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Abstract—Imperfect information environments are amongst
common research subjects in the field of Artificial In-
telligence. A game of poker is a good example of such
an environment. As the popularity of the game grew, so
did the interest in implementing a functioning automatized
poker player. Approaches to this problem include various
Machine Learning techniques like Bayesian decision net-
works, various Case-based reasoning (CBR) techniques and
reinforcement learning. For a player to play well it is not
enough to know just the probability estimates of one’s own
hand. A player must adjust his strategy according to his
estimate of the opponents’ strategies and an estimate of
opponents’ hand strength. This paper explores the usage of
the k – Nearest Neighbors technique, an example of CBR
techniques, in implementing an automatized poker player.
As a result, an average player able to cope with most in-game
situations was developed. The main difference from a model
based on optimal mathematical play is that the developed
player seems more human, which makes its actions harder
to predict. Numerous simulations on the developed testing
model show that a small but stable profit is gained by the
implemented automatized player.

I. INTRODUCTION

Poker playing became an interesting research subject
in the field of Artificial Intelligence because it represents
an imperfect information environment (during the game
one lacks the information about the opponents’ cards and
the cards yet undealt). Good in-game decisions are based
not only on statistical probabilities describing the strength
of one’s current hand but also on good estimates of the
opponents’ strategies. The reason lies in the nontransi-
tivity of poker: there is always an adequate strategy that
bests any other chosen strategy. Another example of a
nontransitive game is rock – paper – scissors. It is known
that rock bests scissors and that scissors best paper, so
it could be presumed that rock bests paper, which is
not the case and makes the game nontransitive. A good
poker player, except for knowing the rules of the game
and some basics of probabilities and statistics, has to be
exceptionally patient and disciplined. Experience shows
that a stable profit in this game is not easy to achieve.

After playing a large number of games, an expe-
rienced poker player often finds himself in situations
very similar to the ones already seen. In many of these
situations, gameplay patterns that maximize the player’s
profit emerge. These observations suggest the possibillity
of constructing an automatized player, considering the
facts that the game has a limited number of possible states,
that one instance of the game is short and easy to follow
and that it is possible to categorize the opponents based
on their chosen strategy.

The goal is to construct an automatized player that has
the ability to learn based on examples of games played by
(good) human players and thus, combining this data with

precise mathematical calculations, achieve an edge over
human players. An automatized player’s playing style
(strategy) could further be attuned based on the strategies
of his opponents. As concentration and self control play
a major role in the success of a poker player, another
advantage of the player built by using Machine Learning
methods is that various factors such as fatigue, mood and
temper have no impact on the gameplay.

The approach in which future actions are based on
a large number of previously known examples of well
played poker games is based on Machine Learning meth-
ods known as Case-based reasoning (CBR).

Related works and similar approaches to the problem
are described in the next section (Section II). The general
approach to the problem, the details of the chosen meth-
ods and a short overview of the implementation are given
in Section III. Achieved results are presented in Section
IV. The last section, Section V, offers the conclusion
along with a few ideas for future work and possible
improvements.

II. RELATED WORK

Lately there were many attempts in the field of automa-
tized poker player construction. The resulting applications
are popularly called pokerbots. Most of the developed sys-
tems are built to simulate Texas Hold’Em poker players.
As Texas Hold’Em is one of todays most popular poker
variants, this project also had the goal of constructing a
pokerbot capable of playing this type of poker.

Prototypes of one of the first strong automatized poker
playing programs that have played successfully against
strong human opponents are known as Loki and Poki.
These programs were developed as part of a project led
by a group of researchers from University of Alberta1.
The original implementation, Loki, based its decisions
on expertly defined rules. This approach turned out to
be unsuccessful when applied to Texas Hold’Em poker
because the rules were too complex and numerous. For
that reason, the approach used in the second version of
the developed program, Poki, was based on simulating
possible outcomes from a certain point in the game. These
simulations were used to determine the best possible
decision. Detailed explanations of the approaches used in
these early prototypes developed as a part of this project
can be found in [1] and [2].

