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Abstract

Genetic factors play an important role in determining the risk of multiple sclerosis (MS). The strongest genetic association in
MS is located within the major histocompatibility complex class II region (MHC), but more than 50 MS loci of modest effect
located outside the MHC have now been identified. However, the relative candidate genes that underlie these associations
and their functions are largely unknown. We conducted a protein-protein interaction (PPI) analysis of gene products coded
in loci recently reported to be MS associated at the genome-wide significance level and in loci suggestive of MS association.
Our aim was to identify which suggestive regions are more likely to be truly associated, which genes are mostly implicated
in the PPI network and their expression profile. From three recent independent association studies, SNPs were considered
and divided into significant and suggestive depending on the strength of the statistical association. Using the Disease
Association Protein-Protein Link Evaluator tool we found that direct interactions among genetic products were significantly
higher than expected by chance when considering both significant regions alone (p,0.0002) and significant plus
suggestive (p,0.007). The number of genes involved in the network was 43. Of these, 23 were located within suggestive
regions and many of them directly interacted with proteins coded within significant regions. These included genes such as
SYK, IL-6, CSF2RB, FCLR3, EIF4EBP2 and CHST12. Using the gene portal BioGPS, we tested the expression of these genes in 24
different tissues and found the highest values among immune-related cells as compared to non-immune tissues (p,0.001).
A gene ontology analysis confirmed the immune-related functions of these genes. In conclusion, loci currently suggestive of
MS association interact with and have similar expression profiles and function as those significantly associated, highlighting
the fact that more common variants remain to be found to be associated to MS.
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Introduction

Multiple Sclerosis (MS) is the most common inflammatory

disease of central nervous system (CNS) which affects young adults

[1]. It is widely acknowledged that genetic factors play an

important role in determining the risk of MS [2]. Several

epidemiological studies demonstrated an increased frequency of

MS among biological relatives of affected individuals [3,4]. Family

based and association studies have shown that the strongest genetic

association in MS is located within the major histocompatibility

complex (MHC) class II region [5]. In particular the HLA-

DRB1*1501 allele confers an approximate odds ratio of 3 [6].

However, during the last few years Genome Wide Association

Studies (GWAS) have identified many other MS associated loci of

modest effect located outside the MHC (now more than 50) [7–

11].

Despite the recent advances in the understanding of the genetic

architecture of MS, several questions remain to be answered. For

example, due to stringent correction criteria many genetic variants

fail to reach genome-wide significance but can still be considered
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as suggestive of genetic association. Furthermore, once a SNP is

found to be associated with a particular disease, the relative

candidate gene (or genes) that mediate such association is usually

unknown.

Analysis of protein-protein interaction (PPI) networks is being

increasingly recognized as an important tool to characterize the

underlying biology of genes associated to complex diseases, in

particular immune-mediated ones [12,13]. It is logical to

hypothesize that those genes which are truly associated with the

same trait will be involved in similar biological processes. For

example, Rossin et al. found that proteins encoded in genomic

regions associated to rheumatoid Arthritis and Crohn’s disease

physically interact more than what would be expected by chance

and that the genes encoding these proteins are highly expressed in

immune tissues [12]. Studying such PPI interactions can ultimately

elucidate which suggestive regions are more likely to be truly

associated and greatly aid the identification of those genes that are

mediating the GWAS findings.

We conducted a PPI analysis of gene products coded in loci

recently reported to be MS associated and suggestive of MS

association. Our aim was to identify which suggestive regions are

more likely to be truly associated, which genes are mostly

implicated in the MS PPI network, their expression profiles and

functions.

Methods

Three recent independent association studies were considered

for our analysis [14–16]. In Sawcer et al. and Patsopoulos et al.,

SNPs were divided into significant and suggestive depending on

the strength of the statistical association [14,15]. From Sawcer et al

we defined as suggestive those SNPs with p values in the discovery

phase of less than 161024 and significant those that either were

replication of previous GWAS findings or had a replication

p,0.05 and a p-combined,561027 [14]. In Patsopoulos et al.,

significant SNPs were defined as either those with p-val-

ue,561028 or replication of previously identified associated

SNPs. Suggestive SNPs were those with p-values between 561028

and 161026 [15]. We also included in the analyses the top 82

SNPs (with a log p value.4.91) from Wang et al [16]. All SNPs

from this study were considered as suggestive, because the study

was not designed to meet currently accepted criteria for genome

wide significance. After removing duplicate SNPs, 67 significant

and 133 suggestive SNPs were obtained.

