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ABSTRACT 
 

The principle behind Intelligent Networks (IN) is the separation of call and bearer 

control from service control. This enables the rapid introduction of new services, 

features and the ability to offer integrated service packages thereby reducing the 

reliance on switch manufacturers for the provision of new services. 

 

Global System for Mobile communications (GSM) is the accepted standard for mobile 

communications not only in Europe, but world wide. GSM is also one of the first 

networks with a standardised modularised approach to its architecture.  

 

This thesis presents an architecture to integrate GSM and IN networks enabling the 

provision of GSM mobility services from an IN platform. The approach is to move 

mobility provision and management functions within a GSM network to an IN 

platform, so providing mobility as an IN service rather than a GSM specific service. 

This proposal will enable the rapid creation of mobility based value added services. 

Furthermore the proposed IN - GSM integration scenario can be seen as an 

evolutionary step towards third generation mobile system UMTS.  

 

The approach taken is to transform existing GSM mobility procedures such that they 

can fit the IN Service Independent Building blocks (SIB) architecture, thereby 

coexisting with IN SIBs on a Service Control Point. The GSM switching and radio 

access network is retained to enable the maximum reuse of the existing system. 

 

The thesis presents results from simulation studies carried out to compare the 

performance of the proposed architecture against the GSM network. Signalling 

protocol based simulations models were developed on ‘OPNET™’ (a general purpose 

simulator), for both the proposed architecture and the GSM architecture. The GSM 

simulation model was validated using data from Cellnet’s GSM network. Results 

show the comparison between the two networks under different behavior conditions 

and the  indications are that apart from the increase in signalling load on the core 

network, the IN approach does not significantly degrade the performance of GSM 

mobility procedures.
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1. INTRODUCTION 

In this thesis a new architectural approach [i, ii] based on Intelligent Networks (IN) 

[13-16, 18-21] is presented for the core network of a GSM [1, 2] mobile network. 

This approach provides a means for the evolution of the second generation mobile 

system GSM to Universal Mobile Telecommunications System (UMTS) [38-40], the 

third generation mobile communication system. The advantage of this approach over 

the existing GSM core network architecture is its use of IN’s modular and distributed 

concepts. The new architecture will offer a platform for: 

• The rapid and easy introduction of new services in the GSM network. 

• An UMTS control platform evolving from GSM. 

• Backward compatibility of the GSM radio access network in an UMTS 

environment. 

• The integration of GSM mobility management services with fixed network IN 

services. 

Simulation models were created to study the effect of moving GSM call control and 

mobility management to an IN platform on the control network and on the quality of 

service as seen by the user. 

 

GSM designed in the 1980s has a modular approach to its design and encompasses 

features such as distributed processing and functional separation of call control from 

the switch. GSM is a digital feature rich network. These factors have combined to 

give rise to a popular standard for mobile communications which, although initially 

designed for Europe, has become a world standard.  

 

GSM provides excellent voice services and supplementary features are included in its 

standards, but it lacks the environment for the creation of new services as offered by 

IN, as it predates IN standards. The ability to create and offer new services rapidly is a 

primary discriminator for operators and service providers. To enable rapid and easy 

service creation in GSM, an Intelligent Network environment needs to be introduced 

to the GSM network. The solution offered by the industry is the Customised 

Application for Mobile network Enhanced Logic (CAMEL) [11, 12], which offers 

GSM calls access to IN services in the users home network. CAMEL provides a 
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bridge between two separate networks, GSM and IN. In CAMEL there is no true 

integration of the two networks and call processing is suspended in GSM while IN 

services are executed. This is adequate for the type of services defined in CS1 [22], 

but as the complexity of services grow a truly integrated solution is required: an 

integrated solution that will be of mutual benefit to both networks.  

 

UMTS is in the process of being specified by European Telecommunication Standards 

Institute (ETSI). UMTS is a system capable of supporting a variety of mobile access 

networks sharing a common core network. Compared to today’s networks, a stronger 

integration of mobile and fixed networks is expected of the UMTS network; it also 

supports access bandwidths of up to 2Mbits/s. The scale of GSM’s success and the 

investment made in GSM has necessitated a new line of thought: it is now widely 

accepted that the air interface for UMTS will be (and needs to be) revolutionary while 

the UMTS core network will take an evolutionary path [35] from the GSM core 

network. Furthermore GSM is expected to provide traditional voice services into the 

foreseeable future, while UMTS at its inception will be used mostly for provision of 

multimedia and high bit rate data services. Any future third generation network must 

provide backward compatibility to GSM. It is envisaged that both GSM and UMTS 

networks will coexist, preferably sharing a common core control network and hence 

any new core network must offer backward compatibility with the GSM radio access 

network.  

 

The UMTS core network is based on the IN concept. Mobility and service 

provisioning in UMTS is offered from the IN platform as added intelligence. 

Therefore, the GSM core network and IN networks must be integrated to form the 

basis for the evolution to the UMTS architecture. The requirements for such an 

architecture as outlined in [34] are that it must: 

• encompass the existing GSM and IN architectures; 

• reduce the time and effort needed to enhance these standards, by focusing 

available expertise / resources onto a common framework, thus avoiding 

replication and minimising cost. 

• protect investment to date. 
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• provide a modular structure so that operators / manufactures can pick and choose 

what they implement. 

• provide a ubiquitous, standard platform, but with interfaces, such that operators 

and manufacturers may compete by offering proprietary and differentiating 

features. 

• provide a “single track” approach for evolving towards UMTS. 

The key drivers for the integration of GSM and IN from the GSM perspective are, 

therefore, the need for GSM evolution to UMTS while maintaining backward 

compatibility with the GSM access network and the need for a service provision 

environment in GSM. 

 

The principle argument in favour of IN is its four-layered model[18], which enables a 

modular approach to network design, distribution of intelligence and technology 

independence. Furthermore IN is an ‘overlay’ network, which is independent of the 

access network and this is exploited in UMTS to bring about the closer integration of 

mobile and fixed networks and manage multiple access networks from a single control 

platform. It is essential to note the difference between the IN concept and the IN 

implementation today. The IN conceptual model is expected to remain constant and 

provide an uniform approach to IN implementations, which will evolve with the 

technology of the day to meet increasing service and performance requirements. IN is 

restricted to some extent today by the lack of technology to support it, rather than 

being limited by the concept itself. 

 

The key to IN lies in the Service Independent Building Block (SIBs) [13, 19, 23]: 

these are reusable network-wide units from which services are composed. New 

services are implemented using the SIBs from the existing library of SIBs and new 

SIBS are only introduced as and when required. This technique results in a fast and 

efficient method of service implementation.  

 

In this thesis, GSM call and mobility functionality are defined in terms of SIBs, which 

will enable the close integration of these functionalities with supplementary service 

SIBs. The result is the ability to use GSM functionality in any other fixed or wireless 

networks based on IN for mobility management, security and call control. Hence 
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service such as Universal Personal Telecommunications (UPT)[70,71] can be 

provided using GSM SIBs. 

 

The main hindrance to GSM-IN integration is signalling. GSM uses the Mobile 

Application Part (MAP) [2, 6, 9], specifically designed for signalling in the GSM 

core network. Intelligent networks use the Intelligent Network Application Part 

(INAP) [17, 73-75] developed with services and applications in mind [33]. Both 

protocols are based on the ITU Common Channel Signalling System No7 (SS7) [64-

67] and use the Transaction Capabilities [69] offered by SS7. Although they are both 

similar in principle, the packaging used is different. Due to the limitations of 

processing speed and network capabilities at the time GSM standards were defined, 

GSM procedures were ‘hard-wired’ for optimisation by offering it as one package; IN 

procedures are modular in definition. The distinction between the two protocols is 

made at the beginning of a signalling transaction when protocol identifiers are used to 

distinguish between INAP and MAP. From then onwards, protocol identifiers are not 

used and only message numbers are used. Both MAP and INAP messages share the 

same range of message identity numbers, so that simply integrating both protocols 

would result in contention 

 

A standardised approach is required for integrating the two protocols. The UMTS 

protocol will contain elements of both the INAP and MAP. The current trend is that 

IN is being expanded to include mobility and GSM to include IN functionality, 

resulting in two sets of super-standards[34]. In this thesis a ‘pre-UMTS’ protocol 

focusing on mobility management is presented, by retaining the modularity and 

reusability of IN and by including GSM’s tried and tested mobility functionality. This 

brings together the best of both worlds and prevents the wheel from being reinvented. 

There is no benefit in either of the protocols inventing functionality found in the other. 