Other attempts in constructing a poker playing program
via Machine Learning methods are based on modelling
of Bayesian networks [3], [4], reinforcement learning
and Case-based reasoning tehniques. Works based on

1Information on this and many other projects from the field of game
playing can be found on http://webdocs.cs.ualberta.ca/~games/.
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Bayesian networks choose a fixed point in the game and
construct a model with best defined variable dependencies
(variables can represet the player’s cards, community
cards, opponent’s cards etc.). The human factor, modeled
by an estimate of the opponent’s strategy is a variable
of great significance; learning poker could otherwise be
reduced to elementary probabilities and statistics. All
papers exploring Bayesian networks approach to building
an automatized poker player focus on constructing deci-
sion networks on which the developed systems base their
actions, with possible limitations concerning the number
of opponents. A very good example of a poker player
prototype based on Bayesian networks is the Bayesian
Poker Program described in [4]. The specificity of the
Bayesian Poker Program, adapted to Texas Hold’Em
Poker in [4], is an efficient model of bluffing embed-
ded in the implementation. The negative sides of the
Bayesian networks approach include poor performance
against strong human opponents and long adaptation time
in gameplay against such an opponent.

The second most common approach used in many
similar game playing problems is reinforcement learning.
The goal of this method is maximizing the agent’s profit
based on awards and penalties for traversing between
states. This kind of environments can typically be mod-
eled by Markov decision processes [5]. Application of
this approach applied to 1-Card Poker can be seen in [6].
While the variant of poker used in [6] is much simpler
than Texas Hold’Em poker, it still models an imperfect
information environment and competitive play against
an opponent. The constructed agent showed promising
results against simple player models. Another example of
a poker agent developed by the means of reinforcement
learning, although using a different approach than [6]
can be seen in [7]. The modeled player’s performance is
evaluated separately during the (rather lengthy) training
process and when playing against a model of a player
used for training the adaptive poker player [7]. The main
significance of the work presented in [7] regarding the
automatized poker player developed for this project is the
evaluation method based on modeling four basic opponent
types. A similar evaluation model is used here to estimate
the developed prototype’s quality of play, with details
presented in Subsection IV-A.

Case-based reasoning techniques choose the appropri-
ate action based on a database of memorized situations
with complete information. The solution developed as a
part of this project also relies on one of these techniques, k
– Nearest Neighbors (k-NN) method, for decision making.
The database usually consists of all the situations known
to the system with corresponding actions. The system
can then search the database with its current state as a
parameter and decide on the next best action depending
on the most similar states in the database [8]. The large
database of played hands available for this project elimi-
nated the need for constructing the learning set by letting
the system play against itself using random strategies,
which is the approach used in [8] for extracting gameplay
examples. The data collected for this project’s database is
categorized based on the betting round and the number
of community cards visible to the player in the preflop,

flop, turn and river examples in contrast to the database in
[8] which is divided only on preflop and postflop learning
examples. Another point of difference from the approach
used in [8] is a good evaluation of the player’s hand,
independent of the gameplay factor. CASPER: a Case-
Based Poker-Bot [9], the latest pokerbot from the makers
of Loki and Poki, is another example of a CBR poker
bot which shows some similarities to the approach used
in this work. It also uses the k-NN algorithm to make
decisions, and a database of previous playing scenarios.
The main difference is that CASPER has a database
derived from playing versus play-money opponents and
other poker bots, which, according to its authors [9], is
the main reason for it not playing profitably against real-
money opponents. Our project uses a database of real-
money hands played by live players to avoid problems
that occurred in [9]. Also, CASPER is modeled for the
Limit Texas Hold’em variant which simplifies decision
making. No Limit poker games, which are modeled in this
work, induce a variety of guessing space (and therefore
classification features) by introducing betting and raising
patterns which don’t exist in a Limit game.

III. APPROACH

A. Input data parsing and feature extraction

Descriptions of the played hands in XML format were
obtained from the SQL database acquired for this project.
For the purpose of extracting features of the training set
examples, an XML parser has been built for the input
data.

A very good measurement (feature) of a player’s hand
before the community cards are shown or any of the
opponents’ actions observed, is the strength of cards in
one’s posession. Equity Value (EV) of a hand provides
a quality description of its strength. Each card pair is
associated with a numerical value calculated from the
sample of 115 million hands using data mining methods2.
The Equity Value is actually a percentage representa-
tion of the expected gain in terms of the player’s total
stake. EV can also be interpreted in terms of payoff
probability, and is negative if the probability is less than
1/(num_current_opponents+ 1).

