&
wQf Queen Mary
University of London

A Relevant Analysis of Natural Deduction
Ishtiag, Samin

For additional information about this publication click this link.
http://gmro.gmul.ac.uk/jspui/handle/123456789/4507

Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact scholarlycommunications@gmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/4507

ISSN 1369-1961
Department of
Computer Science

Technical Report No. 762

A Relevant
Analysis of
Natural Deduction

Samin Ishtiaq

o
RO
QUEEN MARY

AND WESTFIELD COLLEGE
UNIVERSITY OF LONDON April 1999

A Relevant Analysis of Natural Deduction

Samin Ishtiag

Submitted for the degree of Doctor of Philosophy

Queen Mary and Westfield College

University of London

April, 1999

A Relevant Analysis of Natural Deduction

Samin Ishtiaq

Abstract

Linear and other relevant logics have been studied widely in mathematical, philosophical and
computational logic. We describe a logical framework, RLF, for defining natural deduction pre-
sentations of such logics. RLF consists in a language together, in a manner similar to that of
Harper, Honsell and Plotkin’s LF, with a representation mechanism: the language of RLF is
the AA-calculus; the representation mechanism is judgements-as-types, developed for relevant
logics.

The AA-calculus type theory is a first-order dependent type theory with two kinds of de-
pendent function spaces: a linear one and an intuitionistic one. We study a natural deduction
presentation of the type theory and establish the required proof-theoretic meta-theory. The RLF
framework is a conservative extension of LF. We show that RLF uniforraly encodes (fragments
of) intuitionistic linear logic, Curry’s A;-calculus and ML with references.

We describe the Curry-Howard-de Bruijn correspondence of the AA-calenlus with a structural
fragment of O’Hearn and Pym’s logic BI of bunched implications.

We show that a categorical semantics of the AA-calculus is given by Kripke resource models,
which are a monoid-indexed set of Kripke functors. The indexing monoid is seen as providing
an account of resource consumption. The models can be seen as an indexed formulation of
categorical models of Read’s bunches.

We also study a Gentzenized version of the AA-calculus, and prove a cut-elimination theorem
for it.

Submitted for the degree of Doctor of Philosophy

Queen Mary and Westfield College
University of London

April, 1999

Acknowledgements

I thank my supervisor David Pym, from whom I have learned much and whose help and support
has been of great importance. I also thank the other members of my supervisory committee,
Edmund Robinson and Wilfrid Hodges, in this regard.

I thank Pablo Armelin, Adam Eppendahl, Paul Blain Levy and David Streader for their ad-
vice, suggestions and support.

This work was supported by an EPSRC Mathfit research studentship and, in the last stages,
by the Department of Computer Science. The EU Types Working Group provided funds to attend
Types '96 in Aussois, France and Types ’98 in Irsee, Germany. All diagrams were drawn with

Paul Taylor’s diagram and proof tree packages.

Contents

Acknowledgements

1 Introduction

2 The AA-calculus and the RLF logical framework
21 Imtroduction e e e
22 Motivation e e e e e e e e
23 TheAA-calculus o o it it e e
231 ComteXtjolming v v i i e e e e
232 Multipleoccurrences b e e e e e e e
233 Varablesharing o
234 Definifional equality L e
2.3.5 Basic properties of the AA-calcalus L.,
2.3.6 Aremarkonn-comversion e e e e e e
237 Related systems e
24 Conservativity L L L e e e e e e
25 EBxampleencodings L. Lo e
251 ILL L e e
252 MLwithreferences o
253 Adpcalenlus L e e e e e e e
26 Summary e e e e o
3 The propositions-as-types correspondence
31 Introduction e e e e e e
32 ThelogicBI. e e e e
33 AfragmentofthelogicBY L L e

34 Thecomespondence L. e e e

4 Kripke resource semantics
41 IntrodiCtion L . e e e e e e e e e e
42 TheAA-calculus e e
4.2.1 Thesyntactic presentation,
422 Theinternallogic e
4.2.3 Analgebraic presentation L.
4.3 Kripke resource models of the AA-cafeulus L L
43.1 Kripke resource AA-structureo
432 Kripkeresource Z-AA-model L Lo o
44 Soundness and completeness L . oL e e e
45 Aclassofset-theoreticmodels o e

4.6 SUMMATY v i e e e e e e e e e e e

5 The Gentzenized AA-calculus
501 Imtroduction o . . i e e e e e e e
52 TheGentzenized AA-calculus
53 Soundnessandcompleteness Lo e e
54 Cut-ellmination o o e e e e e

55 SUMMALY . o . . o e e e e e e e
6 Conclusions

Bibliography

88
89

90
90
91
91
91
92
94
94
101
111
122
127

129
129
130
132
137
142

143

148

List of Tables
1.1 Afragmentof ILL e 9
2.1 AA-calenlus ... L. e 24
2.2 AA-calculus (contimued) L ... L e e e 25
23 ContextjoIning o . o i i i e e e e e e e e e 27
24 Parallel nested reduction e e e e 32
25 Afragmentof ILL e 36
2.6 Some valid proof expressions of TLL. L. 58
51 Theleftrulesin G e 131

Chapter 1

Introduction

In this chapter we introduce the notion of relevant logical frameworks and the study of the proof
theory, internal logic and categorical model theory of the type-theoretic language of one such

framework by introducing the subsequent chapters of this thesis.

The starting point of this thesis is the study of a logical framework for a particular class of
logics; that of linear and relevant logics. Such a general theory of logics has two main motiva-
tions. Firstly, the desire to study the common “core” of these logics. And, secondly, to provide
a single meta-language, capable of representing the class of such logics, which can be imple-
mented on a machine. The implementation of this meta-language then automatically provides

implementations for the class of logics [HHFP93].

The logical framework that we study has as its meta-language the AA-calculus, a first-order
dependent type theory with two kinds of dependent function spaces, a linear one and an intu-
itionistic one. This thesis concentrates on the semantics, both proof- and model-theoretic, of the

type theory.

We should like to explain our use of the word “relevant” throughout and in the title of this
thesis. Following Read {Rea88], we use the term relevant for the family of logics which have
weaker structural properties than intuitionistic or classical logic. We do not restrict its use merely

for those logics which have contraction but not weakening.

We refer to related work at the appropriate places in the text.

8 Chapter 1. Introduction

The AA-caleulus and the RLF logical framework

Consider the following situation: in an ambient universe, one uses a meta-language to reason or
compute about some (possibly formal) system. Examples of such a general situation abound. For
example, in mathematics, one uses logic to reason about group theory. Another exampie, and one
that is at the heart of logical frameworks, is this: in informatics, one uses a low-level language
to implement a class of high-level languages, exploiting the computational characteristics of the
low-level language, and the correct compilation of the high-level lapguages into the low-level
language, to execute the high-level languages.

Logical frameworks are formal meta-logics which provide languages for describing logics in
a manner that is suitable for mechanical implementation. The LF logical framework [AHMP92,
HHP93, Pym90] provides such a meta-theory and is suitable for logics which have at least the
structural strength of minimal propositional logic. We wish to study a logical framework for
describing relevant logics. Such a class of logics is interesting from both a philosophical-logical
and from a computer science point of view. Now, in order to describe a logical framework one

must :

1. Characterize the class of object-logics to be represented;

2. Give a meta-logic or language, together with its meta-logical status vis-a-vis the class of

object-logics; and
3. Characterize the representation mechanism for object-logics.
The above prescription can conveniently be summarized by the slogan
Framework = Language + Representation.

One representation mechanism is that of judgements-as-types, which on’ginate_s from Martin-
Lof’s develéﬁment of. Kant’s notidn 6f judgeinéhé [N&%] .The' mét.ho.cio.}og‘}} of .j.udg.e.mer“lt.s;as;
types is that judgements are represented as the type of their proofs. A logical system is repre-
sented by a signature which assigns kinds and types to a finite set of constants that represent its
syntax, its judgements and its rule schemes. Representation theorems relate consequence in an
object-logic b, to consequence in an encoded logic b, .

A certain class of uniform representations {HST94] is identified by considering surjective

encodings between consequences of the object-logic i+, and consequences of the meta-logic -y .

So, all judgements in the meta-logic have corresponding judgements in the object-logic. The
judgement-as-types methodology has the property that encoded systems inherit the structural
properties of the meta-logic. It is for this reason that LF — whose language, the All-calculus,
admits weakening and contraction — cannot uniformly encode linear and other relevant logics.

This limitation can be overcome in several ways. One way is to add equations to the signature
that constrain the judgement ex post facto. This is the method adopted in Avron ef al. [AHMP92}
where, in the encoding of the linear A-calculus in LF, the linearity constraint is enforced by in-
troducing extraneous language to axiomatize the concept of strictness in domain theory. Another
way to overcome this limitation is to weaken the framework by working with a weaker frame-
work language. This approach is more natural as it brings out the fact that the structural strength
of the framework effectively reflects the structural strength of the class of object logics it encodes.
And that, in order to represent and reason about an object logic of a particular strength, one must
endow the framework with an appropriate level of structure. This second method can be seen as
an application of what the physicist John Baez calls the microcosm principle [BD97].

Thus we seck a language in which weakening and contraction are not forced. We motivate
the connectives of the language by considering the natural deduction form of rules for relevant
logics. As a specific example for this chapter, we consider the natural deduction rules for the ®
and & connectives of linear logic, in which the sole judgement is concerned with the proof of a

proposition:

¢ proof ¥ P;’OOf oY 'prOOf % Pf;oof
&I ®F
G proof ¥ proof
r r r
o r:00 .;foo Poded . roof
proof Wwrool o REBP 0 ak
d&y proof & proof

Table 1.1: A fragment of ILL

In order to distinguish the encoding of the two introduction (or elimination) rules, we need
two kinds of conjunctions; an additive one and a multiplicative one. We also need a connective

to represent inference in the object-logic. The representation of the rules as constants in the

10 Chapter 1. Introduction

signature 2 is then as follows:;

TENSORIL | TT$, 0. proof($) —o proof(w) —o proof(®(d,¥))
TENSORE ! TI$,¥,x:0. proof(®(0,y)) —o
{proof(¢) —o proof(y) —o proof(x)} —o proof(x)
WITH1 | 119, 0. proof(9) & proof(y) —o proof(&($,v))
wITH-E; ! I1¢0,01:0. proof(&(do,$1)) —o proof(¢:)

In the above, o is the type of propositions, and the constructors ® and & are both of type
o —o 0 —o o. In fact, the ® connective is not needed as part of the meta-language, as it
can always be curried away to the —o , the connective which represents inference. The I1
quantification is intuitionistic. However, in logics that describe more resource-conscious situa-
tions, such as the the dynamic semantics of ML with references, we need a linear quantification
A too.

The above analysis can be undertaken more generally, by considering Prawitz’s [Pra78] gen-
eral form of schematic introduction and elimination ruies from a more relevant point of view. The
resulting meta-language, the AA-calculus, has the following connectives: the additive conjunc-
tion &; two quantifiers, the linear one A and the intuitionistic one H; and the two implications
arising as non-dependent versions of the quantifiers.

The AA-calculus is a first-order dependent type theory with both intuitionistic and linear
dependent function spaces. The basic judgement of the type theory is '3 M:A, that M is a term
of type A in context I" and signature £. The definition relies crucially on a few notions about
the joining and maintenance of contexts. In particular, full dependency can only be set up by a
notion of “sharing”, which deals with the well-formedness of linear dependent types.

The introduction rules for the two function spaces, the linear one Ax:A.B and the intuitionis-

tic one Ax!A .B (which is just the notation for [1x:A .B) are as foilows:

xAbz M:B F.xlA by M:B
(MAAT) (MAAL)
e hxAM: AxAB s AXIAM : AxIAB

This preview of the rules introduces a key characteristic of the type theory, that of building the
context with either linear, x:A4, or intuitionistic, x!A, variables. In particular, there is no zone or
“stoup” separating the linear from the intuitionistic parts of the context. _

The judgement I' s M:A is decidable. The proof of this statement involves proving Church-

Rosser and Strong Normalization, along with several other essential meta-theoretic properties.

11

In Chapter 2, we motivate the RLF logical framework and give a natural deduction presen-
tation of its language, the AA-calculus. We establish the required proof-theoretic meta-theory of
the language. We show that RLF is a conservative extension of LF; that RLF uniformly encodes
everything that LF encodes. We also present several object-logic encodings that make use of the

characteristics of the AA-calculus. A large part of Chapter 2 has already appeared as:

[IP98] SS Ishtiag and DJ Pym. A Relevant Analysis of Natural Deduction. Journal of Logic
and Computation, 8(6):809-838, 1998,

We make a brief remark concerning the choice and methodology of logical frameworks. Ear-
lier, we mentioned logic as a langnage for mathematics and our purpose in this thesis is to develop
a type-theoretic logical framework for representing certain classes of formal systems. We do so
without any logicist intention or claim. One can consider linguistic, algebraic or other frame-
works too. But it is important to stress the methodology of type-theoretic logical frameworks
as evidenced by the work on LF [HHP93] and, indeed, earlier, from Automath [dB91]. This is
to adopt a principle of weakness: to require a mechanism for binding and a minimal, decidable
meta-language — and no more. One can always add strength fo the meta-language but it is more

interesting to study the weak situations first.

The propositions-as-types correspondence

The AA-calculus type theory is motivated by a consideration, infer alia, of linear logic. However,
it is structurally much closer to BI, the logic of bunched implications. Linear logic begins by
removing the structural rules and querying the consequences for the conjunction A, which de-
composes into the additive conjunction & and the multiplicative conjunction &. BI, in contrast,
begins by decomposing the implication directly, rather than in terms of the conjunction.

In BI, we have two kinds of function spaces, the linear one —o and the intuitionistic one —
and, correspondingly, two kinds of quantifiers, the linear one Vpey and the intuitionistic one V.
Proof-theoretically, these arise because of extra structure in the context. There are two distinct
context-formation operators, the “;”’, which admits the structural rules of weakening and con-
traction, and the “”, which doesn’t. In this scheme, contexts are not lists but trees, with internal
nodes labelied by)" and *”. The introduction rules for the two implications are as follows:

(X, 0w XG0k v
(X)F-¢—y X)rEo— vy

12 Chapter 1. Introduction

There is a similar pair of rules for the two quantifiers in BI; the bunched structure in the variable
context X determines which type of quantifier, whether linear or intuitionistic, is formed by the
abstraction. In eliminating the connectives, the premiss contexts must be combined with regard
to the type (whether linear or intuitionistic) of the connective.

The conceptual similarity with the AA-calculus arises because contexts there can also be seen

to be extended in two ways:

AA-calculus BI
I xA A
I, x!A LA
Subject to some restrictions on BI (so that we are working with a fragment of the original logic),
this is exactly what allows us to show the Curry-Howard-de Bruijn correspondence between the
AA-calculus and BIL. The statement of this result and its proof is given in Chapter 3.
BI is probably a folklore relevant logic though it is only recently that a decent proof theory,

semantics and computational interpretation have been given [Dun86, Rea88, OP99].

Kripke resource models

In Chapter 4, we study the categorical semantics of the type theory. The nature of the class of
these models can be motivated by considering the notion of “resource”, a primitive in informatics.
A resource, such as space or time, can be seen to have a monoidal structure, in the sense that
we can identify elements (including the null one) and combinations of resources. We can also
consider a comparison of resources, in the sense of one being better — perhaps in the sense
of being able to prove more facts — than another. A resource semantics elegantly explains the
difference between the linear and intuitionistic connectives in that the action, or computation, of
the linear connectives can be seen to consume resources. Let M = (M, -, 1,) be such a resource
monoid with, in addition, a partial ordering on the elements, then we can give the following

(simplified) version of the forcing relation for the internal logic of the type theory:
L rl=d—oyifandonlyifforallse€ M ifsf=¢then r-sp=y;
2.rE¢d—wyifandonly ifforallsCrifsk=o¢thens =y .

The resource semantics combines and generalizes Kripke’s semantics for intuitionistic logic,

in which a proposition is interpreted in Set”, where P is a poset, and Urquhart’s semantics for

13

relevant logic, in which a proposition is interpreted Set™ , where 9 is a2 monoid [Kri65, Urg72].

The semantics of the AA-calculus is given by Kripke resource models, which are a monoid-
indexed set of Kripke functors. Each such Kripke functor is, roughly speaking, an indexed cate-
gory with some extra structure. Two items of this extra structure are worth mentioning. The first
is that the base of the indexed category has two monoidal structures on it. This allows us to model
the two kinds of context extension in the syntax: I',x:A is interpreted as [[] @ [A] and I',x!4 is
interpreted as [I'] x [A]. The second item is the existence of a natural isomorphism which allows
the formation of function spaces. This is necessary to model the linear dependent function space.
The intuitionistic dependent function space is defined by the natural isomorphism too; this is
equivalent to the usual characterization of the function space as right adjoint to weakening.

We include two example Kripke resource models. The first is the term model, constructed
out of the syntax of the type theory. The main purpose behind its construction is to show a
Henkin-style completeness theorem. The second model, a set-theoretic one built in the spirit of
Cartmell and Streicher’s contextual category of families of sets [Car86, Str88], is much more
interesting. The model constructs two kinds of indexed products in Set®™, where € is a small
monoidal category. The first is the usual cartesian product, as described in Cartmell for instance.
The second is a restriction of Day’s tensor product [Day70].

The Kripke resource models, especially the set-theoretic model, can also be seen as an in-

dexed formulation of categorical models of Read’s bunches.

The Gentzenized AA-calculus

The presentation of the AA-calculus in Chapter 2 is as a linearized natural deduction system.
In Chapter 5, we present a Gentzenized version of the natural deduction system, in which the
(MA%E) and (MAVE) elimination rules (and their non-dependent versions) are replaced by rules
which introduce the connectives into the context, or left-hand side, of the sequent. Consider the
linear case. The (MAZE) rule of the natural deduction system is as follows:

s MAxAB AFgNA
B s MN:B[N /x|

where the context X is formed by the sharing-sensitive join of the premiss contexts I' and A. In
the sequent calculus system, this rule is replaced by the following (: AL) rule:

'k N:B AxDEzMA
E,y:AzB.Cls MyN/x):A

AL)

14 Chapter 1. Introduction

where y is new, x € FV(A) and D = C[N/z]. The (: AL) rule is the most obvious candidate for
the Gentzenizing of (MA'E), but is not the only one. We can also consider the rule where the y
intuitionistically extends . A similar analysis applies to the (MAIE) rule.

The completeness of the sequent calculus version of the AA-calculus with respect to the
natural deduction version depends crucially on the presence of the two cut rules which, as they
are not admissible, are taken explicitly in the sequent calculus system. However, by working
with B-normal forms of proofs, we can prove a cut-elimination theorem.

Chapter 5 will allow us to begin the study of proof-search in the type theory and, hence, in

uniformly-encoded object-logics of the RLF logical framework.

15

Chapter 2

The AA-calculus and the RLF logical framework

2.1 Introduction

Linear and other relevant logics have been studied widely in mathematical [Avr88, Gir87, Mey76,
SH91}, philosophical [AB75, Dun86, Rea88] and computational [Abr93, HM94, MTV93, PH%4,
Ten92] logic. We present a study of a logical framework, RLF, for defining natural deduction
presentations of such logics.! RLF consists in a language together, in a manner similar to that
of LF [AHMP92, HHP93, Pym90], with a representation mechanism. The language of RLF,
the AA-calculus, is a system of first-order linear dependent function types which uses a function
K to describe the degree of sharing of variables between functions and their arguments. The
representation mechanism is judgements-as-types, developed for linear and other relevant logics.

We motivate the AA-calculus by considering an abstract form of relevant natural deduction.
We specify the AA-calculus, a family of first-order dependent type theories with both linear and
intuitionistic function spaces, discussing only briefly the possible intermediate systems. The
framework RLF is a conservative extension of LF; the notion of conservative extension takes
account of the representation mechanism as well as the type theory. The work reported here
builds on ideas presented by Pym in [Pym92].

Recall that we use the word “relevant” according to Read’s description; for the family of
logics which have weaker structural properties than infuitionistic or classical logic, not merely

for those which have contraction but not weakening. Read’s taxonomy would place linear logic

IRLF, in common with LF, is also able to define Hilbert-type systerms, although this is beyond our present scope.

16 Chapter 2. The AMA-calculus and the RLF logical framework

(without exponentials) at the lowest point in the "lattice” (we use the word informally and not
in any technical sense) of logics. We follow this taxonomy and thus obtain a lattice of logical
frameworks, the weakest being RLF, the type theory of which has neither weakening nor con-
traction.”> We emphasize that the AA-calcnlus lies properly in the world of relevant logics: the
type theory’s contexts are a dependently-typed notion of Read’s bunches [Rea88]. Our frame-
work RLF provides a relevant analysis of natural deduction just as LF provides an intuitionistic
analysis of natural deduction. We do not study the variety of distributivity laws usually consid-
ered for relevant contexts {Rea88]. However, such an investigation should fit into our framework,
possibly via variations on the AA-calculus, quite straightforwardly.

This chapter is organized as follows. In Section 2.2, we motivate the AA-calculus in the
context of a logical framework by considering an abstract form of relevant natural deduction.
We formally define it as a type theory and summarize its meta-theory in Section 2.3, concluding
the section with a comparison with related work. In Section 2.4, we show that RLF is a con-
servative extension of LFE. In Section 2.5, we illustrate several example encodings in the RLF
framework. The object-logics we consider are a fragment of propositional intuitionistic linear

logic, the dynamic semantics of ML with references and a relevant A-calculus.

2.2 Moetivation

Logical frameworks are formal meta-logics which, inter alia, provide languages for describing
logics in a manner that is suitable for mechanical implementation. The LF logical framework
[AHMP92, HHP93, Pym90} provides such a metatheory and is suitable for logics which have at
least the structural strength of minimal propositional logic. We wish to study a logical framework

for describing relevant logics. Now, in order to describe a logical framework one must:
1. Characterize the class of object-logics to be represented;

2. Give a meta-logic or language, together with its meta-logical status vis-d-vis the class of

object-logics; and
3. Characterize the representation mechanism for object-logics.
The above prescription can be conveniently summarized by the slogan

Framework = Language -+ Representation.

In the literature, the terms “sub-structural” and “weak” are sometimes used in this way.

2.2, Motivation 17

We remark that these components are not entirely independent of each other [Pym96]. We will
point out some interdependencies later in this section.

One‘representation mechanism is that of judgements-as-types, which originates from Martin-
Lof’s [ML96] development of Kant’s [Kan00] notion of judgement. The two higher-order judge-
ments, the hypothetical J - J' and the general A, .J(x), correspond to ordinary and dependent
function spaces, respectively. The methodology of judgements-as-types is that judgements are
represented as the type of their proofs. A logical system is represented by a signature which
assigns kinds and types to a finite set of constants that represent its syntax, its judgements and its
rule schemes. An object-logic’s rules and proofs are seen as proofs of hypothetico-general judge-
ments Ay ec, -+ Auec, -/ - J'- Representation theorems relate consequence in an object-logic

F,, to consequence in an encoded logic by, -

(X, 0001), . TG} b & 0 J(9) object — consequence
¥ encoding
P01) ot T On) P-,;L Mg < (&) meta — consequence,

where X is the set of variables that occur in ¢y, ¢; J;,J are judgements; § is a proof-object {(e.g., a
A-term); Iy corresponds to X; each x; corresponds to a place-holder for the encoding of J;; and
Mj is a meta-logic term corresponding to the encoding of 5.

In the sequel, we do not consider the complete apparatus of judged object-logics. Our exam-
ple encodings in Section 2.5 are pathological in the sense that they require only one judgement.
For example, the encoding of a fragment of intuitionistic linear logic requires the judgement of
(J; =J =) proof. This is in contrast to the general multi-judgement representation techniques
[AHMP98]. We conjecture that our studies can be applied to the general case, although we defer
this development to another occasion.

A certain class of uniform representations is identified by considering surjective encodings
between consequences of the object-logic F; and consequences of the meta-logic Fy [HST94].2
So, all judgements in the meta-logic have corresponding judgements in the object-logic. The
judgement-as-types methodology has the property that encoded systems inherit the structural
properties of the meta-fogic. It is for this reason that LF — whose language, the All-calculus,

admits weakening and contraction — cannot uniformly encode linear and other relevant logics.

*The specification in [HST94] is a stronger one, requiring uniformity over all “presentations” of a given logic.
Such concerns are beyond our present scope.

18 Chapter 2. The M\-calculus and the RLF logical framework

To iltustrate this point, suppose £y;, is a uniform encoding of intuitionistic linear logic in LF, and
that T'x,I'a by, | M5:/(9) is the image of the object-consequence (X,A) Fy; 8:7(6). If T'x,Ta Py

M;:J(9) is provable, then so is Tx,I's,Te iy, M5:/(0). By uniformity, the latter is the image

T
of an object-logic consequence (X,A,®) b, §:J(¢), which implies weakening in linear logic, a

contradiction.

Thus we seek a language in which weakening and contraction are not forced. We motivate
the connectives of the language by considering the natural deduction form of rules for weak
logics. We do this in a general way, by considering Prawitz’s general form of schematic intro-
ductions from a more relevant point of view. Prawitz [Pra78] gives these for intuitionistic logic.
A schematic introduction rule for an n-ary sentential operator # is represented by an intreduction
rule of the form below. In the rule, only the bound assumptions for G; are shown; we elide those

for Gy, where (k # j}, for the sake of readability.

(Ha]- {H)n;]

Gy e Gy e Gy

#E,.. . F)

In the above tule, 1 < j < p. The F's, Gs and Hs are formulae constructed in the usual way: An
inference infers a formula #(Fy,...,F,) from p premisses Gy, ..., G, and may bind assumptions
of the form Hj y,...,Hj 5, that occur above the premiss G;. We let the assumptions be multi-sets,
thus keeping the structural rule of exchange. We require that discharge be compulsory. In the
case of the natural deduction presentation of intuitionistic linear logic, for instance, we require
that {Fy,...,F,} = {Gj,Hj1....,H in; 3. For example, in the rule for —o-introduction, whose

conclusion is ¢ ~o y, we have {F1,F5} = {0, ¥}, Gy =y and H; | = §.

We annotate the introduction schema below to indicate our method of encoding. o is the
type of propositions, the A is the linear universal quantifier and IT is the intuitionistic universal
quantifier. So we quantify over a linear proposition as AF 0 and over an intuitionistic proposition
as I1G:0. We also use AG!lo for the latter and AF€o to range over both linear and intuitionistic
quantifications. Each inference — that is, the binding of assumptions H; y,...,H jh; above pre-
miss G; and the inference of formula #(Fy,...,F,) from premisses Gy, ...,G, — is represented

bya —o .

2.2. Motivation 19

1 - {H 0O l
G O 0G0 o G,
AFy, G H y€0 l
#(FI’--WFYI)

The premisses Gy, . .., G, are combined either multiplicatively or additively, depending on whether
their contexts are disjoint or not. We distingunish between these combinations by the use of two
conjunctions; the multiplicative ® (“tensor”) and the additive & (*with”} and so force the struc-
tural rules, (In traditional relevance logics, multiplicative is referred to as intentional and additive
as extensional.) We use [J as meta-syntax for both @ and &, though mindful of the relationship
between the two operators. Full expressivity is recovered by introducing the modality ! (*bang”)
into our language. The premiss G allows us to depart from relevant inference, and to choose the
number of times we use G in the conclusion.

In the meta-logic, then, the schematic introduction rule would be represented by a constant

of the following type:

AF, G Hipe0. ...C](C][Shj(Hj,g}) Gj)l]... —~o #{F,..., %),

where 1 <1 < h; and Tj<p, represents an iterated [J. From the general encoding formula above,
it can be seen that the connectives 71 (i.e., ® and &) and ! occur only negatively. In the tensor’s
case, this allows us to curry away the ®, modulo a permutation of the premisses. For example,

in the following type, we are able to replace the occurrence of ®,

{(Cren;{Hjp) —o G))@(Qrgn, (Hyp) —o Gy} ~——o #Fy,... . Fy),

bya ~—o ,

(Dtghj(Hj,t) —0 Gj) —— (Df'f-.hf (Hj'Jf) fr—-1 Gj!)) #{Fl,...,Fn).

We can also consider a currying away of the & by a non-dependent version of the additive func-
tion space. A langrage with two kinds of dependent function space is very interesting but is

beyond the scope of our current study.

20 Chapter 2. The A-calculus and the RLF logical framework

We recapitulate exactly how we have used the three logical constants in the framework: the
& is used to undertake additive conjunction; the A is used to quantify and (in its non-dependent
form —o) to represent implication; and the IT is used to represent dereliction from relevant infer-
ence. We should then be able to formulate a precise idea regarding the completeness of the set
{&, A, 1T} with respect to all sentential operators that have explicit schematic introduction rules
[Pra78, SHE3].

A similar analysis can be undertaken for the corresponding elimination rule.

Our analysis allows us two degrees of freedom. The first is at the structural level of types.
In this section, our main intention has been to motivate a language in which the structural rules
of weakening and contraction are not forced, and so to be able to uniformly encode linear logic.
But this language is only one of a range of relevant logics [Rea88], which includes, for instance,
Anderson and Belnaps’s relevance logic [AB75]. Choosing a different language, with it’s par-
ticular structural and distributivity propertiés, would allow us to uniformiy encode another class
of logics. The family of relevant logics determined by these choices is very interesting from a
representationall perspective, thoﬁgh we pursue it no further in this thesis.

The second, orthogonal, degree of freedom, and one that we do concentrate on in the sequel,
concerns the corresponding range of structural choices at the level of terms (as opposed to types).
Considering this aspect from the logical point of view, we consider multiple occurrences of the
same proof. The degree to which a proof can be shared by propositions is a structural prop-
erty which determines, via the Curry-Howard-de Bruijn correspondence, a type theory whose
functions and arguments share variables to a corresponding degree.

The language that we have motivated in this section, and develop in the sequel, is a type
theory in Curry-Howard-de Bruijn correspondence with a structural fragment of BI, the logic of

bunched implications. The details of this correspondence are given in the next chapter.

2.3 The AA-calculus

The AA-calculus is a first-order dependent type theory with both intuitionistic and linear function
types. The calculus is used for deriving typing judgements. There are three entities in the AA-
calculus: objects, types and families of types, and kinds. Objects (denoted by M, N) are classified
by types. Families of types (denoted by A, B) may be thought of as functions which map objects

to types. Kinds (denoted by K) classify families. In particular, there is a kind Type which

2.3. The AM-calculus 21

classifies the types. We will use U, V to denote any of the entities.
We assume given three disjoint, countably infinite sets: the meta-variables x,y,z range over
the set of variables; ¢,d range over the set of object-level constants; and a, b range over the set of

type-level constants. The abstract syntax of the AA-calculus is given by the following grammar:

Kinds K o= Type|AxA.K|AxAK
Types A = alAxA.B|AxIABlAxA.B|Ax!A.B|AM|A&B
Objects M 1= clx|AxAM|AxIAMIMN|{MN)|mM|mM.

We write x€A to range over both linear (x:A) and intuitionistic (x!A) variable declarations. The
A and A bind the variable x. The object Ax:A .M is an inhabitant of the linear dependent func-
tion type Ax:A.B. The object Ax!A.M is an inhabitant of the type Ax!A.B, which amounts to
the Martin-Lof-style [Tx:A .B. The notion of linear free- and bound-variables (LFV, LBV) and
substitution may be defined accordingly [Bie94]. When x is not free in B we write A — B and
A — B for Ax:A .B and Ax!A B, respectively. Our basic study does not include the units, but T
and 1 can be added to the type theory with little difficulty.

We can define the notion of linear occurrence by extending the general idea of occurrence for

the A-calculus [Bar84), though we note that other definitions may be possible.

Definition 1 (linear occurrence in /)
I. x linearly occurs in x;

2. If x linearly occurs in U or V (or both), then x linearly occurs in AyeU .V, in AyeU .V,
and in UV, where x # y;

3. If x linearly occurs in both M and N, then x linearly occurs in (M,N);
4. If x linearly occurs in M, then x linearly occurs in 1;,(M);

5. If x linearly occurs in both A and B, then x linearly occurs in A&B.
The definition is extended to an inhabited type and kind.

Definition 2 (linear occurrence in U:V) A variable x linearly occurs in the expression U:V if it

linearly occurs in U, in'V, or in both.

22 Chapter 2. The AM-calculus and the RLF logical framework

We remark that the above definitions are not “linear” in the Girard sense [Ben94, Bar97].
However, they seem quite natural in the bunches setting. O’Hearn and Pym, for instance, have
examples of BI terms — the next chapter will show that the AA-calculus is in propositions-as-
types correspondence with a non-trivial fragment of BI — where linear variables appear more

than once or not at all {OP99].

Example 3 The linear variable x occurs in the terms ¢x:Bx (assuming ¢ : Ax:A.Bx), fx:d (as-

suming f:a—o d) and Ly:Cx.y : Cx —o Cx (assuming C:A — Type).

In the sequel we will often refer informally to the concept of a linearity constraint. Essentially
this means that all linear variables declared in the context are used: a production-consumption
contract. But we depart from the usual resource-conscious logics idea that formulae are produced
in the antecedent and consumed in the succedent. Given this, the judgement x:A,y:cx by yiex in
which the linear x is consumed by the {type of) y declared after it and the vy itself is consumed in

the succedent, is & valid one.

In the AA-calculus, signatures are used to keep track of the types and kinds assigned to
constants. Contexts are used to keep track of the types, both linear and intuitionistic, assigned to

variables. The abstract syntax for signatures and contexts is given by the following grammar:

Signatures % u= () |Z,alK | E,clA
Contexts T u= (}{T,xA|T,x!4

So signatures and contexts consist of finite sequences of declarations. The dependency aspect of
the type theory requires that “[bases] have to become linearly ordered” [Bar92, page 198]. We
assume the usual extraction functions (dom(I'}, ran(I")) related to such lists. We also define the
following two functions which extract out just the linear and intuitionistic or exponential parts of

a coptext:

lin(()) = 0 ap(()) = {
lin(T,x:A) = lin(),x:A exp(I',x:A) = exp(’)
Lin{l',x!A) = lin(l) exp(I',xl14) = exp(l),x!A

The AA-calculus is a formal system for deriving the following judgements:

2.3. The M-caleulus 23

F X sig " Zis a valid signature

b I' context I is a valid context in X
I'tx K Kind KisavalidkindinZand I’
I'tFs AK AhasakindKinZand D
I'ts M:A MhasatypeAinZand T

Wewrite T UV foreither of THy A:K or Ty MiA, and T X for T g K Kind or Ui U2V
We abuse notation and also write I' by X to indicate the derivability of X in the AA-calculus, in
which case the K or U is said to be valid in the signature X and context I',

The definition of the type theory depends crucially on the following three notions:

1. The joining together of two contexts to form a third must be undertaken so that the order

of declarations and type of variables (linear versus intuitionistic) is respected;

2. The idea of linear variable occurrences allows us to form contexts of the form x:A,x:A,
for some type constant A in the signature. That is, contexts in which repeated but distinct

declarations of the same variable are possible;

3. Following a joining of contexts, certain occurrences of linear variables — those that are
shared by a function and its argument — are identified with one another. This sharing is

implemented by the K function.