Protein-to-protein interaction assessment was conducted using

the Disease Association Protein-Protein Link Evaluator (DAPPLE)

tool [12]. This bioinformatics tool is able to investigate physical

interactions among gene products encoded within certain genomic

regions by the creation of a PPI network. Interactions are

extracted from the database ‘‘InWeb’’ that combines data from a

variety of public PPI sources including MINT, BIND, IntAct and

KEGG and defines high confidence interactions as those seen in

multiple independent experiments. The region around a given

SNP is extended to the genomic interval defined by SNPs in

moderate linkage disequilibrium (r‘2. = 0.5) and then to the

nearest recombination hotspots [12]. Connections can be direct

(two proteins are physically linked to each other) and indirect

(interaction is mediated by a common interactor). The extent of

the PPI network are assessed using the following parameters: the

number of direct interactions between proteins from different loci,

the mean associated protein direct and indirect connectivities (the

mean number of distinct loci a protein is directly or indirectly

connected to) and the mean common interactor connectivity

(average number of proteins in separate loci bound by common

interactors) [12]. The non-randomness of the network and the

significance of the interaction parameters are tested using a

permutation method that compares the original network with

thousands of networks created by randomly re-assigning the

protein names while keeping the overall structure (size and

number of interactions) of the original network. Those genes that

participate in the network more than expected by chance are

defined as genes to prioritize (corrected p,0.05) [12]. Expression

data were gathered from BioGPS, an online gene annotation

database that reports individual gene expression levels for a

number of human tissues and cell types [17]. Analyses were

performed using non-parametric tests (Kruskal-Wallis and Mann-

Whitney tests). Gene ontology terms were investigated using The

Database for Annotation, Visualization and Integrated Discovery

(DAVID) v6.7, an online tool that is able to identify the functional

categories and biological processes which are most represented

within a list of genes [18,19].

Results

Dapple analysis of significant SNPs
Our first aim was to assess the extent of PPI interactions among

genes located within genomic regions with definite association with

MS susceptibility. We therefore submitted into DAPPLE the 67

SNPs with genome-wide significant association with MS risk.

There were a total of 75 proteins participating in the direct

network with 104 direct interactions (expected direct interac-

tions = 61, p,0.0002) (Table 1, Figure 1 and Table S1). The mean

associated protein direct connectivity was 2.7 (expected = 1.7,

p,0.0002). The mean associated protein indirect connectivity was

52.2 (expected = 43.8, p = 0.04) and the mean common interactor

connectivity was 4.5. (expected = 3.9, p = 0.0002). The total

number of genes implicated in the network was 215 (Table S1).

The total number of genes that had more connections than

expected by chance (genes to prioritize) was 22 and included

previously shown putative candidate genes such as IL-12A, SOCS-

1, CBLB, MALT-1, IL-22RA, MAPK-1 and IL-7R.

Dapple analysis of significant plus suggestive SNPs
When suggestive SNPs were included in the analysis, the

number of proteins participating in the network and that of direct

interactions increased from 75 to 189 and from 104 to 281

respectively (expected direct interactions = 242, p,0.007) (Table 1,

Figure 2 and Table S2). The mean associated protein direct

connectivity was also higher than expected (observed = 2.9,

expected = 2.4, p = 0.0008). The mean associated protein indirect

connectivity was 93 (expected = 91, p = 0.34). The mean common

interactor connectivity was 5.05 (expected = 4.8, p = 0.05). The

total number of genes analyzed was 445 (Table S2), while genes to

prioritize were 43 of which 23 were located within suggestive

regions. These included genes such as SYK, IL-6, CSF2RB, FCLR3,

EIF4EBP2 and CHST12 (Table 2).

Tissue-specific expression and gene ontology terms of
candidate genes

In order to further investigate the nature of our findings we

assessed in which tissues these genes were mostly expressed. We

used the gene portal BioGPS which contains gene expression data

on a variety of human tissues and cell types [17]. For our analysis

we considered 10 immune cell types and 14 non-immune tissues.

We submitted the full list of candidate genes (n = 43) obtained

from the significant plus suggestive DAPPLE analysis and for each

gene we obtained a different genetic expression value in every

tissue or cell type tested. Because of different background

Protein-Protein Interaction Analysis in MS
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Figure 1. Direct connections among gene products from MS significant regions. Colours indicate significance of participation in the PPI
network.
doi:10.1371/journal.pone.0046730.g001

Table 1. Summary of DAPPLE analysis of significant and significant plus suggestive SNPs.

