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Temporal Coherence and Prediction Decay
in Temporal Difference Learning

D.F. Beal’ and M.C. Smith

London, England

Abstract

This paper describes an extension of the temporal difference (TD)
learning method. The standard form of the TD method has the problem
that two control parameters, learning rate and temporal discount, need
to be chosen appropriately. These parameters can have a major effect
on performance, particularly the learning rate, which affects the
stability of the process as well as the number of observations required.
Our extension to the TD algorithm automatically sets and subsequently
adjusts these parameters. The main performance advantage comes
from the learning rate adjustment, which is based on a new concept we
call temporal coberence (TC). The experiments reported here compare
the TC algorithm performance with human-chosen parameters and
with an earlier method for learning rate adjustment, in both a simple
learning task and in a complex domain. The task domains were a
random-walk state-learning task and the task of learning the relative
values of pieces in a game, without any initial domain-specific
knowledge. The results show that in both domains our method leads to
better learning (i.e. faster and less subject to the effects of noise), than
the selection of human-chosen values for the control parameters, and
the comparison method.

1. Introduction

Two major parameters that control the behaviour of the temporal difference (TD)
algorithm are the learning rate (or step-size), o, and the temporal discount parameter,

A

The choice of these parameters can have a major effect on the efficacy of the learning
algorithm, and in practical problems they are often determined somewhat arbitrarily,
or else by trying a number of values and ‘seeing what works’ (e.g. Tesauro, 1992).
Another widely used method is to use a learning rate that decreases over time, but
such systemns still require the selection of a suitable schedule.

Sutton and Singh (1994) describe systems for setting both o and A, within the
framework of Markov-chain models. However these methods assume relatively small
numbers of distinct states, and acylic graphs, and so are not directly applicable to
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more complex real-world problems. Jacobs (1988) presented the ‘delta-bar-delta’
algorithm for adjusting o during the learning process. We compared the performance
of delta-bar-delta with our algorithm on two sample domains. More recently,
Almeida (1998) and Schraudolph (1998) have presented other methods for o
adaptation for stochastic domains and neural networks respectively.

We describe a new system which automatically adjusts o and A . This system does
not require any a priori knowledge about suitable values for learning rate or temporal
discount parameters for a given domain. It adjusts the learning rate and temporal
discount parameters according to the learning experiences themselves. We present
results that show that this method is effective, and in our sample domains yielded
better learning performance than our best attempt to find optimum choices of fixed o

and A , and better learning performance than delta-bar-delta.

1.1 Temporal difference learning

Temporal difference learning methods are a class of incremental learning procedures
for learning predictions in multi-step prediction problems. Whereas earlier prediction
learning procedures were driven by the difference between the predicted and actual
outcome, TD methods are driven by the difference between temporally successive
predictions (Sutton, 1988). Kaelbling et al (1996) give a survey of a wider range of
reinforcement algorithms, including TD methods.

Sutton’s TD process can be sumimarised by the following formula. Given a vector of
adjustable weights, w, and a series of successive predictions, P, adjustments to the
weights are determined at each timestep according to:
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where o is the parameter controlling the learning rate, V,Py is the partial derivative of
P with respect to w, and P, is the prediction at timestep #. The temporal discount

parameter, A, provides an exponentially decaying weight for more distant predictions.

The formula shows that TD learning is parameterised by ¢, the learning rate, and A,
the temporal discount factor. Both parameters, and especially ¢, can have a major
effect on the speed with which the weights approach an optimum. In Sutton’s paper,
learning behaviour for different o and A values in sample domains is presented, but no
method for determining suitable values a priori is known. Learning rates too high can
cause failure to reach stable values and learning rates too low can lead to orders of
magnitude more observations being necessary. Methods of choosing suitable azand A4
values before or during the learning are therefore advantageous. There have been
several algorithms proposed for adjusting ¢ in supervised and TD learning: ours is
based on a new principle that we call temporal coherence.



2. Temporal Coherence: adjustments to learning rates

Our system of self-adjusting learning rates is based on the concept that the learning
rate should be higher when there is significant learning taking place, and lower when
changes to the weights are primarily due to noise. Random noise will tend to produce
adjustments that cancel out as they accumulate. Adjustments making useful
adaptations to the observed predictions will tend to reinforce as they accumulate. As
weight values approach their optimum, prediction errors will become mainly random
noise.

