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Parametricity and Mulry’s Strong Dinaturality
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Abstract

We express Mulry’s notion of ‘strong dinaturality” in terms of binary refational
parametricity. This leads to an interesting category of binary relations based on
cospans in place of spans. Such relations admit a natural, componentwise formula
for smash products, They also admit a very intuitive formula for function spaces.
Qur account of binary relational parametricity is based on a graph category frame-
work which allows for a notion of ‘diparametric’ transformation between mixed
variance operations. We show that Mulry’s ‘strong dinaturality with restricted vari-
ation’, which characterizes canonical fixed point operators in an axiomatic setting,
is equivalent to a diparametricity condition. We find that the ‘“restricted variation’
can be dealt with smoothly using the bijective-on-objects/full-and-faithful factor-
ization system in Cat. Along the way, we consider a pleasant category of push-me-
pull-you’s which abstract from both pull-back’s and push-out’s. .

Technical report 768, Department of Computer Science, Queen Mary and West-
field College, December 1999. 21 pages.
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1 Imntroduction

In categories of monotone maps between complete partial orders, least fixed points
are obtained using least upper bounds and are characterized by Plotkin’s Axiom. In
Muiry’s axiomatic setting {4], a Fixed Point Object induces a fixed point operation
characterized by it’s *strong dinaturality with variation restricted to algebra morphisms’.
Despite the terminology; this characterization is best seen as a categorical reformula-
tion of Plotkin’s Axiom. Ordinary dinaturality and ‘strong dinaturality with restricted
variation’, although both implied by ‘strong dinaturality’, are generally incomparable.
‘The ‘restricted variation” corresponds to the restriction on g in Plotkin’s Axiom.

Axiom 1 (Plotkin) If g is strict and continnous and go fo = fiog, then goHpfy =
ipfi.

. T

Ldo RELIN do ; <1 —pﬂ)r-—do

B lg lg = :’ lg
. ‘ 15

di ——>~f d; o 1 —"*pfl d;

Let us put this in terms of binary relational parametricity. We say a pair of functions
fi: a;i ~» al is parametric with respect to the relations r : @p > a1 and r' : ay ¢ aj if
it carries pairs in r to pairs in ¥’ and we write [1,’] : [ag,a}] ¢ [a1,4}] for the binary
relation containing such pairs of functions. Plotkin’s Axiom says that the least fixed
point operator is parametric with respect to the graphs of strict, continuous functions.

ifp
[do, dp) ————t—sm dly

I[(gmg)z ' I@

Ifpy, ‘_

ldy,d] ——2 s g,

This means that for every strict, continuous function g : dy — d; the pair of functions
Ifp,;, and Ifp,, is parametric with respect to the relations [{g}, ()] and (g) or, expanding
further, the pair of functions lfp,, and Ifp, carries each pair of endo-functions f and
f1 that is parametric with respect to {g) and (g} to a pair in {(g). By the properties of
graphs of functions and the properties of function spaces, this is equivalent to Axiom 1.

do L2 dy dy —" 4, 1~ [do, o)
‘ lg ls &> I(s) 3(3) L& : 1[(3),@)]
: i fi : A
d) ——d dy —j—d; 7 1 —— [d},di]
Upg,ofy - 1
1 s X ‘ 1 pfo do
= 1 1(5') = ls
Yp, of
| —ath o |
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Just as Axiom 1 fails without conditions on g, the least fixed point operator is not
parametric with respect to all relations. A relation r : dy ¢+ dy is strict if it contains the
pair (L gy, Lg,) and is complete if it is complete as a subset of the partial order do x dy.

Axiom 2 The least fixed point operator is parametric with respect to strict, complete
relations.

The graph of a strict, continuous function is a strict, complete relation, so Axiom 2
implies Axiom 1. Axiom 2 therefore also characterizes the least fixed point operator
- and s0, in the concrete setting of complete partial orders, Axiom 2 is equivalent to
- Axiom 1. We would like an abstract, categorical treatment of these Axioms.
For a family of operators £y : [4,d] — d, Mulry’s definition of ‘strong dinaturality
with variation restricted to algebra morphisms’ says that for every algebra morphism g
the following diagram commutes.

