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We believe that many security policies cannot be accurately represented by a conventional
access control list (ACL). This applies particularly to policies designed to prevent the malicious
or accidental actions of individuals directly and legitimately involved in a group activity. The
main problem is that the process of obtaining and changing rights should often be a more
dynamic process than is supported by conventional ACLs. We have two technigues for more
accurately expressing a policy.

First, the right of an individual to execute some operation will often change according to the
state of the task being undertaken. The state of the task is represented by the state of the data
objects within the task. In fact the very objects that are being protected. Additionally, our
paper also explores another common technigue of obtaining rights that is applicable in
applications involving groups of participants. We introduce our notion of backing where rights
are obtained dynamically through authorisation by one or more other people.

Both of these ideas have been incorporated into an access control framework for groupware
applications. We give several examples of policy particularly from the medical field and show
how they would be modelled using the framework.

1 Introduction

Sensitive information such as medical details need to be held within a computer securely.
Access to it needs to be controlied in a way specified by the security policy. Security policy is
usually held by a computer system in the form of an access conirol fist (ACL) which contains
the identities or roles of those permitted to access and change the information through defined
operations. However, we believe that a conventional access control list containing only
identities or roles is limited in the policies that it can describe. This could result in the desired
policy not being enforced, but instead some compromise. Obviously this is not desirable,

Rights often change as a particular task proceeds. The shared state of the task of course is
held within the shared objects of the task and so our access control framework allows this
state to be consulied and even updated as part of rights evaluation. This scheme is therefore
more flexible when preventing personnel directly invoived in a task from corruptly accessing
or updating information by allowing an ACL to more precisely express the circumstances
under which a person really needs to know or change the information, i.e. that access is in the
context of a legitimate activity.

There are examples of policy statements in the proposed BMA guidelines for Security in
Clinical Information Systems JANDZ6] which cannot be expressed conveniently using a
conventional ACL. For example it is noted (page 12) that access needs to be granted to roles
(e.g. nurses). This is convenient and necessary because the actual identities of individuals are
not known when the policy is defined. However it is also stated that extra restrictions need fo




be enforced “for example, the group might be any clinical staff on duty in the same ward as
the patient”. This policy expresses rights in terms of object state, in this case the right to read
medical information depends on the state of the duty rota.

We go further than this however. A second example of a policy that a conventional ACL
cannot describe is where actions should only be taken or authorised by more than one
principal acting together. Often it is the case that certain functions are so sensitive that prior
permission has 1o be obtained from a group, or some proportion of it, before each attempt to
invoke the operation. Another medical example highiights this. Often it is the case that
multiple sources need to contribute towards a patient’s treatment [DRA96] and policy dictates
that only the whole group or some proportion of the group can authorise certain actions.
Groupware systems aid collaborative working when the participants are remote. Iif actions,
such as prescribing drugs for example, were modeiled using a distributed computer system it
would be necessary to express the need to obtain backing and enforce it by making
participants prove that they have the support of others.

In summary, these examples show that the right to do something may not just depend upon
identity but also upon more dynamic properties such as the state of the object being accessed
(e.g. the medical record) and other objects (e.g. the duty rota). We refer to this as state-
dependent access control. Additionally gaining rights can result from negotiation with others
in a way that goes beyond simple delegation (as defined by Lampson [LABW92] ). We refer to
this as gaining backing.

There is other work that has attempted to address this problem. The Legion system [LG95]
was designed to support distributed collaborative applications and provides a simple approach
to security by allowing access fo be controlled by methods provided by the application.
programmer. Simply, the method ‘May-!' is automatically called by the access control system
before invocations. As a method belonging to the object being protected, it could consult the
object’s state. However we believe that separating access control from applications is
important for easy aiteration if policy should change. Incorporating policy into application code
therefore is not a good idea.

The authentication service CARDS [MT] provides a more elaborate appreach, by allowing a
task to be divided into phases. Different sets of rights are assigned to the principals and roles
within the task at the different phases. Rights then change automatically as the task
progresses through these phases. No consultation of object state is catered for however,

The descriptions in this report are at the level of shared objects used by the application
programmer. Some of these objects, such as the ones being protected and others that we
introduce, are shared between the various participants in the group activity. We are not
directly concerned here about how this sharing is implemented. This paper would apply
equally to server based schemes [DWX93] {DABW5] or to a more distributed scheme such
as we have described in previous work [RDS5]. However we will say that we believe that the
decentralised and scaleable advantages of a distributed replicated approach to be our ideal.
For this reason we have included an appendix which covers some issues relating solely to
such an implementation,

The following diagram clarifies the level at which we are concerned here. We don’'t make any
assumptions about the nature of the secure communication layer other than it must provide
authentication and optional secrecy with an appropriate model of trust for groupware
applications. it could be secure point-to-point such as the secure sockets layer, or a suitable
secure group communication system [RD96a] {RD96h]. '
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Secure Communication

Fig. 1.1 The access control framework is at the level of shared objects, below the application but above some
secure communication layer,

The level of the secure shared objects encapsulates the ACLs and of course the shared object
data. The application programmer however is only concerned with the objects and associated
methods, i.e, security is transparent to the application layer and in the most part to the user as
well. The access control checks are applied invisibly in the shared objects layer by a guard
which has.access to the ACL and intercepts all attempted accesses. The following diagram
expands on the central (highlighted) layer of fig. 1.1 to include the major components of the
layer.

