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ABSTRACT

This paper describes a novel music similarity calculation method that
is based on the instrumentation of music pieces. The approach taken
here is based on the idea that sparse representations of musical au-
dio signals are a rich source of information regarding the elements
that constitute the observed spectra. We propose a method to extract
feature vectors based on sparse representations and use these to cal-
culate a similarity measure between songs. To train a dictionary for
sparse representations from a large amount of training data, a novel
dictionary-initialization method based on agglomerative clustering
is proposed. An objective evaluation shows that the new features
improve the performance of similarity calculation compared to the
standard mel-frequency cepstral coefficients features.

Index Terms— Music similarity, Instrumentation, Sparse rep-
resentation, Online dictionary learning

1. INTRODUCTION

This paper describes a method for measuring the similarity of
music pieces based on their instrumentation. The term instrumen-
tation refers to the particular combination of instruments employed
in a piece of music and the way in which the music is arranged for
the instruments. Our method can be used for content-based music
retrieval, allowing users to search for songs that have similar instru-
mentation. Together with conventional bibliographic information
such as song and artist names, we believe that the proposed method
enables more efficient music retrieval.

Content-based music information retrieval (MIR) is rapidly
gaining in importance as the number of songs users can access has
exploded and portable audio players and online music stores have
become widely prevalent. The trend is likely to continue, along with
the popularization of network-connected smartphones with music
player functionality and large-capacity cloud storage services.

Reflecting the above developments, there have been a number of
studies on content-based MIR [1], and MIREX [2], an annual evalua-
tion of MIR algorithms, has been held since 2005 with an increasing
number of participants. While many of the studies use relatively low-
level features such as mel-frequency cepstral coefficients (MFCCs),
spectral centroid, or frame-to-frame spectral change, some studies
have proposed feature extraction techniques to describe specific ele-
ments of music such as singing voice [3] and instrumentation [4, 5].

To develop instrumentation-based MIR system, feature vectors
that represent instrumentation have to be extracted from polyphonic
music. Kitahara et al. [4] and Pei et al. [5] learned models of pre-
defined instrument classes in advance by using training data with an-
notations. However, considering the number of instruments appear-
ing in music, it is not realistic to prepare training data and learn mod-
els for all the instruments conceivable, and therefore their method
has a limitation in terms of versatility.

‘We propose a novel feature extraction approach based on sparse
representations [6] that does not require supervised learning. In a
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sparse representation of music, a spectrum is decomposed into a
weighted sum of dictionary elements (a set of bases). The term
sparse refers to a constraint that only a small number of elements
in the dictionary are active at each time. This method is suitable for
analyzing musical audio signals where the number of concurrent in-
struments and notes playing at each time is quite limited compared
to the set of possible instruments and musical sounds which is very
large. For example, a full piano keyboard consists of 88 keys, but
generally no more than 10 keys are pressed at any given time. The
dictionary used for sparse decomposition can be learned from train-
ing data in a unsupervised manner, meaning that data with annota-
tions are not required. The learned dictionary is expected to consist
of spectra of instruments in the training data, and, hence, sparse rep-
resentations calculated by using the dictionary can be considered as
a representation of the instrumentation of music. Although Sturm et
al. [7] proposed a similarity search system for speech signal using
sparse representation based on a pre-defined Gabor dictionary, they
did not utilize dictionary learning.

In the rest of this paper, boldface lower and upper case symbols
will be used to denote vectors and matrices, respectively. We use
[|z||1 and ||x||2 to denote the ¢1 and £2-norm of a vector x, respec-

tively, so that ||z||2 = />, 27 and ||z||1 = Y, |=4].

2. MUSIC SIMILARITY BASED ON SPARSE
REPRESENTATION

We propose a representation of musical audio signals based on
sparse representation that can be used to calculate similarities of
songs in terms of instrumentation. Assuming that a dictionary (a set
of bases) A is known, sparse coding decomposes observed magni-
tude spectra X into weighted sums of dictionary elements according
to

X =AS+E, (1)
where the activation matrix S encodes the activations of the dictio-
nary elements and E is an error matrix representing additive noise.
Here additivity of magnitude spectra is assumed and A and S are
constrained to non-negative values (thus the model is an instance of
non-negative sparse coding [8]). Our motivation for the above model
stems from the idea that the activation matrix contains rich informa-
tion on the composition of the observed spectra and therefore we
expect them to be good feature vectors for calculating similarities
based on instrumentation. The dictionary A is learned from training
data in an unsupervised manner in advance.