Motivated by these considerations, our Temporal Coherence (TC) method estimates
the significance of the weight movements by the relative strength of reinforcing
adjustments to total adjustments. The learning rate is set according to the proportion
of reinforcing adjustments as a fraction of all adjustments. This method has the
desirable property that the learning rate reduces as optimum values are approached,
tending towards zero at optimum values. It has the equally desirable property of
allowing the learning rate to increase if random adjustments are subsequently
followed by a consistent trend.

Separate learning rates are maintained for each weight, so that weights that have
become close to optimum do not fluctuate unnecessarily, and thereby add to the noise
affecting predictions. The use of a separate learning rate for each weight allows for
the possibility that different weights might become stable at different times during the
learning process. For example, if weight A has become fairly stable after 100 updates,
but weight B is still consistently rising, then it is desirable for the learning rate for
weight B to be higher than that for weight A. An additional potential advantage of
separate learning rates is that individual weights can be independent when new
weights are added to the learning process. If new terms or nodes are added to an
existing predictor, independent rates make it possible for the new weights to adjust
quickly, whilst existing weights only increase their learning rates in response to
perceived need.

The TC learning rates are determined by the history of recommended adjustments to
each weight. We use the term ‘recommended change’ to mean the temporal difference
adjustment prior to multiplication by the learning rate. This detachment of the learning
rate enables the TC algorithm to respond to the underlying adjustment impuises,
unaffected by its own recent choice of learning rate. It has the additional advantage
that if the learning rate should reach zero, future learning rates are still free to be non-
zero, and the learning does not halt.

The recommended change for weight w at timestep ¢ is defined as:
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The change actually applied is:
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where @, = learning rate for weight w



For each weight we are interested in two numbers: the accumulated net change (the
sum of the individual recommended changes), and the accumulated absolute change
(the sum of the absolute individual recommended changes). The ratio of net change,
N, to absolute change, A, allows us to measure whether the adjustments to a given
weight are mainly in the same ‘direction’. We take reinforcing adjustments as
indicating an underlying trend, and cancelling adjustments as indicating noise from
the stochastic nature of the domain (or limitations of the domain model that contains
the weights).

At the end of each sequence, each weight, together with its net change and absolute
change, is updated. The update formulae are:
3 ! I
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N,, = accumulated net change to weight w

Ay, = accumulated absolute change to weight w
rw,; = recommended change to weight w at timestep i

At each update, the learning rates for each weight are set according to the N:A ratio:

w
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v = number of adjustable weights

The learning rates are divided by v, since all v weights are being adjusted
simultaneously, and each is assumed to contribute 1 / v to the total adjustment being
made.

The foregoing formulae describe updating the weights and learning rates at the end of
each sequence. The method may be easily amended to update more frequently (e.g.
after each prediction), or less frequently (e.g. after a batch of sequences). For the
domains and experiments reported in this paper, update at the end of each sequence is
natural and convenient to implement.

3.  Prediction Decay: determining the temporal discount parameter A

We determine a value for the temporal discount parameter, 4, by computing a quantity
w we call prediction decay. Prediction decay is a function of observed prediction
values, indexed by temporal distance between them, described in more detail in
appendix A. An exponential curve is fitted to the observed data, and the exponential
constant, ¥, from the fitted curve is the prediction decay. We set A =1 initially, and 4

= Yrthereafter.

The use of A=y has the desirable characteristics that (i) a perfect predictor will result
in y=1, and TD(1) is an appropriate value for the limiting case as predictions
approach perfection, (ii) as the prediction reliability increases, ¥ increases, and it is
reasonable to choose higher values of A for TD learning as the prediction reliability



improves. We make no claim that setting A=y is optimum. Our experience is that it
typically performs better than human-guessed choice of a fixed 4 a priori.2

The advantage of using prediction decay is that it enables TD learning to be applied
effectively to domains without prior domain knowledge, and without prior
experiments to determine an optimum A. When combined with our method for
adjusting learning rates, the resulting algorithm performs better than the comparison
method, and better than using fixed rates, in both test domains.

