&
wQf Queen Mary
University of London

Secure Information Flow as Typed Process Behaviour
Honda, Kohei; Vasconcelos, Vasco; Yoshida, Nobuko

For additional information about this publication click this link.
http://gmro.gmul.ac.uk/jspui/handle/123456789/4502

Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact scholarlycommunications@gmul.ac.uk


http://qmro.qmul.ac.uk/jspui/handle/123456789/4502

Department of
Computer Science

Technical Report No. 767

Secure
Information Flow
as Typed Process

Behaviour

Kohei Honda
Vasco Vasconcelos

Nobuko Yoshida

o
R
QUEEN MARY

AND WESTFIELD COLLEGE
UNIVERSITY OF LONDON December 1999







Secure Information Flow as Typed Process Behaviour®

Kohei Hondal Vasco Vasconcelos®
Nobuko Yoshida®

! Queen Mary and Westfield College, London, UK.
2 Univeristy of Lisboa, Lisboa, Portugal.
8 University of Leicester, Leicester, U.K.

Abstract. We propose a new type discipline for the w-calculus in which secure information
flow is guaranteed by static type checking. Secrecy levels are assigned to channels and are
controlled by subtyping. A behavioural notion of types capturing causality of actions plays an
essential role for ensuring safe information flow in diverse interactive behaviours, making the
calculus powerful enough to embed known calculi for type-based security. The paper introduces
the core part of the caleulus, presents its basic syntactic properties, and illustrates its use as
a tool for programming language analysis by a sound embedding of a secure multi-threaded
imperative calculus of Volpano and Smith. The embedding leads to a practically meaningful
extension of their original type discipline. Other fundamental technical elements, culminating
in the behavioural non-interference result, are aiso sketched.

1. Introduction

In present-day computing environments, a user often employs programs which are sent or
fetched from different sites to achieve her/his goals, either privately or in an organisation.
Such programs may be run as a code to do a simple calculation task or as interactive
parallel programs doing IO operations or communications, and sometimes deal with secret
information, such as private data of the user or classified data of the organisation. Similar
situations may occur in any computing environments where multiple users share common
computing resources. One of the basic concerns in such a context is to ensure programs
do not leak sensitive data to the third party, either maliciously or inadvertently. This is
one of the key aspects of the security concerns, which is often called secrecy. Since it is
difficult to dynamically check secrecy at run-time, it may as well be verified statically, i.e.
from a program text alone [12]. The information flow enalysis [12, 17, 37] addresses this
concern by clarifying conditions when flow of information in a program is safe (i.e. high-level
information never flows into low-level channels). Recent studies [2, 42, 50, 51, 53] have shown
how we can integrate the techniques of type inference in programming languages with the
ideas of information flow analysis, accumulating the basic principles of compositional static
verification for secure information flow.

The study of type-based secrecy so far has been done in the context of functional or im-
perative calculi that incorporate secrecy. Considering that concurrency and communication
are a norm in modern programming environments, one may wonder whether a similar study
is possible in the framework of process calculi. There are two technical reasons why such an
endeavour can be interesting. First, process calculi have been accumulating mathematically
rigorous techniques to reason about computation based on communicating processes. In
particular, given that an equivalence on program phrases plays & basic role for semantic jus-
tification of a type discipline for secrecy, cf.[53, 45}, the theories of behavioural equivalences,
cf. [21, 23, 38}, which are a cornerstone in the study of process calculi, would offer a semantic

*The extended abstract to appear in Proc. of Buropean Symposium on Programming (ESOFP) 2000,
LNCS, Springer, 2000.



basis for safe information flow in communicating processes. Second, type disciplines for com-
municating processes are widely studied recently, especially in the context of name passing
process calculi such as the w-calculus, e.g. [11, 25, 32, 43, 49, 48, 55]. Further, recent studies
have shown that name passing calculi enjoy great descriptive power, uniformly represent-
ing diverse language constructs as name passing processes, including those of imperative,
functional and object-oriented languages, as well as sequential and concurrent, cf. (39, 54].
These representations are in close relationship with those given in games semantics, cf.
[31, 30, 13}, which suggest precise type structures in which the corresponding representation
in name passing processes can be articulated. Since many real-life programming languages
are equipped with diverse constructs from different paradigms, it would be interesting to see
whether we can obtain a typed calculus based on name passing in which information flow
involving various language constructs can be analysable on a uniform syntactic basis.
Against these backgrounds, the present work introduces a typed w-calculus in which
secure information flow is guaranteed by static typing. Secrecy levels are attached o chan-
nels, and a simple subtyping ensures that interaction is always secrecy-safe. Information
flow in this context arises as transformation of interactive behaviour to another interactive
behaviour. Thus the essence of secure information flow becomes that a low-level interac-
tion nmever depends on a high-level (or incompatible-level) interaction. Interestingly, this
interaction-based principle of secure information flow strongly depends on the given type
structures as prerequisites: that is, even semantically, certain behaviours can become either
secure or insecure according to the given types. This is because types restrict a possible
set of behaviours (which ere information in the present context), thus affecting the notion
of safe information flow itself. For this reason, a strong type discipline for name passing
processes for linear and deadlock-free interaction [11, 32, 55| plays a fundamental role in
the present typed calculus, by which we can capture safety of information flow in a wide
range of computational behaviours, including those of diverse language constructs. This
expressiveness can be used to embed and analyse typed programming languages for secure
information flow. In this paper we explore the use of the calculus in this direction through a
sound embedding of a secure multi-threaded imperative calculus of Volpano and Smith [50].
The embedding offers an analysis of the original system in which the underlying observable
scenario is made explicit and is elucidated by typed process representation. As a result,
we obtain a practically meaningful extension of the original type discipline with enlarged
typability. We believe this example suggests a general use of the proposed framework, given
the fundamental importance of the notion of observables in the analysis of secure computing
systems [37, 50, 52].
Related work. Technically speaking, our work follows, on the one hand, Abadi’s work on
type-based secrecy in the m-calculus [1] (which is in turn based on [4]) and the studies on
secure information flow in CCS and CSP (cf. [14, 36, 47]), and, on the other, the preceding
works on type disciplines for name passing processes. In comparison with [1}, the main
novelty of the present typing system is that it ensures safety of information flow for general
process behaviours rather than that for ground values, which is essential for the embedding
of securely typed language constructs in the calculus. Compared to [14, 36, 47], a key differ-
ence lies in the fundamental role type information plays in the present system for defining
and guaranteeing secrecy. Further, these works are not aimed at ensuring secrecy via static
typing. Detailed comparison of the notion of secure information flow in the present work
with those in {14, 36, 47}, is an important further topic. Other notable works on the study of
security-related aspects of name passing processes in general include [4, 9, 10, 22]. Among
them, Bodei, Degano, Nielson and Nielson [9] utilise a control flow analysis for ensuring
certain secrecy preservation. Hennessy and Reily [22] develop a typed m-calculus address-
ing integrity concerns where, as in the present work, each channel is assigned a security
level. OQur work differs from theirs in that we use the assignment of channels for secrecy
concerns. It is an important subject for future study how we can seamlessly integrate these
two concerns in a practically meaningful way.



In the context of type disciplines for name passing processes, the full use of dualised
and directed types (cf. § 3}, as well as their combination with causality-based dynamic
types, is new, though the ideas are implicit in [16, 5, 24, 55, 15]. Our construction is
based on graph-based types in [55], incorporating the partial algebra of types from [25] (the
basic idea of modalities used here and in [25] originally come from linear logic [16]). The
syntax of the present calculus is based on [48], among others branching and recursion. We
use the synchronous version since it gives a much simpler typing system. The branching
and recursion not only offer high-level abstraction useful for describing behaviour, but also
are essential from the viewpoint of type discipline itself, as we shall discuss in Section 3.
The calculus is soundly embeddable into the asynchronous w-calculus {(also called the v-
calculus [28, 291) by concise encoding [48]. The operational feasibility of branching and
recursion is further studied in [35] (a variant of the calculus is also used in a recent study
on types for distributed software {15]). For non-deterministic secrecy in general, security
literature offers many studies based on probabilistic non-interference, cf. {19, 36, 511. The
incorporation of probability becomes necessary because if we can observe time being spent on
program phrases then unsafe information flow can occur based on the probability distribution
of non-deterministic states induced by scheduling. The present calculus and its theory
are introduced as a basic stratum for the study of secure information flow in typed name
passing processes, focussing on a simpler realm of possibilistic settings. Incorporation of the
probability distribution in behavioural equivalences (cf. [34, 46]), as well as how this can
lead to a useful framework for reasoning about secure behaviour of realistic programs with
respect t0 observables with timing information, is an important subject of future study.

In a different vein, the dependency core calculus (DCC) by Abadi, Banerjee, Heintze and
Riecke [2] presents a general calculus of functional dependency in which many secure {or
causality-based) typed sequential calculi can be soundly embedded. The system is simple, yet
it enjoys a great expressive power. In comparison, the present calculus is more complex while ..
incorporating concurrency and communication as basic elements. The complexity arises-
essentially because it analyses a repertoire of computational behaviours which is broader -
than the pure (call-by-name) functional behaviour. We believe that, for analysing purely
functional behaviours {or the behaviours which are easily embeddable into them), DCC
would offer a clean and basic tool; while if non-pure elements such as non-determinism and
exception are present, the presented calculus and its variants may often offer a more feasible -
framework for analysis. An important element of DCC is its clean denotational semantics:
[45] also used powerdomains to formulate the semantic notion of secrecy. Our sequel offers -
a similar account for the present caleulus in the form of bisimilarities. Qur behavioural
theories, which are briefly discussed in Section 5, are operational, which would be regarded
as both strong and weak points. Behavioural theories often lack mathematical structure
which their denotational counterparts own. However they are useful for reasoning about
both sequential and concurrent computation: in particular, for concurrent computation, the
behavioural theories in general have a merit of offering a wide range of equivalences suitable
to a particular observational scenario. It is notable that some of the typing rules for the
presented typed calculus itself were developed referring to the behavioural notion of safe
information flow. This aspect will be developed in a later study.

As we already noted, one of the main results of the present work is an embedding of the
multi-threaded imperative calculus by Volpano and Smith [50] in our typed w-calculus. The
notion of secrecy level in this and other pioneering works by Volpano, Smith and Irvine, is
closely related to that of the present calculus, in the sense that both represent the lowest level
of tampering at which the program/process would affect the environment. Comparing their
systems and ours at the level of typing, one significant character of the present framework
is that it is based on a fine-grained notion of interaction where observables are represented
explicitly. This can result in a new insight when we translate existing typed secure calculi
into the present one, as we shall discuss in Section 6, taking Volpano-Smith’s multi-threaded
calculus. On the other hand, their framework is more useful than ours for directly reasoning
about secrecy in imperative computation per se. Relatedly we note that their work treats



other notions in imperative secrecy, such ag polymorphic imperative procedure calls [63].
There are various imperative constructs such as continuations and exceptions. How the
present work can be extended to these constructs is an important topic for further study.

For clear presentation of technical ideas, we divide the exposition of the technical ele-
ments into three parts. In Part I, which is this paper, we concentrate on the core part of
the calculus and its basic syntactic properties, and illustrate its use for language analysis
through the embedding of the multi-threaded calculus by Volpano and Smith. This gives a
basic overview of the theory and its use. In Part II (fo appear as [§]), we present the the-
ory of secrecy-sensitive behavioural equivalences and discuss significant properties of typed
terms, using the core calculus given in Part I. This leads to the establishment of: (1} the
behavioural non-interference for the calculus, and (2) via (1}, the non-interference results
for the Volpano-Smith calculus. In Part III, we shall deal with a few extensions of the
calculus, including free name passing and the corresponding behavioural theories.

QOutline of this paper. In the remainder, Section 2 informally illustrates the basic ideas
using examples. Section 3 introduces types and secrecy subtyping, as well as action types.
Section 4 presents the type system and basic examples of typed processes. Section 5 dis-
cusses essential syntactic properties of the typed terms. Sections € gives the embedding
result, and discusses how the result suggests an extension to the original typing system for
the imperative calculus. Appendix A, B, C and D give auxiliary definitions, including the
syntax-directed typing system. Appendix E gives the proofs omitted in the main sections.
The present paper is the full version of the extended abstract [27], offering all proofs of the
formally stated results.
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comments on the condensed version of this paper. Referring to their criticisms, many dis-
cussions/illustrations on technical and conceptual points are added in the present version.
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of Tea Talk in November at QMW . Edmund also offered criticisms on the initial draft. We
also had a nice discussion with Pasquale Malacaria. Our thanks go to Martin Berger for our -
collaboration on security-sensitive behavioural theories.

2. Basic Ideas

2.1. A Simple Principle

Let us consider how the notion of information flow arises in interacting processes, taking
a simplest example. A CCS term o.b.0 represents a behaviour which synchronizes at o as
input, then synchronizes at b as output, and does nothing. Suppose we attach secrecy levels
to each port, for example “High” to a and “Low” to b. Intuitively this means that we wish
interaction at @ to be secret, while interaction at b may be known by a wider public: any
high-level security process may interact at ¢ and b, while a low-level security process can
interact only at b. Then this process represents insecure interactions: any process observing
b, which can be done by a low-level process, has the possibility to know an interaction at a,
so information is indeed transmitted to a lower level from a higher level. Note that this does
not depend on o being used for input and b used for output: &.5.0 with the same agsignment
of secrecy levels is similarly unsafe. In both cases, we are saying that if there is a causal
dependency from an action at a high-level channel to the one at a low-level channel, the
behaviour is not safe from the viewpoint of information flow (by causal dependency between
two actions we mean, roughly speaking, that the dependent action cannot take place without
the presence of the preceding action). Further, if we have value passing in addition, we would
naturally take dependency in terms of communicated values into consideration,

The above informal principle based on causal dependency among interaction® is simple,

1Related ideas are studied in the context of CCS [14] and CSP [47].



but may look basic as a way of stipulating information flow for processes. Since many
language constructs are known to be representable as interacting processes [6, 7, 30, 31,
38, 39], one may wonder whether the above idea can be used for understanding safety
in information flow in various programming languages. In the following, we consider this
question by taking basic examples of information flow in imperative programs.

2.2. Syntax

Let a,b,¢,...2,y,2,... range over nomes {which are both points of interaction and values
to be communicated), and X,Y,... over agent variables. We write § for a vector of names
Yo -+ *Yn-1 With n > 0. Then the syntax for processes, written P,@, R, ..., is given by the
following grammar. We note that this syntax extends the standard polyadic w-calculus with
branching and recursion.?

P = ()P input | P|@ parallel
| ={(v 2P output | (v2)P hiding
|  z[(#).P&(Z).Q] branching input | o inaction
|  Finl{(r2)§).P left selection | X&) recursive variable
| I

T inr{(v 2)§).FP right selection (pX(Z).P){g) recursion

Note there are two kinds of inputs, one unary and another binary: the former is the standard
input in the n-calculus, while the latter, the branching input, has two branches, waiting for
one of them to be selected with associated communication [48]. Accordingly there are
outputs with left and right selections, as well as the standard one. We require all vectors
of names in round parenthesis are pairwise distinct, which act as binders. In the value part
of an output {including selections), say {(- 2)7), names in # should be such that {Z} C {7}
' ({&} is the set of names in &), and the order of occurrences of names in # should be the
_same as the corresponding names in §. In these outputs, (v ) indicate names # are new
names and are exported in the output actions. {{v 2)¥) is written (7)) if Z = §, and (v 7)
if ¥ = Z. We often omit vectors of the length zero (for example, we write inr for inr{))
‘and the trailing 0. The binding and a-convertibility =, are defined in the standard way.
In a recursion {uX (£).P)(7), we require that P is input guarded, that is P is either a unary
input or a branching input, and free names in P are a subset of {Z}. The reduction relation
3 is defined naturally, which we informally explain below by examples and whose formal
definition is given in Appendix A.
We illustrate the syntax by examples. First, the following agents represent a boolean
constant denoting the truth and the corresponding conditional selection, respectively (let ¢
and y be fresh).

