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Preface

The theme of this workshop is, intentionally, a broad one. A comprehensive logical
theory of practical reasoning and rationality will include theoretical reasoning
(reasoning about what is the case, involving informational attitudes such as beliefs
and knowledge), practical reasoning (reasoning about what to do, involving
motivational attitudes such as desires, goals, intentions, and obligations), and
reasoning about actions and their effects.

Recent and current logical work has tended to focus on particular aspects of the
problem; including nonmonotonic logics, belief revision, probabilistic logics,
argumentation, logics for belief, action, obligation and preference, and logics for
reasoning about action and change. This 1s the third in a series of workshops which
aim to promote the integration of this work. Information on the workshop series can
be found at: http://www.dcs.gmw.ac.uk/conferences/pri/

We are grateful for the administrative support provided by the ECAI'98 organisers.
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Preferential Semantics for Action Specifications in First-order
Modal Action Logic!
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Roel Wieringa
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P.O. Box 217, 7500 AE Enschede, the Netherlands
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Abstract

In this paper we investigate preferential semantics for declarative specifications in a First Order
Modal Action Logic. We address some well known problems: the frame problem, the qualification
problem and the ramification problem. We incorporate the assumptions that are inherent to both the
frame and qualification problem into the semantics of the modal Action Logic by defining orderings
over Dynamic Logic models. These orderings allow us to identify for each declarative Dynamic Logic
action specification a unique intended model.

1 Introduction

Golshani et al. [10] introduced a version of first-order dynamic logic called Modal Action Logic (MAL)
to specify database updates declaratively. MAL was used later to specify requirements on the external
behavior of software and to specify descriptive and prescriptive {deontic} constraints on the external
behavior systems in general [14, 13, 12, 20]. Meyer and Wieringa (21, 23, 22] studied a closely related
version of Dynamic Logic (DL}, which was also used to specify descriptive and deontic constraints on
database updates and object behavior declaratively. Although these papers show the wide applicability
of MAL in the specification of agent behavior, they do not show how we can reason about actions of
agents and their effects. In this paper we take a first step towards performing this type of reasoning by
defining intended minimal models for a certain class of agent specifications. We argue that these models
allow for a form of preferential model checking, which we intend to study in a sequel to this work.

We focus on a specific subset of MAL-formulas to specify the most relevant aspects of (nondeter-
ministic!) actions e.g. their effects, guards on their occurrence and global static invariants. We do not
specify sufficient conditions on occurrence of actions. We argue that the role they play can better be
handled by a suitable definition of intended (prefered) model in which actions can take place whenever
this is compatible with the global invariants and effects. A second problem we address is the problem
of minimal change. We define a preference relation over MAL-models that selects the models in which
the effects are interpreted under a minimal change condition. We investigate the interplay between both
preference relations and define an intended model that is prefered with respect to both orderings. This
gives us an exact unique meaning (model) for each specification. The intended model provides the basis
for reasoning about properties of the specified actions, by means of model checking.

In section 2, we define our variant of MAL and in section 3, we consider agents subject to a number
of static constraints, which may be descriptive or prescriptive, and actions that are subject to a number
of declarative constraints on their effects and declarative guards on their occurrence. Corresponding
to these two constraints on actions, we define in section 3 two preference relations on models, which
order models on minimal change and maximal reachability, respectively. We study properties of these
preference relations for three classes of action specifications. In section 4 we compare our results with
other work and in section 5, we discuss how our work prepares the way for preferential model checking.
This paper extends earlier work done on action specification in Propositional Dynamic Logic. In this
workshop paper, all proofs are omitted. Most of them are given in the internal report {3] from which this
paper is derived.

LPartly supported by Esprit Working Group Aspire, contact nr. 22704.
Z3upported by USF-VU as part of the SINS contract.
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2 Modal Action Logic

The syntactic elements of the Modal Action Language we use are the punctuation symbols: {0,
", }; a set of variable symbols V, a set of predicate symbols P including one distinguished predicate
denoted by =, a set F of function symbols, a set of propositional connective symbols {—, v}, the
quantification symbol {3}, a set A of atomic action symbols and the operation symbol {(.}}.

The intended use of the logic is the writing of action specifications for agents. A specific specification
uses only a finite subset of the language. A signature £ is thus defined as a specific combination of finite
subsets of the predicate, function and atomic action symbols: £ = (P, F, A). Apart from a signature,
a specifier wiil also have to provide arities for predicate and function symbols. The arity of a predicate
or function prescribes a length for the term lists concatenated to it. A signature contains the symbols
that are to be given an interpretation relative to a specification. All other symbols are given logical
interpretations. :

The next BNF-sentences (ad hoc extended to incorporate indexing of syntactic elements) define atomic
and well formed formulas.

term = vartable | constant | function™ ( termlist, )

constant = function?

termlist; == term

termlist, u= termlist,—y, term

atom = predicate™ ( termlist, )

@ = atom |T|Li-¢ |¢ V ¥|Vvariable ¢ | { action) ¢

We use ¢,%, X, ... as meta variables over well formed formulas. We apply the usual syntactic abbre-
viations. A specification Spec = (I, ®} is a pair consisting of a signature ¥ and a finite set & of well
formed formulas over .

To define the semantics of MAL we define the notion of MAL-structure,

Definition 1 Given a signature X = (P, F, A) a MAL-structure S = (8§, IA,D,IE,IJ‘E ) is defined as:
o S is o nonempty set of possible states
o T4 is o total function A — 25%5, that maps action symbols to relations over states.

o D is an arbitrary domain

o I3 is o function S~ (P = 207), that for each state s maps predicate symbols to relations over the
domain.

« 7 f is a function § — (F — (D™ = D)), that for each state s maps function symbols to functions
on the domain.

Combinations of states S and a relation Z4, that are by definition common to many structures, are
called “frames’ {F).

We do not want to interpret actions over states that differ in their interpretation of free variables;
actions can only influence the interpretation predicate and function symbols. Therefore we require that
the assignment of free variables to domain elements is common to all states. This implies that we need
a Domain that is common to all states. This is completely different from the situation in Dynamic
Logic [11}, where actions (programs) are interpreted to modify values (bindings) of free variables. in DL
it is the variables that are interpreted different in different states, while the interpretation of predicates,
functions and constants stays the same. Note however that function symbols of arity 0 can be used as
variables in the sense of DL.

Definition 2 Given a structure § = (5,24, D,If,,If) and a set of variables V, an assignment Ty is a
function V — D, assigning a domain element to each varioble in V.

The next definitions give the interpretation of well-formed MAL-formulas.

Definition 3 Given a signature & = (P, F, A), o structure § = (5, IA,D,Iﬁ,IfS ) and an assignment
Ty, an interpretation I of a term t in a state s is defined as:

I7 = Ty (t) in case t is a variable

¥ = Ifs(f“){l"f{tl), I8 (1)) in case t has the form f(y,. .., ta)



Definition 4 Given a signature & = (P, F,A), a structure & = (S,IA,D,IE,ZJ,S) and an assignment
Ly, validity of a wff ¢ in a state s of the structure is defined as:

R AT never v

8,8,Iy =ty =ty iff TP (s)(t1)returns the same domain element as 7 (s)(ty)
S: 3|IV ’: I’in{tls e :tn) "':ﬁ (Its(s){tl): ce vItS{S)(tn)} € Ig@)(ﬂn}
S8,Ivk=ovey iff 88,Iy k=g or 8,5,y =9 .

8,8, Ty = = iff not 8,8,Iy k= ¢ )

§,8, 2y |= 3z ¢(x) if Jor some d € D holds S, $, Zv{z v d} = ¢(z)

8,8, Iy F= (a)g i for some s' € S holds (s,s") € Tala) and 8,8', Ty = ¢
S8,y =T ahways

The modal formulas {a)¢, where a is an action, mean that there is a possible occurrence of g after
which ¢ holds. A formula is S-valid if it is valid in all states of a structure S. In that case, we say the
structure satisfies the formula and that the structure is a model of the formula. A formula is valid if it
is S-valid for every structure S.

3 Action specification in MAL

We investigate the use of MAL for writing action specifications. The first observation we make is that we
do not need formulas with nested modalities for the specification of atomic actions. Nested modalities
correspond to properties of sequences of actions. We assume here that all relevant system properties can
be specified by focusing on individual atomic actions. We distinguish four types of MAL-formulas:

¢ Conditional postcondition formulas: ¢ ~ [a]yy We say that ¢ is a sufficient precondition of g
with respect to the postcondition . We denote sets of these formulas by Drost

¢ Guard formulas: {a)T — y We call X & guard of a, equivalently, a necessary precondition for the
possible occurrence of a. We denote sets of these formulas by Pouard.

» Sufficient precondition formulas: ¢ — {a)T We call o a sufficient precondition of a. We denote
sets of these formulas by ®,,¢/. '

* Static constraints: § These are non-modal assertions that must be obeyed under any circum-
stance. We denote sets of these formulas by ®,..

‘The formulas ¢, ¥, 8, ¢ and X contain no modal constructs and are in disjunctive normal form.

Proposition 1 dny MAL formula that concerns only one action symbol and contains no nested modal-
ities, can be decomposed in q confunction of formulas of the forms defined above. ‘

This shows that the above formulas are the basic ones for the specification of actions in MAL.

Proposition 2 Each MAL-formula that is a confunction of the above formulas is satisfiable if and only
if it is satisfiable by a model with unique states (states with a unique interpretation of predicate and
function symbols), :

This means that there is actually no need to distinguish states from interpretations of the predicate
and function symbols. We do not have to consider different states with equal interpretations within one
model or different interpretations of predicates and functions in the same state. Therefore, from now on
we identify states with the interpretation of predicate and function symbols. This justifies that structures
S = (5, IA,D,Z'g,If) are from now on denoted as S = (D, 5,Z4). (Remark: this can be seen as a first
step in the selection of an intended model; in this first step all models with equal interpretations of
predicate and function symbols in different states are left out. This is actually an intuitive thing to do,
because the states of the model represent states of the agent, and agent states have no duplicates either.)

Since we focus on the specification of individual atomic actions, the previous proposition should not
come as & surprise. If we would have allowed the specification of properties of sequences of atomic actions,
truth conditions in states influence truth conditions in more then only the immediately ‘neighboring’
states. This means that states with equal interpretations of predicate and function symbols can not
safely be identified.

‘There is however one severe difficulty with specifications made with the above set of formulas: the
specification can easily become incorsistent. This is one of two reasons why we suggest to drop the
sufficient preconditions. The following proposition explains why.
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Figure 1: Comparing models on maximal reachability

Proposition 3 Specifications that consist of conditional postcondition formulas ®,.6:, guard formulas
Dyuard and static constraints ®;. are consistent if the static constraints are mutually consistent

Also in LOM [6] the syntactic restriction that sufficient preconditions are absent is applied. Absence
of this type of formulas implies transitions can always be dropped from models if they give rise to
inconsistencies. Another way to deal with the probiem is to weaken sufficient preconditions by specifying
them as defaults [2] {17], which may be overridden.

In the next section we mention the second reason for dropping sufficient preconditions and define how
the absence of sufficient preconditions formulas can be compensated for by a suitable notion of maximum
reachability.

3.1 The qualification problem in MAL specifications

A common theme in the Al-literature is that it is not possible to foresee all necessary preconditions
for the success of an action [8]. This problem is known as the qualification problem. This means
that a specifier actually is never able to give a sufficient precondition for an action, which gives us a
second reason to drop them from the set of specification formulas, Nevertheless we somehow need to
compensate for the absence of sufficient preconditions. This is done by incorporating in the semantics
the assumption that actions occur unless this contradicts guards (or static constraints, or conflicting
postcondition axioms). We accomplish this by formalizing the qualification assumption in the notion of
maximal reachability.

Definition 5 Given a signeture & = (P, F, AA) and two structures &' = (D, 5,7, ) end S = (D, 5,T44)
¢ AA

S Cne S iff
§cs
and
foralla g AA, T, s(a) € Taala)

Conr i3 a partial order on structures, because C,.- can easily seen to be itransitive, reflexive and
anti-symmetric. The ordering just ’prefers’ as much states and transitions over them as possible, thus
implementing the notion of 'maximal reachability’. In Figure 2 this is reflected by the fact that all
transitions and states in lower models are also in the model at the top.

Proposition 4 Let ® be o set of formulas for which there is a model. Then there is o Cr-mazimal
model.

Preferring C,n-maximal structures leads to non-monotonic entailment. An example of this is provided
by the specification ® = {[e]A(p)}. Under interpretation over C,,,-maximal structures, {a) A(p) is entailed
by &. However, this is no longer true for ® U [aj-A(p).

In the next section we formalize the notion of minimal change by defining a second ordering over
labeled Kripke structures.



3.2 The frame probleni in MAL specifications

Postcondition formulas describe the effect of an action. However, defining the effect of an action by means
of a postcondition always causes the frame problem [4]. This problem states that when specifying a
postcondition we only want to specify conditions that change. We do not want, and often are not able,
to specify all the conditions that do not change as the resuit of an action. So we want to make the frame
assumption that everything that has not been specified to change will not change.

In the following we will define an ordering over MAL-structures that formalizes this assumption. We
want the ordering to compare models on the property of 'access to "closest” possible states’. We first
define a notion of distance hetween states.

Definition 6 Given o structure § = (D, 5,Z4) and fwo states s = (IS,I}S') and 8" = (Ip,Z}) in S.
The difference Diff (s,s") between them is defined as the set of predicate instances and function values in
which the states differ (N(V) is the cardinality of a set V):

Diff{s,s') =
{PP(dr,... ,dn)) | (dr,...  da) € ZE(PP) and (dy,... ,dn) € TH{PM)} U
{(PF {1y dn)) | (1 da) € TE(PT) and (di, ... ,dn) € Tp(PT)} U
{7 (de, - d)) FZF (R dry -y dn) #FTH(fPY (L, -y dn)}

We want to use this measure of distance between states in the comparison between different MAL-
structures. We define an ordering over Kripke structures that is connected to the definition of difference
between states in such a way that structures where actions lead to 'closer’ states are lower in the ordering.
We will first give the two slightly different orderings, before we explain what they are really about.

Definition 7 Given ¢ signature & = (P, F, A} and two structures S = (D, 5,T4) and §' = (D,§', 1),

s Eme s Zﬁ
§'=5
and
Vo€ A, Vse S, (38 €S, (3,)eTy(a) & 35" € S, (5,5") € Tala))
and
Vo€ A, Vs€ S, Vs €S, ((s,8') € Ty(a) = 35" € S, ((5,5") € Za(a)
A N(Diff(s,5')) < N(Diff (s,5")))}

Cme i8 a pre-order on structures, because T, can easily seen to be transitive and reflexive. MC
stands for minimal cardinality. A structure is called an MC-model of & if it is a C,,.-minimal model of
®. MC-models determine the minimal cardinality interpretation (semantics) of a specification (Z, ®).

Definition 8 Given g signature &l = (P, F| A) and two structures § = (D, 8,24} and & = (D, 5", 7')),

S' Cms S iff

§=38

and

Yac A, Vse S, (3s' €8, (5,8 €Za(a) = 35" € 5, (s5,5") € T4(a)
A (Diff (s, 8") C Diff (s, 8"} v Diff (s, ) 2 Diff (s,5"))))
and :
Va€ A, Vs€ 8, Vs' €8, ((5,8) € T(a) = 3" € 3, ({(3,5") € Tala)

A Diff(s,5') C Diff(s,5"))))

Ems is a pre-order on structures, because T, can easily seen to be transitive and reflexive. MS
stands for minimal subset. A structure is called an MS-model of ® if it i3 & C,,.-minimal model of .
MS-models determine the minimal subset interpretation {semantics) of a specification (Z, &).

The first requirement in both the C,,. and C,,, ordering is that structures can only be compared
if they are based on the same set of states. In figure 1, where three models are compared on minimal
change, this is reflected by the fact that all models contain the same set of black dots.
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Figure 2: Comparing models on minimal change

The second requirement in both orderings forces that structures can only be compared if each tran-
sition from a state in one of the models actually corresponds to a transition from the same state in the
other model, that is comparable under the minimal cardinality respectively the minimal subset criterion.
For two transitions to be comparable under the minimal cardinality criterion, it is sufficient to demand
that they leave from the same state; the comparison is just made on the number of changes that both
transitions bring about. For two transitions to be comparable under the minima] subset criterion, the
changes of the first must be a subset of the changes of the second or the other way around. In figure 1
this is represented by the fact that if an arrow leaves from some state in model there is also an arrow from
this states in other models. (Note that the transitions may lead to different states. This ig actually where
We want to compare structures on; we want to prefer structures where transitions lead to ”closer” states.)
This s an intuitive criterion because we don't want this ordering to deal with the possible occurrence of
transitions (actions); this ordering should compare structures purely on the 'length’ of transitions. (This
observation is also made by Brass and Lipeck 12} [17].)

The last requirement in the definition deals with this 'length’ of transitions. In words it says: if
&' Eme & then for all transitions (s,8") in & there is a transition (s,8") in S that is ‘longer’. In yet
other words: if &' L,,. & then for corresponding transitions in corresponding states in the compared
structures, the ’longest’ transition in &' is always less or equal to the 'longest’ transition in S. In figure
1 the distance between dots represents the difference between states. The reason why this looks rather
complicated is that we allow non-deterministic actions; we have to compare structures in which actions
from one state can lead to several other states.

The difference between the semantics generated by both orderings will become more clear when we
look at an example in section 3.5 and in the following section where we study minimal models for several
specification classes. But we already can say that the minimal subset semantics is weaker than the
minimal cardinality semantics, as is expressed by the following proposition,

Proposition 5 4An MC-model of ® is also an MS-model of ®.

3.2.1 Minimal models for different specification classes

We will now investigate properties of minimal models for several classes of specification formulas. The
properties we study are existence of minimal models, equivalence of the minimal cardinality and minimal
subset criteria and determinism of minimal models.

We start of with the most general class we consider.

Definition 9 We will refer to formulas & 04, Pguard, Pic as defined before, as formulas of CLASS I

An important property of minimal models for this most general class we consider is that if there
is & model with a non-empty accessibility relation, then there is a minimal model with a non-empty
accessibility relation.

Proposition 6 Let & be a set of formulas of CLASS I that has a model M = (D,8,Za) for which
Zala) # 0 for all @ in the formulus. Then there is an MS-model Myrs = (D,S,I}) of ® for which
Ty{a) # @ for all a in the formulas and an MC-model My = (D, S, %) of ® for which (a) #8 for
all a in the formulas



For this type of specifications MS-models and MC-models do not coincide and are not deterministic,
as can be shown by a simple propositional example,

Example 1 Consider the specification:

[dial number](get.connection v get.busy tone))
get_connection — costs.money
{dial_.number)T — —costs.money A ~get_connection A —get_busy tone

Under the minimal subset criterion both the state where get{connection) holds and the state where
get.busy . tone holds is reachable. Under the minimal cardinality criterion only the state where get.busy tone
holds is reachable. (Note that the constraint get_connection — costs.money is interpreted as being capable
of inferring derived updates. We will come back to this in section 3.4)

We now turn our attention to quantification. Existential quantification is a source of non-determinism,
as will be clear from the second class we study.

Definition 10 the description of CLASS IT
formulas:
Ppost 1 = a]lLi ALy AL AL
Bgvarat ()T = x
Dy (MlAMgA...AM;)V(NI/\Ng/\.../\Nm)
with the Ly, M; and N; positive or negated atomic formulas (literels), and no restrictions on the
quantification of variables whatsoever.

CLASS I1 is a subset of CLASS I. The difference is that postcondition formulas are made determinate
(contain no disjunctive information) and constraints are limited to contain at maximum one disjunction
in the disjunctive normal form. The following theorem holds for specifications of this type:

Proposition 7 For formulas of CLASS II the minimal subset and minimal cardinality semantics coin-
cide.

Although the postcondition in the postcondition formulas of specifications of CLASS II are com-
pletely determinate, minimal models for these specifications are not deterministic. We will first define
deterministic models and then give an example why minimal models for this class are not deterministic.

Definition 11 A structure S = (D, §,Z4) is deterministic if for each state s € S and for each a there
is mazimaolly one state s' such that (s,s8') € Ty{a).

Example 2 Consider the specification:
[Shoot_a_gun|Isomething, Hit(something)

Obuiously if the domain for the Predicate Hit has several "objects”, there are many possible transitions
possible from a certain state. More of these transitions can be present in minimal models (the minimality
criteria do not minimize nondeterminism!) This reflects the fact that there are many things that are
possibly hit. In the following we will see that the existentiol quantification is the only source for non-
determinism in this specification.

The last class we consider precisely describes the class of formulas for which minimal models are
deterministic. This is an important class. Since the minimal (intended) models are deterministic for
these formulas, the only intention a specifier can have when providing formulas of this form, is to specify
2 deterministic system. Interpreting the formulas under a non-minimal semantics would allow for non-
deterministic interpretation of the formulas, which is not what is intended.

Definition 12 the description of CLASS III
formulas:
@past: q!S——}{a]L]_/\sz\.../\Lk
(I’guard : (CL)T - X
P : (Mll\MzA.../\MI)V(Nl/\NQ/\...I\NM}
with the Ly, M; and N; positive or negated atomic formulas (literals), and with the restriction on the
quantification that variables in Ly, M; and N; are all universally quantified.



This class is a subset of both CLASS [ and CLASS II. The difference with CLASS I is that we allow
only universal quantification. We can prove the property that for formulas of CLASS 111, both MS-models
and MC-models are deterministic. ‘,

Proposition 8 For q specification Spec build with formulas from CLASS III; MS-models and MC-models
are deterministic. '

The former property does not hold if we take as constraints the more generai class of Horn-clauses,
as is shown by the next example.

Example 3

C{5) — [a] A7) ;
()T — =A(j) A 7B(5) A C(5)
A7) A C(G) — B()

The state {A(7), B(j), C(j)} has two possible follow-up states {A(5), B(j), C(§)} and {A(), B(H), T}
We could of course add o distinction between base and other predicates to work around this.

3.3 Min-Max-models

For the interpretation of specifications under both frame and qualification assumption we have to combine
orderings. We do this by applying them one after the other. What, if any, is the "correct” {intuitive)
order in which to do this? The answer can be found by looking at what the orderings are supposed to
represent. The minimal change orderings concern the effect of actions independent from whether they
occur or not. Maximal reachability deals with possible occurrence. This suggests that it is natural to
apply minimal change first. First the minimal change ordering determines what actions we actually mean,
by 'determining’ their effects. And only after that we can "talk’ about the possible occurrence of actions.
This motivates the following definition.

Definition 13 Given a specification (L, ®), a Min-Maxz-model is defined as a C,,.-mazimel element
of the set of MS/MC-models of ®. : :

The next {propositional) example shows that defining this in reverse order leads to a not-intended
model.

We take a signature with P = {4,B}, and A = {a}, and the following set of formulas: & =
{la]A,{a})T — ~A A =B}.

;& - {A) (1 e e {A)

(A8} LAY (AR} ® LECH

The left picture shows the L..-maximal structure that satisfies ®. This structure is however not
MS-satisfying. This shows it is not useful to apply maximality and minimality in this order. If we start
by applying minimal change, we are left with two MS-models of the example formulas, the structure with
no access to other states at all and the one shown in the right picture. Of these two clearly the one in
the picture is C,,-maximal and the intended one.

The MS-models of a set of formulas & (we mean general formulas here) form a partially ordered set
under the C,,,-ordering. This set is not a lattice, as is shown by the following example.

Example 4 Take the formula ~{{a)A(c) A {a) B(c)) and the two MS-satisfying structures S with T4 is

{{a, ({}, {{A, {d})}} and S with I', is {(a, ({}, {{B, {d})}}}}. There is no MS-satisfying structure that
is an upper bound for both structures § and S’ A structure that might be seen as e candidate is 8" with

2% s {{a, ({3, {{B. {d}1) D), (o, ({1 {{A, {4} 1))}, because it is an upper bound under the Cp,.-ordering.
But this structure is not MS-satisfying (not even satisfying).

So in general there can be more Min-Max-models of a set of formulas ®. However, for specification
formulas of the restricted form we defined, we can prove that the MS-models form a complete lattice,
which leads to the following proposition.



Proposition 9 Each specification 00, has a unique Min-Max-model if it has a model.

In Min-Max-models, the maximization in most cases causes severe non-determinism. To see this we
once more look at the following example.

Example 5 Consider the specification:
[Shoot_a_gunjIsomething, Hit(something)

If the variable "something” ranges over an infinite domain of objects, the action S hoot_a.gun from o
given state branches to an infinite number of other states.

3.4 The interpretation of constraints

We will now shortly discuss two ways to interpret constraints. The first one is already applied in the
earlier examples. There Constraints have the same ”status” as other specification formulas, in the sense
that in the process of selecting the intended model of a specification, they are accounted for from the
beginning. So, we start with all models of all specification formulas, including the constraints, apply
the minimal change criterion, and then the maximal reachability criterion. This way of interpreting
constraints we call the "ramification semantics” of constraints, because it is an interpretation that leads
to derived effects.

There is also the possibility to postpone the role of constraints to the second step in the selection
procedure of the intended model. This means we start with all models of specification formulas minus
the constraints, apply the minimal change criterion, then apply the criterion that models should ‘satisy
the constraints, and finally apply the maximal reachability criterion.

By postponing the influence of constraints to the second step in this selection procedure, many
transitions are deleted. This is because it may be the case that in the first step transitions are forced
to reach closest possible worlds that in the second step may be found to violate a constraint. The
transitions that are "deleted” are precisely the derived updates that are present in the ramification
semantics. Therefore we call this interpretation of constraints simply the "constraint semantics”.