These notions will be explicated at appropriate points in the sequel.

We now present the rules for deriving judgements in Tables 2.1 and 2.2 below. To save space,
we place any side~-conditions along with the premisses. The rules are conveniently separated into
a linear and an intuitionistic set, the latter relating directly to the intuitionistic AIT-calculus.

The signature formation rules enforce intuitionistic behaviour by allowing only a constant
of intuitionistic type to extend the signature. The context formation rules allow only types to
be assigned to variables. We distinguish between extending the context by linear (E,x:A) and
intuitionistic (=, x!A) variables. The context formation rules introduce two particular characteris-
tics of the type theory. The first one is that of joining the premiss contexts for the multiplicative
rules. The join must respect the ordering of the premiss contexts and the concept of linear versus
intuitionistic variables. A method to join I" and A into E - denoted by [E;I';A] — is defined in

Section 2.3.1 below.

24 Chapter 2. The M-calculus and the RLF logical framework

Valid Signatures

(z)
i {) sig

FEsig FrKKind agZ Fisig FeAType cgX
(2KY) (z41)
- Z,alK sig 2, c14 sig

Valid Contexts
- 2 sig

— (D)
Fx () context

ks I context Az AiType {EiA] (x & dom(E) or mA € B)

(ra)
b Z, x4 context

k3 P context Aty AType [EiDA] (x ¢ dom(E) or xA €)

(TAl)
Fy 2, x4 context
Valid Kinds
5 I context IxAlys K Kind
(KAx) (KATY)
I'tx Type Kind FkyAxA K Kind

ke AType Ars KiKind [Z154] E= Z\(Ln(T) Niin(A))

KAI2)
Ebz A —o K:Kind

I xtA bz K Kind
S YT
iz Ax!A X Kind

Table 2.1: AA-calculus

In order to motivate the second characteristic of the type theory, consider the following sim-

ple, apparently innocuous, derivation.

Example 4 Let AlType, ¢lA ~o Type € 2 and note that the argument type, cx, is a dependent

one; the linear x is free in it.

xA by c.'x:Type

x:A zex by zicx x:A bz exType

xAbryhzex.z: Azex.ex XA, yoxks yiex

xAxA,yexts (Azex.2)y ox

The problem is that an excess of linear xs now appear in the combined context after the appli-
cation step. (In this step, the types match literally. However this problem arises where they are
equal too.) Our solution is to recognize the two xs as two distinct occurrences of the same vari-
able, the one occurring in the argument type ¢x, and to allow a degree of freedom in sharing these

occurrences. It is now necessary to formally define a binding strategy for multiple occurrences;

2.3. The AA-calculus

Valid Families of Types

FsiF context qlKeX

(4c)
Fhsak
T xAlbs BType ThrA:Type Aby BiType [E;1hAL E=E\Uin{[)nlin(A))
{AAI) (AAT2)
T'bs AxA.B: Type Ebs Ao B Type
I xlA bz BiType
_{AA)
kg AxtAB : Type
IxhAlg BK TkxB:AxAK AFpNA [EhFA] E=E\k(4)
(AAAT) (AAE)
PreAxAB: AxA K Eby BN : K[N/%
FxlAlg BX Tk B: AxAK 1A NA [E T AL
(AAALT} (ANYE)
Ik AxIA.B: AxAK Erg BN KN/

FlgAType Ty B:Type

(A&T)
I'ig A&B: Type

T AK ARz E Kind K=K [54A]

EFg AKX
Vatid Objects

rxil"context clAe X

{Mc)
bz oA

iz A Type ks AType
— (MVar) ——————— (MVar!)
IxArz xA IxlA by xA

I,xAfy M:B TheM:AxAB AlgNA [Ei134] §=E\k(I,A)
(MAAT) (MAE)
I'FrdxAM: AxAB Ely MN : B[N/x)

T,xlA s M:B IFeM:AxIAB A Fx N:A [ET314)
(MAALT) (MA!E)
'ty AXAM : AXIAB Ehz MN : B[N/

I'txM:A Tz N:B 'z M : Agkdy
—— (M&J) ————— (M&E;) (i€ {0,1})
Fi‘s (M,N) 1 A&B fl“); ‘JC,'M H AJ

ChzM:A Ars Al Type A=A [E T4

E s M:A

Table 2.2: AA-calculus (cohtinued)

25

26 Chapter 2. The AA-calculus and the RLF logical framework

this we do in Section 2.3.2 below. The sharing aspect is implemented via the x function, defined
in Section 2.3.3 below. One implication of this solution-is-that repeated declarations of the same
variable are allowed in contexts. For this reason, the usual side-condition of x ¢ dom(=) is absent
from the rules for valid contexts, though of course we don’t allow the same variable to inhabit
two distinct types.

The (KAT) and (AAT) pair of rules form linear function spaces. The first of each pair, in
which x € FV(B), constructs linear dependent function spaces. The second rule of each pair
constructs the ordinary linear function spaces. There are two side conditions for the latter rules:
the first joins the premiss contexts and the second then does a necessary book-keeping for those
occurrences of linear variables which are identified with each other under the current binding
strategy. The side-conditions in the (AAE) and (MAE) rules are of a similar nature. The x
function selects those such “critical” linear occurrences. These occurrences are removed to give
the conclusion context. It can be seen that these side-conditions are type-theoretically and, via
the propositions-as-types correspondence, logically natural.

The essential difference between linear and intuitionistic function spaces can be observed by
considering the (MAZ) and (MA!E) rules. For the latter, the context for the argument N:A is an

entirely intuitionistic one (1A}, which allows the function to use N as many times as it likes.

Example 5 We end this sub-section with an example of a derivation which does not involve

sharing. Let A'Type, d!'A — Type, e!Ay:A.dy € Z. Then we construct
b5 () context gz A Type

Fre: AyAdy xAbzxA

xAbFsex:dx by A:Type

FyAxAex: AxA.dx zAFy A

zA by (AxA ex)z o (dx)[z/x]

Now, (Ax:A .ex)z —g ez and ez:dz, which maintains the linear occurrence of the variable z.

2.3.1 Context joining

The method of joining two contexts is a ternary relation [H;17;A], to be read asl “the contexts I"
and A are joined to form the context Z”. Or, for proof-search: “the context E is split into the
contexts I'and A”.

The first rule for defining [E;T";A] states that an empty context can be formed by joining

together two empty contexts. The second and third rules comply with the linearity constraint,

2.3. The AM-calculus 27

and imply that the linear variables in 2 are exactly those of I' and A. The last rule takes account
of the structural properties of intuitionistic variables. In search, the intuitionistic variable x!A

would be sent both ways when the context is split.

{JOINY
CRERY)
[E14] [E:T:4
(JOIN-L) ————— (JOIN-R)
Ex:A; T xA A 2,24, 4,54
[ET;Al
(JOIN-1)

[2,x14; T, xtA; A, x1A]

Table 2.3: Context joining

Further, the context joining relation must respect the ordering of the contexts and the linearity
constraint (as defined by the binding strategy in the next section). That is, if by I' context,
s A context and [E;T;A], then Fz B context {and vice versa for when Z is split into I' and A).
We remark that if we were also studying the distribution laws for relevant contexts, then the
context joining relation would need to take regard of these context equalities.

We make a brief remark about the [E;T"; A] relation with regard to logic programming. As
we noted above, in proof-search (the basis of logic programming) the relation [E;17;4] is read
as “split & into T" and A”. An implementation of the AA-calculus as a logic programming lan-
guage would have to calculate such splittings, perhaps using techniques similar to those for Lolli
and Lygon [HPW96, HM94], although it would be interesting to consider approaches in which
[E;T;A] remained unevaluated for as long as possible during search. Such an approach would

resemble matrix methods [Wal90].

2.3.2 Multiple occurrences

Consider the multiple occurrences idea from a proposition-as-types reading. Then x:A,x:A can
be understood as two uses of the same proof of the same proposition, as opposed to x:A,y:A,
which can be seen as distinct proofs of the same proposition. Though this idea can be seen, in the
presence of the binding strategy that we are about to define, as an internalization of ¢t-conversion,
it allows us a degree of freedom, that at the structural level of terms (as opposed to types), which

is useful in dealing with variable sharing (Section 2.3.3).

28 Chapter 2. The M-calculus and the RLF logical framework

In this section, we define the “left-most free occurrence of x” in U and a corresponding

binding strategy for it. We use this in the sequel, later noting that it can be generalized.

Definition 6 The left-most linear oceurrence of x in U is defined as follows, provided that x €
LFV(U). We use @ to denote atoms (constants and variables) and say “x, @ distinct” if @ is a,
cory.
{Constant, Variable) The constant and variable cases are trivial:

Im(@) = {} x, @ distinct

Imi(x) = {x}

(Abstraction} We adopt the usual technique of capture-avoiding substitution for the case where
another occurrence of x has already been bound. By induction, the A (A) binds a given occur-
rence — the left-most one — of x in U. So we can O-convert this to Az€A .V]z/x] (Az€A V{z/x])

and continue. We give the cases for the A binder; the ones for A are exactly similar.

{ Imy(A) x€ LFV(A) } o
x,y distinct

Im (V) otherwise

Ime(AycA.V)

Imy(Ax€AV) = Im(Az€A . V]z/x]) znew

(Application) The left-most occurrence of x in VM is in 'V or, failing that, in M. The case where
V is a constant or variable is straighi-forward:

Im,(@M) Im (M) x, @ distinct
ny(xM) = {x}

Otherwise, we need to check whether x is free in 'V or not:

(A} { Iy (V) x€ LFY(V)

I (M) otherwise

{Pairing) We deal with the additive cases by a disjoint union of the left-most occurrence of x in
both components of the pair:
Im((M,NY) = Im(M) ¢ tmy(N)
Ime(n(M)) = Im(M) i€ {0,1}
Im(A&B) = Imy(A) W Im(B)
We define the left-most occurrence of x:A in a context T as the first declaration of x:A in [
Similarly, the right-most occurrence of x:A in I is the last such declaration.

The binding strategy now formalizes the concept of linearity constraint:

2.3. The AM-calculus 29

Definition 7 (Jeft-most binding) Assume U, x:A, At UV and that x:A is the right-most occur-

rence of x in the context. Then x binds:
1. The first left-most occurrence of x in ran(A), if there is such a declaration;

2. The unbound left-most linear occurrences of x in UV,

There is no linearity constraint for intuitionistic variables: the right-most occurrence of x!A in
the context binds all the unbound xs used in the type of a declaration in A and all the occurrences
of xmU:V.

The rules for deriving judgements are now read according to the strategy in place. For ex-
amﬁie, in the {MAAT) rule, the A(A) binds the left-most occurrence of x in M(B). Similarly, in
the (admissible) cut rule, the term N:A cuts with the left-most occurrence of x:A in the context
A,x:lA,A’ . In the corresponding intuitionistic rules, the Al{A!) binds all occurrences of x in M(B)
and N:A cuts all occurrences of x!A in the context A, x!A4, A’

In the sequel we use the left-most binding and cutting strategy as discussed above. We remark
that there is a general i strategy, that of binding the #" variable from the left and cutting the j*

variable from the left.

2.3.3 Variable sharing
Variable sharing is a central notion which allows linear dependency to .be set up. In fact, this
notion is already implicit in our definition (1) of linear occurrence. The AA-calculus uses a
function K which implements the degree of sharing of variables between functions and their
arguments.

We define x by considering the situation when either of the two contexts I' or A are of the
form ..., x:A or ...,x.A,y:Bx. The only case when the two declarations of x:A are not identified

with each other is when both I and A are of the form ..., x:A,y:Bx.

Definition 8 The function K is defined for the binary, multiplicative (AAE), (MAE) and (Cut)

riles

PHg U AzCV AR NIC [ET3A] E=E"\x(T,A)
(AAE), (MAE)

Bhg UN : VIN/7]
ralv/x)

AZCA Fs UV THNC [ELTANN/A E = E\K(E, (A, V/)
(Cat).

By (UV)IN/]

30 Chapter 2. The AM-calculus and the RLF logical framework

For each x:A occurring in both T and A, construct from right to left as follows:*

K(,A) = {} if lin(T) N\ lin(A) = 0
({x:A € Lin(T) Nlin(A) | either (i) there is no y:B(x) to ‘
the right of xAinT
k(I4) = 9 or (if) there is no y:B(x) to ¢ otherwise
the right of x:A in A
or both (i) and (i)}

\y /

The second clause of the definition can also be stated as follows: in at least one of I" and A
there is no y:B(x} to the right of the occurrence of x:A. This clause is needed to form a consistent
type theory which allows the formation of sufficiently complex dependent types. By this, we
mean types such as Axj:Aq ... Axy:Ap(x1,...,X,—1) . A in which the abstracting types depend upon
previously abstracted variables. In binary rules, it can be that some variables must occur, in order
to establish the well-formedness of types in each premiss, in the contexts of both premisses,
and must occur only once in order to establish the well-formedness of types in the conclusion.
However, it is possible for other variables occurring in both premisses to play a role in the logical
structure of the proof; these variables must be duplicated in the conclusion. These requirements
are regulated by X,

In the absence of sharing of variables, when the first clause only applies, we still obtain
a useful linear dependent type theory, with a linear dependent function space but without the
dependency of the abstracting A;s on the previously abstracted variables. For example, we use
such a type theory to encode the dynamic semantics of ML with references in Section 2.5 later.

With the definition of K given above, we can consider the following example.

Example 9 Suppose AlType,clA — Type € X. Then we construct the following:

.l-z A:Type
FrecA—oType xdAlgxA (%) ks A:Type
x:A by cx:Type FreAd—Type xAFgxA (%)
x:A,zex by ziex x:A g cx:Type
Atz Azexz : Azex.cx xA yiex by yiex ()

xA, yex by (Azex.2)y :ox

*Formally, k{I",A) is defined recursively on the structure of I' and A, read from right 1o left. We adopt the above
informal notation for ease of expression.

2.3, The AA-calculus 31

The (x) denotes the context join to get x:A. The (xx) side-condition is more interesting. First, the
premiss contexts are joined together fo get x:A,x:A,y:cx. Then, X removes the extra occurrence
of x:A and so restores the linearity constraint. A similar situation arises when the y is cut in for

the z:

xA,zexbz ziex xA,yiexbyg yiex (#4)

xA, yex by (zex)y/z)

The function K is not required, ie., its use is vacuous, when certain restrictions of the AA-
calculus type theory are considered. For instance, if we restrict type-formation to be entirely
intuitionistic so that type judgements are of the form II" kg A:Type, then we recover the {I1, —
, & }-fragment of Cervesato and Pfenning’s A-&T type theory [CP96]. Our fragment does not
include T, the unit of &; we will remark on this while stating the subject reduction property in
Section 2.3.5 later. Like the simple dependency case above, this restricted type theory is useful

t00; we use it to encode a fragment of intuitionistic linear logic in Section 2.5 later.

2.3.4 Definitional equality

The definitional equality relation that we consider here is the B-conversion of terms at all three
levels. The definitional equality relation, ==, between terms at each respective level is defined
to be the symmeitric and transitive closure of the parallel nested reduction relation, —, defined
in Table 2.4 below. We note that, in the B-rules, substitution is performed only for the bound
occurrences of x. The transitive closure of -+ is denoted by —*.

We remark that while B-conversion is sufficient for our current purposes, we foresee little
difficulty (other than that for the All-calculus [Cog91, Sal90]) in strengthening the definitional

equality relationship by the n-rule. We remark on this again in Section 2.3.6 later.

2.3.5 Basic properties of the AA-calculus

In this section, we study the basic properties of the AA-calculus. The proof techniques are not
new and are adapted from Harper e al. [HHP93] for this setting. There are some minor points to
note regarding the proofs of the meta-theory. The first point to note is this. As the AA-calculus
is a conservative extension of the AFl-calculus, the number of cases we have to deal with in the

proofs of structural induction is much greater. We concentrate on the I -z M:A-fragment of the

32

Chapter 2. The AM-calculus and the RLF logical framework

AN MM
e { = rE f1) (= M)
U=U AxGA.M — AxeA M
A-sA KK MM NN
(~+ KA) —(— Mapp)
AXEAK - AxcA' K’ MN = M'N
A-A B-F MM NN
(= AA) (~» MB)
AxcA B -+ AxcA' B (AxcA MIN — M'[N' /]
A=A B P MM NN
— (A ——————— (M)
AXEA.B - hxed' B (M,N} = (M N}
A A" Mos M MM
(— Aapp) e (> M)
AM s A'M M - s
BB N-oN MM
{(—=Ap) ———— { = M)
(AxeA.B)N ~ B'IN' (] no{M Ny = M
A=A BB NN
—_— (= A&) —— > My}
AZB — A'&B' 1 (M,NY = N'

Table 2.4: Parallel nested reduction

type theory (the I" -5 A:K-fragment is dealt with quite similarly). Even then, we show only the
représentative or interesting cases.

Another reason for the large number of cases is the linear dependent aspect of the type theory.
For instance, consider the judgement =, x:A,y:B, E' b3 U:V which is obtained via the application
of some binary rule. The linearity constraint allows the following: x can linearly occur in one
of the types declared in y:B, &' and can linearly occur in U/:V, and y can linearly occur in one of
the types declared in Z' and can linearly occur in U:V. If no sharing has occurred, then it can be
assumed that x and y are sent to separate premiss contexts. Sharing complicates the _anaIysis we

have to do, though often the argument is still a fairly routine inductive one.

We consider some of the characteristic properties of the reduction relation —. All three of the
following are desirable technical properties, as well as of use in proving the more major results

later. We first show that substitution is conserved under reduction.
Lemma 10 IfU - U'andV = V' then U[V [x] — U'{V' /«].

Proof : By induction on the length of the proof of I/ — U'. We do some representative cases.

2.3. The AM-caleulus 33

Uis M Then take U' = U and UV /x] = U'[V' /x] is either U = U or V — V.

Uis AyecA.M U — U'isinferred by (~+ MA). Then U’ is of the form AycA’ .M’ and AyeA .M —

AycA’ .M'. By induction hypothesis twice we get
AV /x| = AV /4]

and

MV /x] - M'[V' [x]

The rule {(— MA) allows us to infer AyeA[V /x] M[V /x] — AyeA'[V'/x] M'[V'/x], which
is the same as (Ay€A .M){V /x] — (AyeA’ M)V [x].

Uis MN There are two sub-cases to consider.

1. U - U’ is inferred by (— Mapp). Then U’ is of the form M'N' and MN — M'N'.

By induction hypothesis twice we get
MV [x] = M'[V' /x]

and

NIV /x] = N'[V'/x]

The rule {(~+ Mapp) allows us to infer (M{V /x|N[V /x]) — (M'[V' /x]N'[V' /x]}, which
is the same as (MN)[V /x| — (M'N")[V'/x].

2. U — U'is inferred by (-+ MP). Then U’ is of the form M'[N'/y] and (AycA MIN —

M'[N' /y}. By induction hypothesis twice we get that
MV [x] -~ M'[V' /x]

and

NIV /x] = N'[V' [«]
The rule (~+ MP) allows us to infer
(AyeA.MV) (N[V /x]) — (M[V' /) [N'[V' /x]/5]

which is the same as ((AyeA M)N)[V /x] — (M'[N'/y])[V' /x]. 0

34 Chapter 2. The AM\-calculus and the RLF logical framework

The proof of confluency for the parallel reduction relation — is an adaption of the com-
binatorial proof by Stenlund [Ste72], who traces it back to Tait and Martin-L6f [ML75]. The
combinatorial approach works as the reduction relation (f} for Kinds, Types and Objects) is de-

fined disjointly for each of the three levels of terms.
Lemma 11 (—= o) IfU — U’ and U - U" then there exists a Vsuch thatU' -V and U" — V.
Proof : By induction on the sum of the lengths of the proofs of U — U’ and U — U".

UisM Thentake /' =U" =M.

U is Ax€A .M Then we have

AxeA .M

/N

rxeA' M AxeA” m"

A »
}\.XEAM M.I'II
with A — A",A” and M — M',M". By induction hypothesis twice we have that there exists
aA” such that A" — A" ¢~ A" and there exists a M™ such that M’ —+ M" < M". The result

follows by (— MA) if we take V to be A" M™.

U is MN There are three cases to consider, depending on how U — U’ and U ~+ U" have been

derived by (~+ Mapp) and (— MB).

1. Both U ~» U and U — U" are derived by (— Mapp). Then we have

MN
M! N! MH NH
S
MIH' NIH
with M — M',M" and N -+ N', N". By induction hypothesis twice we have that there

exists a M" such that M’ — M « M' and there exists a N such that N/ — N" «

N". The result follows by (— Mapp) if we take V to be M"'N™.

2.3. The AA-calculus 35

2. BothU — U' and U — U" are derived by (~» Mf). Then we have

(AxcA .M)N

SN

M'[N'/x] M"[N"/x}
e K
MHI'[NI'H/x]
with M — M',M" and N — N',N". By induction hypothesis twice we have that there
exists a M" such that M’ — M"™ ¢+ M and there exists a N’ such that N/ — N «
N". By Lemma 10 we have that M'[N'/x] ~» M"[N" [x] < M"IN" /x] and the result

follows for V as in the diagram above.

3. U - U follows by (— Mapp)and U — U” by (— Mf). Then we have

(Ax&A M)N

/N

(AxeA’ .M")N' M"IN" [x}
' »
Ml’ﬂ'[NHI /)C]
with M — M’ M" and N — N',N". Ax€A M — AxcA' M' is derived by an (-~ MA).
By induction hypothesis twice we have that there exists a M" st M’ — M" + M" and
there exists a N such that N’ ~+ N" «~ N”. By Lemma 10 we have that M"[N" /x} —
M™[N" [x] and by (— MP) we have that (AxeA' . M')N — M"™[N" /x], so the result

follows as in the diagram.

Uis (M,N} Then we have

(M,
RN
(M',N' (M",N")

(Mh'f NIH)

with M — M',M" and N -+ N', N". By induction hypothesis twice we have that there exists
a M™ sach that M’ — M"" + M" and there exists a N such that N' — N « N”. The

result follows by (— M&) if we take V to be (M"",N").

36 Chapter 2. The M\-calculus and the RLF logical framework

UismM i€ {0,1}. Then we have

M
M’ ;M
' Y »
ﬂ:i MM’

with M — M',M" and N — N',N". By induction hypothesis we have that there exists a

M" st M'— M™ « M". The result follows by (— M) if we take V to be m;M". 0o

The third property of —, Church-Rosser, follows from confluency.

Lemma 12 (CR Property) IfU —* U, and U —* U, then there exists a V such that U}, =* V
and Uj) =*V

Proof : By an induction on the number of -steps. For the base case we just use the Diamond

property (confluence). For the inductive step, we assume the hypothesis for (n+m) — 1 steps.

U — U — U} - Ul
i ¥ ¥
Ul » Vi e Vg e - e - Va1
¥ ¥ ¥
e R e S - Vo2
v i v
’ ¥ ¥ ¥
A NN TR A
We complete the n + m case by using confluency to fill-in the bottom-right rectangle. O

We consider the admissibility of the structural rules. The following lemna is useful for prov-
ing these admissibilities. It analyses how a type assignment for an abstraction can be obtained.
It is a specific (part 4) and specialized (for linearity) case of Barendregt’s Generation Lemma for

Pure Type Systems (PTS) [Bar92].

Lemma 13 (Inversion) If 'ty Ax€A.U : Ax€AV, then T, x€A s U V.

2.3. The AM-calculus 37

Proof Consider a derivation of Ax€A .U : Ax€A.V. The conversion rules do not change the term
AxeA U7, We follow the branch of the derivation until the term Ax€A .U is introduced for the

first time. This can be done by an abstraction rule. The conclusion of the abstraction rule is

s AxcA U : AxeB.W

with Ax€A.V = Ax€B.W. The statement of the lemma follows by inspection of the abstraction.

O

We remark that, given the next theorem, the above lemuma could allow weakening or contraction
in the intuitionistic parts of ',

We recall our earlier comments, in Section 2.2, regarding how the consideration of a partic-
ular language allows us to admit certain structural rules. The next theorem details this for the
AA-calculus. We comment on the form of the admissible structural rules. The exchange and
contraction rules are inherited from dependent and linear type theory, respectively. The rule for
weakening requires that the context for proving the well-typedness of A is entirely intuitionistic.
The rule for dereliction requires the derelicting of the free variables in the linear type too. Cut
comes in two forms, one for cutting a linear variable and one for cutting an exponential one. The
rules are read according to the current binding strategy. The extra side-conditions for exchange

enforce the context well-formedness in accordance with the left-most binding strategy.

Theorem 14 (Structural Admissibilities) The following structural rules are admissible:
1. Exchange: If T',x€A,yeB, Aty UV, then T',y&B,x€A,At-5 UV, provided x & FV(B),
yE€ FV{A) and T g B: Type;
2. Weakening: If I' 5 U:V and 1A by A:Type, then Z,x1A 5 UV, where [E;T;1A];

3. Dereliction: If T, x:Abs UV, then T, x!A 5 UV, where I" is I in which the free variables

of A have been derelicted too;
4. Contraction: If T',x1A,y!A b-¢ UV, then T, x!A b5 (U:V)[x/¥};

5. Cut: IfTI(A[N/x]) is a sub-proof of A, x:A,A' by UV and I' -5 N'A, then B5 (U:V)[N /x],
where [Z;T5A, NN/ x]] and E = E\(T, (A, A'[N /x]));

6. Cutl: If A, xIA, A s UV and T Fx N:A, then B -5 (V)N /x], where [E;TA, A [N /x])-

38 Chapter 2. The AM-calculus and the RLF logical framework

Proof By induction on the structure of the proof of the premisses. We do some representative
cases.

Admissibility of Weakening:

(Mc) IT"t3 c:B because b3 !T" context with ¢!B € . Then we construct

Fy!T context 1Ay A:Type

(TAY
Fx E,x1A context

=, x4 s B

with [Z; IT; 1A] the side-condition for the (I'A!) application.
(MVar) I',y:B s y:Bbecause I' -5 B:Type. By induction hypothesis we have that
ExlA s B:Type

Then we construct

=,x!A g B:Type
_— (MVar)
B xIA,y:Blgy:B
i X
E,yBxl Az y:B

The exchange in the last step is possible as the B cannot depend on this particular x. If it

did, then the initial judgement I" b3, B: Type would not be correct.

(MMAI) T'hy Ay:B.M : Ay:B.C because T,y:B -y M:C. By induction hypothesis we have
=,y:B,x!A Fx M:C. Then we construct
Zyv:BxlAbs M:C
E.x!Ay:BbFy M:C
ExIAFsAv:B.C: Ay:M.C

(MAAT)

The exchange in the first step is possible as the A cannot be dependent on this particular y.
As we have the judgement A -5 A:Type, any variable that A is dependent upon must be in

A already.

(MAE) T'kx MN : C[N/y] because @ 5 B : Ay:B.C and W I3 N:B, with [['; ®;¥]. By induc-

tion hypothesis twice, we have

& xlAFgM : Ay:B.C

2.3. The AM-calculus 39

and

¥ xlA b N:B
where @' is the K-sensitive join of @ and !A, and ¥ is the K-sensitive join of ¥ and !A.
Then we use (MAE) to construct

& xIAFsM : Ay:B.C ¥ x!AFz N : B
H,x1A -z MN : C[N/y]

where [E; ®'; ¥ and B = &\ x(¢', V).
Admissibility of Dereliction:

{(MVar) I',x:A b5 x:A because I' 5 A: Type. In the case where there are no free variables in A,
we just use (MVar!) to get I',x1A by x:A.
Now suppose y € FV{A). If y is of an intuitionistic type then we are done. Otherwise,
we consider the step where the y is introduéed and replace the application of (MVar) with

(MVart);

(MAAI} T, x:A bz Ay:B.M : Ay:B.C because I',x:4,y:B bz M C. There are two sub-cases, de-

pending on how the linear variables x:A is consumed.

1. x & FV{B). That is, x has a linear occurrence in M:C. An Exchange puts the
judgement in the form where we can apply the induction hypothesis. So we get
I",y:B,x!A -5, M:C, where I" is " with the z € LFV{A) are derelicted too. Then we
apply Exchange and (MAAT) to get IV, x!A Fx Ay:B.M : Ay:B.C.

2. x € FV(B). This case is argued similarly to the one before.
Admissibility of Contraction:

(Mc) Suppose I, x!A,y!A bz ¢:A because b3 !, x1A,y!A context, with ¢!A € Z. The context
validity judgement can only have been constructed by a series of applications of (I'Al}, the
last of which would be

Fs1®, x!A context W, x!4 Fx A:Type

1T 1 !
Fx!T, x!Ay!A context | ¥

where the most general (JOIN-!) clause has been used to join the contexts !@ and Y. The
first premiss can be used to apply the (Ac) rule. And the use of as many Weakenings and

Exchanges as necessary then allow us to construct

40

Chapter 2. The AA-calculus and the RLF logical framework

Fx!d, x1A context
1P, xlA s cid
I x!A b oA

which is equivalent to ¢c:A[x/y], the required result.

(MAAT) Suppose I',x1A,y!A b5 Az:B.M Az: .BC because I',x!4,y!A,z:B Fs M:C. For the case

to proceed, we need to make some assumptions regarding the kinds of B and C. For
example, consider the intuitionistic variable x: it might not occur at all (so, B:Type); it
might linearly occur in B (so, B:Ax!A . Type); it might linearly occur in M:C (so the type
of M is really Ax!A.Type; lastly, both of the two previous cases could occur. The same

argument applies in the case of y. We basically have to consider 2 x 4 sub-cases generated

by these intuitionistic variables, ranging from the minimum B:Type,C:B — Type, to the

maximum B:!A —o!A —o Type,C:!A ~o!A —o (Bxy) — Type. We consider both of these

cases below.

1. Suppose none of the exponential variables x and y are used. Modulo (M =), the last
rule applied could only have been a (MAE). The second, argument premiss of which
could only have been derived by a (MVar):

¥, x4, 14 Fx B Type
G, xIA, VA s MAZB.C W xlA yIA,z2B s 2B
x4, 14, 2:B b M:Clz/7]

Both premisses of the above derivation are now in a form to which the induction
hypothesis can be applied. Using induction hypothesis twice, the definition of sub-
stitution, and the rules (MVar) and {AAE) allows us to reconstruct this derivation
as

W, x1A by (B:Type)[x/y)
Dxld by (MAZB.C)lx/y] ¥,x1A,2:B b3 (zB)x/y]
T,x'A,z:B s (M:Clz/2Dx/y]

which is the required result.

2. This sub-case is argued similarly to the one above, We omit the details.

2.3, The AM-calculus 41

Admissibility of Cut:

(MVar) A,x:Atsx:Abecause At~z A:Type. ‘We have to show that Z -5 (x:A)[M /x]. This follows
from the assumption I" -5, M:A with the E = E"\k(I",A} side-condition needed to remove

the excess occurrences in I' which type A ;

(MAE) A x:A,A' g MN : C[N/y]because s M : Ay:B.C and ¥tz N:B, with [A,x:A, A", ®;).
There are two sub-cases 1o consider, depending on whether or not x is a shared variable, as

regulated by x.

1. For the non-sharing case, the proof proceeds according to which context the x:A is
sent to. So suppose x:A € @ (the case for x:A € ¥ is similar). By induction hypothesis
we get Y bz (M @ Ay:B.C)[M/x], where [Y;®0,D,[M/x|;TT and @ = Py, x:A, D).
Then we use (MAE) to construct Z -z (MN : (C[N/2]))[M/x], with [E;Y;W]. We
have elided the details of substitation.

2. For the sharing case, x:A will be sent to both branches. That is, x:A € ® and x:A € .
The argument then proceeds as above, using the induction hypothesis on each branch.

O

We now consider some standard type-theoretic properties, concluding with strong normal-
ization and, hence, decidability.

The first part of the following lemma states that whenever we have a judgement of the general
form I' by U:V then the context [is valid. The usual way of stating this is to have the judgement
5 T context as the conclusion. But as the AA-calculus is weaker than intuitionistic type theories,
all we can state is that the constituent parts of the context I' are valid contexts and that they join
together to form the context I'. Contrast this result with Harper ef al.’s Lemma A.2.2. The second

part of the lernma states that only valid contexts are allowed to be constructed.

Lemma 15 (Subderivation property I)

L IfT Fx UV, then s Tg context,--- g I'y context, where the I'; contexts join together,

with respect to sharing, to form the context I.
2. If s T, x€A context, then A5 A: Type, with ACT.

Proof By induction on the structure of the proof of the premisses.

42 Chapter 2. The A-calculus and the RLF logical framework

1. We do some of the representative cases.
(Mc) T bz c:A because 51T context, with ¢lA € .
(MVar) I',x:A b5 x:A because T b5 A: Type. Then we use (TA) to get

5 () context T3 A: Type
s T, x:A context

which is the required judgement.

(MAAI) T ks Ax:A.M Ax: AB because I',x:A by M:B. By induction hypothesis, we get
that b5 Tp--- b5 I, x:A context- - - 5 T, context. The #* judgement could only have

been formed by an application of the (I'A) rule

b5 @ context ¥y A:Type

b5 I x:A context
with [I;®; %] and T; = T\x(®,¥). By induction hypothesis again, we have that
s Wo context- - - s ¥y, context, with the ¥; joining together to form the context
.
(MAE) Ets (MN)B[N/x] because T' s M Ax:.AB and A Fx N:A, with [E;T;A] and
= = E\k(T",A). By induction hypothesis twice we bave that by I'; context and 5

Aj context, with the I joining together to form I" and the A; joining together to form

A
2. There are only the two context-formation rules to consider.