[do, do] - do\

. / }do,gk g\
P pb [do,d1] d
\ /[g,d1] /
dy,di] i dy

Applied to categories of partial orders, algebra morphisms are strict, continuous func-
tions, the pull-back P contains just those pairs (fo, f1) such that go fo = fi o g and we
have a direct internalisation of Plotkin’s Axiom.

At this point we could turn to standard categorical treatments of relations and com-
pare the resulting niotions of parametricity with the above notion of strong dinatural-
ity. However, the above diagram suggests a specific category of binary relations with

cospans for objects.

o o Cf}

/ fi /1

c1

We think of a cospan as relating those pairs of points it sends to the same point in the
vertex and we call such relations ‘quotient relations’. Conceptually, quotient relations
can be viewed as those induced by abstractions: the elements of two concrete domains,
cp and ¢y, are related just when they represent, via rp and 7y, the same element of some
 abstract domain, r. A jointly monic span representing the same relation is obtained by
taking a pull-back of the cospan. This is how we decide if the pair of maps fp and fi
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is parametric. We take pull-backs of the two cospans and look for a commuting vertex
component.

Jfo
/Co /c{')
N S
'r*mn-g***r’*
b r{}'
N, AN
1 €

However, the existence of such a vertex component is equivalent to the commutativity
of the first pull-back followed by the pair of maps followed by the second cospan.

fo

€0 ——et— )

\ f I

(441 Wm-*-———-—%-—c"i

Not only does this avoid one pull-back operation and an existential quantification, but it
matches up nicely with the way quotient relations express relatedness: pairs of maps in
{co,cg)} X fey, |} are parametric iff the cospan ([r},r6), [75,71]) sends them to the same
map in [r*,r].

[co, cp]
\w\
-
/[fsm/

[01?0’1}

This formula works for any closed structure [—, +], including strict and ordinary func-
tion spaces over categories of domains. The various other operations on domains also
lift without undue complication. In particular, the componentwise lifting of smash
product gives the correct smash product on such relations. Compare this with the for-
mula in [1} for the smash product of general binary relations.

There remains the question of the strength of the associated notion of parametric-
ity. Are quotient relations adequate for the logical relations arguments We would like to
apply to our models? We have yet to consider precise equivalence results, but there are
grounds for optimism: quotient relations include the graphs of functions, they admit
good liftings of the usual operations on domains, and, as expected, quotient parametric-
ity characterizes canonical fixed point operators such as least fixed points or those in-
duced by a Fixed Point Object.

"7
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Contents. In Section 7 we use the bijective-on-objects/full-and-faithful factorization
system in Cat to describe abstractly a setting for restricted variation. The setting spe-
cializes to Mulry’s monadic setting, and hence, to partial order settings, and provides
an exact correspondence between quotient parametricity with restricted variation and
Mulry’s strong dinaturality with restricted variation. This derives from the general
correspondence, described in Section 6, between quotient parametricity and strong di-
naturality. Our notion of parametricity requires that we know how to lift the relevant
operations, function spaces and projections in the case of fixed point operators, from the
base category to the category of relations. In Section 5 we explain how function spaces
lift using an interesting category of push-me-puil-you’s. The case of function spaces is
special in that they lift regardless of their effect on the pull-backs we use to construct
our categories of quotient relations. When an operation preserves these pull-backs, we
have the usual extension from categories to functors of any construction based on those
 pull-backs including quotient relations as shown in Section 4. This allows us to lift the
usual covariant operations on domains, including the smash product. In Section 3 we
give a categorical description of quotient relations using pull-backs in the base cate-
gory. In Section 2 we go over a ‘graph’ framework for binary relational parametricity.
This follows the ‘reflexive graph’ framework introduced by O’Hearn and Tennent [2].
We include an explicit definition of diparametric transformation following the implicit
definition in [1]. S

2 Binary Relational Parametricity

A graph category consists of a category of edges R, together with a source functor (-)o
and a farget funcior {-)1 to a category of vertices R, .- . :

R

(-)ou(-h

Ry

For example, the arrow category C* can be viewed as the edge category of a graph
category with source and target given by domain and codomain, respectively. Another
example is SubsSet, the pull-back of the subset fibration SubSet along binary products
in Set. This category has binary relations for objects and parametric pairs of functions
for arrows. : ' ‘

SubySet SubySet —> SubSet

| = | » |

Set Set x Set S Set
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A graph functor consists of an edge functor F, and a vertex functor F, such that
(Fes)o = Fy(s0) and (Fes)) = F,(s1).