Significant Significance
Significant +
suggestive Significance

Number of proteins in the network 75 - 189 -

Direct interactions 104 p,0.0002 281 p,0.007

MAPDC* 2.7 p,0.0002 2.9 p = 0.0008

MAPIC** 52.2 p = 0.04 93 p = 0.34

Mean CI connectivity*** 4.5 p = 0.0002 5.05 p = 0.05

Genes to prioritize 39 - 22 -

*Mean associated protein direct connectivity;
**Mean associated protein indirect connectivity;
***Mean Common Interactor connectivity.
doi:10.1371/journal.pone.0046730.t001
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characteristics between each probe set, a direct comparison of

expression across different genes was not possible. Therefore, we

decided to standardize the expression values of each single gene

across different tissues and used the obtained z-values for all

subsequent analyses. Figure 3 shows the standardized expression

values in the 24 tissues and cell types tested. Expression appeared

particularly high in whole blood as well as in most of immune-

related cell types (in particular B-cells, plasmacytoid dendritic cells

(pDCs), natural killer (NK) cells, CD4+ and CD8+ T cells). An

independent-sample Kruskal-Wallis test confirmed that gene

expression was significantly different across tissues (p,0.001).

When tissues were divided into immune and non-immune,

expression was substantially different between the two groups

(p,0.001) (Figure 4). When compared to average expression across

tissues, candidate genes were significantly overexpressed in B-

lymphoblasts, pDCs, monocytes, B cells, NK cells, CD4+ T cells

(p,0.001), CD34+ hematopoietic cells (p = 0.001) and CD8+ T

cells (p = 0.003). Expression patterns were similar for significantly

and suggestively associated loci.

We further confirmed the immunological nature of these

candidate genes using DAVID [18,19], a bioinformatics tool that

is able to identify the biological processes in which a group of

genes are involved. Candidate genes were significantly enriched

for immune related processes such as regulation of leukocyte

activation (p = 3.1061028), regulation of T cell proliferation

(p = 3.2561028), positive regulation of immune system processes

(p = 7.761027), regulation of protein kinase cascade

(p = 5.4661024) and regulation of cytokine production

(p = 0.001459) (see Table S3 for the full list). GO enrichment

was similar for significantly and suggestively associated loci.

Discussion

We showed that genetic products coded in loci strongly

associated with MS risk substantially interact with each other.

Both direct and indirect interactions were significantly higher than

what would be expected by chance only. When the PPI analysis

was extended to suggestive SNPs, we found an increased number

of total proteins participating in the network and direct

Figure 2. Direct connections among gene products from MS significant plus suggestive regions. Colours indicate significance of
participation in the PPI network.
doi:10.1371/journal.pone.0046730.g002
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interactions (Figure 1 and 2). The only parameter that did not

reach significance was the number of indirect interactions. This

finding could be explained by the possible lack of real MS

association among several suggestive SNPs.

However, including suggestive SNPs in the PPI analysis

increased the number of genes to prioritize from 22 to 43.

Interestingly, more than half of these genes (n = 23) were located

within suggestive regions and many of them directly interacted

with proteins coded within significant regions (e.g. CSF2RB-CBLB,

IL6-IL2RA, MAPK3K14-NFKB1, SYK-STAT3, see Table S2).

Taken together the suggestive statistical evidence of genetic

association and the functional evidence of protein-protein

interaction support the hypothesis that these genes could play an

important role in the pathogenesis of MS.

We validated our results looking at tissue specific expression of

these candidate genes. Using the BioGPS database we were able to

show that the suggestively associated genes identified by DAPPLE

were largely and specifically expressed in immune cells as

compared to other tissues. A gene ontology analysis also confirmed

the immune-related functions of these genes. More generally, these

findings provide additional support to the immunological nature of

MS [20]. Notably, candidate gene expression was particularly high

among CD8+ and CD4+ T cells, B cells, NK cells and pDCs.

Interestingly all these cell types have been implicated in the

pathogenesis of MS.

Several immune specific genes are located within MS suggestive

regions. For example a SNP located near the gene encoding the

Spleen Tyrosine Kinase (SYK) was found suggestive of association

in Sawcer et al. Notably SYK was particularly highly expressed in

B-cells, DCs, monocytes, CD33+ myeloid cells and NK cells. This

protein has a central role in adaptive immune receptor signalling

by phosphorylation of the immunoreceptor tyrosine-based activa-

tion motifs (ITAMs) [21]. SYK mediated ITAMs phosphorylation

determines activation of signalling intermediates such as NF-kB,

JNK and PYK2 that ultimately lead to lymphocyte activation [22].