If the functionality required is not sufficiently supported by the existing protocols, 

then the existing protocols could be extend to support the requirements. The benefit is 

that both networks will mutually benefit from the extensions. The architecture 

presented in this thesis enables the evolution of the GSM core network to support 

UMTS and retain the capability to continue to support the GSM radio access network 

from the evolved core network.  
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MAP was designed and developed with the specific aim of achieving speed and 

optimisation for the GSM network. To date no publication has investigated the 

performance issues related to moving GSM mobility management and call control to a 

more generic architecture and platform. This thesis presents results on the effect of the 

control network and quality of service (as perceived by the user) as a result of  

providing GSM functionality from an IN platform. Furthermore, the use of an IN 

architecture can result in the distribution of GSM functionality which may not be 

optimum for a mobile network. Therefore the simulation models investigate the effect 

the various physical IN architectures will have on the signalling network and on the 

GSM procedures. 

 

There are two obvious paths for integration and evolution, GSM into IN or vice versa. 

This thesis argues that mobility, in principle, is independent of the access network and 

by no means restricted to the cellular networks. Intelligent Networks on the other hand 

are access network independent and offer the same range of services across the 

multitude of access networks, therefore absorption of GSM into IN is supported here.  

 

This thesis describes in detail a ‘pre-UMTS’ architecture based on the integration of 

the GSM and IN networks. The focus of the contribution is on the provision of GSM 

call control and mobility management from the pre-UMTS IN platform and the related 

performance issues. This introductory chapter has served to summarise the 

contribution of this thesis in the context of GSM migration to UMTS. 

 

Chapter 2 serves as a brief introduction to the GSM network covering elements of 

both the radio access network and the core network. Signalling in the various parts of 

the GSM network is described with emphasis on the core network signalling protocol, 

the mobile application part. The signalling procedures for GSM mobility management 

and call control in the core network are discussed. 

 

Chapter 3 introduces the concepts behind Intelligent Networks and its role in 

supplementary service provision today. The IN conceptual model which describes the 

various levels from service description to service execution across the physical entities 
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is  given. A detailed description of the signalling protocols used within the IN 

framework is provided, as signalling is central to the research presented in this thesis. 

 

The integrated GSM / IN architecture proposed by the author is described in Chapter 

4. The working of GSM mobility management and call control from an IN platform 

and the resulting signalling procedures are also described and the modifications 

necessary to the existing GSM network are identified. 

 

The simulation models developed by the author to investigate the performance of the 

architecture presented in Chapter 4 is described in Chapter 5. This chapter details the 

modelling of the various parts of the network, the assumptions made for the 

simulation study and modelling user mobility. The verification and validation of the 

models are discussed.  

 

In chapter 6, the various physical architectures that could result from GSM - IN 

integrated case are presented. Simulation models for these architectures are discussed 

and the results of the simulation are studied to determine the most suited physical 

architecture.  

 

In chapter 7 the approach taken in this thesis is validated and verified. A comparison 

with other approaches tackling the integration of GSM and IN is made. Finally, 

Chapter 8 concludes with the merits of this approach highlighted and its limitations 

identified. Areas for further work are also given. 
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2. THE GSM NETWORK  

2.1 AN INTRODUCTION 

Global System for Mobile communications (GSM) was born from the need by 

several European countries to introduce a common mobile communication network 

and overcome the limitations of the existing analogue system. The analogue system 

was limited in several ways, including its inability to cope with the unprecedented 

growth in the demand for mobile communications, the use of open channels allowing 

for easy ‘eavesdropping’ and ‘cloning’, the inflexibility in the introduction of value 

added services and the lack of a common network across Europe, among others. 

In 1982 the Conférence Européenne des Postes et Télécommunications (CEPT) 

formed the “Groupe Spécial Mobile” (GSM) (later to be called Global System for 

Mobile communications) to define the standards for a new mobile communications 

system. Although GSM was introduced as an European specific standard, it has been 

adopted by several countries world wide. The system was required to allow roaming 

in participating countries, offer services and facilities found in other public networks 

and use an internationally standardised signalling system for interconnection of 

mobile switching centres and location registers. 

In the late 1980s it was realised, the specification and implementation of GSM could 

not be achieved in a single instance. A limited GSM roll-out (phase 1) was effected in 

1991, offering basic voice telephony only. The specifications for phase 2, an 

‘enhancement’ to phase 1, includes new supplementary services and the introduction 

of half rate speech channels. GSM as a standard has been in a constant state of 

evolution since its inception and will continue to do so into the foreseeable future. 

GSM as a network is not defined by a set of rigid and stagnant standards. It is a 

network not only willing to evolve, but by the very nature of its specifications it needs 

to evolve. These qualities embodied within GSM make the results described in this 

thesis feasible and a practical reality.  
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“A platform [GSM] which is full of hooks, mechanisms and not at least 

potential to continue to build on and provide mobile communications in all 

its possible forms and varieties. Even before Phase 2 standard has been 

completed, GSM has grown far beyond its original geographical 

“limitations” and the Global System for Mobile communication really 

starts to deserve its name. With Phase 2, and in particular Phase 2+, GSM 

will also expand far beyond its originally intended functional boundaries 

and open up for new applications, new access methods, new technologies 

and thus altogether for new categories of market, needs and users. 

It looks promising.”  Jonas Twingler, GSM co-ordinator of ETSI. [1] 

GSM is one of the first ‘intelligent’ networks with distributed processing, clear 

separation between the switch and bearer control and to use Common Channel 

Signalling System No.7. This provides GSM the hooks, mechanism and the potential 

to evolve and grow. This potential combined with the similarities between Intelligent 

Networks and GSM network architectures will be exploited will in this thesis to 

present an evolutionary path to a 3rd generation of mobile communication network.  

Although GSM has been thoroughly covered in [1, 2], a brief overview of GSM is 

given in this chapter, with the aim of highlighting the clear separation between GSM’s 

radio access and core networks. The clear separation of core and access networks are 

vital to the evolution of any network to ensure that one is not restricted by the other 

and changes to one does not necessarily result in the replacement of the complete 

network. The evolutionary path presented in this thesis relies on this separation.  

The following sections will highlight the separation between the core and access 

networks and will show that the key to call, service and mobility management lies in 

the core network and not the radio access network. For our purposes, a detailed 

explanation on the workings of the radio access network is not necessary and therefore 

will not be presented. 
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2.2 GSM SUB SYSTEMS 

GSM architecture [1-3] is composed of two main parts; 

• The radio access network or the Base Station Subsystem. 

• The switching, call handling and mobility management network, referred to as the 

Network and Switching Subsystem in [2] and referred to as the GSM ‘core’ 

network in this thesis. 

The primary object of this research will involve the core network and this chapter will 

reflect this, but to present a complete picture elements of the radio access network are 

introduced. 

Human interaction with the GSM network is via the Mobile Station, which consists of 

the Mobile Terminal (MT) and the Subscriber Identity Module. The mobile terminal 

provides the user interface and the radio connectivity to the network. The subscriber 

identity module is a smart card with information pertaining to the customer, security 

parameters and the ability for the network to identify the user. The separation of the 

mobile station into two entities allows the GSM network to cater for both terminal 

mobility and personal mobility. Unlike the analogue systems where a user is tied to 

the terminal, in GSM two users A and B can share terminal X and maintain individual 

billing as well. Hence subscriber identity module roaming (i.e. personal mobility) is 

catered for in GSM.  

The Base Transceiver Station (BTS) or ‘cell’ provides the means for two way radio 

communications with the mobile terminal. Any signal processing specific to the radio 

interface is handled by the cell. A user must keep the network informed of his 

whereabouts i.e. update his location, so that the network can direct calls to the users 

current location. The mobile terminal monitors the signal strength from the 

surrounding cell sites and reports the identity of the cell site with the strongest signal 

to the network. The cell identity is associated with the user and when the user needs to 

be contacted, the cell site is paged. Cell sizes vary in size from a few meters to a few 

kilometres in radius. In areas where the cell sizes are small, a user on the move will 

generate a large volume of signalling traffic in location update procedures as a result 
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of the frequent cell boundary crossings. In order to minimise the volume of signalling 

traffic, cells are grouped into Location Areas (LA) and the user reports the location 

area currently being roamed rather than the cell identity. Now the user need only 

update the network when a location area boundary is crossed.  

Several cells are managed by the Base Station Controller (BSC), which is responsible 

for the allocation, release and management of radio channels. The BSC is a small 

switch linking the several cells under its control to the Mobile Service switching 

Centre (MSC). The radio access network includes the mobile terminal, BTS and the 

BSC as illustrated in Figure 2-1. 

LA2

BSC

LA1
LA3

Abis
Interface

Radio
Interface

To MSC

BTS

Mobile
Terminal

Base
Station
Controller

BSC

Location
Area

A
Interface

 

Figure 2-1 : GSM Base Station Subsystems. 

The MSC is primarily a large switching centre providing connectivity between mobile 

stations within it’s area of coverage and the outside world. A MSC’s coverage is a 

geographical area, determined by the network operator. The mobility management 

functions catered for by the MSC include setting up of mobile-originating and mobile-

terminating calls, inter-BSC, intra-MSC and inter-MSC handovers, and location 

updating. 

