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Abstract—This paper is concerned with object recognition
and detection in computer vision. Many promising ap-
proaches in the field exploit the knowledge contained in a
collection of manually annotated training samples. In the re-
sulting paradigm, the recognition algorithm is automatically
constructed by some machine learning technique. It has been
shown that the quantity and quality of positive and negative
training samples is critical for good performance of such
approaches. However, collecting the samples requires tedious
manual effort which is expensive in time and prone to error.
In this paper we present design and implementation of a
software system which addresses these problems. The system
supports an iterative approach whereby the current state-
of-the-art detection and recognition algorithms are used to
streamline the collection of additional training samples. The
presented experiments have been performed in the frame
of a research project aiming at automatic detection and
recognition of traffic signs in video.

I. INTRODUCTION

Machine learning based techniques for object detection
and classification [1], [2] are trained on large collections
of training samples which are usually manually collected
[3]. Effectiveness of the resulting classification algorithms
largely depends on quantity and quality of both positive
and negative samples [4]. The process of annotating
desired objects by hand in many images is a challenging
and time consuming task [5]. Some approaches even
require dense annotations, whereby the objects need to
be manually located in each frame of the video sequence
[6], which obviously makes the task even harder.
We propose an iterative approach to simplify and

streamline this laborious job, by taking advantage of
previously collected data. Each iteration of the approach is
made up of two parts. Firstly, the available training collec-
tion is used to train the current generation of detection and
recognition algorithms. Secondly, the trained algorithms
are employed to perform semi-automated detection and
classification. The processing results are verified by a
human operator who needs to accept, reject or correct
the proposed classification results. The annotated objects
are consequently employed in the next iteration of the
procedure, which is expected to result in a continuous
performance improvement [4].
The desired properties of the envisioned software

application would be as follows. The program should
provide a user friendly interface with a visual toolset
for object annotation. Multiple media formats should be
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supported on input, while the annotated material should
be stored in a standardized manner. Since we are chiefly
interested in annotating video, the program should have
a full-fledged media player with browsing and playlist
features. In order to support semi-automated operation,
the program needs to seamlessly integrate production
components which implement classification, detection and
tracking algorithms. The detected and recognized objects
need to be automatically tracked throughout the video
sequence in order to achieve dense annotation. The user
needs to be able to interactively validate the processing
results, and correct them if needed. The training part
is usually time consuming, so it does not need to be
integrated with the main application, but can instead be
implemented as a separate command-line program.

In this paper, we present the most interesting archi-
tectural and implementation details of the new version
of our software system Marker, which conforms to the
above requirements. A beta version of the software has
been exhibited at the Zagreb University Fair in January
2010, and will soon be released for download from the
web pages of our research project1 [7]. Earlier Marker
version is stable and can be freely downloaded and
employed for non-commercial activities2. It differs from
the development version because it supports only manual
annotation as illustrated in Fig. 1.

Fig. 1. A typical annotation session using the earlier stable version of
the software (left) and a small subset of annotated signs (right).

The paper is structured as follows. Section II presents
related software applications for collecting the training
samples. The employed computer vision techniques are
reviewed in Section III. Section IV describes the archi-
tecture of the proposed software system. Some experi-
mental results in the field of training the object detector
are presented in Section V. Section VI provides some
implementation details about the detection component,
while the paper is concluded in Section VII.

1The project’s web site is at http://www.zemris.fer.hr/~ssegvic/mastif.
2The earlier stable version (Marker v1.0) can be downloaded from:

http://www.zemris.fer.hr/~ssegvic/mastif/marker/marker.zip.



II. RELATED SOFTWARE

Similar projects in the field of annotating objects in im-
ages are the Improved Object Marker3. and the LabelMe4

service from MIT [8]. To the best of our knowledge, none
of the previous research has addressed the problem of
streamlining the collection of dense annotations in video
sequences.
The Improved Object Marker is a command-line appli-

cation written in C++ which enables annotating objects in
single images. It features a cropping tool and a mechanism
for saving the annotated object positions in a format
conforming to the tools from OpenCV [9]. Unlike our
system, it can’t operate on video, and lacks a graphical
user interface.
The LabelMe project [8] is also concerned with object

annotation, however its purpose significantly differs from
ours. LabelMe is basically a web service which provides
a huge collection of annotated images. The goal of the
project is to train detectors for finding multiple classes of
objects in complex scenes. The LabelMe annotation tool
enables users to contribute additional annotations to the
collection. The tool has a well designed user interface
for manual object labeling. However, the tool can not
automatically propose annotations, and is not capable to
work on video sequences.

