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Multivalued logics and Topics

Robert Demolombe
ONERA/DTIM
2 Av. E. Belin, 31055, Toulouse Cedex, France
Robert.Demolomb@cert. fr

Abstract

There are several practical problems of knowl-
edge representation where it is more natural to
talk in terms of the set of sentences related to
a given topic than to make explicit all the sen-
tences in this set.

A problematic feature of classical logic is that
if we want to represent this set by a small set
which is closed under logical consequence, we
can generate sentences related to new topics.
For example from p it is possible to infer pv q,
even if q has no commen topic with p.

In this paper we compare several multivalued
logics in order to give a formal characterisa-
tion of the relationship between topics and sen-
tences. We give a uniform presentation for the
semantics of the four valued logic suggested
by D. Lewis, for the D. Bochvar’s three val-
ued logic, and for classical two valued logic.
We present thecrems that allow to compare
their possibilities in terms of characterisation
of propositional variables that occur in senet-
nces.

The main result is that Bochvar’s logic is more
suitable than Lewis’s logic to characterise sen-
tences that are logically equivalent, and that
are formed with the same propositional vari-
ables.
Keywordas:
Topics.

Multivalued logics, Relevance,

1 Introduction

There are several practical problems where we have to
define which kind of usage can be done of sets of sen-
tences. In these situations it may be quite heavy to
characterise these sets by their extensions. Another pos«
sibility is to use the concept of topic to characterise sets
of sentences.

For instance, we can use topics to define the sets of
sentences stored in a knowledge base that a given user is'
permitted to access [CD96]. For example, in a company
some users may be permitted to access any sentence that
is about the topic health, while others may be permitted
bo access any sentence about incomes.

In the context of cooperative answering, techniques
have been defined to provide users with additional infor-
mation which is not explicitly requested, and which cor-
responds to their topics of interest {CD89]. For example,
if some database user is asking a query about employ-
ces’ salaries, the system could infer that the topic “in-
come” is some user’s topic of interest, and it could give
other facts related to income. In other contexts it may
be useful to characterise all a user knows about a given
topic {Lak93) in order not to give to him information
he already knows. Also, in the field of computer aided
teaching, the “teacher” has to inform the student with
new knowledge which is about the topic of the course
[Marg1].

Another example is when data stored in data bages are
not all guaranteed to be correct, in the sense that some of
them may not be valid (they are stored in the data base
while they are not true in the world), or they may not
be complete (they are true in the world, but they are not
stored in the data base) [Dem97]. To characterise sets of
sentences for which data base content is guaranteed to -
be valid or to be complete, it can be quite convenient to
use topics.

Finally, solutions to the frame problem have been pro-
posed that use the concept of topic to define sets of
sentences that are dependent or independent of a given
change [Her96, ndCH94]. Here, independent is taken in
the sense that beliefs in these sets are persistent after
performance of an action or after performance of a belief
revision.

In summary, for all these kinds of problems we need
some linguistic means to define how sets of sentences
have to be used. The aim here is not define which sen-



tences are true in the world. That is why these char-
acterisations are based on sentence meaning and not on
sentence truth. The consequence is that links between
sentences and topics do not necessarily have the same
properties as links between sentences and their truth val-
ues.

For instance in classical logic if a sentence p is true
we can infer that sentence pV g is also true. However, it
is not clear that from the fact that sentence p is about
topic t we can infer that sentence p V ¢ is also about
topic t. ‘Take, for instance, for p the sentence (John loves
Mary)A(Mary loves John), and for q the sentence (John
loves Mary)A—(Mary loves John). We can accept that p
is about the topic happiness, but pV ¢, which is logically
equivalent to (John loves Mary), alone, is not necessarily
about happiness. Moreover, if r is the sentence (Mary
loves Peter), we can reject the fact that sentence p A r,
which is (John loves Mary)A(Mary loves John}A(Mary
loves Peter) is also about happiness. That is, from pA r
is about t we cannot necessarily infer that p is about t.

Let’s consider now the definition of the structure of
these links from a pragmatic point of view. It may be
that if we want to characterise user’s topics of interest to
extend classical answers, the inference of the fact: pV ¢
is about ¢ from the fact: p is about t, could be accepted.
However, if we have in mind to define what information
a user is permitted to know, that inference is definitly
not acceptable. That means that inference rules for rea-
soning about these links should be selected with caution,
and may depend on the kind of pragmatic problem we
consider,

A problematic feature of classical logic is that it is pos-
sible to derive consequences from a set of assumptions
that have no topic in common with the assumptions.
This problem has been extensively investigated by re-
searchers in the field of relevant logics {A.R735].

In {Eps80] (p. 120), Epstein defines a non standard
semantics for dependent implication, and he introduces
a function s that assigns to a sentence p a set of topics.
In {L. 94], Farifias del Cerro and Lugardon, use the same
technique.

Demolombe and Jones, in [DJar} , have defined a logic
for reasoning about topics of sentences that does not
require some extra feature, in the definition of the se-
mantics, like this function s. They introduce a pred-
icate A(t,“p"), whose meaning is that the proposition
which is represented by sentence “p” is about topic t. If
. we denote by Var(p) the set of propositional variables
in sentence p, the basic property of their logic is that,
if p is logically equivalent to q, in classical logic, and
Var{p)=Var(q), then we can infer that A(t,“p") is logi-
cally equivalént, in a classical sense, to A{t,“q"). To de-

fine a sound semantics for this inference rule, they make
use of Bochvar’s three valued logic (see {Boc72, GGe4)).
Independently, for the formalisation of contexts, J.Mec
Carthy and S. Buva have also used in [BBM95, MB97]
Bochvar's three valued logic to define the semantics of
the predicate ist{c,p), which means that p holds in con-
text c.

Lewis in [Lew88] (p.173), has suggested, to define rel-
evant implication, to consider a four valued logic, where,
in a given world, a sentence may be true, false, true and
false, or neither true nor false. The intuitive ides was
that the fourth truth value “inconsistent” might be used
to characterise inconsitent sentences, in the sense of clas-
sical logic, that are formed with the same propositionai
variables.

‘The objective of this paper is to compare, in a uniform
logical framework, several multivalued logics, in order
to select the most appropriate one for the definition of
the links between sentences and topics. We consider the
classical two valued logic, the four valued logic suggested
by Lewis, and the Bochvar’s three valued logic.

2 Four valued logic

In this section we define structures for the four valued
logic. The same kind of structures will be defined in the
next sections, with additional constraints for the three
and two valued logic. We investigate properties of the
four valued logic, and we compare this logic with classical
propositional calculus {CPC).

Definition 1: Propositional Calculus Language.
Let VAR be a set of propositional variables, the associ-
ated propositional calculus language is defined as usual
from VAR using the logical connectives =, for negation,
and V for disjunction.

The connectives A and —» are defined as usual from
negation and disjunction.

Definition 2: Structure. A structure is a tuple
S=<W,T,F> such that:

o W is a set of worlds.
o T is a function from VAR to 2%,
e F is a function from VAR to 2W.

From an intuitive point of view, if v is a propositional
variable, T (resp. F) assigns to v the set of worlds where
v is true (resp. false). The functions T and F are ex-
tended to compound sentences by the following rules:

T{(=p) = F(p)
F(-p) = T(p)



T(p vV q) = (T(p) N (T(q} U F(q))}u
L (T{g) N {T(p) U F(p))
F(pVvq) = F(p) N F(q)

The truth values “undefined” and “inconsistent” are
defined from “true” and “false”. The set of worlds where
a sentence p is undefined (resp. inconsistent) is denoted
by U(p) (resp. I(p)). These functions are defined by:

Ulp) ¥ W—(T(p)UF(p)) and I(p) & T(p)NF(p)

According to these definitions we have:

U(-p) = U(p)
I{(-p) = I(p)

U{pVq) = U(p) UU(q)
I{p Vv q) = (I{p) nI{q)) U (I(p) N F(q))u
(I(q) N F(p))

In the case where several structures are under con-
sideration we adopt the notation Tgs(p) to denote the
set of worlds where p is true in the structure S. Similar
notations are adopted for F(p), U(p) and I{p).

For a given propositional calculus language the set of
all the possible structures for the four valued logic is
denoted by Bi.

Definition 3: Two valued logic associated to a
four valued logic. Let S=<W T,F> be a structure in
E4. The associated two valued structure s is the tuple
s=<W,t,f> where t and f are functions from VAR to 2W
such that:

¢ For a propositional variable v: t{v)=T(v).
¢ t(-p) = W~ t(p).
* t{pVq) = t(p) Ut(q).

The set of worlds, f(p), where a proposition p is false
is defined by: f(p) & W~ t(p)

Notation: the fact that a sentence p is a tautology
of classical propositional calculus (CPC) is denoted by:
Fcrc p- o .

Lemma 1. If for every strtucture S in ¥4 we have
ts(p) = W then we have =cpc p.

Proof. The lemma is a direct consequence of the fact that
L4 contains all the possible assignments for &.

Lemma 2, If for every strtucture S in £4 we have
ts(p) C ts{q) then we have [=cpc p =+ q.

Proof. The fact ts(p) C ts(q) holds iff the fact ts(p —
g) = W holds.

Theorem 1. Let S=<W,T,F> be a given struture
in L4, we define the structure S* in function of S by:
W = W and for every propositional variable v:

Tg+(v) = Ts(v)
Fs+(v) = W — Tg{v).

Then, for every sentence p we have: Ts+(p) = tg(p)
and Fs+(p) = fs(p).

Proof. The proof is by induction on the complexity of
sentences,

Theorem 2. If for every structure S in %4 we have
Ts(p) € Ts(q) then for every structure S in Iy we have
ts(p) € ts(q).

Proof. Proof is based on Theorem 1, and uses the tech-
nique of contrapesition,

Theorem 3. For every sentence p there exists a struc-
ture § in X4 such that Ts(p) # 8.

Proof. The proof is by induction on the cémplexity of
sentences.

Let us denote by Var(p) the set of propositional vari-
ables in p. : .

Theorem 4. For every sentence p, if for every struc-
ture § in E4 we have Ts(p) C Ts{q), then we have
Var(q) G Var(p).

Proof. "By contraposition, Theorem 4 is equivalent to:
Var(q) € Var(p) implies that there exists a stricture S in 54
such that Ts(p} € Ts(q).

Let v be a propasitional variable such that v Var{q) and
v & Var{p).

Let Sy and wo be a structure and a world defined in the
same way as in the proof of Theorem 3. The world w1 in S
is defined as follows:

For every propositional variable u different of v
we have:

w1 € Tg,(u) and wy € Fs,(u).

For the variable v we have: w, ¢ Ts,(v) and
wy E FSo (V) :

(that is wy € U(v)).

From the proof of Theorem 3 we know that wo € Ts,(p).
Since v is not in p, all the propositional variables in p have -
the same truth value in wy and in wy. Therefore we have
w1 & Tso(p). Since the variable v is in q and v is undefined
in wy, from the definition of U we have wy € Use{q), then
we have wy & Ts,(q). Therefore we have Ts,(p) Z Ts,(q)-

Corollary 1. If for every structure S in X4 we have
Ts(p) = Ts{q) then we have Var(p)=Var(q).

Proof. Trivial.

Theorem 5. If for every étrucﬁﬁré Sin 24 we have
Ts(p) € Ts(q) then we have: F=cpc p — q and Var(q)



Var{p}.

Proof. This theorem is a direct consequence of Theorem
2, Lemma 2 and Theorem 4.

‘Theorem 5 shows that the four valued logic is power-
ful enough to represent the same kind of implication as
dependent implication defined by Epstein in [Eps90].

Theorem 6. If for every structure S in T, we have
Ts(p) = Ts(q) then we have: f=cpe p ¢ q and Var(q) =
Var(pj.

Proof. This is a direct consequence of Theorem 5.

Theorem 7. (W. Carnielli, [Car94]) The facts
Fcpc p ¢ q and Var(p)=Var(q) do not imply that for
every structure S in X4 we have Ts(p) = Tg(q).

Proof. The following example shows that Theorem 7

holds. Let p be the sentence (aA=a)Ab, and q be the sentence
(aA—a) A =b. We have [=cpe p ¢ q and Var(p)=Var{q).

Let S be a structure such that there exists a one to one
correspondance between the set of worlds in S and the natural
numbers. Let us define T and F in the following way.

T(a}) = set of worlds labeled by multiples of 2.
F(a) = set of worlds labeled by multiples of 3.
T{b) = set of worlds labeled by multiples of 5.
F{b}= set of worlds labeled by numbers that
are not multiples of 3.

We have T(p) = T{a) N F(a) N T(b) and T(q) = T(a) N
F(a) N F(b). Then the world wap which corresponds to the
integer 30 is in T(p), but it is not in T{q). Therefore we have
Ts(p) # Ts{q). Notice that we also have wi; & T(p) and
w1z € T(q).

The negative result presented by Theorem 7 is a bit
surprising. Indeed, it might seem to be intuitive that
two sentences, that are logically equivalent in CPC, and
that are formed with the same propositional variables,
have the same extensions.

Corollary 2. The facts Ecpe p = q and Var{q) C
Var(p) do not imply that for every structure S in T4 we
have Ts(p) C Ts(q).

Proof. The implication would hold, it would contradict
Theorem 7.

‘The relationships between the two valued logic and
the four valued logic are not obvious, Let us consider for
example the following structure S in 4 where we have
a world w such that for the two propositional variables
a and b we have: w € T(a), w € F(a), w ¢ T(b) and
w & F(b).

Then we have w € t{a) and w € F(a), and this
shows that we may have for some structure $ and for
some sentence p: tg{p) N Fs(p) # #. We also have
w & t(—a) and w & T(-a), and this shows that we

may have Ts{p) € ts(p). Finally we have w ¢ bs{-b}
and w ¢ Ts(-b), and this shows that we may have

ts(p) € Ts(p).

The following theorem shows some relationships be-
tween the two logics.

Theorem 8. For every sentence p and for all struc-
ture S in X4 we have: Tg(p) — Fs(p) € ts(p) and
Fs{p) — Ts(p) < fs(p).

Proof. The proof is by induction on the complexity of
sentences.

The relationships between the four valued logic and
the two valued logic are represented by the Figure 1.

w

Figure 1: Relationships between the four valued logic
and the two valued logic.

3 Three valued logic

In this section we consider a three valued logic. It is
defined exactly in the same way as the four valued logic.
The only difference is that we restrict the set of struc-
tures to those structures such that for every proposi-
tional variable v we have:

Te(v)NFg(v) =D

This set of structures is denoted by B3. The definitions
of functions T, F, t and f are the same as for the four

valued logic.

Lemma 3. For every sentence p and for all séructure
S in X3 we have Ts(p) NFs(p) = 8.

Proof. The proof by induction on the complexity of sen-
tences is trivial.



Lemma 4. The fact that for every structure S in T,
we have Ts(p) C Ts(q) does not imply that we have
Var(q) C Var(p).

Proof. Consider the two sentences p = a A ~a and q=h.

Lemma 5. The fact that for every structure S in I,
we have Tg(p) = Ts(q) does not imply that we have
Var(q) = Var(p).

Proof. Consider the two sentences p = aA ~a and q =
b A-b.

Theorem 9. For all sentence p and for every struc-
ture S in X3 we have: Ts(p) C ts(p) and Fs(p) C fs(p).

Proof. The proof is by induction on the complexity of
sentences.

Theorem 10. For every sentence p and for every
structure S in X3 we have:

ts(p) € Ts{p) U Us(p) and fs5(p) € Fs(p) U Us(p).

Proof. The proof is by induction on the complexity of
sentences.

A direct consequence of the Theorem 10 is that
for every sentence p we have ts(p) N Fs(p) = @ and
fs(p) N Ts{p) = B. Since from the Theorem 9 we have
Ts(p) C ts(p) and Fg{p) C fs(p), the relationships be-
tween the three valued logic and the two valued logic are
as indicated in the figure 2.

Figure 2: Relationships between the three valued logic
and the two valued logic.

Theorem 11. The facts k=cpc p — q and Var(q) C
Var(p) imply that for every structure S in T3 we have
Ts(p} € Ts(q).

Proof. This'is a consequence of Theorem ¢ and Theorem
10. :

Theorem 12. The facts f=cpe p — q and Var{p) C
Var(q) imply that for every structure $ in 33 we have
Fs{q) € Fs(p).

Proof. Similar proof as for Theorem 11.

Lemma 6. The facts k=cpc p — q and Var(q) C
Var(p) do not imply that for every structure § in L3 we
have Fs(q) C Fs(p). :

Proof. Let us consider the two sentences P =aAb and
q=a, where a and b are propositional variables. We have
F=crc p = q and Var(q) € Var(p). Let S be a structure in
L5 and w a world of S such that that w € F(a) and w € U(b).
We have w € F(q) and w £ F(p). - .

Theorem 13. The facts =cpe p q and
Var(p)=Var(q) imply that for every structure $ in 55 _
we have Ts(p) = Ts(q) and Fs{p) = Fs{q) .

Proof. This theorem i3 a direct consequence of Theorems
11 and 12. :

Theorem 14. There exist sentences p and q such
that for every structure S in L3 we have Ts{p) C Ts (q)
and we do not have Var(q) € Var(p).

Proof. Consider the sentences p = a A -a and q=b.

Theorem 15. If for evé_ry structure S in Iz we
have Tg({p) = Ts(q) and Fs(p) = Fs(q), then we have
Var(p)}=Var(qg).

Proof. Let us assume that for every structure S in Dz we

bave Ts(p) = Ts(q) and Fs(p) = Fs(q).

‘Let us assume that we have Var(q) € \}é;(p), then there
exists a propositional variable v such that v & Var(q) and
v & Var(p).

Let 3 be a structure in £;3 and w be a world in §. We have
either w & ts(p) or w € fs(p). Let us assume first that we
have w &€ ts(p).

Wz define a world w’ of a structure ' from w aid S in the
following way:

If a variable u is in Var(p) then:
if w € Ts(u) then w' € Tg/(u),
if w & Ts{u) then w' € Fy.(u).
If a variable u is not in Var(p) then w' € Ug:(u).

According to this definition we have w' € tg/(p), because
the fact w' € ts/(p) (resp. w € ts(p)) only depends on the
variable u such that w' € Ts/(u) (resp. w € Ts{u)), and for
the variables u in p we have w & Ts(u) iff w’ € T/ (u), and
we also have w € tg(p).

From Theorem 10 we have ts:(p) C Ts/(p) U Ug/(p), then
we have w’ € Ty (p) or w € Us/(p). From the definition of
w’ none of the variables in p is undefined in w’ then we do
not have w' &€ Ugs(p), therefore we have w' & Ts(p). Since

we have Tg/(p) = Ty:(q), we also have w’ € Ts/(q).

Since the variable v of q is ﬁpb_ in p, by definition of w",
we have w' € Usi (v}, and, by definition of U, we have w' &
Us/(q), which contradicts the fact w' € T (q). Therefore we



have Var{q) € Var(p).

If we assume now that we have w € fs5(p), a similar
proof, based on the fact Fs:(p) = Far(q), also allows to infer
Var(q} € Var(p).

Then, in both cases we have Var(q} € Var(p).

Since p and q plays a similar role, we can also prove that
Var(p) C Var(q), and finally we have Var(p} = Var(q).

Theorem 18. If for every structure § in £3 we have
Ts(p) = Ts(q) then we have =cpc p « q.

Proof. We can easily see that the proofs of Theorems 1
and 2 also hold if we restric the set of structures from 54 to
T

Theorem 17. For every sentence p, if for every stryc-
ture S in X3 we have Ts(p) = Ts(q) and Fs(p) = Fs(q),
then we have |=cpc p ¢ q and Var(p) = Var(q).

Proof. This result collates the results of Theorems 15 and
16.

‘Theorem 18. The fact that for every structure S in
L3 we have Ts(p) = Ts(q) does not imply that for every
structure S in 3 we have Fs(p) = Fs(q).

Proof. Consider the two sentences p = a A ~a and q=
b A -b,

Theorem 19. We have kcpe p q and
Var(p)=Var(q) iff for every structure $ in %3 we have
Ts(p) = Ts(q) and Fs(p) = Fs(q) .

Proof. This theorem is a direct consequence of Theorems
13 and 17.

Theorem 20. The two valued logic represented by I,
has the same properties as classical propositional calcu-
lus.

Proof. We prove by induction on the complexity of sen-
tences that for every structure S in T; we have Ts(p) = ts {p)
and Fs(p} = fs(p). Moreover for every possible assignment
t there exists a corresponding structure in ©; such that ¢
coincides with T.

4 Conclusion

The three logics are defined in terms of the same types
of structures as defined in Definition 2. If there is no
restriction on the definitions of T and F, we have the
four valued logic represented by the set of structures 24
If we restrict the set L4 to the structures where we have
Ts{p) N Fs(p) = @, we have the Bochvar’s three valued
logic which is represented by the set of structures £j.
Finally, if we restrict X3 to the structures where we have
Ts(p) UFs(p) = W, we have a two valued logic repre-
sented by the set of structures ¥, which has the same
properties as CPC, as it is shown by Theorem 20.

We have investigated how properties about the propo-
sitional variables in sentences can be represented by
structures only in terms of truth values. That is, the
only difference with classical propositional calculus is
that we consider three or four different truth values,
We have found a correspondance {Theorem 19) between
properties about variables, and extensions of sentences,
only in the case of the three valued logic: i.e. we have
Fcpe p ¢ q and Var(p) = Var(q) iff we have VS ¢
X3 (Ts(p) = Ts(q) and Fs(q) C Fs(p)). In the case of
the four valued logic the fact ¥S ¢ &, {(Ts(p) = Ts{q))
implies f=gpc p ¢ q and Var{p) = Var(q), but the im-~
plication in the other way does not hold {Theorem 7).
An open question is to found the property we have to
add to Ezcpe p & q and Var(p) = Var(q} in order to
have the equivalence with VS € T4 (Ts(p) = Ts {q)).

'These formal results show that Bochvar’s three valued
logic is the most adequate to define, in the semantics,
links between topics and sentences.
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Abstract

A great deal of research in Computer Science
and Artificial Inteiligence in particular is con-
cerned with intelligent agents and the formal-
isation of their properties. A number of ap-
proaches have been developed in the literature
based upon the intentional stance. One of these,
namely the BDI-framework, views agents as
having beliefs, desires and intentions. Under
this description several constraints have been
imposed in order to capture different types of
agents. In this paper we consider a similar
framework to that of a BDI-agent but further-
more the agents discussed here have the addi-
tional attitude of knowledge. Then we investi-
gate a number of possible constraints according
to the relationships between the intentional no-
tions, which enable us to capture the properties
of different types of agents.

1. Introduction

Much work in Artificial Intelligence [Cohen and Levesque,
1987; Fagin et al., 1995; Rao and Georgeff, 1991; Rao and
Georgeff, 1998] has been motivated by the need to formal-
ize theories which will ideally describe the properties of an
agent and the kind of reasoning associated with intelligent
behaviour. This tendency to ascribe mental qualities or
attitudes to artificial agents and machines, known as the
intentional stance [Dennet, 1987}, is a useful and conven-
ient means of describing complex systems, explaining and
predicting their behaviour. The intentional stance describes
agents or systems in terms of concepts such as knowledge,
beliefs, desires and obligations. It is assumed that the agent
has a mind and has goals or desires which are based upon
her view of the world and the information she possesses,
and she will perform actions that will lead her to the
achievement of her goals (principle of rationality), The
intentional notions are usually divided into two major cate-
gories: information attitudes and pro-attitudes. The infor-
mation attitudes such as knowledge or beliefs are obviously
related to information that the agent possesses about the
world she inhabits. The difference however, between

knowledge and belief is clearly a philosophical issue and it
is not the subject of discussion here. Nevertheless, belief is
considered to be the weaker notion of the two, and knowl-
edge is usually associated with truth. Thus, an agent is al-
lowed 10 have false beliefs without of course being aware of
it, but never false knowledge. Pro-attitudes such as desires,
obligations and intentions {Bratman, 1987] are responsible
for the agent's actions and they enable agents to exhibit
goal-motivated behaviour according to what they desire and
intend to achieve. '
Which exactly should be the attitudes appropriate for an
agent's theory is the issue of debate in the literature, Here
however, we view agents as having knowledge, beliefs,
desires and intentions. Knowledge represents the true in-
formation that the agent possesses about the world. Beliefs
are various pieces of information for which the agent is not
absolutely sure that they hold true, nevertheless they cannot
contradict her knowledge about the world. The intentions of
an agent indicate her commitment to perform certain ac-
tions and achieve goals or states of the world. The desires
represent states of the world or actions that the agent would
prefer to achieve. Both intentions and desires seem to
have a temporal aspect, in the sense that when we are refer-
ring to one's intentions or desires most of the times we usu-
ally refer to some point in the near or distant future. How-
ever, in this investigation, for the time being we are not
explicitly going to involve time.

The paper continues by first discussing the basic logical
machinery based on the BDI framework [Rao and Georgeff
1991; Rao and Georgeif, 1998,] with the additional concept
of knowledge. Then we discuss some of the issues on the
relations between the concepts of knowledge, beliefs, de-
sires and intentions. The following subsections present
constraints for modeling and capturing different types of
agents based on the relationships between the intentional
notions. The paper ends with a summary of our findings
and a pointer to future work.

