion it is:

Siate

Soln

Solnt 'Soln2’ g

We describe this form of search program as “linear search” from the linear form the

oin3d’

processes link into during execution.
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A Practical Prolog Solution to the 8-puzzle

In practice, Prolog solutions to search problems where left-to-right depth-first search is not
the optimal search method abandon attempts to represent the search of the problem
directly by Prolog’s built-in search mechanisms. Instead, a meta-programming approach is
used, in which some explicit representation of the global search space is manipulated. This
gives us the following Prolog program for the 8-puzzle, in which search is specifically
programmed in:

search ([StatelStates],State} :— solution{State).
search([State|States],Soln} :-
left (State,Left),right {State,Right) ,up(State,Up},down(State, Down),
ingert (Left,States, Statesl), imsert(Right,6 Statesl,States2),
insert (Up,States?2, States3), insert(Down,States3, Statesd),
search{Statesd4, Soln) .

Note that like the programs discussed above, this one simulates disjunctions in the problem
by conjunctions in the program. The first argument to the search predicate is a list of
states representing the current global search space (initially the list containing just the
initial state). We can assume that insert inserts a state into its appropriate place in the
list. We must also assume that left, right, up and down return the dummy value none
for those states where they do not lead to a successor or where the successor to which they
lead has already occurred as an intermediate state; attempting to insert none into the list
of states leaves the list unchanged. The program is initially called with the list of states

consisting of just the initial state as its single element.

The reason such a program is preferred is that it is generally possible to find “heuristics”
[Pear 84] which are estimates of the likely cost of a solution through any state. The list of
states is kept in order of the heuristic calculated for each state, so that insert in our
above program keeps the active list of states in heuristic order. A simple heuristic in the 8-
puzzle is to count the number of spaces each cell is away from its final position (the
“Marhattan disatance”). Anyone familiar with this puzzle will know that this heuristic,
while useful, is not always accurate as it is sometimes necessary to move a cell away from
its correct position in order to make corrections elsewhere, and then move it back again.
Still, we can see that using even this simple heuristic is an improvement on the fixed search
order of Prolog, and in general for any program which involves a high degree of search we

would not use a non-intelligent built-in search.

The Prolog meta-programming program is already very close to a KL1 solution. The only
backtracking involved is in the testing for goal states, this is also the only case of output by

unification. Removing this gives the KL1 version:
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search({State|States],Scln}) -
issolution{State,Flag), expand(Flag,State,States,Scln).

expand (true, State, States, Soln) ~ Scln=State.
expand(false, State, States, Soln) -
left (State,Left),right (State,Right),up{State,Up) , down{State,Down),
insert{Lefl,States, Statesl), insert (Right,Statesl,Statesl),
insert (Up,States2,States3), insert (Down,States3, Statesd},
search(Statesd, Soin).
This program is deceptive. It appears to give an example of parallel heuristic search. In
fact it is a good example of the problem of parallelism disappearing if speculative as
mentioned above. A goal search(Statesl,Soln} will only rewrite fo
isgeal (State,Flag),searchl(Flag, State,States, Soln) when Statesl has
become bound to [State!States]. This means that although the four descendant states of
state can all be calculated in parallel, any further state expansion is left until the head of
the subsequent list of goals is known, that is, after all the insertions, since
search(Statesd, Soln) will not rewrite until that is the case. Any search before this

would have to speculate on which goals would be at the head of the list.

However, we can pursue parallelism a little further with the above approach. Suppose we
we have N processors available, and we have process mapping notations, so
pred (Args) @p, 1<psN, indicates that pred (Args) should be executed on processor p.
Then we could arrange to expand the first N states in the list simultaneously, distributing
each state to a separate processor, where above we only expand the first state. This gives

the following program:

search{N, States, Soln) -
distribute (N, States,OutStates, Solnl},
search_if_no_soln(N,Solnl,0utStates, Soln) .

search_if_ no_soln(N,none, States, Solin) —search(N,States,Soln).
search_if_mo_soln (N, Solnl,States, Soln) — Solnl#none | Secln=Solnl.
distribute (N, [State|States],QutEtates, Soln) = N=0 |

try_state(State,OutStatesl,CutStates, Solnl)@N, Ni:=N-1,
distribute{Nl, States,OutStatesi,Soln2), choose{Sclnl,SolnZ,Soln).

distribute (0, Stares,OutStates, Soln) ~QutStates=8States, Soln=none.
distribute (N, [],0ut8tates, Soln) :— OutStates=[], Soln=none.

choosge (none, none, Soln) — Soln=none.

choose {Solnl,_,Scln) = Solnl#none | Soln=Solnl.

choose {__,Scolnl, Soln) — Solnl#none | Soln=Solnl.
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try_state(State,InStates,OutStates, Soln) i~
igsolution{State,Flag),expand{Flag, State, InStates,OutStates, Soln).

expand (true, State, InStates,OutStates, Soln) -
Soln=State, OQutStates=InStates.
expand (false,State, InStates,OutStates, Soln) -
left (State,Left),right (State,Right) ,up(State,Up),down{State, Downl,
insert (Left,InStates,Statesl), inpert(Right,Statesl, Statesl),
insert (Up, States?,States3), insert(Down,States3,OutStates),
Soln=none.
There are several problems with this program. Firstly it is dependent on a specific
architecture: one in which all processors may be accessed from a central controller
(although it does allow a flexibility in the number of processors). Secondly it invelves high
communication costs: at each cycle states are sent out to each processor and their
descendants then collected together again on one processor. Thirdly it does not give optimal
use of the multiprocessors. If a processor finishes work on the state it has been sent while
the others are still busy, it cannot go on to search further states; rather it must wait until
all processors have finished and work is distributed again. The main problem, however, is
that it does not separate algorithm from control, as in Kowalski's famous dictum [Kowa 79].
The abstract consideration of expanding the search tree is mixed up with the lower level
control considerations. The resulting program is a long way removed from the abstract
control-free program we started with. We would prefer to start with a simple declarative

program and add annotations where necessary to obtain a practical parallel program.

This latest program may be regarded as a meta-programming solution to the problem, since
the actual tree expansion of the task can be considered a meta-program running on top of the
main program which covers the control aspect, The meta-programming aspect would become
even more dominant on a more complex architecture such as a distributed network of
processors. Taking this meta-programming approach further leads to the replicated worker

approach to parallel search [Bal 91].

A Generic Search Program

Before continuing, let us switch from discussing specifically the 8-puzzle to a more general
pattern of search program into which procedures as necessary could be plugged in to make it
an 8-puzzle or any other state-space search. We will need a predicate
issol(State,Flag) which takes the representation of a state in the search, and binds
Flag to true if it is a solution state, and false otherwise, and
successors (State, Succs) which binds Succs to the list of successor states of State.

This will give us the following general declarative search program:
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gsearch{State,Sols) :- issol(State,Flag), expand(Flag,State,Sols).

expand (txrue, State, Sols) :- Sols=[State].
expand (false, State, Sclis) -
succesgsors (State, Succs), branch{Succs, Sols).

branch{[], Scls} :- Sols=[].
branch({{State|Siblings}l, Sols) :~-
search(State, Solsl), branch(Siblings,Soclsl),
combine(Solsl, Scols2, Sols).