III. THE EMPLOYED COMPUTER VISION ALGORITHMS

This section briefly reviews the three employed com-
puter vision algorithms: detection by a boosted Haar
cascade [10], [11], [3], recognition by support vector
machines (SVM) [3] and differential tracking [12], [13],
[14].

A. Detection by a boosted Haar cascade

One of the most prominent detection algorithms today
is based on a compound binary classifier constructed
as a boosted cascade of Haar classifiers [10], [11], [3].
The compound classifier need to be trained on a large
collection of training samples. The algorithm employs a
sliding detection window, i.e. applies the classifier over a
comprehensive range of locations and scales in the input
image. The detections are reported at positions where
the binary classifier returns true. Typically, very good
recalls can be obtained, however the precision tends to
be problematic [5]. For each valid detection we typically
obtain at least one false positive, as illlustrated in Fig. 2.

Another problem of this approach is that for each object
in the input image one typically obtains many detections
in the vicinity of the true detection. This problem is
resolved by an ad hoc algorithm for grouping the adjacent
detections, which often works good as illustrated in
Fig. 3. However, at times the grouping algorithm produces
responses which deviate from the true position for several
pixels. Due to simple heuristic nature of the grouping
algorithm, the deviations occur whenever the spurious sur-
rounding responses are asymmetrically distributed around

3Improved object marker can be downloaded from: http://www.cse.
unsw.edu.au/~gherman/Improved_Object_Marker.pdf

4Web site of the LabelMe project is at http://labelme.csail.mit.edu/

Fig. 2. Typical detection results obtained by a boosted Haar Cascade.

(a) (b) (c) (d)

Fig. 3. Results of the heuristics for grouping multiple detections: correct
grouping (a,b), and biased grouping due to image border (c,d).

the true response. As illustrated in 3(c,d), this usually
happens when the object is close to the image border,
resulting in the bias towards the opposite side. These
deviations need to be taken into account by subsequent
recognition algorithms in order to avoid a performance
loss [3].

Our annotation software supports detection of trian-
gular signs triggered by the operator. The user typically
quickly skips the road parts with no signs, initiates de-
tection when a sign becomes visible, and finally validates
the produced results. Our implementation of the detector
has been inspired by the reference implementation from
OpenCV5 [9].

B. SVM classification

For purposes of classification, we use support vector
machines (SVM) [2]. SVM is a supervised machine
learning technique used for binary classification. Given
a set of n-dimensional vectors each of which belongs to
one of the two classes, the training algorithm generates
a maximum margin hyperplane dividing these objects
into classes6. After the training, the hyperplane is used
for classification of newly acquired unclassified objects,
acting as a classifier. The distance between a vector and
the hyperplane can be used for measuring the probability
of correct classification, with greater distance meaning
higher certainty of correctness.

The SVM classifier is by definition unable to distin-
guish between more than two classes of objects at once.
Real world problems dictate a need for classifying multi-
ple object types, so a special class "ALL" is mandatory.

5OpenCV can be downloaded from http://sourceforge.net/projects/
opencvlibrary/.

6Note that if the classes are not linearly separable, one first needs to
transform the input vectors by a non-linear kernel function.



It is basically an array of all other object classes. For
example, if only five types of traffic signs existed, A, B,
C, D and E, when training the A vs "ALL" SVM classifier,
the "ALL" class would consist of sign types B, C, D, E
and could also include other objects that aren’t the type
A sign, i.e. trees, asphalt or the sky. Using this type of
classifier, we can predict whether the object in question
belongs to a certain class or not. For every sign type X
from the set of all sign types, a SVM classifier X vs
"ALL" is trained, stored and later used for multiple class
classification.
The multiple class classification process is as follows:

an object is classified using all of the trained X vs "ALL"
SVM classifiers, each of them returning X or "ALL" with
the probability of correct classification as a result. In a
best case scenario, only one classifier will confirm that
the object belongs to its class, and all other will return
the "ALL" class as a result. If there have been multiple
confirmations, they are then sorted in order of greatest
probability of correct classification.
Our annotation software makes a classification request

whenever a new sign is detected or manually annotated.
The selected image window is first scaled to match
the size of training samples and then passed on to all
X vs "ALL" SVM classifiers. The number of positive
answers that are returned to Marker is limited to four.
Marker prompts the user to select the correct classification
between the most probable results, as can be seen in
Figure 4.