5, —2 R,

{-}eu(')l (')011{(')1
I

Sy romne Ry,

For example, there is the graph graph functor (-} from Set to Sub,Set. The vertex
functor is the identity on Set and edge functor takes a function f to its graph (), the
set of pairs (x, fx). :

Sett —(—)—a- SubsSet

b

Set — Set

A grdph transformation consists of an edge natural transformation o, and a vertex
natural transformation ¢, such that (0} = Oy (si) and (Oleg)1 = Chyg,).

T

T R,
Sl

(1 Cle |[ O
P .
v Ay

S
Gy -

A

b3

{)o

e

Ha==n

3

For example, given binary relations » and # over Set, each pair of functions that is
parametric with respect to » and # corresponds to a graph transformation f thus:

¥

m
1 % SubpSet
ingiting {rorre}
m
1+1 Ythoni} 2 Set
-_.\_V______‘.a/
i)

A graph category R can be viewed either as an internal directed graph in the large
category of categories, as presented above, or as an internal category in the large cat-
egory of directed graphs, in which case it has an arrow graph R* and an object graph
R? together with graph morphisms for domain, codomain, composition and identities.
Similarly, graph functors and graph transformations can be viewed as internal, directed
graph morphisms and directed graph transformations (replace 1-cells with 2-cells in
the definition of directed graph morphism) or as internal functors and internal natural
transformations. Either way, graph categories, graph functors and graph transforma-
tions form a large 2-category GCat.
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We must be careful to distinguish C* from the graph category CT with source and
target given by codomain and domain, respectively. The graph category C* of down
arrows is not generally isomorphic to the graph category C" of up arrows. The two are
equivalent as graph categories over the identity on CfffCis a groupoid. Note that there
is a graph isomorphism between the graph of down arrows on the opposite of C and
opposite of the graph of up arrows on C.

(o == Ty
CJL - ‘(;@p

The graphs C* and C7 both embed fully and faithfully into C?, the graph of cospans
over C. This has the domain of the first cospan component for source and the domain
of the second for target.

¢t —C> <!

|

C C C

A graph operator from'S to R ‘consists of an edge function F, from the objects of
S, to thie objects of R, and a vertex function F, from the objects of S, to the objects of
R, such that (F,s)o = F,{s0} and (Fes)1 = F,(s1). In other words, a graph operator is
a graph morphism from the object graph of S to the object graph of R. For example,
- the identity on R?, the object graph of R, gives a graph operator from R to R and the
diagonal graph morphism A : R® — R® x R® gives a graph operator from R to R x R.
Note that, while every graph functor restricts to a graph operator, operators such as
those above do not generally extend 1o graph functors. &

Given graph operators F and G on S, a parametric transformation from FtoGis
a family of maps o : Fd — Gd indexed by the objects of S, that lifts to a family of
maps o, : Fs —5 Gs indexed by the objects of S,, meaning (o) = Olgy and (O} == Ol
for all s.

Fso Clsy —= Gisp
i 5 Oy - Gs
Fsy Olgy —— G5y

For graph categories with at most one such o we just draw a parametricity square:

sy
Fsg —— Gsg

IFS 1(75
!

§
Fsy — G5y
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For example, the familiar naturality square is a parametricity square in the arrow graph
category. Given a construction such as G that lifts categories and object functions
to graph categories and graph operators, we can ask when a (not necessarily natural)
transformation lifts to a parametric transformation.

Proposition 1 Natural transformations from F to G are identical with parametric
transformations from F* to G,

Fsa'mwgt-s- Gsyp

lFs l Gs
_—

Fsy — Gs

Within this framework of binary relational parametricity, the fundamental notions are
functorality: when does an object function lift to a functor? And parametricity: When
does a transformation lift to a parametric transformation? As the Proposition shows,
naturality is a derived notion. Another derived notion is that of diparametricity,

Definition 1 A diparametric transformation between operators F and G on S° x § is
a parametric transformation between the operators F oA and GoA on S.