ACL

N4

Guard

Oblact Adempting an Soms means of Secure Object under Protection
Operation Communication

Fig. 1.2 In the Shared Objects Layer the guard has access to the ACL and filters out illegal attempts to access
the object that it is protecting.

Our framework also incorporates the notion of roles (explained further in section 2) which is a
security concept that the user must be aware of [LABWS2]. it is necessary that the user can
chose which role is currently being asserted. Hence security is not entirely transparent to the
user. Also our notion of backing requires the exchange of security information with the user.
Therefore if we do wish security to be transparent io the application then some way of
bypassing the application layer is needed in order for the secure object layer to gain
information from the user. We facilitate this, as does PerDis [CDKR97], with a security shell.

We envisage the default appearance of the shell as being a simple GUI showing available and
current roles, although it is worth stating that its function could be overridden by an application
if there is a way of representing protection in a manner more suited to that application. One
example is the Mushroom system [TK96] which provides a room metaphor for collaboration.
Protection could be modelled in a manner consistent with this metaphor, for example
modelling the tightening of the protection of an object in a public room by dragging it into a
private room.

Central to our work is our proposed format and semantics for ACLs. The following section
looks at a conventional ACL and shows how it might be augmenied to facilitate the
consultation of data. The work described here adopts a task-oriented framework for structuring
access controf similar to that of Coulouris and Dollimore [CD94]. We summarise the relevant




issues of the task framework in section 3. Sections 4 and 5 describe in more detaii how state-
dependent access control and backing might be implemented in a task oriented framework. In
section 6 we summarise our conclusions and indicate how we feel future work shouid proceed.
Finally in an appendix we take a brief look at some issues that relate solely to implementing
this framework in a system where the shared data is replicated.

2  Augmenting Access Control Lists for the Expression of State-
Dependent Policy

Security policy is most often expressed using an Access Control List. A conventional ACL is a
list of permitted principals associated with an operation. In an object-oriented setting the
operations are methods of objects. The list can only be changed through the intervention of a
permitted authority and so generally rights remain static.

Lampson [LABW92] includes the notion of roles. Roles are generic categories such as
Physician, Manager and Lecturer for example. Naming a role in an ACL rather than a specific
principal simplifies the process of writing an ACL, but it does mean that a method of granting
the right for a principal to take on a role must be implemented together with a means of
checking these rights. This would generally be achieved, as it is in the TAOS operating system
[WABL94] for example, through some authority signing certificates stating a principal's right to
act in some role. These certificates have a certain fife-time during which they can be used
which makes rights difficult to revoke. Therefore merely having roles mentioned on an ACL is
still relatively inflexible as it doesn’t allow for rights to evolve without intervention as a task
progresses. So although roles remain very important in the framework, we believe that
additions need to be made to the structure of ACLs in order to allow the consultation of some
state that forms part of the task.

It helps our explanation to regard an ACL as a boolean expression. Take the following
example of a list expressing the principals entitled to perform an operation Op7:

Op1 : “Dr Xl’, “Dr Y!J’ “Dr Z”
Which expresses the policy:

“Only Dr X, Dr Y and Dr Z can invoke Op1”
If the identifier principal represents the identity of the individual attempting to perform the
operation, then the ACL could be expressed in a form that is similar to a boolean expression
such as those forming part of a conditional statement in a programming language. if we use
the symbol “=="to represent an equality operator, then principal has the right to perform Op1
if:

(principal == Prin1) or (principal == Prin2) or (principal == Prin3)

Which of course expresses the same policy.

When principal is instantiated then the expression will evaluate to true {(access permitted) or
false (access denied). This is also so for an ACL. that contains roles. For example:

Op2: Physician, Manager

Policy: “Only Physicians and Managers can invoke Op2”
A programmer writing a boolean expression could be able to include in the expression calls to
functions in his program if necessary, so the evaluation of the expression could take into

account the state of objects within the program. Allowing an ACL to contain object method
calls in a similar way would enable rights to depend on object state. So for example, if there




was a function that returned true if the patient was under eighteen years old, then the right to
perform an operation could depend upon this:

Op3: Physician and MedicalRecord.patientOverEighteen( )
Policy: “Physicians can invoke Op3 if the patient is over eighteen”

Where MedicalRecord names some object which is the target of the patientOverEighteen()
method call. This example also introduces the use of the boolean operator ‘and’ -which is used
in the context of access control by Lampson [LABWO2].