ITAM signals mediated by SYK can also induce expansion of NK

cells [23]. Interestingly, the SYK-inhibitor R788 (fostamatinib) has

beneficial effects in patients affected by RA, when compared to

placebo [24].

CSF2RB is another gene particularly highly expressed in B-cells,

DCs, monocytes, CD33+ myeloid cells and NK cells. It codes for

the b-subunit (bc) of the granulocyte-macrophage colony-stimu-

lating factor (GM-CSF), IL-3 and IL-5 receptors that are

expressed by peripheral leucocytes and blood DCs [25]. This

gene appears to play an important role in allergic inflammation

[26]. Interestingly, associations between CSF2RB and schizophre-

nia [27] and bipolar disorder [28] have been recently found.

EIF4EBP2 encodes the Eukaryotic Translation Initiation Factor

4E Binding Protein 2. The members of this family of proteins

(4EBPs) can inhibit translation initiation through binding eIF4E

[29]. 4EBPs regulate cell proliferation by interaction with

mTORC1 pathway [30]. In addiction, EIF4EBP1 knock-out mice

showed a type I IFN over production in pDCs [31]. We found an

over-expression of EIF4BP2 in pDCs, CD4 cells, CD8 cells and

Table 2. List of candidate genes (genes to prioritize) obtained from DAPPLE analysis of significant plus suggestive SNPs.

SIGNIFICANT SUGGESTIVE

GENE SNP STUDY GENE SNP STUDY

BCL9L rs630923 14 ARAP3 rs2302103 14

CARD11 rs11581062 14 CHST12 rs6952809 14

CBLB rs2028597 14 CSF2RB rs2072711 14

IL12A rs2243123 14 FCRL3 rs3761959 14

IL12B rs2546890 14,15 MAP3K14 rs4792814 14

IL20RA rs17066096 14 NDFIP1 rs1062158 14

IL22RA2 rs17066096 14 SLC30A7 rs12048904 14

IL2RA rs3118470 14 SYK rs290986 14

IL7R rs6897932 14,15 UBASH3B rs7941030 14

MALT1 rs7238078 14 IQCB1 rs2681424 15

MAPK1 rs2283792 14 ANGPT2 rs2515585 16

RPS25 rs630923 14 C12orf51 rs11065987 16

SOCS1 rs7200786 14 CDH2 rs528438 16

SP110 rs10201872 14 CUX2 rs11065987 16

SP140 rs10201872 14 EIF4EBP2 rs10762363 16

STAT3 rs9891119 14 ENSG00000205175 rs1611715 16

TMEM87B rs17174870 14 ENSG00000204600 rs434496 16

TYK2 rs8112449 14 ENSG00000205173 rs434446 16

YPEL2 rs180515 14 IL6 rs10244467 16

C12orf65 rs1790100 15 RBM45 rs10203141 16

SLC30A6 rs13029809 16

TRAFD1 rs11065987 16

Wdr23(DCAF11) rs10146906 16

doi:10.1371/journal.pone.0046730.t002
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Figure 3. Expression values of candidate genes (genes to prioritize) in all 23 tissues and cell types tested.
doi:10.1371/journal.pone.0046730.g003

Figure 4. Expression values of candidate genes (genes to prioritize) in immune and non immune tissues.
doi:10.1371/journal.pone.0046730.g004
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NK cells. CHST12 encodes the carbohydrate (chondroitin 4-O)

sulfotransferase 2, a protein located in the membrane of the Golgi

apparatus membrane and which is implicated in chondroitin and

dermatan sulphate (DS) synthesis in different tissues [32]. DS

proteoglycans participate in various biological events such as

extracellular matrix assembly, cell adhesion, migration and

proliferation [33]. We found high expression of CHST12 in pDCs,

CD4 cells, CD8 cells and NK cells.

To conclude, a number of proteins coded by genes located

within MS-associated genomic regions are implicated in the same

PPI networks. The extent of this interaction substantially increases

when genomic regions with suggestive evidence of association are

included in the analysis. This suggests that at least some of these

suggestive GWAS hits represent truly associated loci, and thus

more common variants remain to be found to be associated to MS.

Finally, we further confirmed the immunological nature of MS

and show how a single cell type cannot explain the complexity

of this disease. Future functional studies should investigate how

and in which cell types the suggestive candidate genes are

acting. This will improve our knowledge of this complex disease

and hopefully provide future strategies of disease prevention and

treatment.
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