A G
S i §OP 3¢ § :::::.}::::; R

Just as dinaturality weakens naturality, diparametricity weakens parametricity. Note,
however, that diparametricity is expressed in terms of parametricity, unlike dinaturality

- which cannot, int general, be-expressed in terms of naturality. Also, because dipara-
metricity squares compose, diparametrics compose.

(1,;0 i 0:;9
F(s50,80) —— G{s0,50) ——= H(s0,5)

IF{s,s) IG(s.s) IH(s,sJ
Oy Ot;
F(s1,5) — G(s1,51) —> H(s1,8,)

In Section 6 we see that dinaturality can be derived from diparametricity if we weaken
the notion of graph category by allowing partial composability in the category of edges,
in which case diparametrics are only partially composable.
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3 Quotient Relations

Definition 2 Given a category C with pull-backs, the category QC of (binary) quotient
relations over C has cospans r; in C for objects

N

; r1/ |
e

c1

and pairs of maps f; such that rjo fyor{ = rj o fi org for arrows,

where 1} is a pull-back of r1 along ro and rj, is the corresponding pull-back of ry along
r1. Composition and identities are given by composition and identities in Cx C.

We think of a cospan r; : ¢; ~ r as relating those pairs in cp X ¢1 sent to the same
element of r. The definition of arrow does not depend on the choice of pull-back r*. In
fact, any weak pull-back will do, so C need only have weak pull-backs. The properties
of (weak) pull-backs ensure that composition in C x C lifts to QC. The categories QC
and C form the edge and vertex categories of a graph category with source and target
functors as in C~.

> —QC
C c

There is an identity-on-objects functor from C> to QC, and although it is not generally
full or faithful it extends the full and faithful graph embeddings of C* and CT into C~
to full and faithful graph embeddings into QC.

CT--—L}QC-{—E—CJ’

Lo

C C C
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While we have presented the objects of SubsSet as subobjects of products, these
correspond to equivalence classes of jointly monic spans. If we use pull-backs to cast
the objects of QSet as jointly monic spans, we obtain a full and faithful embeddmg of
QSet into Subzset

QSet *ﬁ,gwa- Sub;Set
. Set ~rr— St
This means that the notion of arrow in QSet matches the notion of arrow in SubySet
which corresponds to the usual logical relations definition. Note, however, that not

every binary relation over Set is represented by the pull-back of a cospan, For example,
no quotient relation relates

without also relating b and x. This is a gcnerlc counter-example in that a binary reiation
is represented by the pull-back of a cospan iff it is zig-zag complete.

Takeyama and Tennent proposed zig-zag completeness [6] as a characterization of
relations induced between different concrete data types that represent the same abstract
data type. -

Definition 3 (Takeyama and Tennent) An n-ary relation r is zxg~zag complete if, for
each permutation ()', o -

Gr(a;x) and a~b imply or(b,x),
where a ~ b if there exists y such that or(a,...,y,...) and or(b,....y,...).

Propesition 2 Over Set, an n-ary relation r is represented by the wide pull-back of an
n-ary cospan iff it is zig-zag complete.

When n = 2, zig-zag completeness can be described in terms of composition of binary
relations. In a category R with an involution {-)° : R — R, an arrow r, is difunctional
[31if ror®or.=r. This condition well known in the context of relations between
algebras. Ordinarily R is the category of relations RelC over some regular category C.
See Metsen [3] for a study of the relationship between pull-back spans and difunctional
relations over categories other than Set.

A regular category C is Mait’cev if every arrow in RelC is difunctional. For ex-
ample, the category of groups is is Malt’cev. Another example is Set® [5]. This is
interesting because, while Rel(Set®?) uses spans in Set® to represent arrows, we are
using spans in Set®® to represent objects in SubySet which correspond to arrows in
RelSet and, either way, the arrows we get are all difunctional. What about the category
we haven’t mentioned, Sub;(Set®)? The category QSet is equivalent its full subcate-
gory of jointly epic cospans, and this is equivalent to the opposite of Suby(Set®P),
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There is nearly an isomorphism between QSet and J,,,Set”, the category of cospan
diagrams with the vertex component of arrows existentially quantified. The exceptions
occur with arrows to the identity cospan on empty sets from other cospans on empty
sets.