In section 5 we expand on this idea to enable the need to obtain backing to be expressed, but
first it is necessary to more clearly explain rights within a task-oriented framework.

3  Tasks for Structuring Access Control

The work described in this report is fundamentally based upon the task-oriented framework of
Coulouris and Dollimore [CD94] which is subsequently being worked into the PerDis system
[CDKRO7]. This section explains the elements of this task framework that we utilise.

The previous section explained Lampson’s [LABW92] ideas for allowing roles to be entered in
an ACL as well as specific principals as a means of simplifying the process of specifying
rights. In any system that requires access control there are by its nature a number of principals
that are potentially involved. This number could be large, hence making generalisations about
the principals’ roles is an obvious way of simplifying the construction of ACLs.

In an objeci-oriented groupware system there are not only potentially large numbers of
principals but also large numbers of objects that need ACLs. Generalising about the objects
too can ease the specification of rights.

The task-oriented framework that we use combines the two notions of generalisation. A
generalised task will have a set of objects and a set of roles that are common to all specific
instances of the task. Take for example a GP’s task of administering to a patient. in general
each patient will have a set of objects comprising his or her medical record (such as notes,
prescription and referral details etc.). Every patient has these objects and the rights to access
them (when expressed using generic roles) are the same for each instance of a task.
Expressing them once in a generic Security Template is more practical than having to do it
for every patient. An extremely simple (and far from ideal -as we will go on to explain)
example might be as follows:

Task: Administering to Patient

Roles \ Objects Notes Referrals Prescriptions
Patient's GP read/write read/write read/write
Nurse read read read
Receptionist - read read

Fig. 3.1 The table shows the rights of roles within the task “Administering to Patients™ to access three types of
objects used by all instances of the task.

Some tasks might have many instances of a type of object, such as the patient notes objects
in fig 3.1. Here again it is possible to take further advantage of generalisation and specify
rights to access categories of objects, i.e. all objects in the same category share an ACL.
Again this is the approach taken by the designers of the PerDis system.




When a task comes into existence, the details that need to be availabie to the participanis
such as the ACLs and the roles which take the form of signed certificates are copied from the
security template into a shared object called the Task Object. This is a shared ohject just like
those that form part of the application. Changes to the ACLs and the actual principals entitled
to take on the roles will be available to all. The task object therefore can then satisfy queries
regarding the current membership of a role. This is import for our notion of backing as will
become clear.

in our expansion of the framework it is necessary for ACLs to be able to refer to specific
objects, roles and principals within a task. Therefore objects and roles are referred to through
their tasks, such as the patient notes in the specific task instance of administering to a patient
X. Tasks themselves could be named by universal resource locators (URLs) as are other
Internet abstractions, although that is beyond the scope of this paper.

In summary then, protection is specified in a security template. This contains details of the
shared object categories that form part of the task, ACLs for these objects and the roles that
will participate in the task -but generally not actual principals. When an actual instance of the
task is created, actual objects are created too and references to them are placed in a shared
task object. The task object also holds the ACLs that are created acecording to the security
template and the identities of the actual principals that are assigned to the roles in the task.

4  State-Dependent Access Control

We start our look at state-dependent access control by examining some security policies.

4.1 State-Dependent Security Policies

The simplest kind of state-dependent policy is one where a right depends upon the state of the
same object that is being protected, i.e. the ACL on one of the object’s methods only contains
calls to other functions of the same object. For example, ancther policy taken from Ross
Anderson’s report [ANDSS] suggests that the right to delete medical records might only occur
after a specific period after the death of the patient. Hence the guard must consult the date-of-
death state.

Another policy might state that a General Practitioner’s receptionist can only read records of
patients that have an appointment to see a doctor. This policy is an exampie where rights
depend on some object other than the one being protected.

Both these policies are exampies of attempts to constrain the circumstances in which a
principal can access an cbject to reduce the damage that a corrupt individual can do. They
are aimed at ensuring that the access is in the context of a legitimate activity. These types of
policy are very common ouiside computer systemns, however inside are often left unenforced
because of a lack of mechanism.

Both these examples also depend upon some environmental state, in this case time-related.
We have only encountered policies that refer the current time and date.

in the introduction we gave another example of a security policy in which rights depended
upon the state of the duty rota. The policy stated that the right to perform some operations,
such as prescribing drugs for example, may require that the doctor is not only on duty at that
time, but also on duty in the same ward as the patient. This policy for protecting the medical
record relies upon the state of a duty rota object and of the current time.