3.5 Example

The fbliowing example specification is inspired by the Yale shooting problem:

Gun loaded sharp — [fire_gun|Gun blown_up v Bullet.emitted
Gun.loaded blank — (fire_gun]Gun blown_up v Air_and_dust_emitted
— [fire_gun|Big_noise
(fire-gun)T — ~Gun.blown.up

* (fire.gun)T — Gun.loaded sharp v Gun loaded blank
Bullet emitted — Sornething.is_hit
~(Gunloaded_sharp A Gun_loaded.blank)

First we conclude that the ramification semantics is the most intuitive interpretation for the con-
straints. Under the constraint semantics the condition Somethingis.hit can actually never change to
true as a result of the action fire_gun. It can only be true after the action fire_gun if it was already
true in the state before fire_gun took place.

We will also have to choose between the the minimal subset and the minimal cardinality criterion. The
choice is not too difficult if we look at the postcondition Gun blown_upV Bullet_emitted. Given the fact
that we interpret constraints as possibly leading to ramifications, the truth of Bullet.emitted will imply
the truth of Something.is.hit in resulting states. This means that the action Fire_gun usually 'has the
choice’ between making one atom true {Gun.blown_up) or two (Bullet_emitted and Something.is_hit).
The minimal cardinality semantics will choose the first alternative which is really counterintuitive. The
minimal subset semantics just makes no choice; both successor states are possible. This means that the
minimal subset semantics is a more non-deterministic interpretation.

It is easy to give examples of how the action fire_gun can be qualified. Adding {Gun.blown._up} or
{~Big_noise} would leave us with no transitions at all. Adding {~Gun.loaded.sharp} would result in
transitions that never make Something s _hit true.

Finally we want to point out that the language to 'query’ the intended model can be any language
whose semantics can be defined using labeled Kripke structures, as is also argued by Lifschits e.a. [15]. As
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an example of this we give some properties stated in Dynamic Logic using process operators like iteration
test and sequence, that might be checked on the intended model of the example formulas.

Gun_loaded blank — {fire_gun*|Gun loaded_blank

It says that if the gun was loaded with a blank it will stay loaded with blanks after a possibly infinite
amount times of shooting.

[Gun.loaded_sharp? ; fire_gun](~Gun_blown.up — Something.is.hit).

It says that if the gun is fired in a situation where it is loaded with a bullet, and as the result of it

. the gun will not blow up, then something is hit.

4 Comparison with other work

The frame problem and the associated problems of qualification and ramification are common themes in
the Al literature on knowledge representation and reasoning about action and change [4].

Ryan [20] argues that structure consisting of a hierarchies of agents and sub-agents can be used to
generate frame axioms automatically. The structure, that must be provided by the specifier, induces
a notion of locality. This makes it possible to automatically generate two kinds of completion axioms:

"local attribute axioms” stating that local atiributes can only be affected by local actions and "local
action axioms” stating that local actions can only affect local attributes. This last axiom involves a
second order property, because it refers to attributes and not to their values. The proposed completion
is however not complete. The first form of incompleteness is that within agents, all local attributes can
still be affected by all local actions. The second form is that throughout the whole siructure of agents all
non-local attributes can still be affected by all non-local actions. Whether this gives rise to unintended
results depends on the agent structure given by the specifier.

Reiter’s approach to the frame problem [19] is to rewrite "effect axioms” to "successor state axioms”.
Effect axioms say for each action which predicates change their value if the action is performed. Successor
state axioms say for each predicate which actions change when performed. Reiter’s approach consists
mainly of a change of focus from specific actions to specific predicates and a form of completion on them.
An important difference with our approach is that Reiter uses sufficient conditions for the possibility of
an action a, while we use only necessary conditions. So Reiter can actually never forbid actions from
being possible in certain situations, he can only force them to be possible. As argued, we chose not
to specify sufficient conditions, because this might cause problems in the presence of static constraints,
which is exactly the problem Reiter et al. run znto {16]. It is easy to show that Reiter’s "successor state
axioms”, that are generated from "effect axioms” by performing a form of completion, can be expressed
in MAL. However, Reiter’s approach has several limitations. First of all it should be mentioned that in
Reiter's approach the completion can only be performed on postcondition formulas that are determinate
(no disjunctive postconditions).- This means that this approach does not deal with non- -deterministically
specified effects. Second, the completion is not possible in the presence of static constraints that possibly
contradict the effect. Third, the completion is not "complete”. For details on this we refer to a full
version of this paper [3].

Borgida et al. [1] take the perspective of the designer of specification languages and discuss ways to
state that “nothing else changes” by syntactic as well as semantic means. Our work can be regarded as
introducing a richer semantics for the specification language to capture this.

Giunchiglia, Kartha and Lifschitz introduce the action language AR [9], which is an extension of
the language A {7], introduced by Gelfond and Lifschitz. AR differs from A in that it also deals
with ramifications. There is a straightforward translation of most elements of the language AR into
elements of (the propositional version of) our language. Under this translation their (minimal) inter-
pretation function Resp perfectly matches our Min-Max-models {because they only consider determi-
nate postconditions there is no difference between the minimal subset or minimal cardinality criterion).
The difference between their language and ours is that they can express that an effect possibly occurs
(A possibly changes F if P) which can not be expressed in our language. On the other hand we can
express that the effect of an action is a choice between two or more alterations {[o](A V B)), which can
not be expressed in their language. Interesting is that both constructs are claimed to represent the
non-deterministic aspect of actions.

Winslett’s work on database update semantics [24] focuses on a model-oriented appro&ch to updates,
de-emphasizing the reiation between the specification and the models. Instead, we base our semantics
on the declarative semantics of a specification in MAL, which allows us to reason about updates in the
same language.
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Brass and Lipeck [2] [17] study action specification with the help of defaults. They also define orderings
over modal interpretations, Frame and other assumptions are represented by formulas interpreted as
defaults. This still puts the responsibility on the specifier to provide such formulas, which is not always
desirable. Furthermore their models represent "action traces” and do not allow for non-determinism.

5 Conclusions and future work

In this paper we defined a preferential semantics for an important class of first order MAL formulas,
that reflects the principles of minimal change and maximal reachability. Several results concerning more
refined classes of specification formulas were reported.

We plan to compare existing completion procedures, such as the one suggested by Reiter, with our
semantics, and to compare existing procedures for scenario generation and reachability analysis with
our semantics. We also plan to investigate ways to generate the intended model (Min-Max-model) from
a given specification. For that we will have to limit ourselves to finite domains and a finite number
of actions. We will have to find a suitable representation for models and an algorithm that connects
this representation to specifications. This opens possibilities for code generation and preferential model
checking (to be read as "checking preferential models”) using a model-checker like SMV (5] [18]. An
example of the kind of properties that could be checked by preferential model checking was given at the
end of the example section,

Another interesting future research area is the study of the notions of minimal change and maximal
reachability in the context of concurrent actions and processes.
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An Argumentative Framework for Reasoning
with Inconsistent and Incomplete Information

Alejandro J. Garcia! and Guillermo R. Simari!’ and Carlos I. Chesfievar!

Abstract. We present here a knowledge representation lan-
guage, where defeasible and non-defeasible rules can be ex-
pressed. The language has two different regations: clossical
negation, which is represented by the symbol “~" used for
representing contradictory knowledge; and negaiion as fail-
ure, represented by the symbol “not” used for representing
incomplete information, Defeasible reasoning is done using a
argumentation formalism. Thus, systems for acting in a dy-
namic domain, that properly handle contradictory andfor in-
complete information can be developed with this language.

An argument is used as a defeasible reason for supporting
conclusions, A conclusion ¢ will be considered justified only
when the argument that supports it becomes a justification.
Building & justification involves the comstruction of a non-
defeated argument A for ¢. In order to establish that A is
a non-defeated argument, the system looks for counterargu-
ments that could be defeaters for A. Since defeaters are argu-
ments, there may exist defeaters for the defeaters, and so on,
thus requiring a complete dialectical analysis. The system also
detects, avoids, circular argumentation, The language was im-
plemented using an abstract machine defined and developed
as an extension of the Warren Abstract Machine (WAM).

1 The language

Our language is defined in terms of two types of program
clauses:

o extended program clauses *(EPC): I <= G1,...,qn.
o defeasible program clauses’(DPC): | =< q1,...,qn.

There are two different negations: clessical negation, which
is represented by the symbol “~" used for representing con-
tradictory knowledge; and negation as feilure, represented by
the symbol “not” used for representing incompiete informa-
tion. In both kinds of clauses { is a literal (i.e., a predicate
“p” or a negated predicate “~p”)}, and each ¢ (n 2 0) is a
Hteral, or a literal preceded by the symbol not. Thus, clas-
sical negation is allowed in the consequent of a clause, and

-
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We use this terminology following [8] because we allow classical
negation as done there. However, the system presented here, can
accommodate inconsistency whereas the language reported in 8]
CANNOY,

Given the similarity in use and syntax, we uge the term ‘clause’
for this construction, even though it is not properly a clause, but
a meta relation between the head and bedy of the rule.

b3

L7

negation as failure over lterals is allowed in the antecedent.
If n = 0, an EPC becomes “l + true.” (or simply “/."} and
is called a fact, whereas a DPC becomes “l - true.”, and is
calied a presumption.

We will use the usual PROLOG typographic conventions for
an BPC, except that we will write “head <- body” rather than
“head :- body”; and “head -< bedy” for a defeasible clause.
An EPC is used to represent sound (i.e., not defeasible) infor-
mation such as: bird(X) <~ penguin(X) which expresses that
“all penguins are birds”, whereas a DPC is used to represent
defeasible knowledge such as: f1y(X} -< bird(X) which ex-
presses that “presumebly, a bird can By” or “usually, a bird
can fy."” '

As mentioned earlier, program clauses can contain two fypes
of negation. Classical negation (~) can be used in clauses such
as:

~giilty(X) <~ imnccent(X).
rfrea(X) ~< ~innocent(X).

to express that “an innocent is not guilty”, and that “usually,
if someone is not innccent, then it is not free.” Negation as
failure (not) may also be used in clauses such as:

innocent{X) -< not guilty(X).
~crogs-railway-tracks -< not ~train~is-coming.

t0 exprese that “sseume that someone is innocent whenever
it has not been proven that s/he is guilty” and “generally, do
not cross railroad tracks if it cannot be proven that no train
is coming.” This kind of rules could not be written with only
one type of negation. ‘

Operationally, the difference between the two negations is
as foilows: a query “~q” succeeds when there exists a proof for
“~g.” On the other hand a query “not g” will succeed when
no proof can be found for “q”. In fact, proving a negated literal
“~p" is carried out just as if the “~"” symbol were syntacti-
cally part of the predicate name, thereby treating “~p” as
an atomic predicate name. In this system, a proof is a formal
derivation called an argument, which justifies a query ¢. Ar-
guments and justifications will be introduced in the following
section.

With two types of negations, the Closed World Assump-
tion (CWA) of a predicate p could be expressed within the
language, writing the clause

~p(X) < not p(X).

i.e., “%~p(X) will be derived whenever the proof of p(X) fails.”
Also, new forms of CWA can be written with the obvious
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interpretation:

p(X) <- nmot ~p(X).
p{X) <~ mot p(X).
~p(X) <~ mot ~p(X).

Nevertheless, if a defeasible clause is used, a defeasible no-
tion of CWA could be represented:

~p(X) ~< not p(X).

which expresses that “the failure of the proof of p(X) is 2 good
reason to assume ~p{X)", Thus, the following clauses can be
written:

~dead(X) -< not dead(X).
dangerous(X) -< not ~dangerocus(X).

Definition 1.1 A defeasible logic program (DLP) is a finite
set of EPCs and DPCs.

Let P be a DLP; then, we will distinguish the subset S of
EPC in P, and the subset D of DPC in P.

Example 1.1 : Here follows a DLP that will be referred to in
other examples:

£1y(X) -< bird(X).
~f1y(X) -< chicken(X).
f1y(X) ~< chicken(X),scared(X).
chicken(coco) ~< true.
penguin(petete) -< true.
~dangerous (X} =< pet(X).
dangerous(X) -< tiger(X).
bird(X) <~ chicken(X).
scared{coco).

bird(X) <- penguin(X).
~£1y(X) < penguin(X).
pet(kitty).

tiger(kitty).

o

Civen @ DLE P, a defeasible derivation for a query * -< ¢
is a finit€ set of EPC and DPC obtained by backward chaining
from q as in = PROLOG program, using both strict and de-
feasible rules in the order specified by the DLP. The symbol
“~." is considered as part of the predicate when generating a
defeasible derivation.

Example 1.2 : Using the DLP of example 1.1, there are de-
feasible derivations for each of the following queries:

-< ~fly(petete)

-< fly{peteta)

-< fly(coco)

-< ~fly(coco)

0

It can be seen from Example 1.2, that the defeasible deriva-
tion notion does not forbid inferring two complementary lit-
erals from a given DLP 7. In order to aliow only one of two
complementary goals to be accepted as a sensible possibility,
we need a criterion for choosing between the two.
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In the next section the notion of argument will be intro-
duced to allow the defeasible argumentation formalism de-
veloped in {20, 19] which will allow us to define an inference
scheme for the language. But first, we need to explicate when
a set of clauses is deemed consistent.

Definition 1.2 (Consisteney) A4 set of program clauses A
18 consistent if there is no defeasible derivation for any pair
of complementary literals (with vespect to classical negation
%"} Conversely, e set of program clauses A is inconsistent
if there are defeasible derivations for a pair of complementary
literals.

Given a DLP P, the set & must be consistent, although the
set D, and hence P itself (i.e., & U D), may be inconsistent.
It is only in this form that a DLP may contain potentially
inconsistent information.

Example 1.3 : Here follows a set of rules that supports in-
consistent conclusions, because fly(petete) and ~£1ly(petate)
can be derived.

penguin{petete) -< true.
£1y{X) =< bird(X).

bird(X) <~ penguin(X).
~£1y(X) <~ penguin(X).

Observe also, that the DLP of example 1.} is an inconsistens
set of program elauses, although its associated set & is a con-
gistent one. O

2 Arguments, Rebuttals and Defeaters

In this framework, answers to queries must be supported by
arguments. However, arguments may be defeated by other ar-
guments. A query q will succeed if the supporting argument
for it is not defeated; it ‘then becomes a justification. Before
defining formally the notion of justification, we define argu-
ments, counterarguments and defeaters.

Definition 2.1 (Argument) Anargument A4 for a query h,
also denoted (A, h), is o subset of ground instances of DPUSs
of T, such that: {1} There exists a defeasible derivation for h
from S U A, (8} 8§ U A is consistent, and {8} A is minimal
with respect to set inclusion.

The above definition is adapted from [20] to fit in this
iramework. It states that an argument is a consistent defea~ -
sible derivation for a given query k, using a minimal set of
rules. Note that EPCs are not part of the argument.

Example 2.1 : Consider the DLP of example 1.1
The query -< ~fly(coce) has the argument:

o

However, the query =< fly{coco) has two arguments:

|

fly(coco) ~<:chicken(coco) ,scared(coco).
chicken{coco} -< true.

~fly{coca) -< chicken(coco).
chicken{coco) -< true.

fly{coco) -< bird{coco).
chicken{coco) -< true.

o



The query -< ~fly(petete) has the argument:
Ay = { penguin(petete) -< trus. }

Finally, there is no argument for -< fly{petete) because
its defeasible derivation is inconsistent with respect to & (see
example 1.3). O

Definition 2.2 (Sub-argument) An argument (B,q) is a
sub-argument of {A, h} if BC A.

Definition 2.3 {Counterargument or rebuttal) We say
that {A1,ht) counterargues or rebuts {As, hp) at literal b, if
and only if there exists a sub-argument (A, b} of (A2, ha) such
that the set SU {h1,h} is inconsistent.

An srgument is in fact a proef tree, involving rules from
8 and 7. Hence, arguments will be depicted as triangles ab-
stracting a tree shape {19]. The upper vertex of the triangle
will be labeled with the argument’s conclusion, and the argu-
ment will be associated with the triangle itself. Sub-arguments
will be represented as smaller triangles inside a big one, which
corresponds to the main argument a¢ issue. Figure 1 shows
the graphical representation of an argument (Ag, h2) with one
sub-argument {4, ), and a counterargument {41, k1}.

hy hi
h
A
Ay Az

Flgure 1. Argument {41, 1) counterargues {4z, ha} at b

Example 2.2 : Continuing with Example 2.1, the argument
A is a counterargument for both Ay and As (at £1y(coco)),
and also Az and As are counterarguments for A; (both at
~$1y(coco)). Note that the argument A4 has no counterar-
guments. G

As we mentioned before, the justification process for prov-
ing g involves the construction of a non-defeated argument A
for . In order to verify whether an argument is non-defeated,
its associated counterarguments By, By, ... By are examined,
each of them being a potential (defeasible) reason for reject-
ing A. If any B; is better than {or unrelated to) A, then 5; is
a candidate for defeating A. If the argument A is-better than
B; then B; is not taken into account.

S0 we must clarify what makes an argument “better” than
an other one. In this wark, as a particular example, we will
define a formal criterion called specificity which allows to dis-
eriminate between two conflicting arguments, However, the
notion of defeating argument can be formulated independently
of which particular argument-comparison criterion is used.
Namely, if some B; is better (i.e., more specific, in our case)
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than A, then B; is called a proper defeater for A; if neither
argument is better than the other, a blocking situation oc-
curs, and we will say that B; is a blocking defeater for A. This
is an skeptical criterion that could be changed producing a
different formal decision procedure.

Definition 2.4 (Defeating argument)

An argument (Ay, by} defeats an argument {Ag, ha} at literal
&, if and only if there exists a sub-argument (4, b} of (A2, h2)
such that (A1, h1) counterargues (A, ha) at b, and either:
(1) {41, h1) is strictly more specific than (A4, h) (then (41, f1)
is a proper defeater of {Az2, ha}); or
(2) { A1, h1) is unrelated by specificity to (A, h) (then (A, hi)
is @ blocking defeater of (Az, ha)).

The next definition characterizes specificity as defined in [14,
19] (adapted to fit in this framework). Intuitively, this notion
of specificity favors two aspects in an argumens: it favors an
argument (1} with more information content and (2) with
shorter derivations. In other words, an argument is deemed
better that another if it is more precise or more concise. This
notion is made formally precise in the next definition. We
use the symbol “ 7 to denocte a defeasible derivation (i.e.,
Ph |k means that A has a defeasible derivation from P), and
the symbol “+” to denote a derivation where only EPCs are
used. Let Sg be the maximal subset of & that does not contain
facts. Let F be the set of literals in P that have a defeasible
derivation.

Definition 2.5 {Specificity)

An argument A; for hy is strictly more specific than an
argument Ay for ho (denoted { Az, by} > (Aa, he)) if and only
if:

(1) For all G © F : if SaUGU Al kg and SqUG I hs,
then SeUG U Aspe ha.

(2) There exists G' C F such that Sg UG U A2 v he and
Ssud ¥ ha and Sa UG'U A4 i h.

Example 2.3 : Continuing with Example 2.1, argument A
is strictly more specific than the argument Az because .4,
does not use the EPC bird(X) <~ chicken(X) and therefore
is a more direct argument. However, argument Ay is strictly
more specific than A1, because it contains more information.
Then, Ay is a proper defeater for As, and Aa is a proper
defeater for Ap. O

3 Dialectical Trees and Justifications

Since defeaters are arguments, there may exist defeaters for
defeaters, and so on. This means that it is necessary to pursue
argument supports to ascertain their well-foundedness. This
justification process is called a dialectical analysis. It can be
specified in the context of Logic Programming in the following
way {here \+ stands for PROLOG’s negation as failure):

justify{Q) :- find.argument(Q,A), \+ defeated(A)
defeated(A) :- find defeater(A,D), \+ defeated(D)

The above description leads in a natural way to the use
of trees to organize cur dialectical analysis. In order to ac-
cept an argument 4 as a justification for ¢, a tree structure
can be generated. The root of the tree will correspond to the



argument A and every inner node will represent & defeater
(proper or blocking) of its father. Leaves in this tree will cor-
_respond to non-defeated arguments. This structure is called a
" diglectical tree.

Definition 3.1 {Dialectical tree) [18/

Let A be an argument for h. A dialectical tree for {A, R},
denoted T; 4, ny, 18 recursively defined as follows:

(1) A single node labeled with an argument (A ) with no
defeaters (proper or blocking} is by itself a dialectical tree for
(A, k). This node is also the root of the tree.

{2} Suppose that {A, k) is an argument with defeaters (proper
or blocking) (A1, k1), (A2,ha}, ... {An, hn). We construct
the dialectical tree for (A, k), Toa,ny, by ladeling the root node
of with (A, k) and by making this node the parent node of the
roots of the dialectic trees for (As, h1), (A2, ha), ... (Any Bad,

i.e., T&—M.M)J T('Az.hz): HERE) T‘Ew*n.hn)'

Nodes in the dialectical tree can be recursively marked as
defeated or undefeated nodes (D-nodes and U-nodes respec-
tively). Let A be an argument for a literal h, and T4, ny be
its associated dialectical tree. '

Definition 3.2 (Marking of a dialectical tree)

(1) Leaves of Ta,n are U-nodes.

(2) Let {B,q) be an inner node of Tian- Then (B,¢) will
be an U-node iff every child of {B,q) is a D-node. The node
(BB,q) will be a D-node iff it has at least anU-node as ¢ child.

This definition suggests a bottom-up marking procedure,
through which we are able to determine if the root of a dialec-
tical tree turns out to be marked as defeated or undefeated.

(Aa}

| >

BlsNb) ( Bg,Nb) ( 331Nb )

—

.

{ sl,mn/> (Ea~h) {E3,~b)

{ Fi~k )
Flgure 2. Dialectical tree for example 3.1

Example 3.1 : Consider the following DLP:

a < b ~g =< 1. ¢ — true.
b ~< c. ~h ~< k. f « true.
~b -< e, ~b ~< i, i+~ true.
e —-< f. ¥ ~< L. 1« true.
~b -< ¢,f. ~h -<c n +— true.
~e —-< h, ~h -< 1.

h -< i, ~¥ -< n,l.

Here the argument A={ a -< b. b -< c. } for a can be buiit,
Argument A has three defeaters attacking the literal b By={
~b -< g. e ~< £. } Be={ ~b -< ¢,f. }and Ba= {~b -< i,
}. By is a proper defeater for A, the other two are blocking
defeaters. Argument 5; has also two blocking defeaters at-
tacking the literal e: C1= {~e -< h. k ~< 1.} and C2= {
~e =< 1.}, Argument Ci has three blocking defeaters: £1, £2
and £3, and finally £;has one proper defeater F1. The com-
plete dialectical tree is shown in Figure 2. Figure 3 shows the
same dialectical tree after applying the marking procedure of
Definition 3.2. Note that nodes labeled with “#" need not to
be considered in the analysis and pruning of the tree can be
done.

{81,"\-'4( Eq,h )U\#

(Jz‘la’uk )U

Figure 3., Marked dialectical tree for Figure 2 with pruning

Definition 3.3 (Justification) Let A be an argument fora
literal h, and let T, a,n) be its associated dialectical tree. The
argument A will be ¢ justification for  literal b if the root of
Tea ny 15 an U-node.

If & query h has a justification, then it is considered ‘justi-
fied’, and the answer to the query wiil be YES. Nevertheless,
there are several reasons for an argument not to be a justifi-
cation: there may exist a non-defeated proper defeater, or a
non-defeated blocking defeater, or there may be no argument
at all. Therefore, in a DLP there are four possible answers for
a query “-~h":

e YES, if there is a justification A for h.
e NO, if for each possible argument A for h, there exists at
least one proper defeater for A marked as U-node.
e UNDECGIDED, if for each possible argument A for b, there are
" no proper defeaters for A marked U-node, but there exists
at least one blocking defeater for A marked U-node.
« UNKNOWN, if there exists no argument for b.

Finally, an example that shows all the concepts defined
above is presented.

Example 3.2 : Given the DLP of Example 1.1, the following
arguments can be built:



~fly{coco) -< chicken{coco).

A
! { chicken{coco) -< true,

for ~£1y{coca);

A= fly(coco) -< chicken{coco) ,scared(coco).
%=1 chicken(coco) -< true.

for £ly(coco);

|

Ay= fiy{coco) -< bird{coco).
27 1 chicken(coco) =< true.
for fly(coco); :

}

By= { ~dangerous{kitty) -< pet(kirty). }
for ~dangerous (kitty);

Bg:{ dangerous (kicty) -< tiger(kitty). }
for dangercus{kitty); and

C={ penguin(petete) -< true. }
for ~fly(peteta)

If the query -< fly(ecco) is submitted, the system first
builds the argument 43 and looks for a defeater for it. Then,
defeater A is found, so the system tries to find a defeater
for A1, and then As is found. Since Aa has no defeaters, it
becomes an U-node. Therefore 4 becomes a D-node and A2
becomes an U-node. Thus, A2 is a justification for £1y{coco},
and the answer for this query is YES.

The query “~fly(coco)” is answered NO, because the ar-
gument A; has the proper (non-defeated) defeater As. The
argument B1 has the blocking defeater By, since Bp has no
defeaters, then the query “dangerous (kitty)” is UNDECIDED.

Note that the query “~dangerous (kitty)” is also UNDECIDED.
q ang ¥

Finally the answer for “fly(petete)” is UNKNOWN because
there is no argument for this query. 0

4 Negation as Failure

As mentioned earlier, the language has two different nega-
tions: classical negation, which is represented by the sym-
bol “~" used for representing contradictory knowledge; and
negation as failure, represented by the symbol “not” used for
represensing incomplete information. Operationaliy, the dif-
ference between the two negations is as follows: a query “~q”
succeeds when there exists a justification for “~«.” On the
other hand a query “met g" will succeed when no justifica-
tion for ‘g” can be found. In our language, negation satisfies
the coherent principle established in [2]: “If ~p succeeds then
not p also succeeds.”