‘When C is the category of non-emply sets or the category of pointed sets and point
preserving functions, the category of quotient relations QC is isomorphic to the cospan
category 3,.,C which is equivalent to the opposite of Suby(CF).

4 Componentwise Liftings

If U : D - C is a pull-back functor (functor preserving pull-backs between categories
with pull-backs), then it lifts componentwise to a functor QU : QD — QC.
A Udy
N \UK\
s — Us
51 Us{
d - Ud

Given an arrow pair f; in QD, we check that the image U f; is an arrow pair in QC by
taking, for our pull-back of Us;, the image of a pull-back of s;.

Udy ——2—> Ud)

/U(s;)/ \JK \w\
U(s*) pb Us Us'
}(s{*}}\\ /Us1/r /U “Jl/

Uf

Udy ——— e Ud}
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Taken with U/, the functor QU gives a graph funétor,

ap ¥, qc

b,

D———sC

Definition 2 thus gives the object part of a functor Q : PBCat — GCat from the category
of pull-back categories to the category of graph categories. In fact, the construction
extends to functors taking pull-backs to weak pull-backs and to functors preserving
weak pull-backs between categories with weak pull-backs.

PBCat —a— GCat
Q
/

PB,,Cat Qw

|/

WPBCat

“These Q extend to 2-functors: the functors QU act componentwise on the cospans that
make up the objects 0f QD, so the components of any natural transformation o : U = '
also give a graph transformation from QU to QL.

. [+
Udy > U'dy
(U.ﬂ( \J(\\ \\U'SK
(Us)* . Us °“ U's
. k’ﬂ){\ .U-S‘z/f U's;/f
. -
Udy U'd;

When D has pull-backs, D x D has pull-backs. ‘These are computed componentwise,
so QD x D) is 1somozph1c to QD x QD.

GCat X GCat — = GCat
Q%Q = §
PBCat x PBCat ~—— PBCat

Any binary operation M on D x D that prescrves pull-backs therefore lifts component-
wise to a binary operation on QD x QD.”

QD x QD= Q(D x D)~ QC
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For example, the smash product @ on Cppo, can be expressed as a pull-back (the
image under lifting of the product expressed as a pull-back in Cpo) and so preserves
pull-backs. It therefore lifts componentwise to QCppo, .

do d, do®d)

N N \Wk

r rooorr rer
"l/ I‘é/ r;@{
-

dy di di ®d'i

If pull-backs are used to embed QCppo; into SubCppo, , then Q® corresponds the
smash product K {1] which is adjoint to the parametric function space [—, +]sub,Cppo, -

QCppo, x QCppo, oe QCppo,
pb%pb L Poupb
SubyCppo | x Sub2Cppo; SubyCppo |

While Q® is equivalent to the composite poo B o (pb x pb), the functor Q® is given
by a natural, componentwise definition, while [ is defined using an existential quan-
tification and a completion or, more abstractly, certain coequalizers in the category of
lift algebras. ‘

How might the above apply to operations of mixed variance? When D and DP have
pull-backs, D x D has pull-backs. If F is a pull-back functor on D°? x D, we obtain
a graph functor QF on Q(DP) x QD == Q(DP x QD). The following proposition then
gives us a graph functor on (QD)°F x QD.

Proposition 3 When D and D°® have pull-backs, QD) is equivalent to (QD)°P.

Proof. The pull-back operations on the objects of Q(DP) and {(QD)P give the equiv-
alence. QED,

In other words, on those D that have both pull-backs and push-outs, the 2-functor
Q commutes up to an equivalence with the opposite category 2-functor (-)°P : Cat —

Cat®®,
g0

GCat — > Geare

b~ &

[ (.)0P I
PBPOCat — PBCat®™

~ T his is a little surprising. It means QC is equivalent to (Q(C°))°? when C has both
* pull-backs and push-outs. Both QC and (Q{C})°P have pairs of maps for arrows, but
the objects are different and arrows are tested differently. Take for example QSet. In
comparison with the category SubsSet of all binary relations over Set, QSet has the
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same notion of arrow but only represents some relations (the difunctional ones), while
{Q(Set®))°P, having spans for objects, represents all relations but has a more liberal
notion of arrow tested using a push-out (pull-back in Set°?) of the codomain span.