Once a mobile station comes into the coverage of a MSC, it becomes the 

responsibility of the Visitor Location Register (VLR) attached to the MSC. VLRs are 

temporary databases containing data necessary to setup calls to and from the mobile 

station by the MSC. Information contained within the VLR includes the location area 

being roamed, the mobile stations roaming number, the International Mobile 

Subscriber Identity and Mobile Station ISDN Number. The VLR keeps the Home 

Location Register (HLR) updated on the location of the user. The VLR’s functionality 
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is in two parts: a database for temporary storage of user data as described above and 

(the second part) mobility management and call handling control functionality, which 

includes procedures such as registration of users, call setups, authentication, location 

updating, among others. Although the standards draw a clear distinction between the 

MSC and the VLR, in practice they are implemented as one entity. 

All mobile networks need to maintain a record of a user’s present whereabouts in a 

permanent centralised location, the HLR. The HLR contains user subscription 

information in addition to the present location of the user. The user’s subscription 

parameters include roaming limitations, supplementary services subscribed to, 

charging information, etc. A user’s HLR can be identified from the user’s phone 

number as a GSM network has several HLRs. The HLR also houses the 

Authentication Centre and the Equipment Identity Register. In addition, the HLR 

offers mobility management and database management functionality.  

Upon interrogation, the HLR provides routing information to the user’s present or last 

known location in terms of address of the roaming MSC, local mobile terminal 

identity and the VLR  address.  
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Figure 2-2 : The complete GSM architecture. 
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For a call destined for the GSM network where the originating network cannot 

directly interrogate the users HLR, the call is routed to a Gateway MSC (GMSC) by 

the originating network. The GMSC interrogates the HLR and routes the call to the 

subsequent MSC. The MSC, HLR, VLR and GMSC make up the core network as 

illustrated in Figure 2-2. 

2.3 SIGNALLING IN GSM 

For a network to function successfully, it must have the ability communicate within 

the network and with entities outside its boundaries. The GSM network is no 

exception, but uses a larger variety of signalling protocols [1,2,4,7,9,10] and different 

transport mechanisms compared to other networks. The transportation mechanisms 

[1,2] used by GSM signalling protocols are; 

1. Link Access Protocol for Data mobile channel (LAPDm) is used between the 

mobile terminal and cell (i.e. the radio interface); this is a GSM specific signalling 

standard. LAPDm makes uses of the dedicated Standalone Dedicated Control 

CHannel (SDCCH) as its carrier over the radio interface. The data rate over the 

SDCCH channel is very slow (≅ 1Kbps) and it is only used for signalling outside a 

call.  

Once a call has been setup and a voice/data channel is available, signalling 

messages are transmitted over the voice channel by ‘stealing’ a burst, i.e. the voice 

channel is used as a carrier for signalling data.  This is referred to as the Fast 

Associated Control CHannel (FACCH). The faster data rate of FACCH is useful 

when time critical procedures such as handovers need to be conducted. 

2. The Abis interface between the cell sites and the BSC makes use of a derivative of 

NISDN signalling, Link Access Protocol for the ISND ‘D’ Channel (LAPD), this 

is a 64 Kbits/s signalling. 

3. For the ‘A’ interface and for interfaces between the various core network entities 

(such as VLR, HLR, MSC, GMSC), 64Kbits/s SS7 channels are used. 

 The signalling protocols that use the various transport mechanisms are: 

1. Radio Interface Layer 3 - Mobility Management (RIL3-MM) - between the mobile 

terminal and the MSC/VLR for user location and security management. 
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2. Radio Interface Layer 3 - Call Control (RIL3-CC) - between the mobile terminal 

and the MSC/HLR for call control management. 

3. BSS MAnagement Part (BSSMAP) - between the MSC and the BSC for messages 

specific to a connection.  

4. Mobile Application Part (MAP) - between the various core network entities for 

non-call related signalling. 

5. ISDN User Part (ISUP) or Telephone User Part (TUP) - between core network 

switches for call related signalling. 

BSSMAP  

Radio ch.

LAPDm

RIL3-RR       

64kbit/s ch.

LAPD

64kbit/s ch.

MTP

SCCP

64kbit/s ch.
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SCCP

64kbit/s ch.

MTP
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MS BTS BSC
Relay 
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Anchor
MSC/VLR HLR

Protocols

Transportation
Mechanism

Distribution

Radio interface Abis interface A interface E interface I interface

MAP            

MAP
Radio Interface Layer 3 - Mobility Management         

Radio Interface Layer 3 - Call Control        

TCAP

 

Figure 2-3 : GSM signalling architecture
1
. 

Between the MSC and the mobile terminal, the Protocol Discriminator (Eg. Call 

Control (CC), Radio Resource(RR), Mobility Management(MM)) is used as a means 

of addressing signalling messages. The nodes use the protocol discriminator in 

deciding if the message is destined for that node or if the node needs to act as a 

transparent relay. Once at the appropriate node, the protocol discriminator is used to 

decide on the type of processing required. For example, in the case of a message with 

the protocol discriminator CC, the BSC and BTS act as relay points. Over the A 



Page 27  

interface, the SS7 Signalling Connection Control Part (SCCP) basic connection 

oriented service (virtual connection) is used for messages to the BSC belonging to a 

particular mobile terminal, where each mobile terminal has an independent 

connection. A distribution layer is added on top of the SCCP layer to add a header to 

messages on the A interface. The header distinguishes between Direct Transfer 

Application Part and BSSMAP messages. The BSC depending on the header, either 

relays the message to the mobile terminal or processes the message. 

2.4 MOBILE APPLICATION PART 

It is worth taking a diversion to look at how GSM and Signalling System No. 7 (SS7) 

interact. SS7 is the signalling system used within the GSM core network and for 

signalling exchanges with external networks. Most of the signalling in mobile 

networks results from tracking users and, therefore, is non-call-related signalling. 

GSM has defined a signalling protocol, the Mobile Application Part (MAP) which 

uses SS7 for non-call-related and call-related signalling within the GSM core network. 

For call-related signalling between GSM switches (MSCs) and the external network, 

SS7’s Telephone User Part and ISDN User Part are used. 

Transaction 
Capabilities 
Application 
Part (TCAP)

Component Sublayer

Mobile
Application
Part (MAP)

Application Service 
Elements (ASE)

Signalling Connection 
Control Part (SCCP)

Message Transfer Part (MTP) Level 3

Message Transfer Part (MTP) Level 2

Message Transfer Part (MTP) Level 1

Telephone
User 
Part

(TUP)

ISDN User Part
(ISUP)

Transaction Sublayer

 

Figure 2-4 : SS7 and GSM. 

                                                                                                                                            
1
 Illustration based on Figure 2.20 in [2]. 
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The MAP functionality makes use of SS7’s Transaction Capabilities Application 

Part (TCAP). Transaction capabilities in turn uses the Signalling Connection Control 

Part (SCCP) [68]. SCCP provides the upper layers with connectionless virtual path 

type signalling capabilities using SS7’s Message Transfer Part. The workings of the 

message transfer part are not directly relevant to the discussion here and it can be 

safely assumed that SS7 messages will get to the correct destination. At each node 

there may be several users of SS7 and the message needs to be passed on to the 

correct user. The introduction of connectionless services has made the addressing 

capabilities of the message transfer part inadequate for identifying the user.  

The SCCP overcomes this by the addition of Sub-System Numbers which identifies 

the users of the SCCP functionality, like GSM MAP, intelligent network’s INAP and 

ISUP. The sub-system number is a 8 bit code and the number allocated to MAP is 

00000101(05 hex). In addition, further sub-system numbers are allocated to individual 

entities in GSM as shown in Table 2.1.  

User SSN Comments 

Whole of MAP 00000101 (05 hex) Reserved for possible future use 

HLR 00000110 (06 hex)  

VLR 00000111 (07 hex)  

MSC 00001000 (08 hex)  

EIR 00001001 (09 hex)  

Allocated for Evolution 00001010 (0A hex) Possible Authentication Centre 

Table 2.1 :  Sub-system codes for MAP 

By specifying the originating  SSN and the destination SSN, the MAP interface is 

identified. Hence MAP can be seen as a collection of sub-protocols based on the 

interfaces shown in Figure 2-5. 

The introduction of networks such as GSM and IN have led to the need for non circuit 

related signalling and remote operations. In a mobile network location registering is a 

procedure that occurs outside a call where the network database is informed 

periodically on the whereabouts of the user; thus will need to make use of connection-

less signalling. To accommodate these requirements, the transaction capabilities layer 
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was introduced to SS7. This is a protocol offering connection-less traffic based 

services. Transaction capabilities supports both real time and off line (non time 

critical) based services; for instance, the translation of an freephone number is a real 

time service and the retrieval of statistical information on a exchange is not time 

critical (off line).  