The final kind of policy that we have encountered lsn't dependent upon the state of any
objects, but is dependent upon the state of the parameters of the attempied operation. Such a
policy might specify for example that one of a team of architects working on a shared plan for
a building might be able to move a door, with a provisec that it not be moved more than 5




centimetres. Moving it a larger distance might require the authority of another role such as the
manager for example because this may conflict with other participants’ activilies.

Asg a second example of a parameter-dependent policy taken from the financial field: bank
security procedure as detailed by Kusner and Anterpol [KA81] states that bank tellers should
not be able to process transactions that involve themselves. This policy relies upon the
parameters 1o the operation and on the identity of the teller.

A medical example might be that certain medical staff could prescribe only certain drugs, or
certain maximum quantities of drugs.

Summarising these types of state-dependent policy then we have:

1. Policy dependent upon the state of the object being protected by the ACL.
2. Policy dependent upon other protected objects.

3. Policy dependent upon environmental state such as time.

4. Policy-dependent upon the parameters of the operation being attempted.

Allowing ACLs to contain method calls, references to parameters and environmental values,
combined with boolean operators in a manner simitar to a boolean statement in a
programming language will cater for all the policies that we have encountered.

Now we go on to show how such policies could be expressed in ACLs in our framework.

4.2 Expressing State-Dependence in an Access Control List

When method calls are included in an ACL, it is necessary of course to specify which object
the methods are to be called on. When the target of the call is the same object as the one
being protected by the ACL, then in our syntax for ACLs we prefix the call with ‘this’ -a
keyword with similar meaning to ‘this’ in Java or ‘self’ in Smalltalk. If the object is different
from the one being protected by the ACL then it must be named.

When objects are created within a task, objects are assigned to categories. This is how they
obtain their initial versions of their ACL. It is a copy of the template ACL for that category. As
explained in section 3, the category Is a means of generalising about objects -so that an ACL
only has to be supplied for the category and not every individual instance. Medical Records
for example could be a category, because there are many of them in the task of running a
practice. Each record would have the same ACL {initially at least) when rights are expressed
for roles.

This means that objects from categories with more than one instance could not be named in
an ACL entry when the ACLs are compiled, because they are not known io exist before the
task is instantiated. The ACLs of course exist in template form before any instances of the
tasks. This may at first seem restricting, but it is our view that no security policy would depend
on these objects -since the policy too of course exists in advance of any individual instances
of tasks or objects. It seems unlikely that a security policy for running a practice, for example,
would rely upon the state of a specific patient’s medical record.

In order that the integrity of an ACL can be verified immediately that it has been written, it is
necessary that categories with only ohe object are marked as such in the security template.

The temporal information needed in the policy are expressed in ACLs using the following
identifiers. Other policies that we have not encountered could conceivably need others.

today.year The current year.
today.date The date in some format.

Others might include: today.time, today.month, today.hour, today.minute, efc. All of which
could be obtained from the operating system by the guard.




Additionally the examples showed that certain information has {0 be available about the
identity of the principal. The extert of information that could be referred to in a security policy
Is wide ranging. For example policies could potentially refer to phone numbers, postal
addresses For this reason we do not propose a scheme along the same lines as for the
temporal information. We assume that there must be application level objects that will return
the requested information given the identity of the principal attempting access. This identity is
referred to in the ACL. as principal and contains a string uniquely representing the principal.

There would be no further problems if all applications were written in the same object-oriented
programming language. Ideally the ACL will be independent of the language that the objects
are written in -thus allowing the objects to be used by a variety of applications written in
different languages. However this causes a potential problem with the types that we can
compare in the ACLs since not all language support the same types. Hence if many ianguages
are 1o be catered for then it will be necessary to restrict the types allowed to be included in an
ACL to some basic types found in most languages, such as integers, characters, strings, etc.

and then force all languages to supply methods for converting these into their own
representation. These methods would be called by the guard before any methods contained

within the ACL.

Below are example policies representing the four kinds previously identified. In the absence of
actual applications we have proposed some likely methods and their parameters which are
probably over-simpiified, but demonstrate the possibilities.

Policy: Physicians can only delete a record entry of patients deceased for 10
years.

Source: [AND96]

Type: tand 3

Roles invoived: Physician

Object Type: Medical Record

Method: Any delete method

ACL Entry: Physician and (time.year - this.yearOfDeath( )) > 10

Policy: Physicians can only prescribe to patients on wards where (s)he is
currently on duty.

Source: [AND96]

Type: 1,2and 3

Roles involved: Physician

Object: Medical Record

Method: Prescribe(drug)

ACL Entry: Physician and rota.onDuty(principal.surname, this.ward( }, today.date,
today.time}

Policy: - Bank tellers can't make transactions that involve themseives.