2. Formal Framework

2.1, Language and Semantics

To make our ideas precise, and to express the concepts of
xnowledge, belief, desires and intentions and facts about



the world we will use a propositional multi-modal language
{Fagin et al., 1995]. We assume that we have a number of
agents 1,.....n and the world is described in terms of a non-
empty set of propositions ®. Each of the primitive propo-
sitions p,qyr,... in @ represents a basic fact about the world.
We also have the classical propositional connectives A and
-~ and the standard abbreviations for disjunction
PvyE—(—pa—Y), implication P=>y=—(¢pa—y) and
equivalence pedy= —(da—iA—(Ya~d). In addition we
have four modal operators K,B,1D, for expressing what an
agent knows, believes, intends and desires respectively.
These modal operators are indicated by a subscript denoting
the agent that they refer to, Wifs in this language are:

i) Each primitive proposition p is a wif

i) if ¢ and y are wifs then so are —¢ and oAy

i) if ¢ is a wif then Ki(¢), Bi(¢), 1(¢) and Dy(¢) are wifs
For the purpose of semantics we are going to use the classi-
cal possible worlds framework and Kripke structures. The
basic concept behind the possible worlds is that besides the
true state of affairs, the actual world, there are other possi-
ble states of affairs or worlds that the agent considers possi-
ble. More formally a Kripke structure for our multi-modal
logic is a tuple M=<W,%,K;,B,[,D> where W is the set of
worlds, ® is a truth assignment to the primitive proposi-
tions of @ (i.e. for each world w and each primitive propo-
sition p, (w,p)e {true,false}), K; is a binary relation for
each agenti on W and defines which worlds the agent con-
siders possible according to her knowledge. We write
Ki(w,w") and we mean that the world w' is knowledge-
accessible from w, according to agent i. The accessibility
relations By I, D; are similar to that of knowledge. - A bhi-
nary relation R, in generat is:

i) Serial, iff ¥ weW, 3w such that R(w,w")

it) Reflexive, iff ¥ we W we have Ri(w,w)

iit) Symmetric, iff ¥V w,w'e W such that R{w,w") we have
Ri(w',W)

iv) Transitive, iff V w,w',.w'eW such that R{w,w") and R,
(W', w'") we have Ry(w,w") :

v) An equivalence relation, if it is reflexive, symmetric and
transitive - '

vi) Euclidean, iff V w,w'\,w'e€W such that R(w,w) and
R(w,w"}) we have Ri(w',w")

The notion of truth for a formula in Kripke structures, is
defined as follows:

) (M,w) 6 iff M(w,d)=true

ii) (M,w) koA iff (M,w) k¢ and (M,w) Fy
i) (M,w) k¢ iff M,w) £¢ R '
iv) M, w)eKy(d) iff (M,w) Ed, V w'eW such that K(w,w")
V) (M,w) EB(9) iff (M,w') kd, V w'e W such that Bi(w,w")
vi) (M,w) E5(9) iff (M, W) £, V W'eW such that f,(w,w')
vii) (M,w) EDy(®) iff (M,w')kd, YW'e W such that Dyw,w

2.2. Basic Axiom Systems

The axioms that we are going to adopt are initially the K-,
and D-axioms for all four notions as well as the necessita-
tion rule. The K-axiom is the minimat systern for normal
modal logics [Hughes and Cresswell, 1968) and it states
that if an agent knows ¢ and she knows that ¢=>yr then she

will also know v . The same constraint is extended so as to
cover beliefs, desires, and intentions. The D-axiom ex-
presses the consistency of knowledge, beliefs, desires and
intentions and requires the accessibility refation between
accessible worlds to be serial. The necessitation rule states
that any valid formula is known, believed, desired and in-
tended. Thus we have:

Knowledge

K(OAK(9=w)=sK(y)

K{$)=—K(-¢)

IF +& THEN K(¢)

Belief

B(§)AB(¢=sy)=>B(y)

B(9)=>—B(—0)

IF +¢ THEN +B(¢)

Desires

D(O)AD(¢=>4)=>D(y)

D(6)=s—D(—~4)

IF +¢ THEN rD(4)

Intentions

UDAL(G=y)=>1(y)

[{)=>mI(—d)

IF +¢ THEN +I(¢)

We will name this system K"B®DPIP, from the initial of all
four notions and the superscript indicates the characteristic
axiom for each one of them. We will not impose any fur-
ther axioms for desires and intentions and thus from now
we are going (o omit the superscript from the names of the
systems. For knowledge we can also add the following:

T. K@= '

84, K(9)=K(K($))

S5, —K($)=K(~-K($)) '

The T-axiom intuitively says that knowledge is true, and
this is considered to be the axiom that distinguishes philo-
sophically the notion of knowledge from that of belief. It
requires the relation between knowledge-accessible worlds
to be reflexive. The S4-axiom, otherwise known as the
positive introspection axiom, attributes to an agent intro-
spective capabilities about her knowledge, and therefore if
she knows a proposition ¢ then she knows that she knows
this proposition. The accessibility relation in order to have
the S4-axiom between knowledge-accessible worlds is re-
quired to be transitive. Finally the S5-axiom, or the nega-
tive introspection axiomn, states that if an agent does not
know a proposition ¢, she has knowledge that she does not
know this fact. The accessibility relation in this case is
required to be symmetric and transitive.

We can extend the S4- and S5-axioms so as to cover belief :
34. B(¢)=B(B(¢)) o

S5. —B(@)=B(~B(¢)) o

However we will not adopt the T-axiom since we allow an
agent to have faise beliefs. This system is known as the
KD45 or "weak S5" system [Hughes and Cresswell, 1968).
Considering different combinations of axioms for knowl-
edge and belief we can have a family of logics and each
system is described by the characteristic axiom for knowl-
edge and belief indicated in the superscript. Here we will
be concerned with the KS*B®*DI system.



It is well known that agent formalisms based upon normal
modal logics suffer from the logical omniscience problem
[Fagin et al., 1995]. Although this framework suffers from
the same problems, some forms of logical omniscience can
be alleviated, as we will see, in the form of the consequen-
tial closure principles [Rao and Georgeff, 1998].

3. Types of agents

Let us suppose that we have an agent as described in the
previous sections. Although we can capture some of its rea-
soning the above axiomatizations do not describe any con-
nection that may exist between the selection of intentions
~ and desires and the agent's knowledge and beliefs about the
world. In the framework that we are using desires, inten-
tions as well as knowledge and beliefs are sets of accessible
" worlds and thus one possible avenue for investigating dif-
ferent types of agents is by imposing different kind of rela-
tionships between these sets. .

In [Rao and Georgeff, 1991; Rao and Georgeff, 1998] the
authors have considered such conditions in order to capture
additional relationships in the BDI-framework. As they
point out some of the possible set theoretic relationships
between the sets of accessible worlds will be quite mean-
ingless, and thus they examine what they call the strong
realism, realism, and weak realism constraints (Figure 1).

| 8

D I
i)
Figure 1. i)Strong Realism, ii)Realism iii)Weak Realism

- According to the strong realism condition the agent under
description is a very cautious agent, and only intends and
desires propositions that believes to be achievable. In this
- case the set of belief-accessible worlds is a subset of the
desire-accessible worlds and the set of desire-accessible
worlds is a subset of the intention-accessible worids. An
agent based on the realism constraint on the other hand is
an over-enthusiastic agent and believes that she can achieve
her desires and intentions. In realism the set of intention-
accessible worlds is a subset of the desire-accessible worlds
which is a subset of the belief-accessible worlds. A more
balanced type of agent is the one based on the weak realism
constraints, where the intersection of the intention- and
belief- accessible worlds is not the empty set, and the same
condition applies between desire- and intention- as well as
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between desire- and belief-accessible worlds. In [Rao and
Georgeff, 1991; Rao and Georgeff, 1998] the logic includes
apart from the basic modal operators, temporal operators
based on the branching temporal logics of CTL and CTL*.
The notion of a world being 4 subworld of another is de-
fined and some additional constraints are imposed based on
the structural relationships between worlds. Since each
possible world is a time tree this allows axioms over I-
formulas (inevitable) and O-formulas {optional),

When the fourth concept of knowledge is considered as part
of an agent's cognitive system things get more complicated.
We are confronted with a number of issues:

a) What is the connection between knowledge and belief? Is
knowledge a subset of the agent's beliefs? Can we safely
assume that knowledge is justified true belief?

b} What is the connection between knowledge-belief and
intentions? Surely intentions are quite different from de-
sires since intentions presuppose that the agent is commit-
ted towards their fulfiliment. Is it enough for the agent to
believe that her intentions are achievable or does she need
something stronger like knowledge of her intentions being
achievable?

¢) What is now the connection between knowledge-belief
and the desires of an agent? Does the agent have to know
that her desires are achievable or believing that some of
them are achievable is enough? Would it be possible that
the agent's desires are completely decoupled from her be-
liefs and knowledge, and thus she can desire propositions
that believes or even knows that they are not achievable?

d) If an agent intends to perform an action ¢, and knows or
believes that ¢y=>¢y, does she always intend to do &, as
well? (consequential closure principles)

While it is not possible to provide definite answers to these
questions in the following we are going to examine some
possible relationships between the four sets of accessible
worlds. The relationships that we examine are set theoretic
and we do not examine structural relationships between
worlds, since we are not using a temporal representation in
this framework. However we do not provide, by any means,
an exhaustive list, only some of them which we believe are
quite reasonable options for modeling practical agents.

3.1 Agents with Belief-consistent Intentions

The first type of constraints that we are considering is de-
picted in Figure 2, and characterizes agents with belief-
consistent intentions.

Figure 2. Agents with Belief-consistent Intentions



Hence, the intersection of the set of knowledge-accessible
and belief-accessible worlds is not the empty set, and the
same relationship applies between intention-accessible and
belief-accessible worlds, and finally between intention-
accessible and desire-accessible worlds.

It is quite obvious the desires of an agent can be decoupled
from her knowledge and her beliefs although the agent is
not allowed to have intentions which are inconsistent with
her beliefs. In the same way she cannot have beliefs that
are inconsistent with her knowledge or desires that are in-
consistent with her intentions. However under these con-
ditions she is not obliged to know that are achievable as
long as she does not have contradicting beliefs.

The semantic conditions that support the above relations
between the sets of accessible worlds are the following: "
Vwaw'  K(w,w)AB(w,W)

Ywaw'  B(w,w)Al(w,w)

Ywdw'  [(w,WAD{w,w)

These now entail the axioms:

K(¢)=>—B(=—¢)

{$)=—B(—¢)

D(¢)=p—I(~¢)

Let us suppose that we have an agent called Alice. A frag-
ment of Alice's cognitive system includes the foliowing
desires, intentions, beliefs and knowledge:

a) Alice believes that she can have a car accident

b) She knows that a Ph.D, requires a lot of hard work

¢} She desires to win a beauty contest and

d) She intends to finish her Ph.D,

Now what can we say about Alice, according to the above
constraints? Does she behave within the limits of what we
would describe as rational behaviour? Is she a cautious, an
enthusiastic or a balanced agent? On the one hand she be-
lieves that she can have a car accident, but according to the
semantic conditions she may not of course know that fact
for certain, Nevertheless, she might not intend to have a
car accident and neither desire it. She knows that a Ph.D.
requires a lot of hard work but she does not believe that a
Ph.D. can be obtained without working hard. Thus her
intention to obtain a Ph.D. will not come without working
hard and she is aware of that. Alice's desire however to win
a beauty contest does not mean that she believes that it is
achievable. Alice would like to win the beauty contest but
she may not believe that it is possible. _
Rao and Georgeff {1998} consider the consequential closure
principles. These are all formulas that are satisfiable in the
context of the above semantic constraints:

CD) I{(¢)AB($1=d2)A—1(dy)

If Alice intends to go to the dentist and believes that a visit
to the dentist always results in pain, she does not have to
intend to suffer pain.

C2) KoAD(dr=+y)A—I(¢r)

If Alice intends to get married and she desires by getting
married to have children, she may not intend to have chil-
dren.

C3) DO)AB(G=>)A—D(d)

If Alice desires to drink alcohol and she believes that by
drinking alcohol one can get drunk, she may not desire to

get drunk. Another possible form of consequential ciosure
principle is one that involves knowledge and intentions:
Ca) I0)AK(G1=>0r)A—I( D)

If Alice intends to go to the dentist and knows that a visit to
the dentist always ends up in pain, she may not intend
though, to suffer pain.

We can consider a slight variation of this type of agent
where the intentions of the agent are connected with her
knowiedge and not her beliefs (knowledge-consistent in-
tentions). An agent with belief-consistent intentions would
be appropriate as an email agent that sorts the user's
emails. In this case even if the agent intends to include

- emails that it believes the user will find useful, is not going
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to cause much trouble, apart probably from a little annoy-
ance to the user. The variation of this type of agent with
knowledge-consistent intentions, would be more appropri-
ate for example as security protocol agents, where the
agents need to choose their intentions and actions accord-
ing to their knowledge about the state of affairs.

3.2 Agents with Knowledge- and Belief-consistent
Intentions

This particular type of agent adopts intentions that do not
contradict in any way with the information she has about
the world, in the form of beliefs and in the form of knowl-
edge. Her desires cannot be inconsistent with her inten-
tions, although as in the previous case the desires are de-
coupled from her knowledge and beliefs. For instance, the
agent may desire to marry her neighbour's husband, even
though she knows that he is already married to another
woman. This kind of agent can be captured by the set re-
lationships depicted in Figure 3.

Figure 3 Agents with anwledgé— and Belief-consistent Intentions

An agent with belief and knowledge consistent intentions is
more cautious as far as her selection of intentions is con-
cerned. In belief-consistent intention agency, the agent can
have intentions which are not inconsistent with her beliefs,
she does not have to have conclusive information about the
feasibility of her future actions or plans, for instance
through previous experience etc. On the other hand if an
agent has a belief- and knowledge-consistent intention,
then she must have enough information in order to support
her choice of that particular intention, than a simple belief.
Imagine now the following scenario. Alice our agent is
disabled, she cannot walk which prohibits her from playing



football and she knows that she cannot play football.
However our agent believes that miracles can happen and
thus that it is possible she is going to be cured in the near
future, and she will be able to play football. If Alice be-
longs to the previous category of agents with belief-
consistent intentions, her intention to play football is con-
sistent with her beliefs, however it is not consistent with
her knowledge, nevertheless an intention for playing foot-
ball is allowed. Now if Alice's intentions must be belief-
and knowledge-consistent her intention of playing footbail
cannot be allowed.

The semantic conditions that support the above relations
. between are the following:

Ywiaw'  K(w,w)HaB(w,w)

Vwaw'  K(w,w)IAl(w,w")

- YwIw Biw,wOAI(w,w')

Vwaw'  (w,wiAD(w,w")

And thus we have the following axioms imposed:
K(¢)=>—B(—¢)

[{§)=>—K (=)

d)=>—B(—d)

D(¢)==—I(—d) .
The consequential principles CI1-C4 are satisfied in the
context of an agent with knowledge- and belief-consistent
intentions.

An example of an agent with knowledge and belief-
consistent intentions is a football player agent. A football
player agent must take under consideration both its knowi-
edge and its beliefs when it selects its intentions and goals.
Its intentions should not contradict its knowledge about the
rules of the game for example and its position and assigned
role on the team {defender, attacker etc.) but also its beliefs
about the current state of affairs within the game.

3.3. Agents with Belief-consistent Intentions and
Desires

So far the two types of agents investigated have conditions
linking beliefs, intentions and knowledge but the desires of
the agent are decoupled from her knowledge and beliefs
about the world. In the type of agency investigated here,
Figure 4, the desires of the agent are linked with her beliefs
in the sense that the agent is not allowed to have desires
that are inconsistent with her beliefs about the world. The
- same kind of restriction applies between beliefs and knowl-
edge, beliefs and intentions and intentions and desires.

K

Fig. 4 Agents with Belief-consistent Intentions and Desires
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Thus as in the simple belief-intention consistent agency, the
agent is not allowed to have intentions that are inconsistent
with her beliefs about the world and furthermore now the
agent is not allowed to have desires that are inconsistent
with her intentions or her beliefs.

The semantic conditions for these relationships are;

Ywaw'  K(w,w)AB(w,w')

Vwaw'  B(w,wOAI(w,w')

Ywaw'  B(w,wHAD(w,w')

Ywaw'  J(w,wOAD(w,w')

These conditions now impose the following axioms:
B(¢)=—K(—¢)

K)=—B(~4)

D(¢)=>—B(—¢)

D{¢)=3—i(—¢)

Alice our agent in this case believes that she can have a car

accident, but she does not know this fact for certain. She
intends to obtain a Ph.D. and she does not believe that this
is not achievable although, she knows it requires lots of
hard work. Her desire to win a beauty contest must not be
inconsistent with her beliefs and her intentions.

The consequential closure principles C1-C4 are again sat-
isfied in this type of agency. Examples of agents of this
particular type can be again email agents, search engines
agents. ‘

3.4 Inter-consistent Agents

The agent of this particular type is not allowed to have in-
tentions that are inconsistent with her knowledge and be-
tiefs, and desires that are inconsistent with her intentions
and beliefs about the world. These relations are depicted
in Figure 5,

Figure 5. Inter-consistent Agents

The semantic conditions that support the above set theoretic
relations between the different sets of accessible worlds are
the following:

Ywiw'  K(w,w)AB(w,w)

Ywadw'  K(w,w)Al(lw,w)

Vwaw  B(w,w)al(w,w)

Ywadw'  I(w,w)AD(w,w)

Ywaw'  B(w,w)IAD(w,w)

The following axioms are imposed due to the above seman-
tic relationships between sets of accessible-worlds:
B(®)=—K(-¢)

Kp)=—K(—~$)

H¢)=>—B(—0}

D(¢)=—I(—9)



D(¢)==b-mB(-th)

All of the consequential closure principles C1-C4 are again
satisfied. Alice again intends to obtain a Ph.D. and knows
that it requires a fot of work and therefore she does not be-
lieve that she can obtain a Ph.D. without doing any work.
Her desire to win a beauty contest again should not be in-
consistent with her beliefs but there is no apparent relation
between her desires and her knowledge.

For instance a financial market agent, or a football player
agent can be described by the above semantic conditions.

3.5 Agents with Belief-based Intentions

Agents who base their intentions on their beliefs are shown
in Figure 6. In this type of agent the set of belief accessible
worlds is a subset of the intention accessible worlds and the
intersection of intention- and knowledge-accessible worids
as well as the intersection of belief- and knowledge-, and
intention- and desire-accessible worlds is not the empty set:
Vwyw  B(w,wi=l(w,w) :

Vwaw'  K(w,W)AB(w,w)

Vwaw' K(w, WAL w,w)

Vwaw'  (w,w)AD(w, W)

Figure 6. Agents with Belief-hased Intentions

Using Alice again as our example and given the fact that
she believes she can have a car accident, it is obvious that
she does not know that it is impossible to have a car acci-
dent but she may not intend or desire it. Alice aiso knows
that a Ph.D. requires a lot of hard work and she does not
believe that this is not the case. Thus she intends to obtain
a Ph.D. and at the same time she believes that this is
achievable, she has the time and resources to achieve such a
goal. Alice's desire however to win a beauty contest, only
says that it does not intend to do otherwise, however she
may not believe or even know for sure that such a desire is
achievable. The following axioms are imposed due to the
above semantic relationships between sets of accessible-
worlds: ‘ S
Ko)=B(¢)

K(@)=>—B(—¢)

(=K (—¢)

D(¢)=s=I(—)

All of the consequential closure principles C1-C4, are again
satisfied. This particular type of agent is very cautious and
would be suitable for example as a security protocol agent,
or a nuclear plant controller agent.
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3.6 Belief-based Intentions and Belief-consistent
Desires

Agents who base their intentions on their beliefs and their
desires are belief-consistent, are depicted in Figure 7. In
this type of agents the set of belief accessible worlds is a
subset of the intention accessible worlds and the intersec-
tion of intention- and knowledge-accessible worlds as well
as the intersection of belief- and knowledge-, intention- and
desire-accessible and desire- and belief-accessible worlds is
not the empty set. The semantic conditions that support
these relations are given below:

VWYW  B(w,wW)=el(w,w')
Ywaw'  K(w,w)AB(w,w)
Yw3w  K(w,W)Al(w,w')
Vwaw  [(w,wIAD(w,w)
Ywaw'  B(w,w)AD(w,w'")
|
8
K 0

Figure 7. Agent with Belief-based Intentions and Belief-consistent
Desires

Even if Alice believes shie can have a car accident, she does
not know that it is impossible to have a car accident. Alice
also knows that a Ph.D. requires a lot of hard work and she
does not believe that this is not the case. Thus she intends
to obtain a Ph.D. and at the same time she believes that this
is achievable. Alice's desire to win a beauty contest, im-
plies that she does not intend to do otherwise, and she does
not believe that her aim is not achievable. However her
desires are decoupled from her knowledge. The following
axioms are imposed due to the above semantic conditions
between sets of accessible-worlds:

1(0)=B(¢) |

K(§)=—B(—4)

L{§)=>—K ()

D{¢)=>—1{—$)

D($)=>B(~) _
All of the consequential closure principles C1-C4 are again

 satisfied as in the previous cases. The kinds of applications

mentioned in the previous type of agent would be appropri-
ate here as well, since the agent under description is over-
cautious with its intentions and desires.

3.7 Intention-enthusiastic Agents with Intention-
consistent Desires

In this particular type of agency we have enthusiastic
agents that believe that they can achieve their intentions.
Hence, the set of intention-accessible worlds is a subset of
the belief-accessibie worlds, and on the other hand the in-
tersection between the belief- and the knowledge-accessible



worlds as well as the intersection of the desire- and belief-
accessible, and the desire and intention-accessible worlds is
not the empty set. This kind of relationship is depicted in
Figure 8. The semantic conditions that support these rela-
tions between the sets of accessible worlds:

YWYw  [(w,wh=B(w,w)

VYwaw'  K{w,w)AB(w,w)

Ywaw'  B(w,w)AD(w,w")

Ywaw'  I(w,wW)AD(w,W) _

The following are part of the agent's axiomatization:
B(p)=1(¢)

K{$)=>—B(~¢)

. D(@)==B(—)

D(¢)=s—I(—)

O

Figure 8. Intention-enthusiastic Agent with Intention-consistent
Desires '

In this case, Alice our agent again believes she can have a
car accident, and it is obvious that she does not know that it
is impossible to have such an accident. Alice also knows
that a Ph.D. requires a lot of hard work and she does not
believe that this is not the case. Thus she intends to obtain
a Ph.D. and at the same time she does not desire not to get
it.  Alice’s desire to win a beauty contest, implies that she
does not believe it to be an impossible task nor she intends
to achieve the opposite but this desire is not connected with
her knowledge.

Not all of the consequential closure principles are satisfied
in this type of agency. In particular the consequential clo-
sure principle C1 between intentions and beliefs is not sat-
isfied any more due to the fact that the set of intention-
accessible worlds in this case is a subset of the belief-
accessible worlds, and thus whenever the agent believes
- something she will intend it as well. The rest of the princi-
ples C2-C4 are satisfied. An agent that acts as a user in-
terface could be probably described by these semantic con-
- straints.

3.8 Over-enthusiastic Agents

In this type of agency we have over enthusiastic agents that
believe that they can achieve not only their intentions but
their desires as well (Figure 9). Thus the sets of intention-
and desire-accessible worlds are subsets of the belief-
accessible worlds, and their intersection is not the empty
set. The intersection between the belief- and the knowl-
edge-accessible worlds is not the empty set in this case as
well. The semantic conditions that support the theoretic
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relations between the different sets of accessible worlds are
the following:

YwYw  w,w)=>B(w,w")

YWYW  D(w,w)=sB(w,w")

Ywaw'  K(w,W)AB(w,w")

Ywaw'  [(w,w)AD(w,w')

Figure 9. Over-enthusiastic Agent

Alice believes she can have a car accident, and she does not
know that it is impossible to have a car accident but in this
type of agency Alice will actually desire and intend to have
a car accident if she believes that she is going to have one.
Alice also knows that a Ph.D. requires a lot of hard work
and she does not believe that this is not the case. Thus she
intends to obtain a Ph.D. and at the same time she does not
desire not to get it. Alice's desire to win a beauty contest,
implies that she does not believe it to be an impossible task
nor she intends to achieve the opposite result but this desire
is not connected with her knowledge. The following axi-
oms are imposed in this type of agent:

B(o)=1(¢)

B{®)=D({¢)

K(¢)==+—B(—)

D(¢)=>—1(~)

Not all of the consequential closure principles are satisfied
in this particular type of agency. In particular the conse-
quential closure principles between intentions and beliefs
(C1) and desires and beliefs (C2) are not satisfied. This is
due to the fact that the sets of intention- and desire-
accessible worlds in this case are subsets of the belief-
accessible worlds, and thus whenever the agent believes
something she will intend and desire it as well.