Example 4.1 : Consider the following DLP:

p(X%) ~< not q(X).
q(a).

q(X) < z(X).

rib).

r{el).

~q{X) ~< £(X),s(X).
s(e).

Here the query “~q{c)” succeeds because it has a justifica-
tion, however, there is no justification for “~q(b)" (actually
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there is no argument for this query). The query “not q(d)"
succeeds because there is no justification for q(d), However,
since there is a justification for q(b), then the query “mot
q(b)" fails. Note that the query “not g{c)"” succeeds, because
although there is an argument for q(c}, there is a defeater for
it, so there is no justification for q(e). Thus, the queries p(c)
and p(d? succeed, whereas p{a) and p(d) fail.

5 Avoiding circular argumentation

A DLP is a finite set of program cleuses, and therefore there
is a finite number of arguments that may be involved in a
dialectical tree. Nevertheless, we need to impose conditions
in order to avoid cycles in this tree. I [19], it is shown that
circular argumentation is a particular case of follacious argu-
mentation. There, a detailed analysis exposes different kinds
of undesirable situations, and solutions are proposed accord-
ingly. We next briefly present the problems and their solutions
and refer to (19] for details.

In order to analyze fallacious argumentation, it is useful to
see a dialectical tree as a set of argumentation lines. Follow-
ing [10}, this notion is formally defined as follows. Let {4q, ho)
be an argument, and let T 4., »y) be its associated dialectical
tree.

Definition 5.1 {Argumentation line) Fvery path A from
the oot { Ao, ho) to & leaf (An, hn) i Tiug, ney, denoted A
= [(AﬁshO)! {Afshl): <A2ah’2>J LEED) (Aﬂvh‘ﬂ)]r is called an
argumentation line for hg.

In each argumentation line A = [{Ao, ho}, {A1,h1}, ...,
(Ai i),y {An, Rn}], the argument (Ao, ko) is supporting
the main query ho, and every argument {A:, ;) defeats its
predecessor (Ai..1, hi1). Therefore, for & > 0, (Aak, har) is
a supporting argument for ko and (Asg+1, hars1) is an inter-
fering argument for hg. In other words, every argument in
the line either supports ho's justification or interferes with it.
Therefore, an argumentation line can be split in two disjoint
sets: Ag of supporting arguments, and A; of interfering argu-
ments, Thus, an argumentation line A can be construed as an
alternate sequence of supporting and interfering arguments as
in any ordered debate. [n a dialectical tree, there are as many
argumentation lines as leaves in the tree, and each can end
up in a supporting or an interfering argument.

We next present three types of fallacious argumentation,
and establish necessary and sufficient conditions to avert them.

d b
~h ~
A B
Ay Az
Figure 4, Reciprocal defeaters

The first problematic situation is shown in Figure 4. This
happens when a pair of arguments defeat each other. In this



case, { A1,d) defeais ( Az,b), attacking the subargument
{ B,~d ), but { As,b ) also defeats { A;,d ) attacking the sub-
argument ( A,~b }. Clearly, this situation is nonsensical as
it leads to an infinite argumentation line. The first condition
expressed in Definition 5.3 prevents this situation.

~T Np Nq ~

L p

X A X

A A
Figure 5. Contradictory argumentation line

Figure 5 shows a case where the same argument {A} be-
comes both a supporting and an interfering argument of it-
self. This too is a nonsensical situation as it arises because the
supporting argument C has a subargument Z for the literal r,
which is contradictory with the purpose of arguing in favor of
~p (argument ,A). An argument like C ought to be avoided in
a sound argumentation line. Clearly, there should be agree-
ment among supporting arguments {respectively interfering)
in any argumentation line. This underlies the second condi-
tion in Definition 5.3. This is expressed formally based on the
notion of argument concordance as proposed in {19] and re-
calied next. Supporting (respectively interfering) arguments
should be mutually concordant so as to make the dialectical
process of argumentation coherent.

Definition 5.2 (Concordance)

Two arguments {A1,h1) and {As, hy) are concordant iff the
set 8 U A1 U Ay is consistent. More generally, a set of argu-
ments {{Ai, hi) Yy s concordant iff SULJi.., A: is consistent.

~T ~p ~( ~ag ~T

g n &

W X &z 174

A B c £ A
Figure 8. Circular argumentation

Finally, Figure 8 shows an example of circular argumenta-
tion, where the same argument A is introduced again in the
line as a supporting argument. This is avoided by the third
condition in Definition 5.3, which disallows the more general
problematic situation where a subargument of an earlier ar-
gument is reintroduced further down the argumentation line.

These three situations are averted by requiring that all ar-
gumentation be addressed be acceptable as defined below:
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Definition 5.3 (Acceptable argumentation line) /19/
Let A = [{Ao, ko), (A1, ha), .., (Ai By ooy (Ainy Bn)) be an
argumentotion line, A is an acceptable argumentation line iff:
{1} For every defeater (Ai, hi) and every proper subargument
(B,q) of {(As, ki), (B,g) and (Ai_1, hi_1) are concordant; that
is, 8 U {g, hi.1} must be consistent.
(2) The sets As of supporting arguments, and A; of interfering
arguments of A must each be concordant sets of arguments.
{3) No argument (Ag, he) in X 45 a subargument of an earlier
argument {Ai, b} of A i< k).

Hence, with these conditions averting undesirable situa-
tions, an acceptable dialectical tree is a dialectical tree where
every argumentation line is acceptable. Then the notion of
justification can be properly defined as follows [19].

Definition 5.4 {Justification) The argument (A4, h) is a jus-
tification for h iff its associated dinlectical tree is accepiuble
and the root node of T; 4, 4y i3 ¢ U-node.

6 Implementation

In order to develop an efficient defeasible argumentation sys-
tem, an abstract machine called JAM (Justification Abstract
Machine) [7] has been designed as an extension of the War-
ren’s abstract machine {waM) [1]. The JaM architecture has
an instruction set, a memory structure and a set of registers
for building arguments, counterarguments, and in this form
obtaining justifications for queries. A compiler for defeasible
logic programs was developed. It takes a defeasible logic pro-

 gram as its input and produces a sequence of JAM instructions

as its output. The JAM was built as a virtual machine, and an
interpreter for defeasible logic programs was developed over
this machine.

7 Related Work

Other formalisms for defeasible argumentation have been sep-
arately developed. In {6] P. Dung has proposed a very abstract
and general argument-based framework, where he completely
abstracts from the notions of argument and defeat. In contrast
we have defined an object language for representing knowl-
edge and a concrete notion of argument and defeat, Dung’s
approach assumes the existence of a set of arguments ordered
by a binary relation of defeat. However, he defines various no-
tions of ‘argument extensions’, which are intended to capture
various types of defeasible consequence.

Inspired by legal reasoning, H. Prakken and G. Sartor (17,
18] have developed an argumentation system that like us, uses
the language of extended logic programming. They insroduce
a dialectical proof theory for an argumentation framework fit-
ting the abstract format developed by Dung, Kowalski et
al. {6, 4}. However, since they are inspired by legal reasoning,
the protocol for dispute is rather different from our dialectical
approach. A proof of & formula takes the form of a dialogue
tree, where each branch of the tree is a dialogue between a
proponent and an opponent. Proponent and opponent have
different rules for introducing arguments, leading to an asym-
metric dialogue. Later, Prakken [16] generalized the system
to default logic’s language.

R. Kowalski and E'. Toni [9] have outlined a formal theory
of argumentation, in which defeasibility is stated in terms of



non-provability claims. They argue that defeasible reasoning 7
with rules of the form P if @ can be understood as “exact” rea-

soning with rules of the form P if Q and 5 cannot be shown,

where § stands for one or more defeasible “non-provability
claims”. (8]

Other related works are those by Vreesvijk [21], Bondarenko [3],

Poilock [13], Loui {10], and Nute [11, 12}, The interested reader

is referred to the following surveys in defeasible argumenta- [9]
tion: Prakken & Vreesvijk [15], and Chesfievar ef al. [5].

8 Conclusions 9]

We have presented a knowledge representation language, that
uses an argumentation formalism for defeasible reasoning, De-
feasible rules allow to represent tentative knowledge, but also 11
strong rules can be used. Since classical negation and negation
as failure are both available in the language, contradictory and
incomplete information can be represented. Several forms of (12]
WA can be represented directly within the language.

Conclusions are supported by arguments, but when con-
tradictory information is reached during a derivation, the de-

feasible argumentation formalism provides a way for deciding (13
between competing arguments. If new information arises, then
new arguments could be constructed and previous conclusions  [14)

gould be withdrawn. Thus, a correct behavior for a dynamic
domain is obtained.

In order to develop efficient defeasible systems, the lan-
guage was implemented using an abstract machine defined (18]
and implemented as an extension of the Warren Abstract Ma-
chine (WaAM).

(18]
Acknowledgments a7l
Alejandro J. Garcla wishes to thank especialiy. Hassan Ait-
Kaci for many helpful discussions and suggestions. The au-
thors are also grateful to Henry Prakken for helpful comments, (28]
and the anonymous referees for their suggestions. This work
was partially supported by CONICET and Secretarfa de Cien-
cia y Técnica UNS. . (19]

REFERENCES

{1] H.Ait-Kaci, Warren's Abstract Machine—A Tutorial Recon- (20]
struction, MIT Press, 1991,

[2] José Alferes and Luis M. Pereira, ‘Contradiction: when avoid-
ance equals removal (part i and ii)’, in Proc, of Ext. of Lagic 21
Programming, 4th Internetional Workshop ELP'93 St. Ati-
drews U.K, {(March 1993).

(3 A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni, ‘An
zbstract, argumentation-theoretic approach to default reason-
ing’, Artificial Intelligence, 93, 63-101, (1997).

[4] A. Bondarenke, F. Toni, and R.A. Kowalski, ‘An assumption-
based framework for non-menotonic reasoning', Proc. 2nd.
International Workshop on Logic Programming and Non-
monotonic Reasoning, 171-189, (1993),

[5] C. 1 Chesfievar, A. Maguitman, and R.P.Loui, ‘Logical mod-
els of arguments’, submitied to ACM Computing Surveys,
{1998).

[6] Phan M. Dung, ‘On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning and logic pro-
gramming and n-person games’, Artificial Intelligence, T,
321-357, (1998).

19

Alefandro J. Garcia, Defeasible Logic Progromming: Defi-
nition and Implementation (MSc Thesis), Departamento de
Ca. de la Computacién, Universidad Nacional del Sur, Bahia
Blanca, Argentina, July 1897,

M. Gelfond and V. Lifschitz, ‘Logic programs with classical
negation’, in Proceedings of the 7th International Conference
on Logic Progremming, eds., D. Warren and P. Szeredi, pp.
B79~597. MIT Press, (1990).

Robert A. Kowalski and Francesca Toni, ‘Abstract argu-
mentation’', Artificiel Intelligence and Law, 4{3-4), 275-296,
(1996).

Ronald P. Loui, Jeff Norman, Joe Altepeter, Dan Pinkard,
Dan Craven, Jessica Lindzay, and Mark Foltz, ‘Progress on
room 5: A testbed for public interactive semi-formal legal ar-
gumentation’, in Proc. of the 6th. International Conference
on Artifeial Intetligence and Law, (July 1997).

D. Nute, ‘Basic defeasible logic’, in Intensional Logics for Pro-
gramming, ed., Luis Farifias del Cerro, Clarendon Press, Ox-
ford, (1992},

D, Nute, ‘Defeasible logic’, in Handbook of Logic in Artifi-
cial Intelligence and Logic Programming, Vel 3, Nonmono-
tonic Regsoning and Uncertain Reasoning, eds., C.J. Hogger
D.M. Gabbay and J.A Robinson, 365395, Oxford University
Press, (1994).

John L. Pollock, Cognitive Carpentry: A Blueprint for How to
Build a Person, Massachusetts Institute of Technology, 1995,
David L. Poole, ‘On the Comparison of Theories: Preferring
the Most Specific Explanation’, in Proceedings of the Ninth
International Joint Conference on Artifictal Intelligence, pp-
144-147. IJCAI, (1985),

H. Prakken and G. Vreesvijk, ‘Logical systems for defeasi-
bie argumentation (to appear)’, in Handbook of Philosophical
Logic, second edition, ed., Gabbay, (1998} _

Henry Prakken, Logical Toels for Modelling Legal Argument.
A Study of Defeasible Reasoning in Law, Kluwer Law and
Philosophy Library, 1997.

Henry Prakken and Giovanni Sartor, ‘A system for defeasible
argumnentation, with defeasible priorities’, in Proc. of the In-
ternational Conference on Formal Aspects of Practical Reo-
soning, Bonn, Germany. Springer Verlag, (1996).

Henry Prakken and Giovanni Sartor, ‘Argument-based logic
programming with defeasible priorities’, Journal of Applied
Non-classical Logics, T(25-75), (1967},

Guillermo R. Simari, Carles 1. Chesfievar, and Algjandro J.
Glarcia, “The role of dialectics in defeasible argumentation’, in
Anales de la XIV Conferencia Internacional de la Sociedad
Chilena para Ciencias de la Computacion. Universidad de
Concepcién, Concepcién (Chile), (November 1694).
Guillermo R. Simari and Ronald P. Loui, ‘A Mathematical
Treatment of Defeasible Reasoning and its Implementation’,
Artificial Intelligence, 53, 125-157, {1892).

CGerard A.W. Vreeswijk, ‘Abstract argumentation systems’,
Artificial Intelligence, 90, 225-279, (1597).



Formal Semantics of the Coré of AGENT-0

Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek and John-Jules Meyer

University Utrecht, Department of Computer Science
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
{koenh,frankb,wiebejj}@cs.ruu.nl '

Abstract

AGENT-0 is a rule-based, agent-oriented brogramming (AOP) language. Ap agent is an
entity with a complex mentaj state, consisting of beliefs and commitments. The properties
of the mental state of agents built into the language are specified by a modai logic. The link
between the modal logic and the programming language AGENT-0, however, is unclear,
Moreover, the logic does not specify how the mental stateg of agents change in time,
In this paper, we provide a clear and formal semantics which specifies both the static
and dynamic aspects of (part of) the mental states of AGENT-0 agents. We use a two-

states of agents change. According to Thomas [6],“agent Programs are transition functions on
these mental states; given an agent’s current mental state and input, the transition function
specifies the agent’s new mental state and output.”

The emphasis on mentaj states in agent Programming makes it imperative to state pre-
cisely and explicitly what such a state is. This is one of the reasons for the requirement of a
formal semantics of mental state as part of an agent programming paradigm in [5]. In (5, 6]
a modal logic is used to define several of the mental components. The formal semantics of
this logie, however, contrasts with the lack of a formal semantics of the agent programming
language itself. There s no clear link between the modal logic and the language AGENT-0.
Moreover, the logic does not define how the mental states of agents change. It therefore does

AGENT-0 agents use for this purpose.

A formal semantics of the agent programming language is needed for several reasons.
First of all, we need it to be able to formally reason about such agents, and to understand
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what the language constructs mean. In particular, a formal semantics will provide a first step
towards the design of a logic for reasoning about AGENT-{ agents. It also provides a formal
definition of the rule-based decision-making of agents. Secondly, we need a formal semantics
to compare AGENT-0 with other agent languages. The formal specification of AGENT-0 we
provide highlights an interesting difference in decision-making of AGENT-0 agents compared
with, for example, AgentSpeak(L) ([4]) and 3APL (12, 1]) agents. And finally, a formal
semantics may prevent ad hoc implementations of agent programming languages.

2 The Core of AGENT-0

An AGENT-0 agent has a number of features which provide such agents with capabilities to
interact with its environment, to decide what to do, and to update its mental state, These
features include the following: communication, time, capabilities, simple, conditional and
refrain actions, beliefs, commitments, and commitment rules.

- As a first approximation, we construct a semantics for a subset of AGENT-0. We call this
subset the core of AGENT-0 and define it to be the language without multi-agent features like
communication or reference to other agents, and without reference to time. Thus, the core of
AGENT-0 as we define it includes beliefs, capabilities, three types of action, commitments,
and rules. The specification of the formal semantics for this core is based on the informal
explanation of AGENT-0 in (5]. Our strategy for defining the semantics is to separate the

2.1 Syntax

Before we can give a definition of the syntax of actions, we need to define terms and a
language for expressing belief. A term is a constant or a variable. We do not allow variables
ranging over agents, beliefs, and action statements. Given a set P of predicate symbols, a set
C of constants, and a set Var of variables, terms T and atomic formulae P are constructed
inductively by:, (i) Var C T,(ii))CCT, and (i) if P € P of arity n, and Hyernytn €T, then
P(t,...,ty) € At.

Mental state formulae and actions are defined by simultaneous induction. Menta) state
formulae are used to express both the beliefs of the agent and its commitments to action.
Negated action formulae express that there is no commitment to perform the action.

When communication is left out of AGENT-0, three types of actions remain: (i) simple
actions of the form (D0 <privateaction>), constructed from a given set of so-called private
actions, (i) conditional actions of the form (IF <mntlcond> <action»), where <mntlcond>
expresses a condition on the mental state of the agent, and (iii) refrain actions of the form
(REFRAIN <action>). The refrain action (REFRAIN <action>) is a type of action that pre-
cludes commitment to actions of the form <action>. In the following definition, we recapit-
ulate the previous outline of the action types in AGENT-0 in a somewhat different notation.

Definition 2.1 Let B be a set of action symbols. Then the set of actions A, the set of mental
state literals Lit, and the mental state language L™ are inductively defined by:

¢ if a € B of arity n, and By tn €T, then a(ty, ..., t,) C A, called private actions,
(The set of private actions is also denoted by P), .
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o ifa € Aand ¢ & L™, then (¢:a) € A, called conditional actions,

o if a € A, then da € A, called refrain actions.

e if ¢ € At, then ¢, ~¢ € Lit, and if @ € A, then a,-a € Lit.
e LitC L™, andif p,0 € L™, then 9 A, oV b € L7,

In AGENT-0 rules are of the condition-action type. These rules determine under which
conditions an action should be taken into consideration. When the multi-agent features are
left out, rules are of the form: (COMMIT <mntlcond> <action>*)}. In our notation we write
this as: '

Definition 2.2 The set of commitment rules R is defined by: if ¢ € L™, and I C A, then
~¢|ITeR,

The syntax of commitment rules is explained by the fact that condition-action rules can
be viewed as a subset of more general Tules of the form II « ¢ | II'. The notation « ¢ | IV
highlights that condition-action rules are rules of this more general format, where the head
II = §. Note, however, that the condition part of the rules in AGENT-0 may refer to
both beliefs and committed actions. Nevertheless, these rules do not modify any existing
commitments when fired. :

Syntactically, an agent program is a set of capabilities, a set of initial beliefs, and a set of
commitment rules. Capabilities are pairs consisting of a condition and a private action. The
(mental state) condition is a precondition that specifies under what circumstances an action
is assumed to succeed when executed.

Definition 2.3 An agent program is a tuple (Cap, oo, '), where Cap is a set of capabilities,
i.e. a set of actions of the form (¢ : a), oo C At is the set of initial beliefs, and T’ C R is 2 set
of commitment rules.

2.2 Semantics

The notion of mental state is the basic concept in agent-oriented programming. As cited in
the introduction, agent programs can be viewed as transition functions on mental state. We
use transition systems to define the transitions of the mental states of agents which occur as
a consequence of either executing actions or applying rules.

Definition 2.4 A mental state is a pair (Il, s}, where Il C A is a set of actions, also called
commitments, and o is a set of beliefs. '

In the next sections, the operational semantics of the core of AGENT-0 is defined by two
Plotkin-style transition systems ([3]). Formally, a transition system is a deductive system
which allows to derive the transitions of a program. A transition system consists of a set of
transition rules that specify the meaning of each programming construct in the language. Such
a rule consists of some premises and a conclusion. A transition system defines a transition
relation — on mental states. The transition rules transform these mental states.

The two transition systems defined specify the dynamies of the mental states of agents.
We use a two-layered approach. In this section, we define the meaning of the basic language
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constructs. In section 3, we define the semantics of the main control loop of the interpreter
of AGENT-0. :

To be able to specify the semantics of actions, we need a specification of the effect of
private actions. In [5] the meaning of private actions is not discussed in detail. However,
a number of remarks suggest that private actions should be taken as updates on the set of
beliefs of the agent. This is the view we will take here. For this purpose, we introduce the
(partial) function 7 : P X p(At) - p(At) which specifies what type of update is performed
by a private action.

Definition 2.5
T{a,0) = ¢
{..a,...5o) — {...},o")

A conditional action is executed by testing its condition and if the test succeeds by com-
mitting to the action, L.e. incorporating the action in the set of commitments. Variables in
the test may also retrieve data from the belief database and set of commitments. The values
retrieved are recorded in a substitution . The consequence relation = is assumed to be given
(and intuitively clear, [5]).

Definition 2.6 Let @ be a substitution, and I = {...,(¢:4a),...}.

ok ¢f
{({....(p:a),..},o) —{{...,a0,...},0)

A refrain action da removes actions of the form ¢ from the set of commitments. In this
way, it prevents the execution of these actions. It is not clear from {5] if and when a refrain
action itself is removed from the set of commitments. We have chosen to not delete the action
after executing it, since this type of action is probably most often used for safety reasons. Le.,
for example, to prevent destructive behaviour removing certain opportunities or to prevent
certain undesirable effects of the action which is $o be refrained from.

Definition 2.7

daell
{Il,a) — (II \ {af | 6 a substitution},o)

In AGENT-0 there are no operators for constructing complex actions, for example, by
sequencing a number of simple actions. This lack of constructs for programming control flow
is one of the things which suggests that AGENT-0 supports a bottom-up approach. By a
bottom-up approach we mean here that in contrast with a top-down approach the agent does
not decide what to do next by fixing a high-level goal, but decides what to do next by looking
only at the circumstances the agent finds itself in. This lack of goal-driven behaviour of
agents has been one of the reasons to extend the language with such features in the language
PLACA [6].

Another feature which also suggests AGENT-0 supports a bottom-up approach is the
type of rules allowed to program an agent. The rules to program agents are condition-action
rules. We mean by this that the rules do not modify any existing (high-level) goals of the
agent by substituting plans for achieving them, but just add new commitments t0 the set
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of commitments if the conditions of a rule are satisfied. In this sense we could say that a
language like AGENT-0 is rule-driven, while languages like AgentSpeak(L) ([4]) and 3APL
([2, 1]) are goal-driven.

The difference between the two approaches is built inte the corresponding control struc-
tures of the interpreters. The difference corresponds to the different practical syllogisms used
for decision-making in the goal-driven and rule-driven interpreters:

Practical Syllogism corresponding to the Goal-Driven Approach (PSG):
If (P1) the agent infends to achieve a goal g, and (P2) believes that ¢ will not be
achieved unless some plan p from a set P of plans will be executed, then (C) the agent
intends to execute a plan p from P (according to some selection criteria),

Practical Syllogism corresponding to the Rule-Driven Approach (PSR):
If (P1) the agent believes he is in situation Sy in which he has made commitments II,
and (P2) believes Si; makes action a obligatory, then (C) the agent intends to perform
action a.

An explanation of the PSG syllogism is to view it as a reasoning scheme which may be
used by the agent to achieve a goal by means of some plan. The PSR syllogism is best
explained as a reasoning scheme to guarantee the commitment to all actions of a particular
form. Thus, the first might profitably be used to infer a possible means to achieve a goal,
while the second is more suited to be used as 2 means to infer the necessity to perform an
action, i.e. fo guarantee that some actions are performed in certain circumstances. The two
approaches therefore are dual approaches and correspond to the duality of the possibility
and necessity modalities. For this reason, it is interesting to note that in [5] the concept of
obligation is taken as basic instead of that of motivation. The commitment rules in AGENT-0
code the (conditional) obligations of agents. In [5] Shoham actually somewhat overstates, we
think, the contrast between the two different modes of decision making. According to him,
the decision-making in AGENT-0 “reflects absolutely no motivation of the agent, and merely
described the actions to which the agent is obligated.” (p. 67) The tools for programming an
agent in AGENT-0 on the one hand, and AgentSpeak(L) and 3APL on the other hand, thus
are derived from two different perspectives on decision-making.

In AGENT-0 all applicable instances of a rule are fired. Le., a rule is fired for every match
of the condition of the rule with the belief database and commitments of the agent. The choice
to fire all applicable rules corresponds to the PSR syllogism. We introduce some notation to
express this type of rule application express more succinctly. Let © be a set of substitutions,
and II be a set of actions. Then: (i) [I# = {af | a € I}, and (ii) IO = [Jyeq II6.

Formally, a rule fires for each substitution that satisfies the condition of the rule in the
current mental state. It should be noted that a variant of the rule'is used to prevent any
undesired interference with variables in the rule and the belief database and commitments
(cf. also [2]).

Definition 2.8 Let O be the set of all substitutions @ such that II, ¢ |= #6.
—¢|e'T
(Il,0) —» (HUT'O, o)

where ¢ ¢ | II' €' T means that « ¢ | [I' is a variant of a rule in ' such that no variables in
— ¢ |II'occurin M or o,

24



Although we did not formally defire a transition rule for general rules of the form 7
¢ | ©', but focused on the rules most prominent in AGENT-0, the more general rules will be
convenient when we define an interpreter for AGENT-0. We will therefore use these more
general rules later on, and refer the reader to [2] for detdils. « in a rule 7 + ¢ | 7/ is called
the head of the rule, ¢ the guard or condition of the rule, and #’ the body of the rule. The
head and the body of a rule may be empty, which is denoted by 0. A rule O « ¢ | Il may
also be substituted by a set of rules & « ¢ | r for all x € II; this sét yields the same result
when all rules in the set are fired as when the single rule O ¢ ¢ | I is fired (cf. section 3).

In the following definition we define some shorthand notation used in the remainder of the
paper. It is assumed, without any loss of generality that all rules are of the form 7 « ¢ | =’.