4, Delta-bar-delia

The delta-bar-delta algorithm (DBD) for adapting learning rates is described by Jacobs
(1988). Sutton (1992) later introduced Incremental DBD for linear tasks. The
original DBD was directly applied to non-linear tasks, and hence more easily adapted
to both our test domains. In common with our temporal coherence method, it
maintains a separate learning rate for each weight. If the current derivative of a
weight and the exponential average of the weight’s previous derivatives possess the
same sign, then DBD increases the learning rate for that weight by a constant, . If
they possess opposite signs, then the learning rate for that weight is decremented by a
proportion, ¢, of its current value. The exponential average of past derivatives is
calculated with @ as the base and time as the exponent. The learning rates are
initialised to a suitable value, &, and are then set automatically, although the meta-
parameters & ¢, @ and & must be supplied. To adapt DBD to TD domains, we
compute a weight adjustment term, and a learning rate adjustment at each timestep,
after each prediction, but we only apply the weight and learning rate adjustments at
the end of each TD sequence. DBD is very sensitive to its meta-parameters and prior
to our experiments we performed many test runs, exploring a large range of meta-
parameter values and combinations. We used the best we found for the comparison
between DBD and TC reported here. Both algorithms update the weights, and the
internal meta-parameters, at the end of each sequence.

5. Test domain one: a bounded random walk

The methods described in this paper are designed to be domain independent, and
should be applicable over a wide range of possible domains. We report first on a
simple domain, that of a bounded random walk as presented in Sutton (1988) and
Dayan (1992).

Start

l
B QDB

Figure 1: A bounded random walk

% By expending sufficient computation time to repeatedly re-run the experiments we were able to find
somewhat better vatues for 1.



All walks begin in state D. When in states B, C, D, E, and F, there is a 50% chance of
moving to the adjacent left state and a 50% chance of moving to the adjacent right
state. When either end state (A or G) is reached, then the walk terminates, with a final
outcome defined to be 0 in state A, and 1 in state G. This absorbing Markov process
generated the random walks used in the experiments. Each sequence for the TD
learning process is based on one walk. The learning task is to obtain five weights, one
for each of the five internal states. These weights are estimates of the probabilities of
terminating the walk at G, starting at the given internal state.

Sutton (1988) presents this task, and shows that temporal difference learning is more
effective here than the widely-used supervised learning method of Ieast Means
Squared (Widrow-Hoff), given an appropriate choice of control parameters. His
experiments showed that the results achieved by TD(A) in this domain were sensitive

to the choice of both o and A.

5.1 Results from the bounded random walk

For each experiment, a set of 1000 random walks was generated and each of the
learning procedures was then applied to the same 1000 sequences. With this large
number of sequences, the values towards the end of the run, averaged over recent
sequences, are very close to the known theoretical value, and the weight movements
are random noise. Nevertheless, to allow for variations due to different random
sequences, each experiment was repeated 10 times using a different random number
seed. The results from each of the 10 seeds were all very similar. Figures 2 through 5
are all derived from one particular starting seed, and are typical. Figure 6 presents
results averaged from all 10 seeds.

Figures 2 and 3 show the weight movements from typical runs, using TD with two
fixed learning rates, chosen to cover the range we found to be best from many runs,
and a fixed A (0.3) we chose as the most suitable for this task from results presented in
Sutton (1988). The five traces on each graph show the estimated value of each of the
five unknown states, after each of 1000 sequences. For this task, the true values are
known, and are shown on the graphs as horizontal lines. The graphs illustrate that the
higher the learning rate, the faster the weights approach the target values initially, but
also illustrate that as the learning rate rises, the less stable the weight values. At high
rates, it may become impracticable to extract stable weights.
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Figure 3: Weight movements from a typical run using a fixed o of 0.01

From figure 2 it can be seen that the weight adjustment made using a fixed o of 0.1
are seriously unstable, even towards the end of the run, when the average value is
close to the desired value. This learning rate is too high for obtaining stable weights.
On the other hand, figure 3 shows that if the learning rate is lower, the final weights
are much more stable. However, the weights in figure 3 take of the order of 500
sequences to approach the right values, whereas the high learning rate of figure 2 only
took around 50 sequences. This behaviour was repeated in all the runs.
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Figure 4: Weight movements from a typical run using temporal coherence
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Figure 5:  Weight movements from a typical run using delta-bar-delta