Source: [KAB1]

Type: 2and 4

Roles involved: Teller

Obiject: Transaction Record
Method: addTransaction(sourceAccNum, destAccNum, amount)
ACL Entry: Teller and Accounts.getldentity(sourceAccNum) 1= principal

4.1 A tabie showing example state-dependent policies and how they would be expressed in ACLs in our

framework.

Many applications do not enforce adequate access control because the mechanisms simply
are not there to implement them. However this does not mean that the applications are bad. it




is our intention that our framework could be integrated into existing applications with a
minimum of disruption. We believe that many applications will aiready have the necessary
methods that are needed for inchusion in the ACLs. Take the second example policy given in
fig. 4.1 above. This suggested that the right 1o prescribing drugs for may require that the
doctor is on duty at that time and also on duty in the same ward as the patient. Even before
any mechanisms existed for the enforcement of this policy -it must have been possible for the
doctor to ook up his duty schedule. Hence there is likely to be some method for this.

However, if there isn’t an appropriate method then the policy cannot be enforced accurately
unless a method is added. Modifying application code once to provide methods for accessing
state on which policy depends is far less severe than forcing application code to be modified
every time there is a policy change. Our scheme offers a significant advantage over systems
such as Legion [WWK95] because policy is represented entirely in ACLs.

We have only considered policies that need to inquire the state of objects. We have not
considered the inclusion in ACLs of methods that update the state of objects. None of the
policies that we have encountered require that state be updated. Generally policies are
expressed in terms of what can and cannot be done and do not mention actions that are to be
taken as a result of an attempted access to an object. Although security auditing is a possible
exception,

5 Backing

Sometimes it is the case that operations are too security sensitive to be pertormed by one
person alone. Splitiing responsibility between two or more principals, so that the consent of all
or some proportion of the group is required in order that the operation be performed is a
common way of ensuring that a single corrupt principal cannot alone do damage.

Policies that we havé seen which are stated in terms of a need to obtain backing are for one-
off operations, i.e. others give backing for you to do something once only. In this way backing
differs from delegation which is for a period of time. Also it differs in that backing potentially
comes form many other principals.

As in the previous section, we start by a look at some example security policies.

5.1 Security Policies that Specify a Need to Obtain Backing

There are many examples of this type of security policy outside the computing environment,
particularly in the financial world where such policies are used 1o protect institutions from
embezzlement by corrupt employees.

Splitting responsibility between more than one person or ‘segregation of duty’ as it is referred
to in financial literature is cne such example where backing can be used. The overriding
concept is that no one person can see through a financial transaction from start to finish
without the involvernent of some other person, who at least must check the work and possibly
apply a signature (hand-written) before the person can continue. Hence it would take the
corruption and collusion of more that one employee to cause an irregularity. The principal of
segregation of duty is described by Gray and Manson [GM89] as # is used in financial auditing
and in relation to information systems by Koning [KON].

Kusnet's [KAB81] lengthy descriptions of banking procedures naturally cover security
extensively and give many examples of policy that requires those involved to obtain backing.
One policy example states that a teller must seek permission to adjust a special-purpose bank
account for reconciling differences between the actual amount of money taken and the
recorded amount (should such a discrepancy occur).

There are examples where the computerisation of healthcare tasks would require backing if
existing safeguards are to be continued inside a computer system. Draper [DRAS6] discusses




the treatment of mental health patients as being a collaborative process, i.e. the backing of
some proportion of a group is required to support decisions. Decisions are taken collectively
as a safeguard in cases where the patient’s consent is not needed. If the participating
physicians were remote and communicating electronically then our idea of backing could
ensure that appropriate levels of agreement were achieved before actions where taken.
Draper stresses the importance of having a “multidisciplinary team being available to readily
access, communicate and share patient information.” This seems to advocate a groupware
system to alleviate the need for the ieam to be co-located, which would require a medical
record accessible to all participants, but protected appropriately. Such a system would be
particularly useful considering Draper’s comment that such healthcare professionals have to
be available around the clock.

Ting [TINS0] also considers the electronic implementation of patient records and gives some
example security polices for protection of the information. One example combines both a
requirement for backing and state-dependent access control. The policy states that a parent's
permission must be given for certain accesses to a patient's record if the patient is under
eighteen years old. Although the paper doesn'’t give any idea how the parent’s permission
would be represented and be provable in the system’. if a patient is older then the patient’s
permission must be given, i.e. backing must be obtained.

As a final example, Greif and Sarin [GS86] consider a real-time computer conferencing
system. They do not mention security directly, but suggest voting as a means of making
decisions. However, if the conference were set up for the discussion of security sensitive
issues then this voting system would need to be secured. The operations associated with
these decisions could be protected with an ACL that required a person to obtain the backing of
a maijerity of the group.

The exarmnples above can be separated into two types. We call these absolute quantity and
proportional backing:

1. Absolute Quantity: Where the backing of a specific number of role members is required,
e.g. 2 Physicians.

2. Proportional: Where the backing of greater than some proportion of a group of role
members is required, e.q. a majority of the board of directors.