Notation 2.9 Let I = {mo,...,Tio1, Ti, Mig1y. .., T}y a0d I = {mo, ..., Wiy, 7Ly Tigy, oo,
Tn}. ‘We use the following expressions as shorthands:
!
o (I, o) =5 (I, o) for a transition (II, o} — (II', ¢’) that is provable without using the
transition rule for rule application, :

’ ) ]
o {II,0) =5 for the fact that there are II', o’ such that (II, o} =5 (I, o)
)
In case (IT, o) =0, we say that = is ezecutable in (II, ),
o (I,0) 2 (I, ) for a transition (f,e) — (II',0') that is provable by using the
transition rule for rule application instantiated with v, ie. v =7 « ¢ | n/,

LK

o (Il,o) 225 for the fact that there is a 'II' such that (II, o) prilig (I, o); In case

(I, o) ”ﬂx;’", we say that the rule-commitment pair (v, n) is applicable in (I, o).

3 The AGENT-Q Interpreter

We define a language in which an interpreter for AGENT-0 can be programmed. This language
is based on our paper [1]. It is an imperative language with operators for referring to the basic
notions of the agent language itself and for programming selection strategies. Since no form
of selection from rules or commitments is used in AGENT-0, we will not discuss selection
actions, but refer the reader to [1].

3.1 Syntax

The commitment and rule terms of the meta language are used to access the commitments
and rules of the agent program of the object language in the meta language. The terms refer
to sets of commitments or sets of rules. The operators of the meta language for building
complex terms are the usual set operators.

Definition 3.1 Let Vary, Varr be given sets of variables.
The set of commitment terms T is defined by: (i) Varg C Tm, (i) 0,10 € Ty, (iii) if

90,91 € T, then go N g1, 90U 91,90 — 91 € Tt
The set of rule terms Tr is defined by: (i) Varr € Ty, {ii) 0,1 € T, (iif) if rg,r1 € T, then

roNry,rgUry,rpg—r € 3.
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The commitment and rule terms are the usual set terms, constructed from the set operators
N, etc.  is a constant denoting the empty set. Furthermore, I' is a rule term constant denoting
the set of rules of an agent program. The commitment term II, however, is a variable which
denotes the commitments of the current object mental state during execution.

Definition 3.2 The set of meta statements & is defined by:

sif GeVarg, g€, then Gi=ge&, oif ReVarr,re%p, then R:=r€ &,
sif g, €T, theng=¢',0#9' €S, oifrrelp thenr=rr#£+ e85,
o if ,G' € Varyy, then e2(G,G") € 8, +if 3,5 € &, then 3;3,0+5,5* € G,
o if B € Varp and G, G’ € Vary,

then apply(R,G,GY € S

The meta language includes assignment of sets of commitments or rules to respectively
commitment or rule variables, tests for equality on the commitment and rule terms, and
the regular programming constructs for sequential composition, nondeterministic choice, and
iteration. The meta language includes two actions ez and apply for respectively execution
of committed actions and application of rules. These actions are cails to the object agent
system to perform object transition steps corresponding to execution of actions or application
of rules. The first argument position of the action ez should be filled with an input term
denoting the set of committed actions from which to execute. The second argument position
should be substituted with an output variable denoting a set of remaining commitments after
(partly) execution. The first two argument positions of apply should be substituted with input
terms denoting a set of rules and commitments respectively. The third argument position
should be substituted with an output variable denoting the resulting set of commitments
after application of the rules.

3.2 Semantics

In this section the operational semantics of the meta language is defined. The transition
velation of the meta transition system is denoted by ==. The transition relation == is a
relation on meta configurations, which are pairs consisting of a program statement and a meta
state. Meta level states should include the information about object level features an agent
interpreter should be able to access. Among these features are the object mental state and
the commitment rules of an agent program. Furthermore, a meta state should keep track of
the values of variables used in the meta program.

Definition 3.3 A meta state, or m-state T is a tuple ((I, o}, <, [, V), where (I, o) is an
object mental state, <r7 is an ordering on the set of actions A, T is a set of object rules, and
V is a variable valuation of type : (Varg = p(A)) U (Varr = p(R)).

The ordering on the set of actions is used to define priorities on action types, as will be
explained below. A function maex is used to select an action with highest priority and is
defined by maz(X) = {z € X | there is no 2’ € X such that z < z'} where < is an order on
set X. .
An m-configuration is a pair (8, 7) where 3 is a program statement and 7 is an m-state.
We also write an m-configuration as a quadruple (8, (I, ¢}, <, V), where the constant set of
rules is dropped from the configuration.
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Definition 3.4 Let 7 = ({II,o}), <y, I', V) be an m-state, and T range over goal and rule
terms. Then the interpretation function [-J- : (Tm — p(A) U (Tr = p(R)) is defined by:
(i) [T]r = V(T)n I, for T € Varg U Varp, (ii) {II], = I, [T], = T, (iii) [#], = 0, and (iv)
[To ® T1]: = [Tolr @ {Th]r, for ® € {N,U,~}. We will drop the subscript referring to the
state in the rest of this paper, as the context will make clear which state is referred to.

The semantics of the action ez((, G’} is defined by iteration. ex(G,G’) is executed by
choosing an executable action with highest priority from [G], deleting this action from [G],
executing the action at object level, and returning the new action in output variable &', until
no actions from [G] can be executed including the case [G] = 0.

Definition 3.5 (ezecution rule for ex)

(I, ) 25 (I, o'}, x € maa([G])
(ea(G, G, (IL, o), V) = (ea(G, &), (I, o), VIGGT\ D/ G, (G G (w17 G )

(I, o) 75 for all 7 € [G], 7 € A
(ex(G, G'), (I, 0), V) = (E, (I, 0}, V)

The meta action ez(G,G") is a call to the object agent language system to execute a
maximal subset of actions from the set [G] and recording the result of executing those actions
in G’ {resulting in a change to the variable valuation V). The variable G is also changed and
contains the remaining actions which are not executable in the current object state. The
second transition rule specifies the termination condition of the iteration.

Much along the same lines as for the action ez we can define the semantics of the action
apply. As before, an iterative definition of the semantics of apply is given. Informally, the
action apply(R,G,G’) applies as much rules from [R] as possible, recording the change to
the set of commitments as a result of this action in G'. We have to distinguish two cases.
The first case concerns the application of a condition-action rule. In this case, a condition-
action rule from [R] is applied, the rule is removed from [R], and the result is stored in the
variable G’. The rule has to be removed from [R] to guarantee termination of apply. The
second case concerns the case that a rule modifies a goal from G. In this case an arbitrary
commitment from & is chosen and an arbitrary rule from R is chosen that is applicable to
the chosen commitment; the commitment is deleted from {G], and the result of applying the
rule is stored in the output variable G'. We require that for all variables G, O ¢ [G].

Definition 3.8 (ezecution rule for apply)

(o) "5 (I, 0), 7 = O

(applg(E, G, ), (I, o), V) = (apply( &, G, G, (I, o), VIIRIN (11 &, ([GTU {7 1)/ G})

(I, o) ™25 (I, o), 7 € [G]

{apply(R, G,G"),(IL, o), V) = (apply(R, G, G, {Il, o), V{([G]\ {r}/G,(IG] U {='})/G"})

(I, o) P25 for all 7 € [G],v € [B], 7' € A
(apply(R,G,G"), (I, 0), V) = (E, (I, 0),V)

The third rule specifies the termination condition of the iteration.
For a definition of the semantics of the operators +, , and ; we refer to {1].
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3.3 Interpreter

to deal with first and which rules to apply during the execution of an agent program. The
strategy for executing commitments and applying rules in AGENT-0, is to execute all exe-
cutable commitments and apply all applicable rules in every cycle of the interpreter, In this
section we use the meta language to define the AGEN T-0'interpreter. The strategy used in
AGENT-0 results in a simple meta program by using the actions ez and apply. The strategy
corresponds to the PSR syllogism of section 2.2

The AGENT-0 interpreter continuously executes the two steps: (1) update the commit-
ments (the rules of the agent Program are used in this phase), and (2) execute the commit-
ments (this phase is independent from the agent program), The update phase of the loop
consists of two distinct steps. The commitments are updated by firing the applicable rules of
the agent program, and the feasibility of the current commitments of the agent is checked..

believes it is capable of executing the commitment. The order imposed on these distincs steps
in the AGENT-0 interpreter is not mentioned in [5]. However, the order proposed here, first
firing applicable rules and then checking for feasibility, seems the most plausible thing to do.

The execution phase, i.e. the second phase in the loop above, boils down to executing as
much commitments as possible in AGENT-0. Since the actions executed are simple actions
we might presume that each of the actions executed is executed completely. This remark
applies in particular to conditional actions, which are executed by first performing a test and
In case the test succeeds executing the action part.

An implicit order on the type of actions is assumed. In particular, the refrain actions
have a higher priority than private or conditional actions. The reason js that refrain actions
should always be executed first to prevent actions from which the agent should refrain from
being executed. The priority on actions is used in defining the semantics of the meta action
er,

AGENT-0
REPEAT
Step 1| G := I R:=T; Application Phase
apply(R,G,.); ~ apply modifies II!
Step2 |G :=1I;
apply(A,G,l); | - feasibility check
Step 3 | G :=11; Execution Phage
REPEAT
ex(G, G");
G:=q
UNTIL G = §;
| UNTIL FALSE; - ]

Table 3.3

The meta program defining the interpreter is given in table 3.3. It implements the three
Separate steps of the interpreter. Step 1 corresponds to firing the set of rules T of the agent
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Step 2 corresponds to the check for feasibility of committed actions, and is again imple-
mented by the meta action apply. A set of rules A is presupposed. Each of the rules in this
set is of the form a « —¢ |. The head of the rule corresponds to a type of action and the
condition ¢ of the rule corresponds to the feasibility or capability conditions for that action.
The body is empty, since if the capability conditions do not hold, i.e. —¢ is satisfied, then
the action should be removed from the set of commitments. By firing all applicable rules in
A the check is performed on all commitments.

Step 3 corresponds to the execution of as much commitments as possible. The meta action
ez implements this step of the interpreter. The order on actions is assumed to give higher
priority to refrain actions than to any of the other action types. The actions are executed
completely by iteratively repeating execution for the remaining part of (conditional) actions.

4 Conclusion

By abstracting from a number of features of AGENT-0, we have been able to construct an

operational semantics for AGENT-0. We used a two-layered approach by separating the

semantics of the basic programming constructs and the semantics of the control structure

in the interpreter for AGENT-0. This approach yields a clear and intuitive definition for

' AGENT-0, as well as for other agent languages. This allows for a formal comparison, and
thereby clarifies a number of differences between rule-based agent languages (cf. [1])-

The specification of a formal semantics for AGENT-0 also resulted in a better understand-

ing of the use of rules in AGENT-0. We distinguished a bottom-up or rule-driven approach

used in. AGENT-0 and a top-down or goal-driven approach used in AgentSpeak(L}) and 3APL.
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Abstract

Halpern and Vardi have proposed the notion of refinement of 35™ Kripke models in
order to solve multi-agent problems in which knowledge evolves. We argue that there are
some problems with their proposal and attempt to solve them by moving from Kripke
models to their corresponding tregs. We define refinement of a tree with a formula, show
some properties of the notion, and illustrate with the muddy children puzzle.

1 Introduction

The modal logic S5™ (see for example [HC96]), also known as KT45™, has been used to
model knowledge in multi-agent systems (MAS) for some years now [Hin62, FHMV95]. S5™
is a classical modal logic containing n modalities expressing private knowledge (written O,
1 € i € n), and operators for expressing common knowledge and distributed knowledge
within a group.

The standard (consequence relation) approach to using S57 is to set up a situation as a set
of formulas T, and to attempt to show that the situation satisfies a property ¢ by establishing
' ¢ or T & ¢. Establishing I' i ¢ involves finding a proof of ¢ from I, while establishing
[' & ¢ involves reasoning about all {usually infinitely many) Kripke models satisfying I' to show
that they also satisfy ¢. The completeness of S5 shows that these two notions are equivalent.
However, experience has shown that this approach is computationally very expensive.

In order to overcome the intractability of this approach, Halpern and Vardi have proposed
to use model checking as an alternative to theorem proving [HV91]. In the model checking
approach, the situation to be modelled is codified as a single Kripke model M rather than as
a set of formulas I". The task of verifying that a property ¢ holds boils down to checking that
M satisfies ¢, written M & ¢. This task is computationally much easier than the theorem.
proving task, being linear in the size of M and the size of ¢ [HV91].

Halpern and Vardi informally illustrate their approach by modelling the muddy children
puzzle. In that puzzle, there are n children and n atomic propositions py, p2, ..., pn represent-
ing whether each of the children have mud on their faces or not. Various announcements are
made, first by the father of the children and then by the children themselves. The children
thus acquire information about what other children know, and after some time the muddy
ones among them are able to conclude that they are indeed muddy. We describe the problem
in greater detail below. '
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Halpern and Vardi propose the following way of arriving at the model M to be checked.
They start with the most general model for the set of atomic propositions at hand. In
order to deal with the announcements made, they successively refine the model with formulas
expressing the announcements made. This refinement process consists of removing some links
from the Kripke model. At any time during this process, they can check whether child i knows
p; (for example), by checking whether the current model satisfies C;p;.

This method is illustrated in the paper [HV91] and the book [FHMV95), but a precise
definition of the refinement operation is not given. Our original aim for this paper was to
provide such a definition and explore its properties. However, we soon came to the opinion
that there is no definition of model refinement on arbitrary S5* Kripke structures that will
have intuitively acceptable properties. We explain our reasons for this view in section 2.
We believe the refinement and model checking ideas can still be made to work, however.
In section 3 we introduce a structure derived from a Kripke model, which we call a Kripke
tree, and define the refinement operation on Kripke trees. We illustrate this notion using the
muddy children example in section 4. In section 5 we state and prove some properties of the
refinement operation on Kripke trees, and conclude in section 6.

1.1 Syntax and semantics

We assume finite sets P of propositional atoms, and A of agents. Formulas are given by the
usual grammar:

pl-dldrA¢ga| Qip| Co

where p € P and i € A. Intmtxvely the formula ;¢ represents the situation in which the
agent ¢ knows the fact represented by the formula ¢. The other propositional connectives can
be-defined in the usual way. As The modal connectives E and B are defined as:

B¢ means /\ia 4 Did
i means D¢
B¢ means —-C-¢

‘E¢ means that everyone knows ¢, <14 means “it is consistent with 1's knowledge that ¢”,
while C'¢ is the much stronger statement that ¢ is common knowledge. In a multi-agent
setting, a formula ¢ is said to be common knowledge if it is known by all the agents, and
moreover that each agent knows that it is known by all the agents; and moreover, each agent
knows that fact, and that one, etc. A general announcement of ¢ results in common knowledge
of ¢ among the hearers, because as well as hearing ¢ they also see that the others have heard
it too (we assume throughout that all the agents are perceptive, intelligent, truthful). If one
agent secretly informs all the others of ¢, the result will be that everyone knows ¢, but ¢ will
not be common knowledge. B is the dual of C. Although not particularly useful intuitively,
we will need it for technical reasons.

Definition 1.1 A formula is universal if it has only the modalities C, E, U; and no negations
outside them.

Definition 1.2 An S5™ Kripke model M = (W, ~, r, w) of the modal language over atomic
propositions P and agents A is given by:

1. A set W, whose elements are called worlds;
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2. An A-indexed family of relations ~ = {~;};c4. For each 1 € 7 < n, ~; is an equivalence
relation on W (~; € W x W), called the accessibility relation;

3. A function m: W — P(P), called the assignment function;
4. A world w € W, the actual world.

See figure 1 for an illustration.
Let z € W. We define the relation of satisfaction of ¢ by M at z, written M k=, ¢, in the

usual way:

Mip ifipen(z)
MEz ¢ MK, ¢
MEz o AP iff M =z pand M =, ¢
M b=, Oy iff for each y € W, z ~; y implies M =y o »
M k=, Cp iff for each k > 0 and 41,149,...,% € 4, we have M f=, O;, ... Qixyp

We say that y is reachable in k steps from z if there are wy,ws, ... wg-; € W and iy,4a,... 0%
in A such that z ~j;, wy ~jp W2 ... ~j, Wil ~j, Y. We also say that y is reachable
from z if there is some & such that it is reachable in k steps. The following fact is useful for
. understanding the technical difference between £ and C.

Theorem 1.3 ([FHMV95])
1. M |=, E* iff for all y that are reachable from  in & steps, we have M =, ¢.
LM =z C¢ iff for all y that are reachable from z, we have M =, ¢.

2 Refining Kripke models

Halpern and Vardi propose.to refine Kripke models in order to model the evolution of knowl-
edge. They illustrate their method with the muddy children puzzle.

2.1 The muddy children puzzle

There is a large group of children playing in the garden. A certain number (say k) get mud
on their foreheads. Each child can see the mud on others (if present) but not on his own
forehead. If £ > 1 then each child can see another with mud on its forehead, so each one
knows that at least one in the group is muddy. The father first announces that at least one
* of them is muddy [which, if k£ > 1, is something they know already]; and then he repeatedly
asks them ‘Does any of you know whether you have mud on your own forehead?’ The first
time they all answer ‘no’. Indeed, they go on answering ‘no’ to the first £ — 1 questions; but
at the kth those with muddy foreheads are able to answer ‘yes’.

At first sight, it seems rather puzzling that the children are eventually able to answer the
father's question positively. The clue to understanding what goes on lies in the notion of
common knowledge. Although everyone knows the content of the father’s initial announce-
ment, the father’s saying it makes it common knowledge among them, so now they all know
that everyone else knows it, etc. Consider a few cases of k.
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k =1, i.e. just one child has mud. That child is immediately able to answer ‘yes’, since she
has heard the father and doesn’t see any other child with mud.

k = 2, say a and b have mud. Everyone answers ‘no’ the first time. Now & thinks: since b
answered ‘no’ the first time, he must see someone with mud. Well, the only person I
can see with mud is b, so if b can see someone else it must be me. So a answers ‘yes’
the second time. b reasons symmetrically about g, and also answers ‘yes’.

k = 3, say a,b,c. Everyone answers ‘no’ the first two times. But now g thinks: if it was just
b and ¢ with mud, they would have answered ‘yes’ the second time. So there must be a
third person with mud; since I can only see b, ¢ having mud, the third person must be
me. So o answers ‘yes’ the third time. For symmetrical reasons, so do b, ¢.

And similarly for other cases of %.

To see that it was not common knowledge before the father’s announcement that one of
the children was muddy, consider again k = 2, say a,b. Of course @ and b both know someone
is muddy (they see each other), but, for example, a doesn’t know that b knows that someone
is dirty. For all @ knows, b might be the only dirty one, and therefore not be able to see a
dirty child.

2.1.1 The formalisation in [HV91]

Suppose A = {1,...n} and P = {p1,...,pn}; pi means that the ith child has mud on its
forehead. Suppose i = 3. The assumption of this puzzle is that each child can see the other
children but cannot see itself, so each child knows whether the others have mud or not, but
does not know about itself. Under these assumptions, Halpern and Vardi propose the Kripke
structure of figure 1 to model the initial situation.

Let w be any world in which there are at least two muddy children (i.e. w is one of the four
upper worlds). In w, every child knows that at least one of the children has mud. However,
it i3 not the case that it is common knowledge that each child has mud, since the world at
the bottom of the lattice is reachable (cf. theorem 1.3).

To model the father’s announcement, Halpern and Vardi refine the model M; in figure
1, arriving at My in figure 2. The refinement process is not precisely defined in [HV91,
FHMV95], though arguments in favour of the transformation from M; to M, are given (these
figures also appear in [HV91, FHMV95]).

Suppose now that the father asks the children whether they know whether they are muddy
or not, and the children answer simultaneously that that they do not. Halpern and Vardi
argue that this renders all models in which there is only one muddy child inaccessible, resulting
in M; (figure 3).

If there are precisely two children with mud (i.e. the actual world is one of the three in
the second layer), then each of the muddy children now knows it is muddy. For suppose the
actual world is the left one of those three, i.e. w with m{w) = {p1,p2}. We easily verify that
Mj3 f=y Uipr and M3 b=y Oopo. ‘

If all three children are muddy, i.e. the actual world w is the top one, then we are not yet
done, for we do not have Mj k=, O;p; for any i. The father again asks each of the children if
they know if they are muddy, and the model is refined again according to their answer “no”,
resulting in M, which is M3 with the last remaining links removed. We can easily check that
My =y O;p; for each 4.
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Figure 2: My: The Kripke structure after the father speaks.
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Figure 3: Ms: The Kripke structure after the children announce that they don’t know whether
they are muddy. :

In summary, the method proposed by Halpern and Vardi for solving muddy-children-type
puzzles is the following. Start with a suitably general model M, reflecting the initial set-
up of the puzzle. Refine it successively by the announcements made. At the end of the
announcements, check formulas against the refined model. In the example above, we refined
M first by ¢y = C(py V py V ps) (the father’s announcement), and then twice by

¢2 = C(=Oipr A =0;~p1) A C{~Ogpy A ~Og—pa) A C(~Ozpg A ~H3-ps)

which corresponds to each of the three children announcing that they don’t know whether
they are muddy or not. :

Halpern and Vardi do not precisely define what refinement by a formula means. The
intuition they give is that refinement removes a minimal set of links of the model, so that
‘the model satisfies the formula at the actual world. Removing links means that epistemic
possibilities are removed, that is, knowledge is gained, so this seems intuitively the right thing
to do.

2.2 Problems with refinement of Kripke models

Let us write M = ¢ to denote the result of refining the model M by the formula ¢. Thus, in
the example above, My = M; * ¢, etc.

Our original aim was to make precise this notion of refinement of a Kripke model by
a formula, and to investigate its properties. We investigated several possible definitions:
essentially a refinement procedure will remove the links to the states that are responsible for
the non-satisfaction of the formula we are refining with. However, we quickly came upon
examples which showed that it will not be easy to achieve all the reasonable properties one
could wish for.

Example 2.1 Let M5 be the Kripke model illustrated in figure 4, with the left-hand world
w the actual world, and consider refining by T;p. The definitions we examined differed in
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Figure 5: Two outcomes for refinement of the top model by T;0,(p V ¢) (example 2.2)

subtle cases involving quite complex formulas and models, but they all agreed in this one: the
resulting model must be Mg (see figure). What happens is that agent 1 gains the knowledge
of p, and so must eliminate the epistemic possibility of —p by removing the link.

The counterintuitive property of this example is that M3 =y, U3O1p, while M &y 0301
Thus, in Ms, agent 3 knows that p is consistent with 1's knowledge. But after 1 learns p for
sure in Mg, 3 no longer knows this!

Example 2.2 Figure 5 shows a model and (the only) two outcomes one could consider for
-its refinement by 2 T2{p V ¢g). One must remove either the 1 link or the 2 link in order to
prevent the 1-2 path to the world exhibiting ~(p V ¢). The choice is which link to remove.
Both outcomes reveal undesirable properties of the refinement operator. In the first case,
removing the 1 link adds too much to 1’s knowledge (he is now able to rule out everything
but the current world), while the second case gives us a situation in which a model satisfies
0303 ~q but its refinement by 0;0;(p V ¢) does not. It is counterintuitive that 3's knowledge
should change in this way when we refine by 0;Ja(p V g).

The second case at least has the desirable property that a minimal change of the knowledge
of agents at the actual world w is made, since the set of reachable states from w is maximised
{cf. theorem 1.3).

Example 2.3 Refinement by universal formulas ought to be cumulative, and such formulas
ought to commute with each other (i.e. M * ¢ ) = M ¢ * ¢). However, another example
shows that this will be hard to achieve. Consider the model My shown at the top of figure 6,
and let ¢ = U;p and ¢ = 0,0,(p V ¢). Whatever way one thinks about defining *, the result
in the left-hand branch seems clear. Note that My + Op already satlsﬁes Ulmg(p v q) and
therefore M7 x O1p* (0, 05(p V q) = M7 « Oip.
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Figure 6: Two evolutions of M7 (example 2.3), showing that M x g« # M « Px

An argument for the stated result of My7+0,0,(pVq) was given in example 2.2, and further
refining by ©;p leaves little room for maneuver, The resulting models differ on whether they
satisfy (for example) D30,q.

Example 2.3 shows that even universal formulas (definition 1.1), do not enjoy commuta-
tivity in any reasonable refinement setting. However, commutativity for universal formulas
seems intuitively correct: the order in which ideal agents acquire information should not
matter. Non-universal formulas are a different matter, since they can express absence of
knowledge, and this will not commute with the acquisition of new knowledge.

3 Refining Kripke trees

Some of the problems exhibited by the three examples at the end of the preceding section
seem to be due to the following fact: when we remove a link in a Kripke model in order to
block a certain path, we also block other paths that used that link. To overcome this problem,
we would like to unravel Kripke models into trees, in which each link participates in just one
path. At first sight this looks like it will destroy the finiteness of our models, a feature on
which effective refinement operators and model checking operators rely. To retain finiteness,
we will need to limit in advance the maximum nesting of boxes that is allowed, and construct
a tree to depth greater than this number. Semantic structures similar to Kripke trees have
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been defined in [HC84]. Our definition differs in detail from the one in [HC84], but it largely
agrees with it in spirit. ,

In this section we define the notion of Kripke tree, show a translation of equivalence Kripke
models into Kripke trees, define and algorithm for refining knowledge structures and prove a
few properties about it. :

3.1 Kripke trees: basic definitions

Definition 3.1 (Kripke Tree) Let M = (W, ~, 7, wp) be an S5" Kripke model. The Kripke
tree Tar = (V, E, 0} generated by M is given as follows:

¢ The set of vertices is the set of paths in M:

V= {(wﬂiilawla v :wkﬂlyik,wk) VJ w] € f/V’ EJ & A, wJ ~isl Wj+1}

* E is an A-indexed family of sets of edges. For 5,5’ € V, there is an t-edge between g, 5/, |
written (s, s') € Ej, iff ' equals s extended by an 4 link, i.e. 8 = (wo, iy, wy,.. ., wg), s’ =
{wo,?1y...,ws, 1, w) for some w. '

» The valuation o is defined by o((wy, 1, wy,..., wg)) = w{wg).