One of the most important features of non-negative sparse cod-
ing is that the activation matrix S is allowed to have only a small
number of non-zero elements by introducing a sparsity constraint
when estimating .S. Without the sparsity constraint, the problem is
underdetermined when the dictionary is overcomplete, that is, when
the number of bases exceeds the number of frequency bins in the
spectra. This means that the number of dictionary elements is lim-
ited to the number of frequency bins. The sparsity constraint allows
us to use an overcomplete dictionary by implementing a trade-off
between the number of active dictionary elements and the represen-
tation error compared to the observed spectrum. Since we expect the
activation matrix to represent the instrumentation of songs, the dic-
tionary has to consist of a large number of bases that can cover the
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Fig. 1. Ovewview of our method.

sounds appearing in various genres of music.

The formulation of non-negative matrix factorization (NMF) [9,
10, 11] is very similar to Eq. (1), except that NMF usually esti-
mates the dictionary and the activation matrix jointly from observed
spectra. However, although NMF (and other similar algorithms) has
flourished in many domains of music information research includ-
ing automatic transcription [9], genre classification [10], and music
tagging [11], to the authors’ knowledge, there have been no stud-
ies which trained a basis matrix from a large number of songs and
applied it for calculating music similarity.

Figure 1 shows an overview of our method including the feature
extraction and the calculation of music similarity based on instru-
mentation. First, a dictionary is learned from a music database. Note
that the dictionary learning is performed in an unsupervised manner,
requiring no annotations. Note, also, that the database used for train-
ing dictionary can be either different from, or the same as, that for
which the similarities are to be calculated. Then, each song in the
music database is decomposed into an activation matrix by perform-
ing sparse coding with the trained dictionary. Finally, by considering
the activation matrices as feature vectors, we can calculate similari-
ties between songs.

2.1. Non-negative sparse coding

In this section, we elaborate the formulation of non-negative
sparse coding and the estimation of the activation matrix. An in-
put audio signals is converted to a magnitude spectrogram H (w, t)
by using the short-term Fourier transform (STFT), where w and ¢
denote frequency and time indexes, respectively. The spectrogram
H (w, t) is normalized according to

[H(w.1) o
D H (W )2
where X (w,t) is a normalized magnitude spectrogram. The nor-
malization is essential to make a parameter of sparsity constraint
consistent (as explained later in this section).

Sparse coding is based on a linear generative model, which rep-
resents a spectrum as an instantaneous mixture of dictionary ele-
ments. Given that

m(t):(X(Lt): 7X(w7t)7"' 7X(Q7t))T (3)
is a spectrum with €2 frequency bins at time ¢, we decompose this
using the model

X(w,t) =

x(t)=As(t) +e(t) )
=>_arSk(t) + e(t) 5)
k

where e(t) is a noise vector,

A:(aly"'aak7"'7aK) (6)

represents a dictionary matrix with K elements, and
s(t) = (S1(t),-++ , Sk(t),-- -, Sx(t)” @)
denotes the activation vector at time ¢.
Assuming that e(t) is a zero-mean Gaussian random vector with
a constant diagonal covariance matrix I, the conditional probability
density function p(|s; A) can be written as

2
p(x|s; A) mexp{—w}, ®)

A zero-mean Laplace distribution with a scale parameter % is used
as a prior for s,

p(s; ) < exp{=\||s||1}- )
Then, maximum a posteriori (MAP) estimate of s is given by
s=argmax {logp(x|s; A) + log p(s; \) } (10)
s
1
:argmax{—§\|a:—ASH§—)\HsHl}. (11)
s

This problem is called lasso [12].

Above, A plays an important role because it makes the activation
vector sparse, i.e. the larger the lambda is, the smaller the number of
atoms that will be used to represent a spectrum. Since Eq. (11) im-
plies that the value of A depends on the scale of «, the normalization
of x as shown in Eq. (2) is introduced in an attempt to alleviate this
dependency.

2.2. Dictionary learning

A dictionary used for the sparse coding here should consist of
elements that are likely to appear in many music genres. We try to
obtain such a dictionary by learning it from a large amount of train-
ing data. Since the dictionary learning is unsupervised, the target
data for which similarities are to be calculated can also be included
in the training data without loss of generality.

Several algorithms have been proposed to learn a dictionary for
sparse coding [13, 14]. An online algorithm is required in our case
because of the large amount of data used for the learning: it is not
realistic to store spectrograms of a few hundred songs in memory.
Therefore we use the online algorithm for dictionary learning pro-
posed by Mairal et al. [14].

Given N training samples {z(1),--- ,&(n), - ,x(N)}, the
objective function to be optimized [14] is given by

N
. 1

L = argmin E —||&(n) — As(n)||5 + Al|s(n)]|]1. (12)
AS =2

The basic strategy of the dictionary learning algorithm is to update
A and S one at a time. S can be optimized by the LARS algorithm
that will be explained later.. Optimization of A can be done using an
algorithm based on block-coordinate descent proposed by Mairal et
al. [14]. The entire algorithm for dictionary learning is summarized
in Algorithm 1.