(TA) b3z E,xA context because b5 I' context and A b5, A:Type, with {Z;I% A]. The second

of these premisses provides us with the required judgement.

(I'A!) Similar to {F'A) case above. F3 B, x!A context because Fy I" context and A b3
A:Type, with {Z;T;A]. The second of these premisses provides us with the required

judgement. O

The following lemma says that every inhabited term is either a kind or a type. It makes

explicit use of the Cut(!) rules for the inductive cases.

Lemma 16 (Subderivation property I¥)

I IfTks AK, then Ay K Kind.

2.3. The AMA-calculus 43

2. IfTry M:A, then Ay AtType.
where ACT.

Proof By induction on the structure on the proof of the premisses. We do some representative

cases for the M:A-part of the lemma.

(Mc) 'T" g c:A because Fx!T" context and ¢!A € X. We unfold the context-forming derivation
which has kI context as its root until we amrive at the judgement - Z sig, with £ =
3y, cla, Xy sig, for some n. Again, we unfold this signature-forming derivation, until we

arrive at
FZysig by, AiType
i 2g,cl4 sig
[(ZK1), (2A)
b Zg,clAZ, sig

which is the required resuit.
(MVar) Immediate: I',x:A because I' -5 A: Type.

(MAAI) Ty Ax:A.M : Ax:A B because I, x:A Fx M:B, with I C T'. By induction hypothesis

we have that IV, x:A -5, B: Type. Then we use (AAT) to construct

I, x:A g B:Type
I"ts Ax:A.B : Type

(MAE) Etrs MN:BIN/x)because I'+-x M Ax:. ABand Al N:A, with [E'; 1A} and E=E"\x(I",A).

By induction hypothesis we have that
[M+5 Ax:A.B : Type
with IV C T, By inversion, we obtain
I”,xA g B: Type

as its premiss. Then we use the cut rule to construct

Als N:A TV, x:Abs B:Type
& 5 B[N /x]:Type

with [E";A; 1] and &' = E"\k(A,I")}. It should be clear that B’ C Z. 0

44 Chapter 2. The AA-calculus and the RLF logical framework

A natural algorithm for type-checking proceeds by calculating a type for a term, and then
comparing this type to the assigned type. This approach relies on the Unicity of Types and Kinds

propexty of the type system. The following lemma is useful in proving that Unicity.
Lemma 17 (Unicity of Domains) IfAxcA.U = AxeB.V, thenA=BandU =V,

Proof By the confluence of —*, there exists an £ such that Ax€A .U —* E and AxeB.V —* E.
This is only possible if E is of the form Ax¢C.W and A =+* C,B—="C, U —*Wand V =-* W ,

which implies the claim. 3

In {Bar92}, Unicity of Types is proved by relying on the PTS to be single-sorted or functional.
The AA-calculus is single-sorted: we only have Type:Kind. But the following argument for

Unicity relies more on the characteristic properties of the reduction relation —.
Lemma 18 (Unicity of Types and Kinds, UT) [fT s UV and T g UV, then V = V',

Proof By induction on the structure of the proof of the premisses. We do some representative

cases for the M:A-fragment.

(Mc) Suppose IT 3 ¢:A and T 3 ¢:A’ becanse 3! context, ¢!A € X and c!A’ € Z. As there

can only be one constant ¢ in X, A = A’, and so A = A,

(MVar} Suppose I',x:A bx x:A and T',x:A by x:A’ because I' by A:Type. It is immediate that

A=A andsoA=A".

(MAAI} Suppose I'ty Ax:A.M Ax: AB and T g Ax:A .M Ax: AB' because I',x:A -y M:B and
I'x:A -5 M:B' respectively. By induction hypothesis we get that B = B'. The rule (— AA),

applied as many times as necessary, then gives us the required result.

(MAE) Suppose E by MN:BIN /x] and E b5 MN:B'[N'/x'] because I' s M Ax: AB, As N:A
Mg M Ax': A’'B' and A5 N:A’, where E is the k-sensitive join of I" and A. By induction
hypothesis twice, we get that A = A’ and Ax:A.B= Ax:A".B. By Unicity of Domains we
get that A = A’ (which we knew already) and B = B'. Using Lemma 10 then gives us the

required result.

(M&I} Suppose I'ts (M,NY:A&B and T -5 (M,N):A’&B' because T' s M:A, T s N:B, T s
M:A" and T' b5 N:B’. By induction hypothesis twice, we get that A = A’ and B = B'. The

rule (— A&), used as many times as necessary, then gives us the required resuit. O

2.3, The AM\-calculus 45

Unicity of types and kinds, together with the CR property, allow a derivation of
Lemma 19 (Extended Unicity of Domains, EUD) IfAx€A .U inhabits AxeB.V, then A = B.
Proof CR determines, up to definitional equality, the term Ax€A.U. UT does the same for the

type AxeB.V. This is sufficient to allow us to infer the result. i

Qur definition (1) of linear occurrence is motivated by the desire for the type theory to have
the subject reduction property. However, it is important that no linear variables are lost during
reduction. We pause to consider this problem before proceeding to show the property. Consider

the following instance of application:

FrgAxdy:A—oB zAbgzA @.1)

TzAbls (AxAy)z: B

We suppose that the type of the function is A —o B. After a -reduction, we have I',z:A b5 y:B,
which leaves the z2A hanging. Now, we supposed that I't-g Ax:A.y : A — B be provable. By
inversion, we maust then have I',x:A -3 y:B provable. By our definition of linear occurrence, this

can be so for one (or both) of the following reasons:

1. x € FV{y), which is not true in this case (but, in general, in simple types we may have a

sufficiently complex M for all to be well);

2. x € FV(B), so the x is consumed by the B. That is, the type of the function Ax:A .y is not
A —o B but rather Ax:A.B(x}). So, in (2.1), the conclusion of the application is of the form

I, z2A by (Ax:A .y)z : Blz/x] and hence we still have a linear occurrence of z.

So it follows that a situation as simple as (2.1), with the loss of an occurrence of a variable from
the succedent, cannot arise in the type theory.
The subject reduction property is proved for —, the one-step reduction relation in the basic

type theory. It can be checked that —* and —7 define the same relation.

Lemma 20 (Subject Reduction) If Ttz U:V and U = U/, then T s UV,

Proof By simultaneous induction on the structure of the proof of the premisses. The two main
cases are when the last step of the typing derivation is either rule (MAE) or (MA!E); and the

last reduction step is rule {— MP). We consider the first of these cases. So, suppose

Els (Ax:AM)N: B and (Ax:A.M)N -1 M[N/x]

46- Chapter 2. The AA-calculus and the RLF logical framework

and the first of these arises because

IF'resAxAM: AxC.D and Al N:C

with [E;T3A], E = E'\k(I",A) and B = DIN /x].
By Lemma 13, we have that I',x:A 5 M:D. By Lemma 19 we have that A = C and by the
{M =) rule we have that A b5, N:A. Then we use the Cut rule to construct
TycAbs M:D AbpNA (BN TA] B EN\k(T,A)
BEly (M:D)[N/x]

The conclusion is M[N /x]:D{N /x]. a

The type theory extended with 1: T, the unit of &, does not have the stated subject reduction
property. The reason is illustrated by the following derivation, in which we assume that A!Type &

h

3 I, A context

PxAbs 1T

PheAxAl:Amae T z:AF:;.;z:A

TzAbs (AxvA)z: T

After a B-reduction we have I', zzA b5 1:T, and the z is left hanging. However, we conjecture that
such an extended type theory will have a weaker form of subject reduction, in which I CT". The
conjecture arises from a consideration of cut-elimination in linear type theory in the presence of
1:T. The point is that §-reduction in an example such as the one above effects not only terms but
also proofs and so should therefore properly be considered an inference rule of the type theory.

All reduction sequences in the type theory terminate:

1. IfT bz K Kind, then K is strongly normalizing;

2. IfTU s UV, then U is strongly normalizing.

The proof idea, again, a variation on an argument by Harper ef al. [HHP93), is to define
a faithful “dependency- and linearity-less” translation 1 of kinds and type families to S, the set

of simple types constructed by x and —» over a given base type ®, and |.|, of type families and

2.3, The AA-calculus 47

objects to A(K), the set of untyped A-terms over a set of constants K = {ns|o € §}. Let - denote

type assignment following Curry (with products) together with the infinite set of rules for K
F g0 = (0 5 0) = @

foreach o ¢ .
Definition 22 (Translation to simple types)

T:K =8

T(Type) =

t(Ax€d K) = 7{A) = T(K)

T:A—S

t{a) = a

T(AxEA .B) = T{A) > t{B)

T(Ax€A.B) = 1(B)

t(AM) = 1(4)

t{A&B) = 1(A) xt(B)

[.]: 4 = A(K)

|al = a

AxeA Bl = mulAl(elB)

IAxcA .B| = (AvAx.|B|)|A] yé€FV(B)
|AM] = |AlM]

|A&B] = |A]x |8

||+ M = A(K)

le] = c

|x| = x

|AxeA M| = (AyAx M)Al yEFV(M)
|MN| = MiIN|

(M, N))| = (IM|,IN])

M| = miM} i€ {0,1}

The translation embeds the AA-calculus into such Curry-typable terms of the untyped A-
calculus in a structure preserving way. The dependency aspect is lost by, for instance, forgetting
about the variable x in the term Ax:A.B. The linear aspect is lost by translating linear and

intuitionistic variables in exactly the same manner.

48 Chapter 2. The AA-calculus and the RLF logical framework

We refer also to Troelstra and Schwichtenberg for the technique of strong normalization by
translation [TS96]. We will use this technique again when we remark on extending Church-
Rosser to n-conversion, in Section 2.3.6 later.

We note some minor technicalities to do with the translation. The transiation of T -5 U/:V
is given by 7(2),7(T) F* [U|:1(V). The translation of the signature and context is the obvious
one: T({)) = {); ©(I',x€4) = ("), x:1(A) and 7(Z,c!A) = t(Z),c:t(A). The binding strategy is
utilized to give occurrences unique names.

The next two lemmata show that the translation is sufficiently faithful. We will abuse notation
somewhat and take the symbols such =, —, [M /x], efc. to mean similar relations in the simply-

typed A-calculus.

Lemma 23
1 fA=A' then 1{A) = T(4").

2. IfK =K', thent(K) = 1(K').

Proof By induction on the structure of the proofs that if A — A', then 1(A) = t(A’} and that
if K — K’ then, 1(K) = t(K"). The lemma follows from the fact that = is defined to be the

symmetric and transitive closure of —. We do some representative cases.
(— refl) If a — a, then t{a) = 1(a’) immediately.

{— AA) Ax€A.B— Ax¢A’.B because A — A’ and B — B'. By induction hypothesis twice we
have t{A) = 1(A’) and ©(B) = t(B'). Then

T(Ax¢A.B) = t(A)—T(B) =
= t{A") > 1(B) IHx2
t{Ax€d'.B') =t

Il

{(— AL} Ax€A.B — Ax€A’.B because A — A’ and B — B'. By induction hypothesis twice we
have t(A) = 1(A") and T(B) = t(B'). Then

T(Ax€A.B) = 1(B) T
= 1(B) IH
= t(Ax€A’ B} 7

2.3. The AA-calculus 49

{(— Aapp) AM — A'M' because A ~+ A’ and M — M’'. By induction hypothesis twice we have
T(A) = t(A’) and 1(M) = 1(M"}. Then

T(AM) = 1{4) T
= t(A) IH
= TA'M) 1

(— AB) (Ax€A.B)N — B'[N'/x] because B — B’ and N — N'. By induction hypothesis twice
we have ©(B) = t(B') and ©(N) = t(N'). Then

T{(Ax€A .B)N} = <(Ax€A.B) T
= T(B) T
= 1(B') IH

= t((Axed’ . B)) 1
= 1({AxcA’ B)N') 1
= 1{B'[N'/x]) —
(— A&) A&B -+ A'&B' because A —» A’ and B —+ B'. By induction hypothesis twice we have
T{A) = t{A’) and T(B) = =(B'). Then
T(A&B) = 1t{A)xt{B) =
= t(A)yxT(B) IHx2
= 1(A'&B') T

Lemma 24
1. |MIN/x]| = |M|[IN]/x].
2. |BIN /)| = |BI[INT/x]-
Proof By induction on the structure of M and B respectively. We do some representative cases.
M=AvA.M
|[(Ay:A MY[IN/x)| = [Ay:A[N/x] .M[N/x]| subs
= (AzMyM[N/ADIAIN/AL]
= (A2 [M|[IN|/=)|AHINI /]
= (Aehy | M[IN|/AIAIN|/2] subs
= ((AzAy|MDIADIN/x] subs
= |Ay:A.MI[|N|/x] |-

P

Hx2

50 Chapter 2. The AM-calculus and the RLF logical framework

M = PQ
(PQIIN/Al = |PIN/AIQIN/A)| subs
= |PIv/lllo/A L
= |P|[IN|/IQINI/2 IH x2
= (IPlI@DIIN]/x] subs
= |POI|[IN|/x] T
M = (P,0)

[((PO)N/x]| = WP[N/x],Q[N/x])| subs
= (PIv/ALIQIv/AD 1
= {PllINl/#,1QllIN/=]) 1H X2
= {|P|,|CD{IN|/x] subs
= [PNINI/A I

The next lemma shows the consistency of the translation.
Lemma 23
1. IfT 5 AK, then 1(Z),t(T) F* AT (K).
2. If Tk MCA then, ©(2),7(T) F* |M|:t(A).

Proof By induction on the structure of the proof of the premisses. We illustrate the argument

with a few representative cases.

(Me) IT" b3 c:A because -3 !T" context, with ¢!A € 2. Trivial, as T(A) is always a well-formed
type.
(MAAI) TEgAx:A.M : Ax:A .Bbecause I', x:A l-x M:B. By induction hypothesis we have that
©(Z), (D), xt(A) H | M] : T(B)

Therefore

(), o) H* Ax.|M] : T(4) = T(B)

and

(), 1) F* (udx | M)|A| : T(A) - ©(B)

which is ©(Z),t(I") *]Ax:A.M| : t(Ax:A.B).

2.3. The AA\-calculus 51
(MAE) Ets MN : B[N/x] because T kg M : Ax:A.K and Az N:A, with [E;T;A] and E =
EN\x(T,A). By induction hypothesis.twice we have
(), 1(0) +* M) : 1(4) = (B)

and
(), 7(A) H N 1 7(4)

Then we construct

(), (1) M| : T{A) = o{B) o(Z),T(A) H* [N] : 2(A)
©(E),7(T),t{A) F* |M] - t(A) = ©(B) jc (E), oA, (D) F V) : t(A)
(), T(E) > M| : ©(A) -+ o(B) ’ o(E),t(E) p-h IN] - 2(4) APP
1(£),2(8) H* (|M(IN]) : (B)

where the double line indicates a series of applications of the indicated rule. The weaken-
ings (W) introduce t(A) and T(I'} into the left and right proofs respectively. The exchanges
(X) and contractions (C) are used to eliminate duplicate (intuitionistic, in the original type
theory) variables. These are necessary so as to get the premisses of the —-elimination rule
into additive form. The conclusion of the proof tree is T(Z),T(E) F* [MN| : ©(B[N/x]),
as required. - And T(B) = ©(B[N/x]) as there is no type dependency in the simply-typed

A-calculus.

{(M&I} I'ts (M,N) : A&B because I' g M:A and I 3 N:B. By induction hypothesis twice we
have

(), (D) +* M| = 1(4)

and

(), %) H* [N} : «(B)
The rule for x-introduction then gives us that t(),I" F* (|M[,IN|) : T(4) x ©(B), which

is ©(Z),1(), (1) +* [(M,N)] : ©(A&B). 0

The extra combinatorial complexity of AA-calculus terms owing to the possibility of reduc-

tions within type labels is not lost by the translation.
Lemma 26
1. IfA =1 A, then IA| =7 |A'].

2. IfM =y M, then |M| =] M),

52 Chapter 2. The A\-calculus and the RLF logical framework

where —7 is the transitive closure of —1 for the untyped A-calculus.

Proof By induction on the proof of A —+; A’ and M ~»; M'. The only non-trivial cases arise
when the last rule applied is one of the B-rules, or one of the A-rules. In the first case we have,

for example,

|(Ax:AMN| = (Rx |MDINT = IM|[IN]/x]

which is |M[N/x]|, by Lemma 24. In the second case, Lemma 23 suffices for the result. O

We can now give the proof of strong normalization. Suppose there was an infinite reduction
in the AA-calculus. Then this would be translated into a reduction in the simply-typed A-calculus.
As the translation is faithful, the reduction in the simply-typed A-calculus would be infinite too.
But fhis cannot be so, as the simply-typed A-calculus with pairing is known to be strongly nor-
malizing [Gan80]. So there cannot be an infinite reduction in the AA-calculus.

Predicativity arises as a corollary of Theorem 21. Finally, we have:
Theorem 27 (Decidability) All assertions of the AA-calculus are decidable.

Proof The argument is the same as for the All-calculus. We observe that, firstly, the complexity
of the proof of a judgement is determined by proofs of strictly smaller measure; and, secondly,
the form of a judgement completely determines its proof. The main method underlying this
argument involves replacing the conversion rules with a (better behaved) normal-order reduction

strategy. i

2.3.6 A remark on 1-conversion

We remark that we can extend the definitional equality of the AA-calculus with n-conversion and
show that decidability still holds for the resulting type theory. |

Recall that decidability relies on Strong Normalization and Church~Rossér. The previous
proof of Strong Normalization is modular, so can be retained. Church-Rosser, however, only
holds for well-typed terms. In the All-calculus case, establishing Church-Rosser involves a com-
plicated argument assuming strengthening in order to prove a substantial amouat of the metathe-
ory before Church-Rosser for typed terms can be shown [HHP93, Sal90]. In our case, we can ex-

ploit the AIT-calculus result to show Church-Rosser for the AA-calculus. The technique, inspired

2.3. The M-calculus 53

by the method to prove Strong Normalization, is to define a faithful and consistent translation of
the AA-calculus into the All-calculus and then reflect confluency for reduction in the All-calculus
back to reduction in the AA-calculus. {A minor technical issue in this translation is the translation
of the & additive conjunction, which is not a All-calculus connective. However, & can be added
to the All-calculus in the obvious way without effecting any of its meta-theoretic properties. We
shall call the resulting system the All&-calculus.)

Using the translation and its properties, we are able to show Church-Rosser for n-conversion.
The argument is as follows. Suppose, for a contradiction, that we had a non-confluent term in
the AA-calculus. We use the translation to take this term over to the All&-calculus. Now as the
transizltion is sound, we must have a non-confluent All&-calculus term. But this cannot be, as
reducﬁion in the AIl&-calculus is known to be confluent [Coq91, Sal90]. We conclude that there
can be no such term in the AA-calculus.

It may also be possible to give a more direct proof of the decidability of the AA-calculus
extended with n-conversion. This can be done following Salvesen’s {Sal90] implementation. of
Harper el al.’s [HHP93] proof idea, as strengthening trivially holds for the linear parts of the
context. However, the argument is complicated and relies on the equivalence between several
different type theories of van Daalen [vD80]. The translation argument above is more than ade-

quate for our purposes.

2.377 Related systems

In this section, we briefly compare the AA-calculus to the appropriate fragments of other linear
type theories. Abramsky’s [Abr93] and Benton’s [Ben94] linear type theories are in propositions-
as-types correspondence with a propositional ILL. Our concern is with a predicate ILL. Consider
a linear version of the Barendregt cube, displayed in so-called standard orientation. Then Abram-
sky’s and Benton’s type theories correspond to the A— and A2 nodes; our type theory corresponds
to the AP node.

Another difference between Abramsky’s and Benton’s studies and ours is one of motiva-
tion; we study the AA-calculus as the language of a logical framework. A comparison with
Cervesato and Pfenning’s work [CP96] is, perhaps, more appropriate in this case. Their work
claims to be inspired by our study’s origins [Pym92]. We remark that the description of the LLF
framework lacks an account of a notion of representation and that the A1—°%T type theory is 2

fragment of the AA-calculus lacking, inter alia, linear dependent function types. To be precise,

54 Chapter 2. The A\-calculus and the RLF logical framework

the {I1,~o,&}-fragment of A''4T can be recovered by restricting type-formation to be intu-
itionistic, with the consequence that the use of ¥ is vacuous. We have noted this restricted type -
theory in Section 2.3.3.

The key point to make in these comparisons is as follows. It is the construction of the lin-
ear dependent function space that necessitates an investigation into various structural properties.
These are then explicated by the technical device of muitiple occurrences. If our concern were
non-dependent (—e, —) or intuitionistic dependent (1) function spaces, then we could do without

such analyses.

2.4 Conservativity

In this section we show that RLF is a conservative extension of LLF. We will need the following
translation between the Al1- and AA-calculi. This is reminiscent of the translation of IL into ILL

which maps ¢ — y to !¢ — y [Gir87}.

Definition 28 ("—":AIT — AA) We first define a translation for signatures and contexts. The
clauses capture the intuitionistic—linear distinction between the two languages; the image is
always of an intuitionistic type.

7 =) FEe:U7 = TEV el
T,xA"7 = T xlA

For the succedent of the typing judgement, " =" is defined by induction on the structure of the

conclusion. We give only the cases for typed objects, M:A; the other cases are similar.

Fe:dl = A TAxA.M : 1xABY AxIATMT AxIATRT
TxA7 = xA TN :BY = TMTNY:TRB?

The abstraction clause deals with the fact that the binding x:A is a negative occurrence of a

variable.

Now, our argument must capture the property of conservative extension not only at the level
of the type theory but also at the level of a framework.> That is, we need to consider, for an

arbitrary object-logic L, a translation from its definition in LF, via an encoding E and signature

SConservativity at the level of the type theory is an immediate consequence of Definition 28,

2.5. Example encodings 55

¥, to its definition in RLF, via an encoding ‘&' and signature X}, where both £ and £’ are

standard judgements-as-types encodings.

Lemma 29 (Conservativity) Let L be an object-logic. Let E be a uniform encoding of L in LF.

For every provable L-consequence (X)At-; ¢, if
E(X), E(A) HY M E(9) (2.2)
then there is a uniform encoding E'
fmmfmwgwﬁwy

Proof We define ‘E' as follows:

E(X) = TEX) £(A)
M) = TEM) £(¢)

FE(A)T
FE@G)

where M and M’ are proof-realizers for the proposition ¢ in assumption (X)A. We can see

immediately that the diagram

Fr,
. . EI
E -
"
AT AA
}MEL T FE}_

commutes. We now have to show that £’ is a uniform encoding. The proof is by induction
on the structure of (2.2). An interesting case is weakening. So suppose, I',A f—f{? M-A because
' HI! M:A. Translating the latter consequence into the AA-calculus gives us IT i—%{: M":A. This
can be weakened to get (I, A) %gﬁ M':A. From the definition of "7, this is the image of
T,A IMJZL? M:A. Now, by assumption, £ is a uniform encoding, so [',A %—72”? M:A is an image of

some object-consequence. O

2.5 Example encodings

In this section, we illustrate several encodings in RLF. The intention is to bring out the essential
characteristics of the AA-calculus language — the weak structural properties, linear dependent

function space and variable sharing — which allow these encodings to be undertaken uniformly

56 Chapter 2. The AA-caleulus and the RLF logical framework

via the judgements-as-types mechanism. The object-logic syntax and inference rules are not con-
sidered to be consumable resources and are encoded as (intuitionistic) constants in the signature.

We state representation theorems for each of the three encodings we undertake. In order to
do this, we need a notion of canonical (essentially, long Pri-normal) form. The definitions and
lemmata needed for the characterization of canonical forms in the AA-calculus are similar to that
for the All-calculus; we omit them from this presentation. In the following, we will often say that
a function is a “compositional bijection”; this simply means that it is a bijection and commutes

with substitution.

251 ILL

Our first encoding is that of the {®, & }-fragment of propositional intuitionistic linear logic (ILL).
We will work through the ILL object-logic in slightly more detail than the others. In this encod-
ing, we work with a restricted type theory in which type formation is entirely intuitionistic; we
have discussed such a type theory in Section 2.3.3 previously. Such a restriction picks out the
systém of Cervesato and Pfenning [CP96] from amongst the others.

The natural deduction style rules for this logic are given in Table 2.5 below and are taken
from Troelstra [Tro92]. The lower-case Greek letters ¢,y range over propositions of the ILL

object-logic. For the rest of this sub-section, i € {0,1}.

I A r Al
¢ v QY X
— (TENSOR-I) s (TENSOR-E)
bW %
rr r
o v o0&
— (WITH-I) ——— (WITH-E;)
Gy &;

Table 2.5: A fragment of ILL

The signature Xy begins with the declarations 1! Type and o!Type to represent the syntactic
categories of individuals and propositions of ILL. Next, each of the two formula-constructors are

declared as constants in the signature Xy :

RO i O e O &lo —o o —o0 0 -

2.5. Example encodings 57

Terms (formulae) are encoded by a function Ey which maps terms (formulae) with free variables

in X to terms of type 1 (0) in Epp, Tx:

x(p@W) = ® Ex(9) Ex{v) Ex(d&y) = & Ex(¢) Ex(y) -

There is one basic judgement, the judgement that the formula ¢ has a proof, -y, ¢ proof.
This is represented by declaring the constant prooflo —o Type in the signature. A proof of a
formula ¢ is represented by a term of type proof{E(d)).

The multiplicative operator ——o is used to represent the inference in the object-logic. It is
also used — as a curried version of a meta-logical multiplicative conjunction — to combine the rep-
resentation of the premisses of the ® rules, which are represented by the following declarations
in the signature Xy r:

TENSOR-I ! A¢,wlo.proof(¢) —o proof(w) ——o proof(®($,y})

TENSORE ! A®,Y,7lo.proof(®(¢,w)) —o
(proof(¢) ——o proof(w) ——o proof(x)) —o proof{(x) .

We need the distinguished additive operator & to represent the additive rules. An alternative
might be to use an additive function space but such an investigation is beyond the scope of our

current study. Recall, i € {0,1} in this sub-section.

WITHI ! A, ylo.proof(4) & proof(y) ——o proof(&(¢,v))
WITH-E; ! Ado,¢1l0. proof(&(de,01)) —o proof(¢:)

Valid proofs of ILL are labelled trees with the constraint that assumption packets contain
exactly one proposition and all such packets are uniquely labelled [Bie94]. A valid proof IT
of ¢, with respect to a proof context (X)A,® is denoted by the assertion (X)A I IT:¢, where
X is a finite set of variables of first-order logic, A is the list of uniquely labelled assumptions
{E1:01,. .., Enia}, and FV (dom(A)) C X. We remark that the treatment of the ILL quantifiers in
RLF is essentially the same as that in LE. The rules for proving assertions of the form (X)A - 11:¢
are given in Table 2.6 below.

The encoding function Exa can be defined to encode proofs of ILL. The two @ cases, for

instance, are as follows:

6As usual, linearity is at the level of propositions-as-types; the set of variables X is implicitly !-ed.

58 Chapter 2. The AA-calculus and the RLF logical framework

{(X)&:0 - HYPy(8):0

(XJAFTTe (XA =TTy (XAariteey (XA EdEwH Ty
(XA, 4 TENSOR-Iy o (TL T)0 @y (X)A, A+ TENSOR-Eg o (FLE, BT,
(XATEG (XAF Ty (XA ITga&d
{X) = WITH-Tg,y (FLIT 80y (XA E WITH-E; 45,0, (T

Table 2.6: Some valid proof expressions of ILL

Ex)a,n (TENSOR-Lg, (TL,TT)) TENSOR-1 Ex(0) Ex (W) Epxyalll)
Eoxya (IT)

TENSOR-E Ex(0) Ex(¥) Ex(X)
Ex)alT)

AE:proof(Ex(9)).

L& proof(Ex(w)) - Epyar (1)

Epxya,n (TENSOR-By o {T1,E, EIT'))

A proof context (X)A, with X = {x1,...,%,} and A = {&;:91,...,&,:, }, is mapped to Ty 4 =
21, X G812 proo f{E($y)), -, En:proof (E(n))-
The encoding basically illustrates the propositions-as-types correspondence for a {®,&}-

fragment of ILL. So we can expect a strong representation theorem.

Theorem 30 (Representation for YLL) The encoding functions are compositional bijections.

That is, for every ILL-formula $:
L X Fun ¢ fandonly if Tx b Ex(d):n;
2. (X)Aby, 110 if and only if Ty a by, Mizproof(Zx (%)),
where 11 is an ILL proof-object and My is a canonical object of the AA-calculus.

Proof The encoding functions Ex and x4 are clearly injective. Surjectivity is established by

2.5. Example encodings 59

defining decoding functions Dy and Dx)s which are left-inverse to Ty and Eqa

Dx(®@ My Mz} = Dx(M1) ® Dx(Ms)

Dy(& My M) = Dx(My) & Dx(M>)
TENSOR-! My My
Dixyan = TENSOR-Iq), (b)), Dy (42) 1T, TT2)

PP

TENSOR-E M M2

M P TENSOR-E

Deyaal 3 h _ Dixja (1), D08 (M2), Dy (M3)
AE:proof(My). (113, &,&"112)

A& proof(Ma) .Ps
where [} = D(X}A(Pl)
and Hz = D(X)Ar{Pz)

That the decoding functions are total and well-defined follows from the definition of canonical
forms and the signature. By induction on formulae and proof expressions, respectively, we get
Dx(Ex (9)) = ¢ and Dyyya(FEx)a(IT)) = IL. Again, by a similar induction, we get that the en-

coding commutes with substitution. O

The encoding can be extended to deal witha {T,®,®, ~o, 1 }-fragment of propositional ILL.
The representation of the ILL units forces the design of the type theory. A meta-logical T is
required to directly represent the object-logic T; for otherwise linearity constraints in the type
theory would mean that an encoding of I' -, T would not be a valid AA-calculus judgement.

The case for L. would be similar.

2.5.2 ML with references

Our second encoding is that of the programming language ML extended with references (MLR),
a reworking of an example in Cervesato and Pfenning [Cer96, CP96]. In our reworking, we
exploit the use of the A which is not available to Cervesato and Pfenning. Consequently, we are
in the full AA-calculus type theory, in which K’s action is non-trivial.

The basic MLR logic judgement is of the form St Kk, » { — a which means: the program
i is evaluated with the store S and continuation K and leaves an answer {(a store-expression
pair) a. The signature Xy x begins with the declarations store!Type, cont! Type, instriType and

ans! Type to represent the syntactic categories of store, continuations, expressions and answers.

60 Chapter 2. The M\-calculus and the RLF logical framework

Evaluation is represented by the following declaration:

evicont —0 instyr —o answer —o Type.

We are really only interested in the rule for evaluating re-assignment. This can be stated as

follows:

S.,C= V’,Sr 4 K}_MLR * 3 A

S,c=v8 o Kryprefci=v — A

where o is the MLR unit expression.
The ML memory is modelled by a set of (cell,expression)-pairs. Each such pair is repre-
sented by a linear hypothesis of type contains which holds a Ivalue (the cell) and its rvalue (the

expression).

cell 1 Type exp!Type contains!cell —o exp —o Type

The rule for re-assignment evaluation is encoded as follows:

EV-REASS | Aclcell . Av,vlexp.
({contains ¢ v} ~——o (ev K ® A)) w0

(Aviexp. (contains ¢ v)) —o (ev K (c:=V') A)

where the assignment instruction ¢ := v is shown in the usunal (infix) form for reasons of read-
ability. The rule can also be encoded in such a fashion that the linear property of the memory
is formalized via the A quantifier. We will illustrate this idea soon. For now, based on our

re-working of the MLR example, we can state the following by referring to {CP96].

Theorem 31 (Representation for MLR) The encoding functions are compositional bijections.
That is, for all stores S of shape (c1,v1),...,{Cn,Vn), continuations K, instructions i and answers
A (which are closed except for possible occurrences of free cells),

St Kby g tLli— a ifand only if

cileell,. .. cpleell, pr:(contains) E(vi)), .
e by, Mi(ev E(K) E() E(a),
<oy Dm:{contains ¢y Elvy)) L

where Il is a proof object of MLR and My is a canonical object of the A\-calculus. 0

2.5. Example encodings 61

One property that it is desirable to show for the MR logic is type preservation; in the context
of a store Q, if St Kty 5 1 — a, i is a valid instruction of type 7, K is a valid continuation of
type T — 7’ and S is a valid store, then a is a valid answer of type T. The main difference in our
reworking of this example is how the proof of type preservation for the EV-REASS rule, prEV-REASS,
is encoded.

pEV-REASS 1 Acleell . Av,Y'lexp. Ap:(containsc v).
{(Ap'(contains c V') . (prCell p' ¢ V) —o (ev K o A)) —0
{(prCell pcv) —o (prEvK (x:=V)A)

In the above type, prCell and prEv are the proofs of type preservation over cells and for evalua-
tions, respectively. We note that the types of p and p’ have no linear free variables in them. That
is, the type theory we have employed in the encoding does not involve the notion of sharing.

Now, the cells could have been quantified intuitionistically (as they are in {CP96]) instead
of linearly. In that case, a sub-proof of I’y mEV-REASS:U, where U is the above type of
prEV-REASS, would consist of an instance of Il-introduction. But this would allow us to admit
garbage: (cell,expression)-pairs which are occupying memory space but not being used. The lin-
ear quantification gives us a better representation of memory management. The above encoding
realizes the intuition that we are making general statements about linear variables, so the A and
not the I1 quantifier should be used.

The encoded version of MLR type preservation can be stated and shown as in [CP96]. We

omit the details.

2.5.3 A Ap-calculus

Our last example is that of the equational theory of a type theory similar to Church’s A;-calculus,
in which abstraction is only allowed if the abstracted variable is free in the body of the function.
We use the full expressiveness of the AA-calculus type theory, with the crucial notion of variable
sharing. This allows the A quantifier to capture the (traditional) notion of relevance. By contrast,
in the encoding of the A;-calculus in Avron et al. [AHMP92], the relevance constraint is enforced
by introducing extraneous language to axiomatize relevance in domain theory.

The signature X, begins with the declaration o!Type to represent the syntactic category of
terms. The next three constants represent the object-logic abstraction and application operations,

and the equality judgement:

62 Chapter 2. The AA-calculus and the RLF logical framework

Mo —o0)—o o0 app!o—oo—o'c').' =!p —o0 0 —o Type .