The vertex wo € V is called root of the tree. We also allow the empty tree (@, &, &) which
we write as L. It has no root. When the model M is clear from the context or not relevant
we will simply indicate the tree as 7.

The sets &; can be omitted from definition 3.1, since they can be derived from V. We retain
them for convenience.

Kripke trees are irreflexive, intransitive, anti-symmetric, anti-convergent and serial.

If M has at least two distinct worlds related by some ~;, then Ty is infinite. For our
purposes of model refinement, we usually want to deal with finite trees. T, is Tay with paths
truncated at length k. Obviously by truncating the tree we will loge seriality.

Definition 3.2 (Truncated tree of depth k) Given an tree Thy = (V, E,0o), the trun-
cated tree of depth  is defined as Tf, = (V', B', o), where

o V' = {(w(},iy_,wl,... ,wj_l,z'j,w]-) eV]ig k}
* &' = Ely is the restriction of E to V',
o o’ = olyr is the restriction of o to V.

Infinite and finite trees satisfy modal formulas in the expected way:

Definition 3.3 (Interpretation) Let ¢ be an S5” formula. The satisfaction of ¢ by T at
vertex v, written T |=, ¢, is inductively defined as follows:

* Tlypifpeo(v);
* Tl=y ~¢ifnot T =y ¢
* Ty ¢ AY T b=y §and T k=, o
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o Ty ip if Vo' €V, (v,9') € E; implies T k= ¢
o« Thy OqS i € V Ty k= ¢.

The tree T satxsﬁes ¢, written T' |= ¢, if it satisfies ¢ at its root. The empty tree L sa,txsﬁes
no formula.

An infinite tree Tr is semantically equivalent to its generatmg model M as the following
shows:

Lemma 3.4 Let M = (W, ~, 7, wp) be an equivalence Kripke model and Ty = (V, E, o) its
associated Kripke tree. Let v = (wp,41,w1,...,w) be any vertex ending in w, and ¢ any
formula. Then:

M"‘"’wﬁb iff TM[=0¢

Proof There is a one-to-one corespondence between paths in M from w and paths in T
from v. o

Corollary 3.5 M k= ¢ if and only if Ty = ¢.

For the case of truncated tree, Lemma 3.4 is not valid. However, we can prove a related
result for formulas up to a certain level of modal pesting.
We inductively define the rank of a formula as follows:

Definition 3.6 (Rank of a formula) The rank rank(¢) of a formula ¢ is defined as follows:

o rank(p) = 0, where p is a propositional atom.

rank(=¢) = rank(g).

rank(¢; A ¢2) = maz{rank(¢1), rank(¢2)}.
rank(¢1 V ¢2) = maz{rank(¢: ), rank(¢2)}.
rank(0;¢) = rank(g) + L.

» rank(C$) =

The rank of a formula ¢ intuitively represents the maximum number of nested modalities that
occur in ¢. If an operator C occurs in ¢ we take the value of rank(¢) to be infinite. The rank
of a formula reflects the maximal length of any path that needs to be explored to evaluate
¢ on an infinite tree. In other words to evaluate a formula ¢ of rank k at wy we need not
examine worlds whose distance from wy is greater than &, where distance here is the number
of points which appear in the minimal path connecting the two points. The following lemma
formalises this.

L]

Lemma 3.7 If rank{¢) < k, M = ¢ if and only if T}, &= ¢.

Proof By 'Cor'o'llary 3.5, M k= ¢ if and only if Ths = ¢, bﬁt, by induction, the evaluation of
a formula of rank(¢) < & does not involve the evaluation of nodes of depth greater than k.
So T k= ¢ if and only if T, b= ¢, which gives the result. _ o
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In the following we shift our attention from an equivalence Kripke model to its generated
tree. It is possible to do so, because generated trees satisfy S5"-axioms as the following shows:

Lemma 3.8 Let M be an equivalence model and T,{i, its generated model truncated at k.
1. TE = ¢, where ¢ is a tautology, and rank(¢) < k.

TF = (¢ = ) = O;¢ = Ty, and max{rank(), rank(s)} < k — L.

Tk, k= Cup = ¢, and rank() < k — 1. '

T§, b= 0;¢ = 0;0;¢, and rank(¢) < & — 2.

TE k= Oip = 0;0:¢, and rank(¢) < k — 2.

S I

If for every vertex v € V of T, T, &y ¢, then TF, k=, O, for any i € 4.
IfTE k= ¢, and TF, b= ¢ = ¢ then TE, |= v.

@

Proof We prove item number 5. The others can be done similarly. Suppose the formula is
not trite on 7% with root v, and suppose T |= ©;4, but TF & 0;0;4. So there is a point
v’ € V such that T% k= ¢, and (v,v') € Ei. But TF b= ~3;0;¢, s0 T = ©;0;-¢, so there
exists a v"” € V such that T%, = O;~¢, and (v,v") € E;. But then since T* originates from
M, by lemma this must contain three points w,w’,w”, corresponding to v,v’,v", such that
M =y ¢, and M =y O;—¢ (theorem 3.4). But w’ ~; w” since ~; is an equivalence relation.
This is absurd. ' o

So Kripke trees are models for S5,.
Before we proceed further, we introduce a few basic definitions and operations on subtrees.

Definition 3.9 (Rooted-subtrees) Let 7' = (VI,E'\o'}, T = (V,E,0) be trees. T' is a
rooted subtree of T, written IV < T', f V' C V', and Ely» = F', and ofyr = o’. '

Definition 3.10 (Intersection of trees) Let T = (V/,E',¢') and T = (V| E, o) be trees
such that oly:nv = o’'|yny. The intersection of T and T is TNT' = (V' NV, E'NE, o |viav).

It is easy to see that definition 3.10 (whén applicable) defines a tree.

Definition 3.11 (Restriction of trees) Let 7' = (V, E, o) be a tree with root v, and V' a
subset of V. The restriction of T to V', written Ty, is the largest subtree of 7' generated by
v whose vertices are in V'..

The term “generated” in definition 3.11 is intended in the usual sense defined in the literature
(see for example [Gol87} page 10). If the root of T is not in V', then T}y = L.

40



3.2 Kripke trees: refinement

In section 2.2, we discussed the difficulties that arise when using S5, Kripke models as knowl-
edge structures for refinement. Example 2.3 showed that any straightforward procedure to
refine an equivalence Kripke model will be non-commutative, i.e. there will be &, 8, such that
MraxB&Mx*Gxa.

Commutativity can be achieved by shifting to Kripke trees. Before we can show this, we
must define refinement on Kripke trees.

The typical working scenario in which we operate is the same one as that advocated by
[HV91}, except that we refine T instead of M. It can be described as follows: we are given an
initial configuration of a MAS, and a set of formulas {¢1,..., ¢} that represent the update
of the scenario. The question is whether the updated configuration will validate a set of
formulas {11,...,%:}. We assume every 1 to have finite rank, i.e. we cannot check a formula
containing the operator of common knowledge. There is no restriction on the ¢s.

Our method operates as follows:

1. Start from the most general equivalence Kripke model M that represents the MAS.
2. Generate the infinite tree Tz, as given in Definition 3.1.

3. Generate from T¥;, the truncated tree of depth k, for some sufficiently large k.

4. Sequentially refine T§, with {¢1,...,%m},

5. Check whether the resulting tree structure satisfies {¢1,...,v;}.

The method describes above needs some further explanation. First, what is the most
general Kripke model representing a MAS configuration? How are we to build it? Our
answer is the same as that given by Halpern and Vardi. Assume the set of atoms P is finite.
We take the model whose universe W is equal to 27, i.e. the universe will cover all the possible
assignments to the atoms. We take ~;,7 € 4 to be the universal relations on W x W, and wq
to be the actual world of the given MAS.

In general we will require that M is more specific than the most general model, e.g. some

.agent will have a certain knowledge about the world. We can add all the formulas that need
be satisfied to the set of updates {¢,...,¢m}. For example in the muddy children example
we can start from the model with universal relations and add

3
A\ Cloi = Kipy)
‘ fam]
to the set of updates.
We have already explained how to execute steps 1, 2, 3, and 5. We now present a notion
of refinement to execute step 4.

Definition 3.12 (Refinement of Kripke tree structures) Given a truncated Kripke tree
T™ = (V,E,0), a point v € V, and a formula ¢, the resuit T = (T, v) * ¢ of refining T by ¢
at v is procedurally defined as follows. We assume that the negation symbols in ¢ apply only
to atomic propositions (to achieve this, negations may be pushed inwards using de Morgan
laws and dualities /< and C/B).

o If T=1,thenT = L.
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o IfTk=y p, then T' =T
o Otherwise the result is defined inductively on ¢:

~¢=p Ifpe&o(v),thenT =T, else T' = L.
—¢p=-p Upgo(v) then T =T, else T’ = |.

—¢=pAx. T'=((T,v) *$) N ((T,v) *x).

- p=9PVx. If (T,v) 9 < (T)v)xx then T' = (T, v) *x, and if (T, v) xx < (T, 2) s
then 7' = (T,v) * ¢. Otherwise T" is non-deterministically given as (T, v) x ¢ or
(T,v) * x.

— ¢ = 0. T' is given by computing as follows:

T =T
for each v’ such that (v,v') € E; do
if (T, v") %4 = L, then
T iz TllV-{u’}
else
| T = (T, v)x9y
— ¢ = Oyip. Let X be theset X = {(T,v') x¢| (v, € E)}.
FX =g, thenT = L,
else 7" is nondeterministically chosen to be a €-maximal element of X.
— ¢ = Cy. T' is given by computing as follows:
T :=T
for each v' € V do
if (T',v") #4 = L, then
UARES T’EV—{u’}
else
. T = (Tv)x9
—~ ¢p= Bip. Let X betheset X = {(T,v')xp|v' € V}.
IfX =2, then T = L,
else 7" is nondeterministically chosen to be a <-maximal element of X.

T * ¢ means (T, v) * ¢, where v is the root of T,
Lemma 3.13 Given a tree T', a formula o and a point v, (T,v) * « is a tree.
Proof Follows from the fact that if T is a tree then Ty is also a tree. O

The intuition behind (T, v) *'¢ is that it is obtained by removing as small a set of links
from T' as possible, in order to satisfy ¢. Note that, due to the clauses for v, Oy, B, (T, v) ¢ is
not uniquely-defined. However, we will see that running the procedure on the muddy children
example does not introduce nondeterminism.
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4 The muddy children puzzle using Kripke trees

In section 2.1, we described the muddy children puzzle and we reported the formalisation that
was given in [FHMV95, HV91]. Aim of the present section is to solve an instance of it (where
the actual situation is coded by the tuple py, ps, p3 that we equivalently write as (1,1,1) - all
the children are muddy) by using Kripke trees and the methods we introduced in section 3.1.
We follow the method that we defined in Section 3.2.

We start with the most general model to represent the puzzle: this is the model My of
figure 11. Given My, we generate the infinite tree Tyy, for M, and then the truncation T
of M;. In this example, we only need three levels to be unravelled. The starting tree and
the two successive refinements are in figure 7. Let ¢y = C(p; V pa V p3) (this is the father's
announcement), and ¢z = C(~0;p; A =Cy-p;) A C(~Oypy A =Ta=pg) A C(~Osps A ~O3-p3)
(the children’s simultaneous reply that they don't know whether or not they are muddy). We
now sequentially update T} by ¢; and then by ¢, three times. Note that since all children
are muddy, they will have to speak three times before everyone knows he is muddy.

Consider the algorithm of definition 3.2 and 7. Following the algorithm, the refined tree
Ty * ¢ = T3 in figure 7 is T} in which the links to states where no children are muddy have
been removed. T, * ¢ is then achieved by isolating worlds that do not see two worlds (itself
and another one) for every relation. In fact, only in this case one of the formulas Cipi A Oy
can fail on a point of T5. We can now obtain T3 (again shown in figure 7), and Ty similarly.

Having made all the refinements, we can now check whether or not the muddy children
know to be muddy. This involves checking

Ty =pi = Kipi.

Since Ty is a singleton and /\f:1 pi is true at the root of T4, the formulas are satisfied.
Analogously we can prove that the procedure given in 3.2 produces solutions for the other
cases of the muddy children.

5 Properties of refinement on Kripke trees

In the rest of the paper we analyse some more properties of the refinement procedure that we
defined in definition 3.12.

The first remark that we should make is that refining a scenario by some agent’s knowledge
cannot affect other agents’ knowledge as it happened in example 2.1 for Kripke models. This
is because by unravelling a Kripke model we produce a tree whose leaves are in a bijection
with paths of the original model. We formalise this as follows:

Theorem 5.1 Let T be a tree, and ¢, two formulas. Then:

'According the the notion of most general model as described in section 3.2 the model A should actually
be M = (21PrP2Pe} ) 1 1), where U is the universal relation on W x W, and n(w) = {1, pz, ps}. The model
M we analyse is the result of the update of M by

Clpi = Kjpi) 1t # 54,5 € {1,2,3},

where the formula above represents the fact that children can see each other. For brevity (as in IFHMV95,
HV91]) we start our analysis from M;; i.e. rather than building the tree for A and update it first by C(p; =
Kpi), we directly build the tree for M;. The reader can check that this leads to the same resuit,
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Proof Nodes of a Kripke tree are in a bijection with paths of the generating model. Therefore
by removing some j-links we cannot affect the interpretation of any modality whose index is
not 7. ‘ . a

Note that this would not be the case had we considered reflexive trees.

Although the theorem above refers to infinite trees, an analogue version can be proved
for truncated trees. In that case we need the rank of the formulas to be less or equal to the
depth of the truncated tree minus 1.

The second point worth stressing is that Kripke trees solve the problem of example 2.3,
i.e. we can prove commutativity although the result is limited to safe formulas:

Definition 5.2 A formula is safe if it is universal and no J; and no C appear in the scope
of V.

We need a few results before proving commutativity of safe formulas.

Lemma 5.3 Let ¢, « be any formula and v any point of T'.
L{T\w*ogT

2. If o is universal with no disjunctions, T} £ T implies (T},v) * o € (T%,v) * @, where
veWinh.

3. f o is universal then ' =cx and L # T < T imply T" = a.

Proof 1. The procedure for obtaining (T',v) * ¢ only removes links.

2. Induction on . We assume all negations pushed inwards. Let T} = (T},v) * & and
T} = (Th, v} * a. Suppose « is of the form:

sp Ifpeo(v)thenT| =T, Tj =Ty else T| =Tp = L.
e —p. Similar.

e GA7.

. (T]_,'U)*a (Tlrv)*ﬁﬂ(Tl’U)*'y

(T2:U) * /Bﬂ (TQFU) * Y IH

(Th,v) *

o 0;3. Set T] = Ty and T} = T and we execute the loops of deﬁnmon 3.12 (CJ;-case}
synchronously We will show that T} < T is an invariant of the execution.
Suppose (v,v') € Ey;.

- If (v,v'} € Ey;, then consider the following cases:

* (T1,vYxB8=1and (Th,v)*8= L.
T} = T{|v-{v} and T} := Tily_(y}, 50 T{ < T3 is not violated.

* (T1,v')* B =1 and (Th,v) x 8 # L.
T} = T{ly_qv} and T3 := (T5,7') # B, and T] < T3

* (T1,v)* 8 # Land (Th,v') + 8 = L.
Contradicts hypothesis that 77 < 75.
(Th ,) AB#J—and(TQ: ’) ,B#-{- i
Ty = (T4, 0"}« 8, T3 = (13,0}« 3, and T} € T} by induction hypothesis.

[ AN
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~ If If (v,v") € Ey; then T is unchanged by the body of the loop, while T}
becomes one of T3 := T3y _ 1y and (T3, v') + 5. In either case, we are removing
links in T3 which are not present in T, so T] £ T} is preserved.

¢ CJ. Similar to 0;0.

3. Induction on a.

Theorem 5.4 (Success) Ifais universal, (T,v) *a = L or {T,v) *a =, o

Proof Induction on «. The cases a = p, ~p, ¥ V x are straightforward; the case a = P A x
requires part 3 of lemma 5.3. i

Lemma 5.5 If « is safe, then the outcome of (T, v) * o is deterministically defined.

Proof Suppose ¢ contains no 0;,C. Then it's an easy induction to see that (T,v) « ¢ is
either T or L. Now consider (T',v) = {¢ V 9), where ¢, are 0;, C-free. We see that either
(T,v) « ¢ < (T,v) v or (T,v) =9 < (T, v) * ¢, so the result is again T" or L. a

We show that, for universal formulas, the change made be a refinement is the minimal
one possible in order to satisfy the formula:

Theorem 5.6 If o is safe, (T,v) xa is <-maximum in {T’ TIT=yaorT =1},

Proof Let 7" = (T,v) *@¢. By part 1 of lemma 5.3 and theorem 5.4, we know 77 is in the
set. To prove that it is maximum, take any T” in the set; we will show I < TV. f 7" = L
the result is immediate; otherwise, we have 7" =y o and T < 7. Since 7" < T, we get
{T",v) * & < (T,v) * @ by part 2 of lemma 5.3. But (T",v) @ =T" (since T” Ey o) and
(T,w)yxa=T, s0T"< T W

Theorem 5.7 If o, 3 are safe (T,v) * a8 is maximum in {7 < T | T’ =y aASor T' = L}

Proof Let T' = (T,v)* a* 3. By parts 1 and 3 of lemma 5.3 and theorem 5.4, we know T”
is in the set. The argument that it is maximum is similar to the proof of theorem 5.6. Take

- any T” in the set; we will show 7" < T". If T" = L the result is immediate; otherwise, we

have T" =, a A § and T" < T. Since T" < T, we get (I",v) * a« 8 < (T,v) x o x 3 by part 2
of lemma 5.3. But (T",v) *a+8=T" (smce T =y @, (T",v) * a = T", and since T" k= ﬁ,
(T",v)*B=T"),and (T)v)xa*xB =T 0 T"<T".

Theorem 5.8 (Commutativity) If o, 3 are safe, then Txa+ =T« 3.

Proof By theorem 5.7, T *a* 3 and T+ 3 * o are maximum in the same set. Therefore they
are equal. ‘ O

We conjecture that the premise can be relaxed to universal formulas. It is worth mention-
ing an example of which non-universal formulas can make commutativity to fail.

Example 5.9 Commutativity can fail for arbitrary formulas. The problem is that if the
formulas are non-universal, the order of updating can play a role in the outcome of the update
and we might have that one of the two cases fail. We are so far unable to find examples in
which the two updates succeed but produce different result (we conjecture this is impossible;
see also conclusions about this). The example we report here is the tree T5, illustrated in
figure 8, where the root is the top vertex. Consider now Ty = T5* O —p+0; (pV—g), illustrated,
and Ty = Ty # Ul(pv “"‘q) * 01""110 = 1.
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T =Ts % O1mp*x Oy (pV —q) @

Figure 8: Ty and T} discussed in example 5.9. While T5 = T + O1—p Oy (p V —q) is defined
and shown above, Ty = T * Oy (p V ~q} * O1-p is undefined. :

6 Conclusions and further work

In [Wo097] Michael Wooldridge, discussing the problems of using possible worlds semantics
as formal specification for MAS, writes:

[... possible worlds semantics are generally ungrounded. That is, there is usu-
ally no precise relationship between the abstract accessibility relations that are
used to characterise an agent’s state and any concrete computational model... .
this makes it difficult to go from a formal specification of a system in terms of
beliefs, desires, and so on, to a concrete computational system. ..} {page 9)

This is indeed very often the case and this line of research aims at bringing us a step towards
the use of possible worlds semantics as specification and reasoning tool for MAS, ,
~ In this paper we have developed the proposal in [HV91] for model refinement and model

checking. We argued that model refinement could not be defined satisfactorily on Kripke
models, and proposed a definition on Kripke trees obtained from Kripke models instead.

'The shift from Kripke models to Kripke trees let us achieve two main results. First, we
showed that it is possible to refine trees by a formula expressing knowledge of a formula
without affecting the knowledge of the other agents (theorem 5.8) - this was not apparently
possible on standard Kripke models (see example 2.1). Secondly, while it seems impossible
to obtain commutativity for even safe formulas on Kripke models, we showed this is possible
for Kripke trees.

Many of the issues we discussed in this note still need investigating. The following is a
list of conjectures that we have not proved (or refuted) yet.

LT+ Land Toipxgdp# L, then Topxtp =T # 9 # .

2. If ¢,9 are universal (not necessarily safe) then T p* =T +¢p+¢. This is implied by
1. :
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3. Let T == My, where M is the most general model and ¢,...,¢, be S5™-consistent
formulas. Then T * ¢y * ... * ¢ # L. (Item 2 implies they would commute).

4. =1 impliesT*p=T »1h.

Further work will be focused on proving the above and trying to address the following
more general issues:

e What is the appropriate level of truncation that we need apply? Is there a mathematical
formula that can compute it?

o Although every generated tree will satisfy 557, an update of it in general will not. Is
this a strong point against model refinement as it is defined here?

¢ We have proved that model refinement satisfies the properties like success (theorem 5.4),
commutativity (theorem 5.8). Are there other important properties that we should
check or advocate, for example the ones discussed in [G4r88] and [KM91]7?
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Reasoning by Evidence for Best-Chance
Planning with Incomplete Information

Eliezer L.

Abstract. Reasoning by evidence is presented as a
way of reasoning with incomplete information. This ap-
proach is applied to the process of planning under uncer-
tainty that stems mainly from the general incompleteness
of an agent’s knowledge about the real world, and from
the fact that the world changes not only due to the agent’s
actions, but for many other reasons, often unknown to the
agent.

1 Introduction

Contemplating future behavior is an essential part of ac-
tivity of any intelligent agent, either a living creature or
a machine. So, planning presents an important direction
of research in Al In general, given an initial state op of
the agent’s world W, and a goal G, a plan 7 is a set of
actions {a} ordered either fully (linear plans) or partially
{nonlinear plans {2, 6, 27, 28]) such that their execution
according to this order achieves the goal. The world W of
the agent is described formally by a theory S (usuaily in a
first-order language) including a set of general constraints
on the agent’s activity, and a set AA of his/her/it admis-
sible actions. Every action o € 4A is associated with
specific preconditions (that must be satisfied to make o
executable) and effects {that take place in W after a suc-
cedsful execution of ar). :

Given a specific oy and G, there may not exist a way of
reaching & from o by a certain agent. But often there are
several possible plans for reaching the goal, constituting
a set II of plans. Plans of IT may differ in many aspects,
such as the cost of their execution, duration, side effects,
ete, So, an agent selects for execution a certain panrell
according to his preference criteria. These criteria may
change in time or be dictated by the current state of the
world. So, for the same o and @, different plans can be
chosen by the same agent in different situations.

An important factor affecting the process of planning
is an uncertainty associated with an execution of a plan.
This uncertainty stems mainly from the general incom-
pleteness of the agent’s knowledge about the real world,
and from the fack that the world changes not only due
to the agent’s actions, but for many other reasons, often
unknown to the agent. Thus, before any actual execu-
tion of a planned action certain information about the
current state of the world must be available. or acquired

*Inst.  of Computer Science, The Hebrew University,
Jerusalem 91904, Israel, email: lozinski@cs.huji.ac.il
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to make sure that the action’s preconditions are satisfied
and the rest of the plan is feasible, or to chose an alterna-
tive plan, otherwise, This observation suggests produc-
ing conditional plans [7,15, 17, 26] representing branching
processes such that at certain points of execution a proper
course of action is determined according to run-time val-
ues of conditioning parameters, The latter are measured
by means of an appropriate sensing [17]. However, the
state of the world at the time of execution may be differ-
ent (in an unpredictable way) from that at the time when
the plan has been designed. So, an important problem
arises:

What should be a rational choice of a plan

in circumstances where either unavailability of

a necessary information or some other uncon-

trolled reason hinders a predesigned execution?

2 Delayed execution

Let us consider a plan = ( for reaching G from 05} designed
at a time ¢2. An agent decides to start an execution of 7
at a time £, > t4, however, finds out that there are some
temporary obstacles to an immediate execution of w, in
particular, preventing execution of an action a of & by fal-
sifying its preconditions or hindering a proper branching
by making a necessary sensing impossible. These obsta.
cles, Obst(r), were not anticipated when x was designed,
have risen after ¢4, and are supposed to be removed at
some future time, after t,. Facing this situation, the agent
has to consider the following modes of behavior:

(i) Wait in the initial state oo until the obstacles are
removed, and then start execution of .

(ii) Start x at ¢. despite the obstacles in hope that
they will be removed by the time the execution reaches a.
Otherwise, the process will stop at «, wait, and proceed
as soon as a becomes executable,

(iif) . Abandon w, and try another plan for reaching G.