MSC

VLR HLR

MSC

VLR

EIR

GMSC

SMS
 Gateway

MS MAP / F

MAP / I

MAP / D

MAP / C

MAP / C

MAP / H

MAP / E MAP / G

 

Figure 2-5 : MAP interfaces between core network entities
2
. 

Transaction capabilities is a flexible transfer mechanism which offers the tools 

necessary for a user to carry out remote operations on other nodes and obtain the 

results of the operation in information elements termed components. It has two parts: 

the component sub-layer and the transactions sub-layer.  

 

The component layer manages the relationship between individual remote commands 

and their responses within a dialogue. This transaction capability functionality means 

that MAP does not need to correlate commands with the appropriate responses. Often 

replies to remote invocations are contained in the ‘Return Result’ or ‘Return Error’ 

components associated with the ‘Invoke’ component. Although the reply messages 

have message names specified in the recommendations, the actual reply may not 

specify a name and is only meaningful in the context of the invoking message.  

The transaction layer manages the end-to-end exchange of components, i.e. it manages 

the dialogue. Two types of services are offered by the transaction layer: the 

                                                 
2
 Illustration based on Figure 2.22 in [2]. 
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unstructured dialogue where a response is not expected and a structured dialogue for 

two way communications. For bi-directional dialogues a unique ID is allocated, which 

allows the remote entity to co-ordinate the components. 

Above the transaction capabilities is MAP. MAP communications are defined by a 

collection of Application Service Elements (ASEs) which contain the operations, 

errors and parameters invoked and sent to the communicating entity. Examples of 

ASEs include location registering, handovers, authentication, etc. Each entity involved 

in the procedure will have an ASE for the procedure. For an example, both the MSC 

and VLR are involved in issuing a new TMSI and therefore both have the 

‘reallocation of TMSI’ ASE. To execute a procedure, ASE from one entity will 

communicate with ASE from the other entity. 

2.5 MOBILITY PROCEDURES IN GSM 

What are mobility procedures? For the purpose of this study, mobility procedures will 

be defined as the functionality required to offer and maintain communications with a 

mobile user at any given time and any functionality resulting as a consequence. 

Within GSM, authentication, ciphering and security are a integral part of the network 

and are intertwined with mobility functionalities.  

The aim of the study is to model mobility functionalities independent of the access 

network used. As such GSM radio access functionality is not covered here. The 

emphasis, as the reader will discover is, on the exchange of messages by mobility 

functions within the core network. The negative outcomes of mobility procedures are 

not discussed unless deemed significant. 

2.5.1 LOCATION UPDATING PROCEDURE 

For a mobile network to offer connectivity to a mobile user, the location of the user 

must be known. The procedure of a mobile terminal informing the network of its 

whereabouts is referred to as location updating[2,5,6,9]. The request by a mobile 

terminal for location updating upon entry into every new cell (which may be as small 

as 100 meters in radius), will place undue stain on the network in terms of excessive 

signalling traffic. To optimise network performance and reduce signalling load, cells 
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are grouped into location areas. With location areas, the mobile terminal is only 

required to update its location when it enters a new location area. In addition, the 

network requires the mobile terminal to carry out periodic location updating. The time 

between periodic location updates is set by the network operators and can vary from 6 

minutes to a little more than a day. There are other situations (such as a VLR failure) 

where location updating procedure is initiated; these situations are rare compared to 

others and are not described here. 

A user’s location is stored in three different locations in the GSM network; the 

subscriber identity module, the VLR attached to the roaming MSC and the HLR. For 

the purposes of routing a mobile terminating call, the HLR only stores the destination 

of the MSC being roamed, it being the VLR that stores the location area the mobile 

terminal is currently in. This leads to two variations in the location updating procedure 

(illustrated in Figure 2-6): 

MSC old
VLR VLR

MSC new

LA 1              

BSC1

LA 2

BSC2

               LA 3

BSC3

Intra-MSC 
Location Update

HLR

Inter-MSC 
Location Update  

Figure 2-6 : Two location updating scenarios in GSM 

• Intra-MSC location update : The mobile terminal moves into a new location area 

within the same MSC. In this case only the VLR needs to be informed and the HLR 

need not be informed as the MSC roamed is unchanged. 

• Inter-MSC location update : The mobile terminal comes into the coverage of a 

new location area controlled by a different MSC to the one being roamed. In this 
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case the VLR associated with the new MSC needs to be informed. The new VLR 

will then have to update the HLR with the new MSC’s address and the old VLR 

will have to delete the user from its records. 

Other cases where location updating may be initiated are not discussed here. 

2.5.1.1 INTRA-MSC LOCATION UPDATE PROCEDURE 

The procedure for a intra-MSC location update is given using pseudo code to describe 

it:  

MT  {Detects that coverage is provided by a new location area}  
Initiate a location update procedure 
{Transmit a LOCATION UPDATING REQUEST message over the standalone dedicated 
control channel. The message contains the International Mobile Subscriber Identity 
(IMSI)

3
 or the Temporary Mobile Subscriber Identity (TMSI)

4
 and the new location area 

identity} 
 
MSC Forward LOCATION UPDATING REQUEST to the VLR.  
 
VLR {Before the users records are updated with the new location, the user needs to be 

authenticated
5
.} 

Initiate authentication procedure 
{The VLR will make an authentication request to the mobile terminal}  

 
MT {Respond to authentication request} 

Send AUTHENTICATION RESPONSE message 
 
VLR IF (Authentication outcome = success) 

Begin 

                                                 
3
 The IMSI is the unique number associated with a mobile user. A GSM node is able to derive the user’s 

country of origin, the Public Land Mobile Network (PLMN) within the country and the HLR associated 
with the user from the IMSI. The SS7 address of the HLR can be derived using translation tables and 
hence the routing information. The IMSI comprises of the Mobile Country Code (MCC), Mobile 
Network Code (MNC) (eg. Vodafone, Cellnet) and the Mobile Subscriber Identification Number 
(MSIN). Usually the most significant digits of the MSIN will resolve the identity of the HLR. 
 
4
 When a user registers on a VLR, the VLR allocates a TMSI to the user. This avoids the IMSI being 

used over an insecure radio channel. The TMSI is half the size of IMSI, hence it improves radio channel 
usage. A TMSI is associated with a LA within each MSC/VLR. When the user moves on to a new LA, a 
new TMSI is allocated. The TMSI contains adequate information for a GSM node to identify the issuing 
VLR. 
 
5
 The authentication functions in GSM serves to prevent unauthorised access to the network. Each user 

is assigned a secret key called Ki, which is stored in the SIM and the user has no access to it. The Ki 
assigned to a user is also stored in the HLR. Running Ki and RAND (a random number varying from 0 
to 2128 - 1) through an algorithm known as A3, produces a Signed RESult (SRES). So when a request 
for authentication is made only the RAND is transmitted to the mobile terminal. Both the mobile terminal 
and the network posses the same A3 algorithm, hence they should produce identical SRESs. The 
SRES is transmitted back to the network and compared with the SRES produced by the network, if they 
are identical the user is authenticated. The possibility of  identifying the Ki from the SRES and RAND 
depends on the complexity of the A3 algorithm. 
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Request ciphering of radio channel. 
Issue a new TMSI { in FORWARD NEW TMSI message}  

End 
 
MT Acknowledge receipt of TMSI. 
 
VLR Update local record. 

 Forward LOCATION UPDATE ACCEPTED message to mobile terminal 
 {Location update procedure is complete}  

The signalling exchange is shown in Figure 2-7. 

VLR

MSC

Location update request Location update request (64)*

Start cipher (64)

Location update accepted (49)

New TMSI (57)

TMSI acknowledge (49)

Location update accepted

New TMSI

TMSI acknowledge

Authenticate (72)Authenticate request

Authenticate response Authenticate ack (59)

* Average SS7 message lengths in bytes.  

Figure 2-7 : GSM signalling messages for location updating procedure for MS within the 
same MSC (Values within brackets are the average SS7 message lengths[6] in bytes.).  