3.9 Over-enthusiastic agents with Knowledge-
consistent Intentions

An over enthusiastic agent is an agent that believes that she
can achieve not only her intentions but her desires as well.
Thus the sets of intention- and desire-accessible worlds are
subsets of the belief-accessible worlds, and their intersec-
tions is not the empty set. In addition the intersection of
the intention-accessible and the knowledge-accessible
worlds is not the empty set in this case, which in other
words means that when an agent intends to do something
she must not know it is not achievable, The intersection
between the belief- and the knowledge-accessible worlds is
not the empty set in this case as well, Figure 10. The se-
mantic constraints supporting these relations are as follows:



YwYW  [(w,w)=B(w,w)

YwYw  D(w,wWh=B(w,w")
Ywadw'  K{w,w)IAB(w,w)
vwaw'  Kw,waD(w,w)
Ywaw'  [(w,w)AK(w,w)

Figure 10. Over-enthusiastic agent with Knowledge-consistent
ntentions

In this case Alice believes she can have a car accident, and
it is obvious that she does not know that it is impossible to
have a car accident but in this type of agency Alice will
actually desire and intend to have a car accident if she be-
lieves it.  Alice also knows that a Ph.D. requires a lot of
hard work and she does not believe that this is not the case.
Thus she intends to obtain a Ph.D. and at the same time she
does not desire not to obtain it.  Alice's desire to win a
beauty contest, implies that she does not believe it to be an
impossible task nor she intends to achieve its opposite but
this desire is not connected with her knowledge. Thus the
following axioms are part of an agent's axiomatization:
B(9)=1(¢)

B(¢)=D(¢)

K(¢)=—B(—d)

D(9)=>—I(—d)

I(9)=5K(—¢)

Not all of the consequential closure principles are satisfied
as in the previous case. In particular the consequential
closure principles between intentions and beliefs (C1), and
desires and beliefs (C3) are not satisfiable any more. This is
due to the fact that the sets of intention- and desire-
accessible worlds in this case are subsets of the belief-
accessible worlds, and thus whenever the agent believes
something she will intend and desire it as well.

A possible application for this and the previous type of
agent is a user interface agent.

4. Concluding Remarks

The research reported here was motivated by the need to
formalise different types of agents according to the relation-
ships between their knowledge, beliefs, desires and inten-
tions. Needless to say, we do not claim that the list of types
of agents presented here is exhaustive. There are other ways
in which we can combine the sets of accessible worlds and
thus get different types of agents with different constraints
and axiomatizations. Our aim"however was to show the
variety of agents that we can produce by considering the
fourth notion of knowledge in addition to those of beliefs,
intentions, and desires. Nevertheless we tried to present a

few of the available types of agents which we consider as
most closely exhibiting a bit of practical reasoning as far as
their choice of intentions and desires is concerned. Differ-
ent type of agents may be appropriate for different types of
applications, and we tried to give some examples of appli-
cations for most of these types of agents. These examples
of applications are not exclusive for one and only one type
of agent. The details and choice of the most appropriate
type are left to the designers of an agent and can vary con-
siderably.

It would be useful to consider as part of a future investiga-
tion, to add a temporal component like CTL or CTL*, since
we mentioned that desires and intentions have a temporal
aspect, and examine structural relationships between
worlds. Furthermore the concept of common knowledge
[Fagin et al., 1995] can be incorporated in order to reason
about group knowledge, and how this could be used by each
particular type of agent in order to form intentions and
plans. It is clear that much additional work will be re-
quired in order to study all possible useful types of agents
and their properties but we hope that this report will
stirnulate further investigation.
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Abstract

We study a modal logic of knowledge and action, fo-
cussing on epistemic tests. We view an epistemic test
as an action undertaken by an agent in order to estab-
lish whether a given formula is true. Such tests increase
the knowledge of agents. We propose a semantics, and
associate an axiomatics and a proof procedure.

1 Introduction

Imagine a robot that wants to open a door that might be
locked. If the robot is cute enough, he starts by checking
whether the door is effectively locked up. Such test ac-
tions are an important form of interaction. They are cen-
tral e.g. in diagnosis in order to discriminate the possible
fault configurations) or in decision under uncertainty.

Tests are a one-sided form of communication: the
agent acquires knowledge about the environment, while
that knowledge-gathering action does not change the en-
vironment. (There are two simplifying hypotheses we
make here: first, we suppose that the environment of
the agent doesn’t change while the test is done; second,
we suppose that tests do not change the environment.)

What do we test? We can test the physical objects of
the world, e.g. a battery or a computer program. Here
we are rather interested in tests of facts, i.e. to check
whether the battery is empty, or to establish that the
battery is empty.

These two actions are different: we may suppose at
least in certain domains that an agent can always check
whether a given fact is true or false, while we consider
that the action of establishing a fact only succeeds if the
fact we try to establish is indeed the case: an agent can
only establish that a battery is empty if it really is; in
the opposite case we consider that the action cannot be
executed. Nevertheless, in the sequel we shall see that
we can intertranslate these notions.

In this paper we restrict our analysis to the proposi-
tional case. We first present the standard logics of knowl-
edge and action (sections 2 and 3). Then we integrate
these two concepts in a single logic, and we investigate
a,;ciomatiza.tion and automated theorem proving (section
4).
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2 Epistemic logic

The analysis of the notions of knowledge and belief in
terms of possible states of affairs has been roposed by
Hintikka {Hintikka, 1962, Fagin et al,, 1995{ We adopt
S5 as our logic of knowledge. In order to simplify the
reading of the formulas we suppose w.Lo.g. that there is
only one agent. ‘

The language of epistemic logic is constructed from a
set of atomic formulas FMLy, the usual logical operators
of classical logic, and the modal operator K. An example
of a formula is ~KpA~K-p. It is read “the agent neither
knows p nor —p and thus expresses the agent’s ignorance
w.r.t. the truth of p. The formula pA-Kp means that the
agent ignores that p, while the formula p A X-p means
that the agent is wrong about p. That last formuia is
inconsistent if we view knowledge true belief, which is
what we shall do here.

The semantics of epistemic logic is in terms of possible
states. A model of S5 is a triple M = (W, Rx, V) where

* W is a set of states (or possible worlds);
e Ry is an equivalence relation on W;
» V associates to each state a valuation: V{w) C
FMLy; we often write V,, instead of V{w).
We shall sometimes identify Ry with the function Ry :
W — 2% by stipulating Rx(w) = {v : wRxv}.
Given a model M = (W, V), we define as usual truth
in & state w € W. In particular :
. ii=M,wP ifpeVy;
* Faw KA If for every state v € Re(w) we have
t:: My A¢
It is part of the classical results in modal logics that
the set of valid formulas of S5 is axiomatized by

MP A, A= B

N(K) e

Class The set of theorems of classical logic
K({K) (KAAK(A-OC)) - KC

T(K) KA— A

4(K) KA KKA

3(K) KA - K-~KA



3 Dynamic logic
There exists already a well-known logic containing a test
operator, viz. dynamic logic {Harel, 1984]. To the pre-
sentation in the latter we prefer that of [Goldblatt, 1992]
in terms of standard models, because it is more appro-
priate for our purposes.

The language of propositional dynamic logic PDL is
constructed from a set of atomic formulas FMLy, the
classical logic operators —,A,V, =, a set of atomic ac-
tions ACTy, the action operators A,U, ; 7, and the modal
operator [.].' An example of a formulas are ~p A [p?]p.
We read the formula [p?]g as “after establishing p, q is
true”, or “after checking that p, ¢ is true”.

@; 3 means “execute a and then 8", and a U4 means
“choose nondeterministically between o and 3, and then
execute the chosen action”.

We define the action A?7 of checking whether A as an
abbreviation of the complex action A7U(~4)?. This for-
mally expresses that to check whether A is true amounts
to nondeterministically choose between trying to estab-
lish that A and trying to establish that —A.

Remark Note that if we are only interested in tests
of the type A??, formulas written using 77 will explode
exponentially if we expand the abbreviation. Therefore
it is of interest to consider the other way round that 77 is
primitive. In this case we can define the formula [A7)B
to be an abbreviation of [A?7)(4 — B).

Semantics is in terms of a transition system between
states: a model is a triple M = (W, {R, : a € ACT}, V)
where W is a set of states and V' is a valuation as for
epistemic logic, and

e each R, is a relation between states : R, CWxW

(called transition relation or accessibility relation).

As we did for epistemic logic, we shall sometimes view
R, as a function.

Given a model M as above, we define as usual the
truth of complex formulas in a state, in particular :

* Eurw [0]A if for every state v € Ry(w), sy A.

As we want the transition relations to reflect the in-
tended meanings of complex actions, we restrict our at-
tention to standard models, which satisfy

s By(w) = {w}

® Haug = RqU Ry

* Ryg=RyoRp

* Ra2(w) = (if f=ar,00 A then {w} else §)

The notion of validity is that of validity in the class of
standard models.

We give a somewhat unusual axiomatization of the set
of formulas of PDL that are valid in the class of standard
models, in order to take profit of it lateron.

MP 4, A B

"To simplify we have dropped the iteration operator *.
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N g
Class The set of theorems of classical logic

K(e)  (elAA[l(4— B) - [o]B
Def(}) N4 o A

Def(;} [; 1A & [a](3)4

Def(U) [@UBlA  ([a]AA[B]4)
1d(?) (4714

Exec(?) A - ~{A7]~A

Pres(?) B - {A?B

The axioms Def(;), Def(A) and Def(U) can be viewed
as formulating abbreviations of the respective action con-
structors. In the standard presentations of PDL, not
only the former, but also the test operator ? is defined
by
Def(?) [A?]B « (A= B)

At least we obtain the same set of provable formulas:

Theorem 1 Given the rest of the axiomatics, the ax-
toms Id(?), Exec(? ) and Pres(?) are equivalent to Def(? ).

A corollary of that result is that our axiomatization is
complete w.r.t. standard PDL models.

4 An epistemic dynamic logic
It is the combination of epistemic logic and dynamic logic
which will permit us to speak about tests done by agenty
in order to augment their knowledge. We call that logic
epistemic dynamic logic EDL . In such a framework we
must consider that actions are accomplished by agents.
In consequence, after having established that A an agent
knows that A, i.e. the formula [A7)C A should be valid.
But, while being a conservative extension of epistemic
logie, our logic cannot be simply a conservative exten-
sion of dynamic logic. Indeed, suppose p is true, and
suppose the agent ignores that p is true. Then the agen-
t's ignorance cannot be preserved after establishing that
p. Formally, this means that the instance

~Kp = [p7]~Kp

of Pres(A?) should not be valid.

In the sequel we shall make an important restriction:
we shall suppose that all complex actions are constructed
from tests. This hypothesis will allow us to simplify the
models and the completeness proof. It will be relaxed in
future work,

4.1 I.ahguage o _
We combine the languages of epistemic logic and dy-
namic logic. Actions and complex formulas are defined
by mutual recursion in a way similar to dynamic logic.
An example of formula is ~Kp A ~K-p A [p?)Kp.

As said above, we suppose in the rest of the paper that
ACTy =0. '

We respectively note ACT and FML the set of actions
and formulas thus defined. We say that a formula from
FML is objective if it contains no occurrence of .



4.2 Semantics

Without surprise, EDL -models are combinations of
S5 and PDL models: a model is a 4-tuple M =
(W,Ri,{Ra : @« € ACT},V) where W and V are as
before. Ry is an equivalence relation as for epistemic
logic, and the R, are transition relations as for dynamic
logic. Moreover M must satisfy

o if Ry{w) # @ then Ry o Ry = Ry 0 Rx.

This condition expresses that the agent is aware of his
actions: if A is true and it i3 possible for him that action
A? results in some state v, then v is possible for him
- after the execution of A7, and vice versa.

Truth in a state w € W is defined as before. What
differs is the notion of a standerd model: as before it
must satisfy that

o Ry(w) = {w}

* Ayp = Rao R

* Roup=RsURj
but the conditions for ? are slightly weaker than that for
FPDL:

o fwRiruthen Vy, =V,

o if k=50 —A4 then Ra2(w) =0
~The first condition expresses that a test has no effect on
the physical world, while the second condition says that

the action of establishing that A can only be executed if
A holds.

4.3 Axiomatization

Now our extensive presentation of dynamic logic turns

out to be useful. Indeed, the PDL axiom Def(A?) is not

valid, only [A?]B — (4 = B) is. The axioms Id(A7),

Exec(A?) and Pres(A7) allow us to fine-tune: Id(A?) and

Exec{A?) are valid, while Pres(A?) must be restricted.
We give the following axiomatization of EDL :

MP A, A= B

N(K) x‘:%

N() iz

Class The set of theorems of classical logic
K(K) (KAAK(A-=C)) = KC
T(K) KA A

4(K) KA - KKA

5(K) KA - K~KA

K(lo))  ([alAn[el(A—+C) = [afC
Def(}) AlA &« 4

Def(;) [a; 814 & [c][8l4

Def(l)  (aUBIA & (lJAA[BI4)
1d(?) [AT)4

Exec(?) A= -[A7-4 -
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Pres(?) C -3 [A?]C if C is an objective formula
Det(?) ~{ANC - [AT-C
Perm(?,K) A = ([A7]KC « K[A?C)

The axioms Id(7), Exec(?) and Pres(?) are as before.
‘The axiom Det(?) (which is a theorem in PDL) is added
here explicitly. Perm(?, K) relates the knowledge of the
agent before and after the test. .

It follows from Id(?), N(K), and Perm(?,K) that the
agent does tests consciously, i.e. [A7]CA.

Property 1 The following equivalences are thegrems of

1. [ATIKC (4 = K[A7]C)

2. [AY-C « (4 —[A70)

3 [ATCLACR) & ([A7)Cy A [A7]Cy)

4 [ATH(C1V C2) & (JA?C: VIATICY)

5. [A?C & (A = C) if C is an objective formula
6. A —[A7]L

The proof of these equivalences is straightforward.

Note that although the formula KB -+ [A7]KB seems
to be a theorem at first glance (expressing something
like “knowledge is preserved under tests”) this is not the
c?se). This is due to the negative introspection axiom
5(K). :

We postpone the completeness proof, and consider
first of all a method of automated theorem proving for
our logic.

4.4 Automated theorem proving

We reduce in this section the problem of proving theo-
rems in EDL to that of proving theorems in the stan-
dard modal logic S5. The reduction is done by rewrite
rules.

Indeed, a glance at the four first equivalences of the
above property shows us that applying these equiva-
lences from the left to the right we can ‘push down’ the
modal operator of test through all the other connectives
K, A, V. When [A7] reaches an objective formula then
we can apply [A?]C & (A — ¢), and thus eliminate
one modal operator of test from the formula. (We sup-
pose here that we start with an operator [A?] with no
other [B?] in its scope, and that the other action con-
struction operators have been eliminated using axioms
Def(A), Def(;), and Def({u).)

Iterating these rewrite steps we can obtain formulas
without occurrences of test operators.

Theorem 2 Let A be o formula of EDL . Then there
exists a formula A’ without test operators such that A +
A' is o theorem of EDL .

4.5 Soundness and completeness

Each of the axioms that we have given is valid, and the
inference rules preserve validity. Hence our axiomatics
is sound.

The above theorem gives us completeness.



Theorem 3 Let A be o formula of EDL . A is EDL
-vakid iff A is ¢ EDL -theorem.

Proof Let A be consistent. According to the preceeding
theorem there exists a formula 4' without test operators
such that 4 «» A’ is a EDL -theorem. Hence 4’ is con-
sistent. Now A’ ig in the language of S5, and given that
the axiomatics of EDL contains that of the epistemic
logic 85, A’ is as well consistant in S5. Via the com-
pleteness of 55 there must therefore exist a §5-model
containing a state w where A’ is true. Then from that
model it is straightforward to extend that model to a
EDL -model where A’ is true in w. Finally, given that
(due to soundness) the equivalences that we have used
to rewrite formulas are valid, that EDL -model must
also satisfy 4 in w.

4.6 Complexity

The fragment of EDL without nested tests has an inter-
esting complexity. In this case our rewriting procedure
is a polynomial transformation into 85. The problem
of deciding whether a given S5-formula is a theorem is
coNP-complete: it follows that the decision problem for
the fragment of EDL without nested tests is also coNP-
complete.

5 Related work

A lot of logics of knowledge and action exist. Clos-
est to ours is the work of Gerbrandy and Groen-
eveld [Gerbrandy, 1997, Gerbrandy et Groeneveld, 1997,
Groeneveld, 1995]. Their Dynamic Epistemic Logic has
two sorts of test, the first of which is noted 742 and is
the standard dynamic logic test: it “succeeds [...] when
A is true, and fails otherwise”. Consequently [?A]C is
an abbreviation of A — C. The second one is noted Ua
and “corresponds to [the] agent [...] learning that pro-
gram a has been executed”. (We have slightly adapted
notation.) This means that agents act a priori uncon-
sciously and must explicitly learn about the executions
of their actions. While this might be considered to be
unnatural (in particular for artificial agents), it leaves
more flexibility than our language e.g. to speak about
agent ¢ learning that agent j learned that A has been
tested (expressible here as U,U,?7A).

- Up?A s similar to our A?. More precisely, our logic can
be mapped into Gerbrandy’s logic of {Gerbrandy, 1997]:
our action A? can be translated into their 74; U7A.

In [Gerbrandy, 1997} there is given an axiomatics,
which is similar to ours. Nevertheless there are subtle
differences. We have already mentioned the first one:
there is a non-epistemic test ?4 supplementing the epis-
temic test U7A.

The second main difference is that there, the logic of
knowledge is K, while ours is §5. Hence there are no ax-

 loms T(K}, 4(K), and 5(K). It seems to be problematic

: *The authors consider several a.gezits and groubs of agents.
We abstract from that here,
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to add these axioms to the logic. This will be detailed
after our next point.

The third main difference is that there, instead of ax-
iom Exec(?) A - ~{A?]-A there is an equivalence

A e ~{AT]-4

(axiom 5 in [Gerbrandy, 1997]). This means that an
agent can always successfully learn about the execution
of some action.® This leads to difficulties at least if we
suppose that the epistemic notion under concern satisfies
a consistency requirement as expressed by the modal ax-
iom D(K) K4 = K~ A (that is a consequence of axiom
T(K)). Indeed, suppose p is an atom. Then [/ ?piKp is
derivable in their logic, as well as K-p — [U?p}C~p. But
from these two we can derive K-p — (U K (p A —p).
While in our logic this means that the test action fails, in
theirs the test U/?p always succeeds, and therefore axiorm
D(X) cannot be added to their logic as it stands.

Finally a more technical difference are the respective
completeness proofs. While ours basicaily uses a reduc-
tion to a modal logic without tests, theirs is a (much
longer) Henkin type proof. Nevertheless, our technique
also applies to their logic, and permits thus to obtain
a much simpler proof. To wittness, the K-axiom for
(Uo] together with the above equivalence 4 « ~(Ua]-A4
permit to pass the modal operator [Ua] through con-
Jjunction, disjunction, and negation, and their axiom 7
[UalKA & K{a][Ua]A permits to pass through the epis-
temic operator X. Finally their axiom 6 permits to elim-
inate the [Ua] operator from formulas. Thus one can
follow the same line of reasoning as in our completeness
proof.

In a series of articles Segerberg has developped a
logic of belief and action called Doxastic Dynamic Logic
(DDL) {Segerberg, 1995, Segerberg, ]. There are three
types of modalities +A4, —A, and *A4 the first of which
corresponds to our A?. He discusses axioms for +A that
are similar to ours, but nevertheless closer to Gerbrandy
and Groeneveld's work. To witness, he also considers
that tests are always executable and deterministic, i.e.
he has the axiom [+A]~C & ~[+A4]C (his axiom 13), as
well as a preservation axiom in terms of equivalence (his
axiom 10). Therefore our above remarks also apply to
this approach.

Another line of research has been developped in the
Al field of reasoning about actions around the concept
of knowledge gathering actions [Scherl et Levesque, 1993,
Levesque, 1996, Lakemeyer et Levesque, 1998). We here
focus on the latter approach of Lakemeyer and Levesque.
The logic AOL proposed there has similarities to our
EDL . The main difference is that our logic does not
contain the concept of only knowing. To wittness we
consider an example given in their paper. “Suppose we
have a robot that knows nothing about the initial state

3This makes it also possible to write the preservation ax-
iom Pres(?7) as an equivalence.



of the environment, but that there is asensing action,
reading a sonar, which tells the robot when it is getting
close to a wall.” Let us read the atomic formulas ¢ and
5 respectively as ‘the robot is close to the wall’ and ‘the
sonar works’, and let us interpret me and ma respectively
as the atomic actions of moving closer and moving away
from the wall. In our language (allowing actions other
than tests), what they then want to prove is

1. [e??](Ke V K=e)

2. Kw = K[e??(Ke V K=c)
3. K-e = [ma)(K=c)

4. K=e = [mef(-Ke A -K=c)

1t is only the last formula that requires the non-
monotonic only knowing notion.

6 Conclusion

We have defined a logic of knowledge and action EDL
, to which we have associated an automated theorem
proving procedure.

As we have noted in section 3, if we are only interested
in tests of the type A??, formulas written using 77 will
explode exponentially if we expand the abbreviation 477
to A?U(~A4)?. It is nevertheless possible to give a poly-
nomial reduction into S5 similar to that for tests of the
type A7, which makes that complexity of theoremhood
stays within co-NP.

We plan to continue that work in two directions.

First, our logic allows to reason about the evolution
of knowledge by tests, but it does not allow planning of
test sequences. This might be achieved in a way similar
to our approach in {Castilho et al., 1997h, Castitho et
al., to appear}.

Second, our actions being restricted to tests (and their
sequential and nondeterministic composition), our aim is
to relax that restriction. This will probably require to
move from a rewriting-based proof procedure towards a
semantic tableaux procedure. Here we shall also make
use of previous work [Castilho et al., 1997a).
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Abstract

To formalize mental attitudes of agents we apply a
new approach different from those with logical
frameworks. In this paper, we define mental attitudes
as processes in a process calculus, the polyadic n-
Calculus. We also give formal definitions for agents
and agent-based systems. Based on those definitions,
we can attain the result of interaction between the
agent-based system and its environment.

1 Introduction

in varied computer systems, agents have been considered
as the key computer-based components. Autonomous
agents and muiti-agent systems represent a new way of
analyzing, designing, and implementing complex soft-
ware systems [Jennings er al., 1998).
However, there is no agreement on what an agent is, and
every one declared that his system was based on agents
though he assumed agent a different definition from oth-
ers. This makes people understand agents in almost dif-
ferent ways since there are lack of effective means of
holding agents’ properties. It is necessary to describe or
define agents precisely in a formal way in order to
provide a unified basis for people to understand agents’
properties and behaviors. By formalizing agent and its
mental attitudes, we can conveniently analyze relation-
ships among those attitudes and formally reason about
agents’ behaviors. In addition, we can provide not only a
uniform semantics framework for agents, but also a theo-
retical and practical basis for designing and building
agent-based software systems.
An agent is a computer system, situated in an environ-
ment, which is capable of flexible autonomous actions in
order to meet its design objectives [Wooldridge and
Jennings, 1995]. It is convenient to describe an agent by
the intention stance. There are two important categories
of attitudes to represent an agent appropriately:

¢ Information attitudes, such as belief, and knowledge,

are related to the information that an agent has about
the world it occupies.

' Supported by National ‘863" Hi-Tech Project of China,

Zhongzhi Shi
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P. R. China

*  Pro-attitudes, such as desire, intention, obligation,

comumitment, and choice, etc., are those that in a way

guide the agent’s actions.
These two categories of attitudes are closely related. To
characterize an agent, one should specify at least one
information attitude and one pro-attitude for the agent,
When people tried to formalize and reason about inten-
tion notations in classical logic, they found that intention
notations are referentially opaque [Wooldridge and
Jennings, 1995). So, alternative formalisms are required.
There are two basic approaches to the semantic problem.
One is to adopt a possible worlds semantic model [Chel-
las, 1980], to which there are many alternatives. The oth-
er is to use a sentential, or interpreted symbolic struc-
tures approach, in which beliefs are viewed as symbolic
formulae explicitly represented in a data structure asso-
ciated with an agent [Konolige, 1986].
In the possible worlds semantic model, there also associ-
ated many difficulties, for instance, the well-known logi-
cal omniscience problem. To address this problem, peo-
ple tried to find alternatives to the possible worlds
moded. :
For instance, Levesque{Levesque, 1984] proposed a so-
lution that involves making a distinction between explicit
and implicit belief. The semantics of the explicit belief
operator were given in terms of a weakened possible
worlds semantics, and the semantics of the implicit belief
operator were given in terms of a standard possible
worlds approach. However, it does not allow quantifica-
tion; it does not seem to allow for nested beliefs; the no-
tion of a situation is more mysterious than the notion of a
world in possible worlds; and under certain circum-
stances, his proposal will make unrealistic predictions
about agent’s reasoning capabilities [Reichgelt, 1989].
Konolige [Konolige, 1986] proposed a deduction model
to model resource bounded believers, which is a direct
attempt to model the beliefs of symbolic AI systems.
Those formalisms above have focussed on just one as-
pect of agency, A realistic and complete agent theory,
expressed in a logic, must can represent the static and
dynamic aspects of agency and must define how the at-
tributes of agency are related {[Wooldridge and Jennings,
19953,



One of the best-known and most influentiat contributions
to the area of agent theory is due to Cohen and Levesque
[Cohen, 1990]. Their formalism was originally used to
develop a theory of intention as a pre-requisite for a
theory of speech acts.