T = bo)-Einl|TH) and Iz, P, Q) Lary)yl0PL0.Q]

The recursive definition of T(b) is a notational convention and in fact stands for T(b) def
(X (b).b(c).(Eind | X (b)))(b}). The truth agent first inputs a name ¢ via b, then, via ¢, does
the left selection with no value passing as well as recreating the original agent. By replacing
inl by inr, we can define the falsity. The conditional process invokes a boolean agent, then
waits with two branches. If the other party is truth it generates P: if else it generates ().
We can now show how these two processes interact:

If(z, P, Q)| T{z) — (vy)y[0-P&().Q)|Finl| T(z)) — P|T{z)

Next we consider a representation of imperative variable as a process,

#These extensions are fundamental for the type discipline, in the sense that only in this way type structures
and syntactic structures match: intended types are hard to deduce if we use the encoding of the high-level
syntax into the polyadic w-calculus. Detailed discussions are given in Section 4 after we introduce the typing
system. We also note we later restrict typed terms to those which only use bound name output, cf. §3.1.
This section uses free name output since it is more convenient for Hllustrative purposes.



Var{zv) = zi(z).({v) | Var{zv)) & (v).Var{zv')]

In this representation, we label the main interaction point of the process (called principal
port in Interaction Net [33]) by the name of the variable (here z). It has two branches, of
which the left one corresponds to the “read” option, while the right one corresponds to the
“write” option. If the “read” is selected and =z is received, the process sends the current
value v t0 z, while regenerating the original self. On the other hand, if the “write” branch
is selected and #' is received, then the process regenerates itself with a new value v'. We
can then consider the representation of the asgignment “x := y.” This agent first “reads”
the value from the variable y, then “writes” that value to the variable z.

Assign{zy) o gink{y z).2(v).T inr{v)
By letting the imperative variables and assignment interact, we have the following reduction
sequence.

Var(z1){Var{y2)|Assign{zy) — Var{zl)|Var{y2)|(r2)(Z(2})|z{v).Finr{v))
—  Var(z1)|Var{y2)|Finr(2) —+ Var(z2)|Var(y2).

2.3. Imperative Information Flow in Process Representation

(1) Causal Dependency. We can now turn to the information flow. We first consider the
process representation of the following code, which gives an example of obviously insecure
information flow [37).

.

Here the superscripts “L” and “u” indicate the secrecy levels of variables: thus y.is a high
{or secret) variable and z is a low (or public) variable. This command is insecure intuitively
because the content of a secret variable becomes vigible to the public through z. Following
the previous discussion, its process representation becomes:

Assign(z"y®) ¥ 5 inl(v o). (v). - inr{v) (*)
Note we are labeling channels by secrecy levels. We can easily see that this process violates
the informal principle we stipulated in § 2.1 because its low-level behaviour {(at ) depends on
its preceding high-level behaviour (at y, ¢). Thus this example does seem explainable from
our general principle. Similarly, we can check the well-known example of implicit insecure
information flow

if z¥ then ol := ¢ end

which is insecure because the information stored in z can be indirectly revealed by reading
x, is translated into insecure process interaction

v c).c2[(). Assign{ztyY) & ().0] (%%)

Note again the low-level interactions (in Assign{z"y"}) depend on the high-level interactions
at z and ¢ thus insecurity in the original command is again understandable from the
interaction-hased viewpoint.

(2) Deadlock-Freedom. So far there has been no difficulty in applying our general prin-
ciple to process presentation of imperative information flow. However there are subtleties to
be understood, one of which already arises in the following simple sequential composition.

el =gt L= b

The whole command is considered to be safe since whatever the content of x and y would be,
they do not influence the content of z and w. However the following process representation
of this command seems not safe in the light of our principle:



7 ini(p ¢).cl (vy). T inr(v). T inl{w cz).ck (v2). 7Y inr(vg) (%)

Here we find the situation where the behaviour at low-level ports (at w and z) depend on, via
prefixing, the behaviour at high-level ports (at « and y). Does this mean that our principle
and the standard idea in information flow are incompatible with each other? However, a
closer look at the above representation reveals that this problematic dependency of low-
level actions on high-level actions does not exist in effect, provided that the above process
interacts with the processes for imperative variables which appeared in §2.2. If we assume
so, then the actions at y and z (together with those at z and w) by the above process are
always enabled: whenever a program wishes to access a variable, it always succeeds (in the
interactional parlance, we are saying that interactions at these names are guaranteed to
be deadlock-free). Thus we can guarantee that, under the assumption, the action at say w
above will surely take place, which means the dependency as expressed in syntax does not
exist indeed. Observing that there is no dependency at the level of communicated values
between the two halves of (¥), we can now conclude that the actions at w and 2 do not
causally depend on the preceding actions at y and z.

We note that, even if we loosen the notion of dependency by incorporating deadlock-
freedom, the two translations which are found to be insecure in /S 2. 3 (1), () and (#x), are
still insecure, because, while the insecurity by dependency in synchronisation disappears,
that by dependency in values persists.

(3) Innocuous Interaction. We now move to another subtle example, using the following
commandd.

if 2% then 2P := y* end

While this phrase is usually considered to be secrecy-wise safe [37], its process representation
becomes:

(v c).ef(). 7" in1 (v ).€*(v) T inr(v) & ().0) {3x)

which again shows apparently unsafe dependency between the second action at ¢ and the
third action at y (in the left branch). Note, in this example, the process does get information
at ¢ in the form of binary selection, even though ¢ is deadlock-free. Moreover the output at
y does not occur in the right branch, so that the output depends on the action at ¢ even
observationally. But the preceding study [53, 50] shows the original imperative behaviour
is indeed safe, even in the multi-threaded setting. How can it be so? Simple, because this
command only reads from y, without writing anything: so it is as if it did nothing to y.
Returning to the process representation in (4%}, we find the idea we made resort to in (2)
above, is again effective: we consider this output action as not affecting the environment
(hence not transmitting any information) provided that the behaviour of the interacting
party in the environment is such that invoking its left branch has no real effect — in other
words, if it behaves just as the imperative variable given in § 2.2 does. We call such an
output innoecuous: thus, if we decide to ignore the effect of innocuous actions, we find that
there is no unsafe dependency from the high-level to the low-level (in fact the left branch as a
whole now becomes high-level)., We further observe that the insecure examples in (1) are still
insecure even after the incorporation of the innocuousness. The safety principle discussed
in § 2.1 looks still valid, explaining the information flow in the imperative behaviour from
the interaction viewpoint,

The preceding discussions suggest two things: first, we may be able to formally stipulate
the interactional framework of safe information flow which may have wide applicability along
the line of the informal notion given in § 2.1. Secondly, however, just for that purpose, we
need a non-trivial notion of types for behaviours which in particular concerns not only the
behaviour of the process but also that of the assumed environment. The formal development
in the following sections shows how these ideas can be materialised as a typed process calculus
for safe information flow.



3. A Typed n-Calculus for Secure Information Flow (1) Types

3.1. Overview

In addition to names and agent variables (cf. §2.2), the typed calculus we introduce below
uses 2 set of multiple secrecy levels, which are assumed to form a lattice.® s,s’,... range
over secrecy levels, and s < s’ etc. denotes the partial order (where the lesser means the
lower, i.e. more public). Using these data as base sets, our objective in this section is to
introduce a typing system whose provable sequent has the following form:

', Pr A “aprocess P has an action type A under a base I’ with a gsecrecy index &”

We offer an overview of the four elements in the above sequent.

(1) The base T is a finite function from names and agent variables to types and vectors of
types, respectively. Intuitively if a type is assigned to a channel, then it denotes the
basic structure of interaction at that channel, for example input or output, and selec-
tion or branching. For those with modes ! and 7, we also include refined modalities,
which indicate whether they involve state change or not. When an agent variable is
assigned a vector of types, this indicates a possible vector of names which can be used
as a parameter to that agent variable.

(i1} The process P is an untyped term in § 2.2 which is annotated with types in its bound
names, e.g. a unary input becomes z(i:@).P (here and elsewhere we assume len(&) =
len(y) where len(§) denotes the length of a vector, so that each y; is assigned a type
;). As one notable aspect, we only use those processes whose outputs (in any of three
forms) are bound, e.g. each unary output has a form F(r 7 : &).P* Accordingly we
set names in each vector instantiating agent variables to be pairwise distinct. These
restrictions make typing rules simpler, elucidate basic nature of the present notion of
types, and give enough descriptive power to serve our present purpose. For reference,
the syntax of p is given in Appendix B. It should be noted here that branching and
recursion are not only useful for high-level abstraction but play an essential role in the
typing system, cf. Remark 4.1 later.

(iii}) The secrecy index s in T' b, P A guarantees that P under I" only affects the process
environment at levels at s or higher: that is, it is transmitting information only at levels
no less than s. This “transmission of information” is best understood as affecting, or
tampering, the environment. For this reason we often call a secrecy index a tempering
level. Whether some action transmits information or not, is sometimes subtle, as we
shall discuss as we introduce each typing rule below.

(iv) The action type A gives abstraction of the causal dependency among (actions on) free
channels in P, ensuring, among others, certain deadlock-free properties on its linear
and recursive channels. The activation ordering is represented by a partial order on
nodes whose typical form is pz where p denotes a type of action to be done at . There
is a partial algebra over action types, by which we can control the composability of two
action types {hence of typed processes which own them). This materialises the idea of

3 As an intuition, consider the inverse lattice of subsets of a set {A, B,C}, where A, B, C are three users
{so the top is §i, the bottom is the whole set, and the order is the inverse of the subset inclusion). Then
channels at level {A, B} are those directly or indirectly readable by A and B; while T = @ indicates a channel
which is readable by nobody, or only by some (implicit} superuser. If an observer can interact at {4, B}
then s/he can surely interact at {A, B,C}, but not necessarily {B,C}: thus an observer who can interact
at level s can always interact at level s’ < s, but not necessarily at those levels compatible with s.

4This restricted output is an important mode of communication which arises both in the m-caleulus [44]
and in games semantics [7, 31, 30]. The essence of this mode lies in the potential to control the sharing of
channels. This is fully realised with the present strong behavioural type discipline. This restricted mode of
commurication combined with the extended syntax substantially simplifies the typing rules. The introduced
type structures are in close relationship with those arising in games semantics. The extension of type
structures for free name passing, as well as its significance, will be discussed in Part 111
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Figure 1. Well-formedness and Compatibility

composable environments which we discussed in Section 2. After the introduction of
typing rules, Remark 4.1 gives further illustration of this point.

In the following, we introduce the necessary machinery one by one which is used in the
typing system.
3.2. Types and Subtyping

We start with the set of action modes, denoted m, m/, ..., whose underlying operational ideas
are illustrated by the following table.

¢ Non-linear (non-deterministic) input # Non-linear (non-deterministic) output
4 Truly linear input (truly once) 4+ Truly hnear output (truly once)
! Recursive input (always available) ?  Zero or more output (always enabled)

The notations ! and ? come from Linear Logic {16], which first introduced these modalities.
We also let &, &/, .. ., called mutebility indices, range over {¢, p}. Mutability indices indicate
whether a recursive behaviour is stateful or not: for input, ¢ denotes the lack of state, which
we call innocence, cf. [31], while & means it may be stateful, that is it may change behaviour
after the action; for output, ¢ denotes innocuousness, that is the inputting party is innocent,
while p¢ denotes possible lack of innocuousness. Given these base sets, the grammar of types,
denoted o, 3,. .., are given hy:

a = T i (T, T')
T = 3 I G
oar w= (A | M | M | B&Bl | BEBE | BB g,

Ii

l 7

ao @@ | D5 | [ReR]l | [Aen]l | [Aek] nes,

Types of form {7, 7') are pair types, indicating structures of interaction for both input and
output, while others are single types, which are only for either input or output. We write
md(a} for the set of action modes of the outermost type(s) in ¢, e.g. md{(T*) = {m} and
md({((71)5*, (2)52)) = {m1,mz2}. We often write md{ca} = m for md(c) = {m}. Similarly,
we write sec(r) for the security level of the outermost type in 7, e.g. sec((F)7*) = 5. We
define the dual of m, written 71, as: T=¢, T =4, T =4, J =1, V== 7 and 7 = !. Then the
dual of & type o, denoted by &, is given by inductively dualising each action mode in ¢, as
well as exchanging & and ®.
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Figure 2. Subtyping

Among types, those with body (7) correspond to unary input/output, those with body
[71&75] correspond to branching input (with or without recursion), and those with body
[fi@7%] correspond to output with selections. In say (7)% (neglecting a secrecy level), 7
indicates the type of an action to be done at the newly imported channel by the input. See
Remark 3.2 below for further illustration of nested types.

We say o is well-formed, written & a, if it is derivable from the rules in Figure 2, where
we also define the compatibility relation < over single types. Note that all single types are
well-formed. A pair type is well-formed iff its constituting single types are compatible. In
compatibility, the secrecy level of the input is always the same as or higher than that of the
output: in the case of non-linear types, however, they should be the same. See Remark 3.2
below for the illustration of the underlying ideas.

Next, let us say « is a sublype of B, denoted + a < 8, if this sequent is derivable by the
rules in Figure 1. The following properties of the subtyping relation are notable. The proof
is given in Appendix E.1.1.

Lemma 3.1 (subtype ordering)

(1) < is a partial order.

(2) Let b a < a'. Then (a) md(a) = {t,)} émplies md{e’}) = {1,4}, (b) ? € md()
implies 7 € md(e'), (c) ! € md(a) implies ! € md(c'), and (d) if @ is nonlinear, then
o is nonlinear.

(3 Fa; <8 (i=1,2) and &5 < B2 imply F oy X oo

) Faoandbo <aimplyb o
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Some comments on types, subtyping and compatibility follow.

Remark 3.2 (nested types) Nested types denote what the process would do after ex-
porting or importing new channels (hence covariance of subtyping on nested types): as an
example, neglecting the secrecy and mutability, z : {(*)T denotes the behaviour of doing
a truly linear output at z exporting one single new name, and at that name doing a truly
linear input without importing any name.

(secrecy levels, compatibility and subtyping) Since safe information flow should never
go from a higher level to a lower level, a rule of thumb is that two types are compatible if
such a flow is impossible. Thus, because a flow can occur in both ways at non-deterministic
channels (cf. § 2.1: note, if z is a non-deterministic channel, the existence of an output, or
an input, at x itself is information, since it is possible there is no such action at all), two
non-linear types can be related only when they have the same secrecy level. On the other
hand, for compatibility of linear types, we require that the inputting side is higher than the
outputting side in secrecy levels, since the flow never comes from the inputting party (for-
ther, in truly linear unary types, even the outputting party does not induce flow, cf. footnote
5, page 15). This is because (1) the inputting side is always available, so interactibility-wise
it gives no information, and (2) the information in terms of branching always comes from
the outputting side. Accordingly, the subtyping is covariant for output and contravariant
for input with regpect to secrecy levels.

{mutability index) As we explained already, the index ¢ represents the recursive input
behaviour without state change (innocence) or, dually, the output which does not tam-
per the corresponding recursive processes (innocuousness). p indicates the lack of inno-
cence/innocuousness. Note such an index is only meaningful for recursive behaviours and
their dual output. Naturally we stipulate that an innocent input can only be compatible
with an innocuous output; and an innocent input can only be a subtype of an innocent
input, and an innocuous output can only be a subtype of an innocuous output. While in-
nocuousness and innocence do influence safety in information flow (in fact, an innocuous
output does not tamper the environment at all, so that it is vacuous in terms of its secrecy
level), we do not stipulate this at the level of subtyping, but reflect its property at the level
of typing rules, which is more flexible, cf. §4.3 later.

3.3. Action Types

An action type, written A, A',..., is a finite poset whose elements, called action nodes, are
given by the grammar:

n o= Jlz | tz] $z | 2] x| Tz | gz | X(@.