The axioms and rules of the equational theory of the relevant A-calculus are encoded as follows:

Ey ' Axo.x=x
Ei ! AxoAyo.x=y —o ym=x
Ey | Axo.Ayo.Azox=y —oy=z —0 x=¢

Ey ! Axo.Ax:w0.Ayo. Ayio.xmx —o ymy ——o

app(x,y) = app(x’,y’)
B ! Axio—oo0.Ayo.app(A(x),y) =xy

The first three constant declarations, Ep to E;, encode the reflexivity, symmetry and transitivity
properties of the object-logic judgement, =. The constant declaration E3 encodes the object-
logic rule of congruence with respect to application. Finaliy, the constant declaration B encodes
application.

Now, the definition of k¥ means that the Ax:o quantifies over all occurrences of x in its body.
Like the ILL example before, the encoding is illustrating a propositions-as-types correspon-
dence. This allows us to state a stronger representation theorem than that given in Avron et

al. [AHMP92].
Theorem 32 (Representation for Ay) The encoding functions ‘E are compositional bijections:
L Xty M ifand only if xyi0,... x40 IMEA, Ex(MY:0 for x; € FV{(M); and
2. (My=N),...,(M,=N,) by, IT:(M == N) if and only if
x{(E(Mr) = E(N), - o2 (E(Mn) = E(No)) by, Mic(E(M) = E(N))

where T1 is a proof object of Ay and Myy is a canonical object of the AA-calculus. O

2.6 Summary

In this chapter, we have studied a logical framework, RLF, for uniformly encoding natural de-
duction presentations of weak logics. We also studied the proof-theoretic meta-theory of the
langnage of RLF, the AA-calculus, in some detail. Further work along these lines includes under-

taking more object-logic encodings in RLF. We can also extend our study to the Barendregt-like

2.6. Summary 63

cube of such type theories [Bar92], and to the hyper-cube of intuitionistic and relevant A-cubes,

with “diagonal” edges determined by a translation of the form considered in Definition 28.

64

Chapter 3

The propositions-as-types correspondence

31 Introduction

There is a conceptual similarity between the AA-calculus type theory and the logic BI, particu-
larly in the way that the two function spaces are formed. In this chapter, we set up a propositions-
as-types correspondence between the type theory and a structural fragment of the logic. We
follow Barendregt’s [Bar92] treatment, where a propositions-as-types correspondence is set up
between predicate logic and the AP type theory.

This chapter is organized as follows. In Section 3.2, we give Pym and O’Hearn’s presentation
of the logic BI. Then, in Section 3.3, we motivate and state certain restrictions on BI. It is with
this fragment of the Jogic that the correspondence is set up; this is done in Section 3.4. In

Section 3.5, we discuss some other correspondences of relevant logics.

3.2 The logic BI

We give a presentation of Pym and O’Hearn’s logic BI of bunched implications [OP99]. The
AA-calculus is in propositions-as-types correspondence with a structural (we will say what this
means in the next section) fragment of BI. We present the original logic for several reasons.
Firstly, for reasons of completeness and interest. And, secondly, in order to clarify the exact
nature of the restriction with which the AA-calculus is in correspondence with.

BI restricts the structural rules of intuitionistic logic by decomposing implication into mul-

tiplicative and additive parts. The two implications, the linear one A — B and the intuitionistic

3.2. Thelogic BI 65

one A — B, arise from extra structure, called bunches following Read [Rea88], in the context. In
Girard’s linear logic, the structurals are restricted via the ! modality, so that only !-ed formulae

may be weakened or contracted. In contrast, in BI there are two context-formation operators,

45 ¥y

one of which, the *;”, admits the structural rules of weakening and contraction; the other, the ",

w7 TR

doesn’t. In this scheme, contexts are not lists but trees with nodes labelled either by a " ora *;

and the last leaf formation determines which kind of function space is formed:

Fobzzw oFszy
(o I) (= I} mmerm——
Fkyz¢—oW Fhezé—w

If the variable context is a bunch too, then we obtain two kinds of universal quantifiers:

(X,xC)T Frz¢ (X;xO)¥]—g’E; 6]

Vaew! A7
(e) (X)r FE,S Vnew x:C.0 ((X)I‘ tzz Va:C.9

We now give Pym and O’Hearn’s presentation of BI. Here, we restrict attention to the
{— ,— ,& ,Vyew , V}-subset of the connectives as these have been our primary concern in the
analysis of relevant natural deduction. BI itself has quite a full set of connectives, including
disjunctions and existential quantifiers.

The language of the logic BI is defined over a structure. The following definition is a slight

generalization of van Dalen’s [vD94] and of Barendregt’s [Bar92].

Definition 33 A structure is a tuple consisting of non-empty sets called sorts, relations, typed

functions and constants.

Barendregt works exclusively with the example structure 4 = (A, B, P, 0, f,g,c), where A and B
are sets, PCA,QCAXB, f:A =+ A— B, g:’A — Band c € A. We will work more generally, over
an arbitrary structure; it is easy to see how the language and logic can be made more particular
to deal with pre-defined relations and functions.

The language of the logic begins by giving names to each component of the structure. We will
omit this formality, confusing the sort, relation, function and constant symbols of the language
with the components of the structure. That is, we will say “there is a relation in the language” for
“there is a symbol in the language for a relation in the structure”, etc.

The logic is defined over a term signature 2 and a predicate signature E. These are essentially
the set of functions (including 0-ary functions or constants) and the set of relations, respectively,

which are components of the particular structure we are working with.

66 Chapter 3. The propositions-as-types correspondence

Let x, y, etc. range over a set of sorted variables. The set of BI terms, Term, is given by the

following inductive definition:

t = x variables

If we had predefined functions in the language, then the set Term would be extended by ... | f(2) | g(2,1'),
where 7 and ¢’ are terms of the appropriate sorts.
Let L denote a set of atomic propositional Jetters and let o, §, efc. range over L. The set of

BI formulae over L, Form, is given by the following inductive definition:

¢ u= o atoms

| ¢—wy multiplicative implication

| Vnewx:C.Q multiplicative quanti fication

| o&y additive con junction

| ¢—w additive implication

| VxC.$ additive quantification
As for terms, if we had relations in the language, then the set Form would be extended by
... | P(t) | O(s,t), where 5 and # are terms of the appropriate soris.

Bunches of variables, X, and of propositions, T, are given by the inductive definition:

X u= XA variable assumption
| 1 multiplicative unit
| 1 additive unit
| XY multiplicative combination

| X;Y additive combination

r «:= ¢ propositional assumption
| I multiplicative unit
| 1 additive unit
| T,A multiplicative combination

| INA additive combination

The main point regarding bunches is that *;”” behaves additively, and admits weakening and
contraction, whereas “)” behaves multiplicatively. Bunches are structured as trees, with nodes

labelied by *;” and *,” and leaves labelled with propositions. We write A(®) to refer to a subtree

3.2. Thelogic BI 67

@ in A and A([®'/®] for A with @ replaced by ®'. We write A(—) to denote a bunch with a
hole in it. We write A =2 A’ to denote the isomorphism under leaf re-labelling. We require that
(I 1,%") and (T, 1,*4") be commutative monoids. The isomorphism and commutative monoid

equations form the coherence equivalence A = A’ on bunches.

The main judgement of BI is (X)A sz ¢, which is read as “¢ is a proposition in the vari-
able context X and the propositional context A, with respect to the term signature X and to the
.:propositional signature E”.

There are two auxiliary judgements, which are used to establish the well-formedness of terms
and propositions. These two judgements are X s #:C, read as “f is a term of type C in the
variable context X with respect to the term signature %7, and X bz g ¢:Prop, read as “¢ is a
well-formed proposition in the variable context X with respect to the term signature 2 and to
the propositional signature 7. We will omit the rules for these judgements, they being largely
(though not exclusively; one must take care in combining contexts) apparent from the grammar
of terms and formulae.

We remark that in the Axiom rule, the symmetric relation Axiom(X,Y) records that X and
Y are the same. This form of the rule is necessary for the maintenance of bunched structure
in the variable context. The more familiar Axiom (X)¢ Fx= ¢, with the side-condition that

(X) bz= ¢:Prop, is immediately derivable via an application of Substitution (Cut on terms).

Definition 34 The judgement (X)A -5z ¢ is defined by the following rules:
Identity and structurals
(X)Fzz ¢:Prop (Y)Fsz ¢:Prop

Axiom Z=XYorZ=X;Y, Axiom(X,Y)
(Z)pFzzd

(X(xANTFzz¢ (Y)bgztA
(X) u/x DTl /][t /¥ Frz 0fe/x][e/x]

Substitution

Jor all x* such that Axiom(x,x’), where u denotes I or 1 (here we abuse notation and write just

Axiom(x,x’) rather than pick out x and x’ from arbitrary bunches).

(X)T(A)Y ez ¢ c (XN (A;A) sz 6
(X)(AsA) Frz ¢ (X)T(A) Fzz 0
(X)Abzz 0 (A=)

(X)A’ FE,E ¢

68 Chapter 3. The propositions-as-types correspondence

Multiplicatives
(XA by : X, Z)Tkssd—y (Z,Y)Ablzsd
o] (%) hd —oE() () X bz d:Prop
(XAFzzbd—y (X. YAz w
X, xC)AFzz (X)P bz Voo x:C.0 (¥) kg 1:C
new VDBWE
(X)A = Viewx:C .0 (X, YT Fxz oft/x]
Additives
(X)A;0Fsz W X)rgzd—=vw (YVAlgz ¢
o f i - E
X)Abksz oy (XD AFzz ¥
X)ksz¢ (X)Tkszvy X bzz o0&y
&I{) X)I'ks &E"L_Hmm(i=1’2)
(X)TFsz d&y (X)Fhzz o
(X:xOA Frz¢ v (X)TreeV¥xCd (Y)bgzrl
I E
(X)AtzzVxC.0 (X:¥)T kxz 0 /x]

The original introduction rule for & is given as

X)Thsz¢ (VAFszy
(XY)GAFs 2 o0&y

$6,0%

Bat as admits weakening and contractmn we take the simpler, more familiar rule in the
deﬁmtion The actual equivalence of the two systems is a delicate issue.

The version of BI that we have presented here is the linear one, in which “” admits nei-
ther weakening nor contraction. One can define an affine version of B, in which weakening is
permitted for *,”. Our concern is with the weakest, linear system.

A very interesting reading, a “sharing interpretation”, of the two kinds of function spaces
and quantifiers is given by O’Hearn and Pym [OP99, Pym98, O’H99b]. One of the domains
of interpretation is in Reynold’s Syntactic Control of Interference and Idealized Algol [Rey78,
Rey81], where ¢ —o v is the type of a procedure which does not share store with arguments and
& — W is the type of .a".prc.)(.:ec.i.ure which might. AItémativeiy, the context T, A can be seen as
partitioning the store into two separate components, while the context I'; A allows some shared
store. The other domain of interpretation is that of proof-search (the basis of logic prograroming)
in the clausal hereditary Harrop fragment of BI. Resolution for the program clause Vyew x.G — A
creates a local answer substitution for the atom A. In particular, the subsequent proof-search for

the goal G does not depend on this answer substitution. Compared with this, the (usual) Prolog-

style resolution for the program clause Vx.G — A creates global answer substitutions. Thus the

3.3. A fragment of the logic BI 69

two kinds of function spaces and quantifiers allow us to reason about sharing and interference in
imperative and logic programming languages.
The reader is referred to the papers of Pym and O"Hearn for a more complete discussion of

the iogic.

3.3 A fragment of the logic BI

The first point to note is that both the logic and the type theory are parameterized over a signature,
a set of constants of closed type. We can easily see how to translate in-between these signatures.

The main consideration in determining a correspondence between the AA-calculus and BI
is to relate their respective contexts. This is an obvious first step to undertake as much of the
structure of both the type theory and the logic arises from contexts. In the original presentation
of BI, contexts are trees with internal nodes labelled by either “” or “;”. In the type theory, on
the other hand, a context can be extended in two ways, by a x:A or a x!A. The basic idea for the

correspondence is to consider, in some informal sense, “;” as intuitionistic extension and " as

linear exiension:

AA-calculus BI
,xA TI,A
Ix1A A

The above is not quite the full story, as BI allows arbitrary context combination and not just
context extension. But the idea will be to see, in a context I', A, the A as some singular proposition
da. This “packing” of A as ¢, is the restriction of BI that is the internal logic of the AA-calculus
type theory, and it brings the internal logic closer to Linear Logic. The packing, together with
currying, allows us to show the correspondence of derivations and proofs. We will consider this
issue again when we discuss soundness.

There are two other points to consider. The first one is that due to the restricted nature of first
order logic, in which term variables are separated from propositional variables, multiple occur-
rences and the requirement for the x function are not logical issues. However, well-formedness
of types is still an issue, as a consideration of the —e E rule indicates:

(X, Z)Fgz¢—v (Z,Y)AFsz 0
o B Z
(X, 7A bW

Consider the simplest sifuation corresponding to the above proof in the type theory. Suppose

Frzd

i:A —o Type,y:B -- Type € Z. Then we can construct the following:

70 Chapter 3. The propositions-as-types correspondence

XA, vBrsx ((pxj — (wy):Type xAbFy (i)x:'i"ype
B9 = W) ez =) @) P)
xA,v:B,z : A, w 5w (MAZ)

xiA,yiB,z:(0%) — (yy),x:A, witx bz 2w (yy)

The presence of the proof realizers z and w means that the variables corresponding to X in the
logic are still needed. This exercise illustrates the difference between a predicate logic and its
corresponding dependent type theory, in that the well-formedness side-condition of the logic

judgement is already included in the proof of the type theoretic judgement.

The second point to consider is that the introduction rules for function spaces in the AA-
calculus correspond exactly to introduction rules for implication and universal quantification
formation in BE. However, for the additive or intuitionistic elimination rules, we must impose the
restriction that the context of the minor premiss be entirely extended with “;”s. We will use A
to denote such a context. Following along this line of argument, we also take two Substitution
rules, one for cutting a linear proposition and one for cutting an intuitionistic proposition.

/

In the sequel, we use the following notation to identify the type, whether linear or intuition-
istic, of a variable. We use I'(Z,9) to identify a linear leaf of a bunch and I'(1;¢) to identify
an intuitionistic leaf of a bunch. More formally, we should say that I' = (D e ¢), where o is

either *" or *;”. The former is a slightly better means of “pattern-matching” a linear leaf and is

equivalent, using the coherence isomorphism, to the more formal description.

We are now ready to present the restricted logic.

Definition 35 The formula judgement is defined by the following rules.
Identity and structurals
- Xhsz .¢:P.rop Y FXI,EI(I):PFOP

Axiom Z=XYorZ=X;Y, Axiom(X,¥)
Z)olFzz ¢

X{(LxA)) Fzz0 (VY bpzrA
MultSubstitution Axiom(x,x")
XY/ DUe /][t 2} ez ol /x)fe /]

AddSubstitution ALxA)lrzz0 (F)Fazca Axiom(x,x")
XKD/ A/ ¥z 0le /2 /¥]

3.3. A fragment of the logic BI 71

(K)AFr g - o (X)A(L:0:0) Fxz ¢
(X;x:A)A0Frz ¢ (X)A(L:0) Fzz ¢
XAbs=z 9
08228\ wy
(XA Fzz o
Multiplicatives
XA Obs= X, Z)kszd—y (Z,Y)Als=¢
Aoy KT @NAF2ES - oProp
(X)Abgz bW (X, X)L Aszy
Voo] (X,JCZC)A '_E,E q) (X)r §_E,E VnewJC:CA@ (Y) FE’E .C
" (X)A 3z Vaewx:C 9 e (X, Y)T 2.5 6/
Additives
o (X)hgz¢ X)Thzzy 4 (X k25 Gobetn (i=12)
j————————(i=1,
(XTI k= &y (X tzz
L X)Asobzz v . X)Tkzzo—y (IY)AFz=0
XA Fred—y (XN A sy
(X;x:C)AFszd vE X FesVxCod (W)l
(X)A 3z VrC.$ (X:17)0 g ot /x]

We formalize the concept of deduction in this fragment BI. This will allow us to show a
very precise correspondence between formulae and types, and between terms and proofs. Proof

expressions of the logic are given by the following grammar:

IT = Laxg(E) | taxg(E) | Livp1g y (E:TT} | LivP-Bg (1T, TY) |
1MP-1g,y (E:TT) | 1vp-Egy (TLTT') | wiTH-tg (FLIT') | wrre-Bg (11) |

LALL-tx ¢ (IT) | LALL-By g ¢ (TT) | 18LL-15 ¢ (IT) | IALL-Ey g, (TT)

In the above, & ranges over a countably infinite set of occurrence markers. The idea will be to
label each discharged occurrence uniquely with an occurrence marker.

Proof expressions are directly related both to Barendregt’s derivation combinators [Bar92]
and to O’Hearn—Pym’s proof-objects [OP99]. For instance, the 1aLL-L 4(y) proof expression
corresponds to Barendregt’s G combinator and to O’Hearn-Pym’s A-abstraction operator.

The judgement (X)A b5z IT:¢ is read as “I1 is a derivation of ¢ with respect to the context

(X)A”. The rules for valid proof expressions are given below.

72 Chapter 3. The propositions-as-types correspondence

Definition 36 BI derivations are defined as follows:
Identities and structurals
XbkxzbdProp Ylsg ¢:Prop

Multid Z=X,YorZ=X;Y , Axiom(X,Y)
(2)1,x:¢ b5z LAxg(x):9

XbFgz d:Prop Y bz d:Prop
Addld Z=X,Y or Z=X;Y , Axiom(X,Y)
(Z}1;x:0 bz IAxp(x):

(X(I,x:A))I“ ez @nd (Y) FeztiA

MultSubstitution A
X/ AN /=] /5] Pz (D)0t /4t /X]

xiom(x,x')

AddSubstitution X(LrANl e @ (1) Fasna Axiom(x,x')
XOD)[1/XNTLe /2] /%] g (@:9)e/Ale/]

(X)Arz=IL6 c (X)A(L;x:9sy:0) Fxz T
(X3x:A)A y:9 brz ¢ (X)A(L;x:¢) Fes (L) [x/y]
(X)Abtszild
p A=l
(XA Frz T
Multiplicatives
(OAx:¢ bsg Ty
()A Faz LMP-layy (TD:0 —
E (X,Z)P }"2,5 Ly —y (Z,¥)A |—§;,5 ﬂ’:@ Zhgs P
—0 8 ®IErop
X, YT, A b5 5 LIMP-Ey o (TLIT)2y
¥ ‘%”¢
v (X, x:CO)A s =119 (X)f' Frz ELViewx:C .0 (V) Fezt:C
XA Pz AL o (TT) Y aew x:C 0 (X, Y)T byg LALLEy p, (TD) 0]t /]
Additives
& (X)F "2,2 IL:6 (X)I‘ f“z,g I‘I’:w (X)I“ |“z15 T:dpdedy (. 2)
A - pwn i,
(X)A b3, WITH-Lo o (TT, TT) 080y (X)T br,z witt-gy 4 (TD):0;
(XA 0 bem Iy 5 (X)Thgzlo—y ()AFgzTT:0
,.......}
(X)A sz mMP-1yy(IT):6 — ¢ (X101 s 1iMP-Ey (TLIT)1y
{X;x:O)A e T v (X FeeIIVxCd (V) FgzeC
E
(X)AFgz IALL-L o (TT):Vx:C ¢ (X bsz IALL-Ex o, (TT):0t /x]

The above proof rules are subject to the same side-conditions as the previous stated logical rules.

3.4. The correspondence 73

3.4 The correspondence

In this section, we will set up the correspondenée between BI and the AA-calculus. The basic idea
is as follows: terms of the logic correspond to elements of the type theory; formulae of the logic
correspond to types of the type theory; and a deduction of a formula ¢ in the logic corresponds
to an element of the type corresponding to ¢ in the type theory. We will define two functions;
T, from the logic to the T'ype theory and £, from the type theory to the Logic. These functions
will, in fact, be inverses.

Before we give the translations, we need to say how components of the particular structure
we are working with are dealt with within the type theory. Barendregt’'s method is to define
a so-called canonical context corresponding to the particular structure. For instance, for A ==

(A,B,P,Q, f,g,¢), the canonical context is

g == A:Type, B:Type, P:A — Type, A - B — Type, 1A — (A = A),g:A = B,ciA.

But in both the logic and the type theory we distinguish between a signature and a context,
and place the declarations corresponding to the components of the structure as constants in the
signature. The translations between the logic signature X, 2 and the type theory signature ¥ are
easy to see.

We now define translations from terms, formulae and derivations of BX to elements, types
and terms of the AA-calculus, over a given context. This will enable us to show soundness.

We consider the translation of contexts first. This is quite a crucial matter, and it can’t be
done as loosely as Barendregt’s treatment for intuitionistic logic [Bar92]. The translation allows

us to see, in a certain way, the second sub-bunch as a series of propositional extensions.

Definition 37 Let A == 8;e...08, be a bunch. The function ‘I is defined by induction on the

structure of bunches as follows:

i

T(I) {

T(1) {
T(T,A) = T,xi:b1,...%4:0,
T(A) = INxglds,...x.18,

where the x; are new variables.

74 Chapter 3. The propositions-as-types correspondence

The translation of bunches forces us to consider a particular fragment of BI. This is the
fragment in which the bunch I', A is replaced by the bunch T, ¢§’, where (bf is A with both the “)”
and *;” substituted by ®. And, similarly, the bunch I'; A is replaced by the bunch [0%, where
c%)g‘ is A with both the “)” and *” substituted by &. Now the corresponding fragment of the type
theory we are working in doesn’t have ®. But if we abstract the tﬁf’ over and then curry the ®
away, all we need is o, This is the idea at work inside the proof of soundness.

We remark that a finer translation of contexts, which can be thought of as relying less on
dereliction, is possible, though we leave this to another occasion.

This context translation is used explicitly in the following.

Definition 38 The function ‘T is defined on terms, formulae and derivations of BI as follows.

1. Given a term 1, the context for t, denoted by Ty, and the translation of t, denoted by T (¢},

are inductively defined as follows:

t T, | 7T0)
cCi{() [aC
xCixCi{xC

If the language had functions in it, then we should extend the above transiation in the

obvious way;

2. Given a formula &, the context for §, denoted by Ty, and the translation of ¢, denoted by

T(9), are inductively defined as follows:

¢ Ty T(0)

¢—y | T(Ty), T(Ty) | T($) — T(v)
Vaewx:C.0 | T(Ty) — {x:C} | Ax:C.T(9)
P&y T (L) T($)&T (y)
Oy | T(Ie), T(Ty) | T() = T{(W)
VxC.0 | T(y) — {x'C} | AxIC.T(0)

If the language had relations in it, then, again, we should extend the above translation in
the obvious way. Note that in the case of the translation of ¢&\y, Iy =Ty, so that we could

have stated either;

3.4. The correspondence 75

3. Given a derivation (X)A sz 14, the context for T1, denoted by I'n, and the translation

of I1, denoted by T (I1), are inductively defined as follows:

1 I'n T

LaselE) THETE®) | ETO)

iy (©) TXET@) - | ET0)
ip iy (ET) | T(Tm) —{&T(@)} | AT (0).7(TD)
Limp-Eg (ILIT) | © T(IT) T (11
LALL-Ly 4 (I1) T(T'n) — {x:C} Ax:C.T(ID)
LALL-Eqx ¢, {TT) B T(IT) T (1)
witH-Igy (TLIT) | T(Tn) (T (1), T (I1')
wirs-Ey , (IT) T(I'm) (T (1))
g, (ETD) | T(Cw) — {EMT(0)} | AEVT().T(0D)
MP-Eg(TT,IT) | ® TN T(I1)
IALL-I 4 (TT) T (') — {xIC} AxIC.T(IT)
IALL-Ex 4 (TT) ¥ TN T

where [©,T(I'n); T(Iry)] (that is, © is the join of the translations of T'ny and T'ry),
B T(TR) T (T} (@7 (Tr): T ()] and [¥; T (), T ()

We can be more specific about the form of the context for some of the above cases.

Lemma 39 In the intuitionistic elimination, —E and VE, cases, the translation of the minor

premiss T (I'yy) is entirely intuitionistic.

Proof The form of the rules —E and VE dictates that the context of the minor premiss be entirely
formed with “;”. The translation of such a bunch is, by definition, an entirely intuitionistic one.

The effect of the structural rules is argued for on a similar basis. o

The next lemma says that the translation of terms and formulae is indeed sound. ie., that

terms do correspond to elements and formulae do correspond to types.

Lemma 40
L fXtst:C then Ty b5 T(¢):C.

2. If (X)A gz ¢:Prop, then Ty -5 T (9): Type.

76 Chapter 3. The propositions-as-types correspondence

Proof : By induction on the structure of 7 and ¢ respectively.

1. Both the constant and variable cases are dealt with straight-forwardly by the (Mc) and
(MVar) rules. The inductive hypothesis is used for any functions that we might have,

where we use the (MAE) rule.

2. If there are any predicates in the language, then they are treated as base cases;, we use
(AAE) and (AAVE) to construct the types. For the inductive cases, we consider just the
linear ones. For ¢ — y, by induction hypothesis twice, we have that I'y Fs 7(¢): Type and
I'y b T(w): Type. Then we just use (AAI2) to get Ty, Ty Fs T(¢) —o T(w): Type, which
is the required 7 -translation of ¢ —o . For Vyey x:C .9, by induction hypothesis, we have
that Iy, x:C b5 T(¢): Type. Then we use (AAI1) to get I'y by Ax:C.T(9): Type, which is
the required T -translation of Vyew x:C.¢. The intuitionistic cases are dealt with similarly.

g

The next theorem relates derivations in BI to proofs in the AA-calculus.
Theorem 41 (Soundness) If (X)A by = TL:¢, then Iy bs 7 (T1):7°(9).
Proof By induction on the structure of the derivation of the hypothesis.

LAxy(E) It is convenient to work with the usual form of the axiom, which can be obtained by
an application of Substitution. By Lemma 40, we know that [’y s 7°(9): Type, where I'y
are the declarations of the free variables in ¢. Then we use (MVar) to get I'y,&:7(9) Fs
£:7(9), which is the required 7 -translation of (X)&:0 bz = LAxe(E):0.

TAxg(E) This is similar to the previous case and is omitted.

LivP-Ly oy (IT) (X)A by z LIMP-3g (IT):¢ —~o y because (X)A, &:¢ by = Ty, By induction hypoth-
esis we have that I't,E:7(¢) g T(I1):T(w). By an application of (MAAI} we get
Tnbks ALT(9) . T(II) : T(¢) — T (y), which is the required conclusion. |

LMP-Eg y (TL,IT) (X, X")A, A by 5 LIMP-Eg o (TL, TT) -y because (X)A bz ¢ — yand (X')A sz
IT:¢. By induction hypothesis twice we have that I'ry g T (I1):7 (¢) —o T (W) and I'y b5
T(IT): T (). By an application of (MAE) and (possibly) weakening, we get

E ks TDT (I)y

where [E; '3 v, This is the required conclusion.

3.4. The correspondence 17

LALLo(TT) (XA bgz LALL-L; o (TT):Voew x:C .0 because (X,x:C)A gz T1:¢. By induction hy-
pothesis we have that I'yy,x:C by T(I1):7(¢). By an application of (MAAI) we get
Iy bs AxC T (I1) « Ax:C.T'(¢), which is the required conclusion.

LALL-Ey ¢, ([T} (X,X")AbgzLALL-Ey g, (T1):0{t/x] because (X)A bz z [I:Vpewx:C.¢ and (X') by =
t:A. By induction hypothesis twice we have that I'ry bg T (I1):Ax:A .7 (¢} and that I'ys 3 -
T(t):C. Then we use (MAE) and (possibly) weakening, to get @ Fg T(IT) T (2): T (9}t /],

where [©;'m; I'x]. This is the required conclusion.

WITH-1y (IT, TT') (X)A bz = WITH1y(T1,TT'):0&y because (X)A bz IL¢ and (X)AFgz Iy
" By induction hypothesis twice we have that 'y b5 7 (T1):7(¢) and I'y b T(I1):7 ().
Recall that I'r; = I'ry. Then we use (M&I) to get I'rp by (T(ID), T(IT)): T(¢) &7 (w),

which is the reguired conclusion.

witgy o () (X)Atsz witng) o (I1):¢; because (X)A bz [Tgo&o;. By induction hypoth-
esis we have that I'r Fs T (T1):7 (¢o) &7 (¢1). Then we use (M&F;) to get

I'p b i (T(I1):7 ()

which is the required conclusion.

MP-Tp, (TT) (X)A bz g 1MP1gy(IT):0 — w7 because (X)A;&:¢0 b= IT:y. By induction hypoth-
esis we have that Ty, £17°(9) Fg T(I1):7 (y). By an application of (MAA!T) we get
I'p Fx AEVT(6) T (IT) : T(d) — T (y), which is the required conclusion.

MP-Eg o (TTITY (X5 IXNAIN Fgz ivpBy(TLIT):y because (X)A Fzz IT¢—w and
(IX'YIA' gz IT':¢. By induction hypothesis twice we have that 'y -z 7 (T1): 7 (¢) — T ()
and 'y by T(IT):7(9). We weaken the first of these judgements to get Iy, 'ty Fs
T(I1):T (®) — T (w). Then, an application of (MAIE) gives us @ bz T(IT)7 (IT)y,

where [@;'py, Ilp; y]. This is the required conclusion.

IALL-Ec g (TT) (X)A Frg LALLg o (IT):Vx:C ¢ because (X;x:C)A b5z IT:¢. By induction hypoth-
esis we have that T'p, x!C ts T (I1):7(¢). By an application of (MAA!I) we get I'yy Fs
AxIC . T(IT) : Ax!C.T($), which is the required conclusion.

IALL-Ex o, (IT) {X;!X")A 35 LALLE; o, (FT)}:0[t/x] because (X)A gz ILVxC.¢ and (IX') Fgz
£:C. By induction hypothesis twice we have that I'ry Fx 7 (I1):Ax1A .7 (¢) and that Ty -5

78 Chapter 3. The propositions-as-types correspondence

T(¢):C. We weaken the first of these judgements to get I'y, Ty By T(T1):Ax1A.T($).
Then, application of (MA!E) gives us W5 T (IT)T (£):7 (¢} it /x], where [¥; T, Ty ixe].

This is the required conclusion. 0

We now give a translation from the type theory to the logic. Basically, the above technique is
done in reverse. That is, we consider the signature of the AA-calculus and construct the structure
and language out of it. Then we give mappings of elements, types and elements of types of the
AA-calculus to terms, formulae and deductions of BL

We now define the translation from the type theory to the logic. The AA-calculus’ contexts
are translated as follows: () is translated to I;1; the singleton contexts x:A and x!A are translated
to I,x:A and 1;x:A; and other contexts I', x:A and I', x!A are translated as I, x:A and I''; x:A, where

I' is the translation, inductively, of T.

Definition 42 The function L is defined on elements, types and terms of the AA-calculus as

Jollows.

1. Given an element t, the assumptions for t, denoted by (X;), and the translation of t, denoted

by L(t), is inductively defined as follows: -

t (X} | L)
cAi{) |cA
XA i xA jxA

If the signature contained functions, then we extend the above translation in the obvious

way;

2. Given atype §, the assumptions for ¢, denoted by (Xy)Ay, and the translation of ¢, denoted
by L(9), are inductively defined as follows:

o | (Xe)hy L)

a 0 a

O | (X, Xy)Ap, Ay | L(0) — L(Y)
Ax:A D | (X~ (1,x:A)Ap | Vaewx:A-L(9)
o0&y | (Xo)Ag L(b)&L(W)
Oy | (X Xy)DosAy | L(9) = L(w)
AxIAG | (Xp— (Lix:A)Ay | VA .L(D)

3.4. The correspondence 79

We note that in the case of the additive conjunction, Ay = Ay, so we could have stated
either. We also note that if the language had relations in if, then, as in the translation for

terms, the above translation would be extended in the obvious way;

3. Given a derivation T s, M:A, the proof context for M, denoted by (Xur) Ay, and the trans-

lation of M, denoted by L{M), are inductively defined as follows:

Ty M:A (X) D L{M)

XA (Xr},x:A Laxg 4 (%)

xA (Xp)L;x:A IAx g4y (%)

AxAM:A— B | (Xp)Ay— (I,x:L{A)) | LiMP-L oy, o) (6 LAM))
MNB (Xar, Xn)Am, Ax LIMP-E (), £(8)(L{M), L(N))

Ax:C.M:Ax:CA | (X — (I,xC))Ay LALL-Iy 1(A) (L(M))

Mr:Aft /] (Xn, X2) A LALL-Ey r(a) 1 (£AM})
(M,N):A&B (Xa) Ay WITH-L £ (4, £(8) (L(M), LIN))
T M):A; (Xn) Ay WITH-E 401) (L(M))

AXIAM : A= B | (Xa)Ay ~ (L LEA)) | 1mP-11py 1) (6 L(M))

MN:B (Xar; X) Asrs B 1MP-E), o.(8) (L(M), LN))

AxIC M:AXIC.A | (Xpr— (1;x:C)) Ay LALL 14y (L (M)

MrAlt/x] (Xar: Xe) Ay IALL-Ey r(a), o) (£(M))

We note that in the translation of identities and applications, we really need realizers to
indicate what kind of identity or application was realized. Usually this will be clear from

the context, so we shall not be too formal about it.

The following lemma says that elements do indeed become terms and types do indeed be-
come formulae. As with all completeness arguments, it requires that the type-theoretic judge-
ment resemble the logic judgement in that only types can depend on terms, and not the other way

around.
Lemma 43
1. KT ks t:C and T is just a list of variable declarations, then £{I") b5 L{(t):C.

2. If 'ty A:Type and T is of the form Ty, Ta (a list of variable declarations followed by a
list of type declarations) , then (L(T'x))L(Ta) bz L{A):Prop.

80 Chapter 3. The propositions-as-types correspondence

Proof By induction on the structure of ¢ and A respectively.

1. The base cases are when ¢ is a constant or a variable. In both these cases, £{r) = € Termc
by virtue of C being declared in the signature and so being a sort symbol in the structure.
The inductive hypothesis and the application rules are used for any functions that might be

declared in the signature.