In related work, Rao and Georgeff [Rao and Georgef,
1991] have developed a logical framework for agent
theory based on three primitive modalities: beliefs, de-
sires, and intentions, which are based on a branching
model of time. In the BDI architecture, beliefs corre-
spond to information that the agent has about its envi-
ronment; desires represent options available to the agent;
and intentions represent states of affairs that the agent
has chosen and has committed resources to. Researchers
interested in practical reasoning architectures have de-
veloped a number of logical theories of BDI systems.
Singh[Singh, 1994] took a different approach to model
agents. He developed a family of logic for representing
intentions, beliefs, knowledge, know-how, and communi-
cation in a branching-time framework. However, it is too
complex,

To reason about others, Shi [Shi et al., 1997 proposed a
knowiedge representation framework called RAO to rep-
resent concepts and rules used in reasoning about knowl-
edge of others. In the framework, a logic axiom schema
was used to establish a direct relationship between
speech acts and common sense, and this axiom is very
like that one of situation calculus which describes the
relationship between action and its effect.

However, those formalizing methods lack of a uniform
semantics, which makes it hard to develop formalisms to
capture the relationship between the various elements
that comprise an agent’s cognitive state. The questions
such as which mental attitudes are the most essential
ones, which attitudes can be derived from others, how
those attitudes evolve, and which combination of atti-
tudes is required to characterize an agent, are still re-
quired to be taken more attention,

In this paper, to specify agent and its mental attitudes,
we adopt a new approach different from those with logi-
cal frameworks. We will formalize an agent and its atti-
tudes with a process calculus, called Polyadic n-Calculus
{Milner, 1993}, which is an elementary calculus for de-
scribing and analyzing a concurrent system with evolving
communication structure. In the polyadic m-calculus, a
system is a collection of independent processes that
communicate via channels.

In the rest part of this paper, we will first give an intro-
duction to the polyadic n-caiculus, and point out why we
choose it as our formal method to formalize agents in
Section 2. Then we will formally describe varied mental
attitudes of agents in the polyadic n-calculus in Section
3. In Section 4, we will analyze relationships among tho-
se attitudes based on the formal descriptions, and then
give formal definitions for agents. In Section 3, we give
a formal definition for agent-based systems and an ex-
ample to show how to attain the result of interaction be-
tween the system and its environment. Lastly, we will
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summary the whole paper and point out the further re-
search direction we will go on with.

2 Preliminaries

The polyadic n-calculus [Milner, 1993] is a generaliza-
tion from the (monadic) n-calculus {Milner ez al., 1992].
The m-calculus is a model of concurrent computation
based upon the notion of naming, and it is a way of de-
scribing and analyzing systems consisting of agents whi-
ch interact among each other, and whose. configuration or
neighborhood is continually changing. One can naturally
express processes that have changing structure by using
the n-calculus.

In the m-calculus, processes send or receive messages
through a link between two ports opposite to each other.
On a link, one can transmit variables, ordinary data val-
ues, and even link names, all of which are called names
in the m-calculus. Since links can be transmitted through
processes, that makes the ®-calculus capable of describ-
ing dynamic structure of processes easily. After names
are introduced into the m-calculus, the 7-calculus can
describe a set of data structures, more importantly, it can
describe functional computation as the A-calculus,

The polyadic m-calculus extends the m-calculus. In the
polyadic m-calculus, messages transmitted between ports
can be a name vector instead of a single name. In addi-
tion, The polyadic m-calculus uses the sort and sorting
notations to guarantee the consistence of messages
transmitted between ports.

2.1 The Components of the Calculus

In the polyadic n-calculus, names are the most primitive
entity with no structure, and processes are built from
names as follows:

1. A Summation Z.P;=P,+Py+...+P,. Execute one
of P;. When n=0 the sum is written as 0 and means
stop. — -

2. Avprefix formyx«P, T+ P, y(x)+ P . Qutput/Input
the name vector x along the link y, or perform the
silent action 1, and then behaves like P.

3. A composition P;IP,. P, and P, execute concur-
rently. The operation is commutative and associa-
tive,

4. A restriction (vy)P. Introduce a new name y with
scope P (bind all free occurrences of y in P).

5. A match [x=y]P. Behave like P if the names x and
y are identical, and otherwise like 0. :

6. A replication !P. Provide any number of copies of
P

2.2 The Transitional Semantics

In the following action rules, — represents a reduction
procedure by which a process regduces to another process
after an action such as yx, 7, y(x)
1. Communicating rule
In the polyadic ®-calculus, computation is expressed
by the following communicating rule.



COOM: (- + y2« PY (- + y(2).Q > P IQ{%}
This means sending vector x along channel y redices the
left-hand side to PIQ with all free occurrences of z in Q
repiaced by x. Where, vector x and vector z should have
equal arity.
2. Parallel rule _
Action between two parailel processes can be ex-

pressed by the following parallel rule.
PAR: ——t2 B
T PIQ-- PIQ

It means if there is no communication between the two
processes P and Q, their actions are interleaving.
3. Restriction Rule
RES P p
T (vR)P - (v P
It means restriction by a name, which does not occur
freely in a process, does not affect its behavior.
4. Structural Congruence Rule .
=P PP P=Q
STRUCT: 2 Y Q
It means if there are two structural congruence processes,
they will act in the same way.

2.3 Simulation and Equivalence

In the polyadic n-calculus, one process may simulate or
act similarly as another process; furthermore, two proc-
esses may have equivalent behaviors. _
Definition 1. Strong Simulation. A binary relation S on
processes is a strong simulation if it satisfies the follow-
ing condition. § is a simulation if PSQ implies that

I. If Pty prand o is free action,
then for some Q', Q-—Z-Q4and P'SQ’

2. If p—2y P'and ye 0(P,Q),
then for some @, Q—l,(r
P'{wiy}SQ'{wiy}

3. p.__x» , prand yen(P,Q),
then for some Q', Q.22 gand P'SQ’

This definition indicates that a process is strongly similar
to another process if it can take the same actions as the
later and has the same effects after taking the same ac-
tions. :

If P simulates Q and Q simulates P as well, we say that P
and Q are strongly bisimilar and marked as P 2 Q.
Definition 2. Strong Equivalence. We say P and Q are
strongly equivalent if Q and Q are strongly bisimilar and
Po and Qo are strongly bisimilar for all substitutions ©.
Where a substitution is a function from N to N, which is
the name set of all processes in the polyadic n-calculus.
A substitution ¢ can be represented as {yi/x;}igga, for
which x,o=y;, 1<i<n, and otherwise xo=x.

A process with free names likes an abstract model for
‘concurrent computations and can be concretized by sub-

and for all w,

stituting those free names with new names. This defini-

tion means that two processes are the same computations
if they can be concretized to be two similar processes. If
P and Q are strongly equivalent, the relation between
them can be marked as P~Q. '
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2.3 Why the x-Calculus

The powerful ability to represent concurrence, communi-
cation, composition, and dynamic structures among
processes simply and flexibly in the polyadic ®-calculus
makes it be a good choice to formalize agent,

First, an agent has many static attributes, but it is not a
static conception since it has its own actions and behay-
tors. In general, to describe an agent's static and dynamic
properties, one may use two distinct formalizing strategi-
es and approaches for each aspect, which is obviously
unsuitable to grasp those properties and analyze relation-
ships among them precisely and effectively. So, it has -
special signification to provide a uniform formal frame-
work for an agent’s static and dynamic properties. In
process calcuius, behaviors of agent can naturally be
considered as concurrent processes, which cooperate by
communication to accomplish distributed tasks; those
static attributes of agent can also be regarded as proc-
esses, which provide some specified information about
the agent to outside world.

Secondly, an agent is different from an object in concep-
tion [Jennings et al., 1998], but an agent can be regarded
as an autonomous, personified object with some mental
attitudes. Behaviors in an agent are crudely concurrent,
and an agent is a process-like, concurrent entity
[Jennings et al.,1998]. _ '
Thirdly, an agent is situated in its environment and may
possess intelligence to some extent. To adapt to its envi-
ronment, an agent may dynamically change its own con-
figuration or structure, which can be easily described in
the polyadic n-calculus.

Fourthly, in multi-agent systems, behaviors of agents are
inevitably concurrent, and the communicating counter-
part of one agent may change dynamically. It may be a
good alternative by using the polyadic n-calculus to de-
scribe concurrence and cooperating protocols among
muiti-agents.

3 Formalizing mental attitudes in the
polyadic n-calculus

For convenience, we give an agent example as follows.
In the following context, we will also formalize its men-
tal attitudes in order to make our formal definitions more
clearly. :

“It is perfectly coherent to treat a light switch as a (very
cooperative) agent with the capability of transmitting
current at will, who invariably transmits current when it
believes that we want it transmitted and not otherwise;
flicking the switch is simply our way of communicating
our desires”. [Shoham, 1993] ' T

In the example, we assume the switch agent can respond

to users’ intentions by turning switch on or off autono-

mously. From this exampie, we can summary that:

The agent knows that (1) if there is current being trans-
mitted on'the circuit the light will be on; otherwise, the
light will-be off. (2) Turning the switch off can cut off
the current and turning on can make the current trans-



mitted. (3) It is capable of turning itself on/off autono-
mously.

The agent believes that at sometime, one may turn the
light on when it is off; on the contrary, others may turn it
off when it is on. After the agent perceives users’ actions
and understands the intentions related to those actions,
the agent will react appropriately to achieve its desired
goal such as turning the light on or off.

In the rest of this section, we will formalize agents’
mental attitudes one by one. Before the formal definition
is put forward, we will first describe each other infor-
mally.

3.1 Clock

In general, the behaviors of an agent are always related
to a specified time, such as the past, the current, and the
future. We define a clock process first to provide the
“system time for other attitude processes we will describe
in the following context.
CLOCK(t) =time(t) {1]
This process will provide the system time for others
through the port time,

3.2 Knowledge

An agent’s knowledge represents its understanding to the
world, which includes information related to “what-is”,
such as facts, relationships, and capabilities of itself or
others, and “how-to”, such as actions or behaviors that
the agent will adopt while it is going to achieve a goal.
In our opinions, an agent’s knowledge is information
about objective facts, which are unrelated to time. To
define knowledge formally, we will not consider time
into account. In addition, we will not distinguish knowl-
edge related to “what-is” from that related to *how-to”.
In the definition of the knowledge process, each kind of
knowledge the agent possesses will correspond to a sub-
process, and the whole knowledge process is composed
of all of these sub-processes. In order to make an agent’s
knowledge be able to be referred to by other processes
conveniently, we define each sub-process as the form:
“Input names related to which knowledge to be referred
to — the body of sub-process —» output other names
needed to be referred to more deeply.”
The knowledge process can be defined as follows:

KNOWLEDGE(id) = (vxy) knowledge,(x). KBody. x(y) [2]
Where, id is the identity of an agent.
For example, the knowledge process to extract the solu-
tion of “x's father"from fact-typed knowledge can be
defined as follows: -

Father(id, x) =(vyz) father,(x).[x= zlx(y)
It means that if the father of z is y and the port fathery,
gets a value for x equal to z the process will export y as
the father of x. Then, the knowledge to extract the solu-
tion of “x’s grandpa” can be represented as the following
process;

Grandpaf{id, x} = : _

(v} father, (x)| Fathexid, x). x(y}.( father,(y)| Fathexid, y))

For another example, for the light switch agent, the
agent’s knowledge may include:
* To turn the light on/off, the current must be or not be
transmitted on the circuit.
LIGHT(id} = PR
(vxilight, {x)-([x = lightonTcurrent (transmitte d Y+

[————

x = lightoff lcurrent (nontransmi tte
» Toornotto tra!nsmz curpé t on tﬁe(cu'cun, tm: sw‘ft) h

must be turned on/off,
CURENT(Iid) = [
(vx)current(x).((x = transmitted Iswitch{switchon) +
[x = nontransmitted Jswitch{switchoff ))
e The agent knows that it can turn the switch on/off
autonomously.
SWITCH(id) =, ) ,
{vx)switch (x).{[x = switchon TurnSwitch On)+
[x = switchoff 1TurnSwitch Off ))
Thus, the knowledge process of the switch agent can be
defined formally as follows:
KNOWLEDGE(id)=!LIGHT(id} | ICURRENTI(id) | WSWITCH(id)

3.3 Belief

An agent’s beliefs represent that the agent accepts
something as true or real, for example, both “one be-
lieves it will rain tomorrow” and “one believes that all
crows in the worid are black” are beliefs. Belief is dif-
ferent from knowledge. Beliefs are reflections of one’s
subjective world, that is to say, the truths of beliefs are
uncertain and do not depend completely on the object
one believes. On the contrary, knowiedge is the reflec-
tion of the objective world and its truth is definite.
Obviously, whether an agent believes something or not is
often related to a specified time, for instance, one may
believe that it will rain tomorrow before he hears the
weather forecast, but he may not believe again once he
heard the weather forecast, We assume that the behaviors
of an agent are dominated by its beliefs, that is, the agent
wants to achieve a goal is because it knows that it is ca-
pable of doing so and believes the goal will be achieved
eventuaily.
The belief process can be defined as follows: _

BELIEF(id) = ¥ (vt,Nid ,5)Bel (Nid ,1,5) [3]
Where, Bel is_ . 14

Bel(Nid,t5)= Y (velime(t). [t = T)(belief ,(Nid,s). Nid(1,5))
It means that the agent believes another agent identified
by Nid will be in the state 5, and export 5 as the result
through the port Nid at time 7, where s may be a vector.
For example, the switch agent believes that it will be
on/off at some time or will receive a request for turning
on/off the light.

Belfid, t, 5) = (v)time(t).{t = T)subbelief (id, s)
Where, subbelief(id, 5) = _

belief ,(id,s).([s = lightonid (t,lighton) +

[s = lightoff Yid (¢, lightoff ))
Thus, the belief process of the switch agent is as foliows:
BELIEF(id) = Bel(id, 1, lighton} + Belfid, t, lightoff)



3.4 Goal

Each agent has a set of achievable goals. While defining
the goal process of an agent, we must provide a defini-
tion which can not only point out which goals the agent
may have, but also provide ways of referring to its
knowledge through its goals.

The goal process is defined as follows:

GOAL(id) =3 (v g.k) goal , (g)knowledge (k) [5]
Where, g represents the goal that the agent will achieve,
and k£ is the knowledge that the agent will use to achieve
the goal. It means for a goal g, the agent witl access
some knowledge about k.

For example, the goal process of the SWltCh agent can be
defined as follows:

GOAL(id) = (vs)goal,, (s). izght,d(s)

Where, s can be lighton or lightoff.

3.5 Desire

An agent’s desires represent which goals the agent want
to achieve, which are internal reflections of the agent’s
autonomy. As one wants to eat when he feels hungry,
desires are often inner requirements instead of coming
from outer stimulation, and the agent should believe that
its desires could be achieved at some time,
The desire process likes an introspective process, which
can be defined as follows:

DESIRE(id} = _ o [6]

> wt.d)inlook.(t.d )

[d= g}(tzme(t)ibelzef i d) | goal (d))
Where, inlook;(t,d) represents the introspecting process,
which is to inspect whether there occurs a desire 4 at
time ¢. If the agent is desired to achieve a goal g, it will
judge whether it believes the goal can be achieved, and
then send itself a request to achieve the goal.

3.6 Intention

An agent’s intentions represent the goals that the agent
has decided to achieve. Intention is different from desire,
An intention goes always with actions and is the goal of
some behaviors, whereas one has a desire may not be
committed to action. When the agent finds its environ-
ment can meet its requirement to achieve a goal, it wiil
take this goal as its intention.
The intention process can be defined as follows:
INTENTION{id) = [7]

3 (vt.d) outlookis (t,d) «
[d = g J(time(t)\ belief , (id,d) | goal,(d))

Where, the agent perceives events or states occurring in
its environment by port outlook,(t,d) and understands the

intention contained in those events or states. If the agent

want to achieve a goal g; at time ¢, it will judge whether
it believes the goal can be achieved, and then send itself
a request to achieve the goal.

For example, when someone wants the light to be on or
off, the switch agent extracts the intention from the

user's request, and produces a goal corresponding to this
intention. The intention process is as follows:
INTENTION(id) =

(vt,d)outlook, (t,d)
([d = lighton)(time(z) | belief (id,d) | goal(d) +
[d = lightoff \(time(r) | belief ,(id, d) | goal (d))

3.7 Obligation/Commitment

An agent’s obligations or commitments represent some
actions the agent should carry out because it is obligated
to or it has decided to do so. For instance, once the swit-
ch agent responds to the request for turning. the light on,
it is said that the agent has been committed to make the
light on, and has obhganon to do so.
The obligation process is defined as follows: -
OBLIGATION(id) = : (8]

3 (vt,r)obligation, (t,r).

[r= g J(time(t) | belief qLid, )t goal (1))
Where, obligation;,(t,r) représents that the agent will be
committed to the request r. Once the agent responds to or
receives the request, it should try to achieve the goal
related to the request. If the agent believes the goal can
be achieved, it will send itself a request to achieve the
goal

3.8 DeclsmnlChmce

An agent’s Decisions are actions that the agent chooses
to achieve a goal. The agent can have more than one goal
at a time, and it can also have more than one solution to
one goal. Even though an agent can also entertain several
beliefs at a time, it cannot believe a specific goal to be
achievable and unachievable at the same time. That is to
say, for one goal, the agent must have only one belief. To
deal with its goals needs the agent to make decision to
choose an appropriate goal and a good enough solution
for that goal. Since it ailows that there is more than one
concurrent process running parallelly within an agent, the
agent can choose several goals at a time. So, we only
take the decision to choose a goal and give a solution
into account in the definition of the decision process.
The decision process is defined as follows:

DECISION(id) =Y, (Vx, y) decisioma (%) - DBody . x(y) 9]
That is, the agent makes decision according to the goal x
it will achieve, and then goes more deeply into another
goal y or a sub-goal of x that the agent must achieve in
advance

4 Relationshlps among mental atti-
tudes

In the section above, we formaliy described two catego-

ries of attitudes, information attitudes and pro-attitudes.
By analyzing those formal descriptions, we can find
some relationships among them as follows.
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Relation 1. The intention process of an agent is strongly
equivalent to the obligation/commitment process, that is

INTENTION(id) ~ OBLIGATION(id) f10]
It means that the agent has taken actions based on its
intention has the same effect as it is obligated to take
actions. It could be said that the obligation of an agent is
indeed a kind of intentions of the agent.
Proof. For the intention process, by substituting out-
looky with obligation;,, its definition is equal to that of
the obligation process. Thus, the conclusion can be ea-
sily drawn from the definition of strong equivalence.
Relation 2. The knowledge process of an agent is
strongly similar to the decision process.
Since an agent knows how to achieve its goals, it indeed
knows how to make decision to take actions when it
wants to achieve a goal. As we pointed out early that an
agent knows information related to both “how-to” and
“what-is”, the decision process is only a concrete form
corresponding to a part of the knowledge process.
Relation 3. The desire process is strongly equivalent to
the intention process, that is

DESIRE(id) ~ INTENTION(id} f11]
As described above, an agent can not only respond to its
inner stimulation, but also react to the changes of states
or occurrences of events in the environment. If we do not
take the difference between inner and outer stimulation
into consideration, we can find that the two processes
will take the same actions after they perceive some kind
of stimulation. However, the two processes are not com-
pletely same. From the desire process, the autonomy of
an agent can be reflected, while the reactivity of an agent
from the intention process.
From these relationships among mental attitudes, we can
draw a conclusion that an agent can be defined using its
knowledge, beliefs, goals, desires and intentions. The
agent process can be formally defined as follows.

AGENT(id) = KNOWLEDGE(id) | BELIEF(id)

| GOAL(id) | DESIRE(id) | INTNETION(id) [12]

Once an agent is constructed by composing those mental
attitude processes, the mental attitude processes will act
parallelly and interwovenly. Thus, there will be some
other relations among those processes
Relation 4. An agent cannot achieve its any goal if it has
no enough knowledge related to that goal.
That is a goal process cannot finish successfully unless
there is some knowledge process who can provide related
knowledge for the goal process.
Relation 8. Before an agent takes actions to achieve its
goals, it should believe first that its goals could be
achieved. ' ‘
This relation can be shown from the definitions of the
. desire and the intention processes. While the agent is
take actions after it perceives some kind of stimulation, it
cannot go any more until it makes sure that a belief proc-
ess says that it has believed the goal can be achieved.

26

5 Agent-based systems

Since an agent is always situated in an environment, it
will interact with its environment while it is processing
its inner transactions. That is the agent should react ap-
propriately to those events occurring in or out of itself,
From the point of view of an agent, the environment is
the place that the outer events come from, and it itself is
the place that the inner events come from. The environ-
ment corresponding to an agent identified with id can be
defined as follows.

ENV(id) = {(v?,¢) enviy s outlook (T, ) [13]
Where, env;, captures events occurring in the environ-
ment, and then waits for the agent’s perceiving. Simi-
larly, the process to produce inner events can be defined
as follows, N—

SELF(id) =(vT,c) self ,;+ inlook (T, €) [14]
Where, self; captures events happening in the agent.
From the two definitions above, we can find that there
are two kinds of stimulation that will be perceived by
two mental processes, i.e. the intention process and the
desire process, respectively. For these two kinds of
stimulation, the environment will produce stimulation
resulting in reactive actions of the agent, and the agent
itself will result in autonomous behaviors.

The agent-based system composed of agent and its envi-
ronment can be defined as follows.

SYSTEM =Y Agent(id)| Self (id) | Env(id;)
For example, the switch agent process is as follows.

LightSwitch = KNOWLEDGE(id) | BELIEF(id)

t GOAL(id) | DESIRE(id) | INTENTION(id)

ﬁ;x) light , (x).({x = lightoncurrent (transmitte d) + \

{15]

1l

[x = lightoff lcurrent (nontransmitted )
I (vx)current(x) . ([x = transmitted Iswitch(switchon) +

Lx = nontransmitted Jswitch(switchoff))
| (wx)switch(x) . ([x = switchonTurnSwitchOn) + /

[x = switchoff TurmSwitch Off ))
Lve)time(t) [t =17]

belief , (id,s). (s = lightonlid (¢, lighton) +
- {s=lightoff id(t,lightoff ))

| (vs)goal,, (s).light (s5)
V(vt,d) outlook s (t,d)+ _
(d = lighton](time(2) | belief , (id,d)) goal_(d) +

= lightoff Wtime(t) | belief (id,d) | goal. (d

And \Er(g aslslgmeﬁ:ggt the( rt)xsexihw{fféh wifl glay 'ﬁge )gole of
the environment, wishes the light were on at time ¢, then
the process maybe

USER(id) = outlook 4(t,0n)
The reaction that the agent perceives the stimulation
from the user will be as follows.
Step 1. The agent perceives the user’s action and under-
stands the intention,




USER(id)} | LightSwitch
—» KNOWLEDGE(id) | BELIEF(id) | GOAL{id)
V(vd) outlook iy (T, d) »

([d = lighton ](time(t) | belief ., (id,d) | goal w(d)y+
{d = lightoff Y(time() | belief ,(id,d)| goal (d))

—» KNOWLEDGE(id) | BELIEF(id)
| GOAL(id) \(time(t) 1 belief ,(id,lighton)\ goal (lighton)
Step2. The agent makes sure that it believes the goal can
be achieved at time 7.
~» KNOWLEDGE(id)
PGOAL(id} | id(t,lighton) goal, (lighton)
Step3. To achieve the goal, the agent looks for which
kind of knowledge it should refer to.
— KNOWLEDGE(id) | id(t, lighton)| light (lighton)
Stepd. After querying its knowledge about how to
achieve the goal, the agent put the result out.
- id(z, lighton) | TurnSwitchOn
It means that the agent will export a state lighton, and
turn the switch on at time 7.

6 Summai'y

When one formalizes intention notations related to an
agent using logical methods such as modal and temporal

logics, he will come across some problems such as

opaque contexts, logical omniscience, side effect, etc
[Wooldridge and Jennings, 1995]. Researchers have to
select alternative approaches. In general, they try to use
more than one modal operator to formalize agents, and
build their semantics on a possible worlds model. How-
ever, too many modal operators will make the formaliza-
tion more complex, and make it hard to be understood
and accepted by people. On the other hand, those new
modal operators, such as belief, intention modal opera-
tors, have no grounded semantics, which will lead to in-
consistent cognition to agents. Ail of those will result in
difficulties to analyze, reason about, and verify the prop-
erties of agents.