To solve the lasso problem several approaches have been pro-
posed (a good summary can be found in [14]). In this paper we
adopt LARS [15], which is used in [14] because of its advantage in
terms of a computational time when the activation vector s is very
sparse.

2.3. Clustering method for dictionary initialization

The choice of the initial dictionary used in Algorithm 1 is im-
portant because the dictionary updating algorithm is based on block-
coordinate descent, which is a kind of hill-climbing technique. This
may lead to a poor local minimum if the initial dictionary is inappro-
priate. We prepare the initial dictionary using the following steps;

1. A small dictionary with K7 elements is learned for each song
in the training data by using Algorithm 1. Random elements
selected from the training song is used as an initial dictionary in
this step. In the implementation of this paper, we set K = 20.

2. All the small dictionaries are concatenated to obtain a large dic-
tionary with K5 x N elements.



Algorithm 1 Dictionary learning algorithm [14].

Initialize A = (a1, - ,ak, -
23.
Bo +~ 0, C() <+~ 0.
forn=1— Ndo
Estimate s(n) from & (n) and A by using LARS algorithm.
B, « B, 1+ s(n)s(n)”.
C, < Ch_1 +z(n)s(n)T.
repeat
fork=1— K do
Update the k-th column ay, of the dictionary A.
U < m(ck — Abk)
ap <—
end for
until convergence
end for

,a K) as explained in Section

— s Uk .
max([[Wy([2,1) °F

3. The dictionary size is reduced to K by using an agglomerative
clustering algorithm based on Euclidean distance[16].

4. Finally, starting from the obtained initial dictionary with K el-
ements, a dictionary is trained by Algorithm 1 with the entire
training data.

2.4. Similarity calculation

Finally, similarities between songs are calculated by consider-
ing the activation matrices S obtained by sparse decomposition as
sequences of feature vectors. We calculate the mean activation vec-
tor for each song and define similarity as the cosine distance between
the mean activations of different songs.

3. EVALUATION

Simulation experiments were carried out to objectively evaluate
the proposed similarity calculation method by comparing the perfor-
mance of our method and the conventional MFCC-based similarity
caluculation method. Instead of conducting subjective evaluation us-
ing human listeners, we first define a groud-truth similarity matrix,
which is created based on manually annotated instrument labels, and
then calculate the distance between similarity matricies.

3.1. Conditions

We use a music database consisting of 504 songs taken from
commercial CD recordings'. They are mono, and sampled at 16-bits
resolution and 44.1 kHz rate. The genres of the songs vary from clas-
sical to rock and pop and from dance to jazz music. The database
was originally created for the purpose of music classification in gen-
eral and the balance between genres was made according to an infor-
mal estimate of what people listen to. The songs have instrument an-
notations made by a research assistants who wrote down the instru-
ments from album covers and then verified them by listening to each
piece. Since the original annotations included somewhat ambiguous
labels such as “Sax.” and “Saxophone”, we reclassified these labels
into 73 instrument classes by hand. To create a ground truth simi-
larity matrix, we first represented each song by a 73-dimension vec-
tor, where each element corresponds to an instrument and assumes a
value O or 1 depending on whether the song employs the respective
instrument. The similarity matrix of size 504 x 504 was then cal-
culated based on the cosine distance between the vectors. The audio
signals of the songs were downsampled to 16kHz and converted to
the spectrograms using a 1024-sample (64ms) STFT and the Han-
ning window. The hop-size of the STFT was set to 1600 samples
(100ms).

IThis database is the same as the one used in [17] and the songs are listed
inhttp://www.cs.tut.fi/sgn/arg/klap/musicDB.html.

Table 1. Experimental results: the baseline methods. The labels (i),
(ii), and (iii) are explained in Section 3.1.
(i) Random | (ii) MFCC | (iii) MFCC+Timbral
0415 \ 0.444 \ 0.422

Table 2. Experimental results: the proposed methods. The values in
parentheses represent unbiased standard deviations.