The underlined italic combine is meant to indicate that a number of different predicates

could be put here, resulting in a variety of search programs with different properties.

To get a similar behaviour to our initial search program, for combine we use a simple

indeterminate choose, similar to before except taking only two inputs:

choose ({So0l], .., OutSol) :- CutSol=([Scll].

choose (_, [Soll, OutSols) :- OutSols={Sol].
choose ([], Sols, QutScls) :- OutSols=Sols.
choose (Sols, [], OutSols) :- OutSols=Sols.

Note that in the place of the previous none, the empty list [] is used, and the solution is
returned inside a single element list. This enables us to obtain a greater variety of programs,
including multiple solution programs just by varying combine. The result of using this
choose for combine is that program execution will result in a binary tree of choose
processes which represents the search tree of the problem using the standard n-ary to
binary tree mapping that can be found in any good data structures text book, where the left
branch represents the relationship “first child” and the right branch the relationship
“next sibling”. Declaratively, the solution obtained is as before, though pragmatically the
change would mean that the bias between indeterminate choices would change the
likelihood of any particular solution being returned in the case of multiple solutions. For
example, suppose a solution is obtainable through all four branches of the 8-puzzle, and the
choice is made when all four solutions are available so we can discount time-related
factors, and when there is a choice there is an equal chance of any of the clauses being used
for rewriting. In our initial program there is an equal chance of any of the four solutions
being returned, while in this version the first solution has only to get through one choose,
while the second has to get through two, and the third and fourth through three, so there
is a 50% chance of the first solution being returned, a 25% chance of the second and a 12.5%

chance for each of the third and fourth.
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If combine is standard list append, the output will be all solutions in left-to-right order
from the search tree. If it is stream merger, the output will be all-solutions in an
indeterminate order; in fact ignoring communications factors, in the order in which they are

found temporally.

Other possibilities are:

leftmost {[Sol]l, _, OutSels) :~ OutSols={Sol}.
leftmost (][], Soils, OutSols) :- OutSols=Sols.

which will result in the leftmost solution in the search tree being returned, and

indeterminate {Sols, _, OutSols) :~ OutSols=Sois.
indeterminate!{_, Sols, OutSols) :- OutScls=Sols.

which maps the indeterminacy of KL1 straight into an indeterminate return of any solution
(obviously, not an option to be considered unless every leaf in the search tree is a solution!).
If there are costs associated with solutions, and cost (Sol, Cost) gives the associated

cost, then using lowestcost as given below for combine will result in the lowest cost

solution being returned:
lowestcost{[], Sols, CutSols) :- OutScls=Sols.
lowestcost (Sols, [1, OutSels) :- OutSels=Sols.

lowestcost ({Soll]l, [Scl2], OutScls) -
coet {8oll,Costl), cost(S0l2,Costl),
cheapest {Soll, Costl, SolZz, Cost2, Sol), OCutSols=[Secl].

cheapest (S0ll,Costl,__,Cost2,S0l) :- Costl<CostZ | Sol=50l11.
cheapest {__,Costl,80l12,Cost2,S0l) :~ Costle=Cost2 | Sol=S0l2.

A generic version of the linear search program may also be written, using the principle that
a branch in the tree is searched only if search of the branch to its left has completed and no
solution was found in it. Unlike the linear search version of the 8-puzzle, however, this

program generates the successors of a node in advance rather than if and when needed.
search(State, Sols) :- issol(State,Flag). expand(Flag, State,Scls).

expand (true, State, Solg) :~ Scls=[State].
expand (false, State, Sols) :-
successors {State, Succs), branch(none, Succs, Sols).

branch{Soll, [1, Sol) :- Sol=Soll.
branch(Sell, _, Sol} :- Soll#none, Sol=Soll.
branch({none, State:8iblings, Sol) :-

gearch (State, Scoll), branch(Soll, Siblings,Sol!}.
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Another form of search which is also linear since rather than have a separate combine
predicate the solutions from one branch are passed as input to the process working on its
sibling, is the all-solutions program which instead of appending lists of solutions adds
them to an accumulator. In concurrent logic programming, this is known as a short-circuit
technique, since it amounts to the various solutions eventually being linked together like an

electric circuit. In this case, the program is fully parallel. The generic version is:

search (Acc, State, Seols) 1~
issol (State,Flag), expand{Flag,Acc,State,Sols).

expand (true, Acc, State, Sols) :~ Sols=State:icc.
expand (false,Acc, State,Sols) -
successors (State, Succs), branch(Acc, Succs, Sols).

branch{Acc, []1,S0ls) :- Sols=Acc.

branch{2cc, [State|Siblings],Sols} :-
search (Acc, State, Sclsl),
branch{Solsl,Siblings, Scolis).

In Prolog this technique is known as the difference-list technique [Cl & Ta 771, with the
convention being that the pair Acc and Sols is written Sols-Acc, indicating that a

conceptual way of viewing it is as the solutions being returned being those in Sols less those

mAcc.

The Layered Stream Approach to Returning Solutions

As mentioned previously, the layered stream approach is an alternative to the method we
have assumed that complete solutions are delivered at the leaf of the search tree. The idea
is that if the solutions to some search problem consist of a list of moves, the head of the list
being derived from the first possible move independent of subsequent moves, and the tail of
the list being the remaining moves, then the set of solutions can be returned in a tree form
matching the tree structure of the search space. Using the notation convention infroduced by
Okumura and Matsumoto, a set of solutions with a common first move M is stored in the form
M*[T{, ..., Tn] where Tj is a tree in similar form representing a set of possible tails to
the list of moves. A layered stream representing the set of solution moves from a given state
takes takes the form of either a Hist of these sets of solutions or two special atomic values,
either begin indicating that the state is itself a solution state and so a solution is found
with the empty list of moves, or [} indicating a state which is not a solution and there are

no possible moves from it that will lead to a solution.
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So, for example, the layered stream
[1*[2*[3*begin,4*[]],56*[6*begin,7*[],8"begin]],@"begin]
is a representation of the set of solutions {[1,2,3].[1,5,6],[1,5,8],[9]}, which is more

N
=N
AN\

where the arcs are labelled wzth the moves they represent, and the black circles represent

intuitively viewed as the tree:

nodes that are not solutions but have no descendants.

The generic search program which produces a layered tree representing the set of possible

sojutions is:
search(State,Sols) :- issol{State,Flag), expand{Flag,State, Sols).

expand (true, State,Solsg) :- Sols=begin.
expand{false,State,50ls) - .
succegsors (8State, Succs), branch(Succs, Sols).

branch{[], Sols) :- Sols=[].
branch({[State/Move|Siblings], Sols) :-
search(State, Solsl),
branch{Siblings,Sols?),
join (Move,Solsl, Sols2, Sols).

join (Move, Solsi,Sols2, Sols) :- Scls=Move*Solsl: Solsz.

where it is assumed that states are returned paired with the move that generated them

from their parent in successors.

A slightly more complex form of join removes dead-end branches from the tree as they

are constructed:

Join{Move, Solsl,Sols2, Sols) :- Solsli#[] | Solg=Move*3olsl:Solsl.
Join (Move, [],80ls2,80lg) :- Sols=SolsZ.