/ Co\ fo c{} / co fo cf) \
AN V
ri v, 7 7 s
N \ /" 7N
rt pb r r r v pb Pt
\ra rl/ "1/ \' \"1 o
NS, / N PN
€1 € €1 ¢

Note, however, that this method of lifting mixed variance functors goes all wrong when
applied to closed structure. Assuming C°P has pull-backs, these are not generally pre-
served by the contravariant parts [—, c]c : C% — C of a function space functor [—, +]¢
However, given just pull-backs in C, any function space functor [, +]¢ : CP x C — €
lifts to a reflexive graph functor [—,+]qC: (QC)° x QC — QC, with or without pull-
backs in C°? and whether or not those in C are preserved.

5 Push-me-pull-you’s
Before we consider fuﬁction spaces, we introduce a pleasantly symmetrical construc-
tion K which i is eqmvalent to @ when apphed to puil«back categories.
Definition 4 Gwen any category C, the category KC of push-me~puil—you s over C
has, for ob]ecrs, commutative diamonds p}-

P
n/ N i
/Po : Py
N P

\P? f
N /

such that any span a; that commutes with the cospan p} commutes with any cospan b;
that commutes with the span pf,

péoas=ploa; and pgobozp?obl = bpoag=byoa,

/p
\
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and, for arrows, pairs of maps f; such that gy o foo pd = gl o fio pi.

Jo

Py ——————— 40

vl N
% 5\
?° q
\ﬂ0 qg/
i\ i / i

Pt ——= 41

1

Composition and identities are given by composition and identities in C x C.

“The push-me-puli-you condition abstracts the property of (weak) pull-backs that en-
‘sures composition lifts from C x C. Identities lift from C x C because the diamonds
“commute. Informally, the span generates pairs, while the cospan tests pairs. Commu-
“tativity says every pair generated must test good. The push-me-pull-you condition says
every pair that tests good must be generated. The objects of KC include all (weak)
pull-backs and (weak) push-outs in C. Over Set or any C with both pull-backs and
- push-outs, a diamond is a push-me-pull-you ff the pull-back of the cospan commutes
with the push-out of the span.

Proposition 4 A choice of pull-backs m C gives an equivalence between the categories
QC and KC which is a graph equivalence over the identity on C.

QCWEE,;—KJI:
c—oc

Proof. One direction of the equivalence takes a cospan in QC to its chosen pull-back

~ diamond in KC aid arrow pairs to themselves. The other direction takes a diamond in

KC to its cospan part in QC and arrows pairs 1o themselves. These two functors give

- the identity on QC and the endofunctor on KC that normalizes push-me-pull-you’s to

pull-back’s. Any push-me-pull-you is isomorphic to any (weak) pull-back diamond
with the same cospan. QED. .

Proposition 5 Given a choice of pull-backs in C, closed structure on C lifts to closed

structure on KC.

(KO)P x KC — 1 e

| )

CFPxC———C

Proof. The cospan part of [—, +]kc is given by applying [—, +|c to the cospan of the
covariant argument and the span of the contravariant argument. The span part is given
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by the pull-back of the cospan part.

P q = [P1 QEKC

O/PO ‘10\ [po, qo]fi\
1 0.1
/Po 4, ipos%&
N P g (7% q')c
(1]

P ! ()4l
z\ /‘?1 /1 e

1 q1 [pr,qilc

The cospan [p?,g}] internalizes the test on-arrow pairs in the definition of KC. The
puil-back span then generates all pairs that test good We must check that [h,,g,] carries
these to good pairs according to the Lospan 0 ¢!} . Note that the span [P} ,q?] does
not generally generate all the pairs in [p?, g}]*~~the contravariant place in the function
space does not generally preserve pull-backs——so we cannot appeal 1o the diagram

. 20|
(/[Po:qo] “L [PH»40]
™~
ipbiad] tri ]
/p"q" . - 0\\
Epl,q"]\ (7,4
lr.ad) ' (P45
\ (.21 ; ,/
[P1,g1] ——mmism 1, 41]

Instead, consider a pair f; : p; —» ¢; in [p°,4']*. We know this gives an arrow from p to
q because [p?, g!] internalises the arrow test.