Among these expressions, Iz indicates z is already used exactly once for both input and
output, so that no more connection is possible at 2. 7 indicates that all actions occurring
at 2 so far have been innocuous. X(Z) (with len{Z)} > 1 always) indicates the point to which
the behaviour recurs. § indicates possibility of nondeterministic input and output. Other
symbols have already been explained in the table in § 3.2

Some notational conventions: we write 14| for the set of action nodes in 4, and <4 (or
simply <) for the partial order. We often write n € A for n € |A|. fn(n) (resp. fv(n))
denotes the set of names (resp. agent variables) in n, and we define sbj(n) (“the subject of
n”) by sbj(pz) = sbj(X (zf)) = z. We also set md(pz) def p, while md(X (%)) is undefined.

An action type is often regarded as a directed graph whose nodes are |4| and whose edges
are s.t. there is an edge from n to n' (denoted n — n') iff n < n’ and, moreover, for no n"
we have ngn” <n'. For example, & —1Ty says that a truly linear output at y becomes
active just after a truly linear input at z. We only use those action types which conform
to a well-formedness condition, which we stipulate below. In the typing rules, we use the
following notations (let {z;} be free names in A).
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A 4 only contains {z; or Ty A™®  z does not occur as subjects in A
7A A only contains Tx;, T'x; or g% A® B disjoint union, with AN B =§
7*A A only contains ?°x; B poZo @piZT1 ® - Pn1Zn—1 (n >0)

We also say x is sctive in A if pz (for some p) is minimal in A.
Now write fn(A4), fv(4) and shi(4) for the sets of names, agent variables and subjects,
respectively, of all nodes in A. We now stipulate:

(1) (operation on modes) A relation = is given by the least symmetric relation including
=T, 0= ¢, and ! x p and p < p with p € {7,7°}., We also set, p ® g, defined when
P X g, as the commutative partial operator generated by: T@L=1, o7 = o7 = |,
T =7, 707T=70" =17, and (Or=1.

(2) {well-formedness) A is well-formed when: (1) shj{n1) # sbj{ns) and fv(ny ) Nfv(ng) = @
if n; # ny € 4, and (2) n; = pyz; with p; € {4, 1} (1 =1,2), f m1 4 ma.

(3) (coherence) Let A; and A; be well-formed. Then A; and A, are coherent, written
Ay = Ag, when: (1) fv(4;)Niv(4ds) = 0; (2) if = € sbj{A;)Nsbj(Az), then pz € 4; and
gr € As such that p x g; and (3) if =,y € sbj(4;) Nsbj(Aa), then px <4, qy implies
9y La; p'z for i # 4.

Note that in the coherence, we prohibit the possibility of having a circular dependency
among combined nodes by the condition (3), as well as stipulating all interacting nodes have
compatible modes. Since composition of two action types is defined only when they are
mutually coherent, the operator ® (together with other two operators) is partial [25], i.e. it
is not everywhere defined. This partiality controls the composability of two typed processes
in the typing system, representing the notion of composable environments (c¢f. §2.1). We
can now introduce the operators on well-formed action types.

(1) (prefix) Assume fn(n) Nfn(A4) = @ and that each node in A as well as n has a mode
from {t,l}. Then n—A4 is an action type with the new minimum node n, otherwise
keeping the original order.

(ii) {composition) Assume A; > As. Then 4; ® A, is a action type defined by:

o (node) |4; ® Ayl ef (pog)z | pr € 41, gr e A} U {nine A, sbin) ¢

sbj(4;),4 # j}.
o (order) <a,04, i generated by: (1) (r<a,n’ or n<y,n') = n <4041,
and (2) (n <4, px, qz <4, 0,0 # ) = n <404, 1, in both rules assuming
n,n' €4; @Ag!
(iii} (hiding) Let A be well-formed and £ be active in A, Le. each z; of ¥ is active in A.
Then A/Z denotes the result of taking off all nodes with subjects & from A, keeping
the partial order on other nodes. 4/% is undefined if # is not active in A

Note that, in (i), if sbj(A;) M sbj{4s) = §, then Ay & A, coincides with the disjoint union
A ® As. We give some examples of action types and their composition.

Example 3.3

(1) Let 4 d*m%fT x, B ‘§=ef4, z 2>ty =t zand C dzefj, w -}y Then: (1) Ax B, Bx=C,
AC; {2 AGB=Ty-1281z, (AOB)eC =tw—=T2)®@Lz0 Jy; and
3) BoC ={{l 2,1t w} >T2)® Ly (denoting the obvious graph}), A®(Be () =
(AeB)el.

(ii) Let A def lr®?yand B &f Te@ Ty X{x). Then A x B,and AOB =lz@ 7y X (),
while both A 2 A and B £ B.

(iii) If A CE=e£‘[‘ z =]y then Afz =} y, while 4/y is not defined.
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Note that, in (i), even when we combine trees to generate a tree, the intermediate state can
be a proper graph: this indicates that, if we wish to own a coherent algebra, we do need
proper graphs even just for dealing with tree-like dependency structures.

The following lemma, gives basic properties of operators. The proof is given in Appendix
E.1.2.

Lemma 3.4 (well-definedness) Assume A, Ay and Ay are well-formed.

(1) If n — A i3 defined, then n — A is well-formed.
(2) If A/¥ is defined, then A/¥ is well-formed.
(3) If Ay x Ay, then Ay © Az is well-formed.

The next lemma says @ is commutative and partially assocliative. See Appendix E.1.3 for
the proof.

Lemma 3.5 {commutativity and associativity) Let A1, Az, Az be well-formed.

(i) Assume A; x As. Then we have Ay < A; and A, © As = A2 ©@ 4.
(ii) Assume A; = Ay and (4; © As) = Ay. Then we have: (1) Ay = Az and Ap < A,
(2) A1 = (42 © Az) and (3) (A1 ® A2) © A3 = A1 © (42 © 43).
(iil) The emply graph @ is the unit for the operation ©.

Finally we note that the present class of action types only incorporate dependency among
truly linear actions via the well-formedness condition. Thus the structure of action types is
always in the form:

B oTte ™ oo fyeX(@e B E

where (®X (%)) shows this item may or may not exist. Extending this simple form, there are
diverse possibilities to represent causeality among actions, some of which are being explored
by the present authors,

4. A Typed =-Calculus for Secure Information Flow (2) Typing Sys-
tem

4.1. Typing System (1) Process Composition and Weakening

We now introduce the main typing rules with illustration (the whole table appears in Ap-
pendix C). We use the following notation: (1) given a base T' {cf. § 3.1}, (1) = : a (resp.
X : @) denotes I'(z) = a (resp. T'(X} = &); and (2) I'- A denotes the disjoint union of
two bases, assuming their domains do not intersect. We also henceforth assume all types
and bases are well-formed. We start from the typing rules for basic process operators: the
inaction, parallel composition and hiding,.

{Zero) (Par) A < Ay {Res)
Trs Pv A (i=1,2) I'z:ak, PrA®pe pe{]L1}
M, 000 Ph, Py | Par A © Ay 'k (va:a)Pr A

Note, in (Par), we use the coherence < and the composition ©, which we introduced in
Section 3. In (Res), we do not allow a name with a mode in {{, 1,7, 7°} to be restricted since
these actions expect their complementary actions to get composed — in other words, actions
with these types assume the existence of actions with their dual types in the environment.
With the complementary actions left uncomposed, the hiding leads to an insecure system:

13



We next present various weakening rules.

(Degs) (Weak-7*) {Weak-3) (Weak-7)
'k, P A Th PpA™ (Weak-7) Ph, PpA™ ks P A®
§<s 7 € md(I'(z)) ', PrA® 7z  I'(z) nonlinear md(T'(z}) = {},1}

T'FsPrA ThHPrA®@?M™r THPrA®T: P PrA®ge Tk PrA®lsx

The degradation rule (Deg,) should be natural considering our account in § 3.1 (iii): it
says that if P under I' is guaranteed to tamper only at the level s or higher, then P is also
guaranteed to tamper only at the level s < s or higher. (Weak-?*) makes sense because 7'z
indicates zero or more innocuous output actions at : even when the type of ¢ at I' does
not say it is innocuous, if no action has taken place yet on z (by A™®), 7'z is meaningful
(regarded as saying “zero innocuous actions”). On the other hand, it is perfectly fine to do
the subsumption of ?*z by Tz, since the latter is more generous (i.e. it allows non-innocuous
questions too}. Note that, by this, the rule which adds Tz in place of ?°z in (Weak-7*) is an
admissible rule of the typing system. (Weak-} weakens a nondeterministic action, which is
understood in the same way as (Weak-7"). In (Weak-J), the lack of actions at truly linear
« is equated to the situation where z is used exactly once for both input and output. This
rule is necessary, for example, for the subject reduction theorem later.

4.2, Typing System (2} Non-Linear Prefix Rules

The rules for prefix actually control the secrecy levels of each action. We start with non-
linear prefixes.

() (<T@ (Out) + (AT <T{x)
T §:f, PoPi@TA® 3z L7+, PoPi @ TA® 4z
Tk 2{f:7).Pr AR ge Tr, Bvi:a)PrA® e

Since the subtyping on non-linear types is trivial w.r.t. secrecy levels, - (*:"')ﬂ"r < I'(x) means
T'(z) has precisely the level 5. Thus, in both (In) and (Out), the initial action at level s is
followed by actions affecting the same or higher levels (because P is typed with s). Note also
all abstracted action nodes (py above) should be active, which is essential for the subject
reduction, cf. § 4. Non-linear prefix rules for branching and selections are essentially the
same. For recursion, we have the following rule.

(Var) Fo; <T(z;)  md{a) = (Rec)

pi=3 {a; nonlinear) Fa; <T'(2;} ao nonlinear

pi = md(a;) = 7 (else) T{&/7}-X:@ b, Pv TA{Z/Z
T X8 Foocfag) X{T) > PF Th, (uX(#:8).P)(F > A

In (Var), the type ap corresponds to the subject of the initial prefix of the recursion (which is
to bind X later in the proof tree}. Note also, again by the subtyping rule, sec{ap) coincides
with sec(I'(zo)). Remembering the level should always elevate in a non-linear prefix, i.e. the
body should be higher in secrecy levels than the subject of the prefix, if the tampering level
of zg is not recorded, then we can have a term like {(uX (zy).2% v . X (zy)) (xy) (inferable if
we stipulate X (zy) to be high), which obviously violates the safe information flow. This is
why the level of zo should be recorded. Alsc note that, in the rule (Var), we place those
names which are the parameter to the variable in the action type: this is because we need
to take into account the existence of possible non-innocuous or non-deterministic actions
which may occur when the variable is instantiated into the real behaviour.

In (Rec), we bind zero or more occurrences of X in P. By the rule (Var), if X ever
occurs ingide P, then the level must have stayed unchanged from the introduction of X
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by the (Var) rule to the binding of X by the (Rec) rule. We also note that, in this and
other recursion rules, we effectively use the fact that names in the parameter vector of each
recursive expression should be pairwise distinct: thus {#/2} is well-defined and, moreover,
always denotes injective renaming.

4.3. Typing System (3) Linear Prefix Rules

Among linear prefix rules, the following shows a stark contrast with the non-linear (In) and
{Out) rules.

(W) (where C/§f =}4B) (Out?) (where O/ =14B)
(®y < T(z) (A% < T{z)

r FiFb, PoTAQC™® T-i:i7 by PoTARC™

Piy2(f:7).Po A® Lo B Tk Zw i ¥).PeA® Ta—B

The notation C/¥ denotes the result of taking off nodes with names among ¥, as well as
stipulating the condition that each y; should be active in ¢. We observe that the “true
linearity” in these and later rules is stronger than those studied in [25, 32], which only
requires “less than once”. In the rule, since s’ is not given any condition in the antecedent,
both rules completely neglect the secrecy level of z in T", saying we may not regard these
actions as either receiving or giving information from/to the environment.® The operation
n— B records the causality.

The next rules show that branching/selection need a different treatment from the unary
cases even if types are truly linear. Intuitively, the act of selection gives rise to & non-trivial
flow of information.

(Bra*) (where C;/7; =I{1B) (Sell) (where C/i ={4B)
&R}y < T() FRen]l < )
I'-§i:fibs Pe?ARCT" (i=1,2) .17 b PPTAQC™

Pig 2{(f1:71). P & (21 72). P2 > A® Jo— B Pt ZTinl{p i :7).Pr A® tz—+B

Here the subtyping is used non-trivially: in (Brat), the real level of z in I" is the same or
lower than s, so the level elevates. In (Sel™), the real level of z is the same or higher, so
the level may go down, but it is recorded in the conclusion. It is notable that this inference
crucially depends on the employment of branching as a syntactic construct: without it,
these rules should have the same strict conditions as non-linear prefixes. See Remark 4.1 for
further llustration of this point.

The final class of rules show the treatment of 17 modalities and mutability indices,
dealing with recursive inputs and their dual outputs, and are most involved. We start with
the variable introduction.

(Var')  Fa; <T(z)
md(ao) = ¢ md(a;) € {7,4,0} (i #0)
T-X:d bk, X{(&) > X (@)

The rule (Var') places the variable together with its parameter in the action type. Note we
give no restriction on s: when the introduced variable is later bound by a recursive prefix,
all potential tampering at free names would have been recorded except the subject of this

5 These actions do transmit channels, but since they are bound they are only the source of information,
not information itself. We can understand this by considering the representation of these actions in the
standard early transition trees. In the representation, there is no branching up to alpha-conversion at
actions at such channels {except those with interleaving actions), indicating, together with the fact that the
action occurs exactly once in each trace, that information flow, or inﬂuence on different paths of behaviours,
‘does not take place at that channel.
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recursion (to be substituted for z5). And this subject is never tampering, so does not count

in terms of secrecy levels.
We can now move to the linear recursion rules. There are two pairs of rules, one for unary
prefix and another for binary prefix. We start with the rules for unary input/output.

(in*) (Out®) (where G/¥ ={B)
b (@he ST(20) Fos ST(2) (M), <T()

P{#/7)-i7:7 X 8 R Po FIQTA{E/Z}@X(E) (s=1) D §7hPr74808pr p€{7,7}
{ D{3/5}-§:7X:G b Po BUQTA{Z/D1@X (o) (s=p) s=p= (s=8Ap=7)

Dy (pX(&:8)xo(f: 7). P teo @ A N 3w 7F).PrAQ BRpx

In (In'}, we check that the process is immediately recurring to precisely the same behaviour
(X{&)) if it is innocent, or, if it is not innocent, it recurs to the same subject (X (zotW;)).
The process can only do free actions with 7“-modes in the innocent branch in addition to the
recurrence (except at 7, which are immediately abstracted), so that the process is stateless
in its entire visible actions. In the conclusion, the new subject zg is introduced with the
mode !. In the dual (Qut®), if the prefix is an innocuous selection (k = ¢), there is no
condition on the level of x (s'), so that the level is not counted either in the antecedent or in
the conclusion (e.g. even if &' = 1 we can have s # 1): we are regarding the action as not
affecting, and not being affected by, the environment (it is not affected since the inputting
party iz always available). However if the action is not innocuous (k = p), it is considered
as affecting the environment (though the action is still unaffected by the environment), so
that we record its secrecy level by requiring s’ = s. Note that, even if it is unary, a ?7-moded
output action may indeed affect the environment simply because such an action may or may
not exist: just as a unary non-deterministic input/output induces information flow.
We next turn to the version of the above two rules which involve branching/selection.