2.5.1.2 INTER-MSC LOCATION UPDATE PROCEDURE 

The procedure for inter-MSC location updates is as follows: 

MT  {Detects that coverage is provided by a new location area} 
Initiate a location update procedure 

 
  ~ As in the intra-MSC case ~ 

 
VLR IF (TMSI sent by mobile terminal ≠≠≠≠ TMSI from current VLR) 

Request user parameters from old VLR  
{From the TMSI the VLR recognises that the mobile terminal is registered on a different 
VLR. The VLR will request the old VLR to forward the users authentication and 
subscription parameters} 

 
IF (Mobile station identities itself with IMSI instead of the TMSI) 
Request user parameters from HLR 
{Request for the users authentication and subscription parameters is made to the users 
HLR, which can be identified from the IMSI} 

 
VLR IF (Received user data = TRUE) 

{Once the new VLR has the information on the user, the procedure is as the intra-MSC 
case} 

 
~ procedure as in intra-MSC case ~ 
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VLR IF (Location update procedure = successful) 

Inform HLR of new MSC 
{Sends a LOCATION UPDATE REQUEST message to the users HLR with the identity of 
the new MSC being roamed}  

 
HLR IF (LOCATION UPDATE REQUEST is received) 

Acknowledge new VLR 
{The HLR replies with the LOCATION UPDATE ACCEPTED message and forwards the 
user s subscription and authentication parameters (if requested)}  
Delete old VLR record 
{The HLR will request the old VLR to delete the user from the VLR’s records} 

The exchange of signalling messages is shown in Figure 2-8. 

MSCnew
VLRnew

Location update request Location update request (64)

Start cipher (64)

Location update accepted (49)

New TMSI (57)

TMSI acknowledge (49)

Location update accepted

New TMSI

TMSI acknowledge

VLRold HLR

Location update request (70)

IMSI request (54)

IMSI return (159)

Location update accepted (57)

Cancel user (55)

User cancelled (40)

Authenticate  parameter req (58)

Authenticate  parameter reply (217)

Authenticate (72)Authenticate request

Authenticate response Authenticate ack (59)

 

Figure 2-8 : GSM signalling messages for location updating procedure for MS register 
onto a new MSC (The continuos lines show message exchanges common to both 
scenarios.)            

2.5.2 MOBILE ORIGINATING CALLS 

Here the signalling procedure for a mobile originating call[1,2,6,7,9,10] is described; 

it is shown in Figure 2-9. A GSM caller wishing to make a call does not receive a line 

to the exchange as in fixed networks. The number being called is entered on the 

terminal and the ‘send’ button is pressed.  

MT IF (SEND button pressed = TRUE) 
Initiate outgoing call setup 
{The mobile terminal sends a SERVICE REQUEST message to the MSC. The SERVICE 
REQUEST message does not contain any confidential information as its  transmitted over a 
clear channel. Only the TMSI and the service identity are included.}  

MSC Forward SERVICE REQUEST to the VLR. 
{As a PROCESS ACCESS REQUEST message.} 
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VLRori
MSC ori

Service request Process access request (60)

Start cipher (64)

Access request accepted (63)

New TMSI (57)

TMSI acknowledge (40)

New TMSI

TMSI acknowledge

HLR ter

Authenticate (72)Authenticate request

Authenticate response Authenticate ack (59)

Setup Send info O/G call setup (69)

Complete call  (60)Call proceeding

Send routing infomation

 Routing infomation ack

MSC ter/
LE

IAM (58)

ACM (16)

ANS (16)

Alerting

Connect

Connect ack.
 

Figure 2-9 : GSM signalling procedure for a mobile originating call. 

VLR IF (User registered in VLR = TRUE) 
Initiate authentication procedure 
{As described in the location updating procedure} 

VLR IF (Authentication = Success) 
Begin 
 Issue TMSI 
 Cipher radio channel  
 Send ACCESS REQUEST ACCEPTED to MSC 
 {In reply to the request for service by the MSC on behalf of the mobile terminal.}  
End 

MT Acknowledge TMSI 
Send information for outgoing call 
{With a secure channel in place, the mobile terminal sends called party’s address to the VLR in 
a SEND INFO. FOR O/G CALL SETUP message.} 

VLR IF (Number called not barred) 
{The VLR checks the number and type of service against the user subscription parameters.} 
Send COMPLETE CALL  

MSC Inform the mobile terminal that the call is proceeding. 
IF (Called party = Mobile User) 
Get routing information from HLR 
{The called party’s HLR is interrogated for routing information to the mobile’s current 
location.}  
IF (Called party = Fixed network user) 
Determine routing information from number supplied. 
Being call establishment to the destination  
{Send IAM message to called party} 
Inform mobile terminal of called party status 
{Send a CALLED PARTY ALERTING or CALLED PARTY BUSY message to the mobile 
terminal. } 
IF (Call is answered)  
Send CONNECT message to mobile terminal 
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 MT IF (CONNECT message received) 
Send CONNECT ACKNOWLEDGE message to the MSC. 

2.5.3 MOBILE TERMINATING CALL 

For a call terminating at a mobile terminal [2,4,6,9], two scenarios need to be 

considered. First, the calling party is a mobile user (i.e. belongs to the PLMN), in 

which case the calling party’s MSC has the ability to interrogate the called party’s 

HLR as described in section 2.5.2. Once the HLR is interrogated, the call is routed to 

the roaming MSC. Once at the MSC, the call setup procedure to the mobile terminal is 

independent of the origin of the call. 

Not all callers have the ability to interrogate the HLR directly (e.g. calls from the fixed 

network); this is the second scenario. In such circumstances the call is routed to a 

Gateway MSC (GMSC). The GMSC extracts the called mobile’s MSISDN number 

from the incoming ISUP INITIAL ADDRESS message. The address of the mobile’s 

HLR is derived from the MSISDN number and the GMSC sends a request to the HLR 

for routing information to the mobile. Once the GMSC receives routing information to 

the MSC being roamed, the GMSC sets up a connection to the MSC. The procedure 

from the MSC onwards to setup a connection to a mobile terminal is as follows: 

MSC Request for information from VLR for incoming call setup.  

VLR  IF (Mobile terminal status receive = Enabled) 
{VLR checks the if the caller can receive calls (ie. the terminal is not switched off, or call 
forwarding has not been activated) and the service requested can be accommodated by the user.} 
Page mobile terminal 
{VLR will request the MSC to page the mobile terminal in the location area associated with the 
mobile terminal.} 

MSC Page location area.  
{The mobile terminal is paged over the paging channel.} 

MT Respond to page. 

MSC IF (MT respond = True) 
Request VLR to process an access request.  

VLR  Authenticate User 
IF (Authentication = Success) 
Begin 
 Cipher radio channel 
 Issue TMSI 
 Forward COMPLETE CALL message to the MSC.  
End 
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Figure 2-10 : GSM signalling procedure for a mobile terminating call. 

Once the mobile terminal tunes to the allocated radio channel, an address complete 

message is sent to the caller and the call is connected through when the mobile 

terminal answers. 

2.5.4 HANDOVERS IN GSM 

The procedure where a radio path to a mobile user is switched during an active call, 

without significant degradation in the quality of service is termed a handover. Various 

factors contribute to the decision to execute a handover procedure [2,6,8,9]: 

• Mobile station moving out of radio coverage of the current cell. 

• Deterioration in the radio signal strength. 

• Improve global interference levels (confinement handovers).  

• Traffic management ( traffic handovers).  
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Handovers carried out to prevent a call being lost are termed a rescue handovers. 

Confinement and traffic handovers are used to improve the performance of the 

network and are initiated for the benefit of the network. 

In GSM the decision to initiate rescue handovers is made by the network. This is 

because global interference level calculations are made in the network and the cell 

plan is only known to the network. The data on which the network makes its decisions 

and calculations are supplied by the various mobile terminals. Mobile terminals make 

measurements of the radio reception levels for the current and neighbouring cells, and 

report this information to the network. The usual reporting rate is once a minute. 

Based on these measurements the serving BSC makes the decision to execute a 

handover. Only rescue handovers are described here and the various types are listed; 

 

MSC MSC

BSC BSC BSC

1

2

3

 

Figure 2-11 : Various scenarios for handovers. 

1. Inter-BTS handovers, handover between two cells connected to the same BSC, 

executed internally by the BSC without the MSC’s knowledge. 

2. Inter-BSC handovers, between cells covered by the different BSCs, where both the 

BSCs are controlled by one MSC. BSCold (BSC currently serving the mobile 

terminal requiring a handover) sends a message to the MSC with a list of target 

cells for handover. MSC establishes a SCCP virtual connection to BSCnew (BSC 

serving target cells), where a new radio channel is allocated and activated. BSCold 

is informed and will instruct the mobile terminal to execute a handover to the 
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appropriate cell. Once the mobile terminal has access to the new radio path, the old 

path is cleared. 

3. Inter MSC handovers, between cells covered by separate MSCs. Inter MSC 

handovers are explained in detail below.  

The following is a description of the inter-MSC handover procedure. 