As the game progresses, both human and mathematical
factors play an equally important role in making deci-
sions about the next move. A basic and most important
mathematical factor is the payoff probability of a hand.
Unfortunately, calculations of this factor cause a combina-
tory explosion since a large number of game scenarios is
possible (scenarios are affected by opponents’ cards and
actions as well as by yet unknown community cards).
To get an adequate approximation of the mathematical
parameters, an estimate based on simulating 100000 dif-
ferent scenarios is used instead. Important features such as
win probability, pobability of improvement for a player’s
hand and for the opponents’ hands are also calculated
using simulation methods. The number of outs, cards
that improve a player’s hand, is obtained from simulation
as well. Important human factors describe opponents’

2Data acquired from http://www.tightpoker.com/poker_hands.html.
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aggressiveness, their raises and bets as well as their
reactions to the raises and bets of other players.

In the last betting round, after the last community card,
the river, has been dealt, estimations of a hand’s worth are
no longer needed: for a certain hand, it can be determined
exactly which hands it bests. Win probability of a player’s
hand can thus be precisely calculated in this betting round.

B. Case-based reasoning methods

As previously described in Section II, the core idea
of all CBR methods is to search the available knowledge
database for all the states (situations) similar to the current
system state and base the final decision for the current
state on the decisions made in the related states.

While playing poker, the decisions made in four dif-
ferent betting rounds can be distinguished. In every bet-
ting round, different kinds of relevant information are
introduced. Decisions in later phases of the game are
based on more attributes because all the past states and
actions during the game must be considered, and the
number of unknown cards grows smaller. The database
can be viewed as split into four different parts, each
part containing the examples concerning a specific betting
round with a known classification. In this instance, the
action taken in a certain point in the game is considered
as the classification of an example. When determining
the next action, the system bases its decision solely on
the knowledge contained in the database for a phase cor-
responding to the current phase in the game, comparing
the current state only to the states belonging to that phase.

This paper considers using the k-NN algorithm for
determining the most appropriate action for the cur-
rent state. This simple algorithm searches the database
for k examples nearest (most similar) to the example
representing the current system state, and classifies the
current example in the most common class among k
nearest examples found [10]. All the features used in the
classification process are described with numeric or binary
values. The simple Manhattan distance is then used on
the normalised feature values to define similarity between
samples. The optimal parameter k has been determined
by extensive testing and evaluation for every game phase
separately and corresponds to considering the 30 nearest
examples in the preflop phase, 40 nearest examples for
the flop and turn phases and 60 for the river phase.

Time complexity of k-NN classification is linear in the
size of the training set. Since the performance speed for
a single decision was almost instant on the databases
available for this project and can be expected to remain
satisfactory fast even if the database sizes increase mul-
tiple times, no further analysis of the upper limit of the
database size was made. Training speeds are higher, but
not as significant, considering the training process is a
one time event occurring before the simulation or actual
game.

C. Training set and database description

A training set for this project used for building the
knowledge database is comprised of poker hands played

Fig. 1: Distribution of learning sets

by several good human players3. The data was gathered
using the Hold’Em Manager4, an in-game program for
calculating opponents’ statistics which enables saving of
played hands in a local database for later analysis and
review.

The final version of the implemented system uses
around 75000 different examples in the learning phases
and is showing satisfactory classification results. A single
example consists of all the actions undertaken on the table
from the moment the blinds (obligatory bets) have been
posted until the winner collects the money won in the
current hand. It also holds information regarding player
positioning at the table, betting amounts and even chat
logs. Four training sets (divided by the game phases) con-
sist roughly of 57000 examples in the preflop database,
7000 examples in the flop database, 3600 examples in the
turn database and 2400 examples in the river database.
Each phase has an unique set of important details which
are later used to derive classification features for the
k-NN algorithm. For example, a preflop hand sample
has information consisting of the player’s hand strength,
the current state of the pot (unopened, opened, raised),
the player’s position at the table, etc. Distribution of
the examples in the training set amongst phase-specific
databases can be seen in Figure 1. A rapid decrease in
the number of examples through the game phases can
be explained by the fact that the human player rarely
advances to the later phases of the game, which is natural
for Hold’Em poker. A system a database of played hands
is less predictible than the system basing its actions only
on mathematical simulations.