Figures 4 and 5 show typical results from our temporal coherence algorithm, and
delta-bar-delta, respectively. The TC algorithm requires no a priori parameter setting.
We found the delta-bar-delta algorithm to be sensitive to its meta-parameters (starting
rate, adjustment step size and ratio, and exponential decay factor of weight changes).
Figure 5 shows the best result from several runs we performed with different values of
the meta-parameters, guided by the values used in Jacobs (1988). We used parameter
settings of: ¥ = 0.01, ¢ = 0.333, 8 = 0.7, g0 = 0.03 and A=0.3. We tried a number of
other parameter settings, none of which performed any better than the chosen set.



Figure 4 shows that TC yields fast initial movement towards the target values, and
enables the weights to stay close to the target values thereafter. In figure 4, the
weights approach the right values within about 50 sequences (as least as fast as the
quick but unstable learning of figure 1), and become as stable as the slow learning of
figure 2 within about 250 sequences (twice as fast as the slow learning rate). Figure 5
shows that delta-bar-delta did not do as well as temporal coherence.

Figures 2 through 5 are all based on the random sequences generated with one
particular starting seed. We repeated the experiments with many starting seeds, and
saw very similar results. The graphs presented here are typical. However, to avoid
reliance on the particular sequences involved, figure 6 presents a summary of the
performance of the different algorithms, showing their progress towards the values
sought. Each trace in figure 6 represents the squared error, summed over all weights,

after each sequence, for a given algorithm, averaged over 10 runs.
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Figure 6: Performance averaged over 10 runs for various learning rate methods.’

Figure 6 shows that the fast fixed learning rate has the best initial scores, but the
performance trace for that option shows that it never reaches accurate values. It
remains unstable and well below the other traces from about sequence 50 onwards.
Figure 6 shows that teraporal coherence has the best overall performance. It is almost
as fast as the unstable learning rate initially, achieves a closer final approach at the end

? For presentation convenience, the sum-of-squared error is first normalised to the range [0,1] where 1
is the error at the start of the run, and 0 is no error (achieved when the weight equals the true value),

5 5
then charted as g, the inverse of error: g =1~ Z(WE —v,)? 2(0.5 -v,)?

i=1 #=1
w; is the weight for state 7, v; is the true value for state 7, 0.5 is the initial value for all weights at the start

of the run.



of the runs than any of the other methods tested, and is either closer to the right values
or reaches them sooner, when compared to the other methods.

6. Test domain two: learning the values of chess pieces

In addition to the simple bounded walk problem, we also tested our methods in a more
complex domain. The chosen task was the learning of the values of chess pieces by a
minimax search program, in the absence of any chess-related initial knowledge other
than the rules of the game.

We attempted to leamn suitable values for five adjustable weights (Pawn, Knight,
Bishop, Rook and Queen), via a series of randomised self-play games. Learning from
self-play has the important advantage that no existing expertise (human or machine) is
assumed, and thus the method is transferable to domains where no existing expertise
is available. Using this method it is possible to learn relative values of the pieces
(Beal and Smith, 1997) that perform at least as well as those quoted in elementary
chess books. The learning performance of the temporal coherence scheme was
compared with the learning performance using fixed learning rates, and with delta-
bar-deita.

The TD learning process is driven by the differences between successive predictions
of the probability of winning during the course of playing a series of games. In this
domain each temporal sequence is a set of predictions for all the positions reached in
one game, each game corresponding to one sequence in the learning process. The
predictions vary from O (loss) to 1 (win), and are determined by a search engine that
uses the adjustable piece weights to evaluate game positions. The weights are updated
after each game, Details of the game tree search program can be found in Appendix B.

At the start of the experiments all piece weights were initialised to one, and a series of
games were played using a 5-ply search. To avoid the same games from being
repeated, the move lists were randomised. This had the effect of selecting at random
from all tactically equal moves, and the added benefit of ensuring a wide range of
different types of position were encountered.

6.1 Converting evaluation scores into prediction probabilities

In order to make use of temporal differences, the values of positions were converted
from the evaluation provided by the chess program into estimations of the probability
of winning. This was done using a standard sigmoid squashing function. Thus the
prediction of probability of winning for a given position is determined by:

N 1
T 1+e™

where v = the ‘evaluation value’ of the position.
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This sigmoid function has the advantage that it has a simple derivative, thus
simplifying the implementation of the TD algorithm.

dP
S -Pa-P
T (1-P)

hence the derivative is a simple function of the prediction.