2. The base case is when A is a constant type, a. In this case, a is translated to a sort a
in the signature. We consider just one inductive case. Suppose I'+s Ax:C.¢ : Type be-
cause I',x:C bz ¢:Type. By induction hypothesis, we have that (L(I'y),x:C)L(Ts) Fgz
L(¢}:Prop. Then we use (Vgew!) to get that L(T') Fgz View ::C.L(9) : Prop. The other

inductive cases are done similarly. O

The following theorem relates realizers of the AA-calculus to proof expressions of BL

Theorem 44 (Completeness) If 'y M:A and T is of the form Ty, LA (a list of variable decla-
rations followed by a list of type declarations), then (Xp)Auy bz L{M): L{A).

Proof By induction on the proof of the hypothesis.

(MVar) Suppose I',x:A iz x:A, which implies that dom(T") = FV(A). By Lemma 43, we know
that L{A) € Form,. Then we use (Multld) to construct (Xp)x: L(A) Fzz Lax g(4) (¥): L(A),

where X is the BI version of the AA-calculus context I
(MVar!) This case is done similarly to the one above and we omit the details.

(MAAT) Suppose I' bz Ax:A.M:A —o B because I',x:A I~y M:B. By induction hypothesis we
have that (Xpr)Ap,x:L(A) bez L(M):L(B). Then we use (— I) to get (Xy)Ay Fzz
LiMP-14 g(L(M)): L{A) —o L(B), which is the required conclusion.

(MAE) Suppose E -y MN:B because I' Fy M:A —o B and A 5 N:A, where = is the context-
sensitive join of I and A. By induction hypothesis twice we have that (Xy)Ay Fx =

L(M): L{A) — L(B) and (Xy)Ax Fgz L{N):L(A). Then we use (— E) to get
{(Xnt, Xn) Apr, An by L]MP—EA,B(L(M), L(N)):L(B)

which is the required conclusion.

3.4. The correspondence 81

(MAAT) Suppose T g Ax:C.M:Ax:C.A because I',x:C iz M:A. By induction hypothesis we
have that (Xy,x:C)Ay Fxz L(M):L{A): Then we use (Vyew!) to get

(XM)AM |—2’:.g LALL»]X,A(L(M))IVHBW x:C.L(A)
which is the required conclusion.

(MAZ) Suppose Z by Mt:Alt/x] because T' by M:Vyeo x:C.A and A b5 £:C, where E is the
context-sensitive join of Iand A. By induction hypothesis twice we have that (Xa)Ay s =
LAM) N ew %:C .L(A) and that (X} bz L{2):C. Then we use (ViewE) to get (Xar, X) Ay b5
LIMP-Ey, o (L(t), L{M)): L{$)[L (¢} /x], which is the required conclusion, again up to struc-

tural equivalence,

(M&I) Suppose I' s (M,N):A&B because I' -y M:A and I s N:B. By induction hypothesis
twice we have that (Xp)Ay bz L{M): L(A) and (Xp)Ay Fxz L(N):L{B). Then we
use (&I) to get (Xp)Ay brz WITHILa), o) (L{M), L(N)) : L{A)&L(B), which is the

required conclusion.

(M&%E;) Suppose I' -5, m;{M):A; because I' -5 M:Apé&A . By induction hypothesis we have that
(Xan)Ay Frz LIM): L{Ag)&L(A1). Then we use (&E) to get

(Xnr)Aag Fam WITHE 4y p o4y (L(M)): L(A)
which is the required conclusion.

(MAALI} Suppose I' g AxIA.M:A — B because I',x!A Iz M:B. By induction hypothesis we
have that (Xp)Aarx:L{A) Fsz L{M):L{B). Then we use (= I) to get (Xpr)Ay Fxz
mmp-1g p(L(M)): L{A) — L{B), which is the required conclusion.

(MA!E) Suppose E Fy MN:B because I' -5 M'A — B and !A 5 N'A, where E is the context-
sensitive join of I" and 'A. By induction hypothesis twice we have that (Xy)Am Fzz

L(M): L{A) — L(B} and (1Xn)!Ay Fyz L(N):L{A). Then we use (— E) to get
(Xar: \Xn) Ay; 1Ay ez iMP-Ea g (L(M), L{N)): L(B)

which is the required conclusion.

82 Chapter 3. The propositions-as-types correspondence

(MAALI} Suppose I' by AxIC .M:Ax!C A because I',x!C -y M:A. By induction hypothesis we
have that (Xj;6:C)Ay b5,z L(M): L{A). Then we use (V1) to get

(XM)AM l_EJ,E IALL-Iy o (L(M)) Nl .L(A)
which is the required conclusion.

{MAIE) Suppose By Mr:Alt /x] because Ty M:Vx:C .A and Aty £:C, where E is the context-
sensitive join of I and !A. By induction hypothesis twice we have that (Xa)Ay Fsz

LMyNx:C.L(A) and that (1X;) bz =z L(¢):C. Then we use (VE) to get

(Xar, 1Xe) Ay 3.3 IMP-Ey (2, L(M)): L(O} L(2) /]

which is the required conclusion. W]

So far we have set up maps between the logic and the type theory. The next theorem shows

that the maps are inverses of each other.

Theorem 45 (Correspondence) Let (X)A b5 =10 and let T 5 M:A. Then
L L(T(ID) =11 ; and
2. T(L(M)) =M.

Proof
1. By induction on the structure of I

LAxy(E) Suppose (X)E:¢0 bz = Laxy(E):¢. Then we calculate

L(T(Lax(8))) = L) withT =T(X),E¢

= Laxp(E) definition

Iaxg(E) This is dealt with similarly to the above one and we omit the details.

LIMP-Ty (§:1T) Suppose (X)A sz LiMP-1, (&:1T):¢ —o . Then we calculate

LT (LiMP-1g,(ET1)))

LAET(9) T(IT)) with I = T(I'n) — {&:0}
= LIMP-Lyqey, o7y (GL(T(IT))) definition
LIMP-1p y (E:1T) IH

3.4. The correspondence 83

LIMP-Ey ([T, IT) Suppose (X)A b5z LiMP-Egy(FLTT):y. Before giving the calculation,
we make a brief note regarding-the translation of contexts. The premisses of the
judgement (X)A b5 = LIMP-Eg, o (T1, IT)2y are (Xp)Ar Fse FEQ —o W and (Xpy) Ay Fs 2
IT:0, where X = X3, Xpy and A = Ap, Ary. By induction, these premisses will be
translated to the AA-calculus judgements 'y by T(X1): 7 (¢) — T(y) and Iy by
T(I1):T (). Now, the contexts I'yy and 'y might not share the same intvitionistic
variables (which arise from the ; variables of the BX context). So, in order for the type
theory join to work, it might be necessary to weaken in the appropriate intuitionistic
variables in each of the contexts I'ry and I'ry. The join then contracts the copy away
and leaves a context which is the correct BI translation. Subject to this explanation,

which applies in several other cases of this proof too, we now have the following:

L{T (LIMP-Eg, (T IT)))

= L(TIHT{I!)) with [T37(Tn) T (T)]
= LIMP-Eyy(L(T (IT)), L(T(IT))) definition
= LIMP-Epy(TL,IT) IH

LALL-L 4 (IT) Suppose (X)A bz = LALLI, ¢ (IT):Vyew:C .¢. Then we calculate

L{T (LALL-L o (TD)))
w L{Ax:C.T(IT) with ' = 7'y} — {xC}
= LALLA orn (LAT(I1))) definition
= LALLI4(FT) H

LALLExq,(FI) Suppose (X)A sz LALL-Ecy,(T1):9[t/x]. Then we calculate

LT (LALL-Ex 4, (T1)))

LITADT () with [T 7 (I'm)s T (0
= LALL«BX,L(Q—(Q)),L(Q—{,))(L(‘T(H))) definition

= LALL-Eyy,{IT) IH

The above calculation is done subject to the same explanation regarding the {(—o E)

calculation above.

wira-ly o (TLIT) Suppose (X)A bz = WiTH-Ip (I, IT):0& . Then we calculate

84

Chapter 3. The propositions-as-types correspondence

LT (WITH 14,y (TLT)))
= LT, TAT)) with I' = T(Fm) (= T (Te))
= WiTHIyy (L(T(), L(TAT)) 1M

WITILEbem {IT) Suppose (X)Atxz WITH-EEJ 0.0 ([1):0:. Then we calculate

L{T (wrTH-8) ,, (IT)))
= L(m(T(D)) with T = T(I'n)
= WITH-B), , (L(T(IT))) TH

MP-Ty (E:1T) Suppose (X)A bz = mMP-1y y(E:11):¢ ~» . Then we calculate

L(T (ivp-1y, (E:T1)))
= LOEMT(9). () with T = T(T'1) - {£10)
= (MPL g (g)), i e)y (G LT (1)) definition
= UMP-py(ETT) IH

ivp-Ey (11, 1Y) Suppose (X)A s = M-y (71, IT) 1y, Before giving the calculation, we
make a brief note regarding the translation of contexts. The premisses of the judge-
ment (X)A Fxz uMP-Egy (I IT) oy are (Xr)Ap bz IT¢ — w7 and (X) Ay Fez
"¢, where X = Xpy; Xy and A = Ap;; IAry. By induction, these premisses will be
translated to the AA-calculus judgements Uy by T (IT):T(¢) — T{y) and Ty s
T (T1}:7(¢). Now, the contexts 'y and T’y might not share the same intuitionistic
variables (which arise from the ; variables of the BI context). So, in order for the type
theory join to work, it might be necessary to weaken in the appropriate intuitionistic
variables in each of the contexts I'r; and T'ry. The join then contracts the copy away
and leaves a context which is the correct BI translation. Subject to this explanation,

we now have the following:

LT (1vp-Eg o (T, TT)))
= L(TIHTIT)) with [7 (T T (T)]
= LIMP-Egy (L{T (TT}}, L{T(IT"))) definition
= LIMP-Ey y(IT,IT') IH

3.4. The correspondence

JALL-I. o (IT) Suppose (X)A bz z IALLA4, ¢ (TT):Vx:C.0. Then we calculate

LT (1ALL-1, o (IT)))

= L{AxIC.T(ID)) with I’ = 7(I'n) — {x!C}
= IALL-L ser(e) (L{T(I1))) definition
= IALL-Ix ¢{I1} IH

IALL-E, ¢, (IT) Suppose (X)A bz = 1aLL-Bx g, (IT):0[z/x]. Then we calculate

L{T (IALL-Ex ,{IT)))

i

L{TADT(t)) with [T (T T (1))
w IALL-Ex,L(g‘w}}’L(q'(,))(L(T(H))) definition

i

IALL-Ey ¢, (ET) H

85

The above calculation is done subject to the same explanation regarding the (— E)

calculation above.

2. By induction on the structure of M, where I' by M:A.

(MVar) Suppose I',x:A bg x:A. Then we calculate

T(L{x)) = T(raxe(x))

= X

(MVar!) This is done similarly to the above and we omit the details.

{(MAAI) Suppose I' 5 Ax:¢.M:¢p —o y. Then we calculate

(MATE)

T(L{Ax:0.M))

T (LIMP-1 1y, oy (0 L(M))) with (X)A = (Xar) Ay ~ (1, x:L(9))
Ax:T(L($)) T(L{M)) definition
Ax:dp.M H

In fact, the x: £({¢) will be the last leaf of the bunch (Xas)}Au.

Suppose E bz MN:w. Before we give the calculation, it is worth making a little

note regarding the correctness of the translation of the context. Now the judgement

= by MN:y holds because I' g M:p —o v and A b3 N:¢, where E is the sharing-

sensitive join of I and A. By induction, these premiss judgements are translated as

86 Chapter 3. The propositions-as-types correspondence

(Xa) Ayt Pz L{M):L(9) — L{w) and (Xn)Ay Fsz L(N):L($). An application of
{~o E) then gives us the judgement (X, Xi)Au, An Fzz L(M)L{N):L(y). Now
the contexts (Xar)Ay and (Xy)Ay might share intuitionistic variables. So it might

be necessary to weaken Z in order to get the translation correct. Subject to this

explanation, we now calculate:

T(LMN)) = T(LMP-Esg) cyw)(L(M),L{N)) definition
= T(LM))T(L{N) definition
= MN IH

(MAAI) Suppose I' g Ax:C.M:Ax:C.¢. Then we calculate

T{L(Ax:C.M))
= T(LALLL 1) (L(M))) with (X)A = (Xpr - (£,:C)) Ay
a2 AxC T(LIM)) definition
= AxC.M H

In fact, the x: £(¢) will be the last leaf of the bunch (Xjs)Ays.
(MAE) Suppose E s Mz:0[t/x]. Then we calculate
T(L(Mt)) = ‘T(LALL-EX,LW),L(,) (L{3))) definition

= T(LM)T (L)) definition
= Mt IH

The above calculation is done subject to the same explanation regarding the (—o E)

calculation above.
(M&I) Suppose I'x (M,N):A&B. Then we calculate
T(L((M, N))} pe T(WITH-]L(A),L(B) (L(M) , L(N))) definition

H{T(LA), T(L(B))) definition
= (M,N) H

il

(M&T;) Suppose I' b3 m;(M):A;. Then we calculate

T{Lm{M)}) T (WI’I‘H—EfL(Ao)oLA Al)(L(M))) definition
w(T(LM)Y) definition

= TE,'(M) TH

(MAALT)

(MAIE)

(MAALT)

(MAE)

3.4. The correspondence 87

Suppose [kg Ax!¢.M:0 — y. Then we calculate

TILAX1G.M))
= T(uMP) oy (e L(M))) with (X)A = (Xpr)Ay — (Lx:L(9))
AxtT{L{0)) . T(L(M)) definition
Axio.M IH

In fact, the x: L) will be the Jast leaf of the bunch (Xpr)Ay.
Suppose E g MN:y. Before we give the calculation, it is worth making a little
note regarding the correctness of the translation of the context. Now the judgement
5 sy MN:y holds because I" Fy M:¢ — ¢ and !A by N:¢, where E is the sharing-
sensitive join of T and !A. By induction, these premiss judgements are translated as
(Xp}Am bz L(M):L($) — L(y) and (!Xx)!1Ax Fxz LIN}:L($). An application of
(~ E) then gives us the judgement (Xpr; \Xn)Aus; 1Ax ez L(M) L(N):L(y). Now
the contexts {Xu)Ay and (!Xy)!Ax might share intuitionistic variables. So it might
be necessary to weaken E in order to get the translation correct. Subject to this
explanation, we now calculate:
T(LMN)) = T(mpBrg) ooy (L(M), L(N)) definition

= T{LM))T(LIN)) definition

= MN IH
Suppose I bz AxIC.M:Ax!C.¢. Then we calculate

T{LAXIC.M))
= T(ALLY gy (L(M))) with (X)A = (Xpr — (1;:0))Au

AxICT(L(M)) definition
= AxIC.M IH

Il

In fact, the x: £(¢) will be the last leaf of the bunch (Xpr)Ay.

Suppose E Fy Mt:9]t/x]. Then we calculate
T(L(Me)) = T(ALLE, £(4y, c(n(L(M))) definition
= T(LIM))T (L)) definition
= Mt "

The above calculation is done subject to the same explanation regarding the (- E)

calculation above. .

88 Chapter 3. The propositions-as-types correspondence

3.5 Other correspondences

The first description of such a correspondence, between intuitionistic logic and simply-typed
A-calculus, was given by Howard in around 1969 [How80]. Howard refers to Tait for the one-to-
one correspondence between cut-elimination in the logic and normalization in the term calculus.
Independently, de Bruijn interpreted propositions as types and proofs as terms while encoding
(classical) mathematics as part of the Automath project. Hence, the propositions-as-types corre-
spondence is also referred to as the Curry-Howard-de Bruijn correspondence. We have already
commented that our approach follows that of Barendregt’s, where the correspondence between
AP, a AIl-calculus-like first-order minimal dependent type theory, and PRED, a first-order mini-
mal predicate logic, is shown [Bar92].

Barendregt deals with minimal predicate logic. Several other correspondences that we men-
tion below only deal with the propositional part of the correspondence. Barendregt refers to
Guevers thesis {Gen93], where the proposition-as-types embedding is extended to the entire A-
cube. Guevers also shows that completeness fails at the APw-PRED® node of the cube. Baren-
dregt’s completeness theorem refers to Tonino aﬁd Fujita [TF92], who show the correspondence
between higher order predicate logic and type theory (Tonino and Fujita’s type theory is a sub-
system of CC). ' '

Abramsky [Abr93], Benton [Ben94] and Barber [Bar97] show the propositions-as-types cot-
respondence for intuitionistic linear logic. Their techniques generally seem to be as follows:
define the propositional logic and then decorate it with terms of the type theory. Our approach
follows Barendregt in that we define two separate systems and then show the correspondence.

Gabbay and de Queiroz show the the Curry-Howard correspondence for a family of propo-
sitional “resource logics” {GdQ92]. Each such natural deduction-style logic and type theory is
defined by, firstly, constraining which axioms are allowed in the system and, secondly, by impos-
ing an “abstraction discipline” which is basiéaily a .(meta-]ogica!) side-condition on the (=1
rule. For instance, linear logic is defined by the combinators [(reflexivity) , B (left transitivity
or prefixing), B’ (right transitivity) and C (permutation), and abstraction is allowed as long as
variables are bound “one by one” (as opposed to several, or none, bound in one action). Rele-
vance logic is defined by adding the combinator S (distribution) to the above set and abstraction

is allowed as long as it is “non-vacuous”.

Independently, Wansing [Wan93] covers the same subject as Gabbay and de Queiroz, Wans-

3.6. Summary 89

ing’s logic is presented in a Hilbert-style and the analysis is more in the spirit of Howard in that
it covers the correspondence between cut-elimination and normalization. Wansing does this for
a minimal Lambek-style categorical logic and a A-calculus which has two abstractions (a left one
and a right one), and then presents methods to extend the system under consideration to a family
of sub-structural logics included in propositional IL.

Of course, the main difference between our and these other freatments is of content; the logic
we consider controls structurals in quite a different manner from, say, linear logic. As O’Hearn
and Pym point out [OP99], BI is very likely a folklore relevant logic. But it appears never to

have been explicitly written down or studied before.

3.6 Summary

In this chapter, we have set up the Curry-Howard-de Bruijn correspondence between the AA-
calculus and a structural fragment of the logic BI. The key characteristic allowing the correspon-
dence is fo be able to extend, both in the type theory and the logic, the context in two distinct

ways.

90

Chapter 4

Kripke resource semantics

4.1 Introduction

The internal logic of the AA-calculus corresponds, in a certain way detailed in the previous chap-
ter, to a fragment of the logic B1. A key characteristic of BI is the extra structure on the context —
specifically, the two kinds of context extension operations — which allows the formation of the
two kinds of function spaces. This can be understood, categorically, by a single category which
has two kinds of monoidal structure on it. It can also be understood, model-theoretically, by a
unique combination of two familiar ideas: a Kripke-style world semantics and an Urquhart-style
resource semantics. In this chapter we will use the internal logic and its semantics to motivate an
indexed categorical semantics for the type theory.

The categorical semantics of the AA-calculus is given by a Kripke resource model, which is
a monoid-indexed set of Kripke functors { 7:[W,[C°?,Cat]] | r € R}. The indexing monoid R
is seen as providing an account of resource consumption. The main component of the Kripke
functor is an indexed category [C°F, Cat], the base of which has two kinds of monoidal structure
on it. The extra structure on the indexed category includes a natural isomorphism which allows
the formation of the function spaces. The model can be seen as providing an indexed view
appropriate to a notion of dependency in Read’s bunches [Rea88].

This chapter is organized as follows. In § 4.2, we summarize the presentation of the type
theory in both syntactic and algebraic forms. In § 4.3, we motivate the categorical semantics of

the type theory. § 4.3 and § 4.4 form the main technical part of the chapter, the latter ending with

4.2. The AM-calculus 91

a completeness theorem. We construct two example Kripke resource models. The first of these
is the term model, whose construction is mainly to prove completeness. The second example
model is a construction in which Fam, the category of families of sets, is interpreted not in Set
but in a presheaf Set™, where C is a small monoidal category. This gives us enough structure to

define two kinds of indexed products.

4,2 The AA-calculus

We briefly remind the reader of the syntactic presentation and internal fogic of the AA-calculus.
In the sequel, we shall refer to the natural deduction presentation of the AA-calculus as System

N.

4.2.1 The syntactic presentation

The AA-calculus is a first-order dependent type theory with two kinds of function spaces, a linear
one and an intuitionistic one. The calculus is used for deriving type judgements, the main one of
which is I' g M:A, that M is a term of type A in context I" and signature X.

The definition of the type theory depends crucially on several notions to do with the joining
and maintenance of contexts. The notion of context joining is implemented by a ternary .relation
[E;T;A], read as “I" and A join to form E”. The notion of sharing, which deals with the well-
formedness of types in binary, multiplicative rules and utilizes the notion of multiple occurrences,
is implemented by the x function. These notions allow the formation of full linear dependent
types.

In Chapter 2, we gave the natural deduction presentation of the type theory and proved

Church-Rosser and Strong Normalization, and so decidability, for the judgement I b3 M:A.

4.2.2 The internal logic

The internal logic of the type theory corresponds to a structural fragment of the logic BI of
buﬁched implications. The main judgement of B is (X }I"Fx = 9, to be read as “¢ is a proposition
in the variable context X and the propositional context I" with respect to the term signature X and
the propositional signature =”. The structurals are controlled by two distinct context-forming
operators, the “,”, which admits weakening and contraction, and the *,”, which does not. This
structure in the context, or bunches, allows the formation of two kinds of functions and quanti-

fiers, linear ones and intuitionistic ones.

92 Chapter 4. Kripke resource semantics

The logic BI was discussed in Chapter 3 and a propositions-as-types correspondence was
shown between the AA-calculus and a structural fragment of it. We will start Section 4.3 by
discussing the Kripke resource semantics of BI, utilizing that semantics to work out the mathe-

matical structure needed for the semantics of the type theory.

4.2.3 An algebraic presentation

In preparation for our presentation of a categorical semantics of the AA-calculus in general and,
in particular, for the completeness argument later, we give an algebraic presentation of the AA-
calculus type theory. The idea is to consider provably well-formed syntactic object modulo
definitional equality. We let |U| denote the ofin-equivalence class of expressions of the AA-

calculus, though we will tend to omit the | - | brackets where no confusion can arise.

Definition 46 Let X be a signature. The base category C(Z) of contexts and realizations is

defined as follows:

. Objects: contexts I such that N proves &5 I context;

i—1

o Arrows: realizations T' "™ A such that N proves I' s (MiA) M /x J']}ml» where A =

X1€41, ..., X, EA,.

— Identities are x| €EAL,...,x,EA, (xmxn) X1€Ay, ..., X, €A, We will write the identity

arrowon I as 1p;

sy (N1 N)

M
— Composition is given by substitution. If f = I‘(: Aandg=A"—"" 0, then

fig=T (M[M;/yj%}?:ﬂp[m,-/nggﬂ) o -

Proposition 47 C(Z) is a category.

Proof Let
I-‘ = xlEA], “ba ,.meAm

A=YI€B1,...,y.EB,
@mzlEci,...,ZP@Cp

q) = W‘[ED]_" .. ,WqEDq
be objects and

r Mgl

Pl
{Proe Py

18] o

4.2. The M-calculus 93

be arrows. We check that 1, is an identity morphism

1N = (NN/ydie - NpN /il
= {Ni,-"aNP)
- N

M;1a = OiMi/yilieys - oynlMi/yiliz)
= (My,...,Mp)
= M

and that composition is associative

(MiNY P = (Ni[MifYiss - NpIMi /9l) P
= (PNIMi/ i 2 PalNS M i /235
= (P [Nj/zj]ff;; [M:/yilizys- - =Pq[NJ‘/ZJ‘1?:1 [Mi/yi]i1)
= Mi{(PIN;/2ll s PelNi/2)050)
= M;(N;P)

O

In the judgements I' -5 A:Type and I" g M:A, the context I", which is an object of C(X)
according to Definition 46, can be seen as an index for the type A and the term M. That is, M and
A depend on the variables declared in I'. This can be seen in the internal logic too, where in the
judgement (X)I" ¢, X is an index for ¢. We formalize this for the algebraic presentation of the

syntax by taking C(Z) to be the base of a strict indexed category as follows.

Definition 48 We inductively define a strict indexed category E(Z) over the base category C(Z)
E(Z) : C(Z)°F — Cat,

where Cat is the category of small categories and functors, as follows:

o Foreach 1" in C(X), the category E(Z)(I) is defined as follows:

— Objects: Types A such that N proves T b5 A Type;

- Morphisms: A 2 B where the object M is such that T, x:A LA y:B in C(Z). By the
classifying category theorem which follows, this amounts to the assertion N proves

', x:A by M:B. Composition is given by substitution.

94 Chapter 4. Kripke resource semantics

o Foreach f : I'~ A in C(X), E(Z)(f) is a functor f* : E(ZHA) = E(ENT) given by
() € Alf] and £ (M) M/, 0

Working in Cat might raise some doubts about completeness (in particular, the presence of
identity arrows) for the linear case. But we note that the artow A — A {or 1 — A — A; the
term model considers them identical) over the context I' is given by the judgement ', x:A b5, x:A.
This is a valid one, and does not amount to weakening because the variables declared in T are
used in A. If we had not defined the arrows in each E£(Z)(I") as above, then we might, in order
to achieve completeness, have needed to have worked in a weaker setting, such as a presheaf
E(Z):C{Z)°F — Set [Rd97].

The relation between the type theory and the category defined by the two definitions above is
given by the following theorem, which states that the term category defines no more and no less

than what can be proved in N.

Theorem 49 (Classifying category) Let X be a signature and let T, M and A be in ofpny-normal

Jorm.

N proves -5 I context if and only if " is an object of C(Z);

N proves I" s A:Type if and only if A is an object of E{(£)(I');

Let My,...,M, be objects. N proves T \5 MyBi{M j/xj]j.f_fl if and only if

VIEBY, ..., yEBy is an arrow of C(X);

N proves U -s M:A if and only if () 2 Ais an arrow of E(ZHT).

Proof By induction: in the forward direction on the structure of the proofs in N; and the backward
direction on the complexity of expressions. The arguments are straight forward and we omit the

details. O

4.3 Kripke resource models of the AA-calculus

43.1 Kripke resource AA-structure

We motivate the mathematical structure which is used to model the AA-calculus by considering,

informally, models of the internal logic. In fact, the structure we motivate will be quite modular;

4.3. Kripke resource models of the AA-calculus 95

a sub-structure will model the intuitionistic {—,TT}-fragment of the AA-calculus (i.e., the AIT-

calculus).

The key issue in the syntax concerns the co-existing linear and intuitionistic function spaces
and quantifiers. This distinction can be explained by reference to a resource semantics. The
notion of resource, such as time and space, is a primitive one in informatics. Essential aspects
of a resource include our ability to identify elements (including the null element) of the resource
and their combinations. Thus we work with a resource monoid (R, +,0). We can also imagine a
notion of comparison . between resources, indicating when one resource is better than another,
in that it may prove more propositions. Similar ideas can be seen, post hoc, in the relevant logic
literature [Urq72].

A resource semantics elegantly explains the difference between the linear and intuitionistic
connectives in that the action, or computation, of the linear connectives can be seen to consume
resources. We consider this, informally, for the internal logic judgement (X)At ¢. Let M =
(M,-,e,C) be a Kripke resource monoid. A simplified version of the forcing relation for the two

implications is defined as follows:

l.rEo—oyifandonlyifforallseMifsE¢thenr sy

2. rg=¢—yifand only ifforallse MifsCrthens|=y

A similar pair of clauses defines the forcing relation for the two BI quantifiers (here we need
an environment u € [X]r appropriate to the bunch variables X at world r, where [X] is the

interpretation of the bunch of variables X in SetM”):

L (X)u,r=Vx.0ifandonly ifforallsCr. foralld € Dn. (X;x)([XT{(s C nu,d),s =0

2. (X)u,r |= Yoewx.® if and only if for all s . foralld € Dn . (X, x)[u,d},r-s=¢

Here D: M °P — Set is a domain of individuals, (—,—) is cartesian pairing and [—, —}] is the pair-
ing operation defined by Day’s tensor product construction in Set™” . The resource semantics
can be seen to combine Kripke’s semantics for intuitionistic logic and Urquhart’s semantics for
relevant logic. Details are in [OP99].

Suppose we have a category E where the propositions will be interpreted. Then we will index
Z in two ways for the purposes of interpreting the type theory. First, we index it by a Kripke

world structure W/. This is to let the functor category [%/, E] have enough strength to model the

96 Chapter 4. Kripke resource semantics

{—,V}-fragment of the internal logic and so correspond to Kripke-style models for intuitionistic
logic. And, second, we index [W,E] by a resource monoid R. The structure we obtain is an
R-indexed set of Kripke functors {J, | r € R}. We remark that the separation of worlds from
resources considered in this structure emphasizes a sort of “phase shift” [Gir87, HM94]. We
briefly reconsider this choice in Section 4.5 later.

We now consider how to model the propositions and so explicate the structure of E. The
basic judgement of the internal logic is (X)A | ¢, that ¢ is a proposition in the context A over the
context X. One reading of this judgement, and perhaps the most natural, is to see X as an index

for the propositional judgement A ¢ :

X Ao

This reading can be extended to the type theory, where, in the basic judgement I" -y M:A,
I" can be seen as an index for M:A or that M:A depends on I for its meaning. Thus we are led
to using the technology of indexed category theory [PS78)]. More specifically, in the case of the
type theory, the judgement I" -5 M:A is modelled as the arrow 1 Egﬂ [A] in the fibre over {I'] in
the strict indexed category ‘E:C°? — Cat.

We remark that this is not the only technique for modelling a typing judgement; Cartmell
[Car86], Pitts [Pit92] and several other authors use a more “one-dimensional” structure which
relies on the properties of certain classes of maps to model the intuitionistic fragment of the AA-
calculus. These are formally equivalent to the indexed approach but the latter is appealing for
one main reason: it provides a technical separation of conceptually separate issues. For instance,
at a logical level, the base and fibres deal, respectively, with terms and propositions. At the cost
of less bureaucracy, these issues would be muddled in the non-indexed approach.

We need the base category C to account for the structural features of the type theory and
its internal logic. Recall that, proof-theoretically, the two function spaces and quantifiers arise
because of extra structure, viz. the two types of context extension operators, in the context. To

model the context, we work with a category with two kinds of structure on it. This leads us to

4.3. Kripke resource models of the AMA-calculus 97

the following definition.

Definition 50 (doubly monoidal category) A doubly monoidal category is a category C equipped

with two monoidal structures (®,1) and (%, 1). 2

The definition requires some comments. Firstly, there is no requirement that the bifunctors
® and x be symmetrical too as the contexts that the objects are intended to model are (ordered)
lists. Secondly, the use of the symbol X as one of the context extension operators suggests that
X is a cartesian product. This is the case when {7 | » € R} is a model of the internal logic, where
there are no dependencies within the variable context X, but not when {7, | r € R} is a model of
the type theory, where there are dependencies within I". In the latter case, we have the property
that for each object D extended by x, there is a first projection map pp 4:D X A — D. There is no
second projection map gp 4:D x A ~+ A in C, as A by itself may not correspond to a well-formed
type.

The interaction between projection and other maps in C is stated by requiring the following

pullback in C:

Dx) L2 pca

Pp,frA PEA

D E

f

The pullback indicates, for the cartesian case, how to interpret realizations as fuples. Suppose
. . . . IpxM

12 A is an arrow in the fibre over D, then there exists a unique arrow D (25y) D xA. The

pullback does not cover the case for the monoidal extension. For that, we must require the

‘122¥) h® A in C, the tuples being given by the

existence of the unique arrow D{= D®1)
bifunctoriality of ®.

A doubly monoidal category C with both exponentials or, alternatively, C equipped with two
monoidal closed structures (X,—,1) and (®,—o,I), is called a doubly closed category (DCC) in
O’Hearn and Pym [OP99]. DCCs provide a class of models of BI in which both function spaces
are modelled within C. We will work with the barer doubly monoidal category, requiring some
extra structure on the fibres to model the function space.

Models of intuitionistic linear logic, such as Barber-Plotkin’s DILL [Bar97], have to deal

with two kinds of context extensions too. The technique used there is to work with a pair of

98 Chapter 4. Kripke resource semantics

categories, a monoidal one and a cartesian one, together with a monoidal adjunction between
them. But this forces too much of a separation between the linear and intuitionistic parts of a
context to be useful for modelling dependency. More specifically, suppose we wanted to model
x!A,y:Bx. In the Barber-Plotkin scheme, A would be interpreted in the cartesian category and Bx
in the monoidal one. However, Bx by itself is not a valid object in the monoidal category; it needs
an x of type A in order to be well-formed.

We now consider how the function spaces are modelled. In the intuitionistic case, the weak-
ening functor p}, 4 has aright adjoint I1p 4 which satisfies the Beck-Chevalley condition. In fact,

this amounts to the existence of a natural isomorphism cury

Homy,w)pxa)(Pp 4(C),B)
Homyg,wyp)(C,TIpa(B))

The absence of weakening for the linear context extension operator means that we can’t
model A in the same way. But the structure displayed above suggests a way to proceed. It is

sufficient to require the existence of a natural isomorphism Ap A

Homy .w)pen)(1,B)
Homy,wyp) (1,Ax¢A .B)

in the indexed category. Here, we nse e to range over ® and x, and € to range over: and !. There
are a couple of remarks that need to be made about the isomorphism. Firstly, it refers only to
hom-sets in the fibre whose source is 1. This restriction, which avoids the need to establish the
well-foundedness of an arbitrary object 6ver both D and D e A, suffices to model the judgement
I'Fs M:A as an arrow 1 B [A] in the fibre over [I']: examples are provided by both the term
and set-theoretic models that we will present later. The second remark we wish to make is that
the extended context is defined in the r - ¥/-indexed functor. The reason for this can be seen
by observing the form of the forcing clause for application in BI. Given these two remarks, the
above isomorphism allows the formation of function spaces.

Finally, the additive conjunction & is modelled by requiring each category 7, (W)(D) to have
products.

This completes our motivation for the categorical semantics of the AA-calculus and its inter-
nal Jogic. To summarize, the structure we use to model the AA-calculus is given by an R-indexed
set of functors { J,:[W,{C°P,Cat]] | r € R}. The resource indexing and the structure on C is suffi-

cient to model both the linear and intuitionistic function spaces. The approach is modular enough

4.3. Kripke resource models of the AA-calculus 99

to also provide a categorical semantics for the intuitionistic fragment of the AA-calculus, the AIl-
calculus. Basically, we work with a single functor J:.[#,[D°7, Cat|], where D is a category with
only the cartesian structure (x,1) on it.