(Bra') {Sel!y {where C/F =i B)

F (R &) e deng S I(ze) Foi<T(z)  (G=1,2) F[R®7]L . e, ST@)
T{E/Z}-§7: T X8 Py o B @74, (/51 X{(E) (5 ==t) Tffy H P 74@C@pr pe{?, 7%}

{ D{#/2}-§;: 7 X 16 ba Py o B @A {F/ D@ X (wodly) (w5=p) #a=p = (=8 Ap=T)

iy (;}.X{f:d’).mg{(gl :’7"1).P3, & (ﬁg ’T“g)Pg})(f} b !zo@(A1®A2) Iy &“ﬁnl{u 71 :?1).P rA®B®px

In (Bra'), which adds complexity, we again check whether the process is imimediately
recurring to the same subject (X (wow;)) or, if moreover the branch is innocent, it recurs to
precisely the same agent (X{&)). Note ©® is used in the conclusion, which is necessary when
there is one innocent branch and one non-innocent branch: in such cases, we cannot adjust
the ?°-mode to the ?-mode in general since we do need 7*-mode for the innocent branch.
Since if 74, and 7A, are inferred under the same base I' we always have A; = A, the
composition A; © A is also well-defined. As an example of such composition, if ?*z is in
an innocent branch and 7z is in a non-innocent branch, the result is 7o ® 7'z = 7z, which
is intultively natural.

The rule (Sel’) is the dual of (Bra') and can be understood as {Out?). Note that, this
time, information flow is induced both by the possible (non-)existence of the action and the
selection of one of the branches.

Remark 4.1 (Representation of Environments) Section 2 discussed how the neces-
sity to assume particular behaviours of the environment is important. The representation of
environments in this sense is carried out in the present typing system by the partial algebra
of action types via < and &. For example, f I' -, P> A ® Iz, then we are assuming the
environment has zero or more ?-actions at & but not l-action at . Thus 'k, @b Tx is
composable with the typed term, while [' -, @' & Iz is not. This affects the notion of safety
in information flow in the following way. A key criterion of the secrecy in the present con-
text is “not to transmit the behaviour at high-level channels to low-level channels.” If we
resirict the channel z to be “output truly linear” for the environment, then the environment
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should necessarily output truly once at z: which means, if this is further unary, there is no
information coming at z (since it is predetermined). What kind of information can come
and go is determined by types, affecting the notion of safety in information flow.

(Nature of Typing Rules, 1) The present typing rules have a certain complexity in
comparison with many foregoing typing systems for the m-calculus, as well as with the
secrecy-based functional calculi such as DCC [2]. The complexity comes from two direc-
tions. First, the calculus deals with various kinds of behaviours, including deterministic and
non-deterministic ones: typing rules should guarantee the secrecy for an arbitrary combi-
nation of non-determinisiic, truly linear or recursively truly linear actions. Second, we are
dealing with more general, or fine-grained, behaviours and their typed algebras than those
of usual programmin languages. For example, ag we shall see in Section 6, an imperative
secrecy calculus utilises a specific class of partial operators (e.g. sequencing) for guarantee-
ing secrecy. These are decomposed into name passing behaviours and their algebra in the
present calculus. Thus typing rules treat arguably more fine-grained forms of typed algebras
which can represent other forms of program composition.

{Nature of Typing Rules, 2) Another important aspect is that the present typing rules
strongly depend on the syntactic structure we employed for the present calculus, in particular
branching and recursion. A simple example is truly lnear branching type. It is well-known
that we can encode such branching structures into the polyadic (and indeed asynchronous
monadic) m-calculus. However it is hard to obtain what corresponds to (Bra*) by such an
encoding. Take z[().P; & ().F2], which is translated as T(v ercp).(cy.Pi|ea.Ps). The output
selection becomes either z{ciep).T1 or z(e1c2).Tz. Note that, by the form of these agents,
¢1 and ¢y should be non-linear: which immediately lowers the tampering level of the first
agent to those of ¢ and es. The secrecy levels of ¢y and ey should be clearly lower than
those in Py and P. Thus the outputting agents above have those tampering levels;, which
are in general lower than what we obtain in the present system. There is also difficulty in
the control of linearity, which we do not discuss here. Similarly for the case of recursion, for
which syntactic analysis of its encoding into replication using types would be harder even
if we fix the form of the encoding. The appreciation of these points led to the choice and
construction of the specific syntax in the present text.

(Variant Rules) We list a refinements of the above typing rules which result in added ty-
pability without changing the behavioural properties they guarantee, though they do make
riles complex. Since innocuous actions never transmit information, dually, innocent actions
never receive information. We can thus refine the above (In') rule thus:

(Invariant) ()} <T(x) F o <T(z)
P{#/2}-§: 7X@ Po pi@TA{d/ 21X (@  (s=¢)
T{E/2 -7 X @ Po e tA{Z/ 2} X (o) (k=p, s =5)
Ths (pX{Z:@)xo{§: )P b lg @ A
In this variant, we do not care the level of the recursive subject provided it is innocent. In
the same way, we can tefine (Bra') as follows.
(Bra'-variant) F [ﬁ&f'g]im&m <T(z) Foy <T(z) (i==1,2)
D{Z/2}-§;:75- X 18 by, P o P @ T4;{Z/ 2} @ X (E) (r;=1)
I{Z/2}-§;: 75X 18 b, Py o 5 @ 2A{T/ 2} @ X (wolly) (s=p, 55 = 5)
I by (X (F:0).20[(F1:71). P & (Fa: 72) Po]){2) b 120 ® (A10432)
In the conclusion we take the meet of s; and so since they can differ when one branch is
innocent and the other is not (if both are innocent or non-innocent, we can adjust their
level by degradation). In such a case, the innocent branch can have a level 81 < s, while the

non-innocent branch should have a level s. As a whole, this process has a tampering level
81 8p =83 M s =31.
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f
sync? def ¢ bool] 4 [@1! dEf [(boo1! )T &booll]} ke
sync} def Ot bool} O var: {(bool ¥abooll])’ .
bool! = & {booll)] , var, % (var;,varé)

bool? ¥ (bool})?

Agents (s” < s’ < s in all cases)

T(b°) & b(c:booll).(Einl | T(H))

(6, P, Q%) & B(w cibootd ).d[().P & ().Q]
b « b ] = ble: booll).(If(b,Einl, Einx) | [b « ¥])
Var(z°b" ) = z[(z: (bool )1 ).(Z(r ¥ 10001’ ).[6' + b]|Var{zh))&(b :bool?). Var(zh')]
Read(z* ,b*" , P*) dﬁfflnl( (boolZ;)‘i’,).z(b:boolz).P
Write(b*,z°, P*) & Zinx (¥’ :booll).([b' « b] | P)
Assign(z®,y° ,PS) g Read(y,b, Write(b, z, P})

Figure 3. Useful process and type abbreviations

4.4, Examples of Typing

We offer a few examples of typed terms. We often use the notation &, which is the dual
type of @, as given in Section 3.2. The abbreviations for types and processes are gathered
in figure 3, where we annotate free names with their security levels, and processes with
tampering levels.

Non-linearity. This example and the next are concerned with the CCS term @.b discussed
in the beginmng of section 2.

Let :-:.ync:"L ()lL be the type of a name used solely for nondeterministic mput synchro-
nization (hence carrying no communication) at security level s. Its dual, syncl, is (). If
we assign sync? to a, and syncf,, to b, then we have seen that secure information flow is
obtained only when s < s”. In fact we can type the process @.b at security level s’ somewhere
below both s and s”. Putting ¢' < s < ", a simple deduction, using rules (Zero), (Out),
{In), {Deg,) and (Weak-), shows that:

a: syncfr b: syncs,, o G.bho gaggh

True linearity. If instead we (iecide that types for ¢ and b ought to be linear, we can put

synct % ()}, and 1ts dual sync? % ()T. In this case we may have a:sync] and b:sync,
for arbitrary s and &, since linear types neglect security levels. Using rules Zero, Out¥, and
InT, we can type the process at the T security level.

a: syncT b: sync Frabeta—=lb

Note that causality is now recorded in the action type.
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Branching. Boolean constants were introduced in subsection 2.2. Let booll def [ o 1T
be the type of a boolean value. Then, using rule Zero followed by Sell, we conclude ¢:

booll F, Zinle 1 ¢. For T(B), let bool), = def (boo }_T) be the type of a boolean constant.
Startmg from the above result, and using rules Var', Par, and In', we can show that

b:booll F, T »!

Let booll be the type of a innocuous name interacting with a boolean constant, that is,
(bool})?,. For the conditional I£(b* P§, F§) introduced in the same subsection, suppose
that the two branches P, and P, can be typed at a security level above that of the boolean
constant b; that is, F; is such that T+ b:booll, Iy Piv 7A®7?'b and s’ < s. Then we can
show that (see appendix E.2.1 for details):

T b:booll, b, If(, P, P2} > A®TD.
The innocuousness of b is used in rule Out® to show that {booll, )% < (booll)l,. For b

whose type is non-innocuous we would not be able to show that (booll,)? < (booll)?,

Copy-cat. The following agent concisely represents the idea of safe information flow in
the present calculus. It also serves as a substitute for free name passing for various purposes,
including the imperative variable and the writing of variables (see below).
[6° « B°]° = blc: booll).(IY, ¢ inl,zinr) | b« ¥'])
This agent transforms a boolean behaviour from & to b. If s’ < s we can show that
b:booll, b :booll b [b « b] > 16TV,

Innocucusness at b, and the restriction s’ < s are important for the conditional (see ap-
pendix E.2.2 for details).

Imperative variable. We give a representation of an imperative variable, alternative to
that presented in section 2.2.

Var{z®b* ) = #(z: (bool)T).(3(v b :bool?).[b'  B]|Var(zbh)) & (¥ :booll). Var(zh')]

By the copy-cat [6], sending a new b’ has the same effect as sending b. If 5’ < 5, we can
show that:

z:vark, bibooll, s Var{z®b) b lz®@7%b.

Note b has the level s' but the secrecy index is still s, since at b the output is innocuous (see
appendix E.2.3 for details).

Reading a variable. To better understand how an imperative variable works, we read a
variable # and instantiate its value under name b in some process P.

Read(z®, 5", P*) ¥ Fin1(z: (boo1%)}).2(b:bool?).P

We start by invoking the left branch of # with fresh name 2 and wait for the reply at this
name. The reply carries & name representing the boolean value stored at the variable. If
"< s <sandT-z:varl, - bibooll, I, Pp 7z ® 7°b, then we can show that

r. :L':var;,, F; Read{z,b, P)¢ Tz,

"The derivation is simple: apply to the hypothesis rule Int followed by Sel} (see appendix B.2.4
for details). The antecedent for rule In* requires that (booll.}¥ <( bools,) =, thus setting
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up the hierarchy of security levels, s” < &' < s. The security level of the boolean constant,
5", is the lowest (in fact, in section 6 boolean constants have no secrecy at all, that is are of
level L). The subtyping precondition further allows the process z(b:bool?).P to be typed
at a level higher than that of & itself. Crucial for Read(x, b, P) to be typed at the higher
level is the fact that the left branch of the type for variables, var!, is innocuous, otherwise
we wouldn’t be able to check the subtyping precondition for rule Sel;.

Writing on a variable. To write the value b on a variable x and go on with process P,
we use the following process, where s’ < s.

Write(b” ,z°, P*) & Tinr (b :bool!).([p' « b] | P)

This time we invoke the right branch of the variable with a fresh name b'. The copy-cat then
links b to ', thus simulating writing bin . If s’ < s and I'-z:var! -b:booll F, Pr22® 7%,
then we can show that

' z:var: - b:booll, -, Write(b,z, P) » Tx.

The derivation comprises two branches, one starting with copy-cat, the other with the
hypothesis. Rule Par joins the branches; rule Sel? completes the tree (see appendix E.2.5
for details). The copy-cat [b'° « bsf}ﬁ sets up the hierarchy levels: boolean value b as the
lowest security level, the security level of the copy-cat is the that of the fresh name b'. Since
the right branch of the type for variables, var’, is non-innocuous, the subtyping precondition
for rule Sel? requires that the security level of Write(b, z, P) is that of z, hence that of b'.

Assignment. The following offers the typing of the behaviour representing =¥ = yb,
which is the prime example for innocuousness in section 2.3. To assign y to z, we read
from y and write in z, using the two abbreviations above.

Assign(z®,y° , P%) &f Read(y, b, Write(b, z, P))
Ifs' <sand T -z:var! - y:booll, ks, Po 7z ® T*y, then we can show that
[.z:var. . y:bool’s, s Assign{z,y, P)v> 7z ® Ty.

Notice that the read operation yields a process of a security level higher than that of y, but
the write part requires this level to be that of .

5. Elementary Properties of Typed Processes

5.1. Basic Syntactic Properties

This section presents basic syntactic properties of typed terms, including the subject re-
duction. They give basic consistency properties of the typing system. We also outline
essential behavioural properties of typed terms through informal discussion, articulating
what it means in general for typed processes to have safe information flow,

The first proposition below says that, if I' b, P A, then A is always consistent with I'.
The proof is mechanical by checking rules in Figures 1/2.

Propesition 5.1 {well-formedness of action types) Suppose I' -y P> A. Then we have: (i)
For each px in A, there exists some a < I'(z), such that either (a) p = md{a), (b) p = ?*
with md{a) = ? or (¢) p = ¢ with & non-linear, and (ii) For each X (&) in A, T(X) = & and
a; < Tlzs).
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The following result says that every typable term has a canonical typing, i.e. whenever P
is typable under T', P has the minimum action type and the highest secrecy index. For the
proof, we introduce an alternative typing system I' IF; P> A which deduces the canonical
type of a given term P and I if it is ever typable, where we delete rules (Deg), (Weak-J),
(Weak-?) and (Weak-g) from the original system. This alternative system is presented in
Appendix D. Subsequently we use the following notation:

A< A iff A=Al ®T% and &' = 4 ® 74 ® T ® 5,

A <g A" means A’ is an action type extending A’. We can now present the basic properties
of the canonical typing systems.

Proposition 5.2 (1) (Fis¥+) Tk, Pr A impliesT' -, Pr A
(2) (the uniqueness of IF) T'Iky, Po Ay and I'lFg, Pb Ay tmply 51 = 52 and Ay = As.
(3) (IF has smaller index and type) I'lb; PrA and by Pr A imply s' < s ond A <q A",

(4) (canonical typing) IfT' F, Po A, then there ezists sy and Ao such that (i) I'ty, P> A
and (ii) whenever I't, P A; we have 51 < sp and Ap <e A

PrROOF: Mechanical by rule induction. n

Using the canonical typing system, we establish the standard properties of the original typing
system. Note the subsumption property holds for channel types even if they are placed in the
base: this is consistent with our intuition that, in I' -, P A, channel types in I" represent
the constraints on the behaviour of P, rather than that of the outside environment.

Lemma 5.3

(1) (closure under a-conversion and renaming) Let P =, Q and fn(Q) Nbn([) = 8. Then
'k P A implies T+, Qr A, Also, for any injective nome substitution ¢ and
assuming bound names are appropriately chosen, T'o &, Po v Ao. Similarly for agent
variobles.

(2) (subsumption) IfI"-z:aby, Pr A andb-a <o/, thenT-z:a' by Pr A,

(3) (narrowing) If - X:& b, Pr A and - a; > B; for each i then T-X:0F, Po A,

(4) (weakening) J[fI't; P> A and x & (), then for any well-formed o we have ' - z:
alt, PrA. Similerly if U b5 P> A and X & (17}, then for any well-formed & we
have' - X:8 ; P A.

(5) (strengthening) If I'-z:a ks Pr A and z & fn(P), then I' b, P> Afx. Similarly if
I' X:db, PvAond X & {P), thenT'F, Pr A,

Proor: See Appendix E.3.1. [

The substitution lemma concerning recursions follows. Notice the difference between
innocuous recursion and non-innocuous recursion. The recursive behaviour at the non-
innocuous channel changes the action types, while one at the innocuous channel does not
effect anything.