BSCold  Compose and send a HANDOVER REQUIRED message to MSCold  
{The message will contain a list of target cells for the handover.}  

MSCold  Send a PERFORM HANDOVER message to MSCnew  
{Message will contain the list of target cells and all the parameters BSCnew will require  to 
allocate a radio channel.}  

MSCnew  Send a HANDOVER REQUEST message to BSCnew  
{Message will include the list of target cells, transmission mode, cipher mode (existing) and 
the terrestrial channel reference between MSCnew and BSCold.} 

BSCnew IF (radio channel status = Ready) 
Send a HANDOVER REQUEST ACKNOWLEDGE message to MSCnew.  
{Which has encapsulated in it the HANDOVER COMMAND message.}  

MSCnew  Request for a handover number from VLRnew. 
{This is done with the ALLOCATE HANDOVER NUMBER message. The handover 
number is used by MSCold to set up a circuit to MSCnew through TUP or ISUP.}  

VLRnew  Issue Handover number. 

MSCnew  Return HANDOVER COMMAND and handover number to MSCold. 

MSCold  Setup connection to MSCnew  
IF (ACM is received from MSCnew = True) 
Forward HANDOVER COMMAND to mobile terminal.  

MT Switch radio channel.  

Once the handover takes place, old connections are released and a HANDOVER 

REPORT is sent to VLRnew. Subsequent inter MSC handovers are possible and are 

treated in the same manner described above, apart from MSCold(in the previous case) 

becomes the anchor MSC, i.e. it remains the switching point. All messages between 

the two MSCs involved in subsequent handovers are passed through the anchor MSC. 

A new connection is required from the anchor MSC to MSCnew. 



Page 40  

MSC old MSCnew
VLRnew

BSCold BSCnew

Handover required Perform handover (92) Handover request

Handover request ack

Allocatehandover no. (45)

Send handover report (63)Radio channel ack.(80)

IAM (58)

ACM (16)Handover command

ANS (14)

End signal (51) Handover report (40)

 

Figure 2-12 : GSM signalling procedure for inter MSC handovers.  

2.6 SUMMERY 

This chapter has served as a brief introduction to GSM. Only the aspects of GSM that 

are central to this thesis (mainly signalling procedures) have been presented here. 

There are several aspects of GSM that have not been covered and are beyond the 

scope of this thesis. 
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3. INTELLIGENT NETWORKS 

3.1  ‘INTELLIGENT’ NETWORKS? 

The most intelligent switches in the history of telecommunication were perhaps the 

first human operated telephone exchanges. The problem was, they were a little too 

intelligent and hence Strowger invented the first mechanical automatic switch. From 

the first mechanical switches, telecommunication switches, exchanges and networks 

have grown in size to become one of the most complex large systems in the world; in 

terms of complexity and in ‘intelligence’.  

 

Is the aim in telecommunications to develop a network which would have a similar 

level of intelligence as pre-Strowger days without the human element? The trend in 

telecommunications technology would suggest that. The Strowger exchange was 

certainly a giant step forward for automation, but an even greater step backwards for 

intelligence. Intelligence in the network has grown since the Strowger days, with the 

stored program control exchanges of the 1970s which offered supplementary services 

on PABXs. The 1980s saw the introduction of ISDN and the provision of 

supplementary services in the public networks, with the service code embedded in 

switches. It would appear that ‘intelligence’ has been available in networks for 

sometime, so why did we have to wait until the 1990s for Intelligent Networks? 

 

Intelligent Networks (IN) is a misleading term; it is not as it may suggest the first 

introduction of intelligence to the network. IN is a concept that was introduced to 

solve some of the problems associated with large telecommunication systems. The 

problem was that all telecommunication networks needed to evolve and keep up with 

current technology to offer an acceptable level of service. But the telecommunication 

networks of the 1980s faced the following difficulties: 

• Switches were at the heart of telecommunication systems, with intelligence hard 

coded in the switch software. Hence the network was expensive to improve or 

evolve and invariably the network was heavily dependent on the switch 

manufacturers. As a result, the introduction of new services and features were 

excessively time consuming.  
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• The unprecedented growth in telecommunication networks in recent years has seen 

the introduction of a large numbers of switches into the network. If the trend of 

intelligence in switches continued the previous problem would be made worse.  

• The interval between the emergence of new technology is ever decreasing. 

Therefore the switches need to be updated more often. In practice, switches were 

updated infrequently and as a result new technology was introduced in leaps rather 

than in a gradual and continuous fashion. 

• Network evolution was often restricted by the lack of backward compatibility and 

incompatibility between different manufactures. 

 

The solution came in the form of IN, where the network was compartmentalised to 

allow the separate evolution of the individual components. Intelligence was 

distributed away from the switches such that several switches could share ‘intelligence 

resources’. Finally bearer and service control was separated.  

Up to date
factor

The Switch Based 
Approach

The IN
Approach

Time

Old Fashioned Region

 

Figure 3-1 : A comparison of the ‘up to date factor’ for the two approaches. [Source : 
Figure 8.1 of [13]]. 

The Intelligent Network is not a self contained network, but is a concept that could be 

applied to any communications network. With IN; 

• Introduction times for new services are drastically reduced. 
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• The reliance on the switch manufacturers for the provision of new service has been 

reduced, enabling the provision of a broader range of services by multiple vendors 

in a competitive environment. 

• Through distribution and compartmentalisation, the network can be brought up to 

date, without the need for expensive modernisation of the whole network, but by 

updating only the necessary elements. The IN concept is such that it maintains 

backward compatibility.  

Intelligent networks has enabled the introduction of services such as ‘call waiting’, 

‘call forwarding’, ‘freephone’ services among others. 

 

The principle behind rapid service creation in intelligent networks is the construction 

of services from Service Independent Building Blocks (SIBs). SIBs are reuseable 

components that implement a network function. In an IN there is a library of SIBs: a 

new service is constructed from existing SIBs and new SIBs are only added to the 

library when the functionality required by the service does not exist. SIBs are  resident 

in the Service Control Point (SCP)[20,21,24] (the term ‘control point’ is also used in 

this thesis to refer to the SCP) , the nerve centre of the intelligent network platform. 

For a service to be executed, the request for it needs to be detected and processed. The 

request for services are detected at the switch and the appropriate service logic is 

invoked at the service control point. The functionality within the control point is 

supported by the Service Data Point (SDP) [20,21,24], providing data essential to the 

provision of IN services and the Specialised Resource Function (SRF) [20,21], for 

interfacing with the user (for such things as voice prompts) or data collection 

functionality.  

 

Figure 3-2 illustrates the operation of intelligent networks by way of example: the 

provision of freephone services. The local exchange recognises from the dialled digits, 

that a freephone number is being called and routes the call through to a exchange with 

a Service Switching Point (SSP) [13,20,21,24]. At the exchange, call processing is 

suspended while the service switching point invokes the “translate service” in the 

control point; that translates the called number to the destination number, which is 

forwarded to the service switching point. With the receipt of the destination number, 
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call processing is recommenced towards the destination and the caller is connected 

through. 

Service Switching
Point

Service 
Control 

Point (SCP)

SSP

Calls progress

TX TX LELE

 

Figure 3-2 : Example of a freephone call processing and switching. 

The ultimate goal of intelligent networks is to provide services to a wide variety of 

access networks through a common platform, so giving them all the same range of 

services. The re-use of services by several access networks increases network 

efficiency and will mean that fixed networks and mobile networks will offer the same 

range of services[78,79]. 

Intelligent Network Platform

A F B U

KPGC
M X

Library of services

MobilePOTS

BISDN  

Figure 3-3 : A common platform offering services to the various access networks. 

Since the inception of GSM, no modifications have been made to the mobile 

application part of the signalling. This is because any future mobility protocols will 

be addressed as a part of intelligent networks[17]. This thesis addresses the issues of 

migration of the GSM network to an intelligent network and thereby implementing 
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GSM mobility procedures from an IN platform. This will be in line with UMTS, 

where mobility will be offered as added intelligence from an intelligent network 

platform. This chapter will serve as an introduction to elements and signalling in 

Intelligent Networks. 

3.2 INTELLIGENT NETWORK CONCEPTUAL MODEL 

Intelligent networks should be seen as a concept, rather than a specific architecture for 

the implementation of certain technologies. To preserve the IN concept, assimilate 

future evolution of technology and architectures, and provide a better understanding of 

the concept, ITU has defined the IN conceptual model (INCM) [13-16,18]. This is a 

formal framework within which the purpose of IN concepts are defined and the 

interworking of such concepts and their relations are identified within the limitations 

of the concept. The IN conceptual model is a four-layer abstract model, where each 

layer (or plane) represents the capabilities of an IN network. The four planes of the 

model are: 

• The service plane[80] offers a users perspective to a service’s functionality and 

capability. The implementation of the service is not indicated in this plane. 

Services are formed from one or more service features and the interaction between 

services and service features are considered at this level. As an example, consider 

two services A and B composed of service features (a1, a2) and (b1, b2) 

respectively. The interaction between services A and B is considered as well as the 

interaction of service features a1 and a2. A service feature may be used by more 

than one service. 