We are led to the following definition. We remind the reader of some notational conventions.
We use » to range over both linear ® and intuitionistic x context extensions, {f, g) to range over
both linear (f ® g} and intuitionistic {f % g} tuples, and, in the syntax, xEA to range over both

linear x:A and intuitionistic x!A declarations.

Definition 51 Let (R,+,0) be a commutative monoid (of “resources”). A Kripke resource

AA-structure is an R-indexed set of functors
{7, : [W,[C%,Cat]] | r €R}

where (W, <) is a poset, C°7 = Uyeq Gy, where W € W and each Gy is a small doubly

monoidal category with 1 € I, and Cat is the category of small categories and functors such that

1. Each 9 {W)(D) has a terminal object, 1 5(w)(D)» Preserved on the nose by each f*(=
FWY(S)), where f-E — D € Gy;

2. For each W € W, D € Gy and an object A € J.(W)(D), thereisaDeA € Cy.

. . , Lo Pp .
For the cartesian extension, there are canonical first projections D x A =f' D and canonical

pullbacks

x 1

E x f*(A) Sxls DxA
_
PE.f4 PDA
E D

f

The pullback indicates, for the cartesian case, how to interpret realizations as tuples. In

(1_>~<+M)

particular, for each 1 Kae J(W)(D), there exists a unique arrow D DxAin Gy.

It does not cover the case for the monoidal extension. For that, we require there to exist a

1M}
—

unique D(=D®1I) (D ®A, the tuples being given by the bifunctoriality of ®.

For both extensions, there is a canonical second projection 1 ¢ A in the fibre over De A,

These maps are required to satisfy the striciness conditions that (1p)*(A) = A and 1p»
s = Lpea for each & € L,W)D); g (f*(A)) = (8:£)*(4) and (g0 £*(A)): f oA = (:/)
A for each F S EandE —); D in Gy. Moreover, for each W and D, D e 15 wyp) = D;

100 Chapter 4. Kripke resource semantics

3. For each D, A, there is a natural isomorphism Ap 4

Homjm,(w)(D.A)(l;B)
Homjr(w}{p)(I,AxGA B)

where the extended context is defined in the r + ¥'-indexed functor. This natural isomor-
phism is required to satisfy the Beck-Chevalley condition: For each E LDin Gy and each
Bin J(W)(DeA)

F (ApaB) = Ag, pa((feids)*B) ;

4. Each category J.(W)(D) has cartesian products. O

For the purpose of our current study of modelling the type theory, structures, in which we
consider only the arrows of type 1 — A in the fibre, suffice.

We conclude this section by showing a kind of a conservativity result. We embed a Kripke
resource AA-structure {7, | » € R} into a Kripke AIl-structure 7 and show that the function
space given by Ap4(B) in the AA-structure case is the same as that given by TIp 4(B) in the
MT-structure case. This is to be expected, as a All-structure has just the sub-structure of a
AA-strocture to model the intuitionistic fragment of the AA-calculus. Recall that a Kripke AIT-
structure is a functor 7 : [W,]D°P, Cat|], where D is a category equipped with just the (modified)

cartesian closed structure, plus the usual coherence conditions [Pym97].
Lemma 52 The natural isomorphism

curw : Homgw)pea)(Ppa(1),B) 2 Homyuw)p)(1,1Ipa(B)) : cury,!

in the Kripke Al1-structure 7 is just the Ap a natural isomorphism in the D X A case in the Kripke

resource A\-structure.

Proof Fix a 7, to work in. Then define a translation ! from the AA-structure to the Afl-structure.

Informally, the translation can be seen as follows:

H(W)As...eB) (15D gw)A'x...xB) @D’

4.3. Kripke resource models of the M-calculus 101

where the primed components are the same as the originals except that, for objects, the AA-
structures {—o, A, X, —,IT} operators are translated into the All-structures {—,I1, x,~,T1} op-
erators (we add % to the AIl-structure in the obvious way) respectively. A similar translation is
done for the morphisms. The key point is that !’s action on C is to forget the linear—intuitionistic
context extension operator difference, translating both to the 9 confext extension operator X.
To show that the natural isomorphisms are the same, we start with the conclusion of the
natural isomorphism Ap 4 and compute:
Homywyp)(1,Ax!A .B) 1
Homguyyp) (1, Tip,a (1B)) ‘
cur
Homguwoxiay(Pip,u (1), (1B))

which is the translation of the premiss of the Ap 4 natural isomorphism. This is so as the first

projection ppa:D X A — D exists in each C. O

Syntactically, the Lemma 52 should be seen as a translation from the AA-calculus to the
All-calculus (and so the reverse of Definition 28). More semantically, it should perhaps be seen
in a 2-categorical setting. The statement of the lemma would be that in some large category
which has as objects structures, one should be able to construct an arrow from a AA-structure to

a All-structure.

4.3.2 Kripke resource Z-AA-model

A Kripke resource model is a Kripke resource structure that has enough points to interpret not
only the constants of Z but also the AA-calculus terms defined over X and a given context I'.
Formally, a Kripke resource model is made up of five components: a Kripke resource structure
that has Z-operations, an interpretation function, two C-functors, and a satisfaction relation. Ex-
cept for the structure, the components are defined, due to inter-dependences, simultaneously by
induction on raw syntax. This explains the long and complex formal definition of the model
(below).

Ignoring these inter-dependencies for a moment, we explain the purpose of each component
of the model. First, the Kripke resource structure provides the abstract domain where the type
theory is interpreted in. The E-operations provide the points to interpret constants in the signa-
ture. Second, the interpretation [—] is a partial function, mapping raw (that is, not necessary

well-formed) contexts I' to objects of C, types over raw contexts Ar to objects in the category

102 Chapter 4. Kripke resource semantics

indexed by the interpretation of I', and terms over raw contexts My to arrows in the category
indexed by the interpretation of I'. Types and terms are interpreted up to frj-equivalence. Fourth,
the C-functors maintain the well-formedness of contexts with regard to joining and sharing. The
model also needs to be constrained so that multiple occurrences of variables in the context get
the same interpretation. Finally, fifth, satisfaction is a relation on worlds and sequents axiom-
atizing the desired properties of the model. In stronger logics, such as intuitionistic logic, the
abstract definition of the model is sufficient to derive the properties of the satisfaction relation.
van Dalen’s description of a Kripke model for intuitionistic logic is done this way, for instance
[vD94]. In our case, the definition has to be given more directly. Some further remarks on the
model’s definition are given immediately after its presentation.

We remark that we restrict our discussion of semantics to the I' g M:A: Type-fragment. The
treatment of the I' -z A:K-fragment is undertaken analogously — in a sense, the A:K-fragment
has the same logical structure as the M:A-fragment. To interpret the kind Type, we must re-
quire the existence of a chosen object, call it £, in each fibre. The object £ must obey several
equations: it must be preserved on the nose by any f* and must behave well under quantification.
Details of the treatment of the A:K-fragment in the case of contextual categories are in Streicher’s

thesis [Str88]. The analogous development in our setting is similar and we omit the details.

Definition 33 Let X be a AA-calculus signature. A Kripke resource T-AA model is a 5-tuple

({J:[W,[{C°?,Cat]] | r € R}, [—], join, share, k=5)

where { J:[W,[C°P,Cat]] | r € R} is a Kripke resource AA-structure that has S-operations, [—]
is an interpretation from the raw syntax of the AA-calculus to components of J.:[W,[C%,Cat||,
join and share are C-functors and k=3, is a satisfuction relation on worlds and sequents, defined

by simultaneous induction on the raw structure of the syntax as follows:

1. The Kripke resource M\-structure has Z-operations if, for all W in ‘W,

(a) Corresponding to each constant c!Ax €Ay Axy, €A, Type € X there is in each

J(W) ([{’CI)B?:) an operation op, such that

ope([Mir,]y -, Mo, 17)

is an object of j,(W)([[E]];’:), where

4.3. Kripke resource models of the AA\-calculus 103

[{Eﬂ?: = share join({[I"‘m]]?;,...,share join({[f;]]}f,[[@ﬁ;f)...) ;
(b) Corresponding to each constant c!Ax1€Ay....Axp€A,y A € X there is in each
(W) (1, %1 €A1, .., XnEA] g)
ope, w _ W,
an arrow 1y owyp) — [A]y, where D = [1@,x1€4y,... X €Am]y

2. An interpretation [—|, in each such J,, satisfies, at each W:

(@) [015, = lc;
(b) [TxAly,, = [T1] ®[ArY, ;

(c) [[r,xtA]]?,’ ~ [Ty % [Arl} ;

Mn) (E: lrl]ljvl?—*—f ﬂ[‘n]fjn

@ [T ™9) o gy [a15.

where [T]} = share join({Uy]y,...,share join([T2]}, [T1]5))

(e) [[()F}]E‘: = s

) T(eMi.. M)l = ope[Mir]y -, [Mar, I) in 5 (W)([TT),
where [[I‘}]Ef = share join({[l"n]lz,.“,share join(ﬂl”‘zﬁz, {[I";]]};‘:))y

(g) [AxA .B{‘]}?: o Ai{FE}[,EAr}]}z ({{Br,x;,q]}gﬂ) , where the extended context is defined in
the r+ s-indexed model ;

(h) [AxABrly = Agyw g (IBraaly) ;
(i) [A&Brly = [Acly x [Brl ;

6) 10c]y =~ Yyrpws

(k) [erly =~ A™opc);

) Poewaly = agrpapy

(m) PoxA ML = Ay gacqr (Mreall)) 5
(n) Ax1A.Mr]Y ~ Ay, {EyArB;’(I[MFJ!A]]}?)’

(o) IMNSI, = (lygy INAT) (A gy (L)
where [[:’]] Ty = Jom{ﬂf}} 75 A1 3,) and [[EE 4, = Share [E’]]?:“) :

104: Chapter 4. Kripke resource semantics

(p) LM, Nl = (Ively, INeDy) 5

(@) [l = m([Mrly), where i € {0,1}.
Otherwise the interpretation is undefined.

3. There exists a bifunctor join on C. The purpose of join, on objects, is to extend the first
object with the second, discarding any duplicate cartesian objects. The definition of join

on objects is as follows:

join([O1, 1015y = [017
join([L]y, 1A, xAYy,) = join(IT]Y,1ATY) ® [wAlY
Join[T,x:ATy L [ALYY = Jjoin(IT]Y.IATL) @ [xALY
Join{[T, XA [A XA = join([T]Y,1ATS) x [¢14]},

The definition of join on morphisms is similar. It is easy to see that [[E}];:s = join([["]]";:, [{A]]?:)

There exists a functor share on C. The purpose of share is to fegulate sharing of multiple

occurrences of an object. The definition of share on objects is as follows:

share([0T}) =[0I
share([E]Y) = join(share([®]y),1¥1},)
if[E]} = join(I0,xA, D]y, [AxA,AT7)
AvB(x) & I"
[®]7,, = join([TTY,[A]},)
[¥15,,., = join{[xAlY , join(('], 1A},))

= [[E}];l: otherwise

The definition of share on morphisms is similar. The purpose of share is to ensure that the

Joined objects and morphisms are well-formed.

Both join and share “cut across interpretations” in that the result object is in a different
R-indexed model from the argument object(s). This is necessary for defining the interpre-

tation of function application ;

4. Satisfaction in the model is a relation over worlds and sequents such that the following

hold:

4.3. Kripke resource models of the A\-caleulus 105

(a) 5, W k=3 (c:A) [IT] if arid only if ¢ € dom(Z) ;

(b) 3, W =z (x:A) [U,xeA] if and only if [T, x€A]} is defined ;

(¢c) 9. W =z (M : Ax:A.B)[I') ifand only if for all W < W' and for all ¥ € R, if 35, W' =5
(N:A) [A], then 5, W' =5 (MN:BIN/]) [E], where [E]}}, = join([T1} ,[Al7) and
[ELY = share([ET}..) :

(d) 5 W =5 (M:A&B) [T if and only if 5, W =5 (1(M):A) [T, for i € {0,1};

(e) 5, W =5 (M : Ax!A .B) [[] if and only if for all W < W', if 5,,W F=x (N:A) [!A], then
9., W ks (MN:BIN /X)) [E], with [E]}} = join{[TT},[!A17) -

We reguire two conditions:

1. (Syntactic monotonicity) If X]]?: is defined, then [X ’]]?; is defined, for all subterms X' of

X and summands v’ of r. This condition is needed for various inductive arguments. It is

not automatic as the interpretation is defined over raw objects ;

2. (Accessibility) The functor J.(W) has domain C = HWGWC;,P(W)- So that [[I“]];‘: € Gy and

. [{I‘]]_,,Wr' € Gyr. If there is an arrow W < W' € W, then

(a} there exists a functor &:Cy — Gy such that §(|[X]]?:) = [[X]]?rﬂ, where X, recall,

ranges over conltexts, types and terms ;

(b) 5WY(TTY) = WYY and 3W)(ILT5) = 5(W)(ITTY), for each context
T'; otherwise jr(W’)(IIF}}?:’) is undefined.

This concludes the definition of the Kripke resource Z-AA-model.

A few remarks concerning Definition 53 are in order.

The type theory has a structural freedom at the level of terms which, logically, allows the
existence of multiple occurrences of the same proof. However, it can be that, in operating on the
representation of two judgements, the same occurrence of an object in the base of the resulting
representation is used to form the valid terms and types in both representations. This sharing
requirement is regulated by the existence of a functor share on C defined as follows.

The second accessibility condition is the simplest one regarding the modei-theoretic notion
of relativization: that of interpreting constructs in one world and reasoning about them from the

point of view of another. In the definition of model, and so in the sequel, the accessibility relation

106 Chapter 4. Kripke resource semantics

we take equates contexts, efc. over the worlds. A syntactic term can be seen, in a weak sense,
as a “rigid designator”, that is, one whose interpretation- is the same over different worlds, for a
semantic object. For example, suppose N proves I' s M:A. If [[Mp]]?: is defined (given soundness
this will be the case), then, for all W < W' € W, [Mr]} is defined and equal to [Mr]". Tna
sense, the syntactic term M designates all objects HMI«]}%.

We also remark that there are several notions of partiality in the model. Technically, the
interpretation function is a partial one because it is defined for raw objects of the syntax. Bat
partiality plays two other roles too. Firstly, there is dependent typing partiality to “bootstrap”
the definition. And, secondly, there is Kripke semantic partiality of information, in which the
further up the world structure one goes, the more objects have defined interpretations. We refer to
Streicher [Str88], Pym [Pym97], and Mitchell and Moggi [MM91] for some comments regarding

these matters.

We check the functoriality of join and share.
Lemma 54 join and share are functors.

Proof

1. The action of join on morphisms is defined is as follows:

join([0, 1015 = [0
join[A1y [s@AY,) = join([f1},1s15) ® I}y
join([f @y, [el5) = join(lf]Y.Iel}) ® Isly
join(lf x5y, lgxaly) = Jjoin([f1}.[ely) x [<1Y,,

join(Lf; 1y, [&:81y) = joindlfly, [ely s join([F1y, LT

We need to show that join preserves identities and composition. We do the first by induc-
tion on the structure of objects. For the base cases, either or both of D or E are units. In
which case the monoidal structures on C are sufficient to infer the result. There are three

inductive cases to consider. One of these is when D == D' ® A. In this case, we compute:
P

(join(lp,1g))®A defn of join
(Ljoin(pr.2)) ® A 1H

= ljoinireae) defn of join

Join{lp,1g)

4.3. Kripke resource models of the AA-calculus 107

The second inductive case, when E = E' ®A, is done similarly. The third inductive case is

when D =D’ x A and E = E' x A. In this case, we compute:

join{lp,1g} = (join(lp, 1)) xA defnof join
= (Ljompr gn) XA "
= 1j0,',1(p1 %A B <A defn of join

We show that join preserves composition in its second place; the proof for the first is

similar. Assume E 5 E' £ E". Then we compute:

join{l,g:8'y = join{l,g:g'x 1)
= gig %1 defn of join and
structure of (x,1)
= &8

= (gx1){g'x1)
= join{l,g x 1); join{l,g' x 1}
= join{l,g);join{1,g")

2. We need to show that share preserves identities and composition. We do the first by induc-
tion on the structure of objects. The case for 1) is immediate by the definition of share.

For the non-{), Ay:Bx € I’ case we compute as follows:

share(1g) = join{share(1 ;o ay)s Lioin(A join(T" A7
= jom(lshare join{T,A)» Ejain(A,join{F’,A’))) IH

= l.vhare{ﬁ)

For the proof of composition for this case, assume that I’ L . £ , A % A and

1
A &y A" that 5 =, B 5 7, and that f = share join(f', f"), g = share join(g',g").

Then we compute:
Join(f'sg', f":8")

join{f', Y, joinlg',g") func of join
share(f);share(g)

it

share(fig)

with the appropriate side-conditions. 0

108 Chapter 4. Kripke resource semantics

We consider various model-theoretic properties of the satisfaction relation.

Lemma 55 (Monotonicity of =5} Let X be a signature and ({4, | r € R},[—], join,share, k=x)
be a model. If 5, W f=g (M:A) [[| and W < W', then 5,,W' =5 (M:A) [T}

Proof By induction on the syntax of M:A. If W < W', then, by accessibility, [X]];‘:' is defined as
E[x]]?:, where X ranges over I, A and M. For each case of M:A, the conclusion is given by the

definition of |=s5. n

Lemma 56 (}=x-forcing via global sections) Let ({7, | r € R},[~], join, share,|=5) be a Kripke

resource model. 5, W \=x (M:A) [I'] if and only if [[I"]];‘: is defined, j[Ap]]}Z is defined, |[Mr]]§: is
M, W

defined and 1 W) Eﬂf’ [[Ar]]?: is an arrow in jr(W)([[Fggf).

Proof By induction on the structure of M:A.

(c:A) For the = direction, we require the model to have enough points, and so get such an artow.

The < direction is immediate from the definition of k=3 ;

(x€A) For the = direction, the second projection map 1 4 A in the fibre over the context T,x€A

gives us the required arrow. The < direction is immediate from the definition of =5 ;

(Ax:A.M : Ax:A.B) For the = direction, by induction hypothesis we have that

W
!IMF"“AE-’WS

W
Ly slWXIT ALY,) [Brxaly,,

is an arrow in j,H(W)({[P,x:A]}ZH). We then use the natural isomorphism A to get the
arrow

fAxA .Mr]}}";

. W

in J, (W)([II“]]E/). For the <= direction, suppose there exists an arrow

[AxzaA Mr]jg_ w
Loy — [AxABrly

in J,(W) (f{l"]]}‘:). It follows immediately that the existence of an arrow

kS

a3 s W
by owyaar?y — [Aaly,

4.3. Kripke resource models of the M\ -caleulus 109

implies the existence of an arrow

gy
Liwmay — [BIN /121y

where [=' ﬂgﬂ = join([[I‘B_,,Wr, [[A]]?:) and [[E]}}Y = share[[&']]?:_H. The definition of =y then

gives us J,, W b=z (AxtA.M : AxA.B) [I';
{(Ax1A.M : Ax!A.B) For the = direction, by induction hypothesis we have that

1 ![Mf‘,x'Aﬂjf lI r

KW ALY xialy
is an arrow in J,(W)([[,x!A]). We then use the natural isomorphism A to get the atrow

[at Me}Y

Loy [AxtA-Br]y,

in %,(W) (mﬁj). For the < direction, suppose there exists an arrow

[AxiA Mr][j-r

Ly w1ty [Axt4 Br]y

in J.(W) (EI‘E}‘:). It follows immediately that the existence of an arrow

[Naly

Ly oyl [4a1y
implies the existence of an arrow
[MNz j}jr W
Loy — BN/,

where EIE}]?: = join([[f‘]]?:, [[’A]]?:) The definition of =5 then gives us %, W f=g (Ax!A.M :
Ax'A.B) [T];

(M:A&B) For the = direction, by induction hypothesis twice we have the arrows

fro(M }rﬂ;r, W
Loy [Ard;,

and

Eﬁ; M)F}]ﬂr W
Ly oyt [Brly,

110 Chapter 4. Kripke resource semantics

in j,(W)(}II“]]g). Recall that we can construct products in each 5{W)(D). So we have the
arTow

Timo (M) (MY

W
2T {A&Br],

in 7.(W) ([[I‘]];I:) For the < direction, by induction hypothesis twice we have that J,,W =5
(no(M):A) [I'] and J,,W k=g (m1(M):B) [[]. The definition of |=3 then gives us %,W =5
(M:A&B) [I). Ol

The substitution lemma for =3 has two cases, one for substituting a linear variable and one

for substituting an intuitionistic one.

Lemma 57 (Substitutivity of |=5) Let X be a signature and ({J, | r € R},[—], join, share, =3)

be a model.

LI 3, W [z (UV) [AxAN], J,W ks (N:A) [T] and [AN[N/]]Y, is defined, then
3 W s (UVIN/A) [E], where [E]] | = join([TT5, [A, AN /A1)

and [E]y = share([2}).

2 I 5, W bz (UV) [ASIANT], 50, W bos (V:A) [T and (A, NIN/A]LY, is defined, then
oW ez (U [N /) (5], where [E%, = join([TT% , [A AN /AL . |

Proof By induction on the structure of the syntax and the functoriality of models.

1. The linear case is quite interesting as it shows an essential use of several of the model’s
components. In the following, we will omit the parameters on the interpretation for sim-
plicity, though it can be seen, by induction, what these ought to be. Then, the basic ar-
gument is that, by the structure of the modél, we can construct the following square in

Cw:

(share join{[A],[IT)) ¢ (share join([A],[T])) ® [A]

f g

(share join(JA],ITT)) @ ({Lshare joiniratryy, [N [AT] - (share join{[A], [T])) ® [A] » [A']

4.4. Soundness and completeness 111

where

e = (1shar_c' Join{[ATEFT)> E{N}])
= (Lshare join{[ALINTS» ((Ishare Join{[A} {13} EN]})) *df>
= ((Lshare joir:(E[AE,E[FE)r[N}])ad’>

I m

= (<}~share joir!(E[AE,ﬂfI’]}}:[IN]])z 1{[1&’]])

and 1% [A'} is, by induction, an arrow in the fibre over (share join([A],[I'])) ® [A].

Then, by the functorial structure of the model, we have an arrow

Lsnare join ANT) g ‘v *
1 (WLt jontia e VD), L)) L]'}'(((lsharejofn([{A}j,{[I‘B)’[[NB)?IEA’B)) vl

in the fibre over the object (share join([A],ITT)) ® ({ Liware(ajeqryy: INI) AT -

2. The argument for the intuitionistic case is similar to the linear one, except that we use the

pullback condition to extend the context with [A]. 0O

4.4 Soundness and completeness

Lemma 58 (Context and Type Interpretations) Let X be a signature and

({3 | r € R},[-1, join, share, |=3)
be a Kripke resource T-MA model.
1. IfN proves b5 I context, then, for those W where [[F]]Z is defined, EFE?: € obj{C);
2. IfN proves I'Fs A:Type, then, for those W where {[Ar]]f,;’: is defined, [[Ar]]?: € obj(5.(W) (HFE;Y))

Proof Follows from Definition 53. The proofs are done by induction on the structure of proofs
of system N and, because of inter-dependencies, must be done simultaneously with the proof of

Theorem 59. 0

Theorem 59 (Soundness) Let T be a signamre and {{J, | r € R},[—], join,share,|=5) be a
Kripke resource model, and let W be any world in this model. If N proves [y M:A and [[I"]]?: is
defined, [Ar]Y is defined and [Mr]} is defined, then 5,,W |=x (M:A) [T,

112 Chapter 4. Kripke resource semantics

Proof By induction on the structure of proofs of I b5 M:A. The proof of soundness is done

simultaneously with the proof of Lemma 58.

{(Mc) Suppose N proves I'Fs ¢ : Axy€A;....Axy€Ap .A. By Definition 53, {7, | € R} has
enough points to interpret ¢ : Ax;€4;....Ax,€A,,.A and ﬂc;;]];[: = A™{op,) (i.e., m ap-

plications of the natural isomorphism on ep,) where

op; W
I:ir{W)(l{!F,xleA;,...,xmeAm}]}'j} — [Arx sy, medn] 7

It can be observed that [[c!;«}}j“: type-checks. By induction, we have that [[!I"B?: is defined.

And so 1, W =5 (¢ : Axi€Ay.... Axy€A, A) [IT] follows.

(MVar) Suppose N proves I',x:A Ig x:A because I' s A:Type. By induction, we have that
IxA ¥ is defined. According to Definition 53, fxp .4 W o q w and the latter has
jr W Jﬂr EF,X'AE 2

~ the correct type. So we have shown

W
1) = [Acly

J(W)(ITxATY,

and 7., W |=3 (x:A) [T, x:A] follows.

(MVar!) This case is done similarly to the (MVar) one above. Suppose N proves I', x!A 5 x:A
because I' -3 A:Type. By induction, we have that [I" ,x!A]}?: is defined and that [[Ar]]?: is
defined. According to Definition 53, [xr ,xmﬂ}f = dpraap? and the latter has the correct
type. So have shown

ﬁxl',t!.‘i)ﬁz

W
Ly, owy(rmary) [Ar]y,

and %, W =5 (x:A) [, x!A] follows.
(MAAI) Suppose N proves I' by Ax:A.M : Ax:A.B because I',x:A Fy M:B. By induction, we
have, for W such that {Br ,m]i?: is defined and that %, W |=x (M:B) [I",x:4]. i.e., that

w
IMra] Jrgs

W
Ly atwyarmat,) [Broaly,,

‘We now use the natural isomorphism A![I“B}V,,[[4l to get

ﬁlx;A.Mr]jjwr . W
L) — [AxABrl,

So we obtain J., W =5 (Ax:A.M : Ax:A.B) [T

4.4. Soundness and completeness 113

(MAE) Suppose N proves E by MN:BIN/x] because I' g M : Ax:A.B and Ay N:A with
[E",T;A] and B = E'\k(T",A). By induction hypothesis twice we have that 7., W |=x (M
Ax:A.B) {I'}, that is,

w
1 ks [Ax:A.Br]y

(w1}

and %, W k=5 (N:A) [A], that is,

1 Welz pauY
sty - Ml

Assume W < W' € W. By monotonicity and the definition of satisfaction, we have that
5, W' s (MN:BIN/}) (5], where [= join([TT} ,[A]}) and 2] = share([2T},,),
that is

[MN= E;,r w
Lgmazry — BN/,

We check that this is the interpretation given by the model. According to Definition 33,

MN=z]" is defined and is equal to, using monotonicity,
% 4
r *
((ErﬁW’:[{NA]]W grﬁjw' fAr]}W’(IIMFE],?,))

where = is defined as above. We need to check the types. First, we already have

[[Mr}]jr! : _'I(W’)(EF}[W' -y [AXIA Br]]j

Applying the natural isomorphism A w gives us
Iy fachy,

Ay 14 (IMrxalf,,) : Lstwnyreagt’)~ [Brealy,,

The functor (lmwx, [[NA]]}W)* petforms the required substitution. Finally the action of join
Jr ’

and share gives us §E]]}f’

(MAA!I) This case is done similarly to the (MAAI) one above. Suppose N proves I' g
AxiA.M : Ax!A .Bbecause I',x!A -z M:B. By induction, we have, for W sach that [Br JM]]E:
is defined, that %, W =z (M:B) [I',x1A]. i.e., that

{[M!‘»'Aﬂj,

Ly gty [Brealy

We now use the natural isomorphism Amgv pa? © get

[xta Mr]] 4

Ly owyaer) [Ax1A.Br]y,

So we obtain 7., W 5 (Ax1A.M : Ax!A.B) [I].

114 Chapter 4. Kripke resource semantics

(MAE) This case is done similarly to the (MAE) one above. Suppose N proves E 5 MN:B[N /x]
because I' -3 M : Ax!A.B and A g N:A with [E';T1A] and E = E'\x(T, !A). By induc-
tion hypothesis twice we have that 7, W =z (M : Ax!A B} [I'], that is,

[E23 W
Lywaryyy — [AxABr]y,

and %, W =5 (N:A) ['A], that is,

1 Wl (4l
SV [Awly,

Assume W < W' € W. By monotonicity and the definition of satisfaction, we have that
5, W' =5 (MN:BIN /x]) [€], where [E]} = share(join(([T]} ,['A]Y })), that is

r
IMNz]y

W.ﬁ
Lomymagy — [BIN/Az],

We check that this is the interpretation given by the model. According to Definition 53,

[[MNE]]?: is defined and is equal to, using monotonicity,

(Agryy IV gy gy (D2150)

where [E}}f = share(jain(gl”‘]]‘;:', f[!A]]?:')). We need to check the types. First, we already

have

[[Mp]]}{:' | 1) — {{Ax:A.Br]]}‘:I

(W (T

Applying the natural isomorphism A) gives us

iy AN

! . wl
Ay guary Bl) < Ly ragyy = [Bronally

The functor <1i[f‘§w" [[N;A]]?:’)* performs the required substitution. Finally the action of join
Jr

and share gives us {{E]]?:’

(M&I) Suppose N proves Iy (M, N):A&B because N proves I” b5 M:A and N proves I3 N:B.
By induction hypothesis twice, we have that %, W &5 (M:A) [T}, that is

w

)

Ly omyriy

4.4, Soundness and completeness 115

and that J,,W k=g (N:B) [I']. that is

w
1 Ml Bep?

ZHWHITTy)

Now each category J.(W)(D) in the model has products. We use this property in ,’Ir(W)([[I‘]}?:)

{o construct

I{M,)r}]g,

Ly owyare) [(A&B) 1y

and 7., W ks ({(M,N):(A&B)) [I'] follows.
(M&E;) Suppose N proves I bz 7;(M):A;, for i € {0,1} because N proves I -3 M:Ap&A;. By

induction hypothesis, we have that J,, W |=x (M:Ag&A;) [I'], that is,

Pl
1 oA]

5W)(IrT)
Then the definition of satisfaction allows us to construct, for i € {0,1},

[t)I‘B JA

Ly (x5,

and 7, W |=x (m(M):A;) [I'] follows.

(M =) It is convenient, as we are working in the M:A-fragment of the type theory, to observe

that Prj-equalities are generated by the rule

IxcAbsM:B AlFsgN:A
=g (AxeA .M)N =g M[N/x] : B[N /x]

where [B';I;A] and E = E'\k(T', A), and by the rule

T'FsM: AxcA.B
Cly (AycA M)y =nqM : Ax€A.B

where y € FV(I",x€A). Then, an application of the natural isomorphism and Lemma 57,

allows us to show that if M =gy, N, then [[M]]E,‘: o HNEZ.]

We now turn to consider completeness. We begin with the appropriate definition of validity

for =3.

116 Chapter 4. Kripke resource semantics

Definition 60 (|=z-validity for AA) T =5 M:4A, i.e, M:A is valid with respect to T, if and only if,
for all models ({3 | r € R}, [~], join,share, k=5 and all-worlds W such that [T}, [Ac]y and
[{Mr]]}‘: are defined, J,,W =5 (M:A) [I]. O

Several components of the term model will be defined using the category of contexts and

realizations, C(X), that we defined previously.
Proposition 61 C{X) is a doubly monoidal category.

Proof The two context extension operators are taken to be an extension with A and an extension
with !A. The units for each context extension operator require the following rules to be taken in

the syntax of the type theory:

t-x 1 context 5 I context

together with the context equivalences which let 7 and 1 be, respectively, units of extension with
A and extension with !A. Then we define {) = I; 1, allowing us to continue with the use of {) as a

general unit. .

Definition 62 The category P(E), a full sub-category of C(Z), is defined as follows:
o Objects:

— () is an object of P(X);

(1,M)

~ IfT" is an object of P(Z) and there exists an arrow I" A xAin C(T), then T' x A

is an object of P(Z).
o Morphisms: The arrows just considered.

Lemma 63 The tuple consisting of the set of objects in C(Z), the context joining operation

{3 =3 -] and the unit context () defines a commutative monoid.

Proof For ease of argument, we will adopt the following notation: T'A will denote the join of the
contexts I' and A.
We first show that () behaves as a 2-sided identity. This is immediate due to the coherence

equivalences between contexts.

4.4. Soundness and completeness 117

Next, we show that the joining relation is associative: if I', A and © are valid contexts, then
[(A®) == (TA)®, where [['(A®);I';AB], [AG; A; O], [(TA)®;T'A; 0] and [I'A; T A

The proof of associativity is by induction on the length of the context I'(A@). The base case
is when I'{(A®) = (). By the definition of the joining relation, this implies that I = () and that
A® = {). By the same argument, we know that A = {) and © = (). We use the definition to
construct (['A)@ which is also equal to ().

There are three inductive cases to consider, one for each of the (JOIN-L), (JOIN-R) and
(JOIN-!) rules. For the first of these, we have I'(A®) = I'(A(@',x:A)) by (JOIN-L). By as-
sumption, I'(A(©',x:A)) splits into T and A{®',x:A), and A(®',x:A) splits into A and &', x:A. By
induction hypothesis, I" and A join to form I'A, and T'A and ©' join to form (I'A)®'. By (JOIN-L),
(TA)®' and x:A join to form (I'A}©&',x:A = (I'A)©. The other two cases are argued similarly and
we omit the details.

Lastly, we show the commutativity of the joining relation: if [5;T;A], then [E;A;T7]. The
proof is by induction on the length of the context &. For the base case, when E = (), the proof is
immediate. There are three inductive cases to consider, one for each of the (JOIN-L}), (JOIN-R)
and (JOIN-1) rules. For the first of these, suppose {&’,x:A; ", x:A; A]. By induction hypothesis, we
have that if [E';T;A], then [E;A;T'). Then an application of (JOIN-R) gives us [Z',x:4;A; T, x:AL

The other two cases are argued similarly and we omit the details. 0

As joining is associative, we can informally say “T", A and @ join to form 'A@”. That is, we

can talk about n-way joining and there need be no confusion.