Lemma 5.4 (variable substitution)
(1) (non-linear) Suppose I' -, E(&) > A with £ = uX{(Z).P and I'(x) non-linear. Then:
-X:@8t, Pr A implies ThH, P{E/ X} A
(@) (nl) IFT F, £@) > 7A@ 7y with £ ¥ pX (2)20(@:7).P and + ()}, < T(zo), then
T-§i7 X:8 b Po 59 ®TA® X{ogd) implies T+ :7 Fy P{E/X}ppy® TA® 2o
where p} = p; or p} = T with p; = 7",
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(3) (bral) IFT Fy E@F) > 741 © T4z @ lap with £ & pX (@) ol(ih 7)1 & (f : 72)-Pa]
and + {A&R], g, S Tlwo) with k5 = o {(f =1 0r2), then T - : 75 - X :d by,

Po b ® TA; ® X{zo@) implies T-f:% by PEEJX Yo D'y © T4; ® Yo
where pl; = pj; or pl; = T with ply = T* with s < s;.

@) (i) Tk, £@ b 7A@ lmo with £ L 4 X () .20(F:7).P and - (M)}, < T(zo), then
-7 X:8F, Popi @ T*A®@ X{(&) impliesT-7:7F PIE/X} o 57 @ T"A® .
(5) (bral) Suppose T Iy E(@)> 7" A1 &7 Ay @m0 with & & pX (&).ao[(fh 7). PL&(fo: 7). o)
and [%’1&1““‘2]!3,,61&&2 < T{zo) with s = ¢ {j = 1 or 2). Then:
Uiy 7X@ by Popii @7 A;@X(E) implies T-§;:75 by PIE/XIpPTi®T A; ®zg
with s < 5.

ProoF: See Appendix £.3.2. ]

For the closure under the structual rules, algebraic properties on action types play an
essential role.

Proposition 5.5 (closure under =} IfTF, PrA and P=Q then ', Qv A,

PrOOF: See Appendix E.3.3. ]

The following theorem says that whatever internal reduction takes place, its composability
with the outside, which is controlled by both I’ and A, does not change; and that, moreover,
the process ig still secure with a no less secrecy index. Below we let 3 (= U —)*, where
—+ and = are the reduction and the structural congruence on preterms defined as those for

untyped terms (see Appendix B for the formal definitions).

Theorem 5.6 (subject reduction)
IfTF, Po A and P —» P with ba(P) N n(T) = §, then T+, P'p A

Proor: By Proposition 5.5 we only have to consider one step reduction between two prefixed
terms. We use the minimum typing system in Appendix ID and show:

FT s Po A and P s P with bn(P) N fn(T) =8,
then I' -y P'o A" with s < &' and A’ <¢ A.

This implies the theorem by Proposition 5.2 (4). Note that the minimum subtypining system
also satisfles the bagic properties stated in Lemma 5.3 (1,4,5), Lemma 5.4 and Proposition
5.5. For (subsumption-narrowing) in Lemma 5.3, we assume sec(c) = sec(a’). See Appendix
E.3.4 for detail. [ |

The subject reduction is the basis of various significant behavioural properties for pro-
cesses, which include, among others, safe information flow. We conclude this subsection
by basic observations on secrecy levels of well-typed terms. It is useful to introduce two,
mutually dual, basic classifications of single types.

Definition 5.7 Suppose P is typable under I'. Then we say P under I' tempers = at level
s iff P —» P'| R for some P’ such that either:

(i) P’ is input-prefixed (including recursive input) with the initial free name x for which
T'(x) is nonlinear, or

(ii} P’ is output-prefixed with the initial free name z and I'(z) is either ag or {(az, ag) s.t.
one of the following holds: (1) ag is nonlinear, (2) aq is truly linear but not unary, (3)
ag = ('F)Z,H, (4) g = {ﬁ@'f*’z]z,mﬁ%z and P' = zinl{v 7 : 7).P" and k; = p, or {5)
ag = [ADT]Y .« aw, and P/ =zinr(v§: 7).P" and k2 = p.
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If P under I tampers = ai level s for some x then we simply say P under I' tampers at s.

Thus “P tampers at s” says that P does an action at a free name which is either: (a) a non-
linear input/output, {b} a truly-linear selection, or (¢) a non-innocuous 7-moded output.
We can then show:

Proposition 5.8 (honest tampering) Suppose I' -, P> 4 and P under I' tampers at
s'. Then &' > s.

PRrROOF: It is easy by inspecting each prefix rule for P’ in the definition of tampering. We
then use Subject Reduction (theorem 5.6). [ |

The honest tampering says that, as far as we only consider the actions of kinds (a) (b) and
(¢) above induce information flow, which can indeed be justified behaviourally, the derived
sequent I' -5 P A does gurantee that P never touches the environment below s {(and indeed
does so only at s or higher). Note also whenever I' -, P> A is derivable, all subterms of P
is also typed at s or above, so that the same property holds for all subterms of P (under
appropriate extensions of T').

5.2. Discussions: Behavioural Properties of 'I‘yped Terms

The above tamparing proposition gives one simple basis for the non-interference property:
a process interacting at the high-level security never influences a process at the low-level
security. Such properties are often best or necessarily stated using typed behavioural equiv-
alences. In the following we informally discuss basic elements of a behavioural theory of
typed processes in relationship to the notion of safe information flow, leaving its detailed
technical treatment to the sequel [8] to the present paper. We note that the discussion in
the present subsection is not formally used in Section 6.

We first note that behavioural properties of typed terms in the present context include (1)
those which purely concern deadlock-freedom and innocence and (2) those which concern
secrecy-sensitive behaviours of processes. It is important to notice that, as our informal
discussion in Section 2 has suggested, (1) is a prerequisite for (2), i.e. the “safety” in
the context of information flow can be properly formulated only in the context of terms
typed under secrecy-insensitive typing. Therefore it makes sense to consider the behavioural
content of safe information flow in the present calculus in the following two stages.

1. Firstly, we consider a larger set of terms that are typable under the typing system
which differs from that of Section 4 only in that it neglects all secrecy levels. We may
call such terms behaviourally typed terms;

2. Secondly, we stipulate what would constitues a *safe” behaviour in the context of
the enlarged set of terms in (i). This gives a behavioural characterisation of safe
information flow, with which the securely typed terms (i.e. terms typed under the
system in Section 4) should comply.

The same articulation can be applied to behavioural equivalences: we have a basic theory of
bisimilarity in the context of (i), on the basis of which a secrecy-sensitive notion of bisimilar-
ity parameterised by secrecy levels Is constructed. In the latter, the parameterisation by a
secrecy level means we consider the equivalence of two behaviours from the viewpoint of an
observer with a certain security level: thus, for example, two high-level outputs at different
channels are indistinguishable for an observer at a low-level security. Naturally the latter
equivalence equates more terms, as far as securely typed terms go (thus inducing a partial
equivalence on behaviourally typed terms, cf.[45]).

The bisimilarity on behaviourally typed terms uses the labelled transition relation of

form TP 3 AL P (action types are omitted since they are again canonically inferred).
Detailed technical treatment of the transition and related notions need some preparations
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and are beyond the scope of the present paper. In the following, we discuss behavioural
properties informally, emphasising those properties whose statement need neither transition
relation nor bisimilarity.

We start from behavioural properties. We can first easily show that non-trivial modalities,
!, ¢+, and {, in the action type of a typed term, do gurantee existence of the corresponding
actions, as well as expected consequences: ! ensures repeated availability of input actions,
while + and | gurantees, essentially speaking, that the corresponding input/output action
is done exactly once at that channel. Further if a channel with mode ! is given an innocent
type, it has a property that its part with the same free names as before does not change
after the input action, while it may add a new term with newly imported names. These
properties include both liveness and safety properties, and are important for establishing
the concgruence of the induced bisimilarity.

With respect to 5.8, we note that processes which only tamper at levels less than s, as
in the conclusion of the above remark, are regarded as having no significant behaviour by
secrecy-sensitive behavioural equivalences at level s (in particular if its channels are all non-
deterministic, it can be equated with the inaction). Thus whenever I'F; Py o> A and s < s,
wehave ', P Koot Py A where 21‘,8 is some secrecy-sensitive behavioural equivalence. This
is one of the fundamental properties which is often used in various proofs.

Secrecy-sensitive behavioural equivalences can be formulated using various notions of
process equivalences [21, 23, 38]. We have so far studied two of such constructions, both
based on co-inductive definitions. One is a bisimilarity (which has weak and strong versions),
defined on behaviourally typed terms, and another is a basic reduction-closed congruence on
securely typed terms. The bisimilarity offers the notion of safe behaviours for behaviourally
typed terms in the context of information flow: for example, if z is typed as non-deterministic
at level s under I', then if a safe process does an action at « then it should not change the
behaviour of that process up to the bisimilarity at level s' which is smaller than s. The
bisimilarity restricted on securely typed terms is a subcongruence of the reduction-based
equality, which is fundamental for reasoning about behaviours of securely typed terms.

Leaving the technical construction of bisimilarities to the sequel, here we discuss how
the reduction-based congruence can be defined, since it needs lesser machinery. Using the
congruence, we state a most basic property of securely typed terms, a behavioural non-
interference property. First, define the collection of (one-hole) typed contexts following the
typing rules in Section 4. A (I"s-A)-contextis a typed context whose hole is typed under the
triple (T, s, A). Then the notion of typed congruence is naturally defined: it is an equivalence
relation over typed terms which respects typings and which is closed under typed contexts
(by “respects typings” we mean related typed terms should own the identical base, the
secrecy level and the action type).

Now let {22} (“the family of s-sensitive barbed reduction-closed congruences”) be the
maximum typed congruences such that, whenever I' k,, P =, Qb Ap, the following two
conditions hold: (1) if F -+ P’ then Q@ —» Q' s.t. T' by, P &, Q"> Ap; and (2) if Ap is
closed, that is if A only contains nodes of form p;x; with p; € {!, 4} (which says all deadlock-
free actions at free channels are enabled), then, for each x s.t. sec{I'(z)) < s (sec(w} is given
by the lub if & is a pair type), we have P Jgr & Q Uge for p € {1,0}, where we define P {1
as P —» P'| R for some P’ such that P’ is input-prefixed with the initial free name z, dually
for P li,o. We can now state the non-interference result (cf. [17, 1, 37]).

Remark 5.9 (behavioural non-interference) Let C[-] be a (['ysg-Ao)-context. If s < 8o
and gk, Pi b Ag (2 = 1,2), then C[P] 2, C[P].

The statement says that the behaviour of the whole at lower levels is never affected by its
constituting behaviours which only act at higher levels. The proof uses the secrecy-sensitive
typed bisimilarity which we mentioned above. By noting ground constants are representable
as constant behaviours, one may say that the result extends Abadi’s non-interference result
for ground values {1] to typed process behaviours.
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Figure 4. Typing System of Smith-Volpano calculus

6. Imperative Secure Information Flow as Typed Process Behaviour

6.1. A Multi-threaded Imperative Calculus

Smith and Volpano [50] presented a type discipline for a basic multi-threaded imperative
calculus in which well-typedness ensures secure information flow. In this section we show
how the original system can be embedded in the typed calculus introduced in this paper, with
a suggestion for a practically interesting extension of the original type discipline through
the analysis of the notion of observables. We start with the syntax of untyped phrases of
the original calculus, using z,y, 2, ... for imperative variables.

(value) b = texttitt | £f
(expression) e u= % |b]e  andes
(command) ¢ = gme|ency ] en|e if e then ¢ else ¢ | while e do ¢ | skip

He have modified the original calculus in three ways: for simplicity we restrict data types to
booleans,? for convenience we added the skip command, and we use the parallel composition
rather than a system of threads.

The typing system for the calculus is given in Figure 4. We have changed the original type
gystem in three ways. First, secrecy levels are taken from an arbitrary secrecy lattice rather
than the two-point lattice (composed of B and r). Second, variables are assigned secrecy
levels rather than arbitrary command types (variables of command type, possible in the
original system, seem to be of no use [2]). Third, we make the notion of divergence explicit
in the types for commands. Writing s, §',. .. for secrecy levels as before, the extended syntax

5By introducing the indexed branching or the free name passing, any standard constant types can be
treated. However all key arguments stay unchanged from the present restricted setting.
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of the command types follows.
p u= scmdi | s cmdp.

Here s cmdy (resp. s cmdq) indicates convergent (resp. divergent) phrases. In Figure 4, the
base F is a finite map from variables to secrecy levels. Subsumption in expressions is merged
into their typing rules for simplicity. Notice the contravariance in the first two subtyping
rules [53, 50] and the invariance in the last rule.

The types in the original system [50] are embedded into the command types above by
setting

(n)° def - {H emd)® def T cmdy

wy® Lty (L emd)® 2f | omdn

thus making explicit the element of termination in the original types. We note the follow-
ing, identifying a system of n threads (processes) with the corresponding n-fold parallel
composition.

Proposition 6.1 {conservative extension) Let n,n' be types in [50[. Then E F ¢ : g
(resp. n < ') in [50] if and only if E¥ c:n° (resp. n° < 0'°) in Figure 4.

PROOF: See Appendix E.4.1. [ ]

As we shall discuss later, the system in Figure 4 Is quite close to the original system in that
all typed terms enjoy the identical non-interference property as stated in [50].

6.2. Embedding

We start with the embedding of types and bases, which is given in {Type and Base) in
Figure 5. Both command types and bases are translated into two forms, one using channel
types and the other using action types. In [p], a terminating type becomes a truly linear
synchronisation type and a non-terminating type becomes a non-linear synchronisation type,
both described in Section 4.4. {p)) s gives an action type accordingly. [E] is translated into a
basis in our sense, allowing both way interactions at variables. Accordingly (£} is defined.
Notice that the types for the shared boolean constants (tt and ££) are incorporated in the
translation of the basis E.

The original order on the command types is faithfully preserved by the embedding in the
following way.

Proposition 6.2 Let p, p’ be command types. Then p < p' if and only if either (1) sec([p]) >
sec([¢']) end both are truly linear unary, (2) sec([p]) = sec([¢']), [p] is truly linear unary
and [p'] s nonlinear, or (3) [p} = [¢'] and both are nonlinear.

Proor: See Appendix E.4.2. n

Note the secrecy ordering in (1) is consistent with subsumption since truly linear unary types
do not care secrecy levels. The above logical equivalence may be understood as dissecting
command types into (a) the secrecy level of the whole behaviour (which guarantees the
lowest tampering level and which can be degraded by the degradation rule) and (b} the
nature of the termination behaviour (noting “non-linear” means a termination action is not
guaranteed).

We next turn to the embedding of terms into processes, given in Figure 5. The framework
assumes two boolean constant agents whose behaviours are given in Section 2.2 and which
are shared by all processes, with principal channels # and ff. These free channels are given
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{Type and Base)
[s cndy] & syncl (s cmda))s L g ] ¥ ivar, - ffivary (O) E e 7
[s cmdn] o syncl (s cmdn) CF of [Ez:5] def [E]-z:var, (E-z:s) % [E] 1z

(Command)

[BFskip:pl; &7

[Brese:oly ¥ (ol [ er ol |91 F ez : pls)

[Etecilez:ply & i, (Il INAE - e : s [ IEF 22 plsy | FrfoF)

[Braz=c:pl; ¥ evalle]E () Write(d*',2°, ) (s = E(z), s = sec(e)g)

[E+ if e then c; else ¢ : ply def evalle}Z (5°).I800°, [EF e1: 0], [EF ca:pls) (s =sece)g)

[Erwhileedoc: gy € (wg: (ol )@ | £(fo7)  (s=sec(p), E={F:5}, as=var,)

where £ % uX (£, g: (L. [ol), :4). g.evalle]” (b°). 66, ([BFc: 0], | X (F9), T)

{Expression)

eval[g]Z(6°).P ¥ Read(z®,b*, P) (s' = E(z))

eval[b]Z(6°).P & Link(b*, [b*], P)

evalle; and e,]F(8°).P ¥ evalfe JB(b5 ).evalle]E (b32).I6(b5* , Link(b%, b32, P), Link(b°, b5, P))
(51 = sec{e)) g, 82 = sec(ex)m, s > 81 U sg)

Link(8*, b , P9} % (0 bvar,) (P | [b « ¥ (s' < 9)
(Value)
fee] ¥ [££] < f
(Secrecy of an expression)
sec(z) g Lef E{z} sec(b) g L sec(e; and ex) g &f sec{er) g Usec(es)m

- All abbreviations are from Figure 3.