A version of join that returns a single solution indeterminately is easy to define:

join (Move, Solsl,_, Sole) :- Solsl=x{] | Sols=Move:Sols.
join(Move, _,Sols2,So0lg) :- Sole2z[] | Sols=Move:S0ls2.
join (Move, [}, [],80ls) :- Sols=[].
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Further variants of join may be considered in a similar way to the variants of combine
we have considered previously, and we will consider later. From this it may be seen that
though layered streams may seem complex when combined in an undisciplined way with
other elements of search (for example in some of the programs in [Tick 91]), when analysed
in this generic way it can be seen to be a natural extension to the techniques already
introduced. The complexity comes about because in the interests of efficiency elements of the
search which we have split up here into separate predicates may in practice be interlinked
in single multi-purpose predicates. Qur preferred mode of programming would be to
encourage the use of generic programming patterns or clichés [Wate 85} in program
development, but to use program transformation methods to produce more efficient but less

understandable programs.

Deleting Irrelevant Search

A simple way of deleting unnecessary speculative search is through the use of a
“termination variable”. The idea is that search may only continue while this variable
remains unbound. When a solution is found, the variable is bound to some constant found.
This variable is checked each time an expansion of the search tree takes place. Of course,
objections may be raised that this technique requires the use of an extra-logical test for
whether a variable is bound, but we shall override those objections and pursue it for now. A

generic search program using the termination variable technique is given below:

search (Term, State, Sols) :-
issolution(State, Flag),
expand (Flag, Term, State, Sols).

expand {Flag, found, State, Sol) :- Sol=none.
expand (true, Term, State, Sol) :- unknown(Term) | Sol=3tate.
expand{false, Term, State, Sol) :- unknown {Texrm) |

succesgsors (State, States),
branch (Term, States, Sol}.

branch (Term, [}, Sol) :- Sol=none.

branch{Term, [Statel|Siblings], Sol} :-
search (Term, State, Soll),
branch{Term, Siblings, So0l2),
choose (Soll, ScolZ, Solj.

The exact nature of the test for a variable being unbound in a concurrent and potentially
distributed program is an issue for discussion. We have used unknown to indicate an
inexpensive test which simply checks whether the variable is known to be bound at the

processor on which the unknown test takes place. It may be that it has been found
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elsewhere, but news of that binding has not yet reached the processor. The distinction
between this test and a var test which locks the variable and makes a full check for lack
of a binding throughout the system is noted in [Yard 90]. This reference also suggests a “test-
and-set” operator, which as an atomic operation checks the whole system for whether a
variable is unbound, and if it is unbound sets it to a value, otherwise it has no effect. The
advantage of this operator is that it can overcome the binding conflict problem [Bu & Ri 88],
and allow us to have a single sharea variable to return a solution, in effect this variable
has the dual role of returning a solution and acting as a termination variable. This version

is given below:

search {State, Sols) :-
jesolution (State, Flag),
expand (Flag, State, Sols)

expand {Flag, State, Sol} :- nonvar(Sol) | true.
expand (true, State, Sol) :- test_and_set (Sol, State} .
expand (false, State, Sol) :- wvar(Term) |

successors{State, States),
branch(States, Sol).

branch([}, Sol) :- Lrue.
branch({[State|Siblings], Seol) :-
gearch{State, Sol},
branch (Siblings, Sol).

The version using test_and_set enbables us to dispense with the hierarchy of
choose goals which are necessary in the version using unknown. This is because without
atest and_set we cannot tell whether a variable we are binding has been bound
elsewhere; even with var we cannot guarantee that in between var (X) succeeding and the
execution of X=value, X has not been bound elsewhere. This problem does not occur with the
termination varjable so long as = is unification rather than assignment since then
Term=found will succeed even if Term has been bound elsewhere to found. Nevertheless,
if multiple writers to the termination variable is a problem, or if in practice we wish to
avoid the bottleneck of every process over a distributed system needing access to a single
global termination variable, we can use a version in which each process has its own
termination variable, and then choose has a multiple role — as well as passing solutions

upwards in the tree, it passes termination signals downwards. The program below does this:
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search (Term, State, Sols) :-
issclution(State, Flag),
expand (Flag, Term, State, Sols).

expand(Flag, found, State, Sol) :- Sol=none.
expand (true, Term, State, Sol) :- unkpown{Term) | Sol=State.
expand{false, Term, State, Scol) :~ unknown(Term) |

succegsors {State, States},
branch (Term, States, Sol).

branch (Term, [], Sol} :- Sol=none.

branch (Term, [State|Siblings], Sol) -
search(Terml, State, Soll),
branch (Term2, Siblings, SolZ),
chooge (Term, Terml, Term2, Sclil, Sol2, Sol).

The six argument version of choose, including termination variables is:

choose (found, Terml, Term2, __, _, Sol) :-
Terml=Ffound, TermZ=found, Scl=none.

choose(_, _, Term2, Soll, _, Sol) :~ Scll#aone |
TermZ=fcund, Sol=5o0il

choose (., Terml, _, _, So0l2, Sol} :- Scli#none |
Terml=Ffound | Scl=Sol2

choose(_, _, _, none, necne, Scl) :-
Sol=z=none.

The effect of executing this program is to set up a binary tree of choose goals in which

each arc is represented by two variables. The arrows show the direction of the flow of data

in these variables.
Term Sol

Choose

search search
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Note that some versions of KL1 do not have an unknown test as a primitive, but provide a
way of expressing a preference between clauses when expanding a goal, using the keyword
alternatively. A goal will only commit to a clause textually below an
alternatively if at the time of attempting to commit it cannot commit to one above,
possibly because of insufficient variable binding. It will not necessarily wait, however, for
a variable to becomes bound if this would hold up its expansion, rather in the absence of the
information in will move on to using clauses below the alternatively. In this way it
differs from the keyword otherwise, also found in Ki.1; a goal will not commit to a
clause following an otherwise unless its arguments are sufficiently bound to show that it
cannot commit to any clauses before it. The version of the above expand which uses

alternatively rather than unknown is:

expand (Flag, found, State, Sol) :- Sol=none.
alternatively.
expand (true, Term, State, Sol) :- Sol=State.

expand {false, Term, State, Sol) :-
gsuccessors {State, States),
branch{Term, States, Sol}.

The short-circuit all-solutions search program may also be used as the basis for a
speculative search program with a cutoff when a solution is found. The following program

will accomplish this:

search (Acce, ,Sols) :- data(Acc) | Sols=Acc.
search(Acc, State,Sols) :- unknown(Acc) |
igsol(State,Flag), expand{Flag,Acc,State,Sols).

expand (true, Acc, State, Sols) :- Sols=[Stateldcc].
expand (false,Acc, State, Sols) :-
succegsors (State, Succs), branch{Acc, Succs,Sols).

branch(Acc, []1,80ls} - Sols=Acc.
branch{Acc, [State!Siblings], Sols) :-
search (Acc, State, Selsl), branch(Solsl,Siblings,Sols).

where data (X) cannot fail, but if X is unbound suspends until it becomes bound. The initial
call to this program should be search(Acc, State, Sols), complete{Sols,Acc),

where complete is defined by:

complete (Sols,Acc) :~ data{Sols) | Ace=[].
complete (Sols,Ace) :- Sols=Acc | Acc=[].