Fig. 4. The results of object classification ordered by probability of
correct classification

The SVM learning algorithm uses feature vectors that
are calculated from each image. The features we used
were the RGB values of each pixel. All images were
beforehand scaled to 24x24 pixels, which means that we
have 1728 (24*24*3) features. Because of the size of the
training sets (which was considerably smaller than the
number of features), no kernel functions were used.

C. Differential tracking

Differential tracking [12], [13], [14] is often employed
for locating corresponding rectangular patches in neigh-
bouring frames of a video sequence. The correspondence
is established by a suitable gradient descent optimiza-
tion technique, usually starting from the previous patch
location. The algorithm tends to be sensitive to large

displacements between the initial approximation and the
solution, however this can be alleviated by a resolution
pyramid and suitable heuristics for improving the initial
approximation. In the implementation, a modified version
of a known public library has been used7

Our annotation software tracks each annotated object
which could have been classified either automatically or
manually. If the tracked object is lost, the operator can
manually locate it and restart the tracking. The tracking
stops either when the object leaves the field of view, or
when the object considerably changes its appearance.

IV. THE PROPOSED SOFTWARE ARCHITECTURE

The proposed software architecture is illustrated in
Fig. 5. On the top of the hierarchy we have the main
GUI application entitled Marker. Marker is written in
Java in order to simplify the development of a com-
plex GUI. Unfortunately, Java is not appropriate for
all domains of software engineering. Thus, the main
application delegates several pieces of functionality to
external plugins written in C++. Since Java can not
access arbitrary dynamic libraries, the plugins need to
conform to the JNI specification [15], which makes them
unsuitable for use in other projects involving different
languages. Consequently, the plugins with reuse potential
have been implemented as library pairs including i) a
thin JNI wrapper (modules libmastif_jni and libvs_jni ),
and ii) a native reusable library (modules libmastif and
libvs ). The reusable libraries are implemented in terms
of production components written in C++, which can
be conveniently tested and debugged from the separate
program cvsh.

Fig. 5. The proposed architecture of the annotation system

A. The GUI application Marker

Automating the annotating process with use of the
before mentioned algorithms is a formidable task. To do
so, one requires a user friendly application to put all of
the parts together. The main goal of Marker is to make
the process of annotating objects by hand as easy as
possible. By using Java as a primary coding language,
the application gained an aspect of portability8. From
the implementation viewpoint, Marker’s main strength

7The KLT tracker maintained by Stan Birchfield can be accessed at
http://www.ces.clemson.edu/~stb/klt/.

8Not needing to be installed and being capable of running on any
chosen platform



is modular and extensible design based on the Model-
View-Controller (MVC) design pattern [16]. The program
implementation had been extended with interfaces for
different component classes (such as Tracker, Classifier
and Detector), so it could later be upgraded or changed
with as least work as possible. We are experimenting with
options to achieve a semi-automatic work mode, which
would activate adequate algorithms instead of the user
when certain criteria are met.

B. The bridge - Java Native Interface

Java Native interface (JNI) [15] is a feature of the
Java platform which allows applications written in Java to
incorporate native code written in programming languages
such as C and C++. JNI is a two-way interface that allows
Java applications to invoke native code and vice versa.
Modules libmastif_jni and libvs_jni are dynamic

link libraries which provide a thin JNI wrapper around
native libraries libmastif and libvs . Such layered design
allows Marker to reuse functionality from independently
developed native libraries without code duplication. The
main functionality of the JNI counterparts is to convert
the parameters from JNI types to native C++ types and
vice versa.
The module libNativeCanvas provides the functionality

of native image drawing. This module was required since
it turned out that drawing images in Java at video rate and
faster is considerably slower than what can be obtained
with native APIs.