6.2 Results from the game-playing domain

To visualise the results obtained from the various methods for determining learning
rates, we present graphs produced by plotting the weight movements for each of the
five piece values over the course of runs consisting of 2,000 game sequences each. As
the absolute values of the piece weights is unimportant compared with their relative
values, the graphs are normalised so that the average value of the Pawn weight over
the last 200 game sequences is 1. This enables comparison with the widely quoted
elementary values of Pawn = 1, Knight and Bishop = 3, Rook = 5 and Queen = 9. As
in the bounded walk domain, the number of sequences in each run is large enough that
the values reach a quasi-stable state of random noise around a learnt value. To confirm
that the apparent stability is not an artifact, each experiment was repeated 10 times,
using different random number seeds.

Figure 7 shows the weights learnt by the temporal coherence system over a typical
single run. In this figure we can see that the learning process is essentially completed
after 500 sequences, and that the weights remain fairly stable for the remainder of the
sequences. This was typical of all runs, as reflected in figure 12 later.

Figure 8 shows the weights achieved using fixed settings of o = 0.05 and A=0.95 over
a typical single run. These settings offered a good combination of learning rate and
stability from the many fixed settings that we tried. A lower learning rate produced
more stable values, but at the cost of further increasing the number of sequences
needed to establish an accurate set of relative values. Raising the learning rate makes
the weights increasingly unstable.

11
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Figure 8: Weight movements from a typical single run using fixed ¢=0.05

Comparing figure 8 with figure 7 we can see that the piece values are unstable
compared with figure 7, and the relative ordering of the pieces is not consistent over
the length of the run. In addition, comparing with figure 7 we can see that the speed
of learning is significantly slower in the fixed-rate run, with a significant amount of
the learning occurring after 500 sequences.
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Figure 9 shows the results achieved from a typical run using delta-bar-delta.
Comparing this figure with figure 7, we can see that the weights produced using DBD
are much less stable than those produced by TC, and the relative ordering of the pieces
is not consistent. For this domain we used meta-parameters of: k¥ = 0.035, ¢ = 0.333,
B = 0.7 and & = 0.05, guided by data presented by Jacobs (1988) and preliminary
experiments in this domain. For A, which DBD does not set, we used A=0.95 derived
from our experience with the fixed rate runs. We tried a number of other meta-
parameter settings, none of which performed better than the chosen set. It is possible
that a comprehensive search for a better set of meta-parameters might have improved
the performance of the delta-bar-delta algorithm, but given the computational cost of a
single run of 2000 sequences, we were unable to attempt a systematic search of all the
meta-parameter values. Other runs with different random seeds showed similar
behaviour to figure 9.

Figures 7-8 showed typical results obtained from single runs, determined by a random
number seed. We repeated the experiment ten times, using ten different seeds.
Figures 10 and 11 show averaged weight movements, to confirm that the
characteristics seen in the single runs are consistent behaviour.

13
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Figure 11: Average weight movements from 10 runs using a fixed o of 0.05

Figures 10 and 11 show the piece values averaged from 10 runs using TC, and a fixed
learning rate of 0.05 respectively. In figure 10 all traces have approached their final
values after about 900 sequences (some weights much sooner), whereas in figure 11
the traces do not approach final values until around 1500 sequences (and even then
have more systematic movement to make). Thus, as in the single runs, the TC
algorithm is faster to approach final values, and more stable once they are reached.

To confirm that the learnt piece values had approached ‘correct’ values, a match was

played pitting the learnt values against the values widely quoted in elementary chess
books (see appendix B). One program used the well-known values. The other used

14



the learnt weights, as a check that the learnt values were at least as good as the
standard ones. The piece values learnt by the TC runs achieved a score of 58%
against the well-known values.
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[} 500 1000 1500 2000
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Figure 12: Performance over an average of 10 runs

Figure 12 shows the average piece values over 10 runs for the various methods,
combined into a single ‘performance’ measure, similar to that presented for the
bounded walk results. From this figure we can see that delta-bar-delta does not
improve much on a carefully-chosen fixed learning rate, but that TC clearly produces
faster learning. '

7. Conclusions

We have described new extensions, temporal coherence, and prediction decay, to the
temporal difference learning method that set the major control parameters, learning
rate and temporal discount, automatically as learning proceeds. The resulting TD
algorithm does not require initial settings for o and A, and has been tested in depth on
two domains.