Figure 5. Translation of the Smith-Volpano calculus

the L-level, which is in accordance with Smith and Volpano’s idea that constants have no
secrecy.”

In accordance with the translation of types, each command becomes a process which,
when it terminates, emits an output signal at a channel given as a parameter, typically f
(cf. [6, 38]). We are using copy-cat in Section 4.4 to represent the functionality of value
passing. One complication arises concerning the assignment, conditional and while-loop, in
their use of the evoluation agent evalle]®(b*).P. This agent interacts with variables and
constants, names the result as b with security level s, and uses it in P (we may easily extend
the encoding of and to other operators). The translation of expressions is in the {Expression)
part of the figure. H expression e is typable with the Smith-Volpano system in Figure 4,
and process P can be typed at security level s, assuming a boolean constant b of a lower
security level s/, then evalle]®(b*') is typable as well.

THowever we can add secrecy levels to constants, which may conform to the approaches in secure function
caleuli [2, 42].
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Lemma 6.3 (Eval) If Ete:s, and - [E] - b:booll, s P 7AR(T);®@7b where s' < 5
and {EY) C A, then T"- [E] F, evalle}? (b°).P v A® (7)) s.

ProOF: The proof is by induction on the length of the derivation E + e : s, and uses the
results for Read and Link (propositions E.4 and E.7). See Appendix E.4.4 for details. |

The encoding of terms should be easily understandable, following the known treatment
a8 in {38]: the interest however lies in how typability is transformed via the embedding, and
how this transformation sheds light on safe information-flow in the original system.

The key result concerning the typability says that typability in Smith-Volpano system
implies the typability of the embedded term in our system.

Theorem 6.4 (Soundness) If Et c:p, then [B]- f:[o] Fs [E & ¢ : ply > (EY® o)
where s = sec(p).

ProoF: The proof is by induction on the length of the derivation F F ¢ : p, uses the Eval
lemma, and the results of the examples in section 4.4. When the last rule is (subs), we note
that the original rule can be decomposed into two rules:

Elbc:semdg & <s Elc:scmdy s <s
- (subs-2)
ot s emdy Fe:scmdqy

{subs-1)

In both cases we use degradation. In second case we note that security levels are arbitrary
for linear types, and that all other cases (including assign) work when f is linear as well as
non-linear. See Appendix E.4.5 for details. -

Note the sequent uses the dual of {E)), since {(E) itself represents the behaviour of the
variables. The sequent makes explicit the decomposition of the original command type, first
as the interface type, second as its secrecy index, and third as the action type.

In terms of the soundness of subsumption mentioned above, it is interesting to observe
how the encoding illustrates the reason why the divergent command type cannot be elevated
as the convergent command types. Let p = s cmdy in the translation of EF |- whileedoc: p
in Figure 5. Then we can see, in the encoding, the body of the loop, which is at level
s, depends on the branching at level sec{e)g < s lowering s can make this dependency
dangerous, hence we cannot degrade p as in the convergent types. Also note this argument
does not use the restriction s = L in the original type discipline.

Remark 6.5 The typability of the embedding suggests that the behaviours of the original
typed terms would indeed be secure in terms of information flow. This can be formalised as a
non-interference of the original system via the behavioural interference noted in Remark 5.9
and Theorem 6.4, together with a few basic equational and operational correspondences
between original terms and their encoding (using the map of the environment in Figure 5).
This is the possibilistic non-interference for the multi-threaded imperative calculus, first
established in [50]:

Ebai~soa AEblcipAle,o) ol = (c,02) »obst. BElol ~;0h .

Here o7 ~¢ g means o and oo differ only in variables at levels above s. The result holds
for all terms typable in rules in Figure 4, including typed terms not coming from [50]. We
note the arguments in the proof do not depend on the restriction to boolean types; and that
the same result holds for two different operational semantics for the original language.
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6.3. Termination as Observables

After the preceding development, a natural question is whether we obtain any new informa-
tion by doing such an endeavour or not. We think about this question in this subsection,
and present a technical development which may answer affirmatively to this question.

We first return fo the restriction of the original system where we only allow the level
4 for divergent commands. This does seem a strong constraint, especially with multiple
security levels. Now how does this constraint appear in process representation? It means we
only assign {)ﬁ_ 1o a channel signalling the termination. Note this formulation makes explicit
the notion of termination observables, both as types and as behaviours, which is somehow
implicit in the system in {50]. Once we have this notion, we ask what is the real content of
having the observable only at ... Clearly the answer is: “we allow everybody to observe the
termination,” from which the above noted restriction necessarily arises. We may then ask
what would be the outcome of not allowing everybody to observe the termination. Can this
make sense? It seems it does: since the time of Multics and as was recently introduced in a
widely known program language [18], a mechanism by which we can prevent processes from
even realising the presence of other processes, depending on assigned security levels, is a
well-established idea in security, both from integrity and secrecy concerns. Thus we reason
this extension is meaningful practically.

Further, there is a technically important observation, which is that the encoding in Fig-
ure 5 does notf apparently impose restriction on levels of divergent types. Indeed the ar-
gument for Theorem 6.4 hardly depends on such conditions. Thus we may generalise the
original while rule in Figure 4 as follows.

Etre:s FElce:semdpy
EFvwhile e do ¢: scmdpy

(while)

The new rule is particularly significant in its loosened condition on the guard of the loop,
allowing us to type the following term, where we write M for a secrecy level between H and
L.

whileeM doe : B cmdsn

The program seems to give a reasonable behaviour, using low-level data for high-level pur-
poses, and, as far as its termination cannot be seen by the observers below m (or type-wise
below H), the secrecy is indeed preserved.® Based on the above rule we can naturally extend
the system to allow multiple threads to own different levels of termination observables, which
we do not discuss here. Without changing the encoding, we obtain the same soundness result
for the extended system.

Theorem 6.6 (soundness in the extended system) If £+ ¢ : p in the extended sys-
tem, then [E] - f:{p] s [Et c: ply > (EY@{p)s where s = sec(p).

ProoOF: See Appendix E.4.5. »~

Significantly this result leads to, via the behavioural non-interference mentioned in Re-
mark 5.9, a non-interference result for the extended imperative calculus. The formulation is
different since the termination behaviours can change between two initial configurations if
we set different values at levels lower than the termination observable. The property can be
formulated as follows. Let F I ¢: p with sec(p) = s and o1 ~4 ¢2. Then there is a relation
(¢, 01)R{¢,02) s.t. whenever (¢1,01) R (¢, 04) we have:

8We note that, while the resulting system looks somewhat similar to the sequential system in [50], there
is a basic difference in that the present extended system does not allow a program like 2l = true; while
b do skip end; x :=false. This is because, in the present extended system, we cannot lower the level of
the while command in the middle to L. More intuitively, this program is not secure since another low-level
thread may observe what is in b if ever & turns false.
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(i) Etc;:p' (i =1,2) with sec(p’) = s, as well as 0] ~y o5,
(i) I (ca,07) —» (¢}, o) then (e2,04) = (&, 0f) such that (¢}, )R{ch,04}, and the
symmetric case.
(iii) Let s < s'. Then whenever {¢;,07) = of we have (g, 04) —» of such that i ~g of.

Since (i) and (ii} also hold in the original calculus, here we are having a weakened condition
in the case of s £ s where the property in (iii) may not hold. Note (iii} says that the
termination observable is the same as far as the given two environments are equivalent for
those who can observe the termination. Thus we are again guaranteed secure information
flow with added typability, by starting from a typed process representation of imperative
program behaviour. Articulating and controlling observables using the present framework
opens other opportunities.
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A. Untyped Terms

We first reproduce the syntax of untyped terms which are restricted to those which own no
free output.
P = 2P| s{(vdHN.P | 2[(#).Pe(.Q] | Finl(w 2).P | Tinr(v £).P |
P|Q | (wa)P | (X (E).PYi) | X{@) | 0
Now the reduction relation over untyped terms is the smallest relation closed under the
following rules (Below we omit the obvious (CoM,) and (REC;)}).

(Com) z(§)-PlZ§Q — (wDHP|Q)
(Comy) 2[(#).Pr & (52).P] | Finl(v #1).Q — (v§H1)(PA|Q)

(REC) &(@) |To(w).Q — (vDP{E/XL Q) £ = pX (&).20(ih).P
(Recy) () [woinl(v )0 — (H)A{E/XT Q) € = pX (&).ol(dh).Pr & (72).P3)
oo ph=hre (9 gapSEar WEETES TS

where = is the smallest congruence called structural congruence closed under the following
rules.

(2.) P=Q@Qi P=,0Q.
(Par) P|0=P, P|Q=Q|Pand(P|Q)|R=P|@Q]R).
(Res) (vz,y)P = (vy,z)P, (v2)0 =0, and (wz)P|Q = (wz)(P|Q)if =z £ in(Q).

B. Preterms

The syntax of preterms is given by:
P u= z@@: )P |2wz: 7P| z[(F:PP&(Z:7.Q] | Einl(p #Z:7).P | Tinr(v 7: 7).P
| PlQ| we)P | (X (&).P)G) | X&) | 0

where we assume that, in each pair of vectors of form 7 : 7, that they have the same length,
and that names in each pair of parentheses are pairwise distinct. The structural congruence
= on preterms is defined as in Appendix A, except: (1) The congruence is considered in
terms of well-typed contexts. {2) We add: “P = Q iff they are identical modulo the equality
on types generated by {r,7") = (+',7)". (3) The rules (Res) are replaced by (vz : a)(vy:
BP=wy:Pz:a)P, (vx:a)0=0, and (vz:)P|Q = (v : a)(P|Q)if z & n(Q).
We then define the reduction on preterms as in untyped terms except (Com) is replaced by:

(Com) z(§f:7).Plz(wy:%).Q — (wi: (7, BHF|Q)

with (7, 7') denoting pairs of respective types. Similarly for (Comy,,), (Rec) and (Rec,»).
Reduction on preterms and that on untyped terms are closely related. To formalise this
relationship, we define strip{P) as the result of stripping off all type annotations from P
{thus obtaining the untyped counterpart of P). Then we note, letting P, P',... range over
preterms and U, U', ... over untyped terms,
(i) P = P' implies strip(P) = strip(P’). Similarly P — P’ implies strip(P) —
strip(P").
(ii) Let U = strip(P). Then U = U' implies P = P' such that strip(P’) = U’. Similarly
U — U’ implies P — P’ such that strip(P’) = U,
By these properties we safely commute between preterms and untyped terms. As an example,
let us write I’ -, U A for an untyped term U/ if ' F, P> A with U = strip(F). Then the
subject reduction in Section 5 immediately gives us the following:

Lk, U Aand U — U with bn(TU"YNfn(T) = § implies '+, U' 1 A.
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C. Typing System

(Commeon Raules)

{Zero) (Par) A; =< Ay {Res)
', FvA; (1=1,2) I'z:abt, PrA®pz pe {1} 8}

'k, 000 Lhy Pi|Por A © A Pl {vz:a)Pr A

(Deg;) (Weak-3) (Weak-?) {(Weak-g)

'ty Pb A  Thy PrA™® [hs PrA ¢ sbj(A) Ik, Po A x ¢ sbi(A)

s <s md(I'(z)) = {,1} ?emd(T(z)) pe{?,7} I'(z) nonlinear

'ty Pe A I'k, Prd® o Ik, PrA®pz T, PrA@gx

{(Non-Linear Rules)
(In) (Out}) {Var)
!—o.rzg_l"(o:%) md(aa) =y

- ('F)? < I'(z) - (,;.»)LT I'(x) pi = (o nonlinear)
g7k, Popy®TA® 1z T 7 Pop®TAQ o p; = md(a;) = 7 (else)
Thsa(ff:T).PrA® e P T(ri:d).Pr AQ i [~ X 18 Foec(ag) X{E) > pE
(Bra) F [f &Y <T(zx) (Sel;) F [AReRll <T(z) (Rec) Fa; <T'(z;) ap nonlinear
D i e Popl; ® TA® 00 I §:7 b Poph, 2400z T{#/Z}-X:dPo1A{&/5)

b e[(§i7 ) Pa(@os) Bl v A®pzr T hoBinl(v 7). .PrAege T F, (uX(8:8).P)(H) > A

(Linear Rules) We omit (Sell) and (Sel?).

(In*) (where C/§ =|tB) (Out™) (where C/§f =[1B) (Var)  Fa; <T(x:)
F (MY < T(=) F (77T < T(z) md{c) =
T-§:i7k:s Pr7A®C™® [-:7#, PeTA®C™® md{c;) € {7,4,1} (i # 0)
It 2(§:7).P> AR Lz B Tk, v q:7).Pr Ao To—B I'-X:@bk, X(T)» X(Z)
(Bral) (where C;/¥; =1B) (Selt) (where C/i =11B)
FA&R) <T() F [fi@R]] < T()
Uiy b BpTA®C®  (i=1,2) T-§1:fibs Pr?AQCT
T ke 2(§ 7). Py & (Fo: 7). Pa] v A® La—B b, Finl{p ¢, :7).P > 48 To—B
(In*) (Out?) (where C/if = [1B)
- ('r)s o STz} Foaoy < T(z) j ('F)Z,,,ﬁgf(m)
F{m/ﬁ'} X3 Popy@T A/ D10 X(E)  (s=1) T §7 P 240Copz p€ {7,7°}
D{&/7}-7:7 X :8 . PopyQTA{Z/F} 0 X (2d) (n=p) E=p=> (s=8 Ap=7)
Ply (uX(F:@).20{g: 7). P b lzp® A P Z(wi: 7). Pr AR B®px
(Bra') (Self) (where C/§ =iB)
b [1"'1&’?_“‘2]:,#1&,92 <D(m) Foa; <T{z) (1=1,2) - [ﬁ@ﬁ]&mm <I'(z)

T{E/2}-5;:75-X 10 b Py o ol @ T4 {E/ T} R X (®)  (y=0¢) D7 R PeTA®C®pz pe{?,7}
T{&/2}-;:75-X:8 b Py o pl; @4, {F/ T} @ X (o) (wj=p)  m=p = (s=5 Ap=T)
I'tH, (pX{f&)ﬂZQ{(ﬁl :’F]_).P1 & (ffg ‘Fg)Pg])(g) > !zg®(A1@A2) | Einl(u 1 f“;)Pb A B@rpx
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D. The Minimum Typing System

{Common Rules)

(Zero) {Par) {Res}) T -zials Pr A

A = Ag A=pr®B, C=RB, pe{l,!,1}

Clbg, B A; (32=1,2) A=C7", md{a)={T,{} or o nonlinear
Clkr 00 Tlksrs, Fi| Pav A1 © Az T, (wz:a)PeC

(Non-Linear Rules)

(in) (Out)
F (7)Y < T(x)

r g:7k, PrtA"*T @B
B<gpi®gr & <s

H (A <T(2)
D§: 7k, PotA™ g B
B<cpi®gr & <s

{Var) o <)
md(ao) = i
pi = {04 nonlinear)
pi = md{e;) = 7 (else)

Pl a(f:7) PrAQ

(Bra) F [7&7]5< D(z)

D §:f b Po7A7* % @ B
Bi<etr @tz ¢ <siMsx 41 <A

Dk v i:?).PrA® iz

(Sek) F [AoR)l <)
D-ih:7 s Po2A™ @B
B<epil®ge ¢ <8

' X:a ”‘S@C(ag) X(.’E) e }%‘c

(Rec)

By <T2) o nonlinear
MNE/E X6 s Po TA{E/}

Ty z[(H7) PLE{(f72). Polp AL © As Rz

{Linear Rules) We omit (Selﬁ') and (Selzr).