D. Implementation

Parsing of the examples (input data) in XML format
has been done using the implemented XML parser written
in Java programming language. The implemented parser
and feature extractor uses simulation methods to calculate
certain example measurements (Subsection III-A). Game
simulations used in the parser were developed using
the finished implementations from the Poker Prophesier

3For the details on the quality of the human players whose hands
were used, please contact the authors of this paper.

4For more information, visit http://www.holdemmanager.com.
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library5. For the development of the classifier itself, the
programming language Python was used in combination
with the open source package Orange6. This classifier is
then used by the player prototype implemented in the
C++ programming language. A simple command line
game simulator (also written in the C++ programming
language) has been implemented in order to test and
evaluate the player prototype. The developed simulator
allows various implementations of players to “sit” at the
table and join the game, simulating the basic mechanics of
the gameplay (models of tables and hands). The simulator
provides the means to follow the details of the game play
and makes the overview of basic data for each player
available at any given moment (e.g. the current amount
of money in possesion).

IV. RESULTS OVERVIEW

A. Evaluation methods

The way in which the player prototype has been de-
signed makes cross validation one of the most compelling
evaluation methods. It is important to notice that this
evaluation method does not relate directly to the quality of
the developed system. The results can be better interpreted
in terms of similarity with the human player whose
hands were the foundation of the training set. The best
evaluation results are achieved by balancing the training
set, i.e. seemingly attempting to even out the number
of training examples for each class (or in this case,
player action). The package Orange, used for building
the classifier, provides an easy way of doing this.

To evaluate the quality of play for the developed
system, simulation of real game conditions has to be
conducted, i.e. the system has to play against the realistic
models of opponent players. This paper considers an en-
vironment in which the implemented system plays against
simple mathematical models of players that base their
decisions on win probabilities for each hand as a good
enough testing environment. The mathematical model of
a player is implemented in two different adaptations: in
the first the player model plays each hand mathematically
optimal, while the second one allows ajusting of different
parameters in the attempt to make rough models of four
basic player types.

A mathematical model of an optimal player makes its
decision about the next move based on win probability
obtained from:

• the normalized EV value of the current hole cars for
the preflop phase,

• the simulator for the later phases.

The amount of money that this model of player is
prepared to invest in proportion to the total possible gain
(i.e. the sum of money already on the table) is equal to
the win percentage of the hand. If the appraised value is
less then the amount required to stay in the game, the
player yields, or in poker terms, folds his hand. However,
if the value is roughly the same as the required amount,

5More about this toolkit can be found at http://www.javaflair.com/pp/
docs/manual.shtml.

6Documentation and usage instructions for this package can be found
at http://www.ailab.si/orange/.

Fig. 2: Results of cross validation by phase

the player pays the opponent’s bet, and raises if the
value is significantly larger than the minimal required
amount. By separately shifting the threshold value that
the matematically optimal player bases his decisions on
and the quantity that the optimal player is willing to invest,
four distinct models describing a player class emerge
based on two different criteria:

• players passiveness or agressiveness and
• players tightness or looseness.

In combination, models describe a rough strategy clas-
sification of a player.

A model of the player that bases its actions on the
keyboard input has also been implemented, enabling the
testing of the developed player prototype against the
human player. This method of evaluation was unfortu-
nately proven uneffective because of its lengthiness: the
amount of data required to produce valid conclusions
would require the tester to play an impractically large
number of games against the designed prototype.

B. Results analysis and overview

For the evaluation of the developed classifier, 10-fold
cross validation was employed. This method, as previ-
ously mentioned in the Subsection IV-A, describes only
the similarity between the developed automatized player
and the human player used as a basis for learning. As the
knowledge database for this problem is split into four
training sets, the process of cross validation has been
carried out separetely for each training set. The results
of the cross validation process for each training set can
be seen in Figure 2.