Waiting according to (i) has several drawbacks. If &
has to be reached at a certain time, it may happen that if
the agent waits at oy, then he/she/it is most likely to be
late. Furthermore, when the obstacles to a are removed,
some other action of r preceding & may become non-
executable, so, the agent will be forced to keep waiting.
Besides, the agent may wish to arrive at G as soon as
possible, in the first place. Hence, the main choice is
between (ii) and {ii). To choose between different plans
the agent must be able to estimate the chance that a
plan = will succeed given the obstacles Obst(r). Thus,



given a set [T of previously designed plans, a rational agent
should prefer a plan 7 € IT possessing a highest posterior
probability prob(GfSUrrUObst(fr)) that started at ¢, from
9o it will achieve the goal @ given the world description
S and the obstacles Obst(r) (expected to be removed in
the future),

3  Evidence versys probability

Approaches to estimating and maximizing a posterior
probability are based on the Bayes' Theorem that al-
lows computing unknown probability of some event given
corresponding probabilities of other ones (16, 24]. Let
2(A4), p(A|B) denote, respectively, the prior probability
that a statement 4 ig true; and the posterior probabil-
By that 4 is true given that B is true., If P{A) # 0 and
81,Bq,..., B, are mutually exclusive and Jointly exhaus-
tive statements such that Z;‘ 2(Bi) =1, then

HBp(AIB)
2_iny P(B)p(A|B;)

To apply the Bayesian approach to computing of p(B,]A4)
one needs to know P(Bi) and p(A|B:) for all §
1,2,...,n. This requirement of a full specification of
probability distribution is often difficult to meet in real
systems,

Several methods have been developed to cope with a
lack of statistical information. A celebrated one is the
Principle of Mazimum Entropy[i1, 12, 35]. The notion of
entropy, widely used i physics, was considered by Hart-
ley [9] and Wiener [37]) in connection with information
transmission, and introduced into Information Theory by
Claude Shannon [30]. Let P be & probability distribution
assigning probabiljties P1y....Pn to n mutually exclusive
and jointly exhaustive events {or statements) of a set R,
‘Then the entropy of P, g (P), is defined by

14) = PBOP(AIB;)
p(Bil4) = oA =

b

H(P)":-Zp.' log py, (1)

(23

is assigned zero if pi = 0.

measure of uncertainty associated with R
In particular, H(P) reaches
if all the events of R are

This distribution is, indeed, most uncertain, since it doeg
not allow to expect one event more than any other, or
to prefer the truth of some statement of R to that of
another one.

Now suppose that
real relationships existing among the elements of R. This

where p; log p;
H(P)is a

given the distribution P,

its maximum value of legn

equiprobable,

=pp=1/n,
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the fact that there
yord that presented
straints,

is tio other knowledge about 7 be-
by K. So, besides satisfying the con-
Pl must maximjze the i

a probability distribution P satisfying K such that for
all P, H(PL) 2 H(Px). This principle, which can be
traced back some 100 years, to the works of Boltzmann,
Maxwell, Gibbs, and Planck, and has been introduced in
its modern form by Jaynes [11] and Tribus {35), proved
its efficiency in various fields of Physics, Statistics, Infor-
mation Theory, Pattern Recognition, Signal Processing,
etc, [1, 8,11, 12, 13, 14, 18, 25, 32, 33, 34, 35, 38].

To be applied suécessﬁﬁly, most of the known ap-
proaches to reasoning with uncertajn and incomplete in-
formation require an extensive statistica) knowledge {eg.,
prior and

Although the available knowledge & may not imply the
truth or falsehood of a statement F, it provides some

measure of credibility of a belief in the truth of &

To present a measure of credibility of 4 belief in the
truth of F, the valye of evidence has to possess the fol-
lowing reasonable pProperties:

{(1)IfFFisa logical consequence of S, then the tryth
of ' is mdst credible, so, E(S, FIS = F) = 1. (Let the
range of evidence be normalized jn [0, 1).

(2) If S = -F, then the belief in the truth of F has no
credibility. )

Hence, E(5, F|S j= —=F) =0,

(3) In particular, if , ¥ are a tautology and an unsat-
isfiable formula, respectively, then for all §, E{S, @) =1
and E(S,y) =0.

(4) B(S, 6 v ¥) = E(5,8) + E(S, 9) - E(5, 4 1 y),

(8} Properties (3} and (4) imply for all 5 and y,
E(S, ¥} + E(S, “P)=1

As evidence of F provided by S is intended to replace
the unavailable probability of truth of F, the proper-
ties (1)~(5) of evidence resembie the axioms of probabil.
ity. However, evidence differs from probability in several
ways. Conceptually, evidence, unlike probability, is based
on the semantics of a logic system, rather than on the
notion of chance, repeated trials, experience or subjec-
tive estimates. Quantitatively, evidence is different from
probability, but it accommodates the available statistical
information, and amounts to the probability if this infor-
mation becomes sufficiently large (see Section 4).

If S represents a world W faithfully, then every momen-
tary state of W corresponds to a model of S, although,



because of an incompleteness of the knowledge presented
in §, some models of § may describe states of W that do
not occur in the reality. However, these states appear to
be possible from the standpeint of the current knowledge.
This observation underlies the widely adopted view of W
as a set of states, referred to as possible worlds, such that
there is a bijection between the set of possible worlds and
the set MOD(S) of all madels of § (S is supposed to be
consistent).

At any moment the world is in one and only one of its
possible states. So, MOD(S) provides a set of mutually
exclusive and exhaustive particular representations of W.
Let p(s) denote the probability that W is in a state rep-
resented by a model g € MOD(S). Then the probability
p(F) that a formula F is true in the current state of W
can be expressed as

pR = 5 sFpw= Y. sl
HEMOD(S) BEMOD(S) Auts F
, (3)
smee
1 if F
P(Elu) = { 0 ;thg‘tﬁise.

Unfortunately, a full probability distribution over the
space of possible states is usually either not available or
not satisfactorily reliable, although a partial distribution
may be known for some possible worlds represented by
a subset of models M ¢ MOLD(S). However, if M does
not contain all models asserting F, then a question arises
of how the probability of the models not contained in M
should be estimated.

4 Applying the Principle of
Maximum Entropy

Consider a user interested in finding out the actual state
of a world W given its description by a knowledge sys-
tem §. As the system represents every possible world
by means of one of its models, a probability distribution
over MOD(S) is necessary for reasoning about the ac-
tual state of W. Suppose that prior probabilities g{u) are
known for models of a subset M of MOD(S). Given this
partial distribution Pas, a rational reasoner should prefer
a full distribution Parop over MOD{S) that (a) is con-
sistent with S, (b) includes Py, and (¢} implies no extra
knowledge beyond § and Pas. According to the Principle
of Maximum Entropy [11, 35], Prmop must maximize the
value of Shannon's entropy H(P) (expression (1)}, This
implies the following definition of Pruoop:

q{u) if neM

1= en %)

TS D& =M1

Now the evidence £(S, F') can be defined as the proba-
bility that F is true in the current state of the world given
the reasonable, although not necessarily actual, distribu-
tion Parop {expression {4)).

plp) = (4)

otherwise.
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Definition 4.1 (Evidence) Due to erpressions (3} and

[4.)1
3o aw+ )

E(S,F)= p{us)
pEMApg: R HE(MOD(S)~M)AukF
= > q(m)
pE(MNMOD(SU{F})
IMOD(S U {F}) - M]
+(1 Eq{u)) oD~

where |[MOD(5)], [MOD(S U {F})| denote, respectively,
the cardinality of the set MQOD{S) of all models of S,
and that of its subset consisting of all models in which F
ts true.

If MOD{S U {F}) € M, then E(S,F) amounts o
the probability of F. I neo prior probabilities of possi-
ble worlds are known, such that M = 8, then

{MOD(S U (F})| 5
[MODEN ©)

Propaosition 4.1 Definition {.1 is in accord with prop-
erties (1)-(5} of evidence (Section 3),

(5)

E(S,F)=

Proof is omitted for brevity.

An implicit assumption underlying Definition 4.1 is
that the set of models of § is finite. However, the value
of evidence can be calculated in systenis with infinite sets
of models {21}, -

5 Reasoning by evidence about
a best-choice plan

The preceding considerations suggest the following way
of reasoning by adopting evidence E{(S, F') as a measure
of credibility of a belief in the truth of F given 5. '

Definition 5.1 (Reasoning by evidence) (i) If
E(S,F) = 1 (or E(S,F) = 0), then F is true (false,
respectively);

(ii) If E(S, F) > 0.5 (that is, E(S, F) > E(5,~F}),
then F is more likely to be true than false, and the larger
the value of E(S, F) the more credible a belief in the truth
of F; If E(S, F) = 0.5, then both possible beliefs of F' have
the same (rather low) credibility.

(iii) If E(S, F) > E(S, F'), then the truth of F is more
credible than that of F'.

Let us recall the problem of choosing a best-chance
plan, that is, a plan ©* & II possessing a highest chance of
achieving the goal, given the incomplete knowledge avail-
able at time ¢., namely, that there are obstacles to a full
execution of the plans of I that are expected to be re-
moved after te, although no information regarding the
time or likelihood of the removal. ]

Let # denote a fragment of = not affected by Obst(r)
consisting of all actions of = that can be performed ac-
cording to the information available at ¢.. Then reason-
ing by evidence suggests the following way of choosing a
best-chance plan. '



Definition 5.2 (Best-chance plan) Given a world de-
seription S, a set II of plans achieving a goal G, and a
description of obstacles Obst(x) for all ®# & I, then a
plan #* € II is a best-chance plan if an ezecution of its
fragment ©* provides G with a highest evidence:

E(Sur*, @)= max [E(SU#, &Y.

6 An example

Let us consider a simplistic motivating example of an elec-
tric circuit displayed in Figure 1. :

sw2 swd
it
swi | 1
.
2
._..—ﬂ .—-q-“ p——— Ay
sw4 awb swa
—0
B L

" Figure 1. A sample circuit.

It is composed of a light bulb L, battery B, and switches
awl,...,swB. Normally the battery and the bulb are
operational, but all the switches are in state off, so,
the bulb is not lit. There are two plans to lit L:
either put swl in state ! and sw2,sw3 in state on
(so, m = {Onl(swl), On(sw?), On{sw3)}), or put
swl in state 2 and swd,swS, swb in state on (m =
{On2(swl), On{swd), On{sw5}, On(sw6)}). Suppose
that swl,...,swb are located in different places, but all
the switches are equally accessible to an operator. To
lit the bulb {that is the goal) the operator would prefer
to operate three switches swl, sw32, sw3 rather than four
ones swi, sw4d, swi, swb, Now suppose that sw2, swd and
sw6 become {temporarily) inaccessible to the operator. It
appears reasonable that in this case the operator would
put swl in state 2 and switch on swd, sw5 in hope that
it is more likely to get an access to a single switch sw6
than to two inaccessible ones sw2, sw3, Besides, it is pos-
sible that some of the inaccessible switches are already
switched on, and again, it is more likely that a single sw6
is on than the two, sw2 and sw3, are so.

Now let § include a description of the circuit, and an
assumption that the battery and the bulb are normal.
We wish to light the bulb, that is, make G = On{L}. If
only swl, swd and sw5 are accessible, then the unaffected
fragment of =1 and w2 are, respectively, #1 = {On1{swl)}
and 2 = {On2{swl), On{sw4), On(sw3)}. To deter-
mine a best-chance plan, let us compute the evidence of
On(L) provided by #] and #3, Table 1 gives values of
evidence E(S U {4}, On(L)} for all possible combinations
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¢ of states of the accessible switches {if swlis off then ob-
viously the bulb cannot be lit, so, E(SU{¢},On(L)) =0
for all ¢ containing O f f(swi)). The first and second lines
of the table correspond to ] and 7%, respectively. It fol-
lows that m is the best-chance plan, since it provides an
evidence of G twice as high as 7 does. And the rest of
the table shows that 3 is better than any other possi-
ble operation of the accessible switches. Thus, the plan
suggested by the reasoning by evidence conforms to the
operator’s common sense decision justified above.

Table 1. Possible actions.

M1 ={MOD(S U {6})}, M2 = [MOD(S U {$} U On(L))|
E = E(Su {$},0n(L})

¢

i swl | swd | swh M1 | M2 E

|| Onl | O | OR g 71 0.25

w2 On2 f On | On 8 4 0.50
Onl On On B 2 2.25
Cni On Off 8 2 0.25
Cnl | Of | On 8 2 0.25
On2 | On | OFF ] g 0.00
On2 | Of | On 8 4] 0,00
On2 | OF | OF 8 0 0,00

7 Counting models

Reasoning by evidence requires computing number of
models of logic formulas which is a hard computational
task. Valiant [36) has shown that in general the prob-
lem is #P-complete. Dubois [5] and Zhang [39] have de-
veloped algorithms for computing the number of mod-
els of a propositional CNF formula (with n variables, m
clauses, & literals in each clause) having a worst case time
complexity of O(mry), where ry is the largest root of
oF -kt e =1 (such as r; = 1.618, r3 == 1.839,
ry = 1.928,..., IMgees re = 2.

Very hard in general, the problem of counting mod-
els turns out to be quite tractable in many practical
cases, Luby and Velickovic [22] have presented an al-
gorithm for approximating the number of models of a
DNF propositional formula with m clauses on n
variables. The running time of the algorithm is esti-
mated by a polynomial in m and n multiplied by
ot $log® m + tog® L)(loglogm + log L + log 1)) , where €, ¢
are the approximation errors. Linial and Nisan [19] have
presented an algorithm.for computing the size of a union
of a family of sets, that can be used for approximating the
number of models. The algorithm runs in time O{m°®},
where ¢ grows with the precision. It has been shown in
[20] that under reasonable assumptions the average run
time of computing the exact number of models of a propo-
sitional formula is O{m%n) where d = Qlogm) .
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Abstract

The Webster Collegiate Dictionary defines the " dialectic” as a method
of intellectual investigation that relies on discussion and reasoning by
dialogue. Socrates used the dialectic as a technique for exposing false
beliefs and eliciting truth. The dialectic also applies to any system-
atic reasoning, exposition, or argument that juxtaposes opposed and
contradictory ideas and usually seeks to resolve their conflict.

For our purposes, the dialectic is all of the above, as well a5 a tech-
nique whereby a number of autonomous interacting agents may reason
practically *together*. The field of practical reasoning has studied a
number of metaphors and approaches using which intelligent (and, of
necessity, limited) agents may cope with a complex and rapidly chang-
ing world. The dialectic provides a natural metaphor for situations
where the agents must reason together. .

The dialectic leads naturally to a series of arguments exchanged
among the agents. However, the arguments not only help resolve con-
flicts or identify commonalities, but also lay the ground for further
debate and reasoning. Agents working individually would concentrate
their energies on finding evidence or answering questions that arise in
their ongoing interactions. In this way, argumentation has the usual
dilemma of practical reasoning approaches. On the one hand, it heips
focus reasoning; on the other hand, it can lead to suboptimal solutions.
However, unlike the single-agent approaches, the artifacts of argumen-
tation are inherently public. Thus, they can help a group of agents
collectively satisfice with the confidence that as individuals they would
be exonerated for doing no more than following what the rest of their
group is interested in.

Recognizing the centrality of the dialectic is the first step in devel-
oping specialized approaches for collective practical reasoning. This
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talk is geared more toward drawing attention to this area than toward
offering solutions, .
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Deliberate Robbery, or the Calculating Samaritan

Leendert W.N. van der Torre! and Yao-Hua Tan?

Abstract. In this paper we introduce the deliberating rob-
ber, an example of reasoning about preferences in a logic of
desires. We show thab two defeasible reasoning schemes pro-
posed in qualitative decision theory derive counterintuitive
consequences.

1 Introduction

in the usual approaches to planning in Al, a planning agent
is provided with a description of some state of affairs, a goal
state, and charged with the task of discovering (or perform-
ing) sotme sequence of actions to achieve that goal. Context-
sensitive goals are provided for situations in which the agent
encounters goals that it cannot achieve, for example when its
objectives can be satisfied to varying degrees, such as time
taken to fill a tank or amount of fluid spilled. The desirability
aspect of context-sensitive goals is formalized with preference-
based or utilitarian semantics, which are provided by decision
theory {8, 10, 3).% Besides expressing the desirability of a state,
adopting a goal represents some commitment to pursuing that
state [8]. However, we do not discuss this second aspect of
goals in this paper.

Recently, several more or less ad hoc preference-based log-
ics for goals and desires have been proposed [10, 9, 27, 3, 31,
30, 17, 34, 35}, which raises a demand for criteria to evalu-
ate the properties of the logics. In this paper we introduce
to this end the deliberating robber, a relative of the gentle
murderer. The formalization of both persons is problematic,
because they specify different degrees of sub-ideal behavior.
They differ in two regpects. First, the deliberating robber is
subject to decision-theoretic instead of moral norms. However,
we argue that this distinction is irrelevant for the problem at
hand. Second, the deliberating robber is described in more
detail than the gentle murderer. There is an indefinite num-
ber of distinct degrees of robbing (instead of two degrees of
killing) and there is a distinction between contexts. Moreover,
the number of degrees or contexts may change (instead of
keeping it fixed). The deliberating robber example is used to
analyze the behavior of two preference-based logics developed
in qualitative decision theory, and we show that counterintu-
itive conclusions follow.

L 1RIT, Paul Sabatier University, 118 Route de Narbonne, 31062
Toulouse, France, torre@irit.fr

2 Buaipis, Erasmus University Rotterdam, P.O. Box 1738, 3000
DR Rotterdam, The Netherlands, ytan@fac.fbk.eurnl

3 Much of decision theory is concerned with conditions under which
the preference ordering is representable by an order-preserving,
real-valued value or {under uncertainty) ubility function, and with
identifying regularities in preferences that justify value or utility
functions with convenient structural properties (21].

2 The gentle murderer

In 1984, James Forrester wrote a paper called “Gentle mur-
der, or the adverbial Samaritan” [11]. It was soon recognized
that the gentle murderer example introduced in that paper
is the most notorious paradox of monadic deontic logic —
Castafieda called it ‘the deepest paradox of all’ [5] -, because
standard techniques developed to formalize related problems
introduced two decades before {7, 1] could not be used to for-
malize the example. This notorious example consists of the
following four sentences, which are intuitively consistent. The
four sentences are inconsistent in so-called Standard Deontic
Logic*, and it is therefore called a paradox.

G-k Smith should not kill Jones, .

k -+ Og  If Smith kills Jones, then he should do it gently,
k Smith kiils fones, and

kg -+ k  Gentle killing logically implies killing,

The problem of the paradex is the formalization of the dif-
ferent degrees in which the norm not to kill can be violated,
There are usually several degrees of violating a norm in crim-
inal law, with different sanctions associated with them. For
example, a legal system associates different sanctions to dif-
ferent degrees of robbery, like robbing a bank accompanied
with using violence, taking hostages, killing pecple, ctc. They
are all violations of the norm not to rob, but they violate it
in different degrees. In the style of the gentle murderer para-
dox they can be formalized by 'Smith shouid not rob Jones,’
O{~riT), 'if Smith robs Jones, then he should not use viclence,’
O(=v]r) 'if Smith robs Jones and he uses violence, then he
should not kill Jones,” O{—k|v A r) etc. In this example the law
describes the different degrees of violating a norm. However,
the norm 'the harder you drive, the worse your violation (and
the higher your penalty)’ does not describe the different de-
grees, and it is up to the modeler to characterize what counts
as a substantial difference. In deontic logic it is assumed that
normally it makes sense to stipulate different degrees of viola-
tion, and talk about them with contrary-to-duty preferences,
although the borders between different degrees may be vague,
and often several partitions are possible.

The gentle murderer paradox is called a contrary-to-duty
paradox, or the contrary-to-duty paradox, because the second
obligation is a so-called contrary-to-duty obligation of the first
obligation, which means that the second obligation is enly in

4 Standard Deontic Logic is a monadic modal logic of type KD
according to the Chellas classification (6] It is the smallest set
that that it is closed under the inference rules modus ponens

é::&g,é, and necessitation ,-;’-:-39‘;, and contains the propositionai
tautologies and the axioms K: Of{a —+ 8} —+ (Oa — Of8} and Ir

~{Oa A O=a).
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force if the first obligation is violated. Formally, the condi-
tional sbligation 8 ~+ Oa is a contrary-to-duty {or secondary)
obligation of the (primary) obligation QOa: if and oaly if BAa,
is inconsistent. An additional requirement of the formaliza.
tion of contrary-to-duty reasoning is the so-cailed pragmatic
oddity introduced in [28]. It consists of the following three
sentences.

Op You sheuld keep your promise,

-p -+ Qa If you have not kept your promise, then you
should apologize,

-p You have not kept your promise.

The second sentence is a contrary-to-duty obligation of the
first, obligation, because its condition ~ not keeping your
promise ~ is a viclation of the first sentence. In Standard
Deontic Logic the pragmatic oddity is consistent, in contrast
to the gentle murderer, but the counterintuitive 'you ought to
keep your promise and apologize for not keeping it' O(pAa) can
be derived. [t is therefore also called a paradox.

The most flexible formalization of both examples, originat-
ing from [15, 23], is to represent obligations by dyadic oper-
ators. A dyadic obligation Ofa|B) is read as '@ ought to be
{done) if 2 is {done).” The gentle murderer is formalized by
{O(=%|T),0(gik), g = k,k} and the pragmatic oddity
by {Q{p|T}, O(al=p)}. The problem of dyadic deontic logic is
which axioms can be added to it. For example, factual detach-
ment O(a|8) A8 -+ Oa cannot be added, or the paradoxes
are directly reinstated. For example, the contradictory 0=k
and Og can be derived from O(=k{T), O(glk) and k with this
axiom.

The semantics of the Hansson-Lewis legic contains value
structures, usually loosely called preference orderings. As-
sume a standard possible worlds model M = (W, <, V) with
a totally connected, transitive and reflexive accessibility rela-
tion <, that does not contain infinite descending chains. We
have M = Oyz(or|B) if the preferred 8 worlds are o worlds,
i.e. for all B-worlds w; such that there is not a B-world wq
with w; € we and w2 £ wi, we have M, wy = . A typ-
ical preference-based model of the gentle murderer paradox
is represented in Figure 1 [33]. This figure should be read
as follows. The circles are equivalence classes of worlds and
the arrows represent strict preferences for all worlds in the
circles. The transitive closure is left implicit. The worlds rep-
resented by a circle satisfy the propositions in the circle. The
two dyadic obligations Ou(~k]T) and Oy (gik) state that
the best worlds are ~k worlds, and the best & worlds are g
worlds. Hence, they give rise to at least three different states:
no killing, gentle killing and brutal killing.

ideal ordered sub-ideal states

Figure 1. Model of the gentle murderer péradox

A drawback of the Hansson-Lewis logic is that it does not
have strengthening of the antecedent. For example, the obli-

Workshop Practical Reasoning and Rationality {PRR 98)

gation that 'Smith should not kill Jones when it is raining'
Ouz(~kir) cannot be derived from the obligation 'Smith shouid
not kill Jones’ Oy, (k| T), This is called the irrelevance prob-
lem, because the logic cannot deal with irrelevant facts like

raining. In the semantics the problem is that there can be .
more than three different states, whereas the two obligations

seem to justify only eractly the three given states. In the
default logic literature it is well known that the irrelevance

problem can be solved by non-monoctonic technigues. In fact,

nearly all preference-based default logics can be used to gen-~

erate exactly the three states of the gentle murderer paradox

represented in Figure 1. However, this does not mean that

preference-based default logics can be used as deontic logics.

Whereas all preference-based default logics deal well with the

gentle murderer, they run into problems with the deliberating

robber, which is introduced in this paper.

3 The deliberating robber

The deliberating robber has given preferences about robbing
a bank, which she has calculated taking into account the utili-
ties and probabilities of success and failure of the robbery. For
example, she dislikes the sanctions when caught, but she likes
the money she gains if the robbery is successful, and maybe
she also likes the attention in the press, the thrill etc. She
differs in two respects from the gentle murderer. First, she
is subject to decisien-theoretic instead of moral norms. We
write D{a}3) for ‘the agent desires {to do) & if 3 is (done).’
The desires discriminate between ideal and ordered sub-ideal
states, just like the gentle murderer in Figure 1. However, the
distinction is not made by a moral or legal normative system
that promulgated norms, but by the agent itself. It is subjec-
tive. Second, she is described in more detail than the gentle
murderer. We consider more than two distinct degrees of rob-
bing a bank, and we consider different contexts of rebbing. In
this paper the intended reading of the different circumstances
or contexts is that they stand for different places, although
they could be read as other types of context too. For example,
we discriminate between robbing a bank in the United States
and robbing a bank in Europe. Contexts are represented by
propositional sentences which appear in the antecedent of the
contrary-to-duty preferences. For example, ‘Smith desires not
to rob a bank in the context where she is in the Netherlands’
is formalized by D(-rn).

We intreduce some special notation, because otherwise the
figures and formulas tend to be rather difficult to read. The
mutually exclusive different degrees of robbing are written as
ri, vz, r3, ..., where we have - —(r;i Ar;) for i # . Degree 1L
is the least desired degree of robbing, degree 2 is the second
least desired, etc. Likewise, the distinct and mutually exclu-
sive contexts are written as ci,cz,.... In this paper we only
congider two contexts, and we simplify notation to ¢ and -¢
instead of ¢; and c;. Finally, we assume in our examples that
the order of the degrees of robbing is the same in each con-
text. [n context ¢ as well as context —e we have that ry is the
least desired, then rg, etc. Obviously, this is unrealistic, and
cantradicts the need of using contexts. However, it makes the
figures easier to read, and it is a trivial exercise to show that
our analyses-in this paper do net depend on this assumption.