P6 hy 7o o g0 go CI&
' Pi?j 8/ >< \ql \q;,’
2 S NN
P° 2 & Pl 4! g
7 / 9’3/
R ; hl\ / 81 ' 4
P 4

By the push-me-pull-you properties of p{ and q{ , the composite pair h;o fio gy, which is
[hi,2:] applied to f,, gives an arrow from p’ to ¢, but then this pau’ tests good according
to the cospan [p?, 4/!] which internalizes the arrow test from p' to ¢'. QED

Corollary 1 Given a choice of pull-backs in C, closed structure on C Iifts to QC.
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6 Strong Dinaturality

First we consider ordinary dinaturality in terms of diparametricity. Given a category C,
the quasi-category! DC of diamonds has commutative diamonds for objects and com-
muting pairs of maps (as in KC) for arrows. Without the push-me-pull-you condition
there is no guarantee that componentwise composition of arrows in DC gives arrows
in DC. On the other hand, every functor F lifts componentwise to a quasi-functor DF
which preserves what composites exist. Also, as with push-me-pull-you’s, we have a
isomorphism between the graph quasi-categories (DC)°P and D(C°P). Dinaturality is
parametricity with respect to certain objects in the guasi-category of diamonds.
o

F(d,d) ——— G(d,d)

¥ dl
/F(g d) ¢ s)\
F(d',d) G(d,d')
F(dr*)& /G{g,df}

) — G, d)

Proposition 6 Dinatural transformatwns from F to G are identical with diparametric
transformations from DF o (o [} x *) to DGo ((fra 1) xh.

(DY) x D! W_Bi_ (D9)t x Db+ ¥ p(por) x DD e D(D"P x D) 3 DC

" Assuming C has pull-backs, strong dinaturality [4] is parametricity with respect to
~ certain ob_]ccts in QC. :

Cg

F(d,d) - G(d,d)
/ \F(d,g}\ _ , \G(J,K
P pb F(d,d') G(d,d)
. _ =
F , T . ,dt
\ e N o g
F(d',d') - G(d,d")

Proposition 7 Strong dinatural transformations from F to G are identical with dipara-
metric transformations from QF o (1o 1) x %) 10 QGo ((tTo [[) x 1¥).

QG
(DY)9P x Db mm 1D, 220 (DRt x Db LY Q(DP) x QD —> QD x D) :::::{;:}:’; QC

1By ‘quasi’ we mean that composition is a partial operation on composable pairs and the equations of
category theory hold just where both sides exist. A ‘graph quasi-category” has a category of vertices and
quasi-category of edges. The definitions of ‘graph operator’ and ‘parametric transformation’ are unaffected
because they ignore composition.
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Diamonds of the form
/ \
\ /

are pull-backs, This means the above functor (1To |[) can be written as 1+ followed by
a pull-back operation from (QD)P to Q(D°P).

( Dé)op (Q D)P

o

(Dopyt e Q(Dﬂp)

The above functors on (JDJf)op x D therefore factor through functors on (QD)°P x QD.
{#)° pb-xQD o QG
(4 x DI (D) x @D R Q) x QD — = Q% x D) Qe

Corollary 2 A family of maps is-stroﬁgly dinatural zf it gives a diparametric transfor-
mation from QF o (pb x QD) to QG o {pb x QD).

Now suppose o has the type of a fixed point operator. That is, suppose F is the function
space [—,+] of some closed category C and G is second projection Te on C°P x C.
The function space lifts to a functor [+,—lqc given by Q[—,+]o (pbx QC). The
second projection mige on (QC)°P x QC throws away its first argument and so equals
Qe o (pb x QC). Therefore, by the Corollary, a diparametric transformation from
[+, —lac to mqc gives a strong dinatural transformation from the functor [+,~]}to the
functor ®e. In this case, however, the converse holds.