(Inh) (C/F =3B, {F} C {#} %)
F(#)) < T(z)
[-7:7t, PbTAQC™

()] < D)

Uik Finl{e 1 :71). P> A®fx

(Out™) (C/F =1B, {§'} € {7} (%)

L g7l PeTARC™

Tk, (pX(2:3).P) (D A

(Var') b o S T(2:)
md(cp) = !
md(a:) € {7,4,0} (i # 0)

'k 2(f: 7). P A® Lz—B

(Bra¥) (Ci/gi =UB, {41} C {#} )
b [F &)Y, < I(z)
I‘iﬁﬁ ”“5‘. PoT4; ®G;m (z ﬂ1,2) Ay = Ag

D+ #vg:F).Po AR tz—B

T X:& b X{&@) e X (&)

(Sell} (C/7 =UB, {7} G (@} ()
F[F@R]l <T(z) s =sec(T(z)) Ns
T by, PPTARCT

T ”‘,91['132 xi(gﬁ :;;).Pl & (gz 'f"g)Pg] > A; O A® ‘i,m'—}B

(In*)

F (P, ST(z0) Fos <P(z) B<edd

Uk, Finl{v §1:71).Pr A® Tz—B

(Out®) (C/F =UB, {F'} {7} ()
F(Min<l{e) T 7 PrtA™ 00
¢’ =C®pox, po € {7,7}
OI o Cwm

r{z/z}-§:7 X @ Ik Pr BRTA{Z/Z} X (Z) (k=1) p=7, & =gNsec(T{x)) (f5=ps)
D{#/Z}-7:7X:8 1 P> BRIA{F/ DX (m0@)  (k=p) p=Tp=pOpm,s =5 (k1)
Dby (pX{(E: 6 ao(f:A).PUDH @ A Ty B8(rf:F.PrARBSp
(Bra') FIR&AL . g, ST(20) Fai <T(z)

B; Scf)mﬁ (7=1,2) A1 =4

{I‘{f/z‘}-gj 7X@ ik, Py o By @7A; {E/ 1} @ X ()

(55 =1)

{E/2}§;:75- X d sy Py o By @A {E/2}@X (wodly) (w5=4p)

I fbey sy (X (8 3).xo[{F:71). P & (§2:72). Po]}(Z) v 120 @ (A10A2)

where (x)} means y: € {§'} (or y3; € {5'}) if md(I'(3s)) (or md(P(y3)) € {4, 4,1}
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E. Proofs

E.1. Proofs for Section 3
E.1.1 Proof of Lemma 3.1

(1) By the induction on the derivation of <. The reflexive and anti-symmetry are obvious.
Suppose F 7 < 7 and I 7' < {r, 7). Then by (S-Single}, we know F+' <7 orF v < 1.
Then by inductive hypothesis, we have: F 7 < 11 or + 7 < 7». Hence by applying (S-Single)
again, we have 7 < {1, 73}, as desired. The case b 7 < {71, 7o) and F {11, ) < (7], 73}
is similar. Other cases are mechanical. (2) is mechanical by checking each rule. (3} is
proved by the induction on the derivation of <. The interesting case is that types have
linear modes. Assume F o < of and F g < af with F af = of. Then suppose of = (1'-‘{);,1
Then by (C-IO-17), we can set ag = (1"5):,2 with & 11, = 75, and s} > s§. Now by b oy < of,
we can write oy = ()}, with F m; < 7{; and 51 > s]. Similarly we can set ap = (%)},
with F 79; < 74, and s2 < s5. By inductive hypothesis, we have F 7; = 15;. Also we have
81 > 8§ > sh > 8. Hence we have - o1 X o, as desired. The case my = 4 is just similar.
(4) By induction of the derivation of <. Only interesting case is & = {0, ag), which can be
proved by (3).

E.1.2 Proof of Lemma 3.4

In this and the following proofs, we first note that, by definition, a well-formed action graph
A takes the form of, with all subjects distinct,

4 = BoTelvolelys (X(@e)1E
7R
70
where (X (#)®) shows the item may or may not exist.

Moving to the proof of Lemma 3.4, (1) and (2) are straightforward. For (3), first it is
obvious that if shj(A:) Nsbj{As) = @ and fv(A;) Nfv(As) = §, then we always have 4; = A,
and 4; © Ay = A ©® As is well-formed. So suppose pz € A; and qz € Ap;. We shall
prove this case by the induction on the number of nodes of action graphs 4; and As, noting
number(|4]) + number(|A2]) > number(|4; ® As|). By definition we have the following
combinations for p and q.

Lp=Lg=7 2.p=Lqg="? 3.p=7q=7 4p=7q=7
5_P=?I”qm?b 6.pmit,qmsi 7-Pm‘L7qu

and the symmetric cases of 1, 2, 4 and 7. Suppose the case 1. Then we can write 4; = lz®A]
and A = 7z ® A}, Since A; = A, implies 4] = 45, 4] © 4} is well-formed by inductive
hypothesis. Now by !@7 =, we have 4; ® 4 = lz ® A{ ® A}. Since ¢ ¢ shj(A])Usbj{A}),
lz @ A] ® Al is well-formed, and number{|4; ® As}) = 1+ number(|4] © A5} < 1+
number([A}]) + nunber{|4,|) < number(|4;|) + number(|Az|). Cases 2-6 are the same.
Now suppose the case 7. The only interesting case is that a new edge is created after the
composition (if not, it is the same as the above). Here we only have to note that a cyclic
relation is not newly created. Then the only possible case is that there exist n;,ny such
that m; <4, pz and gz <g, np with p <X q, n; <a,04, N and n;,ne € |4; © Ay} (the
case ng <4, pz and qr <4, 1y is just same). Then by well-formedness of 4; and A3, we
know if n; =4, pz, then n; ¢ {4; © Ap|. Hence n; <4, pz. Similarly we have qz <4, ny.
Therefore by definition, ni1 <4,04, B2 and fa(n;) Nfn(ng) = B. Now we prove there is no
edge such that ny <4,64, n1. If such an edge is created, then there are p’z and g’z such
that ny <4, p'z and q'z <4, n; with p’ x ¢'. Then by the transitivity of <4, and <4,
originally there exist ¢’z <4, pz and qz <4, p'2, which contradicts the condition (3} of =x.
number(|4;]) + number(l42|) > number(]4; ® As}) is similarly proved. :
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E.1.3 Proof of Lemma 3.5

(i) is obvious by the symmetry of p < q and p®q. For (ii), first we note that the assumption
immediately implies that fv(4;) N fv(daY Nfv{A;) = B and By N BN By = @ where
B;={y] lye 4;or ty e A} with i =1,2,3. Hence if, for example, there exist n;, n,
such that n; <a,l % and T <4, ng with 13 <4,04, Nz 8nd 0y, 05 € |A; © 4y, it is not
possible to have nz such that ngz <a, px or pr <4, n3 for any p. Therefore (1) is obvious.
For (2), by the similar reasoning of the proof of Lemma 3.5, we only have to check the
acyclicity (the condition (3) of x). Suppose as a contradiction, there are edges such that
P12 <4, a1y and py <4,04, q¢. The case py, gz € As obviously contradicts the assumption
Ay < As. Similarly the case py,qz € As contradicts (1). So assume py € A and gz € As.
Then there exist py <a, p'z and q'z <4, gz such that p’ < ¢/. Then noting z & sbj(A;},
Ay = A, implies p12 <a,04, p'#. This contradicts the assumption 4; © A3 = A3, (3) is
easy by the uniqueness of 4 © B.

E.2. Proofs for Section 4

We show typability of agents given in Section 4.4 and used in Section 6. For the process
and type abbreviations, refer to figure 3. In the proofs below we only show the layout of the
deduction trees; the reader is invited to fill in the sequents.

E.2.1 Branching

Lemma E.1 (If) IfT'-b:booll, b, Po7AQU B®?D for s' < s, then '+ b:bool’, F
¥, P, Py > AR BRTD.

Proor: The derivation tree is of the form

Hypothesis Hypothesis
Lemma 5.3 (weakening) Lemma 5.3 (weakening)
Bra¥
Out?

Weakening places ¢: boolf;, in the basis, as required by the Bra%-rule. The condition
s' < s comes into play at rule Bra¥ to show that bool! < bool!,. The innocuousness of b is
used in rule Out’ to show that (bool!, )% < (booll)?. For b non-innocuous we would not

be able to show that (booll,)? < (booll}?.

E.2.2 Copy-cat
Let

B BF ] (X (b8).b(c : boolT).(IF(H, Einl, inz) | X (65')))(BH)
Lemma E.2 (Copy-cat) If &' < s, then b:booll, y:booll I [b + y] v 1b®7y.

The derivation tree is of the form

Zero Zero
Sell Sel?

Weak-7 Weak-?
Proposition E.1 (If) Var'
Par
Int

Start at each leaf with a basis of the form X :boolibool’, - b:bool! - y:booly, - c:booll.
Rules Weak-? place 7"y in the action type, as required by the If-Lemma. The condition
s’ < 5 is used in the H-Lemma. The subtyping pre-conditions at rules Sel?, Sell, and Int
are all trivial. ‘
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E.2.3 Imperative variable

Let
Var(z*b®')* % (uX (wb).a[(z: (booll)T).(Z(w b 1bool?).[6' + b]|X (b)) & (b’ :bool?). X (zh')])(xb)
Lemma E.3 (Imperative variable) Ifs’ < s, then z:var)-b:bool!, I, Var(zb)s12®7?"D.

The derivation tree is of the form

Proposition E.2.2 {Copy-cat)
Lemma 5.3 (weakening)
Var' Var' OutT
Weak-7 Par
Bra’

Let T be the basis X : var) - # : var} - b: bool]. Start at the left Var' leaf with a basis
T - b :booll; start at the right Var' leaf with a basis - 2: (booli)}b {security levels are

&
irrelevant for linear channels). Weakening rules underneath the Copy-cat yield a sequent
with a basis I' as required by the Par-rule. Rule Weak-? introduces ?"b in the action type,
as required by the Bra' rule. The condition s’ < s comes into play at the left Var' leaf and

at the Bra! rule.

E.2.4 Reading a variable
Lemma E.4 (Read) If1'-z:vary - b:booll, by Po7A® () ® ?*b where 7x € A, then
I'-z:vary b, Read(z,b, P} b A® {(T);.

The derivation tree is of the form

Hypothesis
Lemma 5.3 (weakening)
It
Sel?

Weakening places z:{bools,)j, in the basis.

E.2.5 Writing a variable

Lemma E.5 (Write) If[ - z:var, -b:bool’, by P 7A® (7)s ® 7°b where ?z € A, then
I z:ivary b, Write{b,z, PY > A® {7); ® 7°b.

The derivation tree is of the form

Hypothesis Proposition E.2.2 {Copy-cat)
Lemma 5.3 (weakening) Lemma 5.3 {weakening)
Par
Sel?

Weakening yields equal basis for the two branches, as required by the Par rule.

E.2.6 Assign

Lemma E.6 (Assign) If s’ <s, then z:vax! - y:var’, I, Assign{z® y°) b 7z @ T'y.

Use Proposition E.4 (Write) followed by Proposition E.4 (Read).
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E.3. Proofs for Section 5
E.3.1 Proof of Lemma 5.3

For (1), first it is immediate that rules are closed under literal renaming (including bound
names). Noting only those preterms who obey the binding convention are considered, the
rest is mechanical by induction. (2) In the case (Res) and Weakenings, we use Lemma 3.1
(2) as well as the well-formedness of the action type A (Lemma 4.1 (1)). The other cases
are a direct consequence of a condition of form F a < I'(z) or F « < T'(zp) in the antecedent
of each non-linear and linear rule. Similarly (3) is from the conditions on agent variable
types. (4) is easy by induction. For (5), we note f I' - z:a ks P> A and z € fo(F), then
we can always write 4 = A" ® pr with p € {1,7,7%,1}. Hence A/z is always defined and
well-formed by Lemma 3.4 (2).

E.3.2 Proof of Lernma 5.4

(1) We prove the lemma by induction of the derivation of ' ; Pr 4 (note that by definition
of the syntax, P is an input guarded. However, in the non-linear case, this restriction is
not important). By the definition of (Rec), the last rule should be either (Common Rules)
except (Weak-1), (Non-Linear Rules), (OQut?) or (Sel?). The only interesting case is the last
rule is (Var}. Others are easy by inductive hypothesis. Assume the last derivation is (Var).
Then we have: I'- X :&@ F; X (@) b 5i0 with pp = ¢ and p; = 7 or ¢ (i > 1). By assumption,
we have: T F, (uX(Z).X(0)){Z) v pb. Now we prove P{£/X} = (uX(£).X (@) {5} has
the action type A under I'. By Lemma 5.3 (1), we have: IN&@/Z} b, (uX(8).X (&) {@) >
powe{W/Z} ©prwt {W/T} © - - O ppw, {W/ZT}. Note that by the definition of £{W), w; # w;
iff ¢ # j. Hence if w; = z; for some ¢ and j, then ¢ = j. Therefore {#/%} is the identity
substitution, and A{&/F} = A. Hence we have I'{w/&} b, (uX(Z).X (@)}{&)> A as desired.
(2) Assume T I, £(2)»7A® 170 with £ & X (#).20(7:7).P and - (74 < T(zo). Then by
the definition of the syntax and the form of the action type, we can set P ®f x {zow) | Q with
{@} CH{Z- 7}, (Q) C {Z 7}, and (Q) = §. Hence we only have to show I' - §:7- X:d b,
X (o) | Q> PP ® TA® X (20w) implies T+:7 F, &(20@) | Q> Py ® 74 ® tzo with pl = p;
or pi = 7 if p; = 7*. Since the cases that the last rule is either (Deg), (Weak-g) or (Weak-?)
is trivial, we can neglect these rules. Then by the assumption, there are derivations such
that T - 7:7- X :@ by X(wo) > X{zo@) and T' - 7:7- X:8 5 Qv 57 @ 74 with A & g2
with q; € {?,7%,4}. Then by Lemma 5.3 (1}, the assumption I' }; £{Z) > A ® lxy implies
I by E{@o) > i @ lmg. Now we prove that £(zoW) | @ has the action type p'y ® it ® !ao.
Here we have to prove (G0 ® lzo) @ (P ® §8) = % ® g ® lxg. By the similar reasoning of
the proof of the above (1), if w; = x;, then i = § and ¢ # 0, hence we have: q;z; © qjuw; is
either {a) 4;%; © q;w; with #; # w; or (b) q;%; with z; = w;. In the case of (3}, there must
be some yy, such that w; = y; since {&} C {7 §}. Hence pryr © qjw; = piyr where we set
p, =7 if q; = 7, else p}, = pr. Thus we are done.

(8) Similar to the proof of (2).

(4) This is a special case of (3) where z; = w; for all ¢; hence (GZ® lzo) G (FF @ §@) =
B ® @ ® !zo, noting TA® T4 = TA.

(5) Similar to the proof of the case (4).

E.3.3 Proof of Lemma 5.5

By rule induction, referring to the structural rules in Appendix B. The commutativity
P|Q = Q| P is by Lerama 3.5 (1), while the associativity (P |Q){R= P |(Q|R) is
by {2). For the rule of the scope opening, to prove that T s {(wz:a)P) | @ A implies
Pk, (wz:a)P|Q)r A with z & fn{Q), we use (weakening), Lemma, 5.3 (4). While the
other direction is proved by (strengthening), Lemma 5.3 (5).
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E.3.4 Proof of Subject Reduction Theorem (Theorem 5.6)

We consider only the monadic case. It is straightforward to extend the proof to the polyadic
case. There are the following cases.

Non-linear Case: (1) (In)-{Out): Assume that
z(y:m).P B yire).Pe — (wyi{n, n))(P | R)

under the typing I' lFgns, «(y : 7). Py | E(vy : 12).Pav Ay © Ay @ gz with the following
derivations:

[yinlbg Po?A; @B with F(n)) < T(z)
Toy:mlby Pb?A; @By with F(n)t <I(2)

where B; <¢ psy ® %, §; < s; and 4; = 4,. By the subtyping rules of types in Figure 1

and Lemma 3.1 (3), we can derive s) = s = 81 M3 and 7y = 7 from & ('rl)fl < I'{z) and
F {1’1)132 < I'(z). By applying {subsumption) of Lemma 5.3 to the above derivations, we
have:

T -y:(?‘l, T2)“"s’1 Pr?TAi®B, and T -y:('rl, TQ)”‘”S!2 PopTA; @ By
By Proposition 4.1 (1), we have the following cases for B; and Ba:

{a) 1 and 72 are nonlinear.
(b) md(r) = !, md(r;) = ? with piy € B; (i # 4, 1,4 € {1,2}).
(c) md(r:} =+, md(7;) € & with p;y € B; and pjy € B; (i # 4, 4,7 € {1,2}).