5.2 Expressing Backing in an Access Control List

Our scheme for enabling an ACL to express the need to obtain backing is an extension of the
method used in the previous section. We simply provide specialised backing methods to be
called from within the ACL. However the methods are obviously not implemented by any of
the programming level objects that comprise the task, but instead are impiemented by the
guard itself.

To avoid having to add any additional confusing syntax into our ACLs the backing methods do
not actually specify the target of their call, i.e. the default target is the guard.

We introduce two specialised backing methods. One for absolute quantity backing and one for
when the proportion of the group is required. We call these afl east and proportionally. Each
take two arguments, the quantity of backing required {(either an exact quantity or a proportion)
and a role from whose members the backing must come. This is all we need in order to
express all of the policies introduced above. The following table demonstrates their use:

Policy: Tellers must obtain a manager’'s permission to balance the accounts.
Source: [KA81]
Type: Absolute Quantity

' Montgomery [MONS7] describes the use of smartcards for invoiving patients electronically.
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Roles involved:

Trainee, Manager

Object: Account

Method finalise ()

ACL Entry Trainee and atleast{1, Manager)

Policy: A majority of a Patient’s carers must agree on new treatment.
Source: [DRAGS]

Type: Proportional

Roles involved: Carers

Object: Treatment Record
Method updateTreatment{details)
ACL Entry: Carer and proportionally(1/2, Carers)

Fig. 5.2.1 A table showing example backing policies and how they would be expressed in ACLs in our framework

Of course there is no reason why the two forms of backing shouldn’t be combined by the
boolean operators for particularly complex policies. A possible (but fictional) policy for
protecting some method might require the backing of:

“two doctors and majority of hospital managers.”

Expressed as:

atLeast(2, Doctor) and proportionally(1/2, Manager)

Going even further, they could be combined with state-dependent policies:

(Physician and patientAge( } >= 18), (atl.east(2, Physician) and (patientAge() < 18))

Note that in proportional backing, if the requester happens to be a member of the group from
which backing is being sought then it is implicit that the requester backs themself. This isnt so
for Absolute Quantity. For example:

Physician and proportionally(1/2, Physician)

expresses a policy requiring the requester to gain a majority of a group which includes

himself. However:

Physician and atLeast{2, Physician}

requires a Physician to procure the backing of two other Physicians meaning that three
Physicians in total agree.

53 ‘FThe Proof of Backing

In this section we will explain that the backing is accumulated in the task object (introduced in
section 3), and what is actually collected when a request is sent out are digitally signed
certificates of the signers’ consent to an individual to perform some operation. Here we
explain exactly what these certificates contain. Section 5.4 will suggest how they might be

collected.

The example policies show that what a backer actually consents to is:

+ To execute some specific method;
s Upon some specific named object;
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» To execute it once;
s Within some period of time,

The contents of the certificate must of course reflect this meaning.

The period of time for which backing will be valid is supplied with requests for backing. This
must be displayed to the potential backer alongside the request. Circumstances will often
change that could resulf in the backer changing their opinion. Hence backing is never given
indefinitely, merely just for a specified period after the initial request. This period is part of the
security policy and hence is specified along with the ACL (although we do not show it here).
Hence the recipient of the backing must use the signed statements to periorm the operation
within this duration.

Additionally, there must be information within the backing statement to enable the guard to
ensure that the statements are not used more than once. This is perhaps more of a problem
than it first appears. Take as an example a policy that requires that two members of a
particular role are required to back a principal to perform some method. Suppose there are ten
possible backers and all give consent for the method to be performed. in order to ensure that
the method is only performed once it is not sufficient just to recognise that a backing
statement has been used before. If this was the case, the principal could make five repeated
attempts to perform the operation with different pairs of certificates (each from different
backers}). We must prevent this, i.e. once the operation has been performed, then all the
backing statements must be unusable.

Our solution involves the task object holding information about outstanding backing requests.
The principal requiring backing creates an Qutstanding Backing Object which is another
shared object referred to by the task object. This is done by invoking a method on the shared
task object. The new outstanding backing object has a unigue identifier. Potential backers then
pick up the details of the request from the task object and if they decide to grant backing they
include the request identifier in the signed body of the backing statement. Backing is then
granted by the backer creating the signed backing certificate and installing it in the
outstanding backing object from where the original requester and everyone else can retrieve
it.

When sufficient backing is collected the operation can be attempted. The necessary backing
statements can be accessed by the guard along with other necessary certificates. The guard
maintains a list of the unique request identifiers that it has received and as a consequence it
can ignore any attempts to reuse statements of backing that originated from the same request.

This mechanism also enables backing requests to be outstanding for a large period of time as
would be the case for less synchronous applications. Participants starting new sessions pick
up the details of all currently outstanding requests irom the task object.