To formalize mental attitudes of agent we apply a new
approach different from those with logical frameworks.
In this paper, we define agent and its mental attitudes as
processes in a process calculus, the polyadic n-Calculus.
This method can easily describe not only those static
attributes of agents, but also the dynamics of agents. By
defining the mental attitudes of agents as processes, we
can conveniently represent and analyze the relationship
among those attitudes. More importantly, we can build
the agent by composing those processes together, and
reason about its actions. After providing formal defini-
tions for varieties of attitudes, we compared them. We
found that the obligation is indeed a kind of intentions;
and the decision is scoped with its knowledge and can be
described as a kind of knowledge. So, we can say that an
agent can be defined using its knowledge, beliefs, goals,
desires, and intentions. Using those definitions, we also

gave the formal definitions for agent and agent-based

system.
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By now, we have implemented a building tool for muiti-
agent systems called AOSDE [Shi et al, 1998], which
contains a general purpose agent kernel for all agents. In
the next stage, we will evolve this system with more
powerful functions, such as designing, implementing, and
testing agent-oriented software. The formalism in this
paper will act as the formal basis for specification, re-
finement, and verification of software built in that envi-
ronment. Based on this formalism, we wiil g0 more”
deeply to study the formal semantics of agent description
language and agent communicating language at the next
step. '
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Abstract

Some uses of deontic logics and action logics in
computer science are identified and analyzed:
designing agent communication languages, secu-
rity protocol analysis, and enterprise modeling.
Intuitions and analyses from the philosophical
use of these logics are argued to be of outermost
importance for employing these logics in com-
puter science.

1 Applications of logics for norm and
action

There is a distinction to be draw between pure and ap-
plied topics. Consider the Cambridge mathematician
G.H.Hardy's view on the matter [Newman, 1956, page
2024]

To qualify as pure, Hardy said, a {...] topic had to
be useless; if useless, it was not only pure, but beautiful,
If useful - which is to say impure - it was ugly, and the
more useful, the more ugly,

Deontic logic was intended to be applied to moral and
legal problems, and are by definition applied and not
pure, and therefore, according to Hardy, ugly. The uglier
the better, some would say, and I agree. The same holds
* for action logics.

When explicating basic normative or praxiological no-
“tions the deontic or action logics are usually seen to be
modifiable. Through conceptual analysis a deontic or
action logic is tuned to a particular family of notions.
Once having done this, the logics may be viewed as a
more static, but perhaps more precise tool for analysis.
The logics can thus be applied on several levels. First, it
can be used as a philosophical tool to analyse for in-
stance morat principles, legal dictums, or agent rational-
ity. Second, it can be applied within various fields either
properly belonging to, or being a crossbreed with, com-
puter science, The talk will comment on the last of these,
with an emphasis on how to use deontic logic and action

logic in devising agent communication languages for
facilitating e-commerce and enterprise modelling.

2 Shopping and fucking!

Shopping is an action that results in establishing a nor-
mative relationship. Fucking, as an action resulting from
shopping, is usually about violating a normative relation-
ship. The first action is a popular exampie from recent
experiences with internet-based ecomerce that can gain
much from an analysis by deontic and action logics, The
second action may be just as popular but is nevertheless
not as interesting from a logical point of view.

Wesley Newcomb Hohfeld's theory legal conceptions
[Hohfeld, 1913] lends itself to a semiformal analysis of
the rights relations between two parties entering into a
contract. The formal theories building on Hohfeld's the-
ory that was developed by Stig Kanger [Kanger, 1957]
and Lars Lindahl [Lindahl, 1977] is sufficiently precise
to enable semi-exhaustive analysis of possible states re-
garding violation or non-violatior of two or more agents
bound by a contract. By trivial extensions to this theory
it is possible to devise a class of protocols which can be
the basis of agent communication languages for semi-
autonomous retailing (cf. [Krogh, 1999}). The formal
framework can be developed further in order to facilitate
a normative analysis of security protocols (cf. [Krogh,
1999b})

3 The Enterprise Perpective

Recently, deontic logic has been forwarded as one possi-
ble means of modeling massively distributed computer
systems from an enterprise perspective [5]. The approach
follows the emerging ISO standard on Open Distributed
processing [6]. Within the enterprise viewpoint, the no-
tion of community is central. A community is established

! The title refers to Mark Ravenhill's infamous play.
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by means of objects (or agents) entering into a contract.
The notion quality of service (QoS) that is commonly
believed to be of importance in future ICT-systems®
lends itself to a rather trivial reduction to such contracts.
By employing the formal framework established by
Kanger and Lindahl, building on Hohfeld's jurispruden-
tial intuitions, a formal analysis of distributed informa-
tion systems, the quality of service offered by (parts of)
these systems, and guidelines for how to reflect such
analysis in other viewpoints is possible.
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Abstract

We present an approach toward design of a
rational agent, integrating aspects of theo-
retical reasoning, practical reasoning, and
reasoning about and executing plans. The
approach uses Active Logic, which com-
bines reactivity and logical inference, tak-
ing resource bounds into account, and pro-
viding mechanisms for handling contradic-
tion. We augment this logic with a for-
malization of practical reasoning and plan
execution, which also makes uses of contra-
diction handling abilities to cope with plan
failure. We conclude with a description of a
preliminary implementation and plans for
embedding that within a dialogue system.

1 Introduction

In this paper, we present an approach toward design
of a rational agent, integrating aspects of theoretical
reasoning, practical reasoning, and reasoning about
and executing plans. The approach, based on Ac-
tive Logic [Elgot-Drapkin and Perlis, 1990}, couples
a view of belief as resulting explicitly from inference
{or observation), with a resource-bounded approach
to inference. Thus not all consequences of an agent’s
beliefs will be believed (currently), and doing the in-
ference necessary to establish these consequences as
beliefs will take time, during which other changes to
the world may happen. Also key to this approach is
an ability to handle contradictory beliefs in a robust
manner. The inference procedure is set up so that
contradictions in beliefs will have only limited (and
recoverable) effects on the inferability of other be-
liefs. Noticing contradictions drives much of the fur-
ther inference, including both theoretical and prac-
tical reasoning,

We model the components of practical reasoning
in a fairly intuitive, commonsense way rather than
attempting a comprehensive account of the tricky

“This research was supported in part by the National
Science Foundation (I1S-9724937)
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issues involved in such notions as knowledge, inten-
tions and obligations. Beliefs are represented di-
rectly as a sequence of sets of propositions (one set
per time point), and also using an introspection op-
erator. Part of the beliefs includes a theory of action,
including plan recipes with pre- and post-conditions
and linear decompositions including sub-actions and
subgoal states. Practical reasoning is accomplished
using modalities Goal (an end state), Adopt {mark-
ing the current state of execution of a plan), and Fz-
pect (marking the anticipated results of an adopted
plan). A key feature of the approach is a natural in-
tegration of inference, (normal) plan execution, de-
tection of plan failure, and re-planning and acting.

In the next section we highlight some of the main
features of active logic. We then describe, in Section
3, an initial formalization for reagoning about action
and practical reasoning within active logic. In sec-
tion 4, we present initial efforts at implementing an
agent using an architecture that gives active logic
sensors and effectors to interact with the world (the
electronic world). We conclude with some future di-
rections, using this agent as the basis for a natural
language dialogue system.

2 Active Logic

Active logics were developed as a means of combin-
ing the best of two worlds ~ inference and reactivity
— without giving up much of either. This requires a
special evolving-during-inference model of time.

A key example is deadline-coupled reasoning, An
approaching deadline must be factored into one’s
reasoning, even seen as an evolving part of that
reasoning, rather than as a separate concetn out-
side the reasoning process. Thus the remaining time
(deadline — current._time) shrinks steadily as one at-
tempts to find a solution to the problem.

‘The formal changes required for such a logic are, in
some respects, quite modest. The language can be
that of a first-order logic, perhaps augmented with
names for. expressions to facilitate meta-reasoning.
The principal change is that inference rules become
time-sensitive. The most obvious case is that of rea-
soning about time itself, as in the rule



i: Now(i}

o L e i e e

i+l: Now(i+1)

The above indicates that from the belief (at time i)
that the current time is in fact ¢, one concludes that
it now is the later time i 4 1. That is, time does not
stand still as one reasons.

For instance, suppose you are driving en route to
the airport and planning details of your route as you
go. You wonder whether to take the more direct but
more heavily traveled road, or another. There are
many facts to consider (time of day, day of week,
radio traffic and weather reports) and many impli-
cations to ferret out (the radio is not broadcasting
any traffic news, but it may be due to lack of such
news or to their obsession with announcing a base-
ball game, etc). You quickly realize that your flight
will be gone before you can figure out ramifications
to all these subtleties. So you decide to stop worry-
ing about the best of all possible routes, and instead
content yourself with any one that seems likely to
work.

Using active-logic inference rules such as that
above, deadline-coupled reasoning has been formal-
ized and applied to planning problems {see [Nirkhe
et al., 1997] where time of plan-enactment is criicial.

Technically, an active logic consists of a first-order
language, a set of time-sensitive inference rules, and
an observation-function that specifies an environ-
ment in which the logic “runs”. Thus an active
logic is not pure formalism but is a hybrid of for-
mal system and embedded inference engine, where
the formal behavior is tied to the environment via
the observations and the internal monitoring of time-
passage (see {Elgot-Drapkin and Perlis, 1990] for a
detailed description).

In the above example, the reactivity is not to ex-
ternal events but rather to the universal event of
time-passage vis-a-vis one’s own reasoning. One can
conceptualize this externally in terms of looking at a
clock but this is not necessary or particularly help-
ful.  On the other hand; external events are often
quite important, as we discuss later.

Active logics are able to react to incoming infor-
mation (including dialogue utterances by a collabo-
rative partner) while reasoning is ongoing, blending
new inputs into its inferences without having to start
up 2 new theorem-proving effort. Thus, any helpful
communications of a partner (or user) - whether as
new initiatives, or in response to system requests ~
can be fully integrated with the system’s evolving
reasoning. Similarly, external cbservations of ac-
tions or events can be made during the reasoning
process and also factored into that process.

Thus the notion of theorem for active logics is a
bit different from that of more traditional logics, in
several respects:

1. Time sensitivity. Theorems come and go;
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that is, a wif once proved remains proved but
only in the sense of its being a historical fact
that was once proved. That historical fact is
recorded for potential use, but the wiff itself
need not continue to be available for use in fis-
ture inferences; it might not even be reprov-
able, if the “axioms” (belief) set has changed
sufficiently. As a trivial example, suppose
Now(noon) -+ Lunchtime is an axiom. At
time t=noon, Now(noon) will be inferred from

- the rule given earlier, and Lunchtime will be in-

ferred a step later. But then Now(noon-+1} is
inferred, and Lunchtime is no longer inferable
since its premise Now(noon) is no longer in the
belief set. Lunchtime will remain in the belief
set until it is no longer “inherited”; the rules for
inheritance are themselves inference rules. Qne
such involves contradiction; see next item,

- Contradictions. If a direct contradiction (P

and —P) occurs in the belief set at time t, that
fact is noted at time t+1 by means of the infer-
ence rule

t: P, P

t+l: - Contral(i+i,pP, "P)

Also, as a consequence of the contradiction hav-
ing been noted, neither of these instances of P
or =P will be used in future inferences. Thus
the logic is partially shielded from using par-
ticulatly blatant contradictands. P and -P
remain theorems in the sense of having been
proved, but are not available for further infer-
ence. For instance, if Lunchtime is contradicted
by ~Lunchtime, neither of these is inherited to
the next time step; but —Lunchtime may well
be reproven and thus in a sense “wins”. This
can occur as a result of a further axiom, such
as ~Now(noon) — ~Lunchtime. We caa also
provide contradiction-handling axiorns that are
domain independent or domain dependent for
specific domains. These can use information
about the domain but also information about
the knowledge base and proofs to arbitrate be-
tween the contradictands.

Much more subtle effects can occur from this
feature. To return to the airport example: you
are driving en route to the airport and planning
details of your route as you go. Then your car
gets a flat tire. Rather than complete your orig-
inal plans, it is time to make major revisions,
in fact even to change your goals for the time
being. :

Truth maintenance systems [Doyle, 1979] also
tolerate contradictions and resolve them typi-
cally using justification information. This hap-
pens in a separate process which runs while the
reasoning engine is waiting. We do not think



that this will not work in general since the rea-
soning needed to resolve the contradiction will
depend on the very information that generated
it. Reasoning and the resolution of contradic-
tions have to take place in the same reasoning
process.

. Defaults. Defaults can be given a straightfor-
ward representation in an evolving-time frame-
work:

t: “Known("P), Q

t+1: P

Here from the facts that Q, and that —P is not
a belief at time ¢, P is inferred. This avoids the
decidability issues of traditional default mech-
anisms, since only a linear lookup in the belief
set for time t is needed to tell that —P is not
there (and that Q is there}). This does not in it-
self deal with problems arising from interacting
defaults. However, since such cases tend to in-
voive contradictory conclusions, these then can
be treated as any other contradictands,

. Observations. In active logic the fat tire
in the previous example can be represented in
terms of observations. And the reasoning sim-
ply goes on with this new information. There is
no executive subsystem that turns off the route
planner midstream and starts up a new plan-
ning action. Rather there is a single stream of
reasoning, which can monitor itself by looking
backwards at one moment to see what it has
been deing in the past, inciuding the very re-
cent past, If the previous few steps in some way
conflict with new information, then the next few
steps can be devoted to sorting out enough of
the apparent mismatch to allow a decision as
to how to proceed. All of this is carried out
in the same inferential process as the original
planning, without the need for level upon level
of meta-reasoners. This is not to say that there
is no metareasoning here, but rather that it is
“In-line” metareasoning, all at one level. The
advantages of this are (i) simplicity of design,
(i) no infinite regress, and (iii) no reasoning
time at higher levels unaccounted for at lower
levels. 4

A potential disadvantage is the possibility of vi-
cious self-reference. This matter is a topic of
current investigation. However, another major
advantage of such time-sensitive in-line metar-
easoning is that inconsistency in one's beliefs
need not cause serious problems in general, The
reason is largely that given above: a conflict in
the reasoner’s beliefs can be noted by the rea-
soner as a new belief, and the latter can lead
to a decision to encapsulate the conflicting be-
liefs so that they do no harm. Now this cannot
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be a fully general process, since identifying con-
tradictions is at best semi-decidable. However,
deeply hidden contradictions usually do little
harm; and so we have concentrated on infer-
ence rules for “direct” contradictions, that is,
belief pairs that surface in the form P and =P ;
see [Miller, 1993] for details including a theo-
rem providing a rather general case.in which
such in-line metareasoning can cope with direct
contradictions.

5. Evolving state representation. Another
feature that comes directly out of the time-
coupled nature of active logics is their ability to
represent the evolving status of reasoning and
actions. The representation of actions can avail
itself of up-to-date time information. Thus an
action A can be marked as Planned, Underway,
and Done; and the logic can pass from one to
another of these as actions are put into execu-
tion, Thus active logics not only reason about
plans, but can make and execute them while
keeping track of this changing state.

It is easy to write an inference rule that updates
at each time step whether a particular plan is
currently being started, is already underway, or
is completed. More detail than this, such as
how long the plan execution has been going on,
is also readily inferred. This is important for
various purposes, such as:

(i) avoiding re-initiation of a plan already un-
derway

(if) assessing whether one is spending too much
time on a goal

(iii) distinguishing between various instances of
a plan, one underway, another finished, perhaps
a third and fourth on the to-do list. This is use-
ful for repetitive activities, such as transport-
ing objects one by one, or keeping track of how
many times one is performing a certain action
(for instance in dialogue, where one may repeat
a request a few times for emphasis or as a re-
minder, but not indefinitely, without a kind of
breakdown of coherence [Suchman, 1987)).

Active logics can be seen either as formalisms
per se, or as inference engines that implement for-
malisms. This double-role aspect is not accidental:
it is inherent to the conception of an active logic
that it have a behavior, ie, the notion of theorem-
hood depends directly on two things that are not
part of traditional logics: (i) what is in the current
evolving belief set, and (ii) what the current evolving
time is.

The traditional markers of a logic are its syntax
and its semantics. Active logics have both of these:
the syntax is {usually) that of FOL; and the seman-
tics can also be that of FOL with a few addenda
such as that Now(x) has the meaning that the cur-
rent evolving time is x. (There are also alternative



semantics available.) What is missing is a soundness
and completeness theorem, and for good reason: ac-
tive logics are not intended to be sound or complete
but rather to reflect the step-by-step process of rea-
soning of a real agent. Thus many true assertions
will not be proven, and many things proven are not
true. In fact, active logics are designed with incon-
sistent belief sets in mind; and these of course can
never be true.

It is best to avoid a mere terminological squabble
over the word “logic”. However, in many impor-
tant senses, active logics are formal specifications
of notions of theoremhood appropriate to the study
of real agents. If we are concerned about agents
and their reasoning, rather than about an agent-
independent notion of truth, then we should not ex-
pect or want a tight coupling between what is proven
(or provable) and what is true. Agents can only do
what they have the resources to do, and whatever
logic an agent uses must therefore also have that
property. Thus to the extent that logic is the study
of reasoning, active logics are the study of reasoning
as an active process.

Active Logic provides the theoretical reasoning
component of our framework. However it also has
many convenient features for practical reasoning,
particularly the time-situatedness and contradiction
handling facilities. This provides a natural mecha-
nism for plan reasoning and acting, as well as fail-
ure detection and re-planning. In the next section,
we describe a preliminary formalization of reasoning
about action and plan execution, using Active Logic.

3 Practical Reasoning and Plan
Execution

Plan execution architectures (for instance CIRCA
(Goldman ef al., 1997], ESL {Gat, 1996], PRS [My-
ers, 1997], RAPS {Firby, 1995]) are generally not
based primarily on logic. However, we think that
active logics are well suited to serve as plan execu-
tion architectures: failures of plans or of actions can
be handled naturally as contradictions; the chang-
ing state of the world can be represented as time-
situated changing beliefs of the agent; the reasoner
can use logic to perform arbitrary reasoning. Active
logics ¢an therefore provide a uniform platform for
reasoning and plan execution. :

Using active logics as a plan execution architecture
requires one to define representations for plans, goals
and actions, to add axioms to describe the plan ex-
ecution process, and to augment the contradiction
handler to take care of the special cases of contra-
dictions caused by plan execution.

We have begun developing a plan execution archi-
tecture in active logic. In this section we sketch our
preliminary system and present some examples that
illustrate it. We are still at the early stages of devel-
opment, so we do not take complex plans (beyond a

sequence of sub-actions) or situations into account
yet, )

3.1 Representations

The notation we use is as follows: predicates and
functions are capitalized, variables are not, Greek
letters are used for expression variables: Know is
a positive introspection predicate; the formulas we
present are assumed to be universally quantified
unless otherwise noted. We allow quantification
over formulas that may be seen as being implicitly
quoted. Lists are represented prolog style with (1
and we use | to denote concatenation of lists, Now
is a unary predicate true of the current time step.

Plan recipes are . represented a8
Plan({name, pre, post, steps) where name is the
name of the plan, pre is a formula describing the
preconditions for the execution of the plan, post
is & formula describing the formulas that hold at
the successful execution of the plan, steps is a
temporally ordered list of steps that constitute the
plan. These steps can be cither primitive actions
that can be executed, or sub-goals, requiring a
new plan to be adopted and executed. The plans
we currently consider are simple plans with only
sequencing of plans or actions allowed.

Actions are represented in a similar way as
Action(name, pre, post, act} where name is the
name of the action, pre is a formula describing the
preconditions for the execution of the action, post is
a formula describing the formulas that hold at the
successful execution of the action, act is the proce-
dure that is to be executed to implement the action.

Exogenous  actions are  represented by
Action(name, pre, post, Nul), For instance,
if the agent is in a train and it depends on
the train getting to X, this is represented
as Action(GetTo, InT'rain(Trainl, Timel),
At(X, Time2), Nul) :

Goals are represented as Goal($) where ¢ is a for-
mula that is to be made to hold. Goal{s) holds
only when ¢ has not been accomplished and no plan
has been adopted to achieve ¢.This goal can be a
maintenance goal if ¢ quantifies over time. For ex-
ample, we would represent keeping the cat fed as
Goal(¥t Fed(Cat,t)).

Plans that have been . adopted and
are  being executed are represented by
Adopt(name, done, rest, goal} where name is

the name of the plan, done is a list of those steps
executed, rest is the list of the remaining steps, and
goal is the goal. .

3.2 Plan execution axioms
We adopt a plan for execution if its postcondition(y)
implies the goal(#), the preconditions(d), are met
and the goal is not already true:
Goal() A8 A Plan(n,8,%,s) Ay — ¢) A
~Know(¢) — ~Goal(¢) A Adopt(n,[], s, ¢

33



Note the assertion of ~Goal(#) here. This represents
that ¢ is no longer a goal that needs to be processed—
Adopt(N,[ ], S, ¢) indicates that ¢ is being worked
on. The assertion of ~Goal(¢) will give rise to a
contradiction. This will be resolved by preferring the
later formula, in this case ~Goal(¢) (see below for
more on contradiction resolution). We also require
that all adopted plans for the same goal be the same:

Adopt(n, 1, f, §) A Adopt(m, ', f',¢) = n=m

If there are two different adopted plans for the same
goal, a contradiction will be generated since -n = m.
At this point, one can choose which plan to pursue.

If the precondition of the plan is not known to hold,
we make it a goal;

Goal(¢) A —~Known{$) A =Known(f)A
Plan(n, 8,9, steps) A (¥ — ¢) — Goal(d)

Here, ¢ is still a goal so that whenever the precondi-
tions are made true, the main pian will be started.
We now consider executing the plan. If the next
step of the plan is an action, we wait until the previ-
ous step of the plan is completed and verify that the
preconditions of that step hold before executing the
action. Done(act) is asserted in the knowledge base
once action act is completed by the procedure execu-
tion module. Do(act) causes act to be performed by
the agent. H returns the head of a list, Last returns
the fast element of the list and T returns the tail.

(Now(t) A Adopt(n,i,r,6) A Done(Last(i))A
H(r) = Action(a, ¢, ¢, act) A ¢) —

(Do(act) A Adopt(n,i|H(r), T("))A
Exzpect(3t; t <ty Ay(ty)) A =Adopt(n, i, r 8))

We assert that we expect that the postconditions
will hold sometime in the future. When the action
is actually done, we will have confirmation of that by
the postconditions being asserted in the knowledge
base. If something happens that makes this impos-
sible (for example, if the action fails), the agent will
know that it has a problem.

If the next thing on the plan is a goal, we try to
plan for it:

(Now(t) A Adopt(n,i,r,8) A Done( Last(i))A
H(r) = Goal(¢)) —

(Goal($) A Adopt(n,i|H(r), T(r),)A .
=Adopt(n,i,r,8) A Ezpect(3t, t < 1y A $(t1)))

If the preconditions do not hold, we make them a
goal.

{Adopt(n, i, r,8) A Done(Last(i)) A ~Known(d)A
Hd(r) = Action(a, ¢, %, act)) — Goal(s)

If there is nothing left in the plan, we stop.
Adopt(n,i,r, ) Ar =[] — —Adopt(n,i,r 6)

This causes a direct contradiction that is resolved by
retracting both contradictands.
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In the case that we are at the very beginning of a
plan, we know that the empty action is always done:

Done(Nul)

(foal and Ezpect have some properties of modalities,
and the usual rules apply, including Ezpect(gAf) wr
(Ezpect($) A Ezpect(y)), and the Barcan formula
(see for instance [Hughes and Creswell, 1996]), so
that we get Ezpect(Yz ¢(z)) « Vo Erpect(d(z)). !

3.3 Contradictions

Some events in the execution of plars depend on the
agent noticing contradictions and reacting appropri-
ately. As mentioned above, contradictions in active
logic are automatically flagged when both P and =P
are derived. For plan execution, we also flag contra-
dictions for Ezpect($) and —¢: if the agent expects
something to become true and the negation of it is
found to be true, there is something wrong with the
plan.

"The contradictions are processed by a set of axioms
that constitute the contradiction handler. These ax-
toms depend on domain information as well as meta-
information such as the derivation of the contradic-
tands, their source and the time at which they were
first asserted. This information is not explicitly rep-
resented in the knowledge base as formulas in the
current implementation of active logic, but is in-
stead represented in data structures associated with
the formulas. Access functions allow the axioms to
reason with these.

Some of the strategies for resolving contradictions
between ¢ and ¢ are: 1. if ¢ is of the form Goal(),
then we reinstate the later one; 2. if ¢ is of the form
Ezpect(y) and —¢ is 3 and results from an obser-
vation, then reinstate the goal that led to the expec-
tation and remove the expectation. The rationale
behind these will be made clearer below.

3.4 The domain

The domain we use to illustrate this system is part
of the Washington area metro system. We assume
that our agent is at College Park (CP) and wants
to get to Union Station (US). The only train line
that passes through CP is the green line. Since part
of the green line is still under construction, there
is no direct train from CP to US: one has to take
the green train from CP to Fort Totten (FT) and
there change to a red train that goes from FT to US.
However, during rush hour, the green train bypasses
FT altogether and goes to US. Therefore we have
two plans to get to US from CP: one for rush hour,
and one for non rush hour.