Proposition 8 A family of maps f; : [c,c] —~+ ¢ is strongly dinetural iff it gives a dipara-
metric transformation from [—,+]qc : (QCYP x QC — QC to "ge : (QC)P x QC —
QcC.

Proof. We check that the a priori stronger parametricity condition is implied by strong
dinaturality. Strong dinaturality for these two functors says, modulo an internalisation,
that we have g(f(fo)) = £(f1), for any fo, f1 and g such that go fy = fiog.

co—fng-.c(;- : 3&(:0

lg
(1)

€] s 7] i —>C
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Diparametricity says, modulo an internalisation, that we have go(f(fo)) = g1(£f(f1)).
for any fy, f1 and cospan (g, 4) such that go fyo g} = ho fiog.

fo

o co
s’f/ g‘i/ \
A/ N
4 8 pb 8
N, \ga /
D,
N NS
1 41
] (fo) e
/ gf/ \J
7%) 4 \
= ] ————g" pb 8
AN i,
1 f(f1) el
£(fo)

AN /ﬂm C/

This follows from strong dinaturaiity applied to f*, fo and g} and to f*, fi and g,
where f* is the unique span map from (fo 0 g3, f1 0 g5) to (g1, 85)- QED.

7 Restricted Variation

For Plotkin’s Axiom to characterize least fixed points, it is necessary that g vary over
strict, continuous maps only. In Mulry’s setting, the notion of strong dinaturality must
be correspondingly weakened. In that setting, strict maps are algebra morphisms and
$0 Mulry uses the notion of strong dinatural transformation with variation restricted to
algebra morphisms [4, Def. 3.11]. In this Section, we use a factorization system in Cat
to describe the correspondingly weakened parametricity condition. Strict maps will be
those in the image of some functor I : D -+ C. In Mulry’s setting, U is the forgetful
functor from the category of LU -algebras.

In Cat every functor F factors as a bijective-on-objects functor F,, followed by a
full-and-faithful functor Fr. If D is the domain of F, the the interpolating category HF
has the objects of D for objects and has hom sets given by Hom(F(—),F(+)). This
factorization system lifts to graph functors, because the operation H is the object part
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of a functor from Fun, the category of functors and funcior squares commuting up to
given natural isomorphisms, to Cat. A graph morphism gives a graph in Fun which H
then sends to a graph category. Assuming U/ is a pull-back functor, we therefore obtain
a graph H{QU) by factoring the graph functor QU. Note that H(QU) is not Q(HU).
Our definition of the latter requires HU to have pull-backs (which it does, by the way,
if U creates pull-backs).

H(QU)

P
Q‘UU 7 Qc
- When L4 U is a closed ad_;uncnon the cIosed structure on C lifts along Uy to
closed structure on HU by defining

[ +law & LU—,+]o.

This closed structure commutes with Ug up to a natural isomorphismz: U{LU —,+]p =
[U U +}c which is the mternalasauon of transposition. Similarly, closed structure on
QC lifts to closed structure on H(QU) and we obtain a graph functor [—,+]gqu) :
H(QU)®" x H(QU) — H{QU). This is the image under H of closed structure on the
graph QU over U in Fun. ' :

Proposition 9 A family of maps £y : (Ud,Ud] - Ud in C indexed by the objects of D
is strongly dinatural with variation restricted to D iff it gives a diparametric transfor-
matzonﬁom [ IH(QU) to RH(QU .

~ Suppose U : D — C is the inclusion of the category Cppo, of complete pointed
partial orders and strict continuous maps into the category Cpo of complete partial
orders and continuous maps. This inclusion has a Ieft adjoint which lifts partial orders
to pointed pattial orders and so, as a right adjoint, preserves pull-backs, The category
H{QU) then has cospans of strict continuous maps for objects and pairs of continuous
maps for arrows. The family of the maps producing least fixed points, is characterized
by Plotkin’s Axiom which is equivalent to strong dinaturality with variation restricted
to Cppo, which is equivalent to diparametricity with respect to this H{QU).
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