Ideally when sufficient backing is collected the Outstanding Backing Objects in the task server
should be cancelied by the initiator. in a secure system any apportion of responsibility shouid
be done with care, however it is not essential to the secure running of the system that the
outstanding request is cancelled since it will naturally time-out anyway, as will the guards
cache of already used backing request identifiers.

There is a problem however which stems from the gap in the two levels of abstraction.
Securily policies exist outside the computer system at a level which is conceptually above the
application. However the policy must be represented at the level of rights to execute methods
upon objects. it might be reasonable to expect the person responsible for translating the policy
into access control lists to be sure about what methods actually do as the methods of the
protected objects in a well designed application would correspond to real-tlife operations.
However it is not so reasonable to expect the participants in the collaborative task to make a
decision about whether to grant backing in response to a request which looks like a method
call, i.e. "can prin1 perform updateRecord(*Dose”, 5)?”. This might not mean much to the
person. It is necessary to bridge the gap between the shared object levet of abstraction and
the users’ perception.
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In order to make more obvious exactly what the sought consent is for, we require that a
natural language statement be included in an ACL which is distributed along with the request.
This may need to have place markers for any parameters to be filled in. Take the following
example of an operation whose ACL contains a statement of rights which depend upon
backing being sought:

finalise { )
This could be displayed on a recipients securlty shell as:
X requests your backing to 'finalise the exam paper’

Where X is filled in with the principal’s identity and ‘finalise the exam paper’ is the natural
language statement of the method’s function. The request would appear along with the name
of the object that the method will be Invoked upon and the task In which it forms part. Both of
which would be given a similarly meaningful names.

Finally we can now see that the actual contents of the certificate reflects the semantics of
backing outlined at the beginning of this section. Each certificate contains:

The natural language statement of what the backing is for.

The method name and value of the arguments, the task reference and object reference.
The unigue backing request identifier.

The expiry date/time after which the backing statement can no longer be used.

A signature signed with the private key of the backer.

. & 2 & =

And as a consequence the backer has given consent to perform the specific operation upon a
specific method before a certain time and once only.

54 Adapting the Security Shell to Implement the Collection of Backing

The previous section made clear that what the principal who collects backing is actually
collecting is signed certificates. However we didn’t explain how participants are prompted to
given backing. Just as was the case for delegation and role taking, we believe that the
application should be able to implement the collection of backing. However if it is not
desirable to alter the application then the security shell can be adapted to request the consent
of the user as described here.

The security shell bridges the gap between the user and the secure shared objects layer by
supplying the layer with information that can only come from the user such as changes fo
ACLs, delegations to others and the roles currently being asserted. We extend this o include
the capability to request and grant backing.

When a principal attempts to invoke a method that requires backing, communication with the
guard containing an attempt to perform the operation is not altempted straight away. First the
user must be asked if an atternpt to go ahead and gather consent should be instigated. This
request can be fulfilled by the security shell. The shell will communicate this request to the
user and if {s}he decides to go ahead and make the request, then the outstanding backing
object is created. Other security shells, which have access to the task object, can now see this
request and if it is one to which the user can respond, it will display the natural language
request to the user. Users may or may not consent. If they do the certificate is created and
installed by them in the outstanding backing object.

Once sufficient backing is coflected the security shell of the originator would highlight the
operation as an indication that it can now be performed. When the user gives the go-ahead,
the method is invoked and ideally the outstanding backing object is cancelled.
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6 Conclusions and Future Work

This work has, we believe achieved what it set out to do, which was to allow a principal’s rights
in a collaborative computerised activity to accurately reflect the kinds of security policy that
exist. We can’t say that the work is complete because it is not possible to know what every
possible security policy could be. However, we believe that aliowing a principal's rights to
depend upon the state of the data being protected and hence the state of the task being
undertaken, together with the notion of dynamically obtaining rights through others has
enabled a huge and complex array of rights to be specified. At least, we have been able to
express the policies that we have encountered.

State-dependent access control however is limited by the actual access to state that is
permitted by the objects, i.e. by what methods are available. If there are no suitable methods
then the policy cannot be represented accurately. However we believe that there is no
prohibitive reason why objects cannot be extended to include suitable methods. Doing this
once so that policy can depend upon a certain aspect of the state is not the same as having
security policy actually expressed in application code. Future changes in policy would not
necessarily result in further application code modifications, rather modifications are solely
confined to the ACL.

Performance is an import issue in interactive groupware. Cur ideal implementation of such a
framework would be built upon a replicated architecture, with data therefore being local.
Hence, the evaluation of rights that depend upon the data would not we believe cause any
substantial overheads -although we have no actual implementation to time as yet.