We note that in logics, such as intuitionistic logic or BI, which include conjunctions and
disjunctions, one must develop the notion of prime theory. Prime theories have exactly the struc-
ture required by the semantic clauses for the connectives and are used to prove completeness.
The construction of prime theories is not necessary in the minimal cases of both the AIl- and
AA-calculi, where the function spaces are the only connectives. {The AA-calculus does have the
additive conjunction, but the term model inherits enough structure from the syntax to push the

definitions through.)
Lemma 64 (Model Existence) There is a Kripke 2-A\ model

{TE) 5 [[—}},}(E}A, join, share, |=3)

with a world Wy such that if T Vs, M:A, then T(Z),, Wy ez (M:A) [T]

118 Chapter 4. Kripke resource semantics

Proof We construct such a model out of the syntax of the AA-calculus.

The Kripke Z-AA structure 7(X), is defined as follows. The category of worlds is taken to -
be P(X). The base category is the co-product of C(X),, where each A € ob(P(Z)). The indexing
monoid is given by the context joining relation [—; —; —], as defined by Lemma 63. The functor

T(Z},, indexed by an element A € 0b j(C(Z)), is defined as follows:

Objects Types A such that N proves ¥ 5 A: Type
TE)O)I) =

Arrows E(Z)(Y) arrows

where [@';@;A], © == &'\k(O,A),

and [T @], W = P'\k(T, D).

It is easy to see that T (X), is a functor. Suppose A EATNN LY 5D and I & 17,
For identities, if 7(Z)g(A)(T') = A, then the corresponding functor in Cat to 7' (X)g (ida) (idr)
is given by the identity one on A. For composition, by induction hypothesis twice we have
that 7'(2)6 (A)(1) 720 (3) o (A) (1) and that T(2)o (&) (1) TFLE) 3y, () ().
And we just compose these two functors in Cat to give us the required answer.

We next check that 7'(X), is a Kripke structure.

1. The terminal object in each T(Z)o(A){I") is taken to be the unit additive context 1. We
choose this as the proof theory has the judgement N proves I' by 1 so that 1 always exists

in each fibre. 1 contains no free variables and so is always preserved on the nose by any
f* .
2. The two extensions, D = D®A and D — D X A, are given by the context extension rules

of the type theory.

The first projection map for an intuitionistically extended context
F=x1€4A1,...,%:€An, Xt 11Anst

is defined by p(I') = x1 €Ay, ..., x,€A,. This is well-defined as weakening is admissible in

the syntax. The map g,r 4) is given by the term x where I',x€A 3 x:A.

For the first projection map, we need to check that the appropriate square is a pullback.
Let I' = x1€Ay,...,xz€Ay, A = y1EBy,...,ymEBy and A, y,,11!B,,11 be contexts, and let

t={t1,...,tm):I" — A be a morphism. We need to show that

4.4. Soundness and completeness

t, By
L ()’m+1 !Bm--H) .<_’.__T_._._.2. A, Va1 1Bms1
Pra*{Biny1) PA B
r - A
H

So let © be a context and let

a={ay,... 0,0 =T

and

b={b1, . bt1):0 = A, Y1 1By

119

be morphisms such that a;t = b;pag,,,,- L.e, forall 1 <i<mb; and]a;/x 1']2::1 are equal

terms of type Bifa;/x j]'}ﬂ. Then we define the mediating arrow

a= (ala ree :ambn-i-l):@ — F:t*(ym+1 !Bm-f-l),
as by,.1.1 type-checks.
We need to show that o; prg,.., = a and & {¢,Bnt1) = b.

O P By = mila1/%1, . /X b1 [Xoms1hs -,

xn[al/x! yroo ’an/xn:brn+1/xm~§~1])

m {@yy...,dn)
= q
a;<t:Bm~+«1> = (tl[dl/X§,--- aan/xmbm%l/xm+1],-~-:

tular fx1,... ,_a,,/xn,bm+1/xm+1],
xm—i—l[al/xl yeer :an/xmbmw/xmw}«l])
= {ti]ai/x1,- .- @n/Xn)s- tml@1 /X1, s /%), Bnt1)

= b

We also need to show that o is unique. So suppose

B = (Bl: e >Bn+l>:® — T, t*(ym-i-l !Bm+1)

120 Chapter 4. Kripke resource semantics

is another mediating arrow. ie., B;pra,,, = @ and B;{¢,Bnt1) = b. Then we get the

equations
Biorsn. = lBy/xliin, B/ xliiD)
= (ﬁl:“‘?Bﬂ)
Byt Baat) = (alBi/xilhl e B/ o By /3

@B/ B/ Barr)
Now B = (B1,...,Bns+1) and by the above two equations we have

(ﬁla“‘?ﬁn) = (ai:--‘aan>

and

a[Bi/xiVimn - tmlBi 215D a1} = By bt} -

So we have (ﬁ},...,ﬁ,ﬂ“{) = (a1,...,an,bm+;) == QL.

Lastly, we need to check the strictness conditions. Let T, A and © be contexts, let I' <> A

and A > © be morphisms, and let N prove © -y A:Type. Then we have:

(lr)*A w A[lp]
= A

Irely = (X)e{A)
= (%,A4)

= lrea

t(s*A) = *{Als])
= Alsl]]
= Alt;s]
= (;5)"(4)

({t,s™(A))s (s, A)NB,C) = ({1, Als]):({s,A))(B,C)
= (s,4){(t(8),C)
= (s(t(B)),C)
= {s:1,4){B,C)

4.4. Soundness and completeness 121

where, in the last equation, we assume that N proves I' -5 B:Type and N proves © ks
C:Type.
3. The natural isomophism is given by the abstraction and application rules of the type theory:

I,xcAtyx M:B
I'ts AxeA.M . AxeA.B

where x€A, recall, ranges over both linear x:A and intuitionistic x!A declarations. We need

to check that these do meet the Beck-Chevalley condition:

FH(Ar AT, x€A b5 M:B))
= f*(T'FgAx€A M:Ax€A.B)
= (AFg (Axed M:Ax€A B){f])
= Akg ((AxeA M)[fl:(Axed B[]
= AbgAxeAlf] M[fl:AxeAlf] Bif)
= Al Ax€A[f] M[f,xeAl:Ax€A[f] .B[f,x€A]
= AbFgAxef*(A).(f,xeA) (M):Axef*(A).(f,x€A)*(B)
= Arpn(AXEF(4) Fx (f,x€A) (M):(f,x€A) (B)
= Ay pa)(AxEf7(A) bz (f,x€A) (M B))
= Appa)((fx€4) (Ix€A) 3 (f,x€A)(M:B)}
= Appa)((f,x€4)"(0,x6A Fx M:B))

4. The products in each 7'(£)g(A}(T) are given by the (M&I) and (M&E;) rules.

The model is defined as follows. 7(X), is the Kripke AA-structare defined above. The Z-
operations of the model are given by the constants declared in the signature . The interpretation
{[——]}}(Z)w is the obvious one in which a term (type) is interpreted by the class of terms definition-
ally equivalent to the term (type) in the appropriate component of 7'(Z}. The functors join and
share are defined by the joining relation [~; —; —] and ¥, respectively.

The satisfaction relation f=g in 7(Z) is given by provability in the type theory. That is,
T(Z)e,A s (M:A) [T is defined to be E -z M:A, where X is the sharing-sensitive join of @, A

and T. We must check that this relation satisfies the inductive clauses of the satisfaction relation:

1. 12Fz c:A if and only if c:A € £ is immediate as the Z-operations are the c:As ;

2. B,x:A g x:A if and only if g E,x:A context by induction on the structure of proofs of

both hypotheses ;

122 Chapter 4. Kripke resource semantics

3. EFy M:Ax:A.B if and only if @ g N:A implies W -5 MN:B[N /x}, where [¥;E; @] and
¥ =¥\k(E, ®), holds, in one direction, by (MAE) and, in the other, by an application of

Cut. The intuitionistic case is similar ;
4. By M:A&B if and only if Z b5 mo(M):A and B bz 711 (M):B is immediate by the & rules.
The conditions on the models are met as follows:

1. Monotonicity is met by the fact that all terms are well-defined. i.e., constructed in ac-
cordance with the proof rules. so a valid term will only ever be constructed from valid

sub-terms; and
2. Accessibility is provided by the posetal nature of P(Z).

From Theorem 49, we have that T (Z)g, A k=5 (M:A) [I'] if and only if Z s M:A, where E is
the sharing-sensitive join of @, Aand T.

We can now finish the proof of model existence. We assume the premiss, that T by M:A.
Then, at the initial node (Wo = (}), the model constructed from the syntax has the required prop-

erty; that T(Z)g, Wo &z (M:A) [®], where [I';0; ®). o

Theorem 65 (Completeness) I'ts M:A if and only if T =y M:A.

Proof Theorem 59 (Soundness) shows the forward direction. For the other, we assume I" /5 M:A

and apply Lemma 64. 0

4.5 A class of set-theoretic models
We describe a class of concrete Kripke resource models, in which the AA-structure
(W, [c?, Caf]] | r R}

is given by BIFam:[C, [Ctx?, Set]], where C is a small monoidal category and Ctx is a small, set-
theoretic category of “contexts”. The model is a construction on the category of families of sets
and exploits Day’s tensor product construction {Day70] to define the linear dependent function
space.

We start by describing the indexed category of families of sets, Fam:[Ctx?, Cat]. The base,

Ctx, is a small, set-theoretic category defined inductively as follows. The objects of Ctx, called

4.5. A class of set-theoretic models 123

“contexts”, are (i.e., their denotations are) sets and the arrows of Ctx, called “realizations”, are
set-theoretic functions. For each D € 0bj(Ctx), Fam(D) = {y € B(x} | x € D}. The fibre can be
described as a discrete category whose objects are the ys and whose arrows are the maps 1,.y — y
corresponding to the identity functions id:{y} — {y} on y considered as a singleton set. If E EN))
is an arrow in Ctx, then Fam(f) = f*:Fam(D) — Fam(E) re-indexes the set {y € B(x} | x € D}
over D to the set { f(z) € B(f(z)) | z € E} over E. We are viewing Set as Cat; each object of Set
is seen as an object, a discrete category, in Cat. Because of this, the category of families of sets
can just be considered as a presheaf Fam:[Czx“?, Set], rather than as an indexed category; we will
adopt this view in the sequel.

We can explicate the structure of Ctx by describing Fam as a contextual category [Car86].
The following definition is from Streicher [Str88]. The contextual category Fam, together with

its length and denotation DEN:Fam — Set, is described as follows:

1. 1 is the unique context of length 0 and

DEN(1) = {0}

2. If D is a context of length n and A:DEN(D) — Set is a family of sets indexed by elements

of DEN(D), then D X A is a context of length n+ 1 and

DEN(D x A} = {{x,y) | x e DEN(D), y € A(x)}

If D and E are objects of the contextual category Fam, then the morphisms between them are
simply the functions between DEN(D) and DEN(E).

The codomain of the denotation, Set, allows the definition of an extensional context extension
x. But Set does not have enough structure to define an intensional context extension ®. (The
obvious candidate, such as some tuple-based construction, is really just special kinds of cartesian
product and inherits the x’s structural properties. It may be that Dom has enough structure to
define such a product.) In order to be able to define both x and ®, we denote Fam not in Set
but in a presheaf Set“”, where C is a monoidal category. We emphasize that, in general, C
can be any monoidal category and, therefore, we are actually going to describe a class of set-
theoretic models. For simplicity, we take C% to be a partially-ordered commutative monoid
M = (M,-,e,C). The cartesian structure on the presheaf gives us the X context extension and a

restriction of Day’s tensor product [Day70] gives us the ® context extension.

124. Chapter 4. Kripke resource semantics

‘We note that the restriction of Day’s tensor product that we consider is merely this: consider
the set-theoretic characterization of Day’s tensor product as tuples {x,y, f) and, of all those tuples,
consider only those where the y is an element of the family of sets in x. This is quite concrete, in
the spirit of the Cartmell-Streicher models, and is not to be considered a general construction for
a fibred Day product.

Within the contextual setting, we then have the following definition. The contextual category

BIFam, together with its length and denotation DEN:BIFam — Set™ | is described as follows:

1. 1is a context of length 0 and

DEN(1)(Z) = {6}
2. 1is a context of length 0 and
DEN(/)(—) = M[-,1]

3. If D is a context of length » and A:DEN{D)(X) — Set™ is a family of M -sets indexed by
elements of DEN{D)(X), then

(a) D x A is a context of length n+ 1 and
DEN(D x A)(X} = {{x,y) | x € DEN(D)(X), y € (A(x))(X}}

and

(b) D®A is a context of length n+ 1 and

XYy
DEN(D®4)(2) = {(x.3.f) € [DEND)(X) x (AW)(¥) x M[Z,X © Y]}

The @ extension is defined using co-ends. Here we have used the characterization of
Day’s tensor product as tuples, with the restriction, to account for dependency, of the

triples (x,y, f) to those in which y € A(x)(Y).

If D and E are objects of BIFam, then the morphisms between them are the functions between
DEN(D)(X) and DEN(E)(Y). BIFam is Fam parametrized by 2; objects that were interpreted
in Set are now interpreted in Set™.

Now consider BIFam in an indexed setting. By our earlier argument relating indexed and
contextual presentations of families of sets, BIFam can be seen as a functor category BXfam:|[Ctx°?, Set™]

This is not quite the presheaf setting we require. However, if we calculate

4.5, A class of set-theoretic models 125

[CrxoP [Set™]] = [Ctx% x M, Set]
& (M x Ctx°?,Set]
& M, [Ctx°P, Set]]
then this restores the indexed setting and also reiterates the idea that M parametrizes Fam.
Lastly, we say what the R and 9/ components of the concrete model are. Define (R, +,0) =
(M,, e} and define (W,<} = (M/~,), where the quotient of M by the relation w ~ w-w is
necessary because of the separation of worlds from resources (¢f. BI's semantics [OP99, Urg72]).
This allows us to define 7.(w) = BIFam(r-w). The quotiented M maintains the required prop-
erties of monotonicity and bifunctoriality of the internal logic forcing relation. It is then easy to
check that BIFam(r - w} does simulate 7, (w).
We now check that BIFam:[, [Ctx°P, Set]] is a Kripke resource AA-structure and that it can

be used to define a Kripke resource £-AA-model.
Lemma 66 BIFam: |41, [Ctx°P,Set]] is a Kripke resource AA-structure.

Proof Recall that we view Set as Cat. Each of the following points refers to those of Defini-

tion 51:

1. The terminal object in each fibre is taken to be the one-point set {@}. As this is not indexed

by any variables, it will aiways be preserved on the nose by any f* ;

2. If D € 0bj{Ctx) and A is a set indexed by x € BIFam{Z}(D}, then the two context exten-
sions are given by D x A and D®A. The second projection gp 4 is simply the element-hood
of the set A. The first projection pp 4 is defined for the object D x A by pp a{x,y} = x. The
first projection cannot be defined for the object 2 ® A as the elements of the denotation of
D& A do not consist of pairs. The pullback and other coherences need to be checked but

these are very similar to the calculations for the term model, so we omit them ;

3. The natural isomorphism A is defined for each type of context extension as follows, For
the ® extension, for any set B indexed by the denotation of D ® A (write this as Bpga), we

define curry(Bpga) = AaBp where, for any x € BIFam(X) (D), AsB is defined as

{fBIFam(Y)(A(x)) — U,{BIFam(X ® Y){B(x,y}) | y € BIFam(Y)(A(x))}
| Va € BIFam(Y }{(A(x)) f(a) € BIFam({X ® Y)(B(x,a})}

126 Chapter 4. Kripke resource semantics

For the x extension, for any set B indexed by the denotation of D x A (write this as Bpwxa),

we define curry(Bpya) = I14Bp where, for any x € BIFam(X){(D), II4B is defined as

{g:BIFam(X)(A(x)) ~ Uy {BIFam(X)(B(x,y)) | y € BIFam(X)(A(x))}
| Va € BIFam(X)(A(x)) f(a) &€ BIFam(X)(B(x,a))}

The inverse functor is just application and defined as follows. For the ® case, for any

x € BIFam(X }(D) and y € BIFam(Y }{A(x)) and f &€ Ax(B),

uncurry f = f(y)

For the x case, for any x € BIFam(X)(D) and y € BIFam{X)(A(x)) and g € I14(B),

uncurryg = g(y)

We need to check that curry and uncurry are isomorphisms. We further need to check
the Beck-Chevalley condition. But these are fairly simple calculations about abstraction,
application and substitution in Set, with just the additional, resource parametrization, and

we omit them.

We comment that the description of the function space corresponds to an indexed version
of Day’s function space. And that, though we only require a natural isomorphism for our

lemma, we have described the adjoints to ® and x in Set™ ;

4. The product of two objects M x N in each fibre is taken to be the cartesian product of the

corresponding singleton sets {M} x {N}. |

Lemma 67 BIFam can be extended to a Kripke resource Z-AA-model.

Proof BIFam is defined as follows: BIFam(s)(D) is the family of D-indexed sets at s. That
BIFam is a functor arises due to a combination of the bifunctoriality of C and the functoriality
of the presheaf [Crx°?, Set].

The definition of a model requires the structure to have enough points to interpret the con-
stants of the signature. We can work with an arbitrary signature and interpret constants and
variables as the functors Const: M — Set and D: M — Set respectively.

The interpretation function [~]| gy, IS parametrized over worlds-resources r. The interpre-

tation of contexts is defined following the same idea as the construction of the category Ctx:

4.6. Summary 127

rr r
1. [FxAlgtfam = [TT5man ® [Aripmram
2. [0x'Algrram = [TThrram * [Ar]Bream -

The interpretation of functions is defined using the curry functor and the interpretation of & is
defined using the product in each set.

The interpretation function is defined simuitaneously with the instances of the functors join
and share on Ctx. The definition of these are similar to those for the joining relation [—; —;—]
and the sharing function x of the term model, and we omit the details.

Satisfaction is a relation over M and [Ctx®", Set] with the clauses reflecting the properties of

the eiample model:
1. m ks fiAxA.B [D] if and only if n F a:A [E} implies m - n =5, f(a):Bla/x] [D®E];
2. m =g f:illxA.B [D]if and only if m =5 @A [E] implies m k=5 f(a):Bla/x| [D x E] ;
3. m =5, M:A&B [D} if and only if m |=5 7;(M):A [D] and m f=x 1;(M):A [D], where i € {0,1}.

The conditions on the model are met due to the bifunctoriality of C and the definition of the

interpretation function. _ 0
This concludes the definition of the example model.

It was simpler to work with an unspecified, arbitrary signature. However, if we consider a
signature which encoded the judgements of an imperative programming language (as in Chap-
ter 2), so that we had such Z-operations in each fibre, then we conjecture that BIFam provides
a basis for a good model for an imperative programming language. In particular, we think that
BIFam would model the behaviour of the store quite finely. The basis for this conjecture lies
in work which uses the internal logic to reason about local-global issues in state-ful program-
ming. For instance, O'Hearn has 2 nice example of treating the two context extension operators

as different kinds of storage allocators JO'H99a].

4.6 Summary

This chapter began with the primitive notion of “resource”, as presented in BI's analysis. We
generalized this for a type-theoretic presentation and defined the notion of Kripke resource mod-

els. These are a monoid-indexed set of Kripke functors, in which the indexing monoid is seen

128 Chapter 4. Kripke resource semantics

as providing an account of resource consumption. We showed that these models are sound and
complete for the AA-calculus. We discussed one interesting concrete Kripke resource model,

which was constructed using families of sets.

129

Chapter 5

The Gentzenized AA-calculus

5.1 Introduction

The AA-calculus is a first order linear dependent type theory, parameterized by X, a function
which implements sharing. The type theory is defined as a system of linearized natural deduction.
In this chapter, we present a Gentzen-style sequent calculus for the AA-calculus and prove the
cut-elimination theorem for it.

The main difference between the natural deduction system, hereinafter referred to as sys-
tem N, and the Gentzen-style sequent calculus, hereinafter referred to as system G, is that the
elimination rules are replaced with left rules, which introduce the connective on the left hand
side of the sequent. The systems N and G are equivalent, provided that the system G includes
the structural rule of cut. As a simple example, consider the natural deduction presentation of

propositional linear logic, in which the rules for —o are

Tk (o Fro—y AFd

e E)
I'h§—w ARy

In a Gentzen-style sequent calculus, the (—e E) rule is replaced by

e y,AFE
LAG—yhE

(mo

and the cut rule
'Fo Aolwy

ARy

130 Chapter 5. The Gentzenized MA-calculus

is included in the sequent calculus. The Gentzenization of a predicate type theory basically
follows the same pattern, though there are a clutch of side-conditions relating to capture-avoiding
substitution and definitional equality.

In this chapter, we will follow the technique of Pym [Pym95], where the intuitionistic AIl-
calculus is Gentzenized. With this reference, we remark on the form of the left rules presented
in the sequel. In the All-calculus, the left rule for II is formulated as foEldws:

FkeN:B T,x:Dby M:A
(rir
Iy:I1z:B.Cks M[yN/x]:A

with the side-conditions that y is new and D =g C[N/z]. In the intuitionistic All-calculus, the
structural rules of weakening and contraction are admissible. A consequence of this is that the
above left rule can also be expressed as follows, with a contraction on the principal formula:

@lizB.Ce ZUll TkeN:B T,x:Dbx M:A
Iz M[@N/x]:A

I1L%)

with the side-.conditions thaty & FV(A) and D =g C[N/z]. This rule has the advantage that it has
the sub-formula property and hence yields a resolution (or backchéiniﬁg) rﬁle, thus provuhng a
suitable basis for logic programming [PW91] . Obviously, in weaker Gentzen systems, such as
the one considered in the sequel, the two formulations — (T1L) and (T1L) — are not equivalent.
Hence, the rules we consider will be analogues of the first formulation, though we are mindful of
its disadvantages.

The premiss that @:I1z:B.C € ZUT is due to the fact that cut-elimination relates normalized
proofs to cut-free proofs in the sequent calculus. A consequence of this is that cut-elimination

obtains for f-normal forms only. We expand on this remark in § 5.4.

5.2 The Gentzenized AA-calculus

In this section, we present the system G, a presentation of the AA-calculus as sequent calculus,
in which the elimination rules for A, TT and & of the system N are replaced by left rules. For
the function spaces, we deal only with the dependent cases (A, IT) and omit the treatment of the
(simpler) non-dependent ones (—o, —).

The case for the additive conjunction is a fairly standard one. The elimination rule

5.2. The Gentzenized AN-calculus 131

Tk M:Ao&kAy
r |‘2 ?C,'(M) Ag

is replaced by the following left rule
IxAibs M:B
I, v:Ap&A; -y (M:B){n;(y)/x}

We will omit the treatment of & in the sequel but refer to Girard, Lafont and Taylor [GLT89],
and Troelstra and Schwichtenberg [TS96] for the standard treatment.

The combinatorics of the two types of declarations (linear and intuitionistic) and the two
types of dependent function spaces (linear and intuitionistic) leads us to consider the following

four left rules for the dependent function spaces:

'k N:B AxiDls M:A (%) AL Ty N:B Ax:Dbz M:A (%)

(: TIL)
8,v:Az:B.Cls M[yN/x]:A 2,y:Az!B.C ks M{yN /x]:A

T N:B AxIDFg M:A (%) IThks N:B AxIDby M:A (%)
IAL

(i)
B,y AzB.CHs M[yN/xtA Z,¥!IAB.C g M[yN/x}:A

Table 5.1: The left rules in G

where () denotes the side-condition that x € FV(A), y new, D = C[N/z}, [E";T;(1)A] and E =
BNk, (DAY .

We make a couple of comments regarding the row and column axes of the above square.
Firstly, we can see the first row (i.e., the rules (: AL} and (: TTL}) as prior to the second row, in
the sense that the first row can be derelicted to get the second row. Evidence for this point of
view will be seen in the nature of the proofs of soundness and completeness in the sequel. It can
also be seen by observing that if x is an intuitionistic variable, then so is y. This is because of the
relation between C and D: D is C with all the occurrences of z in the latter replaced by N. We
remark that the first row being prior to the second row also refers to the part of dereliction in the
propositions-as-types correspondence and in the nature of the categorical models of the internal
logic of the AA-calculus.

The second point to make is that in the second column (i.e., the rules {: [IL) and (ITIL})),

the intuitionistic minor premiss " g N:B allows us to form an intuitionistic function space. The

132 Chapter 5. The Gentzenized AA-calculus

reason for this is that the premiss derelicts N:B, allowing z, the abstracted variable of the function
space, to be an intuitionistic variable.
The following two cut rules, one for linear and one for intuitionistic variables, are included
in the system G:
Ths N:A A AN b UV (%) ks N:A AXIAAN Fg UV (%)
E kg (UV) [N/ cu = Fx (UV)N/A]

(Cutt)

where () denotes the side-condition that [E";T; A, A'[N/x]] and E = E'\k(T, (A, A’[N/x]))
Theorem 68 (Structural Admissibilities in G) The following structural rules are admissible:

I. Exchange: If I',x€A,y€B, A5 UV, then I',yeB,xcA,A s UV, provided x & FV(B),
y & FV{A) and "t B: Type;

2. Weakening: If T by UV and 1A -5 A:Type, then B,x1A b5 UV, where [E;T;1A];

3. Dereliction: If[,x:A g UV, then T \x!A b5 UV, where U is T in which the free variables

of A have been derelicted too;
4. Contraction: IfT',x!A,y!A b= UV, then T, x!A b5 (U:V)[x/y).

Proof By induction on the structure of the proof of the premisses. The proof is essentially that

for system N and we omit the details. 0

5.3 Soundness and completeness

In this section, we prove the soundness and completeness of G with respect to N. The results

crucially depend on the presence of the two cut rules in G.
Theorem 69 (Soundness of G) If G proves I'tx UV, then N proves T'ks U:V.

Proof By induction on the structure of the proofs in G. As the two cut rules are admissible in N,

the only additional, and difficult, cases are those of the four left rules.
{: AL) Suppose the last rule of G applied is (: AL)
o ™

ThN:B AxDigMA ()

(s AL)
E,y:AzB.Cly MyN/+:A

5.3. Soundness and completeness 133

where (1) is the side-condition that x & FV(A), y new, D = C[N/z], [E,[;A] and B =
BEN\k(I,A).

By induction hypothesis, we have that N proves I -5 N:B and that N proves A, x:D s M:A.
By induction on the structure of the proof the second of these, we obtain N proves ¥y
AzB.C:Type, for some ¥ C A. We apply {MVar) to this to obtain N proves ¥, y:Az:B.Chy
y:Az:B.C. We then apply (MAE} toN proves ¥, y:Az:B.Cly y:Az:B.C and N proves I' g
N:B to obtain N proves @,y:Az:B.C 5 yN:C[N/z), where [®'; ¥;I"] and ® = &'\x(¥,T).
From this and N proves A,x:D -z M:A we obtain E,y:Az:B.Ct3 M[yN /x]:A, where [E; @; A]
and Z = E'\k(®P,A), by the (Cut) rule.

The argument is summarized by the following deduction in N:

iH on 1ty
. Honm
Yy AuB.C Type '
(MVar) : TH on my
Yoy AuB.ClyyAuB.C Ty N:B () .
(MAE) :
®,y:AnB.C by yN.CIN /2 AxDbFgMA (D)

{Curt)

EyAzB.Cls MiyN/xA

where the side-conditions (1) and (%) denote the ones given in the argument.

(: IIL) Suppose the last rule of G applied is {: T1L):
"o m

w 3‘); N:B AxD Il-z MA (1) :
(:1TIL)

E,yAzIB.Cty MyN/x]:A

where (¥) is the side-condition that x & FV(4), y new, D = C{N/z), [E;'I;A] and E =
ENK(IT,A).

By induction hypothesis, we have that N proves !I' -y N:B and that N proves A, x:D by
M:A. By induction on the structure of the proof the second of these, we obtain N proves
¥ s Az!B.C:Type, for some ¥ C A. We apply (MVar!) to this to obtain N proves
¥, yv:AzIB.Cly y:Az!B.C. We then apply (MA!E)} to N proves W, y:AzIB.C g y:AzIB.C
and N proves II" -5 N:B to obtain N proves ®,y:Az!B.C -5 yN:C[N /2], where [®';'F;!T]

and ® = @'\ k(W, IT"). We note that it might be necessary to weaken ¥ for the join to work

134 Chapter 5. The Gentzenized AM-calculus

properly. From this and N proves A,x:D 3 M:A we obtain E,y:Az!B.C b5 M[yN /x]:A,
where [B';D;A] and E = E"\k(®,A), by the (Cut) rule.

The argument is summarized by the following deduction in N:

IH on
: IH on nig
Yz AzlIB.C Type :
{MVar) . Honm
Y.yAZB.ClyvAzIB.C ThsN:B (1) .
(MAVE) :
D, y:Az!B.Clyg yN:C[N /7] AxDrgMA (§)

(Cur)
EyAZIB.Cly MyN/x:A

where the side-conditions (1) and (%) denote the ones given in the argument.

(!AL) Suppose the last rule of G applied is ('AL)

g o

ThiN:B AxDEzMA (1) :
(:T1L)

EyIAzB.Cly MyN/x]:A

where (F) is the side-condition that x & FV(A), y new, D = C[N/z), [E;[;A] and E =
EN\k(T,A).

By induction hypothesis, we have that N proves I' -y N:B and that N proves A, x!D s M:A.
By induction on the structure of the proof the second of these, we obtain N proves @ 3
Az:B.C:Type, for some @ C A. We apply (MVar) to this to obtain N proves ®, yv:Az:B.Cly,
v:Az:B.C. We then apply (MAE) to N proves ©,y:Az:B.Cty y:Az:B.C and N proves Iz
N:B to obtain N proves W, y:Az:B .C -5 yN:C[N /7], where [, ®;T| and ¥ = ¥"\k(®,I").
We note that it might be necessary to weaken & and I" for the join to work properly. From
this and N proves A, x!D b5 M:A we obtain Z,y:Az:B.C by MyN /x]:A, where [E';Y;A]
and E = E'\k{W,A), by the (Cut!) rule, using the admissibility of dereliction where nec-

essary for the applicability of the cut.

The argument is summarized by the following deduction in N:

IH on 1y
. IH onmy
Oty AzB.C:Type :
(Mvar) .
O, v:AzB.Cls y:AzB.C T N:B (1)
{(MAE) IH on 7y
¥,y:Az:B.C k3 yN:C[N /7] 5 :
M, vIAZB.Chy yN:CIN /7] A x!D by MA

¥
{Cur?)
E,yIAzB.Chx M[yN/x}:A

5.3. Soundness and completeness 135

where ¥} and ¥ are the side-conditions mentioned in the argument.

(!TIL) This case amounts to the one for the (ITE) case in the AlT-calculus. Suppose the last rule
of G applied is ([1L):
o ™

ThsN:B AxDFzMA (P
(L)

B,y AzB Clg MyN/x]:A

~ where (1) is the side-condition that x ¢ FV (A}, y new, D = C[N/z], [E';!T;A] and E =
E\Kk(I,A).
By induction hypothesis, we have that N proves !I' -z N:B and that N proves A,x!D kg
M:A. By induction on the structure of the proof the second of these, we obtain N proves
¥ b5 AzlB.C:Type, for some W C A. We apply (MVar!) to this to obtain N proves
Y. y:Az!B.Cls y:Az!B.C. We then apply (MA!E) to N proves W, y:Az!B.C s y:AzIB.C
and N proves " -5 N:B to obtain N proves ®,y:Az!B.C -z yN:C[N/z], where [®';¥;!T]
and ® = ®'\k{¥,![). We note that it might be necessary to weaken ¥ and [for the
join to work properly. From this and N proves A, x!D bz M:A we obtain E,y:Az!B.CFy
M[yN/x]:A, where [E';®;!A] and B = E'\k(®,A), by the (Cut!} rule, using the admissi-

bility of dereliction where necessary for the applicability of the cut.

The argument is summarized by the following deduction in N:

Honm

: IHon g
Yis AzIB.C Type :
{MVar!) .
YyAzIBC e viAZIB.C e N:B (%)

IH on 1t;

(MAVE) X
@, 1A B .C -5 yN:C[N /) AXIDFz MA (1)

(Cut?)
Z, A28 .Chy M{yN/x:A

where the side-conditions (F) and (}) denote the ones given in the argument.]

Theorem 70 (Completeness of G) If N proves I' s UV, then G proves I' -3 U:V.

Proof By induction on the structure of proofs in system N. The majority of the cases are simple
inductive arguments. The only difficult ones are those for the two dependent function space

elimination rules, (MAE) and (MA!E), which we consider.

136 Chapter 5. The Gentzenized AM-calculus

(MAE) Suppose the last rule of N applied is the (MAZE) rule:
o ’?‘

ThyM-AxAB AbzNA (1)

(MAE)
85 MN:BN/A]

where () is the side-condition that [E";T;A] and & = E'\k(I",A). By the induction hy-
pothesis, we have that G proves I' -z M:Ax:A B and that G proves A b5 N:A. By induc-
tion on the structure of the proofs of these two assertions in G we obtain that G proves

@, x:A 3 B(x): Type, for some @ C I', and G proves ¥ k5, A: Type, for some ¥ C A.

We then apply the (MVar) rule twice: from G proves ¥ Fx A: Type, we obtain G proves
¥, x:A by x:A; and from G proves @, x:4 b3 B(x): Type we obtain G proves ®,x:A,z:B(x) by
- z:B(x). From these two assertions, by an application of (: AL), we obtain G proves

OV, x:A,y:Ax:A B Fyx yx:B(x), where O is the K-sensitive join of @ and V.

From G proves ®W,x:A,y:Ax:A.B s yx:B(x) and G proves A by N:A, we obtain
A®,y:Ax:A B -5 yN:B[N /x] by an application of the (Cut) rule, where AP is the k-
sensitive join of A and ®¥. And from this last assertion and G proves I' by M:Ax:A.B, we
obtain & g MN:B[N /x| by another application of the (Cut) rule, where E is the x-sensitive

join of I" and A®.