The examples we present are first a simple case of
the agent getting on the train at CP during rush

!We intend to explore the relation between our use
of modality in these cases and the uses of modality for
agency as in [Belnap and Perloff, 1988; Horty and Bel-
nap, 1995], for example.



hour and getting off at US. The second example we
consider is the case of the agent thinking it is rush
hour (by default), getting on the train at CP and
expecting the train to go up to US. However, it is
* not rush hour and the train gets to FT and stops
there. The agent observes this and that leads to a
contradiction. This causes the agent to abandon the
original plan and to form a new plan to get from FT
to US.

Plans
If the agent is at p at time ¢, A#(p,#), and
there is a direct train m that goes from p to g,
DirectTrain(p, ¢, m), and that train is at p at time
t, TrainAt(m,p,t), then the following plan will re-
sult in the agent not being at p but at g at some
later time. R
Plan(P1 ,{At(p,t) A DirectTrain(p, ¢, m)A
TrainAt(m,p,t)),
(3151 ti > tA —!At(p, BHIA At(q,tl)),
[AllAZ:Aa])

Here, A1, Az and Ag stand for actions A1, 42, and
A3 that we present below. We use 4; and so on for
the convenience of not having to write the actions
here. These are not part of the language.
.. Another plan is for the case that there is no direct
train between the source and the destination:
Plan( P2,
A= DirectTrain(e, y, o)A
DirectTrain(z, y, ma)),
(31t >t A-At(z, 8} A At(y, 1),
[Goal(Etg ta > 1A At(z,tz)),
Goal(Tta tz > t A At(y, t3))])

Primitive Actions
The primitive actions used in the plans are as fol-
lows.

If we are at the station at the same time as the
train is, we can get on the train and we will no longer
be considered to be at the station.

Action{Al, (At(z,t0) A TrainAt(m, z, o)),

(InTrain(m, to + 1) A ~At(z, tg + 1)),
GetOnTrain(m, z,t,))

A2 is an exogenous event: if the agent is in the train
at station X and there is a direct connection to sta-
tion Y, then, at some later time, the train and the
agent willend up in ¥
Action(A2, (InTrain(m, to) A TrainAt(m, z, to)A
DirectTrain(z, y, m)), -
T (g, ta >ty ATrainAt(m, y, t2)A
InTrain(m,t3)),
ul)

The third action is to get off the train: if we are in
the train and it is at a station, we can get off the
train and we will be at the station.
Action(A3, (InTrain(to) A TrainAt(m, y,t)),
(~InTrain(ty + 1) A At{y, 1o + 1),
GetOf fTrain(m, y, 1))
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(3mymy At(z,t) A DirectTrain(z, z, m;)

Domain Information

During rush hour, there is a direct train from College
Park to Union Station:

Now(t) A RushHour(t) — .
DirectTrain(CP,US, Green)

It is usually not rush hour: ‘
Now(t) A =Know(—~RushHour(t)) — ~RushHour(t)

When it is not rush hour, there is a green train from
CP to FT and a red train from FT to US:

Now(t) A ~RushHour(t) —
DirectTrain(CP, FT, Green)

Now(t) A ~RushHour(t) — DirectTrain(FT,US, Red)

If the train reaches a terminal station, we have to
get off:

InTrain(m,t) A TrainTerminus(m, ¢, t) —
Do{GetOf fTrain(m, z, t))

This is an instance of an action being done depend-
ing directly on the state of the agent and not be-
ing part of a plan. When getting off the train suc-
ceeds, the following: At(z,t) and ~InTrain(m,t)
are added to the knowledge base. '

When a train reaches the terminus, it goes nowhere
else:

TrainTerminus(m,z,tg) A~z = y At >ty —
=TrainAt(m, y,t,)

3.5 FExample 1

We present axioms for the first example: The goal
i8 to get to Union Station, the agent is at' College
Park at time 0, and it is rush-hour and the train is
at College Park.

Goal{ At(U S, T)) A Now(0) A A{C P, 0)A
RushHour{0) A Train At(Green, CP,0)

We do not show the details of the plan execution,
but highlight some of the aspects. At time 1, plan
P1 is adopted and at the next step, the action
GetOnTrain(Green,CP,0) is executed. This
succeeds and adds to the knowledge base the fol-
lowing:  Done(GetOnTrain(Green,CP,(),3) A
InTrain(Green, 3), ~At{CP, 3). Since
Done(GetOnTrain{Green, CP,0),3) is a pre-
condition for the next action, we can now execute
it. However, the next actiom is a Nul action,
so we can only wait until the preconditions for
the action after are satisfied and we assert the
expectations at this point: FExpect(3t, ¢, >
3 A TrainAt(Green,US,t1) A InTrain(m,t,)).
Later, say at time 10, the train does get to US, and
these expectations are observed to be true. The
agent then executes the last step of the plan, which
is to get off the train, and that results in asserting
At(U S, 11) in the knowledge base.



3.6 Example 2

In this case too, the agent is at College Park and
thinks it is rush hour and gets on the train Jjust
as before. Once it does get on the train, we ex-
pect Expect(dt; ¢, > 3A TrainAt(Green, US, ;) A
AnTrain(m,t1)). From this we can derive that
Ezpect(3t, TrainAt(Green, US, ¢,)).

However when the agent gets to action A2,
the train reaches the terminus at FT. The agent
observes TrainTerminus(Green, FT, 10} (assume
the time is 10). This leads to the agent get-
ting off the train Do(GetOf fTrain(Green, FT, 10))
which results in 4¢(FT,10). The agent also con-
cludes that this train is not getting anywhere:
Yt.p ~FT = p — ~TrainAt(Green,p,t). In
particular, this train is not getting to Union
Station: YVt -TrainAt(Green, US, £). This
however contradicts the expectation that the
green train will indeed get to Union Station:
Ezpect(3ty TrainAt(Green, US, t3)).

The plan has failed and since the agent is execut-
ing the plan, it cannot back up to a preceding state—
it has to try to accomplish its goal from its current
state. A contradiction is generated and the handling
of the contradiction results in reinstating the original
goal Goal(At(US,t)) and the removal of the expec-
tations. Now the agent is at FT and has the goal
of getting to US and knows there is a red train that
goes there directly, so it can get to Union Station
using the same procedure as in the previous exam-
ple.

4 Alma/Carne: An Active Logic
Agent

Our concern is not just with “theoretical” practical
reasoning, but with using this reasoning about ra-
tionality in a “practical” way, as a specification of
an artificial agent. We have thus been constructing
a test-bed system both for testing the ideas above
and for attempting to apply the general approach for
practical problems such as human-computer natural
language dialogue. Alma/Carne is an implementa-
tion of active logic that includes a facility for repre-
senting and using procedural knowledge. This gives
the active logic the ability to interact in arbitrary
ways with the environment and to execute proce-
dures the details of which are of no interest inferen-
tially. Alma and Carne are separate processes with
Alma the reasoner and Carne the action execution
module. This gives us a clear separation between the
procedural and the declarative parts of the model
of the agent while requiring declarative knowledge
about the procedures to be explicitly stated.

4.1 Alma

Alma implements active logic and is the repository
for declarative knowledge in the agent. All infer-
ences and all decisions to act are done in Alma, con-

trolled by domain axioms and active logic rules of
inference. Alma has a few features that enhance the
efficiency of the logic including: 1. applying the in-
ference rules to new formulas only; 2. allowing the
programmer to specify in what sorts of proofs each
formulais to be used (forward or backward or both);
3. allowing the programmer to specify policies that
determine which inferences to actually do at each
step.

The problem of controlling the logic is a crucial
one, which will get worse as the agent is used in more
realistic settings and these features are Just the start
of our attempt to address this problem,

Alma also has the capability to interact with
Carne, in particular, using Carne to “execute” basic
actions. We describe that following a description of
Carne.

4.2 Carne

Carne contains the procedural knowledge of the rea-
soner. It allows the programmer to specify programs
in Prolog that fall into the following main categories:

* Programs triggered by Alma to effect a change
in the environment.

* Programs that are responsive to events in the
environment and that automatically update
Alma’s knowledge base with observations.

* Programs that do computations on behaif of
Alma,

These give Alma the ability to effectively interact
with the world and to offload resource intensive com-
putations to a separate process. A simple interface
is used to link Alma and Carne.

4.3 The Alma/Carne interface

On the Alma side, there are special purpose rules of
inference and predicates. These predicates can be
used in axioms to initiate programs in Carne, and
to reason about the status of the programs.

call(4, Id)If a formula of the form call(@, Id) is de-
rived in Alma, an inference rule comes into play
that sends a message to the Carne process for it
to execute program ¢ (which, of course, has to
be known to Carne). The rule also results in the
assertion doing(¢,Id) in the knowledge base.
The Id is a unique identifier used to distinguish
between multiple invocations of the same pro-
gram with the same arguments. An alma rule
to perform an action of a plan would be to call
2 program whenever a Do(Act) proposition of
the appropriate type is inferred.

doing(¢, Id) This asserts that Carne is in the pro-
cess of executing ¢,

done(¢, Id} Once the progr#m has completed suc-
cessfully in Carne, a message is sent to Alma
that results in the assertion of done(g, Id) in the



knowledge base and the deletion of doing(s, Id)
(although that remains in the Alma history).

error(¢,Id) In case the program fails to exe-
cute in Carne, error{s, Id) is added to and
doing{$, Id) is deleted from the Alma database,

These predicates track the status of the programs
in Alma and enables decisions to be made about
actions as described in the previous section.

On the Carne side, 2 Prolog predicate af (add for-
mula) is provided to the Carne programs that al-
lows them to assert formulas to the Alma knowledge
base. This facility is independent of the above status
predicates and is used to assert the results of compu-
tations and to include input from the environment,
into Alma in the appropriate form. Similarly, df
(delete formula) can be used by Carne programs to
remove formulas from the Alma knowledge base.

5 Current and Future Work: A
Conversationally Adequate Dialog
Agent

Using the Alma/Carne implementation, we are
designing and implementing a natural-langnage-
dialogue and commonsense-reasoning engine that
has a heavy emphasis on metareasoning [Traum and
Andersen, 1999]. The hypothesis we wish to test
is that metareasoning is essential to flexible dis-
course and cognition, in which (miscommunication
and other) errors must be detected and repaired dur-
ing the same episode of reasoning (see {Perlis et al.,
1998]). An agent capable of doing this will have
to reason with and represent: (1) ongoing time; {2)
history; (3} linguistic objects; (4) meanings; (5) con-
tradictions. .

The architecture we have designed involves tradi-
tional modules (e.g., speech-processor, parser, dia-
logue manager, problem solver, output/action man-
ager), but organized in terms of logical and non-
logical behaviors. Thus our logic engine, Alma, re-
ceives and sends communications from the rest of
the system (via Carne ~ whose only job is to facil-
itate such internal messages, see Figure 1). As has
been suggested often before (e.g., [Rieger, 1974]) we
view dialogue as simply one special kind of problem-
solving. _

One ‘major ongoing application of active logics
is that of building a “conversationally adequate”
dialogue agent. Conversationally adequate agents
should be able to engage in “free-ranging” conversa-
tion: successfully exchanging information with an-
other agent over the course of a conversation cover-
ing any arbitrary topic. Such an agent will have the
ability to learn in McCarthy’s sense of advice-taking,
via conversation [McCarthy, 1958). We hypothesize
that the ability to use meta-reasoning (coupled with
other crucial skills like learning) to correct errors is
an ability that, once sufficiently sophisticated, allows
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Figure 1: The conversational agent architecture

Solvers

agents to engage in free-ranging conversation.

Preliminary work on applying active logics to prob-
lems in language processing has been done [Gurney
et al., 1997; Perlis et al,, 1996], and we have pro-
posed an abstract view of how we would build such a
conversationally adequate agent [Perlis ef al., 1998].
We view metareasoning to be a crucial part of that
type of agent and believe that active logics are well
suited for that. We are currently investigation use
of the plan execution framework presented above in
addressing dialog performance.
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1.Summary

Different solutions are provided to represent uncertainty. This article explores uncertainty in a quite unusual way. It
develops a theory combining Belief Functions [9] and pseudo-intuitionistic logic [10]. Until today, the use of Belief
functions in Kripke-like semantics has not been exploited. Moreover, pseudo-intuitionistic logic, by weakening the
deduction mechanism, offers an ideal framework to introduce uncertain reasoning.

The main feature of pseudo-intuitionistic logic is to differentiate known facts from deduced facts or in other terms
axioms from conjectural theorems. This logic expresses the idea that a deduced fact is always less true than a
confirmed fact.

The evaluation of the belief function will make deduced facts be confirmed. Truth will not come from syntactic
operations but from semantic evaluations. Therefore, syntax leads to correctness and semantics to truth,

This article will present succinctly the pseudo-intuitionistic logic and the main resuit exploiting the application of
belief functions to Kripke-like semantics. This article is mainly axed on an example which aims to introduce new
possibilities for knowledge representation.

2, Short Presentation of Pseudo-Intuitionistic Logic

One of the interest of intuitionistic fogic is that it could be interpreted in terms of proof instead of Boolean truth
values. Intuitively, ¢ is true iff we have a proof of ¢. The most immediate consequence is that the law of excluded
middie doesn't hold anymore, The pseudo-intuitionistic logic is then an extension of the intuitionistic logic '
weakening the modus ponens or deduction :

@

g2y

Ty , where T denotes true,
Actually, in terms of proof, modus ponens means that “there exists a proof of y which can be derived from a proof of
¢ and a proof of ¢ — y". In this framework, the existence of a proof (T — ) is not synonymous with obtaining it

(¥). Therefore, as the syntactic deduction doesn't give truth but validates a reasoning. We will extend the semantic
valuation.

2.1 Definition of Kripke-Like Semantics of Pseudo-Intuitionistic Logic

Let Wbe a set of worlds, and R be a transitive, left-surjective and binary relation on W, which is called accessibility
relation. We note R” the closure by reflexivity of R.
A model based on W is a structure M = (W, R, i) where i is a W-valuation :

irpa ifp) ;
We defines the sentence: "In the model M, @is true at state w", denoted by M= @, by :
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Mi=wn iff we i(n), 7 atomic

Mlzweoay ffMi=wpandMl=w y

M=wovy iffMi=woporMi=wy

Ml=w—gp iff, for all v such as wRv, not M l=w ¢

Ml=w@— vy iff, forall vsuchas wR v, if M I= ¢ then, for all z such that vRz, M 1=z w.

It is said that pistrue in M iff M l=w @ for all w € M and that @is valid on W iff @ is true for any model based on
w.

We call hereditary set of w, noted w , the set of all the worlds v of W such as wR=v :
whz {v:ve Wand wRv).

We note W+ the set of all the hereditary sets of w & W,

3. Belief Function on Kripke-Like Semantics.

Before introducing a variation of belief functions, we have to define a set K. Actually, belief functions instead of
being applications from 2W to [0,1], will be application from W+ to K,

Definition of world level Consider a model (W, R, i). Let n be the maximal path length of the graph associated to
Wandletn be, foreach we W, the maximal length of a path between w and an initial world. We call initial-level
of w, the integer n-nw.

Definition of cost of world w The cost of w is an application m which associates the heredity set of w with an -
uplet m(w ) ={0, ..., 0, c(w), 0, ..., 0) where the rank of c(w) in the n-uplet equals the initial-level of w.
Definition 3: Let X be the closure by addition of the set of the m{w+)'s to which we add the nul} n-uplet,

K =(0,..0:
DI
K= K0u { ™ m{wj ):w e W, JoN),

z .

Wenote K1= ™ m(w ),k =(kl, ..., kn) the maximal element of X.
Consider the following example :

g
W2

Wy Ws

We note ci the cost of a world wi.
We can deduce that :
miwl }=(0,0,¢ )
mw2 )=0,¢c,0
mw3 y=(0,¢c ,0
miwd J=(c ,0,0
m(wS y={c ,0,0),
Then, K1 = (¢5+c4, ¢3+c2, cl), KO = (0, 0, 0).

It is possible to define the belief functionin W . _
Definition 4 Belief Function: We call belief function of A € W+ the application Bel: W+ —» K defined by :
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Bel{A)= Z m(B)
B4 .
As (W+, U, N =, =, , W) has a Pl-algebra structure, for all A, B of W+, Bel(— A), Bel(A U B), Bel(a n By,
. Bel(A =» B) are well-defined.,

As it is done in the theory of evidence, we can define the doubt function and the higher probability function :
doubt function : Dou(A) = Bel(— 4)
higher probability function : P*(4)= K - Dou(A)
degree of non-contradiction : P**{(A) = Bel(—— A).

It is possible to define an order relation on K.
Definition s Let g = (g1, ..., gn) ¢ Kand h = (Rl ..., hn) & K. We say that g > & iff for the smallest i such as, for all
i >1i, gj = hj, we have gi > hi. gi and ki will be called meaningful terms of the comparison.
We have the following properties :

Bel(@) = K0,

Bel(W) = K1,

if A < B then Bel(4) < Bel(B),

Bel(A n — A) = K0,

Bel(A) + Bel(—~ A) = Bel(A U — 4) < Bel(W) = K1,

If Bel(A =5 B) = K1 then Bel(A) < Bel(W = B),

Bel(A = —A) =K1,

Bel(~+— A) 2 Bel(4),

Vo VALA LA e W Bel[YA}Jm > (—1)“§*’Be{1 AiJ
] k:g./\.n}
Ix

P*(4)= > m(B)

BrA=E

P**(4)= Zm(aj

Bri-A=

In the previous example, we can establish that :

Bel Dou  p*+ .
wl (c +cd, c3+¢2, cD) (0, 0,0) (¢5+cd+c2, c3+¢2, cl) .

w2 G,c,0) (cS+c4,¢3,0) (0, ¢2,0)

w3 (¢ +¢4,¢3,0)  (0,c2,0) (c5+cd,¢3,0)

wd c,0,0 (c5,¢2,0) (c4,0,0)

w3 {c ,0,0) (cd, c2,0) {c5,0,0)

wi Uw (c +c4,0,0) 0,2, {c5+cd, c3,0)

For instance, we verify that Bel(wl )>Bellw )(c > 0). But, we can not compare Bel(w2 )and Bel(w )asc
and ¢3 are incomparable. Suppose that ¢2 < 3 (i.e. it is 'easier’ to demonstrate w3 than w2), consequently,
Bel(w2 )< Beliw ). Although Bel(w )>Bel(w ww )

The notion of conditional belief function can also be defined. It won't be defined using clzissical methods. But
instead, we will recalculate the value, We will see in the example that this evaluation allows a non-monotony
reasoning. '

Definition : We call conditional belief function of A given B, the function Bel(A/B) = Bel (A) where BelB is the
restriction of Bel to B.

In the previous example, if B = w3 , then we verify :
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Bel (W3 )=(c¢ +cd, c3) BelB(wd Y=(c ,0)
BelB(wS )=(c , ) BelB(wS o w J={c +c4, 0.
BelB(w2 ) is not defined asw)inwd)=0,

These notions can be extended to the set of formulas. Actually in a model M = (W, R, i}, we associate with a formuia
@ the belief function of {(o)).
More precisely, we define Bel ‘which associates to each well-formed formula its W-valuation :
Bel+(¢) = Bel(i(¢)).
Using the algebraic properties of (W+, U, M =, = ), we can deduce that :
Bei+(— @) = Dou(i(¢)),
Bel+(p v y) = Bel(i(p) U i( )
Bel+{pa py = Bel(i(¢) ~ i(y)),
Bel+(¢ — w) = Bel(i(¢g) = e}

Then, we introduce a new terminology of truth values for a well-formed formula g :

" truth value " of ¢
Beli{g)=K true
P**(i(e)) = K1 non-contradictory
Bel () > Dou(i(¢)) locally (possibly) true
P**(i(@)) > Dou(i(¢)) locally probable
Dou(i(g)) > P**( i o)) locally improbable
Dou(i(g)) > Bel+(¢) locally (possibly) false
Dou(i(¢)) =K false

Remark : In the example, if A = wd U w then—A=w and——A=w . Therefore, we verify that
P**(A) > Dou(A) > Bel(A). A proposition can be, in the same time, locally possibly false and locally probable. (This
system is then incomparable with multi-valued systems (Belnap 77)).

4. Example : murderers

We will illustrate our theory with an example from the Theory of Evidence of Dempster and Shafer. A murder has
been committed, three men are suspected : Pierre, Marie and Jacques is guilty. They are, respectively, tall, small and
small. Moreover, it is known that the murderer acted alone. The police has three testimonies :

testimony 7° : a man has seen a small man from afar,

testimony T2 : an old woman with glasses has seen a tall person,

testimony 73 : Piemre’s wife maintains that Pierre had been at home.

L. Construction of the structure

We define the different propositions : T1, T2, T3 (testimonies) and P, J and M (respectively, Pierre, Jacques and
Marie is guilty),
Following the testimonies, T implies that if it is a man then Pierre or Jacques is guilty and if the murderer is small
then Jacques or Marie, T2 accuses Pierre and 13, by clearing Pierre, accuses Jacques or Marie. We assign the
following costs ;

@ all the testimonies are false,
testimony T'1 is true,
testimony 72 is true,
testimony 773 is true,
in T1, the guilty party is a man,
in T, the guilty party is small.

D M O~ T
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We associate costs to arcs leading to the worlds forcing the truth of propositions. The other arcs have a cost equal to
1. We calculate the cost of a world by adding the cost of all the arcs leading to that world.

colt:
(13 E, Y: 0)

colit:
(2,+0,7,0)

*  syniactic properties
From this representation, we can deduce several facts ;

T2 -~ — P  From T2, we can conclude that Pierre can be guilty.

- (= = P — T2) The guiltiness of Pierre doesn't lead to the truth of 72.

TM> == (PvJIvM TIdoesn't clear anybody.

T3~y (Jv M) From T3, we can conclude that Jacques or Marie can be guilty.
TLATZ = PA=JIA-M 71 et T2 imply that Pierre is guilty.

= (T2AT3) T2 et T3 are incompatible.

e local truthx _ _ B R e
As none of atomic formulas are true, we are going to estimate the value of their belief functions.

meaningful terms
Bel Dou Bel Dou

T (6, 8+&+B+27, 1, 0) (3,0, ,0) ¥ o
2 (2, B+1.B.0) (7, 1+0+0+5 a+d,0) B o+d
3 (4’ ']’+6, 5; 0) (50 9+8+ﬁ+7: ﬁ‘*‘as G) 8 ﬁ+a

+firstly, suppose that the testimony 71/ is good then Bel(T1) > Dou(T1). Then T

*Moreover, if we admit that from a long distance, it is easier to recognize a man than his stature, then £ > 6,
*Secondly, we suppose that the testimony of the old woman can be either true or false : = a+d.

*At last, Pierre's wife may lie : d < f+a.

Therefore, we can estimate the truth values of P, Jand M :
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meaningful terms
Bel Dou Ps Bel Dou Pk

p (3,0,0,0) (6, 1+6+6, d+a, 0) (3. B+1,0,00 0 Hor8 By
J (3,0,0,0) (6, B+, fro, 0) (3,0,0,0) 0 pry O
M (3,0,0,0) (6, £+B+y, f+a, 0) {3,0,0,0) 0 g+f+y 0

with Bel (W) = K1 = (9, 29+ 5+ 8+£+, S+3+B+0,0)

Simple corparison
Concerning Pierre :

We have p+3+6 > 0, but 1+8+6 is not comparable with 3+7. We do not know if P is locally true or false.
concerning Jacques :

B+y> 0 then J is locally faise.

Identically, M is locally false.
At this state of knowledge, we can conclude that Jacques and Marie may not be guilty and although Pierre seems to
be guilty, it is impossible to prove his guiltiness.

Crossed comparison
We can comnpare the different values of the doubt function for the suspects using meaningful terms :
Jacques and Marie : _ :
Their meaningful terms are both equal to S+a. Consequently, we will compare following terms, i.e. 3+7 for
Jacques and &+ (+7 for Marie. Then we verify that Dou(/) < Dou(M). Then, it is easier to prove that Marie is
innocent than to prove that Jacques is innocent.
Pierre and Marie :
We compare &+« (Pierre) and S+a (Marie).
As = &+a, Dou(M) > Dou(P).
Pierre et Jacques !
We compare 8+ (Pierre) and B+ (Jacques).
As = é+a, Dou(J) > Dou(P).

Consequently, it is easier to prove that Marie or Jacques is innocent than that Pierre is innocent,
conditional comparison
If we suppose that 71 is true, we have the following vaiues :

BelTl DouTl P**T1
P (2,00 @G, &40, D
J 20 “h 20
M 2,00 @ e 0

The conclusion of simple comparisons and crossed comparisons will not change except for the comparison of the
doubt function of P and J. Actually, it is then impossible to compare P and 8+8. Consequently, we are not able to
conclude that it is easier to prove that Jacques is innocent than that Pierre is innocent.

If we suppose 71 and 72 true, we have :

BelT1&T2 Dou T1&7T2 P** T1&T2
p (LO 00 (&b
J 0,0 (L (©0

M 0.0 G, ©o0



Now, P is locally true and J and M are false. These results confirm a theorem of the model :
TIAT2 9 PAlA-M

To conclude, we remark that initially Pierre is the ideal guilty guy. But, if the testimony 71 is true, then although
Pierre seems to be guilty, it is not obvious that Jacques is guiltless. Finally, if we suppose 72 true the guiltiness of
Pierre is definitively confirmed. The conclusions evolved following hypothesis.