Our framework allows complex policies to expressed and enforced. There is a chance that
covert channels may open up if ACLs are written without thought. The fact that whether an
attempt to perform an operation depends upon the state of the object, may enable a principal
to glean information about its state -even if the attempt to invoke a method fails. This may at
first seem worrying.

However security policy initially exists outside the system that will enforce it and that any
sensible policy carefully transposed into an ACL will not contain loop-holes. In other words if
there are covert channels then it is not our framework that is at fault, but whoever converted
that policy into an ACL. The process of fransforming high-level policy into rights {0 invoke
methods on objects could be automated which might allow for the checking of covert
channels.

Any problems that do arise in the transposing of the policy could be prevented if there was a
more efficient way of bridging the gap between the user's perspective of policies and the
application interface and our shared-object level of compiling ACLs. We mentioned this
problem first in the introduction and again during section 5 in the discussion of making backing
requests and the requirement to supply an natural language description of the backing being
sought. The security shell is a basic attempt to bridge the shared object to user-level gap, that
exists when specifying security, however it is not ideal. It still requires that policy be expressed
in terms of rights to perform methods on objects.

More ideal would be a method of specifying policy at a higher level. One possible solution
would be the use of policy specifiers. General purpose descriptions of rights that could then be
automatically translated into rights to perform methods upon objects. This is not something
that we have as yet attempted any work on, but is the next stage.

Appendix: Replicated Implementation Details

In the first section we explained how our access control framework could be applied whatever
the underlying architecture. However we believe that for groupware, a replicated architecture
is advantageous. For performance reasons replicating data locally is desirable, even at the
expense incurred of having to distribute all updates in a secure fashion to all the replicas when
aver a change is made.
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The secure shared object abstraction can be built on top of a secure group communication
system [RDA5]. The secure group communication system must work in a suitabie mode! of
trust. Groupware applications in which the participanis are given different rights, such as ones
which may utilise the framework explained in this report, must, in order to be as secure as
possible, be built on a group communication system that doesn't rely on the uncorrupted
functicning of the software running at any of the participant's machines. Put bluntly, if the
participants have to have their access controlled, then they are not fully trusted and so any
communications coming from there machines, cannot be fully trusted. Access control is only
applied if there is a risk that someone might attempt to do something illegal after all. A
suitable secure group communication system is described in our paper [RD96a] and in the
more detailed report [RDS6DL].

The shared objects, built on top of such a secure group communication system could then
have access control applied to them using the framework described here. However there are
some issues that need further explanation. Complications that arise due to the distributed
nature of the architecture.

The guard, when evaluating a principal’s right to access the object that it is protecting may,
under our state-dependent scheme, be required to consult the state of ancther object. If the
state of this object is not already local, then it must be fetched. This would be achieved as part
of a normal group join operation of the group communication system. Where this state comes
from is an important security issue. it is actually a problem that lies in the group
communication layer. Our solution is to have one trusted member of the group which is
responsible for sending state to new members. This member may be located on a more
physically secure machine and not play any interactive part in an application, i.e. it is a server,
but is a normal member of groups in every other way. Again this issue is dealt with more
thoroughly in our report [RD96h). It is also the case that in order to securely ensure that every
recipient receives the same message that all multicasis are directed through this machine.

Related to this there is a performance issue. If the state is already iocal, then it should not be
necessary for the state to be fetched again. Therefore we suggest that a register of all the
shared objects that are currently located on a machine be maintained and updated as
necessary.

There is a problem concemning the distributed evaluation of cenlificates, such as role
membership certificales or signed statements of backing. In a distributed replicated
architecture, certificates are duplicated and sent out to all the parties that need to evaluate
rights. This happens on every invocation of a method that updates the state of a shared
object. It is important for the consistency of the replicas that all the members of the group
gither perform a particular update method or reject it. In the most part the group
communication system will ensure that this happens by totally ordering the multicasts
containing the updates and ensuring that any lost messages are resent and arrive eventually.

However, certificates generally have a time-out. This is definitely the case for backing
certificates since principals do not generally grant backing for an indefinite period. Certificates,
in a system where no patticipant cheats would be refreshed long before their expiration time.
Howaever in our system of differently trusted principals, we should not rely on this. This leads
to the possibility of a certificate failing the expiration test. However, if all the clocks on the
machines are not exactly synchronised, then the test might fail at some sites but not others,
leading to an update being applied inconsistently. This applies equally to the environmentally
dependent rights that depend upon the time of day or date.

The trusted server can solve this problem if we ensure that it stamps all the update messages
with the time of day and date. [t should be this date that is used to check certificate time-outs
and this date that is used for the evaluation of time-dependent rights.

Note that this doesn’t work if the shared object is server based however. We can't trust the
source of the message to apply their own time stamp because they could cheat. In this case

15



the guard must use its own idea of what the time is, taken presumably from the its system
clock.
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