The results from the bounded walk domain demonstrated both faster learning and
more stable final values than a previous algorithm and the best of the fixed learning
rates. The new methods were also successfully applied to a more complex task, that
of learning relative piece values in the game of chess, without supplying any domain-
specific knowledge. In this domain also, the results from the new algorithm showed
faster learning and more stable final values, including those attained by the best of the
fixed learning rates.

In our comparisons with the delta-bar-delta algorithm, we tried to find good parameter
sets for DBD, which requires four meta parameters instead of the one control

15



parameter, 0. We tried several different (meta-) parameter sets in each domain, but
were unable to find a set of parameters that improved performance over the results
presented in sections 5.1 and 6.2. It is possible that a systematic search for better set
of meta-parameters in each of the domains might improve performance. However, it
is a major drawback for the method that it requires its meta-parameters to be tuned to
the domain it is operating in. It is part of the advantage of the methods presented here
that they do not require a search for good parameter values.

The experimental results have demonstrated that the temporal coherence plus
prediction decay algorithm achieves three benefits: (1) removal of the need to specify
parameters (2) faster learning and (3) more stable final vaiues.
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APPENDIX A Setting the temporal discount parameter using prediction decay

Prediction decay is the average deterioration in prediction quality per timestep. A
prediction quality function measures the correspondence between a prediction and a
later prediction (or end-of-sequence outcome). The observed prediction qualities for
each temporal distance are averaged. An exponential curve is then fitted to the
average prediction qualities against distance (Figure 13 shows an example), and the
exponential constant of that fitted curve is the prediction decay, . We set the TD
discount parameter A, tol initially, and 4 = y thereafter. In the experiments reported,
w (and hence A) were updated at the end of each sequence.

The prediction quality measure, Q (p, p”) we used is defined below. It is constructed

as a piece-wise linear function with the following properties:

i. When the two predictions p and p ] are identical, Q; = 1. (The maximum @, is 1)

il. As the discrepancy between p and p“increases, 0, decreases.

iii. When one prediction is 1 and the other is 0, then Q; = -1. (The minimum Qg is ~1)

iv. For any given p, the average value of Qy for all possible values of p 7, such that 0 <
p’ <1, equals 0. (Thus random guessing yields a score of zero.) This property is
achieved by the quadratic equations in the definition below.

We achieve these properties by defining:

ce . r<x 1-r/x
p=s rrx ot -p(rmx)/(pmx)

W_J P50 F(p,p’) ~
Qd(P;P)—{p<5 . F(l-—p,l—p')} F(pvp)"
o {rSy : T—-rly }
d r>y : = plr~y)(p-y)
where:
r=|p-p

s = solution of 232—~5s+1m0
x= soluation of 2(1+p)x2-—4px+p=0
y=solution of (1+p)y2+(2—2p—p2’)y-—(1——p)2mO

p is the current prediction, p’is an earlier prediction, and d refers to the temporal distance
between p and p”. Predictions lie in the range [0, 1].

It is assumed that the learning occurs over the course of many multi-step sequences, in
which a prediction is made at each step; and that the sequences are independent. To
form a prediction pair, both predictions must lie within the same sequence.
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0 4 is the average prediction quality over all prediction pairs separated by distance d
observed so far. For this purpose, the terminal outcome at the end of the sequence is
treated as a prediction. At every prediction, the @, are incrementally updated.

An example graph from our experimental results is given in Figure 13. The
exponential curve is fitted to the averaged prediction qualities by minimising the mean

squared error between the exponential curve and the observed é . Vvalues. To prevent

rarely occurring distances from carrying undue weight in the overall error, the error
term for each distance is weighted by the number of observed prediction pairs. Thus

we seek a value of ¥ which minimises:

i(ad —Wd)sz

d=0

where _Q , is the average prediction quality for distance d, and Ny is the number of
prédiction pairs separated by that distance, and [ is the length of the longest sequence
in the observations so far. In the experiments reported here the value for ¥ was
obtained by simple iterative means, making small incremental changes to its value
until a minimum was identified. Values for i (and hence A) were updated at the end
of each sequence.
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Figure 13: Fit of the prediction quality temporal decay to observed data from the
game domain, at the end of a run of 2000 games.