The above argument is summarized by the following proof figure:

iHonm IH on Mg
Yig fllz”f'ype O Aty }S(x):Type
Honm — (MVar) (MVar)
: Y oed by xd D, x:A,2:B{x) bg 2:B(x) {t)
IH onmp - :
. Abg N:A OV, A, y:AxA By yuB(x) (1%)
. {Cur}
Frs M:AxAB AD, y:AxA B by yN B[N /4] T
(Cut)
Ebz MN:B[N /4]

where (1), (1) and {f T 1) are the side-conditions mentioned in the argument,
(MA!E) Suppose the last rule of N applied is the (MA!'E) rule:
"o m

T M:AXAB IAFEN:A (1)

(MALE)
5 MN:BN /2|

5.4, Cut-elimination 137

where (t) is the side-condition that [E';I;A] and E = E"\k(T',A). By the induction hy-
pothesis, we have that G proves I' g M:Ax!A.B and that G proves !A 5 N:A. By in-
duction on the structure of the proofs of these two assertions in Gwe obtain that G proves

P, x1A b3 B{x): Type, for some @ C I, and G proves ¥ l-3 A:Type, for some ¥ C A,

We then apply the variable introduction rules. From G proves ¥ I3 A: Type we obtain G
proves ¥, x!A s x:A by the (MVar!) rule. And from G proves @,x!A 3 B(x): Type we
obtain G proves @, x!A,z:B(x} b5 z:B(x) by the (MVar) rule. From these two assertions,
by an application of {!AL), we obtain G proves ®W,x!A,y:Ax!A .B Fy yx:B{x), where ®¥
is the x-sensitive join of @ and ¥'.

From G proves ®Y x!A,y:Ax!A.B s yx:B{x} and G proves !A Fz N:A, we obtain

®W,y:Ax!A By yN:B[N/x] by an application of the (Cut) rule. And from this last asser-
tion and G proves I' s M:Ax!A B, we obtain E -3z MN:B[N/x] by another application of

the (Cut) rule, where Z is the K-sensitive join of I and &Y.

The above argament is summarized by the following proof figure:

IH on 7 1H on mg
Yiyg A:Type O xlA s 'B(x}:Type
Honm -~ (MVar!) {MVar)
: Y.xlAFsxA D, x4, 2:B(x) Fr 2:B{x) {1
TH on 7ty - :TIL)
. ks NiA OV, xIA, ¥ AxIA B s yxiB(x) (1t}
. (Cut}
[y M:AxIAB @Y, 3 AxIAB by yN:B[N /5] (i)
(Cut)
E bz MN:B[N /A
where (1), (11) and (} 1 1) are the side-conditions mentioned in the argument. o

5.4 Cut-elimination

In this section, we prove the cut-elimination theorem for the AA-calculus. There are two ways
to go about proving such a theorem: in the style of Gentzen, where it is shown that G proves a
sequent if and only if G\cut (i.e., G without the cut rule) proves it too; and in a style analogous
to Prawitz’s, where it is shown that B-normal forms are provable in N if and only if they are
provable in G\ cut too [Gen34, Pra65]. Following Pym [Pym95], we shall undertake the proof in
the second style.

The result obtains only for f-normal forms. This corresponds to the fact that for systems

without cut, we do not get completeness for proofs; rather for every proof in such system which

138 Chapter 5. The Genizenized A-calculus

is in normal form we get a proof in the system without cut. Pym notes that the relationship
between the sequent calculus version of the AlT-calculus and the natural deduction version of the
All-calculus is directly analogous with that between Gentzen’s LY and NJ. (One is reminded of
Girard’s “moral™: normal=cut-free [GLT89].)

We prove that the system G\ cut is sound and complete with respect to N. The cut-elimination

theorem follows as a corollary of the completeness part.
Theorem 71 (Soundness of G\cut) If G\cut proves Iy U:V, then N proves T UV,

Proof This is an immediate consequence of the soundness of G with respect to N. O

The proof of completeness of G\ cut with respect to N depends crucially on a simple technical
device, that of replacing the (MAE) and (MA!E) rules in the system N with the following
slightly weaker versions:

e M:AxAB AbsN:A ¥y BIN/x]:Type
Ets MN:B[N/x]

MAEYY

Tk M:AxIA.B Aty N:A ¥y B[N/x]: Type

(MALE)Y
E s MN:B[N /x]

where ¥ ¢, E and = is the k-sensitive join of I" and (!)A. The rules are weaker because of the
additional premiss. However, it is relatively straightforward to prove that the system N¥ which is
obtained by replacing the (MAE), (MAI'E) rules of system N by the above rules, is equivalent to
N. The proof idea, in fact, is already to be found in the meta-theory of N, specifically Lemma 16
(Subderivation II), where we prove that if N proves I' b3 M:A, then N proves I 5. A:K, for some
I"cr.

Lemma 72 (Equivalence of N and N¥) N proves I'tz UV if and only if N proves T'Fs U:V.

Proof If NV proves I' -z U:V, then N proves T g U/:V is immediate.
For the converse, we proceed by induction on the structure of the proofs in N. We only need
to consider the (MAE) and (MA!'E) rules. So suppose the last rule applied is (MAE)

I'rs M:Ax:AB AFsN:A
B ks MN:B[N /4]

5.4. Cut-elimination 139

By induction we have that N proves I' -y M:Ax:A.B, and by induction on the structure of
the proof of that assertion, we have that N¥proves I bz Ax:A.B: Type, for some IV C I". By
inversion, we obtain I, x:A I3, B:Type. By induction again, we have that N©¥ proves A s N'A.
We can assume that the cut rule is admissible in NV; the proof of this is essentially the same
as that for N. Then, from these last two assertions we obtain, by the cut rule, NV proves ‘¥ |-y
B[N /x}:Type , where ¥ is the K-sensitive join of [and A. It is easy to see that ¥ ¢ E. Finally,
we obtain E s MN:B[N/x] by the (MAE)® rule.

The proof for the (MA!E) rule is similar and we omit the details. O

The proof of completeness is facilitated by the following lemma.

Lemhla 73 (Application in B-normal form) If M is a B-nf and if the last rule applied in the
system N of the proof of I' s MCA is either (MAE), (MAVE) or their non-dependent versions,
then M is of the form @Nj ... Ny, for some @ ¢ dom(E)Udom(I") of appropriate type.

Proof By induction on the structure of the proof of I" 3, M:A. We do the (MAE) case.
Suppose I' g MN:B[N /x] because @ t-g M:Ax:A.B and ¥ 5 N:A, with the usual application
side-conditions. If MN is in B-nf, then M cannot be of the form Ax:A .P. Therefore, M is of the

form @Nj ... Ny, for some appropriate type. O

In the sequel, we will take @ to denote either a constant or a variable.

Before we present the proof of completeness, we explain more informally how a proof
in the system N with (MAE) (or (MA!E)Y) as its last step is transformed into a proof in
the system G. i.e, how we end up with a proof in G in which the final judgement is Z g
MN:B{N /x]. By induction hypothesis on the extra premiss in the (MAE) rule we have that G
proves ¥ -5, B[N /x]: Type. So we can declare a variable of type B[N /x]. We then apply a series
of left rules, with, in order, A b5, N:A, Iy bs Nt ANy /x1,. . Nt [Xop—a]s -5 Ty NiiAy
as the minor premisses. The applications of the left rules have the effect, firstly, of building
up a declaration of @ in the antecedent and, secondly, of building up a term of type B[N /x]
in the succedent. Specifically, the i*" application of the left rule builds a variable y; of type
Axip 1 €A [N /X1, Nifxi) .. (Ax:A* B¥)[Ny /X1, ..., Ny /%] in the antecedent and a term
of form y;N;N;_1...N in the succedent. The sharing-sensitive joining of the contexts eventually
leaves = as the final context.

The above description is the basic, underlying method in Pym [Pym95]. We say underlying

140 Chapter 5. The Gentzenized AM\-calculus

because there the above-described prescription is preceded by a construction of the context Fs
IyiiV, o oo Yim—1:Viu—1. where each type V; is the type of y; as described above. This is necessary
because of the form of the left rule adopted there, in which a contraction on the principal formula
takes place. Here, we have to be more careful regarding context construction due to the action of

context splitting.
Theorem 74 (Completeness of G\cut) [f N proves 'tz U:V, then G\cut proves T -3 U:V.

Proof By induction on the structure of the proof of the hypothesis. The main idea is to exploit
the structure of the B-nf U and it’s type, V. The only differences between the systems N and
G\cut are that the rules (MAE), (MA!E) and their non-dependent versions of N are replaced
by the corresponding left rules. The majority of cases are trivial inductive arguments, which we

omip, and some more difficult ones, which we include.

(MAE) Suppose N proves Z -z MN:B[N /x] because N proves I" i3 M:Ax:A.B (call this sub-
proof Tp) and N proves A i-s N:A (call this sab-proof 7t;), with the usual application side-
conditions. By hypothesis, MN is in B-nf, so that, by Lerama 73, M must be of the form

@Nj...Ny, where @ is in ZUT.

The type of @ is given by Ax;€B;.... Ax,€B, .Ax:A* .B*, where abstractions might be
non-dependent ones (Pym actually has a notation for expressing both dependent and non-
dependent function spaces, but we think it is easier for the reader to keep this fact at the

back of his mind) and Ax:A* .B*[N /x] =g Ax:A .B.

* From this part of the proof, we let o denote the substitution [N} /x1],... [Nn/%n]], and let

o; denote the first i substitutions of . That is, o; = [N} /x1,...N;/xi].

By induction on the structure of proof of 7y, we have that

N proves I'; Fx, NiA;G—y

by shorter proofs, where I'; is that part of I" needed to prove Nj:A;0,_1. Therefore, by

induction hypothesis, we have that
G\cut proves I'; 5, Nj:A,0;1

and that each N; is in §-nf.

3.4. Cut-elimination 141

By induction hypothesis, making use of the additional premiss in the (MAE)Y rule, we

have that

G\cut proves ¥ b3 B[N /x]: Type
From this, we get that G\cut proves ¥, y:B{N /x| F-z y:B[N /x].
By induction hypothesis a third time, on 7y this time, we have that

G\cat proves Az N:A

_ From these last two judgements, and by an application of the (: AL) rule, we obtain G\cut

- proves ¥y,y1:Ax:A B g y1N:B[N /x|, where ¥, is the x-sensitive join of ¥ and A.

By the induction hypothesis, we have that G\ cut proves I'; b5 N4 Op.-1. Then, by one

of the left rules (the one we employ depends on the structure of the type of @), we obtain
G\cut proves ¥y, Yim—1 EAXEA} Cp1 AXA® BO b5 Y 1NN B[N /4]

We proceed similarly for another (m —2) (appropriate) left rule applications, until we

obtain
G\cut proves ¥2,y1€EAX2EALC) AxA* B*Glg yi1Ny.. . NpN:B[N/x]

We then take one more such step and apply the appropriate left rule to G\cut proves

'y s Ni:Ay, which we have obtained by an induction hypothesis, to obtain

G\cut proves ¥y, @€Ax;€A] AxA* B'o 3 @Ny...N,N:BiN/x]
It might now be necessary to derelict @ if @ is in X. We can then see that the context is E,
and thus have obtained the required judgement.

There is a non-dependent version of this case, whose proof is done similarly. We omit the

details.

(MAU!E) This case is done similarly to the (MAE) one above. And like the (MAE) case, there

is a non-dependent version of (MA!E), whose details we omit. a

142 Chapter 5. The Gentzenized AM-calculus

Cut-elimination follows.

Corollary 75 (Cut-elimination) Suppose that G proves I s M:A. If M is in §-nf, then G\cut
proves ' -5 MA.

Proof By Theorem 69, if G proves I' 5 M:A then N® proves I' s M:A. By Lemma 72 and
Theorem 74, if M is B-nf then G\cut proves I' -y M:A. 0

5.5 Summary

The earlier presentation of the AA-calculus, in Chapter 2, is in linearized natural deduction form.
In this chapter, we presented a Gentzenization of the original type theory, replacing the elim-
ination rules by left rules. We have proved soundness and completeness results, and a cut-
elimination theorem for the resulting sequent calculus system. The categorical semantics of
the Gentzenized system remains a subject of further investigation.

'f("his chapter begins the investigation of a notion of computation in the type theory. This is one
of proof-search, an application of cut-elimination. We would then like to relate proof-search in
the AA-calculus, the type-theoretic meta-language of the logical framework RLF, to proof-search

in those object-logics which can be uniformly encoded in RLE.

143

Chapter 6

Conclusions

In this thesis, we have presented a study of a logical framework, RLF, for defining natural de-
duction presentations of linear and other relevant logics. RLF consists in a language together,
in a manner similar to that of LE, with a representation mechanism. The language of RLF is
the AA-calculus; the representation mechanism is judgements-as-types, developed for relevant
logics.

The AA-calculus is a first-order dependent type theory with two kinds of dependent function
spaces, a linear one and an intuitionistic one. A large portion of this thesis was devoted to
studying the semantics of the type theory. We gave a natural deduction presentation of the AA-
calcutus, establishing the required proof-theoretic meta-theory. We also gave a sequent calculus
presentation of the type theory and showed cut-elimination for it. The internal logic of the type
theory is a structural fragment of B, the logic of bunched implications. Inspired by the resource
semantics of BI, we studied the categorical model theory of the type theory. We presented an
interesting class of Kripke resource models by a construction on Set®”, where C is a small
monoidal category.

There are several avenues of work that we might wish to explore. We outline these next.

The AA-calculus and the RLF logical framework

The type theory that we have studied has an interesting genesis. Though it arose from an analysis,
primarily, of intuitionistic linear logic, it is structurally much closer to BL. One of the departure

points of the AA-calculus from ILL. is linear dependency. The approach presented here, using a

144 Chapter 6. Conclusions

certain notion of context joining and by restricting IT elimination, is one way that linear depen-
dency can be set up. It is not clear whether some other, more sophisticated context combination,
taking account of well-typedness criteria, might work too.

We have also noted the concept of a “bunches cube”. Within the cube, there are notions
of predicate and polymorphic dependency. But there is also a lattice of cubes, each with its
particular structural properties. There are interesting representational issues here, and the field
can be seen as a programme in van Benthem’s notion of logical pluralism, investigating connec-
tions between meta-properties of proof calculi and structural properties of systems of deduction
[vB93].

This thesis began by stating that logical frameworks provide a foundation for the development
of a generic proof assistant, and then went on to develop a logical framework for linear and other
relevant logics. One practical piece of further work is the development of logical frameworks.
Such a project would involve issues of representation, man-machine interface, and the technology
of proof search. One particularly interesting issue here is the relationship concerning a cognitive
gesture, an object logic proof step, and a meta-logic proof step. The implementation of RLF
should be contrasted to LEGO, which is really an implementation of the language of LF and
does not take the .issues of representation seriously [LP92]. It should also be contrasted to Jape,
which has a highly developed user intérface but a very weak logical and representation foundation
[BS97]. Similar comments apply to other type-theoretic proof assistants (Cogq [BBC*97], ALF
[AGNvS96]) and syntactic calculators (Burstall’s ProveEasy [Bur98]). The development of RLF
explicates the view of the logical framework as an architecture, in which encoding an object logic
is similar to compiling a language and a uniform representation theorem amounts to providing a

proof of correct implementation.

The propositions-as-types correspondence

In Chapter 3, our presentation of BI was mainly for the purposes of establishing the Curry-
Howard-de Bruijn correspondence. We forced ourselves to work with a fragment of BI, a frag-
ment which is very close to being Linear Logic, in fact. What precisely is the internal logic of
the AA-calculus — what is its relationship with regard to Linear Logic and to full BI — is left to

further work.

Quite apart from this, BI has some quite interesting computational interpretations, includ-

145

ing a connection with Reynold’s Syntactic Control of Interference and Idealized Algol [Rey78,

Rey81]. We should like to investigate BI as a programming language.

Kripke resource semantics

In Chapter 4, we gave a class of models based on presheaves. It would be interesting to investigate
whether there are other concrete models too. In their theses, Ambler studied Q-sets (sets over
quantales) and Streicher studied w-sets/realizability and PER structures [Amb92, St:r88]. It is an
interesting question to ask what account of resources these structures might give (and, in fact,
this question might help in clarifying our notion of resource).

’}‘he account that the semantics gives of the syntax is a fairly static one. It would be interesting
to in&restigate the extent to which structures can explain the dynamic nature of proof-search.
For instance, the realizers might contain information on how they were constructed. (One is
reminded of the “proofs as processes” slogan.) We can start by giving a semantic account of the
Gentzenized system.

This leads us to consider the semantics of logical frameworks. This thesis begins this by
stadying the semantics of the language of the RLF logical framework. The next step is to give
models of judged object-logics. Syntactically, the latter can be presented via Martin-Lof’s arities
[NPS90] or Aczel’s Frege structures [Acz80], developed for relevant logics. We will then be in
a position to study the relation between models of RLF-encoded judged object-logics and the
Kripke resource models of the AA-calculus, and to give a semantic account of the judgement-as-
types method of encoding.

Finally, there are several aspects of the Kripke resource models which lead to interesting
programming concepts. For instance, we can ask about the Kliesli category that arises from
considering {C,®,I) and {C, %, 1) as monads. If we can interpret monads as continuations, then

what, computationally, are these two kinds of continuations?

The Gentzenized AA-calculus

In Chapter 5, we started to investigate the notion of proof-search, the basis of logic program-
ming, in the AA-calculus. The further refinement of the Gentzenized AA-calculus can proceed
along the lines of Pym and Wallen {PW91]. This involves the development of resolution rules,

uniform proofs, permutation theorems, unification algorithms, and effective search strategies.

146 Chapter 6. Conclusions

Pragmatically, the role of the quantifiers seems quite interesting; if understood as module inter-
faces, then we get two kinds of consult. We might ask what are the similarities between the
two kinds of consult and the two kinds of storage allocation suggested in O’ Hearn’s regions

analysis of BI [0’H99a].

Towards a theory of meaning

It is important to consider the philosophical ideas underlying the more technical presentation of
Kripke resource semantics. Let us start by considering Kripke's theory of meaning for intuition-
istic logic, and then go on to sketch an idea for a resource-conscious creative subject.

Kripke’s semantics is based on an ideal mathematician, or a creative subject, constructing
knowledge through time. At an initial time Wy, the subject starts off with a certain amount of
knowledge (which may be nil). He extends his state of knowledge and constructs new objects
over time. That is, the subject engages in “positivistic research”. The states of knowledge form
themselves into a partial order. Moreover, as the subject has certain choices for his future activi-
ties, the order is a branching one.

How does the creative subject interpret the logical connectives? Conjunction, disjunbtion and
existential quantification are straight-forward: A A B is known whenever A and B are known; AV B
is known whenever A or B are known; Jx.A is known whenever Ala/x] is known. Implication
presents the problem that A D B might be known without A and/or B being known. The solution
is to interpret implication as follows: A D B is known at stage W; if, at some future stage Wy ;, if
A is known, then B is known too. Universal quantification is dealt with similarly. That is, Vx.4 is
known at state W; if, at some future stage Wiy ;, for all objects a that exist, A[a/x] is known.

Good accounts of the creative subject are given by Dummett [Dum77] and van Dalen [vD94].

One criticism of this semantics is that it captures only a certain aspect of the subjects be-
haviour, the temporal one. This is perfectly adequate for much of traditional mathematical knowl-
edge, where lemmata once proven remain so and can be used or not as the subject feels able. But
it doesn’t account for other concepts, such as state, which mutate or evolve over time, and not
necessarily in a2 monotonic fashion.

The idea is to refine Kripke semantics by providing another dimension, a resource one, which
further indexes the creative subject. One example of a mechanical resource is storage space or

memory, which holds the cumrent state of a computer. X amount of storage space only keeps X

147

amount of state. If the creative subject is to progress, then he has to adjoin, or add, further chunks
of storage space.

There is a sense in which knowledge is a resource. But, in general, these seem to be distinct
categories. Knowledge increases monotonically over time; the creative subject can synthesize
more knowledge from the knowledge he currently has. This does not seem to be the case for
resources. The creative subject cannot create more resources, such as space, from what he has
already. (He can re-use them afterwards — and this is an interesting link to n-variable logics and
similar areas in the logical complexity of space.) Resources put a constraint on the extent of what
the creative subject can construct. We can look back at Urquhart’s semantics for relevant logic
ina s”imilar explanatory light [Urq72]. His semantics is based on pieces of information; these are
the résources which index computation. The pieces of information are distinguished from facts.

'fhe canonical example of a resource-conscious creative subject is that of the bottom-up exe-
cution of a linear logic program. As the program executes through time, it adds to its knowledge
(of answer substitutions). The linear propositions are consumed during the execution. The cost
of the execution is given by the memory freed up by these propositions till the current point in

time.

148

Bibliography

[AB75]

[Abr93]

[Acz80]

[AGM92]

[AGNvS96]

[AHMP92}

[AHMPS8]

[Amb92]

[Avr88]

[Bar84}

AR Anderson and JD Belnap. Entailment: The Logic of Relevance and Necessity.

Princeton University Press, 1975.

S Abramsky. Computational interpretations of linear logic. Theoretical Computer

Science, 111:3-57, 1993,

P Aczel. Frege Structures and the Notions of Proposition, Trath and Set. In J Bar-
wise, HI Keisler, and K Kunen, editors, The Kieene Symposium. North-Holland,
1980.

S Abramsky, D Gabbay, and TSE Maibaum, editors. Oxford Science Publications,
1992.

T Altenki, V Gaspes, B Nordstrma, and B von Sydow. A user’s guide to -
ALF, 1996. Available from Department of Computing Science, University of .

Goteborg/Chalmers.

A Avron, F Honsell, IA Mason, and R Pollack. Using typed lambda calculus to
implement formal systems on a machine. Journal of Automated Reasoning, 9:309—

354, 1992,

A Avron, F Honsell, M Miculan, and C Paravano. Encoding modal logics in logical

frameworks. Studia Logica, 60(1), 1998.

S Ambler. First Order Linear Logic in Symmetric Monoidal Closed Categories.
PhD thesis, Edinburgh University, 1992. Available as Edinburgh University Com-
puter Science Department Technical Report ECS-LFCS-92-194.

A Avron. The semantics and proof theory of linear logic. Theoretical Computer

Science, 57:161-184, 1988.

HP Barendregt. The Lambda Calceudus: Its Syntax and Semantics, volume 103 of
Studies in Logic and the Foundations of Mathematics. North-Holland, 1984.

[Bar92]

[Bar97]

[BBC*97]

[BD97]

[Ben%4]

[Bie94]

[BS97]

[Bur9g]

[Car86}

[Cer96]

[Cog9i]

[CPY6]

149

HP Barendregt. Lambda Calculi with types, pages 118-310. Volume 2 of Abramsky
et al. [AGM92], 1992.

A Barber. Linear Type Theories, Semantics and Action Calculi. PhD thesis, Uni-

versity of Edinburgh, 1997.

B Barras, S Boutin, C Comes, J Courant, J Filliatre, E Giménez, H Herbelin,
G Huet, CM Noz, C Murthy, C Parent, C Paulin, A Saibi, and B Werner. The
Coq Proof Assistant Reference Manual — Version v6.1. Technical Report 0203,

INRIA, 1997.

I Baez and J Dolan. Higher-dimensional algebra III: n-categories and the algebra

of opetopes, 1997, To appear in Advances in Mathematics.

PN Benton. A mixed linear and non-linear logic: Proofs, terms and models (pre-
liminary report). Technical Report 352, Computer Laboratory, University of Cam-

bridge, 1994.

GM Bierman. On intuitionistic linear logic. Technical Report 346, University of

Cambridge Computer Laboratory, August 1994.

R Bornat and B Sufrin. Roll your own Jape logic, 1997. Available from Department

of Computer Science, Queen Mary & Westfield College.

R Burstall. Teaching people to write proofs: a tool. In CafeOBJ Symposium,

Numazu, Japan, 1998.

T Cartmell. Generalised algebraic theories and contextual categories. Annals of

Pure and Applied Logic, 32:209-243, 1986.

I Cervesato. A Linear Logical Framework. PhD thesis, Universita di Torino, 1996.

{(In Italian.).

T Coquand. An algorithin for testing conversion in type theory. In Huet and Plotkin

[HP91], pages 255-279.

I Cervesato and F Pfenning. A lnear logical framework. In E Clarke, editor, 1/th

LICS, New Brunswick, NJ, pages 264-275. IEEE Computer Society Press, 1996.

150 Bibliography

[Day70]

[dBo1]

[Dum?77]

fDun’6]

[GanSO]

[GdQ92]

[Gen34]

[Genb9]

[Geud3]

[Gir87]

[GLT89]

[HHP93]

[HM94]

BJ Day. On closed categories of functors. In S Mac Lane, editor, Reports of the
Midwest Category Seminar, volume 137 of Lecture Notes in Mathematics, pages

1-38. Springer-Verlag, 1970.

NG de Bruijn. A plea for weaker frameworks. In Huet and Plotkin {HP91], pages
40-68.

M Dummett. Elements of Intuitionism. Clarendon Press, Oxford, 1977.

IJM Dunn. Relevance logic and entailment. In Gabbay and F Guenthner, editors,
Handbook of Philosophical Logic, volume I, chapter 3, pages 117-224. D Reidel,
1986.

RO Gandy. Proofs of strong normalization. In Seldin and Hindley [SH80], pages
457-478.

DM Gabbay and RIB de Queiroz. Extending the Curry-Howard interpretation to

linear, relevant and other resource logics. Journal of Symbolic Logic, 57(4), 1992.

G Gentzen. Untersuchungen iiber das logishche Schliessen. Mathematische

Zeitschrift, 39:176-210, 405-431, 1934, Translation in [Gen69].

G Gentzen. The Collected Papers of Gerhard Gentzen. North-Holland, 1969. En-

glish translation, edited and introduced by ME Szabo.

JH Geuvers. Logics and Type Systems. PhD thesis, Katholieke Universiteit Ni-

jmegen, 1993,
J-Y Girard. Linear logic. Theoretical Computer Science, 50(1):1-102, 1987.

J-Y Girard, Y Lafont, and P Taylor. Proofs and Types, volame 7 of Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, 1989,

R Harper, ¥ Honsell, and G Plotkin. A framework for defining logics. Journal of
the Association for Computing Machinery, 40(1):143~184, January 1993,

IS Hodas and D Miller. Logic programming in a fragment of intuitionistic linear

logic. Information and Computation, 110(2):327-365, 1994,

[How80]

[HPS1]

[HPW96]

[HST94)
[IP98]

[Kan00]

[Kri65]

[LP92]

[Mey76]

[ML75]

[ML96]

151

WA Howard. The formula-as-types notion of construction. In Seldin and Hindley

[SH80], chapter 9, pages 479-490.
G Huet and G Plotkin, editors. Cambridge University Press, 1991.

JA Harland, DJ Pym, and J Winikoff. Programming in Lygon: An overview. In
M Wirsing and M Nivat, editors, Algebraic Methodology and Software Technology,
volume 1101 of LNCS, pages 391-405. Springer-Verlag, 1996.

R Harper, D Sannella, and A Tarlecki. Structured theory representations and logic

representations. Annals of Pure and Applied Logic, 67:113-160, 1994,

SS Ishtiag and DJ Pym. A Relevant Analysis of Natural Deduction. Journal of
Logic and Computation, 8(6):809-838, 1998.

I Kant. Immanuel Kants Logik (Edited by GB Jische). Friedrich Nicolovius,
Konigsberg, 1800. In translation: RS Hartman and W Schwarz, Dover Publica-

tions, Inc., 1988.

S Kripke. Semantic analysis of intuitionistic logic I. In JN Crossley and MAE
Dummett, editors, Formal Systems and Recursive Functions, pages 92-130. North-

BHolland, 1965.

Z Luo and R Poliack. Lego proof development system: User’s manual. Technical
Report ECS-LFCS-92-211, Department of Computer Science, University of Edin-
burgh, 1992.

RK Meyer. Relevant arithmetic, Polish Academy of Sciences, Institute of Philoso-

phy and Bulletin of the Section of logic, 5:133-137, 1976.

P Martin-Lof. An intuitionistic theory of types: Predicate part. In HE Rose and
JC Shepherdson, editors, Logic Colloguium °73, volume 80 of Studies in Logic and
the Foundations of Mathematics. North-Holland, 1973.

P Martin-L6f. On the meanings of the logical constants and the justifications of
the logical laws. Nordic Journal of Philosophical Logic, 1(1):11-60, 1996. (Also:
Technical Report 2, Scuola di Specializiazzione in Logica Matematica, Diparti-

mento di Matematica, Universita di Siena, 1982.).

152 Bibliography

{MMO91]

[MTV93]

[NPS90]

[O’H99a}

[O’H99b]

[OP99]

[PHS4]

[Pit92]

[Prab5]

[Pra78]

[PS78]

[PW91]

[Pym90]

JC Mitchell and E Moggi. Kripke-style models for typed lambda calculus. Annals
of Pure and Applied Logic, 51:99-124, 1991.

M Masseron, C Tollu, and J Vauzeilles. Generating plans in linear logic. Theoretical

Computer Science, 113:349-370 and 371--375, 1993,

B Nordstrém, K Petersson, and JM Smith. Programming in Martin-Lof type theory:

an introduction. Oxford, 1990.
PW O’Hearn. A regions interpretation of BI. Manuscript, 1999.

PW O’Hearn. Resource Interpretations, Bunched Implications and the oth-calculus.
In J-Y Girard, editor, Proceedings of Typed Lambda Calculus and Applications,
L Aquila, Italy, 1999.

PW O’Hearn and DJ Pym. The logic of bunched implications. To appear in Bulletin
of Symbolic Logic, 1999.

DJ Pym and JA Harland. A uniform proof-theoretic investigation of linear logic

programming. Journal of Logic and Computation, 4(2):175-207, 1994,
A Pitts. Categorical logic. In Abramsky et al. [AGM92].

D Prawitz. Natural Deduction: A Proof-Theoretic Study. Almqgvist & Wiksell,
1965.

D Prawitz. Proofs and the nieaning and completeness of the logical constants.
In J Hintikka, J Nuniluoto, and E Saarinen, editors, Essays on Mathematical and

Philosophical Logic, pages 25-40. D Reidel, 1978,

R Paré and D Schumacher. Abstract Families and the Adjoint Functor Theorems.
In PT Johustone et ad., editor, Indexed Categories and Their Applications, volume

661 of Lecture Notes in Mathematics. Springer-Verlag, 1978.

DJ Pym and L Wallen. Proof-search in the All-calculus. In Huet and Plotkin
[HP91], pages 309-340.

DJ Pym. Proofs, Search and Computation in General Logic. PhD thesis, Uni-
versity of Edinburgh, 1990. Available as Edinburgh University Computer Science
Department Technical Report ECS-LFCS-90-125.

[Pym92]

{Pym935]

[Pym96]

[Pym97]

[Pym98]

[Rd97]

[ReaB8]

[Rey78]

[Rey81}

[Sal90]

153

DJ Pym. A relevant analysis of natural deduction. Lecture at Workshop, EU Espirit
Basic Research Action 3245, Logical Frameworks: Design, Implementation and

Experiment, Béstad, Sweden, May 1992. (Joint work with D Miller and G Plotkin.).

DJ Pym. A note on the proof theory [of] the AIT-calculus. Studia Logica, 54:199-
230, 1995.

DI Pym. A note on representaiion and semantics in logical frameworks. In
D Galmiche, editor, Proceedings of CADE-13 Workshop on Proof-search in Type-
theoretic Languages, Rutgers University, New Brunswick, NJ, 1996. (Also: Tech-
nical Report 725, Department of Computer Science, Queen Mary & Westfield Col-

lege, University of London.).

DJ Pym. Functorial Kripke models of the All-calculus, 1997. Lecture at Isaac
Newton Institute for Mathematical Sciences, Semantics Programme, Workshop on

Categories and Logic Programming, Cambridge, 1995. Paper(s) in preparation.

DJ Pym. Logic Programming with Bunched Implications (extended abstract). Elec-

tronic Notes in Theoretical Computer Science, 17, 1998.

E Ritter and V de Paiva. New models of intuitionistic linear logic. Manuscript,

1997.

S Read. Relevant Logic: A Philosophical Examination of Inference. Basil Black-
well, 1988.

JC Reynolds. Syntactic control of interference. In Conference Record of the Fifth
Annual ACM Symposiym on Principles of Programming Languages, pages 3946,
1978.

JC Reynolds. The essence of Algol. In JW de Bakker and JC van Vliet, editors,
Algorithmic Languages. North-Holland, 1981.

A Salvesen. A proof of the Church-Rosser property for the Edinburgh LF with 1-
conversion. Lecture given at the First Workshop on Logical Frameworks, Sophia-

Antipolis, France, May 1990.

154 Bibliography

[SHR0]

[SHS3]

[SHY1]

[Ste72]

[Str88]

{Ten92]

[TF92]

[Tro92]

[TS96]
[Urq72]
[vB93]
[vD80]

[vD94]
[Wal90}

[Wan93]

JP Seldin and JR Hindley, editors. To H.B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism. Academic Press, 1980.

P Schroeder-Heister. Generalized rules for quantifiers and the completeness of the
intuitionistic operators &,V,D, A,V,3. In MM Richter et al., editor, Computa-
tion and Proof Theory, Logic Colloguim Aachen, volame 1104 of Lecture Notes in

Mathematics, pages 399-426. Springer-Verlag, 1983.

P Schroeder-Heister. Structural frameworks, substructural logics, and the role of

elimination inferences. In Huet and Plotkin {HP91], pages 385-403.
S Stenlund. Combinators, A-terms and Proof Theory. D Reidel, 1972.

T Streicher. Correctness and Completeness of a Categorical Semantics of the Cal-

culus of Constructions. PhD thesis, Universitiit Passau, 1988,
N Tennant. Aurologic. Edinburgh University Press, 1992.

H Tonino and K Fujita. On the adequacy of representing higher order intuitionistic

logic as a pure type system. Annals of Pure and Applied Logic, 57:251-276, 1992.
A Troelstra. Lectures on Linear Logic. CSLI, 1992,

AS Troelstra and H Schwichtenberg. Basic Proof Theory. Number 43 in Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, 1996.

A Urqubart. Semantics for relevant logics. Journal of Symbolic Logic, 37(1):159--
169, March 1972.

J van Bentherm. The landscape of deduction. In P Schroeder-Heister and K Dogen,

editors, Sub-structural Logics. Oxford Science Publications, 1993.

D van Daalen. The Language Theory of AUTOMATH. PhD thesis, Technical Uni-

versity of Eindhoven, Eindhoven, Netherlands, 1980.
D van Dalen. Logic and Structure. Springer-Verlag, 1994,
LA Wallen. Automated Deduction in Non-Classical Logics. MIT Press, 1990.

H Wansing. The Logic of nformation Structures. Number 681 in Lecture Notes in

Artificial Intellipence. Springer-Verlag, 1993.