Due to the increasing complexity of the in-game sit-
uations in the later phases of a hand (a combinatorial
explosion of parameters occurs and the representation
of the information about the opponents to the computer
becomes intrinsically harder), the accuracy determined by
cross validation is highest for the preflop phase and drops
in subsequent phases. These results arise from the fact
that the mathematical features and those referring only to
the player’s hole cards become less influential in deter-
mining the player’s next action. Here, the complexity of
poker and the unpredictability of a hand’s outcome come

http://www.javaflair.com/pp/docs/manual.shtml
http://www.javaflair.com/pp/docs/manual.shtml
http://www.ailab.si/orange/


Fig. 3: Profit made in 5000 hands played

into play. To get better evaluation results, opponents’
habits, patterns and strategies should be considered. A
good poker player adapts his own strategy based on the
perceived opponents’ strategies, considers the amounts of
the opponents’ bets and tries to observe and determine
their betting patterns.

Experienced online poker players usually play up to
2500 hands in one daily sesson, playing simultaneously on
eight to twelve tables. This number of hands has therefore
been taken as a reference for evaluating the developed
player. After simulating a series of 200 sessions of 250
hands each, the performance of the player prototype is
commensurable with the performance (and profit) of the
human player in a month’s time. The total and average
profit is noted after each session. The testing environment
assumes tables with the maximum of six players (the
designed player prototype plays against a maximum of
five opponents) with the starting deposit of $20. The
blinds are $0.10/$0.20. The opponents are variations of
the mathematically modeled optimal player with different
aggressiveness and tightness parameters. The conducted
tests start with the total of six players per table and if a
player loses all of his money in a session, he leaves the
table (re-buys are not possible) which makes observing
and following any player’s profit much easier.

The total and average profit accumulated in 5000 hands,
the equivalent of two evening sessions, is displayed in
Figure 3. The image shows a constant profit growth
despite the fact that in some sessions the player lost all
of his money. By joining a total of 20 tables, the player
invested 400 dollars of his own money. After the game,
he left the tables with a total of 1013 dollars, making
a net profit of 613 dollars. This means he finished the
session doubling the amount of money he started out
with. Apparently, the designed player is far superior than

our mathematical player models, seeing as none of them
matched his profit, although they are objectively not up to
par with intermediate human players. On a monthly basis,
the average results dropped slightly, making the average
profit 12 dollars per session.

The implemented player prototype would be able to
perform even better if he would to have actual information
on his opponents, which is, as stated earlier, also a
very important factor when contemplating the next move.
There are four types of players, described in Subsection
IV-A. Each of these strategies has an optimal counter-
strategy, so possessing information on an opponent’s type
would give the player ability to adapt his strategy to match
his opponent’s type of play.

Going over the details of the evaluation games played
by the developed prototype, certain key lapses in the
gameplay have been noticed. A good example is un-
satisfactory play of overpairs, i.e. a situation where the
player’s hole cards represent a strong pocket pair (e.g. a
couple of aces) when the highest possible pair that can be
made from the community cards is weaker (e.g. the flop is
J82). The developed protoype plays too passively in these
situations, allowing the opponents to wait for a possible
straight or flush. This problem arises from the lack of
features that would distinguish between this situation and
the situation where the player has only a high pair (which
does not guarantee a strong hand).

V. CONCLUSION

The goal of this project was to build an automatized
poker player that would know how to make decisions
in the situations with limited information, based on the
results of the similar actions in the past. The developed
prototype has an advantage against the human players
because it acts on a combination of experience gained



from the knowledge database (training set) and precise
mathematical evaluation of the hands value.

The goal of the paper was to combine two perspectives,
the unpredictability and strategy of the human player
with the precision and computing power that provides an
accurate probability calculation. With a simplified set of
features and a limited knowledge database, a very good
performance of our player on the developed test model
was achieved. Of course, our player is in no way superior
since it is very difficult to accurately simulate human
thought patterns while taking in consideration only the
basic features of the decision making process. However,
from the results of evaluation, it can be presumed that the
developed prototype would profit against human players,
which makes the results satisfactory. By applying Case-
based reasoning techniques, a somewhat successful em-
ulation of a decision making player in a space with a
combinatory explosion of possible consequences regard-
ing these decisions was achieved with satisfactory quality.

Possible improvements include further division of the
training set for each phase according to the assessment of
the opponents’ types and their playing strategies. During
the game, the automatized player notes his opponents’
actions and after a certain number of hands is able to
estimate their respective strategies. This would include
the information about the opponent’s strategy in the
strategy of the developed player, allowing him to base his
decisions on the examples from a more specific training

set, and would add a model of another important factor
disregarded in the current implementation to the decision
making process.
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