The result is that when a solution is found, any search which remains to be done is cut off

and the circuit is linked up to the right of the solution in the search tree, with complete
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completing the circuit and halting any remainining search to the solution’s left. It is
assumed the = test in the second clause for complete will succeed if its two arguments are
the same unbound variable, and suspend if they are two different unbound variables. This
will prevent deadlock in the case where there are no solutions. Since it is possible for a
solution to be found in one place and linked in to the list of solutions before news of the
finding of a solution elsewhere is received, the output of this search will be a short list

containing at least one but possibly more solutions unless there are no solutions.

A Direct KL1 Solution Using Priorities

We still have not dealt with the problem of unrestricted parallelism. At any point in the
execution of a search any of the goal which is sufficiently bound to rewrite could do so. In
practice, choose goals will remain suspended waiting for solutions or termination
variables, so it will be the search goals at the leaves of the tree that will be rewriting.
We know that at any time some of the search goals are more likely to lead soon to a
solution state than others. In the absence of architectural limitations on the amount of
parallelism available, we would prefer that if a processor has a choice of search goals
which it can expand, it will pick the one most likely to lead to a solution. In many problems

we will have a heuristic which tell us which one it is.

Once we have found a solution, we want the choose goals which pass it upwards and
termination values downwards to the rest of the tree to have priority over the search
goals which are expanding the tree. Otherwise we have the undeadlock situation where
expanding search goals take over the resources that would otherwise be used by the
choose goals which would pass on the message that a solution has been found and no

further expansion is necessary.

Our preferred solufion is to control the parallelism through the priority pragma of KL1.
The idea of introducing priorities into concurrent logic languages was arrived at
independently by the author [Hunt 88], [Hunt 91] and the ICOT group developing the
parallel language KL1 [Ue & Ch 90}. Our work was influenced by Burton’s use of a similar
priority pragma in functional languages [Burt 85]. The priority pragma may be considered a
practical implementation of the precedence relationship between subproblems in a General
Problem Solving Algorithm [RSMB 88]: the precedence relationship establishes a partial
ordering among subproblems, which in practice may be modelled by assigning them a
numerical priority. The precedence gives an ordering of the likelihood of a subproblem

contributing to the overall solution.
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The idea is that should two goals be located on a single processor with its own memory, and
both goals have variables sufficiently bound so that they can rewrite, the one with the
highest priority will always be rewritten first. If N processors share a memory, and there
are more than N rewriteable goals in that memory, then the N highest priority goals will
be rewritten. It is assumed that an underlying load-balancing mechanism will give a
reasonable distribution of high priority goals across processors. The alternative would be a
global priority list shared out across the processors, but this would be an expensive
bottleneck on a non-shared memory system. Otherwise the programmer need not be
concerned with process-mapping. This means that a program employing priorities may be

ported with ease between a variety of architectures.

Load-balancing between processors in a parallel system may be compared to such things as
register allocation in a standard sequential system. In both cases, although a program could
be made more efficient by giving the programmer direct control over allocations, we believe
it is best to free the programmer from such low-level considerations, or at least to confine
them to a separate program layer so that the abstract structure of the algorithm is not

buried within code dealing with the allocations.

The syntax for priorities writes goals as Goal@priority (P) where Goal is any KL1 goal,
and P is a real number, or a KL1 variable that will be bound to a real (in the latter case the
goal will be suspended until P is bound). When Goal is sufficiently bound to rewrite,
Goal@priority (P) will rewrite in just the same way as Goal would, providing there are
no other rewriteable goals with higher priorities sharing the same processor. The priority
call is an unobtrusive addition to a program which enables the programmer to write the
program as if the maximum parallelism is available, and add annotations at a later stage
to cover the fact that in practice parallelism is limited. To add priorities to our existing
search program, we need simply change the clause in branch which sets up a search goal. If
we have a predicate heuristic which takes as its first argument a state in the search
space, and returns in its second argument a heuristic value associated with that state, the

following new clause for branch suffices:

branch{Term, [State|Siblings], Sol) :-
heuristic({State,H), P:=0-H,
search (Termi,State,Soll)eGpriority(P),
branch (Term2, 8iblings, S0l2},
choose {Term, Terml, Term2, Soll, 8012, 801} .

By convention, the lower the heuristic, the closer the state is to a solution, hence the

priority is the negation of the heuristic.
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Search anomalies

On a single processor system, our search program with priorities will degenerate to a
situation where the implicit priority queue of search processes matches exactly the
explicit priority queue of states in the meta-programming approach above. It is well known
that if the heuristic associated with any state is a lower bound on the cost of all solutions
reachable through that state (a heuristic with this property is termed admissible), then
the first solution found by expanding the search tree in the heuristic order will be the
optimal solution. We cannot guarantee this on a multi-processor system however, even if
the priority list is shared. Consider the situation where the following subtree is part of the
search tree, where double circled nodes indicate solution nodes, the values in the nodes are

the heuristics and no node anywhere else in the tree has a heuristic less than N+5.

On a single processor system, the node with heuristic N will be expanded first, leading to
the two nodes with heuristic N+1 and N+3 being at the head of the priority queue. The
node with heuristic N+1 will then be expanded leading to the three nodes with heuristic
N+2, N+3 and N+4 being at the head of the priority queue. The node with heuristic N+2

will then be expanded and found to be a solution.

On a two-processor system, however, the node with heuristic N and éome other node (with,
as said, heuristic N+5 or more) will both be expanded. This will lead to the nodes with
heuristics N+1 and N+3 being at the head of the priority queue. Both will be expanded
and the node with heuristic N+3 found to be a solution. Clearly there is more scope for this
sort of anomaly if there is a separate priority queue for each processor, since this leads to
the possibility for example, that where we have three nodes with heuristics N, N+1 and
N+2 on a two processor system, it may be the case that the nodes with heuristics N and

N+1 are on the same processor, and so the nodes with heuristics N and N+2 are expanded,

s0 we lose the strict order of priority.
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To see how a multiprocessor search can lead to arbitarily large speedup or slowdown,
consider first the case where the descendants of a state with heuristic N are a solution state
with heuristic N+2 and a non-solution state with heuristic N+1 which has an arbitarily
large number of non-solution descendants all of heuristic N+1 with no other state having a

heuristic less than N+3:

: . ' :

' ' ' x
On a single processor, the state with heuristic N will be expanded, putting the top state
with heuristic N+1 and the goal state with heuristic N+2 at the head of the priority
queue. The state with heuristic N+1 will then be expanded putting two more states with
heuristics N+1 at the head of the priority queue, and so on for an arbitary length of time,
and only when the N+1 heuristic states are exhausted is the N+2 heuristic state tried and
found to be a solution. On a two processor system the top N+1 and the N+2 heuristic state
will be expanded, and the N+2 heuristic state found to be a solution and returned, without

any further search needed. Since the number of N+1 nodes that are no longer considered is

arbitarily high, the speedup with two processors is arbitarily high, not restricted to 2.