A | K=500 | K=1000 | K=1500 | K = 2000

0.025 || 0.469 (0.001) | 0.471 (0.001) | 0.471 (0.001) | 0.473 (0.002)
0.05 |/0.471 (0.001) | 0.472 (0.001) | 0.473 (0.001) | 0.473 (0.002)
0.1 |{0.471(0.001)|0.473(0.001)[0.474 (0.001) | 0.475 (0.001)
0.2 ||0.471(0.001)|0.473 (0.001)|0.472 (0.002) | 0.475 (0.001)
0.4 |/0.469 (0.002) | 0.468 (0.001)|0.471 (0.001) | 0.470 (0.001)

To calculate a distance between the ground truth similarity ma-
trix and the estimated similarity matrix, we use the measure pro-
posed in [18], which is based on practice in text information re-
trieval [19]. This measure treats each row of the similarity matri-
ces as the results of a query for the corresponding song. For each
row, 7, the top R songs in the ground truth matrix are considered.
Provided that the rth rank song in the ground truth matrix appears
at the k, ;th rank in the reference matrix, the score of the row is

R _ kpi—1
defined as s; = > ., oy Lae™ 7" where ., and a. are param-

eters, and ¢ represents a row index in the matrix. After calculat-
ing the score for each row of the matrix, the total score is defined

as § = %ZI %i_where Spmaqz represents the best possible

=1 Smax

value of the score calculated by Smes = Zf‘:l artalmt. We

set R =10, a, = 0.5%,and a. = a2 as suggested in [18].

As a baseline, we use the following three methods:
(i) Random : A random similarity matrix, each element of which
is randomly set between 0 to 1.
(ii) MFCC : Mel-frequency cepstral coefficients (MFCCs) are used
as features and a similarity matrix is calculated based on the cosine
distance.
(iili) MFCC+Timbral : Zero crossing rate, spectral centroid, flux
and roll-off are appended with MFCCs to the feature vector and a
similarity matrix is calculated based on the cosine distance.
The features in (ii) and (iii) are extracted using the MARSYAS 0.4.2
toolbox [20] with —timbral and -mfcc options, respectively, and
applying the —sv option that causes MARSYAS to extract one fea-
ture vector per song. MARSYAS first extracts feature vectors by
using 512 sample frames with no overlap, then calculates running
means and standard deviations using 40 frame window, and finally
calculates a mean and standard deviation over the entire song.

3.2. Results

We evaluated our method using A values 0.025, 0.05, 0.1, 0.2,
and 0.4, and dictionary sizes K of 500, 1000, 1500, and 2000. In the
experiments, we changed random seeds for selecting initial dictio-
nary elements of small dictionaries in 5 different values and calculate
means and unbiased standard deviations. Tables 1 and 2 show results
for the baseline methods and for the proposed method, respectively.
As can be seen, the proposed method outperforms the baseline meth-
ods for all values of A and K tested. The optimum score 0.475 is
achieved with A is 0.1 or 0.2 and K is 2000, although the values of
A and K have only a negligible influence on the score. Compared
to the baseline method, the proposed method improved 0.060 points
from (i) Random and 0.031 points from (ii) MFCC. Concerning the
value of K, a weak positive correlation can be observed between K
value and the scores. As regards the computational time, it took ap-
proximately 10 hours to learn dictionary and 40 minutes to calculate
the similarity matrix of the 504 songs when A is 0.1 and K is 2000.

Figure 2 shows examples of feature vectors that were obtained
by averaging the activation vectors over time. In Figure 2, (a) and
(b) represent classical music played by orchestras, whereas (c) and
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(f) So What / Miles Davis
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Fig. 2. Examples of feature vectors and a similarity matrix. Title, artist or composer name, and instrument annotation are shown underneath
the figures. It can be seen that the distance between (a) and (b) is small, both of which are composed of similar instrumentation. The same

applies to (c) and (d).

(d) represent popular music with similar instruments such as guitar,
bass, drums, keyboard, and vocals. As can be seen from the similar-
ity matrix (g), the similarites within each pair was relatively small
for these two pairs of songs. The other songs shown in Fig. 2 were
taken from various genres. We can see that pairs of songs that have
similar instrumentation, namely (a) and (b) as well as (c) and (d),
have feature vectors of similar shape, while the instrument labels
and the shape of the vectors are different from each other among the
songs of the different genres.

4. CONCLUSIONS

We have described a novel feature extraction method for mea-
suring the similarity of instrumentation in different pieces of music.
The underlying idea is to use sparse coding to decompose a mixture
spectrum into a weighted sum of dictionary elements, and to use the
vector of weights (the sparse activations) as a feature vector. The
dictionary used in the non-negative sparse coding is learned from a
large amount of music data in an unsupervised manner.

Our method extracts a single feature vector from a song by com-
puting a time average over the activation matrix. This approach is
straight-forward and easy to incorporate with other types of mu-
sic recommendation systems such as collaborative filtering. On the
other hand, our method can also extract a sequence of feature vectors
from a song by omitting the time-averaging. Several methods have
been proposed to calculate the similarity between two sequences of
feature vectors, such as earth mover’s distance and cross-likelihood
ratio test. We plan to evaluate the proposed representation with such
similarity calculation methods.
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