Moreover, the symbolic formalization of costs allows a kind of indecision, Actually, if we use numeric values in the
case in which T1 is true, it would be possible to conclude that Pierre is guilty (proving that Jacques is guiltless
would be comparable with proving that Pierre is guiltless).

5. Conclusion

This article presents an application of Belief functions to the Kripke-Like Semantics of pseudo-intuitionistic logic.
This theory allows a good expressiveness of knowledge representation by combining symbolic value with fogical
formulas. We have presented here one example but some more complicated examples exist using local inconsistency
(default values and absurd world [8]).
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Abstract

From its beginnings in Aristotle, logic was intended to account not only for reasoning that is theoretical
(or conclusion-oriented), but for reasoning that is practical (or action-oriented). However, despite an
interest in the topic that continues to the present, the practical side of reasoning has remained broadly
speculative. At least in some domains (mathematics, in particular), there are well developed proof-
theoretic and semantic theories that yield quite detailed models of correct reasoning, and these models
are useful for both theoretical and practical purposes. In contrast, the logical work on practical reasoning
has remained broadly speculative and disengaged from applications. Logical formalisms have not been
forthcoming that would be useful either in designing an agent that needs to act intelligently, or in helping
an intelligent agent to evaluate its reasoning about action.

The decision-theoretic paradigm that has dominated economic thinking, on the other hand, certainly
has produced applicable models of correct decision making. And, though decision theory and logic are
certainly different subjects, it is easy to find areas of overlap in the concepts and techniques, as wel} as
people who have made fundamental contributions to both felds.

Despite these similarities, I think it would be wrong to think of decision theory as the realization,
within a different academic discipline, of a logical theory of practical reasoning. The reason is that correct
inference is central to the logical approach to a subject matter, and correct inference is largely neglected
in the decision theoretic paradigm.

The absence of a logical theory of practical reasoning is largely due to the unavailability of appropriate
inference procedures. To handle even the simplest cases of practical reasoning, it is essential to have a
reasoning mechanism that allows for practical conclusions that are nonmonotonic in the agent’s beliefs.
If an agent believes that he is out of milk, he may well conclude to walk to the store, If he then adds the
belief that the store is closed, he will then have to withdraw his conclusion. And, until recently, probability
functions have provided the only way to formalize inference procedures with these characteristics.

An approach to practical reasoning based on probability relies on numerical calculation rather than
qualitative inference, so it needs quantities, not only for probabilities, but for utilities. Leonard Savage
called the problem of constructing a quantitative model the small worlds problem. A good solution to
the small worlds problem is great when you can get one. But you can’t always do that. Trying to deal
with decision problems in the absence of a qualitative model raises a number of difficult questions.

1. How to represent the reasoning process (rather than just the outcome).

2. How to make use of large amounts of knowledge, in open-ended decision situations. (In
practice, the decision theoretic models are limited to outcomes that depend on no more
than a dozen or so variables.)

3. How to make use of reasonable assumptions that are known in some sense, but cannot

readily be assigned a probability in a many contexts.

How to construct a decision-theoretic microworld.

. How to learn an agent’s preferences from readily available information.

How to deal with conflicting goals.

How to model cases in which the agent is to some extent distributed, without complete

agreement or cominunication among sub-agents.

8. What to do about problems of real-time, resource limited reasoning.

Ne o
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To deal with these problems, we need an alternative theory of a decision-making agent with the
following characteristics.

Regarding belief the theory should:

1. Relax the quantitative commitments of decision theory.
2. Provide for belief kinematics, in allowing an update function to be defined.

3. Be engineerable. In particular, the information needed to support and update beliefs
should be acquirable in some practicable way.

Regarding desire, the theory should:

1. Retain the idea that desires are immediate, with a source that is external to practical
reasoning (below, I will call these immediate desires wishes), and that there are reasoned
desires that depend on wishes and beliefs {below, I will call these wants). It is assumed
that wants are like intentions, which are more or less connected to actions.

2. Treat practical reasoning as a process that creates considered desires by transforming
wishes into wants.

3. Allow for the creation, cancellation, and reprioritization of wants in light of changing
beliefs,

4. Treat the outcome of practical reasoning as nonunique. Agents with the same beliefs and
wishes could reach different conclusions, even while conforming to the full principle of
rationality. '

Developing such a theory makes for a large-scale challenge. However, new ideas from many disciplines
(and especially from Artificial Intelligence} provide a real opportunity for meeting this challenge.
In my talk, I will try to provide a sketch of these opportunities.
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Abstract

In qualitative decision-theoretic planning de-
sires ~ qualitative abstractions of utility func-
tions — are combined with defaults ~ qualita-
tive abstractions of probability distributions —
to calculate the expected utilities of actions.
In this paper we consider Lang's framework
of qualitative decision theory, in which utility
functions are constructed from desires. Unfor-
tunately there is no consensus about the desired
logical properties of desires, in contrast to the
case for defaults. To do justice to the wide va-
riety of desires we define parameterized desires
in an extension of Lang's framework. There
are three parameters. The strength parameter
encodes the importance of the desire, the lift-
ing parameter encodes how to determine the
utility of a set from the utilities of its elements,
and the polarity parameter encodes the relation
between gain of utility for rewards and loss of
utility for violations. The parameters influence
how desires interact, and they thus increase the
control on the construction process of utility
functions from desires.

1 Introduction

Classical decision theory [Luce and Raiffa, 1957; Jef-
frey, 1983; Keeney and Raiffa, 1976) has been developed
to describe and prescribe rational human decision mak-
ing. However, due to so-called ‘human irrationality’, the
description task is complicated so that its use may be
restricted to decision making by artificial agents. For
example, in decision-theoretic planning a robot receives
our requirements or imperatives, tries to figure out the
set of admissible utility functions and probability dis-
tributions, calculates the expected utilities and acts ac-
cordingly. However, a new problem arises for this ap-
plication domain of decision theory. In planning it is
assumed that we cannot completely impose our prefer-
ences and beliefs, because either we do not know them
or it is computationally too expensive to elicitate and
communicate them. These requirements are therefore as
well heuristic epprozimations [Doyle and Weilman, 1991]
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a8 ways to compactly communicate our preferences and
beliefs [Haddawy and Hanks, 1992] that only refer to
qualitative abstractions of utility functions and probabil-
ity distributions (the latter are sometimes called plausi-
bilities). In qualitative decision theory these qualitative
counterparts of preferences and beliefs are called desires
and defaults. We summarize the terminology used in
this paper in Table 1 below.

utilities probabilities
quantitative qualitative quantitative qualitative
preference desire belief defauit

Table 1: Requirements in decision-theoretic planning

In this paper we propose a logic of utilitarian desires
that builds on previous work of Boutilier (1994] and Lang
[1996]. This logic is concerned with two probiematic
issues.

» First, as observed and discussed by Lang, the logic
should not only characterize deductive relations be-
tween the desires - the logic of norms, imperatives
and obligations called deontic logic for example also
does 50 - but it should also determine the decision
making process of the agent. As a.consequence,
Lang is more interested in the admissible utility
functions than in the derivable desires. In other
words, the semantics is more important than the
syntactic or proof-theoretic counterpart.

s Secondly, not discussed or dealt with by either
Boutilier or Lang, there are multiple intuitions
about the logical properties of preferences and de-
sires [Mullen, 1979; Pearl, 1993; Bacchus and Grove,
1996]. In other words, which desires can be derived
intuitively sometimes depends on the meaning of
the propositions. This multitude of intuitions hin-
ders the effective use of desire specifications in a
qualitative decision theory.

We give the robot’s owner a tool to guide the robot’s
construction process of the intended utility functions by
introducing several parameters.

The strength parameter encodes the importance of
the desire,



The lifting parameter determines how to construct
the utility of a set from the utilities of its elements,

‘The polarity parameter encodes the proportion be-
tween gain of utility for rewards and loss of utility
for violation.

Decision theory explains the different intuitions about

utilitarian desires and justifies our parameters. Rational
agents base their decisions on the expected utility of their
actions, i.e. they multiply the utility of the outcomes of
possible actions by their probability and then choose the
action that maximizes this expected utility. The intu-
itions differ due to the fact that utilities encode values as
well as the agent’s attitude towards risk, whereas proba-
bilities only encode frequencies. They act as if they have
an utility function, but they are not assumed to be aware
of their compact values+risk representation. In classical
decision theory, this unawareness is reflected by the con-
trived status of utility functions. To get some feeling
for the different status of probabilities and utilities, con-
sider the following two heuristics for requirements based
on expected utilities. The first heuristic only consid-
ers the most likely states in the expected utility calcula-
tions, and the second heuristic only considers the most
preferred states. The two heuristics are in an obvious
way symmetric, but they have completely different con-
sequences. The first heuristic cannot explain that people
insure themselves for unlikely but grave events, see e.g.
[Tan and Pearl, 1994a), and the second heuristic has the
disadvantage that if the most preferred states are very
unlikely, such as winning a lottery, then the requirement
does not have an impact on the expected utilities and
therefore not on the decisions.
... With the parameters the risk component of each de-
sire can be fit to the preference it encodes — we therefore
call them risk parameters. The risk parameterization
we propose for desires is not appropriate for’ defaults,
though Boutilier's and Lang's logics are analogous to for-
malisms proposed for defaults, as we show in detail for
Lang’s framework and Weydert’s framework for defaults.
(They have as such been criticized by for example [Tan
and Pearl, 1994b; Bacchus and Grove, 1996]). Our ex-
tension of the logic of utilitarian desires thus highlights a
distinction between utilitarian desires and probabilistic
defaults not found in the original proposals; we call it
bipolarity.

2 The logic: explicit strengths

In this section we introduce the first parameter, that
represents the strength s of the desire. Weydert has
introduced explicit strength parameters in F>1 or in
[=>0 satisfaction, based on the following truth conditions
for parameterized conditionals, where u is a real-valued
function on worlds.

u = Dy (alb) if MaXy=qns w(w) > S+ MAX i mgpb U(W)
‘U= D>o(alb) if maXypans u(w) > 5+max,magps ()

There are no intuitive arguments supporting either one

or the other because the two constraints are nearly iden-
tical. We have u |= Dy,(a|bd) if there is some small
number ¢ such that u = Dyore(a|b). From the per-
spective of intuition, it is an arbitrary choice. Howaever,
there are technical distinctions. First, as we already
remarked, |=vq determines a rational inference relation
whereas #=21 does not. Moreover, several constructions
Weydert has investigated are easier defined in an exten-
sion of =5, satisfaction than in an extension of k=g
satisfaction. We therefore choose the former, abbreviat-
ing Dy, (aib) by D,{alb). The results of this paper carry
over to the other case.

2.1 The logic: the lifting problem

Consider the nonempty set of worlds that satisfy the
proposition p and an utility function u that assigns util-
ity to each of these worlds. What can we say abott the
utility of the set of worlds, i.e. the utility of p? This
has been called the lifting problem (see e.g. [Thomason
and Horty, 1996]), because the problem is how to lift a
property of worlds to a property of sets of worlds.

Without knowing the probability of the individual
worlds, the obvious choice is to consider the maximal
or minimal utility of its elements. Let us call these op-
erators up (p) and um(p), or Mu(p) and mu(p). Mu(p)
and mu(p) are the poles of the set of utility values of the
p worlds, in the sense that for each world w that satisfies
p we have that Mu(p) > u(w) > mu(p). If we know that
we are in a p state, then assuming Mu(p) is optimistic
(the best case arises) and assuming mu(p) is pessimistic
{the worst case arises).

| maX, ., w{w)
miny, e, u{w)

Mu(p)
mu(p)

i

Mu{p) and mu(p) can be used to define different types
of constraints for desires (with strength s). The two
poles can be compared in the following four ways, as-
suming there are a; and a, worlds.

U f: Q1 mMg A3

& mu(ay) 2 3+ Mu(as)

® Millyans W{W) > 8 + Max,pqnp 2(w)
U E:' Q1 > MM:a G2

& Mu(a,) > s + Mu(ay)

& MaXyjzans B(W) 2 8 4+ MaX,peqps (W)
u f‘:': ay *mm:s G2 ) '

& mu(ay) > 3+ mu(as) L

€ Milypeans 6(W) 2 8 + Milypemans (W)
u @1 > Mm:s Q2

@& Mu(aq) > s + mulas)

@ MaXyp=anb u(w) 28+ mjnw}:-mmb u(w)

In Definition 1 below a desire D{alb) is defined as usual
by a Ab > —=aAb, If either a A b or ~a Ab is inconsistent,
i.e. if there are no worlds satisfying it, then we assume
that the desire is vacuously true.



Definition 1 (Logic of parametrized desires) 4
(parametrized) desire is defined by o pair of propositional
formulas a and b together with a real s > O for strength
and an indez | € {mM,MM,mm, Mm} for lifting,
ond is denoted Dyp,(a|b). A (parameterized) desire
specification DS = {Dy,.4, (a1b1), ..., D, .o, (@n]bn)} 45
a finite set of parameterized desires. An utility function
u, @ map from W to the reals IR, satisfies the desire
Drs(alb), written as u |= Dys(alb), if and only if there
are no a A b worlds, or there are no —a A b worlds, or
according to the following truth conditions.

u = Dnpris{aib)

& mu(aAb) > s+ Mu(~a Ab)

& Millypans (W) 2 5 + MaXy e manp u(t)
u }""" DMM:s(aib)

& Mu(aAb) > s+ Mu(~anb)

& MKy U(1) 2 § + MK 1)
u p= Dmm:ﬂ(alb)

& mu(aAb) > s+ mu(-a Ab)

& Milypeans Y(W) > 8 + Minyons u(w)

© = Dpgm.s(alb)

& Mu(aAb) > s 4+ mu(—aAb)

B MAXypons W(W) 2 3 + Millypmagas u(w)

An utility function u satisfies the desire specification DS ,
written as u b= DS, if and only if it satisfies each desire
in DS.

"The four types of desires directly imply the properties _

written below, in which we say that ‘world w; is better
than world we’ if we have u(w;) > u{w,).

each a A b world is better than all
the —a A b worlds,

the best b worlds are @ worlds, or
there are no b worlds,

the worst & worlds are —a worlds,
or there are no b worlds,

there is an @ A b world that is
better than a —a A b world, or
there are no b worlds.

u k= Doareo(alb)
u b= Dasar:s(alb)
U Do (alb)
t = Dppmss(alb)

‘The following proposition shows the relations between
the different types of desires.

Proposition 2 (Relations between param. desires)
We have the following relations between the parameter-
ized desires based on the different values for the lifting
parameter.

o if u F Dmums(a]b) then u b= Dprpra(a | b),
U = Dmms(alb) and © k= Dagms{aib), and

*if u = Durs(a | 8), u b= Dyarsla | b) or
U = Dimmis(alb) then u k= D yrm:s{(alb),

* u = Dasaris{alb) does not imply u = Doim:s(alb) or
vice versa,

These relations are represented in Figure I below.

Proof Follows directly from the fact that all truth con-
ditions are universally quantified constraints on pairs of
worlds, together with the fact that M u(a) = mu(a).

N

Dptoms (O‘,lb)

Dprar.o(alb)

N

Dom:s (alb)

Figure 1: Relations between the four types of desires

Dorat:s (aib)

Consider the additional assumption that the lifting pa-
rameters of all desires of the desire specification have the
same value. In that case the lifting parameter is not a
property of the individual desires but may be seen as
a way we reason about desires. This is represented by
indexing the satisfiability relation by the used lifting pa-
rameter, e.g. k= s, instead of the individual desires. In
the following definition we say for the four lifting values
! that DS is a I-conflict set if DS is inconsistent with
respect to k.

Definition 3 (Conflicts) A desire specification DS
(with only strength perameters) is an [-conflict set if
there is no u with u |= Dy.(alb) for each D.{ajb) € DS.
DS is called conflict-free if it is not an mM -conflict set.

We end this section with a brief discussion and illus-
tration of the new types of desires. First, the desire
Dumm:s(aib) is the dual of Dasar.o(a|b) and has similar
properties. As we already observed above, Dypm:(a]b)
reflects a pessimistic view in the sense that it only con-
siders the worst b states, whereas Dasat.s{aib) only con-
siders the best b states.

Second, the desire D, r.,(a|b) induces a constraint on
utility functions that is in the present setting too strong
to be of much use, because it is rare that each o A b
world is better than all ~a A b worlds. For example, two
desires ‘to be healthy’ D,, (k| T) and ‘to be wealthy’
D, (w|T) are a mM-conflict set. Utility functions can-
not satisfy the strong constraints if there are wA - and
—w A h worlds, because the first constraint prefers the
first world to the second one and the second constraint
vice versa. Moreover, a specificity set (there is a pref-
erence of no surgery over surgery, but this is inverse if
surgery improves one's long term health {Bacchus and
Grove, 1996}) is an mM-conflict set.

There is a set of examples for which the strong desires
can be used, though. In other words, there are non-
trivial conflict-free sets of desires. An example is the
transitivity set discussed below, together with two other
conflict free sets of desires. In this example we use the
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fact that the set of worlds can be restricted in the obvious
way to all worlds which satisfy a set of formulas called
the background knowledge - see {Lang, 1996] for details,

Example 4 (Transitivity) Consider the following
three desire specifications, together with the background
knowledge ~(pAc), =(pAh), =(cAh) and T (pVevh).
This background knowledge encodes that the three vari-
ables p, ¢ and h are mutually exclusive and exhaustive.
Hence, there are only p A ~c A =h, =p A ¢ A ~h and
“pA-cAh worlds in W. We also give the represen-
tation based on > operators, because they are the most
readible. CTD and ATD represent contrary-to-duty and
according-to-duty ezamples extensively discussed in the
Zogz'c]of obligations, see e.g. fvan der Torre and Ton,
18999/.

TRANS Doma(p|pve D rmifii €
DmM;l(Cf cv h) Crmar B

cTD DmM:l(p|pVCVh} DrmaicVh
DmM:l(c‘ CVh) C > m:l h

ATD DmM:l(pipVC) Prmaic
Dmara(pVelpvevh) DV ECrmaa B

The three sets of constraints are equivalent. For all
worlds wiy, wz, ws such that wy k= p, wy ke andws = h
we have that u(wy) > 1 +u(ws) > 2 + u{ws).

Finally, we consider the weakest desire D Mm:s(ajb). It
seems to be too weak to be of any use, because there is
nearly always an aAb world that is better than some —aA
b world. However, some examples suggest that the three
other constraints are too strong. One example i3 the
marriage of Sue example of Bacchus and Grove [Bacchus
and Grove, 1996]. SR e :

Example 5 (Marriage) Consider the desire specifica-
tion DS that consists of the following three desires.

D7) Sue prefers to be married to John
Dy{(AT) Sue prefers to be married to Fred
Di(=(F A FYT)  Sue prefers to be married to neither

DS is an mM-, MM- and mm-conflict set. For exam-
ple, the desire specification '

{DMle(le)pDMM:I(ﬂT), DMM:I ("‘(J A f)iT)}

is inconsistent, because there is not a single world that
satisfies the materializations of all three desires {7, f and
~(J A f)). In other words, each world violates at least
one desire (=j, ~f or j A f). However, DS is not an
Mm-conflict set. An ezample of an utility function that
satisfies the three desires D1 (5iT), Dt (f]T) and
Dptma (=G A f)IT) is

fwgEje-f
fwEjef

We have u |= Dprms (§|T) because j A -f worlds are
better than —j A —f worlds, we have u = Dyt (F17)
because =3 A f worlds are better than “1j A =f worlds,

0
-1

u{w) =
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and we have u k= Dypma(~{j A FINT) because j e —f
worlds are better than j A f worlds.

A second example that is only consistent with the
weakest constraint is the following desire specification.

Example 6 (Fence and dog) Consider the desire
.;peqiﬁcatz’on DS that consists of the following three
esires.

Di(=~f|T) preference for no fence
Dy(f1d) preference for fence if there is o dog
D {d|T) preference for a dog

DS is an mM-, MM- and mm-~conflict set, but it
8 not an Mm-conflict set. An ezample of an utility
function that satisfies the three desires Ditma(=fiT),
Dymao(fld) and Dagm (d)T) is

0
-1

u(w) =

fwkfod
ifwkfed

We have u b= Dy (~f|T) because - f A ~d worlds
are better than f A ~d worlds, we have u B D atm ( fld)
because f A d worlds are better than — fAd worlds, and
we have u = Dagm (d|T) because f Ad worlds are better
than f A -d worids,

Summarizing, there are desire specifications which can
be analyzed with the strongest desires, and there are de-
sire specifications which can only be analyzed with the
weakest desires, However, most examples can more nat-
urally be formalized with Dpsar, i.6. with the semantics
used in Boutilier's, Lang’s and Weydert's frameworks.
This will therefore be our standard representation.

2.2 The nonmonotonic construction

In this section we introduce our third parameter. We call
it the polarity parameter p and we express desires with
polarity by DP_(alb). It is used in the local utility func-
tions, i.e. in the construction of the distinguished utility
functions. Consider a local utility function that not only
considers loss of utility for violations, as in Lang's con-
struction, but also gain of utility for rewards. That is,
the real valued function u is a local utility function of
Drs(a|b) - uq)p in Lang’s notation - if there exists an
a > 0 (its utility loss) and a 8 > 0 (its utility gain) with
a+ 3 > s such that

uw)= B ifwkanbd
0 ifwk -b
—a fwkE-aAb

For representational convenience we represent this
utility function below by u = u°,, + % aa, The two
reals 8 and —a are the two poles of this local utility
function, in the sense that for all worlds w we have that
B > u(w) > —a. The polarity parameter is defined
by p = %5, and thus restricts the relative values of &

and 8. Obviously we have 0 < p < 1. For example,



mixed gain-loss desires with polarity 0.5 have their set
of local utility functions u defined for @ > 0.5 x s with
u= Ui+ uld,, e

ulw) = o fwkEanb
0 if w = -b
-~ fwkE=-aAb

If the polarity of a desire is 0 then we call the desire a
gain desire, because its utility loss a is zero. Likewise, if
its polarity is 1 then we call it a loss desire, because its
utility gain 2 is zero.

The philosophy of Lang’s framework is to define the
utility functions of a set of desires as a function of the
utility functions of elements of this set; the latter are
called their local utility functions. The same philos-
ophy underlies multi-attribute utility theory with the
use of additive independence [Keeney and Raiffa, 1976;
Wellman and Doyle, 1992; Bacchus and Grove, 1996,
There are several different ways to represent this idea of
defining the utility functions of a set of desires as a func-
tion from the utility functions of its elements. In this
paper we follow a standard model preference semantics,
similar to the one adopted by Weydert. Our reformula-
tion of Lang’s framework in standard model preference
semantics has some advantages.  Most importantly, in
his definition it is unclear that there is a set of local util-
ity functions associated with each desire, and that for
the construction of the global utility function we have
to choose elements from these sets. The representation
in Definition 7 below also facilitates Proposition & after-
wards, A second minor advantage is that logical notions
such as inference relations are defined in the standard
way.

Local and distinguished utility functions are defined
in two steps. First the set of constructible utility func-
tions is defined, represented by CONS(DS), and there-
after the distinguished utility functions, represented by
U to refer to Jeffrey conditionalization. Due to this two
step definition the distinguished utility functions are not
simple additions of local utility functions. Instead, in
Proposition 8 we show that they are weighted additions
of local functions. Moreover, due to this two-step defini-
tion the desires can be redundant, because a desire does
not add anything to the distinguished utility function
when its constructible utility function ranks all worlds
0.

Definition 7 (Nonmonotonic extension) 4  (pa-
rameterized) desire is defined by o pair of propositional
formulas a and b together with the real 0 < p < 1
for polarity, | € {mM,MM,mm,Mm} for lifting,
and the real s > 0 for strength, and is denoted
Df(a | ). A (parameterized) desire specification
DS = (D}, (ailbs),..., D", (an|bn)} is a finite set
of parameterized desires. The set of utility functions of
DS, denoted by U(DS), is the set of its models as given
in Definition 1. '
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U{DS) =
{ulu b= Doy (ar]br),. .. u = Dinisa{@albn)}

The preferred or distinguished utility functions of a single
desire, also called its local utility functions, are defined
in two steps as follows. Let uZ be the utility function
such that u(w) = a if w = a, u(w) = 0 otherwise.

CONS(DY (alb)) =

{{ups + Ul o =panda,B > 0}

o
a3
Us(DE, (alt)) =
UUDY, (elt)}) N CONS(DE, (aft)) =
o+l go =P B20,a+52 )

The preferred or distinguished utility functions of a de-
sire spectfication DS are constructed as follows.

CONS(DS) =
uy € CONS(DP:, (a1lby)), }

(R T T R T ey
Un € CONS(DI™ (an[ba))

Uy(DS) = U(DS)n CONS(DS)

The following proposition illustrates the formal con-
struction by considering equivaient weighted additions,
and it shows how to construct distinguished utility func-
tions from single local utility functions instead of sets of
them.