Deceleration anomalies or slowdowns occur when a multiprocessing system causes a node to
be expanded that would not be considered in a single processor system, but on expansion it
reveals promising-looking descendants which do not though have any solutions in them.
For example, suppose in the following tree, the N-+1 heuristic states have an arbitary
number of descendants all with heuristic N+1 but with no solutions among them. On a single
processor they would never be reached since on expansion of the N heuristic node, the N+2
and N+3 heuristic nodes would be produced, and the N+2 expanded first. This would
reveal its successor N+2 heuristic node, which again would be expanded before the N+3

node and found fo be a solution.
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On a two processor system, however, after the expansion of the initial N heuristic node,
both its successors would be expanded, resulting in the top two N+1 heuristic nodes being at
the head of the priority queue, followed by the N+2 heuristic goal state. Since there are an
arbitary number of N+1 heuristic desendants of the top N+1 heuristic nodes, the two
processor system would spend an arbitarily long amount of time searching then, before find

ing the N+2 heuristic solution.

As Lai and Sahni peint out {La & Sa 84], although the conditions which produce these
anomalies look unusual, in practice it is quite common for nodes in a search tree surrounding
a solution to have heuristic values which are very close to each other. Therefore they are a
factor which needs to be taken into account. Fortunately, the conditions which lead to
superlinear speedup are more common than those that lead to slowdown, so, as McBurney
and Sleep show experimentally [McB & S 87}, it is not unusual for state space search with N
processors to result in a speedup of more than N. Lie and Wah [Li & Wa 84] describe
conditions on heuristics which assure that the detrimental slowdowns that are possible
with parallelism cannot occur, and also conditions which are necessary for superlinear
speedup. The possibility of superlinear speedups led Kornfeld to suggest that the use of a
parallel language and pseudo-parallel execution could improve algorithm efficiency, even
when actually executed on a single processor [Korn 82]. The improvement which Stockman
notes his §55* algorithm gives over the standard alpha-beta search of game trees is due to
the pseudo-parallel search of the game tree which 555* uses in the place of alpha-beta

search’s strict depth-first left-to-right approach [Stoc 79].

The more usual situation, however, is that search on a multiprocessor system will yield a

speedup, but one less than the number of processors. In addition to dealing with the
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overhead of the parallelism, if some of the parallelism is speculative the total amount of
work done in a parallel search will be greater than that done with the same problem on a
single processor, due to parts of the tree being searched that would not be considered in a
single processor search. If there is no speculative computation, for example in a search for
all solutions, any failure of the speedup to reach the number of processors will be due just to
the overhead of parallelism, since the total amount of work done on the problem itself will

not change.

Branch-and-Bound Search

As we have shown, on a multiprocessor system, even if we have admissible heuristics, we
cannot guarantee that the first solution found is the lowest cost one. Its cost, however, is
obviously an upper bound on the lowest cost solution. If we have a way of determining a
lower bound on the cost of any solution reached through a particular state, then if that
lower bound is greater than or equal to the cost of the best solution so far we needn’t expand
the state since we know it will not give us a better solution. The point at which search of a
subtree is abandoned because ifs lower bound is greater than a known upper bound is known
as a “cut-off”. This method of searching with bounds is known as “branch-and-bound”
search [La & Wo 66]. It is often the case that a heuristic used for search is also a lower
bound, that is so with the previously described heuristic for the 8-puzzle, since to move all

cells into position requires at the minimum the number of squares each cell is out of position.

A branch-and-bound search program will be based on an all-solutions program, returning a
stream of solutions, though the cutoffs will stop many of the solutions being reached and
joining the stream. A simple version of a branch-and-bound program has a manager process
to which all solutions are sent and which keeps an account of the lowest cost solution found
so far. Since the cost of this solution is an upper bound, the manager also receives requests
from the search processes for the current upper bound. So the manager will deal with
solution messages which pass on new solutions and their associated costs, and request
messages which request the current upper bound and return it in a reply variable, We
replace the choose goals of single-solution search with stream merges. There is no need

for any other termination mechanisms, so we do not need to use the extra-logical unknown.

The following program implements this:
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gearch({State,Messgs) :-
Messgs= [request (UpBound) iMessgl],
lowerbound (State, LoBound), cutoff(State,LoBound, UpBound,Messgsl) .

cutoff (State, LoBound, UpRBound, Messgs) :~ LoBound>=UpBound | Messgs=[].
cutoff (State, LoBound, UpBound, Messgs) :~ LoBound<UpBound |
isgolution(State,Flag), expand(Flag,State,Messgs).

expand (true, State,Messgs) -

cost (State,Cost), Messgs=solution(State,Cost):[].
expand(false,State,Messgs) :-

succesgsors {State, Succs}), branch{Succs, Messgs).

branch(f{], Messgs) :- Messgs=[].

branch([State!S8iblings], Messgs) :-
heuristic (State,H), search(State Messgsl)@priority(H},
branch (Siblings,MessgsZ),
merge (Messgel, Messgs2, Messgs).

It is assumed that cost gives the cost associated with a solution state, and lowerbound
gives the lower bound on solutions reachable through a given state. Note that since
cutoff, the predicate that either cuts off search or continues as appropriate, contains an
arithmetic test using LoBound in its guards it will suspend until the Jower bound has been

returned in the reply variable from the manager. The manager clauses are:

manager{[],ASolution,ACost,BestSoi,LowestCost) 1 -

BestSol=8clution, LowestCost=Cost.
manager([request(UpBound)IMessgs],AScl,ACost,BestSol,&owestCost) e

UpRound=ACost,

manager (Messegs,ASol,ACost, BestSol, LowestCost} .
manager([solution(Soll,Costl)iM@ssgs],Solz,CostZ,BestSol,LowCost) : -

Costl<Cost? |

manager(Messgs,Soll,Costl,BestSol,LowestCost).
manager([solution(Soll,Costl)iM@ssgs},SolZ,Cost2,BestSol,LowCost) $ -

Costl>=Costd |
manager (Messgs, $012,Cost2, BestSol, LowestCost) .

The system is set up with initial calls:
search (InitState,Messgs), manager (Messgs,Dummy,_,BestSol,LowestCost)

where Dummy is a value which is known to be above any solution cost that might be found.
Here we could use normal stream merger, but some efficiency gains could be made with a

more sophisticated merger. If two request messages are being sent, they can be merged into

one by unifying their reply variables, thus reducing the number of messages that need to be
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dealt with. If two solution messages are being sent, only the one with lowest cost needs to be

sent further. Making these considerations gives the following merge:

merge { [request (R1) IS1],reguest {(R2):82,8} :-
R1=R2, merge{[reguest(R1)[S81],82,9).
merge { [reguast (R1) , reguest (R2) |81],82,8) :-
Ri=R2, merge{[request(Rl)|[S81],82,8).
merge {S1, [request (R1}, request (R2) [82],8} :-
R1=R2, merge!{[reguest{Rl)i81],52,8).
merge ( [request {R) |81],82,8}) :-
g=[request (R} |83], merge(sSl,S2,83).
merge (S1, [reguest (R) 182],8) :-
8= [request {R} |83], merge(Sl,S82,83).
merge([solution{Soll,Costl}lsl},[solution(Solz,CostQ}1823,8) -
Costl<Cost2 |
merge (solution{Soll,Costl):81,82,8).
merge ( [soluticn{Scll,Costl}, solution{Sol2,Cost2} 181],82,8) :-
Costl<Cost2 |
merge (solution{Soll,Costl):81,82,8).
merge (81, [sclution(8ell,Costl), solution(Sol2,Cost2) [821,8) :-
Cogtl<Cost2 |
merge ( [solution(Soll,Costl) [81],82,8).
merge([solution{Soll,Costl)ISi],[solution(Sol2,Cost2}lSZ},S) T
Costl>=Cost2 |
merge ( [solution(Sol2,Cost2) (81]1,82,8).
merge ( [solution{Soll,Costl),solution(Sclz,Cost2) |81],82,8) :-
Costl>=Cost? |
merge { [solution(S0l2,Cost2) 81],82,8).
merge (S, [solution{Soll,Costl),solution(80l2,Cost2) 82),8) :-
Costl»=Cost2 |
merge (solution{Sol2, Cost2}81,82,8).
merge ( [solution{Sol,Cost) 151],52,8) :-
S=[solution{Sol,Cost) |83], merge(S1,52,83}).
merge (81, [solution(Sol,Cost) (821,38} -
8=[solution{Sol,Cost) |83], merge(Sl,SZ,83).