• Global Functional Plane [13,19] incorporates service independent building blocks 

(SIBs). SIBs are standard reusable service independent network wide capabilities; 

these are the smallest components in intelligent networks, the atoms of IN that 

make IN possible. A service feature consists of one or more SIBs and a service is 

implemented by the use of Global Service Logic, which defines the logical order of 

execution of SIBs, potential branching and information flow between SIBs. A SIB 

has no knowledge of other SIBs in the Global Service Logic. Hence the Global 

Service Logic is the only component in the Global Functional Plane that is service 

dependent. A normal call is handled by the Basic Call Process SIB.  



Page 46  

SF1

SF1

SF3

SIB 1
BCP SIB 2

SIB n

POI

POR

GSL 1*

GSL 2

GSL n

FE4
FE 5

FE2
FE1

FE3 DSL Z**

DSL Y

DSL X

PE 1
PE 2

PE 3

PE 4

Service Plane

Global Functional Plane

Distributed Functional Plane

Physical Plane

Service 1 Service 2

SF  -  Service Feature

BCP  -  Basic Call Process
SIB   -  Service Independent Logic
GSL  -  Global Service Logic
POI   -  Point Of Initiation
POR  -  Point Of Return

DSL  -  Distributed Service Logic
FE     -  Functional Entity
IF      -  Information Flow

PE  -  Physical Entity

IF

IF

IF

SF2

*   Each  GSL is realised by
one or more DSLs.

** Each PE contains one or more
FEs : DSLs maybe dynamically
loaded on to PEs

 

Figure 3-4: IN Conceptual Model with service logic
.
 [Source : Figure Based on Figure 21 of [18]] 

• The Distributed Functional Plane [13,20,24] contains functional entities, which 

are a specific group of functions required to implement the IN concept. The 

distributed functional plane defines the relationships between functional entities in 

terms of information flows. The main functional entities are: 

• Call Control Agent Function: the interface between the user and the 

network call control functions.  

• Call Control Function; which provides call / connection processing and 

control as requested by the call control agent function; it acts as the trigger 

mechanism for IN services.  

• Service Switching Function; which in association with the call control 

function, provides the functionality required for interaction between the 

Service Control Function (SCF) and the call control function.  

• The service control function is at the heart of intelligent networks. It 

contains all the functionality necessary to implement, manage and control 

services as well as communicate with and control the service data function, 

special resource function and service switching function and interact with 

other service control functions.  
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• The Service Data Function provides the data needed for the execution of 

services.  

• Other functions include the Service Creation Environment Function and the 

Service Management Functions. 

Figure 3-5 shows the interaction of the functional entities. 

• Finally the physical plane [21] is the entity where the functional entities are 

implemented. A physical entity may contain one or more functional entities, but a 

functional entity can only be mapped onto one physical entity; the same instances 

of the functional entity may be mapped onto other physical entities. 

Service Management
Access Function
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Service Management
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Service Control Function

Service Data
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Specialised Resource
FunctionService Switching
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Call Control Function

SMAF

SCEF

Call Control
Access Function
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CCF

SSF

CCFCCAF CCAF

 

Figure 3-5 : IN Distributed Functional Plane model
. 
[Source : Figure 2.1 of [20]]. 

3.3 SERVICE PLANE 

The IN concept is service independent, but to illustrate the workings of the IN 

conceptual model, ITU capability set 1 (CS-1)[22] is used as an example. Two types 

of service features have been defined for CS-1, type A and B. ‘Single ended’, ‘single 

point of control’ services are referred to as type A. With this type, a caller on one end 

may only be controlled by the control point associated with that caller and cannot be 

controlled as part of services being provided to any other callers on that call. 

Furthermore other parties in the call may invoke and run services independently as 

long as so doing does not interact adversely with any other service in progress. 

 

All other services are referred to as type B. For reasons discussed later, CS-1 supports 

only type A services. Example of services defined in CS-1 are; 
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• Abbreviated dialling 

• Account card calling 

• Call forwarding 

• Follow me diversion 

• Freephone 

• Televoting 

• Universal Personal Telecommunications 

• Virtual private networks. 

These services are composed from service features and service independent building 

blocks. Examples of service features are; 

• Authentication 

• Call queuing 

• Call forwarding 

• Mass calling 

• Personal numbering 

• Time dependent routing 

An example of a type B service is a conference call, where a caller may be added or 

dropped at anytime during the call. This would require control at both ends of the call. 

The complexities associated with type B services are far greater that those offered for 

type A services and as such not considered in CS-1. 

3.4 GLOBAL FUNCTIONAL PLANE 

Service independent building blocks (SIB) are at the heart of the IN concept. Not only 

are SIBs service independent, but also they are reusable in different services without 

the need for modification. These reusable entities allow intelligent networks to 

construct, test and offer new services rapidly. Most services can be constructed from 

the library of existing SIBs, but if a functionality is unavailable, then it is only that 

functionality that needs to be added to the library as a SIB or a combination of SIBs.  

The global functional plane views the IN structure as a single entity. It describes a 

service or service feature and their inter-working with the basic call process using 

global service logic. The global service logic can be seen as the glue that holds the 

chain of SIBs within a service, hence it is the only service dependent entity in the 

global functional plane. Furthermore, it provides all the data needed by the various 

SIBs, defines the logical connectivity between SIBs, and the logical commencement 

and termination of services.  
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Figure 3-6 : The IN concept. 

Although, by definition, SIBs are service independent, some form of service 

dependence has to be implemented and that is achieved by the use of data parameters. 

Data parameters are made available to SIBs by the global service logic. These 

parameters include, dynamic and static parameters. Dynamic parameters are referred 

to as Call Instance Data (CID), which vary with each execution of a SIB. Examples of 

call instance data are; 

• calling line identification as supplied by the basic call process SIB 

• a translated number generated by a previous SIB in the chain of execution 

• information collected from the user, such as the dialled number.  

Each call instance data value has a logical name associated to it, namely the call 

instance data field pointer. 

  

SIBs also make use of static data parameters referred to as Service Support Data 

(SSD) which are service specific and are specified by the global service logic. In the 

case of the translation SIB, the location of the translation data file is fixed for all call 

instances, and hence the ‘file indicator’ service support data value is fixed. A 

graphical description for a general SIB and for a translation SIB[23] are given in 

Figure 3-7. 

 

SIBs are realised using one or more functional entities. The interaction between 

functional entities in the distributed functional plane is not known to SIBs in the 

global functional plane. A SIB must have a unified and stable interface allowing 

multivendor IN products to support them identically. 
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Figure 3-7 : Graphical representation of SIBs. [Based on Figure 13 of [23]]. 

3.4.1 BASIC CALL PROCESS SIB 

The Basic Call Process  SIB is a specialised SIB responsible for providing ‘normal’ 

call services, such as the connection and termination of calls and retaining the call 

instance data for that call instance. The invocation of IN services is possible from a 

Basic Call Process, where the point of invocation is termed the Point Of Initiation. 

The invocation of an IN service can occur at any point during a call, therefore several 

points of initiation have been identified by CS-1[13,14,19,23].  For example, ‘busy’ 

Point Of Initiation identifies the called number as being busy and the ‘call originated’ 

Point Of Initiation identifies the user has made a service request prior to specifying a 

destination address. A ‘service’ will have different implications based on the point of 

initiation. 

A U B

X

K

POIr PORt POIs PORu PORv

Global Service Logic

BCP  

Figure 3-8 : The relationship between the basic call process (BCP) and the global 
service logic (GSL)

.
  

Similarly the Point Of Return identifies the point in the basic call process where the 

SIB chain (or global service logic) terminates. As with the point of initiation, different 

points of return exist (for example, continue with existing data, clear call, initiate call, 

etc.). Different points of return for the same chain of SIBs will have different 

implications on the service. 
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3.5 DISTRIBUTED FUNCTIONAL PLANE  

The global functional plane views the IN network as an unified entity and views  the 

Distributed Functional Plane [24] as one entity, although in reality it is more likely to 

be a distributed architecture. Services via SIBs are realised on functional entities, the 

distributed elements that make up the IN network. Each functional entity provides 

functionality necessary for the provision of services, such as the service switching 

function (responsible for the detection and invocation of services), the service data 

function (for the provision and maintenance of service data) and the service control 

function (which provides the service logic execution environment).  

 

The tasks performed by functional entities are composed of functional entity actions, 

which are self-contained units performing specific actions. As the global service logic 

describes the logical order of execution for SIBs for a realisation of services, the 

Distributed Service Logic defines the logical order of execution of functional entity 

actions for the realisation of SIBs. The transfer of information  between functional 

entities is termed information flow and IN uses ITU SS7 TCAP for this purpose, 

resulting in the IN Application Part (INAP)[17,73-75] 

3.6 PHYSICAL PLANE 

A functional entity needs to be mapped onto a single physical entity [76] on the 

physical layer in the IN conceptual model. Duplicate functional entities can be 

mounted on different physical entities, but not on the same physical entity. The 

physical layer describes the realisation of functional entities as network elements. 