Example 1 (The deliberating robber) Consider prefer.
ences about robbing, represented in Figure 2. This figure
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ordered sub-ideal states

ideal
r-_....-n—u.u——“-.-..-.-u---.-..._._.‘
f ;
i c, ro e, ry !
[ I
L-_-u.-.---—--——*—_m—m——m-u-.--..d
L i T TP -
i f
i 1
1 I
Lo v i —m—-———m—-—-»—-—m——u—d

Figure 2. Robbery preferences

should be read gy follows. [t conaists of two partial models of
respectively ¢ and —¢ worlds, represented by two dashed bozes,
The partial models in the dashed bozes gre analogous ¢o the
model of the gentle murderer in Figure 1. In contert ¢ there
are two degrees of robbing and in contert ~c there qre Jour
degrees of robbing. We assume all propositions are control.
lable, in the terminology of [3), thus the robber can control
whether she ig in conlest ¢ or in contert —e and she can con.
trol the degree of her robbery, Notice that we do not agsume
any preferences for either ¢ or —e. The preferences for when
the robber is in contest ¢ and when she i3 in contezt —c are
divided in two (unrelated) groups. It is unclear how the ¢ ang
¢ worlds should be combined, and we show later that this is
the main source of the counterintuitive derivations made n
several preference.baged logics,

Now consider the situation in which the context ¢ prefer-
ences are apecified more precisely, as represented in Figure 3.
In context ¢, we distinguish siz different degrees nstead of a

ideal “ ordered sub-ideal states

r-n—-u--«-—c—m-——ﬂ»--m—«-

Revised robbery preferences

Figure 3.

binary distinetion. Intuitively, thig revised specification should
not influence the derivable preferences, ezcept for the prefer.
ences that concern robbery in context ¢, In particular, it is

In this paper we formalize the deijberating robber in two
preference-based logics developed in qualitative decision the.
ory, and we show that counterintuitive concfusior;s follow,
However, first we compare the deliberating robber with the
gentle murderer,

Workshop Practical Reasoning and Rationality (PRR. 98)

4 Comparison

The gentle murderer is a person formalized by deontic logie,
beca:,zse he is subject 1o moral norms. The deh‘berating rob-
ber is formalized by decision theory, because she is subject to
decision-thecretic norms. If she js rational, then she is mayj.
mizing her utility. Surprisingly, the gentle murderer and the
deliberating robber are related. In oyr tomparison we only
consider preferenceg related to utilities, and we do aot discuss
the complexities introduced by probabilities and uncertainty,
First, the preference-based semantics of deontjc logic has been
interpreted ag a utilitarian semanticg [20, 27]. Second, deci-
sion logic {19] uses a representation of utilities which is closely
related to preference-based deontic logics, In the qualitative
decision theory literature, the relation between qualitative de-
cision theory and deontic logic is described as a structural
similarity from different perspectives,

ences {3, 22, 32). In qualitative decision theory preferences
are used to formalize contert-sensitive goals [16], and in de-
ontic logje preferences are mtroduced to formalize reagon..
ing in the context of violations, that is, contrary-to-duty
reasoning, .

Different Perspectives The main burpose of a deontie
logic is deriving new obligations (and permissions) from
an initial specification, while qualitative decision theory fo-
cuses on the search for optimaj acts and decisions {22]. De-
ontic logic and decision logic have different perspectives,
Obligations are exogenous (they are imposed by a legal or
moral code) while desires in decision logics are endogenous
(coming from the agent) [22]. It is this distinetion which
we call the gap between desires and obligations ®

analyzed as a decision-theoretic
hic problem. This intuition is made
explicit by the following two assumptions,

Assumption 1 The 96p between desires and obligations is
irrelevant for the formalization of the gentle murderer gnd
the deliberating robber.

Motivation Congsider an autonomous robot and ite rational
{(in the senge of decision theory} ewner, and perfect commuy.

obliged to do, Hence, we exclude irrealistic circumstances in
which for ezample the robot does ezactly what is forbidden,
Under these assumptions, the rational owner makes sure that
the robot is obliged to do whap she wants it to do, because this

5 The gap does not exist for robots, who interpret the obligations
of their owner as their goals, i.e. as their desires. That is how the
(non-autonumous!) robot is programmed: the normative code s
regimented in the rohot. McCarty [24] calla this regimentation
the causal assumption, with which it is possible to reason aboyt
the real world with the yse of deontic logic. It implements the
‘innocent until proven’ assumption, because it assumes that an
obligation is fulfilled when it can be either fulfilled or vialated.
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maximizes her expected utility. In other words, the obligations
of an autonomous robot are a reflection of the desires of its
owner. If we reason about these preferences, we can call the
qualitative expressions obligations (from the perspective of the
robot) or desires (from the perspective of the ouner).

If the deliberating robber is not a typical deontic or
decision-theoretic problem, then what is it? We now argue
~ that it is a problem of combining preferences.

Assumption 2 When we accept the preference-based solu-
tion of the Forrester paradoz, then the deliberating robber is a
problem of combining preferences.

Motivation First consider the extendion lo an indefinite
number of degrees of viclating a norm, This does not introduce
any new problems, because formalizations of the deliberating
robber by the partial models in Figure 2 and § are as good
as the formalization of the gentle murderer by the model in
Figure 1. Second, congider the extension to different contests.
This is just the problem of combining the two dashed bozes in
Figure 2 and 8, which is a problem of combining preferences,

The deliberating robber extends the gentle murderer, be-
cause it has an indefinite number of degrees and contexts,
and the number of degrees or contexts may change. It is im-
portant to analyze the sensitivity of the formalization to the
number of degrees or contexts, because these numbers are of-
ten arbitrary, i.e. several partitions are equally plausible. In
the following section we show that two defeasible reasoning
schemes proposed in qualitative decision theory are sensitive
to the number of degrees of violating a norm.

5 ‘Testing the deliberating robber

in this section we test the logics introduced in [3] and {31)
on the deliberating robber. Both do not deal satisfactorily
with contrary-to-duty preferences, because the schemes force
{almost) unique totally connected orderings. Lack of incom-
parable worlds turn these schemes into violation counters, in
the sense that under certain circumstances they can only dis-
criminate between the number of viclations.

o

5.1 Boutilier

Boutilier develops a logic of qualitative decision theory in
which the basic concept of interest is the notion of conditional
preference. Boutilier writes [(alB), read “ideally o given 38,"
to indicate that the truth of a is preferred, given 3. Boutilier
proposes an extension of the Hansson-Lewis logic Oy with
Pearl’s System 7 [26] to deal with the irrelevance problem.
System Z is a popular way to solve the irelevance problem
of conditional logic, and it is equivalent to Lehmann’s Ra-
tional Closure and the so-called minimal specificity principle
of possibilistic logic. Moreover, several other well-known de-
feasible reasoning schemes are extensions of System Z in the
sense that they derive a superset of the conclusions of System
Z [12, 14]. System Z adds strengthening of the antecedent by
assuming that ‘worlds gravitate towards ideal.’ Here we give
the reconstruction of gravitating towards ideal of Boutilier [2].
The basic idea is that worlds are more preferred in preference
-relation € than in <; when they are equivalent to a more

.
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preferred world. The definitions are slightly complicated be-
cause worlds can be not equivalent to any other world: condi-
tion (2.),and to aliow that N{w, My, Mz} is false. Given the
definition of more preferred worlds, Boutilier defines a pref-
erence ordering - on madels. The preferred models are used
for preferential entailment [29].

Deflnition 1 A preference model M = (W, <, V) is a possi-
ble worlds médel with a reflexive, transitive and totally con-
nected accessibility relation <.

Definition 2 Let M be a modal preference model. We have
M k= I{a|B) iff there is a world wy such that M, w; k2o A B
and all worlds wa < wy we have M, w2 =8 — a.

Definition 3 (System Z) Let M\ = (W, <\, V) and My =
(W, <2, V} be two modal preference models with the same W
and V'. Let T be a set of dyadic preferences [{aiB). w & W is
more preferred in My than in Mz, written as N(w, My, M),
if

1. there is some v € W such that v <1 w, w <; v, and not
v <z w, or
2. there is no v (with w # v) such that w <, v and v <z w.

The model M, is as preferable as M, written as My T Mz, iff
for allw € W, N(w, My, M) is false only if {v | w <z v} C
{v|w <1 v}, My is preferred to My, written as My [ M,
iff My & My and Mz & My, M is a preferred model of T iff
M =T andforall M' such that M' =T, we have M' 2 M. o
it preferentially entailed by T, written as T e o, ifM = a
for all preferred models M of T,

Although the definition of system Z is quite complex, the
underlying mechanism is quite simple, as shown by the follow-
ing example. It also illustrates thab gravitating towards the
ideal derives counterimtuitive consequences for the deliberat-
ing robber,

Example 2 (Deliberating robber, continued) The pref-
erences of Ezample 1 are formalized by the following two sets
S and 8.

g { I{rzle), [{rq|=c), I{ra|mc A —=rs) }
" 1. I{rafme A org A ey

I{rele), I{rsle A =rg), [irgde A =rg A —rs)

[(r3|c/\ “rg A =g A =rg)

I{ralc A —re A —rs A —rg A —rg), I{ra|—c)

Irslme A-rg), I{rabime A =g A —r3)

8

The unique System Z models of § and §' are represented in
Figure 4. For example, in the System Z model of S, thecArp
and =ic A ry worlds are equivalent, as well as the c Ar| and
-g A ry worlds.

Unfortunately, we have S k== I{clr1), because the preferred
r1 worlds are only the c A ry worlds, This is counterintuitive,
because intuitively the most ideal states for contezt ¢ are the
¢ A ry worlds, and the most preferred worlds for context “c
are the —c A ry worlds, and these worlds are incomparable.
Gravitating towards ideality prefers context ¢, because it con-
tains only one violation of a desire, whereas the latter con-
taing three violations. However, the firat desire may be more
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desirable than the latter three desires together. Moreover, cone
sider the revised degrees of robbery. We have S’ dmpe [{=c|r).
Hence, because we have further specified the degrees of rob-
bery in contezt {, now we have the desire to be in contert —c
inatead of contexte. Obviously, this is highly counterintuitive.

5.2 Tan and Pearl

Tan and Pearl [31] propose a logic of ceteris paribus prefer-
ences, together with a gravitation mechanism in which there
is no preference for either end of the bipolar preference scale,
In this paper we do not discuss the ceteris paribus prefer-
ences, because they are irrelevant for our formalization of the
deliberating robber, and we focus on the defeasible reasoning
scheme {which is also used in {30]). Instead of a preference for
the ideal, there is a preference for the center. From the set of
admissible preference rankings they select the ranking which
minimizes the difference in the preference ranks. The follow-
ing definition is based on preferential entailment, analogous
to the definition of System Z.

Definition 4 4 ranked possible worlds model M™ =
(W, m, V) contains a ranking n, a function from worlds to inte-
gers. Its preference model M = (W, <, V) ts given by wy € wn
iff m{w:) < m(wz), and we say that M satisfies a formula if
its preference model satisfies the formula. A ranked model M|
is at least as compact as another ranked model M3 iff

Zwpwyewl|m(wi) = ri{w;)]) € Tuiw;ew(ime(wi) ~ m2(w;))

We write l=rp for preferential entailment based on the most
compact models.

The following example ilustrates the deliberating robber
for Tan and Pearl’s compactness rule.

Example 3 (Speed limits, continued) Reconsider the set
of preferences of Ezample 2, The unique preference model of
the most compact models of § and §’ is given in Figure 5. We
have S {=rp [{-c]T): there is a preference for context =c.
With reviged speed limits we have 8' k=yp [(c]T): there is a
preference for contextc. Again, this is highly counterintustive,

The problem of the logics of Boutilier and Tan and Pearl
is the combination of an {almost) unique model and a totally
connected ordering. Consider the unique preferred models in
Figure 4 and 5. Some'c and —¢ worlds are forced to be equiv-
alent, whereas intuitively they are incomparable. As a conse-
quence, the contrary-to-duty paradexes arise.
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8 Further research

A remarkable distinction between the two logics considered
in this paper is that the first is monopolar (it only consid-
ers the bad violation pole} whereas the second is bipolar (it
considers the bad violation pole and the good ideal pole).
Tan and Pearl [31] criticize the approach of gravitating to-
wards ideality, because ‘while it is intuitive to assume that
worlds gravitate towards normality because abnormality is a
monopolar scale, it is not at all clear that worlds cught to be
as preferred as possible since preference is a bipolar scale.’ In'a
preference logic, there are good ideal and bad violation poles.
Boutilier [3] defends his monopolar approach: ‘Note that in
classical decision theory, such distinctions do not exist. An
outcome cannot be good or bad, nor can an agent be indif-
ferent toward an outcome, in isolation; it can only be judged
relative to other outcomes. An agent can adopt an attitude
towards a proposition.’ We presently investigate the impact of
polarity in preference-based logics {35].

We argued that for the gentle murderer and defiberating
robber examples, it does not matter whether we formalize
them in qualitative decision theory and deontic logic as a con-
sequence of the structural similarity. However, these two the-
ories are quite distines. As a consequence of the gap between
desires and obligations, we distinguish the following types of
questions. The first type of questions is raised in qualitative
decision theory Bterature and the latter two types are raised
in deontic logic literature.

1. Can a deontic logic be used as a logic of goals or desires

in qualitative decision theory? If so, which type of deontic
logic can be used?
Ad 1 The structural similarity suggests that preference-
based deontic logic can be used in a qualitative decision
theory to formalize reasoning about goals or desires (the
assumption of this paper). However, in the preference logic
literature, it has been questioned whether there is a general
theory of preference underlying different applications. For
example, Mullen [25] concluded that a legic of preference
can only be tested in the process of testing the more general
theory in which it is embedded, in this case qualitative
decision theory or deontic logic.

2. Can deontic logic be based on decision-theoretic concepts?
Ad 2 Jennings [20] proposed that deontic logic could be
based on utilitarian semantics and Pearl [27] proposed a
decision-theoretic account of obligation statements that
uses qualitative abstractions of utilities and probabilities.
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Pearl used his logic of pragmatic obligations to criticize
deontic logic by arguing that ‘exploratory reading of the
literature reveals that philosophers hoped to develop deon-
tic logic as a branch of conditional logic, not as a synthetic
amalgam of logic of belief, action, and causation,” and that
‘such an isolationistic strategy has little chance of succeed-
ing.’ This criticism is in our opinion not very convincing,
because deontic logic is characterized by the distinction be-
tween actual and ideal, not by beliefs and actions, Finally
Pearl concludes that ‘the decision-theoretic account can be
used to generate counterexamples to most of the principles
suggested in the literature.” However, his logic is in our
opinion better understood as a defeasible deontic logic, be-
cause it also formalizes uncertainty. Obviously, any defeasi-
ble deentic logic can be used to generate ‘counterexamples’
for a non-defeasible deontic logic.

3. Is qualitative decision theory an extension of deontic logic

in the sense that it formalizes reasoning with norms? Is
there a rofe for nerms in qualitative decision theory?
Ad 3 Deentic logic has been developed as a branch of philo-
sophical logic, and it has recently been studied in computer
science. Topics identified are legal knowledge-based SyS-
tems, the specification of fault tolerant systems, the speci-
fication of security policies, the automatization of contract-
ing and the specification of pormative integrity constraints
for databases [36]. However, deontic logic is not sufficient
for all applications that are based on normative reasoning.
The problem is that deontic logic only formalizes reasoning
about obligations, that is, which obligations follow from a
set of obligations. However, there is a demand to formalize
reasoning with obligations. For example, a legal expert sys-
tem may face the diagnostic problem to determine whether
a suspect has violated a legal rule, and a robot may have
to solve the planning problem how to fulfil} the desires of
his owner. It is an open problem whether the techniques
developed in qualitative decision theory can be used.

7 Conclusions

[n this paper we introduced the deliberating robber, a rela-
tive of the gentle murderer. We showed counterintuitive con-
sequences for two defeasible reasoning schemes proposed in
logics for context-sensitive goals or desires in qualitative deci-
sion theory. Moreover, we discussed the relation between the
logic of desires and the logic of obligations. The structural sim-
ilarity between the logic of desires and the logic of obligations
suggests that preference-based deontic logics (20, 18, 13, 16, 4]
can be used in qualitative decision theory. However, the dif-
ferent perspectives suggests that further research is needed.
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Abstraet

In this paper, we consider the problem of designing agents that successfully balance the amount
of time spent in deliberation (reasoning about what intentions to adopt) against the amount of time
spent acting to achieve intentions. Following a brief review of the various ways in which this prob-
“lem has previously been analysed, we motivate and introduce a simple formal model of agents,
which is closely related to the well-known belief-desire-intention model. In this model, an agent is
explicitly equipped with mechanisms for deliberation and action selection, as well as a meta-level
control strategy, which allows the agent to choose between deliberation and action. Using the for-
mal model, we define what it means for an agent to be optimal with respect 1o a task environment,
and explore how various properties of an agent’s task environment can impose certain requirements
on its deliberation and meta-level controt components. We then show how the model can capture
a number of interesting practical reasoning scenarios, and illustrate how our notion of meta-level
control can easily be extended to encompass higher-order meta-level reasoning. We conclude with
a discussion and pointers to future work. '

1 Introduction

There is a well-known problem in the literature of practical reasoning agents, which relates to the amount
of time an agent spends in deliberating about what to do and the amount of time it spends acting (2, 6,
13]. If an agent could perform arbitrarily large computations in constant time, then it could determine
the optimal action to perform at any instant by using standard decision theoretic techniques, say by
considering all possible alternatives and picking the best — the one with the highest expected utility.
But of course, no real agent has this capability. All real agents are resource bounded: they have finite
computational resources, and operate under externally imposed time-constraints. So an agent has a
limited amount of time in which to select an appropriate course of action. But if an agent spends
insufficient time reasoning, then the quality of its decision may well be poor. This fundamental problem,
(which in [16] was characterised as achieving a balance between deliberation and reaction), is perhaps
the key problem faced by agent designers.

The implications of resource bounds were pointed out comparatively early in the history of artificial
intelligence (A, perhaps most notably by Simon in The Sciences of the Artificial [14]. Nevertheless,
it has been argued that Al has been somewhat slow as a discipline to deal with these implications [13].
Historically, the predominant approach to designing agents capable of rational action has been to specify
(typically in terms of first-order logic or one of its variants) an optimal agent, and to employ symbolic
(typically logical) reasoning in order to animate this specification and so generate an agent’s behaviour.
But as Russell and colleagues point out [13, 12), this tradition is predicated on the assumption that the
action ultimately selected by the reasoning process, which would be optimal when reasoning began is
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also optimal when reasoning concludes. This assumption simply does not hold for any real-time or
dynamic environment.

Much of the research activity from the intelligent agent community in the mid-to-late 1980s was
focussed around the problem of designing agents that could effectively balance deliberation and action.
In particular, a number of agent control architectures were developed that attempted to balance the
amount of time spent in deliberation and action by making use of pre-compiled courses of action, whose
applicability could easily be determined with respect to the agent’s current situation (see [16] for a
survey of such architectures). One particularly successful approach that emerged at this time was the
belief-desire-intention (BDI) paradigm [5, 2, 9, 10},

The development of the BDI paradigm was to a great extent driven by Bratman’s theory of (human)
practical reasoning [1], in which intentions play a central role. Put crudely, since an agent cannot de-
liberate indefinitely about what courses of action to pursue, the idea is it should eventually commit to
achieving certain states of affairs, and then devote resources to achieving them. These chosen states of
affairs are intentions, and once adopted, they play a number of roles. For example, intentions provide a
filter for future practical reasoning: once an agent has adopted an intention to ¥, it need not subsequently
consider any courses of action that are incompatible with . Moreover, once an agent has adopted an
intention to ¢, we expect that it will actively devote resources to achieving . Intentions thus provide
stability and a focus for an agent’s practical reasoning. Because intentions play such a key role in prac-
tical reasoning, there have been a number of attempts to develop adequate formal models of intention,
of which a good example is [3].

A major issue in the design of agents that are built upon models of intention is that of when to re-
consider intentions. An agent cannot simply maintain an intention, once adopted, without ever stopping
to reconsider it. From time-to-time, it will be necessary to check, (for example), whether the intention
has been achieved, or whether it is believed to be no longer achievable [3]. In such situations, it is neces-
sary to deliberate over intentions, and, if necessary, to change focus by dropping existing intentions and
adopting new ones. Kinny and Georgeff undertook an experimental study of different intention reconsid-
eration strategies [6]. They found that highly dynamic environments — environments in which the rate
of world change was high — tend to favour cautious intention reconsideration strategies, i.e., strategies
which frequently stop to reconsider intentions. Intuitively, this is because although such agents incur the
costs of deliberation, they do not waste effort attempting to achieve intentions that are no longer viable,
anid are able to exploit new opportunities as they arise. In contrast, static environments — in which
the rate of world change is low — tend to favour bold intention reconsideration strategies, which only
infrequently pause to reconsider intentions.

Our aim in this paper is to consider the question of when to deliberate (i.e., t reconsider intentions)
versus when to act from a formal point of view, in contrast to the experimental standpoint of Kinny
and Georgeff [6]. We develop a simple formal model of practical reasoning agents, and investigate the
behaviour of this model in different types of task environment. In this agent model, (which is very
closely related to the BDI model {5, 2, 9, 10]) an agent’s internal state is characterised by a set of beliefs
(information that the agent has about its environment) and a set of intentions (commitments the agent
has made about what states of the world to try and achieve). In addition, an agent has a deliberation
function, which allows it to reconsider and if necessary modify its intentions, and an action function,
which allow it to act towards its current intentions. These functions are mediated by a mera-level control
function. The purpose of the meta-level controi strategy is simply to choose between deliberation and
action. The meta-level control strategy thus acts somewhat like the interpreter in the PRS [5], but more
closely resembles the meta-plans that are used to manage an agent’s intention structures in the PRS.

The remainder of this paper is structured as follows. In section 2 we present our formal model
of agents, and we define what it means for an agent to be optimal with respect to a particular fask
environment. In section 3, we formally define what it means for a task environment to be real time, and
we investigate the relationships that must hold between an agent’s meta-leve! control and deliberation
components in order for an agent to act optimally in such task environments. In particular, we define
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Figure 1; Meta-level control, deliberation, and action in an architecture for practical reasoning agents.

notions of soundness and completeness for meta-level control and deliberation strategies, and show that
an optimal meta-level control strategy must be sound and complete with respect to a deliberation strategy
in real-time task environments. In section 4, we show how our formal framework can capture a number
of typical practical reasoning scenarios (taken from {2]). In section 5, we generalise our mode! of meta-
level control to capture higher-order meta-level reasoning strategies (intuitively, strategies to determine
what sort of meta-level reasoning strategy to use), and we integrate these with our agent model. Finally,
in section 6, we present some conclusions and issues for future work.

2 Agents and Environments

In this section, we introduce the mathematical foundations of our analysis. In particular, we formalise a
simple model of practical reasoning agents and the environments they occupy, and define what we mean
by & run or history of an agent in an environment, An overview of our agent model is given in Figure 1.

As this figure illustrates, an agent has two main data structures: a belief set and an intention set.
An agent’s beliefs represent information that the agent has about its environment. In implemented agent
systems (such as PRS [5]), beliefs are often represented symbolically, as PROLOG-like facts, but they may
simply be variables of a PASCAL-like programining language. However they are represented, beliefs
correspond to an agent’s information state. Let B be the set of all beliefs. For the most part, the contents
of B will not be of concern to us here. However, it is often useful to suppose that 8 contains formulae of
some [ogic, so that, for example, it is possible to determine whether two beliefs are mutually consistent
or not. An agent's actions at any given moment are guided by its intention set, which represents its
focus: the “direction” of its activities. Intentions may be thought of as states of affairs that an agent has
committed to bringing about. Formally, let { be the set of all intentions. Again, we are not concemed
here with the contents of /. As with beliefs, however, it is often useful to assume that intentions are
expressed in some sort of logical language. An agent’s local state will then be a pair (b, i), where b C B
is a set of beliefs, and i C [ is a set of intentions. The local state of an agent is its internal state: a

65



snapshot of its information and focus at any given instant. Let L = p(B) x p(/) be the set of all internal
states. We use [ (with annotations: /,/,...) to stand for members of .. If { = (b, i), then we denote the
belief component of { by &y, and the intention component of { by ;.

Agents do not operate isolation: they are situated in environments; we can think of an agent’s en-
vironment as being everything external to the agent. (This external component may, of course, include
other agents; we leave the exploration of this possibility to future work.) We assume that the environ-
ment external to the agent may be in any of a set E == {e, ¢, ...} of states.

Together, an agent and its environment make up a system. The global state of a system at any time
is thus a pair containing the stafe of the agent and the state of the environment. Formally, let G = £ x L
be the set of all such global states. We use g (with annotations: g, ¢’,...) to stand for members of G.

2.1 Choice, Deliberation, and Action

As Figure 1 illustrates, our agents have four main components, which together generate their behaviour:
a next-state function, a meta-level control function, a deliberation function, and an action function. The
next state function can be thought of as a belief revision function. On the basis of the agent’s current
state and the state of the environment, it determines a new set of beliefs for the agent, which will include
any new information that the agent has perceived. An agent’s next-state function thus realises whatever
perception the agent is capable. Formally, a next-state function is a mapping N : E x p(B) — p(B).

The next component in our agent architecture is meta-level control. The idea here is that at any
given instant, an agent has two choices available to it. It can either deliberate (that is, it can expend
computational resources deciding whether to change its focus), or else it can act (that s, it can expend
resources attempting to actually achieve its current intentions). Note that we assume the only way an
agent can change its focus (i.e., modify its intentions) is through explicit deliberation. To represent
the choices (deliberation versus action) available to an agent, we will assume a set C = {d, a}, where
d denotes deliberation, and @ denotes action. The purpose of an agent’s meta-level control strategy
it to choose between deliberation and action. If it chooses to deliberate, then the agent subsequently
deliberates; if its chooses to act, then the agent subsequently acts. Formally, we can represent such
strategies as functions M : L —+ C, which on the basis of the agent’s internal state, decides whether to
deliberate (d) or act (a).

The deliberation process of an agent is represented by a function which on the basis of an agent’s
intemal state (i.e., its beliefs and intentions), determines a new set of intentions. Formally, we can
represent this deliberative process via a function D : L — p(/). As an aside, note that we require
the cost of an agent’s meta-level control strategy to be insignificant in comparison to the cost of its
deliberation strategy. The intuition behind this requirement is discussed later.