An alternative way of dealing with parallel branch-and-bound search takes a similar
approach to that we used to avoid the bottleneck of a global termination variable on the
search for a single solution. In this case, each node in the tree of merge processes created
by the search will store its own upperbound limit. When a fower cost solution is received
from one branch, the limit is updated, the new solution sent upwards in the tree, and the
new lower bound sent downwards on the other branch., When a solution reaches a merge
process with a cost higher than the current limit, it is not sent any further. It can thus be
seen that a lower bound will gradually diffuse through the tree when it is found. The

complete program for this branch-and-bound search with distributed limits is:
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gearch (InCosts, State, Sols) :-
lowerbound {State, LoBound), cuteoff (LoBound, InCosts,State,Sols).

cutoff (LoRound, [UpRBoundl, UpBoundz | UpBounds] , State, Sels) -
LoBound<UpBoundl |
cutoff (LoBound, [UpBound2 | UpBounds], State, Sols)}.
cutoff (LoBound, [UpBound | UpBounds], State, Solse} -
LoBound »>= UpBound | Sols=[].
cutoff {LoBound, [UpRound | UpBounds ], State, Sols) :-
unknown {UpBounds), LoBound<UpBound |
issol (State,TV), expand{TV, [UpBound|UpBounds], State, Sols).

expand (true, Bounds, State, Sols) -
cost (State,Cost), Sols=[State/Cost]
expand (false, Bounds, State, Scls) -
successors (State, States), branch({Bounds, States, Sols).

branch {Bounds, [}, Seols) :- Sols=[].

branch{{Bound|Rounds], [Statel|Siblings],Solsg) :-
heuristic(State,H),
search({Bound|Boundsl], State, Solsl)@priority (H),
branch { [Boundi{Bounds2], Siblings, Sols2),
merge (Dummy, [ Bound|Bounds], Boundsl, Bounds2, Solsl, Sols2, Sols) .

merge (Lim, [Bndl,Bnd2 | InBnds], Bndsl, Bnds2, Sclel, Sols2, Sols) -
merge (Lim, [Bnd2 | InBnds], Bndsl, Bnds2, Solsl, Sols2, Sols) .
merge (Limit, [BndlInBnds], Bndsl,Bnds2, Solgl, Sols2, Sols) -~
unknown {InBnds), Bnd<Limit |
Bndsl={Bnd|NewBndsl], BndsZ=[Bnd|NewBnds2],
merge (Bnd, InBnds, NewBndsl,NewBnds2, Selsl, Sols2, Sols) .
merge {Limit, [Bnd|InBnds],Bndsl, Bnds2, Solsl, SolsZ, Sels} -
unknown (InBnds), Bnd>=Limit |
merge {Limit, InBnds, Bndel, Bnds?, Solsl, Sols2, Scls) .
merge (Limit, InBnds,Bndsl,BndsZ, {Scl/Cost|8olsl),Scls2, Sols) -
unknown {InBnds), Cost<Limit |
BndsZ=[Cost iNewBnds2l, Sols={Sol/Cost|NewScls],
merge {Cost, InBnds, Bndsl,NewBnds2, Solsl, Sols2, NewSolis} .
merge (Limit, InBnds, Bndsl, Bnds2, Solsl, [Sol/Cost}Sols2] ,Sols) -
unknown (InBnds), Cost<Limit |
Bndsl=[Cost |[NewBndsl], Sols=[Sol/Cost|NewSocls],
merge {Cost, InBnds, NewBndsl, BndsZ, Solsl, Sols2, NewSels) .
merge (Limit, InBnds, Bndsl, Bnde?, [Sol/Cost|8olsll, SolsZ, Sols) -
Cost>=Limit |
merge (Limit, InBnds, Bndsl, Bnds2, Solsi, Sols2, Sols) .
merge (Limit, InBnds, Bndsl, Bnds2, Solsl, [Sol/Cost i8ols2},Sols} -
Coste>=Limit |
merge {Limit, InBads,Bndsl, Bnds2, Solsl, Sols2, Sols) .
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merge (Limit, InBounds, Boundsl, Bounds2, [],Scls2, Sols) :-
Sols=8012, Bounds2=InBounds.

merge (Limit, InBounds, Boundsl, Bounds2, Solsl, [],Sols} :-
Sols=8o0lsl, Boundsl=InBounds.

To avoid repeated calculations of the cost associated with a state, here costs are passed
around in pairs with solutions, The result of executing the program will be to create a tree of
merge processes, each of which will have one incoming stream of lower bounds, two
outgoing streams of lower bounds, two incoming streams of solution/cost pairs, and one
outgoing stream of solution/cost pairs, all streams being in decreasing order. Note the use of
unknown fo check that the latest available bound from the stream of incoming bounds is
being used — when this is the case, unknown will succeed when it takes as argument the

variable storing the rest of the stream.

Game Tree Search

Games-playing programs (at least with games like chess) are another form of state-space
search in which we have a tree of states with the root being the initial state, its
descendants generated by all possible moves from this state, and the descendants of its
descendants generated from them likewise. In a complete game tree, the leaves represent
board conditions where no further moves may be made thus (ignoring the possibility of
games with draw positions) the leaves may be labelled “win” or “lose”. The root state in
the search tree, if it is not a leaf, is labelled “win” if at least one of its descendant states is
labelled “win” (since by making the move which leads to that state a winning position is
reached), and is labelled “lose” if none of the descendants is labelled “win” (since
whatever move is made, it is not possible to reach a winning position). The labelling of the
descendant subtrees from the root is done differently since they represent positions in which
it is the opponent trying to force a “lose” position, so they are labelled “lose” if they have
themselves any subtree labelled “lose” and “win” if they have no subtree labelled “lose”.
The next level down is labelled as the root level, and so on alternately down to the leaves.
For this reason, game trees are a form of AND/OR tree, since if we treat the win/lose
values as booleans we have trees of logic terms where the odd level branches are

conjunctions and the even level disjunctions.

In the search of a complete game tree, it can be seen that when labelling nodes at an even
level in the tree as soon as search of one subtree returns a win, it is unnecessary to search the
rest since we have already found a path that leads to a certain win. Similarly, at even
level as soon as one subtree returns lose it is unnecessary to search the rest. So at any point if

we decide to search more than one branch of the tree in parallel we are engaging in
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speculative computation since we do not know whether the search of the second and

subsequent branches will be necesary or not to return a solution.