In each case, we can check By < By, and if py € By ©® By, then pis g in (a), ! in (b) and §
in {c), respectively. Hence we have:

Iey:(m, m)lrgns Pl Par A 04,08

where B = py @ C with p € {{,,!,1} or B = ( with either C' = 0 or C = gz. Therefore by
appiying (Res) to the above, we obtain:

[lbgmg (yi{n, )P | R)e A1 0400

with 4; © A; @ C <¢ 4; © 42 ® gz and 8] M s, < 83 M54, as desired.
Non-linear Case: (2) (Bra)-(Sel): Assume that

Z{(yr 1) P & (y2:m2). Ba) | Fink(vyy i73). Py — (vy:{n, )P Bs)

under the typing ' gnesnss 2[(1 1) P &(ye 7). P][Tinl(p ys:73) . P3p A1 0 A, © A ®@ g
with the following derivations:

L-y:inlby Pip?A;®B;  with & [F&R)hns, ST(2) and s1 My < s{Msh (i=1,2)
Iy:mlhg P3o?A3 ® By with F [F@R)l <I'(z)and ss < s}

where B; <¢ p;y; @ g with ¢ = 1,2 and By <g pstn ® gz and (A ©® Ag) = As. With the
similar reasoning of the above, we can derive s; Mgy = 83 = 51 M8y M3 and 1 < 73. Hence
by {subsumption) of Lemma 5.3 again, we have:

Doy, mittg, Ar?A1®@B1 and T-y:{m, ms)lkgy Ps> 743 ® By
Note that by Lemma 3.5, we have A; x A3. Then applying (Par), we have:

[‘-y:(ﬁ,— 73)§j-s’1ﬂs§ B | PrA: A3 08
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where B = py @ C with p € {$,%,9} or B = C with either ¢ = @ or ¢ = gz. Note that
7A; ©TAy <o TAL © TAz & TAz. Therefore by the similar reasoning as the above case, we
have done.

Non-linear Case: {3) (Rec-In)-(Out): Assume that
(X (@) zo(y:m) PANE) | To(vyim).Pr — (yi{n, m))(P{E/X}| Py)

and £ = pX (&) .ze(y:m).P under the typing
Tlkg,nsy (X {8 (y ) PO | T y i 72). Par A © A2 @ 839 with the following derivations:

Deyir '_X.—:C_l."ﬁ”‘ﬁl1 P74, ®B; with b+ (Tl)sl < P(.’Eo)
Poyimlbg Por74; ® By with F (1’2)32 < I'{ag)

Note that by (Var) rule, if X appears in P, we know s} < sec(I'(zp)). Hence we have
st = 51. Then by Lemma 5.4 (1), we have:

I‘-y:’l‘llf'sfi Pl{S/X}D?Al R By

Now by the same reasoning of (Non-linear (In)-(Out)), we can obtain the required result.

Non-linear Case: (4) (Rec-Bra)-(Sel): We also use Lemma 5.4 (1}. The rest is similar
with the above case.

Truly-linear Case: (1) (In)-(Out): Assume that
zly:m). P |Fvyn).Py — (vy:{n, 7)) (P | B)

under the typing Dk ne, (y 7). P [ FRy: ). P o TA; © 742 ® By © Be® T = with the
following derivations:

D-y:mlb, Po?4; ®C;  with %(rm < I'(x)
-y, Por?A; ® Cy  with %(TZ)T < I(z)

where C;/y ={1B; or C; =8B Y, 4; = A; and By = B, (Note that we have no relationship
between s; and s;). By the subtyping rules and Lemma 3.1 (3) again, we can derive 1 < 7.
By applying {subsumption) of Lemma 5.3 to the above derivations, we have:

T-ye{n, Tg)”‘s; PrAoC and T'-y:{n, 7“2)”“3’2 Py ds @ Cy
By Proposition 4.1 (1), this time, we have the following cases for B; and Bo:

(a) 7 and 75 are nonlinear and we have: C; <e¢ gy ® B; (i = 1,2).
() md(r;) =1, md(r;) =7 with C; = ly @ B; and C; <¢ Ty ® B; (i # 7, 4,5 € {1,2}).
{¢) md(r;) =4, md(ry) € 4 with C; =1y = B; and C; =y - B; (i £ 4, 4,7 ¢ {1,2}).

In each case, we can check C1 < Ch,and G1 0 Cy = B @ By ®@gz or C1 © Cy = By ¥ @ BY®
infa),Ci©C:=B10B,®lzin(b), and C, ®Cy = B, ©® B:® § z in (¢). Hence applying
(Res) again, we have the required result (note that the security level does not change by
this reduction).

Truly-linear Case: (2) (Bra}-(Sel}: The only difference from the previous case is that we
need to take care the security level. Assume z[(y;:71).PL & {y2: 7). P} |Finl(v y1 :73). Py —
(vy:{r, m3))(P: | P3} under the typing I'lbg meyns, ({31 :71) Pt & (y2:72).P2] | Tinl(rys:
13).P5 > Ay © Az ® Az & g with the following derivations:

T.-y:mirs, B4, ®C; with F {7’1&1'2]4' < I'{z) and sec(I'(z)) < s M 52 (1=1,2)
I'oyimglbgy Poo?A3 ®Cs with [1"3&7'4]83 <I'z) and 53 = sec(I‘{x)) sy (i=1,2)
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where C} is in the same condition of the above by replacing y toy; withé=1,2 and y to
if i = 3. Then by sec(I'(z)) < 81 Ms2 and s3 = sec(I'(z)) M 55, we can calculate that

81 MsgaMsy <s1Msy 'S s = sec(T{x)) Nsf < 81 Moo Nsh < 85 M sy,

By applying (Par) and (Res) as the previous cases, we have the desirable result.
Rec-Non-innocuous Case: (1) (In)-(Out): Assume that

(X (@)ao(y:n). P)E) |To(vy:m).Pe — (vy:(n, n)P{E/X}]| F2)

with £ = uX(&).2o(y:71).P under the typing
Dlkgirsy (X (E)zoly:m)-POE) By 72).Por A; ©® 42 @12y with the following derivations:

1

iy 'X:&ﬁ'sl P74, 0B ®X(a:9u‘f) with F (Tl)sz,.u < P(wo)
T 'y:'l”z”'srz PyoTA; & By with + ('Tz)gz,“ < IMap)

where F a; < I'(z;) and B; <¢ piy for the input case, and sy = s} I sec(T'(xp)) and
By < C® ?xy with C/y =B or C =B for the output case. Note that C takes the same
form as C; in (Truly-Linear (In)-(Out)). Hence, by Lemma 5.4 (2), we have:

Uoyirlby, PL{E/X} P TA; @ B @ 2o

where either Bf = By or B{ = Ty with B; = ?*y. Then by the similar reasoning of the
above cases, we can easily check if py € B{ ® By, then with p € {!,,4}. Hence as similar to
the previous case, applying (Res) and calculating security index as the above case, we can
obtain the desired result.

Rec-Non-innocuous Case: (2) (Bra)-(Sel): We use Lemma 5.4 (3) by applying the
similar reasoning of the above case.

Rec-Innocuous Case: (1) (In)-{Out): For action types, this is a special case B] = By of
the proof of (Rec-Innocuous Case, (In)-(Out)) (here we use {4) of Lemma 5.4 instead of (2)
in the previous case}. The calculation of the security index is just similar to (Truly Linear:
{In)-(Out)).

Rec-Innocuous Case: (2) (Bra)-(Sel): Similar to the above case and (Truly Linear:
{Bra)-{Sel})).

E.4. Proofs for Section 6
E.4.1 Proof of Proposition 6.1

For both the typing and the subtyping relation, we check the “if” and the * only if” part,
thus yielding four cases.

1. Typing =. A straightforward induction on the structure of the derivation tree. Two
rules deserve notice.

Case the last rule is (assiGN). Use rule {assign) followed by (subs); for the subtyping
relation ion rule (subs), use our second rule.

Case the last rule is (SUBTYPE). For command, use our (subs} rule. For expressions,
the subtyping p; C pe must be propagated through and-nodes towards the leaves. At the
leafs, our (var) and (bool) rules take care of the matter.

For the system of threads with object map O, we must interpret the original rule {50] as
saying that, for a system of threads O, all processes in dom(Q) are typed with the same
type. Then we type a system of n-processes with n — 1 applications of rule (PARALLEL).

2. Typing <4=. A straightforward induction on the structure of the derivation tree.

3. Subtyping =. Rule (BASE) follows directly from the encoding. Rule (REFLEX) branches
into three cases: non-command phrase types follow from L < T; command phrase H cmd
follows from our second rule; and command phrase L cmd corresponds to our third rule.
Finally Rule {CMD™) corresponds to our second rule.

4. Subtyping <. Our first and third rule corresponds to rule (REFLEX); our second rule
corresponds to rule {CMD™),
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E.4.2 Proof of Proposition 6.2

For each of the directions of the proposition we analyze the three possible cases; each case
corresponds to a subtyping rule in Figure 3, so there is not much to say. Nevertheless here
is a detailed account.

=, {1} Pick p = scmdy, and p = ¢' cmdy. To conclude= that s > &' use the first subtyping
rule in Figure 3. (2) Pick p = s cmdp, and p = &' emdy. To conclude t= hat s > s’ use the
second subtyping rule in Figure 3. {3) Pick p = 5 cmdyy, and p = §' emds. To conclhude thas:
t s = &' use the third subtyping rule in Figure 3.

<. (1) Consider p = s cmdy, and p = s emdy, with s => s'. To show that p < p’ use the
first subtyping rule in Figure 3. (2) Consider p = s cmdp, and p = s’ cmdg, with s > ¢'. To
show that p < p' use the second subtyping rule in Figure 3. (3) Consider p = s cmdgy, and
p= ¢ cmdt, with s = 8. To show that p < ¢’ use the third subtyping rule in Figure 3.

E.4.3 The Link-lemma

This lemma, is used three times in the proof of the Evaluation lemma 6.3,

Lemma BE.7 (Link) If I"- bibooll - ¥ ivary Fo Pp?AR{r); @@V for ' < s, then
I'-¥:vary ke Link(®*, 0", P) b AR (rh s @7V .

Proor: The derivation tree is of the form

Copy-cat
Hypothesis 5.3 (subsumption)
5.3 {weakening) 5.3 (weakening)
Par
Res

Use the hypothesis with the security level of b equal to that of the sequent, namely s.
Subsumption turns b:bool? into b:var,. After the various applications of weakening, we
have a typing of the form I' - [E] - b:var, - & :bool!. -

E.4.4 The Evaluation lemma 6.3
By induction on the length of the derivation EF e 5.

Case the last rule is {(var) By hypothesis E - z : s. Noticing that z:var, is in [E],
use the Read Proposition E.4.

Case the last rule is (bool) By hypothesis E F [b] : L. Noticing that [b]:var, isin
[E], use the Link-Lemma E.7.

Case the last rule is (and) The derivation tree is of the form

Link-Lemma E.7 Link-Lemma .7
Lemma 5.3 {(weakening) Lemma 5.3 (weakening)
Weak-? Weak-7

Tf-Lemma (Proposition E.1)
Induction hypothesis
Induction hypothesis

For each of the Link Lemmas, use the fact that &1 < s and s < 3. Weakening in each
branch introduce the type and the action type of b;: bool?, and 7*d;, for i = 1 at the left,
and i = 2 at the right.
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E.4.5 Proof of Theorem 6.6

The proof for Theorem 6.4 is a special case of the present proof. The proof is by induction
on the length of the derivation of Etc: p.

Case the last rule is {compose). From the antecedent of the rule, we know that EF ¢; : p.
Then we may use the induction hypothesis to get a derivation tree of the form below.

Induction hypothesis
Induction hypothesis  Lemma 5.3 (weakening)
Lemma 5.3 (weakening) Int or In
Par
Res

Weakening introduces in the basis the pair type (m, [} for g. Use rule In* when p = scmdy,
and rule In when p = s cmdn.

Case the last rule is (parallel).

Zero
Outt Weak?
Induction hypothesis Induction hypothesis It or Out

Lemma 5.3 (weakening) Lemma 5.3 (weakening) It In

Par In
Par
Res
Bes

Weakening introduces in the basis the type ([p], [o]) for both f1 and fp. Start at leaf

Zero with a basis [E] - f:[p] - fi:{{el, [p]) - f2: (o], [p]). Use rules Outt, Int, In* when
o = s cmdy, and rules Weak?, Out, In, In when p = s emdg. Rule Weak? introduces ¢f in

the action type, as required by rule Out.

Case the last rule is (assign). Use the Write Proposition E.5, followed by the Eval
Lemma 6.3.

Case the last rule is (if). From de antecendent of the rule, we know that E |- ¢; : p.
Applying the induction hypothesis, we get a derivation tree is of the form

Induction hypothesis Induction hypothesis
Lemma 5.3 {weakening) Lemma 5.3 (weakening)
Weak-7 Weak-7
Proposition E.1 (If)

Lemma 6.3 (Eval)

Weakening in each branch introduce the type and the action type of y (bool? and 7y,
respectively), thus placing the sequents in the form reguired by If-Proposition E.1.
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Case the last rule is (while). From the antecedent of the rule we know that E + ¢:scmdy.
Use this fact for the induction hypothesis to get a derivation tree of the form

Induction hypothesis

Lemma 5.3 {subsumption) Var
Lemma 5.3 (weakening) Lemira 5.3 (subsumption) Zero
Par Weak-4
Lemma 5.3 (weakening) Qut
Weak-? Weak-7"

Proposition E.1 (If)
Lemma 6.3 (Eval)
In

Zero
E;ec Weak-p
ar Out
Res

Let 3 be the pair type (sync¥, syncl). The (subsumption) of Lemma 5.3 changes the
syact type of g into 8. Then, weakening introduces in the basis the types for f and X,
respectively: syncl and synclsyncl@. Start at the left Var leaf with a basis I of the form
[E] - f:sync} - g:8- X:synclsyncls. Below PAR, weakening introduces the type and the
action type of y: bool? and 7*y, respectively. It should then be clear that we must start
at the left Zero leaf with a basis I' - y:bool’. Subsumption then changes the type of f into
B. The n + 2 Weak rules below (n is the number of variables in F) yield a sequent with an
action type of the form {E)®gf®gg, thus preparing things to apply the If-Proposition E.1.
Start at the right Zero leaf with a basis [E] - f:sync! - g:8. Rule Weak-¢ below adds g to
the empty action type, thus placing the sequent in the right form for rule Out. Notice that
all the secrecy levels involved are 5, the secrecy level of the while command.

Case the last rule is (subs). First notice that the original (subs) rule can be decom-
posed into two rules:

EFc:scmdy 8 <s Elc:scmdy s <s
. (subs-2)
Fe:s cmdy Fe:scmdy

{subs-1)

Then we have two subcases.

Subcase the last rule is {subs-1). Use the induction hypothesis followed by degradation
(rule Deg,).

Subcase the last rule is (subs-2). Noting that security levels are arbitrary for linear
types, and using degradation, we know from the induction hypothesis that

[E] - fisyncl by [Etc: ply o (B @1 F.

We may assume without loss of generality that the rule before is not subsumption. Then
we analyse all cases above to conclude that they work when f is linear as well as non-linear.
Analysing the typing rules in figure 4, we see that potential complication may arise from
(assign). For this case, notice that the Write Proposition E.5 handles both the linear and
the non-linear case for f.
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