C. The native libraries

The module libmastif provides a flexible interface for
invoking computer vision algorithms over a DLL inter-
face. This is especially beneficial for algorithms such as
detection or tracking, for which Java is not suitable due to
extreme computational demands. At the implementation
side, the module transparently employs low-level produc-
tion components which have been developed and tested
within our C++ development framework entitled cvsh
(cf. IV-D). Thus the module promotes interoperability
between the C++ production code and clients written in
different programming languages such as Java or Visual
Basic.
The module libvs allows its clients to interact with

native libraries for reading proprietary video formats such
as WMV or AVI. Unfortunately, it appears that there are
no public Java libraries with such functionality, so that
use of native libraries is mandatory.

D. The C++ development framework

The computer vision shell cvsh is our C++ framework
for experimenting with computer vision and image pro-
cessing procedures. The framework can be employed both
on Windows and Unix operating systems such as Linux
or Mac OS. It provides command-line and point-and-
click user interfaces, handles image acquisition and pre-
sentation of results, and offers powerful registry services
which allow the application logic to be independent from
the incorporated computer vision algorithms. Thus, users
can add custom algorithms without having to change any
other component in the program.

V. EXPERIMENTS WITH DETECTION PERFORMANCE

In this section we report some experiences with training
the boosted Haar cascade for detecting triangular traf-
fic signs. Currently we employ the training tool from
OpenCV [17], [9], which requires i) a large set of positive
samples (cropped images of desired objects), and ii) a
collection of backgrounds (images in which no objects are
present). The negative samples are automatically extracted
from the background images. In order to obtain proper
evaluation results, the training and evaluation sets are
extracted from different video materials. For the purpose
of this study, 1100 positive evaluation samples have been
annotated using Marker on a recently acquired video.

A. Impact of the training set size

There are many parameters which affect the perfor-
mance of the trained detector, however here we focus
on the impact of the training set size. For each training
configuration we report the algorithm which obtained
best evaluation results. The results are summarized in
Table I. The columns of the table correspond to number

TABLE I
IMPACT OF THE TRAINING SET TO THE DETECTION PERFORMANCE

Npos Nbg recall precision

352 110 68% 46%
898 230 80% 64%
2154 711 96% 54%

of positive samples, number of background images, the
obtained detection rate, and the obtained precision. The
first row of the table is taken from [7], while the second
two rows correspond to recent experiments. The results
clearly show that the performance increases with increas-
ing sizes of the training collections. The low precision is
problematic, and therefore represents an important subject
for future work.

B. Impact of scale discretization

As explained in III-A, the detection window is applied
over the whole image on many scales, starting at 24×24
and finishing when the detection window becomes greater
than the input image. The factor between two neighbour-
ing scales is a major parameter of the detection algorithm.
A typical distribution of results is shown in table II. The

TABLE II
IMPACT OF SCALE DISCRETIZATION TO DETECTION PERFORMANCE

sf recall precision

1,35 97.2% 13%
1,31 98.1% 11%
1,3 98.1% 13%
1,28 97.6% 11%
1,2 97.6% 24%
1,1 94.4% 6%
1,05 91.0% 3%

columns of the table correspond to the scale discretization
factor (the ratio between successive scales during the
detection), and the obtained recall and precision for a
given classifier. Although it was expected that smaller
scale factors would always result in larger recall, this does
not happen in practice due to poor performance of the



grouping algorithm (cf. III-A) when there are too many
detections.

C. Accuracy of the grouping algorithm

We examined the accuracy of the grouping algorithm
as the distance from the true response center to the center
of the reported position of the group. The distance is
normalized with respect to the size of the true response.
The distribution of the obtained relative distances in
situations when the object is far from the image border
is shown in Fig. 6.
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Fig. 6. The distribution of the relative deviation of the grouping
algorithm.

We can see that, although most grouped responses are
quite close to the true position, many grouped responses
deviate considerably. The mean relative deviation is about
6%, which corresponds to about 3-4 pixels when the
object is 60 pixels wide.

D. Discussion

The best algorithm detects most signs in at least two out
of four images, regardless of the detector variant. Most of
missed detections occur when the sign is farthest from the
camera. When the sign is near the border the frame tends
to moved away from the border, as illustrated in 3. False
positives usually appear on the roadway, or on the roofs.
False positives occasionally appear even in the clear sky
or in the tree tops. This happens because the detection
algorithm performs local photometric equalization before
applying the classifier to the detection window.