We are therefore in a similar situation to that we were in with standard search for a
solution in a tree — either we take a cautious approach and lose all opportunity for
parallelism, since all the parallelism in the problem is speculative, or we ignore the fact
that the parallelism is speculative and thus run into the problem of overwhelming the
system with speculative computations. The simple solution, with all speculative search

possible, but no cutting off of speculative computations found unnecessary is:

player(State, Val} :~
igleaf (State, L), playvermove(L, State, Val).

playermove {(true, State, Val}) :- eval(State, Val}.
plavermove (false, State, Val) :-

successors (State, Succes), or{Succs, Val).
or([], Val) :- Valzlecse.

or{[Statei{Siblings], Val) :-
opponent {State,Vall}, or{sSiblings,Val2), elther(vall,Vali,Valj}.

either(win, _, Val) :~ Valswin.
either( , win, Val) :- Val=win.
either{lose, lose, Val) :- Val=zlose.

opponent (State, Val}) :-
leaf (State, L), opponentmove (L, State, Val).

opponentmove (true, State, Val) :- eval(State, Val).
opponentmove {false, State, Val} -
successors (State, Succs), and(Succs, Val).

and([], Val) :- Val=win.
and([State!Siblings], Val) :-
playver (State,Vall), and(Siblings,Vall2), both{Vall,valZ,Val).

both{lose, _, Val} :- Val=lose.
both{ , lose, Val) :- Val=lose,
both({win, win, Val) :~ Valswin.

An alternative formulation of game tree search labels nodes “win” or “lose” depending on
whether they represent a win or lose state for the player who is next to move at the node
itself, rather than always for the player at the root of the tree. In this case a non-leaf node
is labelled “win” if any of its successors are labelled “lose” and is labelled “lose” if none of

its successors are labelled “lose”. This leads to a simpler algorithm and program, as it is no
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longer necessary to consider two different sorts of nodes, though it is perhaps not so

intuitive:

search(State, Val} :-
igleaf (State, L), expand(L, State, Val).

expand (true, State, Val) :- eval{(State, Val).
expand (false, State, Val) :-
successors (State, Succs), branch(Succs, Val).

branch([], Val) :- Val=win.
branch({State|Siblings], Val) :-
game (State,Vall), branch(Siblings,Val2), combine(Vall,ValZ, Val).

combine (lose, _, Val) :- Val=win.
combine(_, lose, Val) :- Valswin.
conbine (win, win, Val) :- Val=lose.

It can be seen that this program is a version of our generic search program, and thus we may

use termination variables as previously to halt speculative search which is found to be

unnecessary.

Minimax and Alpha-Beta Search

In practice, apart from that subfield of games-playing concerned with end-game situations,
game trees are usually too large for a complete analysis. Rather a state which is not an end
position in the game may be treated as a leaf and assigned a numerical value which
represents an estimated measure of the likelihood of that state being a win position in a
full analysis. Typically, all states at a given depth in the tree will be faken as leaves and
assigned a numerical value. Then, on similar principles to full game trees above, a value for
the root node and every non-leaf node at an even depth in the tree is determined by
selecting the maximum value of its descendants, while the value for every non-leaf node at
odd depth is determined by selecting the minimum value of its descendants. Hence the name
“minimax” search. At the root level, the move corresponding to the subtree with highest
value is given as the next move to make since this value is the maximum value which the

player can force the opponent to concede to, and making this move forces this concession.

For example, the following is a complete tree, assuming nodes at depth 3 are treated as
leaves and evaluated according to the evaluation function, with the values of the internal
nodes worked out using the minimax procedure. The convention is that square boxes

represent maximising nodes, and round boxes minimising nodes.
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In this case, as the highest value at the root is supplied by its leftmost branch, the move
represented by the leftmost branch is the estimated best move to make since, at least
estimating the position three plays ahead, this is the move that can guarantee leaving the

player in the best position whatever moves the opponent makes.

It is, however, the case that it is not necessary to search the whole tree. In the above
example, consider the case where a sequential depth-first left-to right evaluation of the
tree is taking place. When the leftmost descendant tree of the root has been found to return
a value of 28, since the root node is maximising, and ifs descendants are minimising, if any
of the descendants of the descendants should evaluate to less than 28 as its parent is
minimising it cannot return a value greater than 28, and so its value cannot be picked as the
maximum. So when the first subbranch of the second branch returns a value of 23, it is not
necessary to search the rest of the branch since at most it will return a value of 23, which
will not exceed the 28 already established. With the third branch, its third subbranch’s
return of 30 indicates a possibility of a better choice, but when the second subbranch of the
third branch returns 22 the possibility that the moves represented by the third branch is a

better choice is lost.

So the tree only needs to be searched to the extent shown below:
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A formalisation of these considerations of cufoffs in game-tree search, together with a

change to the formulation similar to that we had with complete game-trees to avoid
having to distinguish between maximising and minimising nodes, gives us the well-known
alpha-beta algorithm [Kn & Mo 75] for estimated game-tree search. This may be described

in pseudo-code form by:

function alphabeta(p: position; o,B: valuation):valuation==
{if leaf{p) then return(value(p})) eise
{for each successor position of p, py to p,, do
foz=max{u,—alphabeta(p;,—B,—00));
if =B then return{o)
13
return{c)

'
}

The evaluation is set off with o and P set to —ee and o respectively. « may be increased by
recursive calls, but if it is increased to the value of B or beyond, a cutoff position has been
reached and no further evaluation is done as it is not necessary. When « is increased, a
reduced value for B is passed to recursive calls, which again may cause cutoffs. The
difference between o and P is described as the “alpha-beta window”.

We can give a KL1 version of this alphabeta algorithm:
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alphabeta(Position, Alpha, Beta) :-
isleaf (Pogition,Flag), expand(Flag,Position,Alpha,Beta,Eval).

expand (true, Position, _, _, Eval) :-
evaluate (Position, Eval).

expand (false, Position, Alpha, Beta, BEval) :-
succesgsgors {(Position, Succs},
branch(Alpha, Beta, Succs, Eval).

branch (Alpha, Beta, [], Eval) :- Eval=Alpha.
branch (Alpha, Beta, _, Eval) :- Alpha>=Beta | Eval=Alpha.
branch{Alpha, Beta, Pos:8iblings, Eval) -
Nalpha:=0~-Alpha, NBeta:=(-Beta,
alphabeta (Pog, NBeta, NAlpha, PosEval},
max {PosEval, Alpha, Alphal},
branch (Alphal, Beta, Siblings, Ewval).

but like the pseudo-code algorithm, it will be sequential since the evaluation of any branch
is not started until the evaluation of its left sibling has completed and returned an alpha
value. In fact, it can be seen that the program follows the general pattern of the previous

linear search programs.

Parallel Game Tree Search

The sequential nature of alpha-beta search comes about from the desire to avoid
speculative computation. Since search of any one branch is likely to narrow the alpha-beta
window, it makes sense to wait until it has completed before searching the next branch.
This is particularly so because in most cases the branches in a game tree search can be
ordered so that there is a strong likelihood that search of the initial few branches will so
reduce the alpha-beta window as to make search of the rest unnecessary [Ma & Ca 82]. It is
thus particularly important that the parallelism in parallel game tree search is ordered so

that that most likely to contribute to a solution is given priority.