Figure 13 shows an example of the fit of a value for ¥ to the observed prediction
qualities, as described above. This example is typical of the fit to the observed data in
the game domain. In that domain  was fairly stable in the range 0.990 - 0.993 during
the test runs. In the random walk domain, {7 was typically around 0.7.
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APPENDIX B Domain specific details

Learning piece values in chess: Probably the first heuristic to be taught to most
beginners is the value of the pieces: that knights and bishops are worth about three
pawns; rooks about five pawns; and the queen about nine pawns (the king is not given
a value as it cannot be captured). Thus under this scheme, it would be considered a
fair exchange to trade a rook for a bishop and two pawns, or a queen for two bishops
and a knight.

This simple numerical scheme provides a crude evaluation of how ‘good’ (i.e. likely
to lead to victory) a given position is. Such a scheme (or others very similar) provides
the backbone for almost all chess-playing computer programs’ evaluation functions,
including that of IBM’s Deep Blue, although for high performance play the basic
scheme is augmented with numerous, and very elaborate, additional scoring terms.

The system attempts to learn values for the pieces via a series of randomised self-play
games. It does not benefit from seeing the play of a well-informed opponent against
it, nor is it given games played by experts to examine. At the start of the experiments
all pieces values are initialised to one, and so the first game is played entirely at
random, the system not even knowing that it is good to capture opponent's pieces and
preserve your own.

The same method would be directly applicable to many other two-person, perfect
information games, e.g. Checkers, Shogi and Chinese Chess. As well as learning
piece values, the same method could be used to optimise weights for other evaluation
function terms, such as mobility, centre control etc.

The search engine: The chess-playing search engine used for the experiments was a
simple, conventional one, using a full-width iteratively deepened search, with alpha-
beta pruning and a captures-only quiescence search at the full-width horizon
(Marsland, 1992). The search was made more efficient by the use of a transposition
table. The evaluation function consisted of the material score only, with the move
choice being made randomly from the materially-equal moves.

The principal variation: The effect of the full-width minimax search algorithm is to
select a sequence of moves that represents best play by both sides (as defined by the
evaluation function). This line of play is referred to as the principal variation. The
evaluation score from the position at the end of the principal variation (the principal
position) is ‘backed up’ to the root of the search. Thus from a given position, a
minimax search returns a value that corresponds to the evaluation of the position at
the end of the principal variation.

The learning process: The TD learning process is driven by the differences between
successive predictions of the probability of winning during the course of playing a
series of games, and the piece values updated after each game. For implementation
convenience, in the experiments reported in this paper the weight adjustments were
not computed incrementally, but computed and adjusted at the end of each game.
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During the course of each individual game, after each move a record was created of
the value returned by the search, and the corresponding principal position. At the end
of each game, these values are converted into prediction probabilities via the
squashing function, and adjustments made to the weights according to the differences
between successive predictions, and the differences in piece counts of the
corresponding principal positions.

Match details: The piece value weights leamnt using TC were tested by playing a
match between two identical search engines, one using the widely quoted standard
values (Pawn=1, Knight=3, Bishop=3, Rook=5, Queen=9), the other using the newly
learnt values. To avoid fluctuations in the weights due to noise from the stochastic
nature of the domain, the piece values used in the match were calculated by averaging
over last 10% of games in the 10 TC runs.

Games that ended in mate were scored as 1 point for the winning side. Games that
ended in a draw according to the laws of chess (stalemate, repetition, insufficient
material) were scored as 1/2 point for both sides. Games that were unfinished after
400 ply (200 moves each) were scored as win for one side only if both programs’
evaluations agreed one side was ahead on material, otherwise the game was scored as
a draw.

The weights achieved by the temporal coherence runs won in a match against the
widely quoted standard piece values. A match of consisting of 5000 games was
played, of which the TC weights won 2658, drew 483, and lost 1859, giving a match
score of 58%.
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