VI. IMPACT OF VARIOUS OPTIMIZATIONS TO THE

DETECTION SPEED

A straightforward implementation of detection based
on a boosted Haar cascade is too slow for practical use.
Processing of single 720x576 image approximately took
2.25 seconds on a modern test machine, with full compiler
optimization. In this section we review the impact of the
following optimization techniques to the detection speed:

• parallel programming
• replacing C++ source code with machine code
• modifications of manipulation with data structures

A. Parallel programming

Most modern processors have multiple cores. However,
conventional languages such as C++ or Java can not
exploit this processing power without delving into syn-
chronization intricacies between processes and threads.
This problem has been addressed by a new technology

called OpenMP OpenMP is an application programming
interface which supports implicit shared memory multi-
processing9.

The implementation of boosted Haar cascade detector
has six nested for loops, over x, y, scale, cascade level,
Haar classifiers and individual rectangles. In the straight-
forward implementation this segment of source code was
taking 96% of time execution. By employing OpenMP
in second nested loop, the performance was improved
significantly on multi-core processors. If a block contains
six nested loops than total number of iterations ntotal is:

ntotal = n1 × n2 × n3 × n4 × n5 × n6 (1)

where ni is the number of iterations of the i-th loop.
On a parallel machine with nthreads threads we can hope
to decrease the total count of iterations to:

ntotal =

n1 × n2 × n3 × n4 × n5 × n6

nthreads

(2)

It should be pointed out that parallelizing the 6th or
the 2nd loop is not the same thing. When master thread
encounters a parallel region it forks to a team of threads;
after all threads complete their jobs, they join the master
thread. Forking and joining uses valuable processor time,
so it is better to do as little forks/joins as possible. For
example, if the 6th loop is parallelized then the total
number of forks/joins is 1

nthreads

∏6

i=1
ni, while if the

2nd loop is parallelized, the number of forks and joins is
1

nthreads

∏2

i=1
ni. Thus we see that it is better to optimize

the 2nd loop than the 6th. Also, some loops can not be
parallelized because of the loop carried dependencies. In
our case, this holds for the first loop.

After applying this optimization as sketched above, the
performance on a dual core system increased for 87%.

B. Replacing C++ source code with machine code

Modern compilers still can not exploit all processing
power offered by modern hardware. In particular, many
x86 compilers refrain from generating instructions from
the multimedia subsets such as Streaming SIMD Exten-
sions (SSE). Thus, the conversion from the type double
to the type int which often needs to be performed in the
implementation of the detection is by default performed
by x87 instructions, and not by the considerably faster
cvtsd2si instruction from SSE. Replacing the C++ trunca-
tion code with this instruction improved the performance
for 7%.

C. Modifications of data structures

The detection algorithm has to use complex data struc-
tures which require complex calculations of memory ad-
dresses. This problem can be alleviated by precalculating
references to the data structures as soon as possible, in or-
der to release the burden on inner loops. The implemented
solution improved the performance for 77%

9More information about OpenMP is available from http://www.
openmp.org.



D. Overall impact of optimizations

The contribution of all optimizations is summarized in
Table III. Experiments have been performed on proces-
sor Intel Core 2 Duo 2.4 GHz resulting in the current
performance of 0.66 seconds per frame.

TABLE III
IMPACT OF INDIVIDUAL OPTIMIZATIONS

optimization processing time throughput

initial state 2.25 s 0.4 fps
OpenMP 1.2 s 0,8 fps

machine code 2.18 s 0,5 fps
modified C++ code 1.26 s 0,8 fps
all optimizations 0.66 s 1,5 fps

VII. CONCLUSION

We have presented architectural and implementation
details of our software system for streamlining the col-
lection of training samples for machine learning based
detection and recognition algorithms. The presented ar-
chitecture allows a flexible cooperation between Java
GUI and independently developed and tested produc-
tion components in C++. We have also presented some
experiments dealing with the training, performance and
optimization of the detector based on a boosted Haar
cascade. The developed software shall be exploited in our
future work, where we shall research ways to obtain better
detection and recognition results as well as even more
streamlined collection of the training data.
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