The usual approach to parallel alpha-beta search is described as “tree-splitting”
[Fi & Fi 83}, which works in a similar way to the parallel tree search we have considered
previously, setting up processes to search every subtree in parallel. A different approach to
parallel alpha-beta search which we shall not consider here divides the alpha-beta
window up among processors and sets up multiple searches of the complete tree with the
different subwindows [Baud 78]. In tree-splitting alpha-beta search when one subtree
terminates and returns alpha value, if this results in an updating of alpha, the new alpha-
beta window is sent to those branch searches which have not yet terminated. This means
that search processes also have to take account of the possibility that they may receive

updated alpha-beta windows from their parents, if so they have to be passed down to their
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children, and search is halted if they cause alpha to exceed beta. Huntbach and Burton
[Hu & Bu 88] develop the tree-splitting algorithm of Fishburn and Finkel by moving away
from an approach which depends on a particular tree structured architecture towards a
more abstract virtual tree approach [Bu & Hu 84] in which a tree of potentially parallel
processes matching the search tree is constructed, but it is left to the underlying system to
map it onto a physical architecture. The algorithm is described in a pseudo-code style using

asynchronous remote procedure calls:

process alphabeta(p:position; o,prvaluation):valuations:

{

asynchronous procedure report{ct:valuation)=
{if 1z then
{o=ci1;
for all remaining children do child.update(-B,—o);
if =P then terminate
}
}

asynchronous procedure update(al,i:valuation)=
{o=max(oe,x1);

Bi=min(B,p1);

for all remaining children do child.update(-p,—);

if o=P then terminate

}

for each successor position of p, py to p,, do
setup new process alphabeta(pi,—p,—o);

wait until no remaining children;

parent.repori{—o);

terminate

)

Here repott is the procedure which send new alpﬁa values upwards, note only when all
children have terminated, while update is the procedure which sends new alpha and beta
values downwards and is executed whenever new alpha or alpha and beta values are

received. The following gives a direct translation of this aigorithm into KL1I:
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alphabeta (Pos,_,Alpha,Beta,Eval) :- Alpha>=Beta | Eval=zAlpha.
alphabeta (Pos, [Alphal/Betal|Updates],Alpha, Beta,Bval} :-

max {Alpha,Alphal,Alpha2), min(Beta,Betal, BetaZ),

alphabeta (Pos, Updates, Alpha?, Betal2,Eval).
alphabeta (Pos, Updates, Alpha, Beta,Bval} :-

unknown (Updates), Alpha<Beta |

isleaf (Position,Flag),

expand (Flag, Position,Updates,Alpha, Beta,Eval).

expand (true, Position,_,_,_,Bval) :-
evaluate (Pogition, Eval).
expand(false, Position, Updatesl, Alpha, Beta,Eval) :-
succesgors (Position, Succs),
branch (Updatesl, Alpha, Beta, Succs, Reports),
manager (Updates,Alpha, Beta, Reports, Updatesl, Eval).

branch (Uphates, Alpha, Beta, [],Reports) :- Reports=[].
branch (UpDates, Alpha, Beta, [Pos|S8iblings],Reports) :-
heuristic{(Pos,H),
alphabeta {Pos,Upbhates, Alpha, Beta, Report) @priority (H),
branch (UpDateg, Alpha,Beta, Siblings, Reportsl),
insert {Report, Reportsl, Reports).

ingert (Alpha,Alphas,Alphasl) :- data{aAlpha} |
Alphasl=[Alphal|Alphas].

ingsert (Alpha, [Alphal |Alphas], Alphasl} :-
Alphasl=[AlphallAlphasz],
insert (Alpha, Alphas,Alphag2).

insert (Alpha, [],Alphas) :~ Alphas=[Alphal.

manager { InUpdates, Alpha, Beta, [Alphal|Reports],OutUpdates,Eval) :-

Alphal>Alpha |

NAlpha:=0-Alphal, NBeta:=0-Beta,

OutUpdates = [NBeta/NAlphalOQutUpdatesl],

manager (InUpdates,Alphal,Beta,Reports, CullUpDatesl, Eval) .
manager ( InUpdates, Alpha, Beta, [Alphal|Reports], OutUpdates, Bval) :-

Alphal<=Alpha |

reports (InUpdates,Alpha, Beta, Reports, OutUpdates, Eval) .
manager{ [Alphal/Betal|InUpdates],Alpha, Beta, Reports, QutUpdates, Eval): -

max (Alpha,Alphal, Alpha2},

min(Beta, Betal,Betal},

NBeta:=0-Betal,

Nalpha:=0-AlphaZ,

OutUpdates = [NBeta/NAlphaiOutUpdatesl],
manager { InUpdates, Alpha2, BetalZ, Reports,QutipDatesl, Eval) .
manager { InUpdates, Alpha, Beta, [],0utUpdates,Eval) :-

Eval=Alpha, OutUpdates={].
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Note again the use of unknown and data fo ensure the latest alpha and beta values are
used. Some improvements could be made at the cost of a rather more complex program (and
one which is not such a direct translation of the algorithm in [Hu & Bu 88]), for example
checks on update values wouid ensure that update messages are not forwarded when they

do not change the alpha-beta window.

The process structure is complicated by the use of a single one-to-many stream used to pass
updates down the tree from the manager process, and a merger of results using insert to
insert individual reports into the stream of reports passed upwards into the manager. The
situation after the expansion of an individual alphabeta process and before the

expansion of any of its descendants is:

Eval inUpdates

manager

QutUpdates

aiphabeta

Alpha’
alphabeta
)alphaheta ¢

If the heuristic used is the depth in the tree, the search will revert to standard alpha-beta

search on a single processor. As suggested in [Hu & Bu 88], ordering of the tree as in [Ma &
Ca 82] can be obtained if the priority is a real number, composed of the sum of an integer
representing the depth and a number between 0 and 1 representing the ordering evaluation
of the position. Alternatively, if the integer part of the priority is a heuristic evaluation,
and the mantissa based on the depth to distinguish between positions of the same heuristic
at differing depths, a parallel version of the 585 algorithm [Stoc 79] is obtained. In fact,
Kumar and Kanal [Ku & Ka 83} give a general formulation which indicates that both

alpha-beta search and SSS* can be fitted into the branch-and-bound model. Wilson [Wils
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87] also notes that in a concurrent logic program apha-beta search and 5§55* are simply
variants of a common game-tree search program which depend on scheduling, though his
program does not make use of priorities, instead relying on an explicit oracle process as part

of the program which interacts with the search.

Conclusion

The inherently parallel nature of KL1 enables us to move attention away from some of the
systems details of parallel search, so that it may be viewed in a more abstract form. We
show that parallel search algorithms may easily be implemented in KL1, but also show
some of the pitfalls. The simple nature of KL.1 makes it a very suitable language to discuss
abstract parallel algorithms without the distraction of having to be concerned with low-
level issues of implementation. We gave a suite of programs that illustrate many of the
issues arising from parallelising search algorithms. This suggests KL1 may be of particular

use in education or as a prototyping language for parallel systems.
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