If an agent decides to act, rather than deliberate, then it is acting to achieve its intentions. To do
$0, it must decide which action to perform. The action selection component of an agent is essentially a
function that, on the basis of the agent's current state, returns an action, which represents that which the
agent has chosen to perform. Let Ac = {o, o, ...} be the set of actions. Formally, an action selection
function is a mapping 4 : L — Ac. _

Collecting these components together, we define an agent to be a S-tuple (M, D, A, N, [y), where
M is a meta-level control strategy, D is a deliberation function, A is an action selection function, A is
a next-state function, and /y € L is an initial state.

2.2 Runs

Recall that agents are situated in environments, and that such an environment may be in any of a set £
of states. In order to represent the effect that an agent’s actions have on an environment, we introduce
a state transformer function, 7 (cf. (4, p154]). The idea is that 7 takes as input an environment state
e € E and an action & € Ac, and returns the environment state that would result from performing o in
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e. Thus 7 : E X Ac — E. Note that we are implicitly assuming that environments are deterministic:
there is no uncertainty about the result of performing an action in some state (11, pd6). In addition,
we assume that the only way an environment state can change is through the performance of an action
on the part of an agent (i.e., the environment is static (11, p46]). Dropping these assumptions is not
particularly problematic and does not alter any of cur results, although it does make the formalism
somewhat more convoluted. We leave the reader to make the required modifications. Formally, we
define an environment Env to be a triple (E, 7, ¢,), where E is a set of environment states as above, 7 is
a state transformer function, and ¢p € E is the initial state of Env.
A run of an agent/environment system can be thought of as an infinite sequence:

) o C1 3 <3 Cum [
rigo—> g gy gy e g, ..

In such a rum, g is the initial state of the system (comprised of the initial state of the environment and
the initial state of the agent) and ¢y € C is the choice dictated by the agent’s meta-level control strategy
on the basis of it's initial state. The state g = {ey, /) is that which results after the agent has made its
choice ¢g. If the agent chose to act (that is, if co = a), then ey = 7(eg, A(lp)) and &y = (N {eg, by, ), ity ),
that is, the environment state e; is that which results from the agent performing its chosen action in the
initial state, and the internai state /; is that which results from the agent updating its beliefs via its belief
revision function and not changing its intentions (since it did not deliberate).

If, however, the agent chose to deliberate attime 0 (i.e., if ¢y = d) then e; = ¢; (i.e., the environment.
remains unchanged, since the agent did not act), and ly = (N (eg, b1, ), D(ly)) (i.e., the agent’s beliefs are:
updated as in the previous case, and the agent’s intentions are updated through its deliberation function
D. .

Formally, an infinite sequence (go, g1, £2, - . -) over G represents a run of an agent Ag = (M, D, A, N, [)
in an environment Env = (E, r, eg} iff go = (eg, )} and Yu € IV, we have

| (ews (M(eus br), D)) f ML) =d
Bl = (rlew AliL)), Wlewbr), i) ML) =a.

We will denote by r{Ag, Env}) the run of agent Ag in environment Env, and let Run be the set of all
possible runs.

2.3 Optimal Behaviour

[n order to express the value, or utility of a run, we introduce a function V' : Run — [R, which assigns
real numbers indicating “payoffs” to runs. Thus V essentially captures a standard decision-theoretic
notion of utility. A rask environment is defined to be a pair (Env, V), where Env is an environment, and
V : Run — R is a utility function. We say an agent Ag is optimal with respect to a task environment
(Env, V) if there is no agent A¢’ such that V(r(Ag', Env}) > V(r(Ag, Env)). Again, this is in essence the
by-now standard notion of an optimal agent (cf. {12, p583)]). .

Ultimately, an agent is simply an elaborate action selection function. The components of an agent
— its meta-level control strategy, deliberation, action, and next-state function — are there in the service
of this decision making. An obvious question is therefore whether or not we can define what it means
for such a component to be optimal. Let us consider the case of the meta-level control. Suppose that in
some situation, the meta-level control strategy chose to deliberate rather than act, and as a consequence,
lost some utility. (Imagine that the agent was about to be hit by a speeding car, and instead of choosing
to jump, chose to deliberate about which way to jump.) Then clearly, the meta-level control strategy
was sub-optimal in this case; it would have been better to have chosen differently. This leads us to
the following definition: a meta-level control strategy M is sub-optimal if there is some other meta-
level control strategy M’ such that if the agent used M/ instead of M, it would obtain a higher utility.
Formally, if (M, D, A, N, lp) is an agent, then M if optimal (with respect to (Env, V), D, A, and N
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if there is no M’ such that V(r(M', D, 4, N, by), Env) > V(r(M, D, AN, h), Env). In a similar way,
we can define optimality for D, A, and A" — the details ate left to the reader. Notice that optimality of
& component is defined not only with respect to a task environment, but also with respect to the other
components of an agent. The following theorem captures the relationship, between optimality for an
agent and the optimality of its components. :

Theorem 1 If an agent is optimal with respect to some task environment, then the components of that
agent are mutually optimal.

Proof: Suppose that Ag = (M, D, 4, N, [p) is globally optimal with respect to (Env, V'), but that one
component is sub-optimal. Assume this component is M (the cases for D, A, or N are identical). Then
V(r(M', D, A, N, bp), Env) > V(r(M,D, AN, by), Env) for some M’ such that A’ # M. Butin
this case, Ag is not optimal with respect to (Env, V), which is a contradiction. o

Notice that the implication in this theorem cannot be strengthened to a biconditional: the fact that the
components of an agent are mutually optimal does imply that the agent is itself optimal. We can think
of agents that have mutually optimal components but that are globally sub-optimal as having achieved a
kind of local maxima: an optimality of sorts, but not the best that could be achieved,

For the remainder of this paper, we will be particularly concerned with the relationship between
just two of the components of an agent: its meta-level control strategy and deliberation component. We
shall therefore assume from here on that an agent’s next-state function and action function are fixed and
optimal.

3 Real-Time Task Environments

It should be clear that the performance of an agent is very much dependent on the nature of the task
environment in which it is situated. An agent that performs badly in one task environment may do well
in one that has different properties. An understanding of the relationship between agents and the task
environments they occupy is therefore likely to be of benefit when we come to actually building agents
that will operate in real environments. For this reason, we now turn our attention to these relationships.
In particular, we consider how various environmental properties can correspond to properties of agents
and their components. Although typologies of environment properties have appeared in the literature
(e.g., [11, p46]), the most important single environment property is that of being real-time. A real-time
task environment is simply one in which time is significant [12, p585]. In a real-time task environment,
an agent cannot afford to deliberate indefinitely — it must make decisions in time for these decisions
to be useful (cf. the notion of reactivity in { 16]). Real-time task environments are problematic simply
because if an agent is to operate successfully in such an environment, then it must achieve the successful
trade-off between deliberation and action that we discussed above.

How are we to define what it means for a task-environment to be real-time? Intuitively, a real-time
task environment is one in which an agent is penalised for any wasted effort. How might an agent waste
effort? There are essentially two possibilities. First, an agent is wasting effort if it is expending resources
attempting to achieve the “wrong” intentions. To see what we mean by this, consider the Tileworld sce-
nario, introduced by Pollack and Ringuette {8], and used by Kinny and Georgeff in their investigation
into agent commitment strategies [6]. In this environment, an agent is attempting to shove blocks into
various holes that appear in a two-dimensional grid-world, Unfortunately, the holes themselves arbitrar-
ily appear and disappear. Now if an agent is attempting to achieve an intention to shove a block into a
particular hole even when that hole has vanished, then it is wasting effort — it would intuitively do better
to reconsider its intentions. A similar waste of effort occurs if an agent fails to exploit a serendipitous
situation (for example when a hole appears to the side of an agent as it pushes a block). A second type of
wasted effort occurs if an agent has “correct” intentions, but is not acting on them — in such a situation,
an agent is engaging in unnecessary deliberation. ’
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Situation  Optimal Choseto  Changed M D
number _ intentions? deliberate?  focus?  optimal? optimal?

1 No No — No —
2 No Yes No Yes No
3 No Yes Yes Yes Yes
4 Yes No e Yes —
5 Yes Yes No No Yes
6 Yes Yes Yes No No

Table 1: Practical Reasoﬁing Situations

In order to formally define what we mean by a real-time task environment, we need to define what
it means for an agent to have optimal intentions. Intuitively, an agent has optimal intentions if there
is no good reason for changing them — if, given the information available to the agent, an optimal
deliberation function would not choose to change them. Formally, if (M, D, A, A +lo) is an agent that
is currently in state (b, i), and that is situated in task environment (Env, V), the its intention set i is
optimal if D'((5,)) = ¢ for a deliberation strategy D' that is optimal for (M, D, AN, ).

Given this, we say a task environment (Env, V) is real-time iff for any optimal run (g,, g1,...) of an
agent (M, D, A, N, lp} in this task environment, there is no u € IV such that either iy, is optimal and
cu = d or else iy, is not optimal and ¢, = a.

The possible interactions between meta-level control and deliberation in real-time task environments
are summarised in Table | (adapted and extended from {2, p353]). Consider situation (1). In this
situation, the agent does not have optimal intentions, and would hence do well to deliberate. However,
it does not choose to deliberate and hence the meta-level reasoning strategy that chose to act was sub-
optimal. In situation (2), the agent again has sub-optimal intentions, but this time chooses to deliberate,
rather than act. Unfortunately, the agent’s deliberation function D does not change focus, and is hence
sub-optimal. Situation (3) is essentially the same as situation (2), with the exception that this time,
the deliberation function does change focus, and hence both the meta-level reasoning and deliberation
strategy of the agent are behaving optimally. In situation (4), the agent has optimal intentions, and does
not choose to deliberate. Since the intentions are optimal, the meta-level control strategy is obviously
correct not to deliberate in this situation, and is hence optimal. In situation (5), the agent has optimal
intentions, but this time chooses to deliberate; the deliberation strategy, however, does not change focus.
Hence while the meta-level controi strategy is clearly sub-optimal, the deliberation strategy is optimal.
Situation (6) is as situation (5), except that this time, the deliberation function changes focus. In this
case, both the meta-level control and deliberation components must be sub-optimal, since the agent
wasted time deliberating, and then modified its intentions despite the fact that there is no reason to do
50. '

From the discussion above, we can extract the following simple principle: in real-time environments,
a meta-level control strategy should choose to deliberate rather than act only when an optimal deliber-
ation strategy would change focus. We will say a meta-level control strategy M is sound with respect
to an optimal deliberation strategy D iff whenever M chooses to deliberate, D chooses to change focus
(ie., if M(l) = d implies D({) # #). Similarly, we say M is complete with respect to D iff whenever D
would change focus, M chooses to deliberate (i.e., if D(l) # i; implies M([) = d).

Given this situation, one might wonder what is the point of having both meta-level control and de-
liberation components, as an optimal meta-level control strategy need only run the deliberation function
as a subroutine to see if it would change focus, and choose to deliberate just in case the deliberation
strategy does change focus, This would indeed be a successfui strategy if the cost of running the meta-
level control strategy was roughly equal to the cost of deliberation. However, as we pointed cut earlier,
we require that the cost of meta-level control be significantly less than that of deliberation. Under this
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assumption, running the deliberation component in order to decide whether to deliberate is not a realistic
option, .

We can easily establish the following theorem, which refates sound and complete meta-leve] control
strategies to real-time environments. . .

Theorem 2 For real-time task environments, a meta-level control-strategy is optimal with respect to an
optimal deliberation strategy iff it is sound and complete with respect 1o this deliberasion strategy.

Proof: For the left to right implication, assume M is optimal. Then we need to show that M is sound
and complete. For soundness, assume that A (§) = d (the meta-level control strategy says deliberate)
but that D({) = j (the deliberation function does not choose to change focus). Then since this is a real-
time task environment, A1 is not optimal. This is a contradiction, so if M is optimal, it is sound. For
completeness, assume D(1) # iy but that M (Y) = a. Then since the task environment is real-time, M is
not optimal. This is a contradiction, so if M is optimal, it is complete, For the right to left implication,
assume M is sound and complete with respect to D, but that it is not optimal. If it is not optimal,
then it must be making a wrong decision at some point, i.e., it must be choosing to deliberate when it

M(l) = d. Since M is sound, we know that D(l) # ir. Since D is optimal, the agent
in / must be sub-optimal, hence acting on them would be sub-optimal. Hence deliberation must be the
optimal choice. For the second case, suppose M(l) = a. As M is sound and complete, we know that
M(l) = diff D() # i Since M(l} = a, this means that D(l) = i, hence the agent’s intentions
are optimal, and since the environment is real-time, deliberating on them would be sub-optimal. Hence
acting is the optimal choice, so M is optimal, a

In this same way, we say a deliberation strategy D is sound (with respect to optimal meta-leve| control
strategy M} iff it changes focus when the meta-level control strategy chooses to deliberate, (i.e., if
D(l) # ir implies M(]) = d), and complete iff whenever the meta-level control strategy chooses to
deliberate, it changes focus (i.e., M (1) = d implies D(!) # i;). Not surprisingly, the following theorem
can be established using the same techniques as Theorem 2.

Theorem 3 For real-time task environments, a deliberation strategy is optimal with respect 1o an op-
timal meta-level control strategy iff it is sound and complete with respect to this meta-level control
strategy. : '

4 AnExample

In the previous section, we discussed the notion of a real-time task environment, and investigated the
relationship between meta-level control and deliberation in such task environments. In this section, we
show how four illustrative practical reasoning scenarios (introduced in [2]) can be represented within our
framework.. (More accurately, Bratman and colleagues give six scenarios, since there are two variants
each of scenarios one and four However, as we discuss below, these variants are meaningless in our
framework.)

4.1 Scenario One

All four scenarios are based on the following basic story: Rosie is an agent that has been assigned the
task of repairing a malfunctioning vbu, As a result of some task analysis, she has decided that this
might best be done by replacing the CRT (which she believes is burnt out), and so she has adopted the
intentions of going to the VDU armed with a replacement CRT, and then using this new tube 10 fix the
VDU. In the first scenario, Rosie arrives at the VDU to find that the CRT is not burnt cut: the contrast has
just been turned way down. She therefore has the option of fixing the VDU by adjusting the contrast.
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Beliefs

w VDU working

¢ CRT bumt out

d  Contrast turned down

by Adjust contrast is better

r CRT can be fixed by re-wiring
by Re-wiring is better

s  Spare vDU

b3 Spare VDU is better

* Intentions
i Fix VDU using original CRT
ic  Fix vDU by adjusting contrast
ir  Fix VDU by re-wiring
iz Fix VDU by using alternative CRT
i, GotovDy

Table 2: Rosie’s Possible Beliefs and Intentions

This information is sufficient for her meta-level control strategy to decide that it is worth deliberating,
and in so doing, Rosie finds that adjusting the contrast is cheaper than replacing the CRT. She this adopts
the new intention of adjusting the contrast. She then acts, adjusting the contrast and completes her initial
task. . _

In this, and all other scenarios, we represent Rosie’s world as a set of propositions. The propositions
of interest to us are summarised in Table 2. While the intended interpretation for most of these is self-
evident, some require additional explanation: s is intended to capture the presence of the additional CRT
in scenarios three and four; ; is intended to capture the fact that Rosie knows that if it is possible to
fix the vDU by just adjusting the contrast then this is a better option than using the CRT she carries with
her; by is intended to capture the fact that rewiring the faulty CRT is the best option, and by is intended
to capture the fact that the additional CRT in scenarios three and four is superior to the CRT she carries
with her. . :

» In addition, we will also represent Rosie’s possible intentions as propositions: see Table 2. Again,
most of these are self-explanatory, but 7, is needed to capture Rosie's initial progress from wherever she
picks up the first CRT to wherever the broken Vb is. For simplicity we will assume that each of these
intentions can be achieved by a single action (though each of these could equally well be a series of
actions). Thus the action to achieve intention iy is ctr, the action to achieve intention i, is o, and so on.

We can now formalise Rosie’s reasoning. Initially the state of the world is ¢y = {-w, =c,d} (the
VDU is not working, the CRT is not burnt out, and the contrast is turned down). Rosie’s initial internal
state fp is thus: ({-w, ¢, ~d, b1}, {i,f,}). She thus begins scenario one with false beliefs, since she
wrongly believes that the CRT is burned out. Note that Rosie’s beliefs also include the preference
information b;. She initially has two intentions: to fix the VDU using the original CRT, and to go to
the vDpu,

The first part of Rosie’s operation is to decide whether to deliberate or act. She chooses to act,
and executes the action «, that achieves her intention i,, and thus arrives at the VDU. At this point she
deliberates, and removes the now-achieved intention of moving to the vDU from her intention set, so
that the previously adopted intention of fixing the VDU using the CRT she brought with her becomes
the main focus. At this point she can identify the real state of the world, and her next-state function A
updates her beliefs to reflect this. Her internal state becomes: I = ({~w,~c,d, b}, {is}). The state of
the external world is unchanged: ¢, = e.
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Rosie again applies her meta-level control strategy:

M) = d if{ﬂc,d,bl}C_;bfor{—nc,r,bg}Qb;or{c,s,bg}gb;
T ) a otherwise.

Thus there are three situations in which she will choose to deliberate, all of which can be glossed as
“there is now some reason to suspect that there is a better alternative to repair the vDU™. Clearly this
is just an illustrative fragment of the complete meta-level control function which is appropriate to this
example. Since Rosie now believes -, she chooses to deliberate, That is, M(l) = d since the CRT is
known to not be burnt out, the contrast is known to be turned down, and it is known that adjusting the
contrast gives a better means of fixing the VDU than replacing the CRT. To find the result of deliberation,
we need to define D. We have:

{i.} if {~e,d, by} C by
{(ir} if{~c,F b2} C by

{ia} if {C, 5 bs} g b[
4 otherwise.

D() =

The deliberation function D thus decides to adjust the contrast: D(}) = {4.}. Note that D shouid really
check that the agent has a means of adopting the intention before it decides to adopt it — if Rosie is
unable to adjust the contrast (because she has the wrong kind of gripper for instance) then however good
a solution this might be, there is no point in changing focus to try and achieve it. For our purposes, we
can ignore this subtlety, however.

After deliberation, Rosie’s intemal state becomes: f; = ({-w,~c,d, b1}, {i.}), while the external
world remains unchanged: e; = ¢; = ¢p. This time M chooses to act, and since All) = a, the
contrast is adjusted, which repairs the vDU. This change in the world causes Rosie to revise her beliefs
about the state of the VDU and the contrast control. The final state of the environment is thus ey =
{w, ¢, =d}, while Rosie’s internal state is Iy = ({wy=c,~d, by },0).

The complete run for scenario one is thus:

dy d [
roige g — g~ g3

4.2 Scenario Two

In this scenario, Rosie arrives at the VDU to find that the CRT is not bumt out and can be fixed by
re-wiring. However, this fix will only be short term, and the CRT will soon burn out anyway. This
information is sufficient for Rosie’s meta-level control strategy to decide it is not worth deliberating to
see if she is able to fix the VDU by rewiring, and so she acts, replacing the CRT in line with her unchanged
intention. The start this scenario is described by:

ey == {—xw,—!c,r}
Iy = ({—"W:C:”"':"‘bZ}:{iV})

So, although the CRT is not burnt out and the VDU can be fixed by re-wiring (facts that Rosie initially
does not know), Rosie does know that re-wiring is a worse option than replacing the CRT. After mov-
ing to the VDU, popping the intention stack, and revising beliefs, just as in the previous scenario, the
environment state remains unchanged but Rosie’s internal sate is /; = ({-w, -¢, r, =2}, {i}).

Rosie then applies her meta-level control strategy, and despite the fact that there is reason for her to
suspect that deliberation might lead to an alternative means of repairing the VDU (a situation which is
actually true), M returns a because Rosie also knows that fixing the CRT by re-wiring is a worse option
than the one she has already. Thus she can reject the idea of changing her focus without going as far
as establishing whether or not she can build a new plan in order to fix the vDU. Having decided to act,
Rosie performs A(i,) = a, and the situation becomes:
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ey = {w,--'c',r}° .
l2 = ({W,C,I‘,‘ﬂbz},@)

The complete run for Scenario Two is thus:

@ o
2180 — g1 25 g,

4.3 Scenario Three

mechanism therefore realises that there is no advantage to seeing if the new tube can be used, and so
chooses to act. Rosie then replaces the CRT in line with her original intention. Scenario Three thus

@ = {-w,c,s}
lﬂ = ({""W, <, s, ﬂ'!""3]': {fv})

As before, Rosie proceeds to the VDU and this time finds the spare tube. After belief revision, the
environment state remains unchanged but Rosie’s internaj state becomes {; = ( {~w, c,s5, b3}, fo).
This time A tells her to act, because the newly visible CRT is worse than the one she is carrying with
her. She acts, A(l}) = @, by replacing the CRT and the situation becomes:

€r = {ﬂw,-rc,s} _
fa = ({-w,~c;5,-bs},0)

The complete run for Scenario Three is thus:

a 2
380~ gy —23 gy

4.4 Scenario Four
In Scenario Four, Rosie arrives at the VDU to again find a Spare CRT sitting by the terminal, and this

e = {-w,c, s}

b = ({"w! G, =5, b3}= {i\'})
After moving to the VDU and revising beliefs, the environment is unchanged (¢, = ep) but Rosie's
internal state is /; = ({-w,¢,5b3}, {ir}). This time M(l) = dand D(}) = {éa}. After this, the

environment state again remains unchanged but Rosie’s internal state is 2 = ({-w,c,s b3}, {iz}), and
Rosie proceeds to act A(l2) = a, giving the following global state:

e3 = {-w, -c, s} .
!3 = ({—'W:_'Css1b3}?@)
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The complete run for Scenario Four is thus;
@ d g
1i80 =5 gy %5 gy Ay o

There are several points to note about this example. The first is that both M and D are optimal for the
Cases given. There is no set of actions which could be chosen to give a better result. The second is that it
is easy to alter the example so that Rosie is not optimal. Consider what would happen in Scenario Four
if she had no means of using the additional CRT (which would mean that there was no intention fq, O,
worse no action v, for achieving i,). M would choose to deliberate since the CRT is superior, but either
this deliberation would not change the intentions (if there was no {a), or when Rosie came {0 act on the
changed intention, she would be unable to achieve that intention and would have to revert to fo- The final
point to note is that it is this consideration of intentions and actions which justifies our assumption that

5 Generalised Meta-Level Reasoning

In this section, we will sketch out how an agent might use higher-order meta-level controf strategies in
its architecture, and what role such strategies might play. What do we mean by a higher-order meta-
level control strategy? Let us refer to the meta-level contro} strategies as described above ag first-order
meta-level strategies.  Such strategies merely choose whether to deliberate or to act. A second-order
meta-level contro] strategy can be thought of ag selecting which first-order meta-level controt strategy
t0 use. For example, a second-order meta-level control strategy might examine the agent’s beliefs to see
how dynamic the agent’s environment is. If it determines that the environment is highly dynamic (i.e.,
the rate of world change is high [6)), then it might select a cautious first-order meta-leve] control strategy
~-one which frequently causes the agent to deliberate. If, in contrast, the environment is relatively static
(the rate of world change is low), then it might select a bold meta-level controf strategy (one that favours
action over deliberation),

It is easy to imagine an agent with a “tower” of such meta-leve! control strategies, with nth-order
strategy selecting which strategy to use at level n— 1. The idea is very similar to the use of meta-language
hierarchies in meta-logic {7, 15]. )

We can incorporate such higher-order meta-level reasoning into our formal model with ease. First,
let MLC) = [« Cbe the set of all first-order meta-level control strategies. These are the meta-leve}
control strategies that we discussed above. Then define MLC, = I, MLC,_y,forallu e v such that
#>1. Thus MLC; is the set of ai second-order meta-level control strategies, MLCj is the set of all third-
order meta-leve} control strategies, and so on. An agent becomes a 5-tuple, (M, D, A, N\ ly), where
M, is an nth order meta-level control strategy and the agent’s other components are as before. Given
this, we can redefine what it means for a run to represent a history of an agent in an environment. For-
mally, an infinite sequence (gg, g1, g9, . . JoverG represents a run of an agent Ag = (M, D, AN, )
in an environment Eny = (E,7,e0) iff g9 = (ey, b)and Yu € IV, we have

n—1 times

& _— (e, (N(em by ), D([a))) , 1an(lu) (L) -~ Uu) = d
o (m(ews A(3,)), (N (e, br,), i) f Ma(le) (1) -+ (L) = a.
-1 times
Notice that agents which make use of higher-order meta-level control are strictly speaking no more
powerful than “ordinary” agents, as defined earlier. For every higher-order agent there is an “ordinary™

agent that behaves in exactly the same way, The point is that from the point of view of an agent designer,
it may make sense to divide the functionality of the agent up into different levels of meta-reasoning.



6 Conclusions

In this paper, we have investigated the relationship between the deliberation, action, and meta-level
control components of a practical reasoning architecture. While this relationship has previously been
investigated from an experimental perspective (particularly by Kinny [6]), we have in contrast attempted
a mathematical analysis. We have demonstrated how it is possible to construct a simple but, we argue,
realistic. model of practical reasoning agents of the type investigated by Kinny and Georgeff, and we have
established some basic properties of such agents when placed in different types of task environment. We
have focussed in particular on real-time task environments, since these are, we believe, the most common
class of real-world task environment that one encounters. '

This work was originally instigated in an attempt to relate the work of Russell and Subramanian
on bounded-optimal agents (agents that perform as well as any agent can do under certain architectural
constraints [12]) to the increasingly large literature on BDI agents [5, 2, 9, 10]. While this initial in-
vestigate led us into some areas we had not initially anticipated visiting, we believe that investigating
the implications of bounded-optimal agents for BDI model will be an interesting research issue, and one
that we hope to investigate in future work. Another issue that we hope to consider is the moving from
individual agents to multi-agent systems.
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