Proposition 8 (Weighted additions) The
structible utility functions of

DS ={DP_ (ar|by), ..., DP"

118y nifn

con-

(anlbn)}

are weighted additions of local utility functions.

CONS(DS) =
uy G UJ (Dﬂt&u (ai‘bi))l
u——..ﬁ'cz_ Xu1+-->‘+'kn X tn Un.’e UJ(Df::’“(an!bn)),
ky >0,... B0 >0

The constructible utility functions of DS are
wetghted additions of the minimal local utility functions

Umin(DP,(alb) = ugns™ +uZsXP,

CONS(DS) =
U = Um‘.“(DFII:‘I (altbi))
wm=hy Xt +...+kn X Un

Un = Umin(Df:;,,‘(aﬂlbﬂ))
kr 20,...,ka 20



Proof We first consider the first equivalence, and we
prove that CON S| (DS) = CONS,(DS) where CONS,
is the construction defined in Definition 7 and CON Sy
is the first weighted addition defined above. That is, for
each utility function in one construction we show for
which variables o, B and k this utility function is also
part of the other construction.

= For each desire, define a, B and k; in CONS, by
a X o3, Bx 225 and 22 for o and B in CONS,.
The local utility functions used in CONS, satisfy the
constraints, because o x a_:-'b“ +BX g = s

<«= For each desire, define a and 8 in CONS, by ki xa
and k; x 8 for ki, @ and 8 in CONS,.

We now consider the second equivalence, and we prove
that CONS3(DS) = CONS3(DS) where CONS,(DS)
18 again the first weighted addition defined above and
CONS3 is the second one. This follows directly from
the fact that the utility function we constructed in the
previous item is in fact the minimal one.

=> The <=-part of the previous item shows how to
construct an element of CONS, from an element of
CONS3, and the =>-part of the previous item shows how
to construct an element of CONSs from an element of
CONS,.

4= Trivial since U, is an element of Uy,

The following proposition shows that the existence of
distinguished utility functions of a desire specification
does not follow from the existence of utility functions,
Weydert has proven this for his defaults, i.e. for loss
Dpar desires. It is an open problem whether it can
‘be proven in a more general context, e.g for all Dyar
- desires. This property is considered very desirable in
reasoning about defaults (see [Kraus et al., 1990]), but
it is not clear whether it plays a similar role in reasoning
about desires.

Proposition 8 Let DS be a desire specification.
U(DS) # @ does not imply U,(DS) # 0.

Proof Two counterezamples are the desire specification
DS = {Dptm(p), Daem(—p)} and the desire specification
DS = {Dusm(p), Dmm(=p)}. Both have models but no
preferred models. :

3 Conclusions

In this paper we have studied and extended the logic of
desires in Lang’s framework for qualitative decision the-
ory. We introduced three parameters for the utilitarian
desires that reflect its strength and the risk attitude of
the agent, because utilities represent besides values also
the agent’s risk attitude. The parameterized desires can
deal with the class of intuitions about the logical proper-
ties of desires by changing the parameter values for the
requirements at hand. Despite the fact that the mech-
anisms developed in reasoning about defauits could be
used for desires, it seems very unlikely that our logic of

desires can be used to formalize defaults. In reasoning
about uncertainty there is no formal counterpart of risk.

Subjects for further research are studies of mini-
mization principles introduced in [Weydert, 1995, 1996;
1998} in the logic for desires, of existence theorems for
fragments of the logic, and the search for general guide-
lines or heuristics for the values of the parameters (such
as particular combinations of them) and for the determi-
nation of the parameter values in an interactive system.
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Abstract

When an agent receives new pieces of informa-
tion, these may contradict his previous beliefs,
The agent must decide how to solve this con-
tradiction. Most frameworks dealing with the
problem of belief revision attach higher priority
to incoming information, i.e., they may give up
some part of the old beliefs in order to accom-
modate the new piece of information and keep
consistency. In this paper, we propose the use
of argumentation theory to decide whether in-
coming information should be accepted or not.

1 Introduction

The problem of belief revision, i.e., of how the beliefs
of an agent should change in the presence of new infor-
mation, has been recently addressed by various authors.
In most approaches, specially those following the AGM
paradigm [Alchourrén et al., 1985), the agents are ideal-
ized in that they are assumed to have perfect recall and
to hold only consistent beliefs, which are furthermore
assumed to be closed under logic consequence,

Incoming information is usually given the highest pri-
ority, so that if a contradiction arises, some of the pre-
vious beliefs have to be given up. In approaches to non-
prioritized belief revision [Hansson, 1997), i.e., revision
in which the new piece of information does not have the
highest priority, the decision whether to accept or not
new information is taken by extra-logical means such as
selection functions or incision functions, but there is no
real recipe of how to choose these functions. In this pa-
per, we explore a different idea - using argumentation
theory for deciding whether new information is accept-
able.

In [Wassermann, 1999b] we have developed a frame-
work for belief revision which takes into account the ef-
fects of both limited memory and limited capacities of
inference. In this model, the belief state of an agent
is represented by a structure that distinguishes different
kinds of beliefs: beliefs that are explicit or basic, be-
liefs that are implicit or merely derived, and beliefs that
are active, i.e., in use. Besides the beliefs of the agent,
the structure also represented “provisional beliefs”, i.e.,
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sentences for which the agent has some evidence but is
not yet sure whether to accept them or not. In [Hans-
son and Wassermann, 1999] and (Wassermann, 1999a),
some ways of deciding which beliefs were active during
a certain operation of belief change were explored. In
this paper, we turn to another question left open by the
model in {Wassermann, 1999b), namely how to decide
whether a provisional belief should be accepted.

According to {Dung, 1995], a formula is believable “if it
can be argued successfully against attacking arguments”.
Dung also says that reasoning abount one’s own beliefs
is like performing an internal argument. Qur concept of
provisional beliefs is based on Harman’s idea of tentative
hypotheses. In order to be fully accepted, a tentative
hypothesis has to survive the best attempts to refute
it [Harman, 1986]. In our case, “best attempts” are as
good as the agent is capable given his limitations.

This is reflected in the framework for resource-
bounded argumentation given in {Loui, 1998]. Loui de-
scribes a very general framework where there are a num-
ber of parties involved, some of which (the players) are
allowed to make locutions, the others being advocates.
Each of the players try to get the current opinion to be in
his favour by presenting arguments. A vector represents
the resources consumed at each move,

A protocol for disputation has to be defined and de-
pends on the application, These are the real “rules of the
game”, which determine what is allowed as a move, who
is allowed to take next move, how the moves affect the
current opinien, and what the conditions for termination
are. In [Loui, 1998], some protocols are presented, which
can be chosen according to the intended application.

In the next section we will present the framework for
resource-bounded belief revision introduced in {Wasser-
mann, 1999b]. Then we will present the theory of argu-
mentation that we use, based on [Loui, 1998]. In section
4 we present our proposal for using the theory sketched

in section 3 to enrich the framework presented in section
2.

2 Belief States and Change Operations

In this section, we are going to briefly present the frame-
work for resource-bounded belief revision introduced in

-



[Wassermann, 1999b]. We start by introducing some dis-
tinctions between different kinds of beliefs, The example
below motivates the distinctions.

Consider the following situation: Mary is going out,
and her mother tells her that she should take an um-
brella. Besides beliefs about other subjects, Mary holds
the belief that if she is going to be outside for a long time,
then she should take the umbrella. She also believes that
she will be outside the whole day. If her mother had not
mentioned the umbrella, Mary would not have thought
of it. Upon it being brought to her notice, she concludes
she should indeed take the umbrella.

Following Harman (Harman, 1986), we will assume
that there are beliefs that are explicitly represented. We
call smplicit beliefs those beliefs that can be inferred from
the set of the agent’s explicit beliefs, according to the
agent’s logical ability. We will not concentrate in one
particular inference operator, but use Infto denote what
an agent can infer in one step. The set of implicit beliefs
is given by what the agent would be able to infer if he
was given unlimited time, i.e., the result of applying Inf
an unlimited number of times.

Not all of the agents beliefs are available at the same
time. We call active beliefs the set containing beliefs
that are available for use and things about which the
agent is not yet sure. These last are called provisional
beliefs. Provisional beliefs are not real beliefs, since they
are still under inspection. They are outside the set of
explicit beliefs.

A belief state is a structure § = (E, Inf, A), where E is
the set of the agent's explicit beliefs, Infis the agents in-
ference function and A is the set of the agent’s active be-
liefs. The set of implicit beliefs is given by: [ = Inf'()
= InflEYU Inf{E)U Inf(E)u

.....

Figure 1: Structure of an agent’s beliefs

At this point it may be useful to return to our small
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example to illustrate the difference between explicit and
active beliefs. Mary's beltef that if she is going to be
outside for a long time, then she should take the um-
brella is part of her explicit beliefs and so is her belief
that she will be outside the whole day. These beliefs only
become active when her mother mentions the umbrella.
When Mary thinks of it, she infers that she should take
the umbrella. This example shows an argument against
representing belief states as logically closed sets. Mary
did not hold the belief that she should take the umbrella
until the time at which the inference was made. It also
shows that not all beliefs are active at the same time.
Let p stand for “Mary should take an umbrella” and
q for “Mary will be outside for a long time”. Before
talking to her mother, Mary's explicit beliefs contain,
among others, the beliefs ¢ and ¢ — p. The implicit be-
liefs contain, among others, p. The set of active beliefs
is empty (actually it could probably contain some re-
mains of other reasoning, but this is not relevant for this
argument). When the mother says that Mary should
take an umbrella, p becomes a provisional active, but
not explicit, belief. Mary does not necessarily believe
everything her mother says immediately, so that she has
to think about it. This is as if she were asking herself
whether she should take the umbrella. The beliefs g and
q —* p become active, since they are relevant for deciding
whether to accept p. When Mary eventually decides to
accept p, this belief is made explicit and the set of active
beliefs may get new elements according to new input.

Given our representation of belief state, the next step
is to define operations that can be applied to belief states
to modify them.

In AGM theory, three operations are defined on belief
states: expansion, contraction, and revision. Expansion
consists in adding a new belief to the belief state without
checking the consistency of the resulting state, contrac-
tion consists in deleting a belief from a belief state in a
way that the resulting state does not imply the deleted
belief, and revision consists in adding a belief to a belief
state in such a way that the resulting belief state is con-
sistent. Traditionally, revision is seen as a sequence of a
contraction and an expansion (in any order). But this
is not a division into simpler steps, since contraction is
(computationally) as complicated as revision. We want
to decompose revision and contraction in simple oper-
ations that show what happens with an agent’s belief
state in each step, instead of only analyzing the initial
and final states,

The set of active beliefs is based on the concept of a
short-term memory. Beliefs that are active can be for-
gotten or stored as explicit (but inactive) beliefs. Since
the set of active beliefs is assumed to be very limited in
size, there must be a mechanism tha$, in cases of over-
flow, selects which beliefs will be forgotten or stored.

The first operation we define is similar to AGM ex-
pansion in the sense that it consists in simply adding
new information to a set without checking for consis-
tency. But the operation takes the lmited size of the set



into account.! When trying to add something to a set
that is already at its maximum size, some elements of
the set have to be given up. This can be seen as a kind
of “forgetting”.

If X is a set with maximum size m and o is an element
we want to add te X, then;

XU {a} = X" U {a}, where X' C X, |X'| < m.

Note that this operation reduces to a simple union as
long as the set is not “full”. Since the size m of the set is
given as a parameter, the operation is more accurately
denoted as Uy,. When the set is already at its maximum
size, something has to be discarded. If the set X is
ordered (for example by the last time the beliefs were
recalled), we can stipulate that the minimal elements of
the set are the first to be dismissed, i.e., we want to
ensure that if an element is dismissed, then there is no
other element which is retained and that is less than the
dismissed one in the order:

Vy(y € X\ X' = ~3z(z € X' A e < y)).

We now define six operations that can be applied on
belief states to change the status of beliefs,

Definition 2.1 Let (E,Inf, A) be a belief state and
a a formula. We define the following operations on
(E,Inf,A) (we will omit the second argument Inf since
the operations defined do not affect it):

1. Observation (+,): adds an external input to the set
of active beliefs.
(B, A) 4o a = (E,AU* {o})
Retrieval (+,): retrieves an explicit belief into the
set of active deliefs.

_ ] (B AU {a}), ifac E
(B, 4) +r o= { {E: A) otherwise

Acceptance (+,): makes an active belief ezplicit.?
=} (BEU{a},A\{a}), fac 4

(B A) +aa= { (E, A) otherwise

Inference (+:): infers something from active beliefs.

E,AU* {a}), ifa € InflA
(B, 4) +i“={ (5. Ay othensn € A

Doubting (+4): a belief that was accepted is ques-
tioned, becoming provisional.

E A4), 4 EANE
(B A) g = { §E,¥§a3the31u,fe“

Rejection (+.): rejects an active belief.

E, A y A
B, +ea={ (BANGD, Fac

“When we talk about the size of a set of formulas, we mean
something like its complexity. The sets {p,q} and {p A q}
should have the same size. We could, for example, count the
occurrence of atoms,

% Acceptance could also be defined without deleting the
accepted belief from A, which seems to be more intuitive for
human agents. The choice made here reflects our interest in
artificial agents.
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The six operations defined above can be combined to
model more complex operations. As an example of such
a composition, consider what happens when an agent
gets new information via observation. The belief will
first come into the set of active beliefs through the oper-
ation +, and then the agent may accept it (+,). Another
example is the case of an explicit belief that becomes ac-
tive {retrieval: +,), when it would be expected that some
implicit beliefs will also become active, i.e., the retrieval
operation will be followed by an inference (+:).

3 Argumentation

In this section, we introduce the basic concepts of argu-
mentation theory that we will need in this paper. This -
section is based on [Loui, 1998).

Argumentation has been investigated by researchers .
in the area of philosophy and artificial intelligence. Re-
cently, it became clear that argumentation can be seen as
a kind of non-monotonic reasoning. Arguments are not
proof, but some kind of justification for a claim, usu-
ally defeasible. An argumentation process usually fol-
lows some protocol that defines what the possible moves
are, how a move affects the current state of the dispu-
tation, who is allowed to move, etc. Once the parties
involved in the disputation agree about the protocol, the
outcome of an argumentation process following the pro-
tocol is considered fair. '

Disputations are highly non-monotonic. The outcome
depends on the particular way in which the argumenta-
tion process took place and if the process continues, the
outcome may change. Nevertheless, the process is fair
(provided the disputants agreed about the protocol) and
the outcome is warranted.

An argument is usually a pair formed by a set of for-
mulas and one special formula, the claim. The set of
formulas serves as a justification for the claim. Argu-
ments are related to each other is several ways. Argu-
ments can interfere with each other, in case their claims
{or subclaims) are inconsistent.

Loui {Loui, 1998] defines a very general framework for
argumentation that has to be “filled in” in order to model
particular kinds of disputation.

An argumentation process is a sequence of locutions,
where each locution is a triple formed by one party, the
argument and the resources consumed. The participants
of the argumentation process do not have necessarily ac-
cess to the same information. They may also have differ-
ent shares of resources at their disposal. In our case, we
will use argumentation processes where only two parties
are involved, pro and con. A variable current.opinion
stores the party which is winning the disputation at a
certain point. The parties try to switch the current opin-
ion in their favour by advancing locutions. Since we are
modeling an internal argumentation process, where a sin-
gle agent is involved and plays the roles of pro and con,
we can assume that both parties have access to the same
information.



4 Using Argumentation for Accepting
Beliefs

In this section we present our proposal for using argu-
mentation in order to decide whether a provisional belief
should be accepted or not. In our case, the argumenta-
tion is an internal process where a single agent plays the
role of pro and con, analyzing the arguments for and
against a given provisional belief. Since we are dealing
with resource-bounded agents, this internal argumenta-
tion will not always succeed in examining all reasons for
accepting or rejecting a belief. By defining a protocol
for this process, we have to take care that the outcome
can be considered fair.

There are two ways in which a sentence can become a
provisional belief:

1. New information may be acquired by an operation
of observation, i.e., come from the outside world,
This new piece of information has to be checked
before being fully accepted. In this case, con tries
to argue against it. If he fails, the provisional belief
is accepted, since it has survived the best attempts
to refute it. If con succeeds, the provisional belief
is rejected.

2. A sentence that was previously accepted, an explicit
belief, may become provisional if the agent gets ev-
idence against it. In this case, inquiry is reopened
((Harman, 1986]) and pro tries to argue for the sen-
tence. If he fails, the provisional belief is rejected.
If pro succeeds, the provisional belief becomes fully
accepted again.

In the framework presented in section 2, there are two
clearly limited resources: the size of the set of active
beliefs and the number of basi¢ operations used in the
disputation process. Since in our case a single agent is
playing the roles of pro and con, the set of active beliefs
is a shared resource, both pro and con have access to
the whole set.

All the sentences in the arguments presented become
active. The elements of the set of active beliefs are or-
dered according to the order in which they were intro-
duced in the argumentation. When the set gets too big,
the oldest elements are “forgotten”. If the discarded el-
ements were explicit beliefs that were retrieved, they re-
main in the set of explicit beliefs but become inactive. If
they were only provisional beliefs, then they are irreme-
diably forgotten and dismissed from the whole structure.

An argument for us will be a sequence of elements
of the set of explicit beliefs which is a derivation for its
claim according to a finite (small) number of applications
of inference rules known by the agent. An argument
arg of player p (=pro or con) is counterargued when
the other player presents an argument against one of
the elements of arg (its subclaims). An argument arg
of player p is defeated if it is counterargued by arg’ and
p does not manage to counterargue arg’ {either because
there are no counterarguments or because the resources
are exhausted).

When an argument is introduced by one of the players,
the beliefs that are part of it are retrieved into the set of
active beliefs. When an argument is counterargued, its
claim becomes provisional. If an argument is defeated,
its claim is rejected.

The protocol we will be using assumes that the re-
sources are equally divided, i.e., if player p, has ex-
hausted his share of resources but p2 has not, then p,
is still allowed one move. Except for this situation, the
players alternate the moves. No repetition of counterar-
gued (sub-)arguments is allowed.

Suppose a sentence « is observed. The current opinion
is set to pro and con tries to find an argument for —c.
If he fails, then « is accepted, otherwise, current opinion
is set to con and pro tries to either counterargue the
last argument or present a new argument for a. If pro
fails, then « is rejected. Otherwise, current opinion is
set to pro and con tries to either counterargue the last
argument or present a new argument for ~a. The pro-
cess continues until resources are exhausted. The player
favoured by current opinion wins.

5 Example

We will now see an example of application of the protocol
described in section 4.

We first have to give some more details about the pro-
cedure. The claim to be verified, a provisional belief,
remains active during the whole argumentation. It can-
not be dismissed due to overflow in the set of active
beliefs. The set of active beliefs is ordered by recency,
i.e., beliefs that have been used first are the first to be
forgotten in case of overflow. However, if an active belief
is reused, it becomes more recent and changes place in
the order. This agrees with cognitive models of memory,
as for example in {Anderson, 1980}.

The claim which is being verified and claims of argu-
ments that have been counterargued cannot be used in
new argurments.

The size of the set of active beliefs, one of the limited
resources, is given by the number of atoms occurring in
its formulas. Part of the history of the process is kept
in the form of arguments advanced, so that there is no
repetition. This set can also be limited in size like the
set of active beliefs, but in the example we will ignore
this fact.

We will use the following logic for the example:

1. atoms a,b,¢,...,p standing for “albert comes to the
party”, “betty comes to the party”, “charles comes
to the party”, ..., “patrick comes to the party”.

2. formulas ¢ — y standing for “If z comes to the
party, then y comes to the party” ; » — -y standing
for “If x comes to the party, then y does not come
to the party”, etc.

3. inference rules modus ponens {z,z — y = y) and
inversion (z — y = =~y = —z).

Depending on who likes whom and who dislikes whom,
we know who is (or is not} going to come to the party



given who is (or is not) coming. Moreover, we know of
some people that are coming (albert, ferry, harold, kate,
and oswald). Our initial set of explicit beliefs is:

E={a,arbbrcec—rdd—gff>ee—
¢, ¢ = op,hh = 4i = 5 - ek k — ] —
m, M = N, 0 > *1i,0,0 = p,p -+ =, =~ = —=b}.

We assume that the maximum size of the set of active
beliefs is 20. We want to know whether ivan is coming
to the party:

¢ step 1: con tries to refute ¢, presenting an argument
for =i. The formulas in the argument are retrieved
from the set of explicit beliefs and stored as active
beliefs. Inference is applied four times in order to
get to the claim —¢ from the argument,

— con presents argument {k,k = [, = m,m —
n,n = -} for =i. '

— 9 basic operations: retrieval {k,k — [,I —
m,m — n,n = =i}; inference {{,m,n, ~i}

-A={kk> L1l mmm-=nnn -+

-, ~1}; |Al=14

History: {{k,k =1, > m,m — n,n = =i}}

— current.opinion = con

s step 2: pro advances an argument against one of the
subclaims of the previous argument. The previous
argument is counterargued, but not yet defeated,
since con may counterargue this present argument.
The set of active beliefs grows to its maximum size,
20. The oldest active belief besides the claim (k)
is dismissed to make space for the new activated
beliefs.. . o . . .

~ pro presents counterargument {o,0 =+ p,p —
~l} against .

=~ 5 basic operations: retrieval {0,0 = p,p — -{};
inference {p, ~{}.

- A= {i,k - LI, > mmm - n,n,n —
-, =4,0,0 <+ p,p,p —+ i, ~l}; |A]=20

- History: {{k,k — {,l > m,m — n,n —
—Vé}r {030 = pp "‘l}}

— current.opinion = pro

® step 3: con counterargues the previous argument.
The oldest elements of the set of active beliefs (ex-
cept i) are dismissed to make space for the new be-
liefs retrieved.

= con presents counterargument {f,f — e,e —
“c, ¢ — —p} against p.

~ 7 basic operations: retrieval {f,f — e,e —
~¢, ¢ — -p}; inference {e, —¢, ~p}.

- A = {i,~,0,0 = p,p,p = L=l f,f —
€,8,€ ~+ =i¢, =¢, ¢ ~ —p, =p}}; |4|=19

— History: {{k,k = I, > m,m = n,n >
mi} oo =+ pp = HL{f,f 5 ee -
=¢, m¢ ~» —p}}

= currenf.opinion = con
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* step 4: pro counterargues the previous argument,
Again, some elements of the set of active beliefs
must be dismissed,

— Pro presents counterargument {a,a - b b -
¢} against =e.

— 5 basic operations: retrieval {a,a - b,b c};
inference {b,c}

~4 = {i,~Lf,f =+ eee = ¢ me,me —
PP, a0 - ba bwb -+ C, C}; !Almlg

- History: {{k,k = [l - m,m = n,n
"“’B},{0,0 =+ pp “'l}r{frf -+ ee
=¢, ¢ = =p}, {a,a = b,b — c}}

~ current.opinion = pro

e step 5: con'’s arguments were defeated, since he can-
not counterargue the previous arguments advanced
by pro anymore. con advances a new argument .
against . Some of the beliefs used in this argument
(f,f — e,e = =j) are already active so they do not
need to be retrieved. They only change place in the
sef of active beliefs. ‘

~ con presents counterargument {f, f — e,e —
=7, mf =~ i} against i

— 6 basic operations: retrieval {j — —e,i = j};
inferences {e — 17, ~j, j = ~, =i}

- A= {i,bb > ce.f,f o eej > ~ee—
= o g, mf - =i, i} |Aj=19

- History: {{k,k = Ll - m;m = n,n >
”"2'},{0,0 -+ b p - —'I},{f:f - €, e -+
<¢,m¢ - -p},{a,e = bb = c},{f,f -
€,€ = =rf,=j —» —i}}

— current.opinion = con

e step 6: pro cannot counterargue the previous ar-
gument, but presents instead a new argument for
i. Since con does not have any other counterargu-
ments or arguments for —¢, pro wins the disputa-
tion.

— Ppro presents argument {h, A — i} for 4.

— 3 basic operations: retrieval {h,h — i}; infer-
ence {i}.

- A= {iiciftf - e8] — e, e — —‘j,"‘j,i -
Fy=f = i, i h b i} [ A]=19

~ History: {{k}k = LI = m,m < n,n —
it {e,0 = pp = -}, {f,f = ee —
-c,=c —+ -p},{e,a - bb — c},{f,f -
e,eﬁﬂj,ﬁj—)-ﬂi},{h,hﬁi}}' ' '

— current.opinion = pro

6 Conclusions

We have presented some ideas on how to use argumen-
tation theory in order to decide which beliefs should be
fully accepted. These ideas enrich the framework pre-
sented in [Wassermann, 1999b]. _ .
Although the protocol defined and the example are
quite simple, they illustrate the internpal process of



“weighting” the arguments in favour and against a cer-
tain claim that takes place when an agent is confronted
with information about which he is not sure.

Further work includes examining existing imple-
mented argumentation systems in order to refine the
protocol of the argumentation process. One such SY5-
tem is presented in (Simari and Loui, 1992], together
with a mathematical treatment of the relations between
arguments.
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