Once a functional entity is mapped onto a physical entity, the function mapped is 

termed a point, the Service Control Point (SCP) instead of service control function.  

 

Of the several functional entities identified for intelligent networks, only the service 

control function and service switching function are described in detailed here, as they 

are the most relevant to this study.  

3.7 SERVICE SWITCHING FUNCTION / POINT 

The Service Switching Point (SSP) consists of the Call Control Function for 

supporting non IN calls and Service Switching Function(SSF) for the detection, 
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invocation, interaction and release of IN services. In order to support IN calls, the 

service switching point must provide interfaces to other IN entities such as the service 

control point and intelligent peripherals. The request for an IN service is detected 

when pre-set conditions (know as triggers) are encountered (for example; dialling a 

freephone number or pressing the ‘#’ button). When a trigger is detected, normal call 

processing is suspended and the appropriate IN service logic is invoked. An IN service 

can be requested at any point during a call, so that the state and the progress of the call 

needs to be monitored to allow for the appropriate processing of the requested service. 

This is achieved by using an IN call model.  
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Basic call resource
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Figure 3-9 : Call Control Function / Service Switching Function. [Source : Figure 4.1a of 
[24]]. 

3.7.1 BASIC CALL STATE MODEL 

The IN call model is based on the Basic Call State Model (BCSM)[13,16,20], which 

is a finite state model description of call control function’s call processing activities, 

where the progress of the call is monitored in terms of Points In Call, Detection 

Points, transitions and events.  

 

The basic call state model  presents the IN service logic with a view of the call 

control function’s workings, not all aspects of which need to be known to the service 
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logic. It is the basic call state model that determines the amount of detail with which a 

view of the call control function is presented to the service logic. The level of 

abstraction and granularity with which the basic call state model presents information 

varies from service to service, if any is presented at all. The points during the call 

when IN service logic is allowed to interact with the basic call processing is identified 

by points in calls. The transfer of control to IN service logic takes place at detection 

points. The normal flow of call processing between points in calls is termed 

transitions and events trigger transitions. 

Event m
:
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Events associated
with a transition

DP a

Transition

:
:

DP b

PIC j

Detection Point

Point In Call (PIC i)

 

Figure 3-10 : Components of the BCSM. [Source : Figure 4.2 of [24]]. 

3.7.1.1 DETECTION POINTS 

Detection points are points in the basic call and connection processing at which the 

invocation of IN service logic, or the notification of service logic, or the transfer of 

control can occur. A detection point must be “armed” for the service logic to be 

notified that a detection point has been encountered. Once a detection point is armed 

and the criteria met, the service switching function provides information flow to the 

service control function to influence call processing (control relationship) or to 

monitor call processing (monitor relationship). For a control relationship, the service 

switching function suspends call processing, notifies the control function and awaits 

instructions. Instructions from the control function may influence further call 

processing. In the case of monitor relationship, the control function is notified, but call 

processing is not suspended neither is a reply from the control function expected.  
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Figure 3-11 : DP processing for each DP type. [Source : Figure 4.5 of [24]]. 

3.7.2 IN-SWITCHING MANAGER 

The IN-switching manager is the functionality within the service switching function 

which interacts with the service control point, providing it with an observable view of 

service switching function call processing activities and access to service switching 

function /Call Control Function (SSF/CCF) resources and capabilities. Call 

processing events related to IN services are detected and reported to the appropriate 

IN service logic instance by the IN-switching manager.  

 

IN call / connection processing within the SSF/CCF is described by the IN-Switching 

State Model, in terms of IN call connection states. The amount of control the service 

control function has over the SSF/CCF IN call/connection processing is set within the 

IN-switching state model. Several types of IN-switching state models may exist, 

where each is defined by the objects that constitute it. For example, the ‘connection 

control’ IN- switching state model contains objects that are abstractions of switching 

and transmission resources as shown in Figure 3-12.  
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Figure 3-12 : Call segments in a two party inter CCF/SSF call and abstract SCF view of 
IN-SSM

.
 [Source : Figure 4.12 of [24]]. 

3.7.3 FEATURE INTERACTION MANAGER 

A mechanism is necessary for the invocation of the appropriate service, once a trigger 

is encountered and to manage possible interactions with IN services and non-IN 

services that are already active. The mechanism is provided by the Feature Interaction 

Manager. If a user is using service A and invokes service B that is mutually 

incompatible with service A, then the request for service B needs to be rejected. The 

feature interaction manager manages both compatible and incompatible interactions. 

Two suggestions have been made in ITU Q1214[24] for the management of service 

interactions. The first makes a decision on service compatibility and service priority 

prior to invoking a service; the second approach makes a decision once the service is 

invoked but is beyond the scope of CS-1. At present, every possible interaction 

between every possible combination of service features is stored on the SSF/CCF and 

as the number of services grows this becomes an inefficient method of solving 

interaction problems. Q1214 itself recognises the short comings of this approach and 

has identified a need for a more efficient approach using a database or a knowledge 

based technique. 

3.8 SERVICE CONTROL FUNCTION  

The service control function (SCF) is the brain of the IN architecture. Within it lies 

the functionality to provide and sustain services. Services are composed of SIBs and 

Service Logic processing Programs, which governs the logical order of execution of 
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SIBs and the flow of information between SIBs. The functionality that makes up a 

service control function is shown in Figure 3-13. 

 

The service logic execution environment invokes, runs and controls service logic 

processing programs, as well as managing simultaneous invocation and execution of 

multiple service logic processing programs. Within the execution environment is the 

service logic execution manager, which provides the functionality to handle and 

control the total service logic execution. The execution of a service logic processing 

programs is known as a SLP instance. The execution manager executes SLP 

instances, maintains data associated with the SLP instance for the duration of 

execution, manages SLP instance access to data within the SCF and external functions 

via the SCF data access manager and manages the exchange of information between 

SLP instances. In addition to interacting with the SCF data access manager, it also 

interacts with the functional entity access manager to support SLP instance 

executions. 

Service logic execution enviroment (SLEE)

Functional routine library

Service 
logic

selection/
interaction
manager
(SLSIM)

Service logic
processing
programme
instances

Resource
manager

Service logic
execution manager (SLEM)
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Data access

manager

Service data object directory

IN netowrk wide resource data

SLP manager

SLP library

Functional entity access manager (FEAM)

Service Control Funct ion

SMF SSF SRF SDF  

Figure 3-13 : SCF functionality. [Source : Figure 4.19 of [24]]. 

The Service logic selection / interaction manager selects a service logic processing 

programs for execution in response to either an event from another functional entity 

or to an internally set trigger or to the request for a service logic processing programs 

from a SLP instance. The selection / interaction manager also manages multiple 

executions of service logic processing programs within a SCF. With multiple 
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simultaneous executions, there is the need to control service logic processing 

programs interactions and the selection / interaction manager provides for mutual 

exclusion to prevent the execution of a service logic processing program incompatible 

with a SLP instance currently active. The precedence for the selection of a service 

logic processing program from a group of service logic processing programs that 

meet the same selection criteria is also provided by the service logic selection / 

interaction manager. Local and network resources needed to support SLP instance 

executions are identified, located and provided by the resource manager.  

 

The interaction between service logic execution manager and other functional entities 

via the transfer of information using messages, is managed by the functional entity 

access manager. This is required to provide a mechanism transparent to SLP 

instances, correlate request and response messages, associate multiple messages with 

each other, comply with OSI structures and principles and offer reliable message 

transfer. 

 

The management, storage and access to shared and permanent information in the SCF 

is provided by the data access manager, which also provides functionality to access 

remote information in service data functions. 

 

The maintenance of functional routines within the functional routine library is 

managed by the functional routine manager, including the addition, deletion and 

suspension of functional routines. 

 

The level of discussion here has to been introduce the reader to IN principles, 

functionality and operations. Detailed operations are not discussed as the 

implementation of these functions are vendor. It is felt that, this level of abstraction is 

sufficient for the proposals made in this thesis and the models constructed.  

3.9 INTELLIGENT NETWORK APPLICATION PART 

Intelligent networks make use of SS7 signalling capabilities just as GSM MAP does. 

Like MAP, intelligent networks need to cater for both call-related, out-of-call 

signalling and require a signalling mechanism logically separated from the bearer 
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channel. The Intelligent Network Application Protocol which handles all of INs 

signalling needs is a user of SS7 transaction capabilities. Therefore most operations 

are similar to GSM MAP. INAP was introduced after GSM MAP and hence it 

includes more functionality.  

Transaction Capabilities Application 
Part (TCAP)

Intelligent Nework Application Part
(INAP)

Signalling Connection 
Control Part (SCCP)

Message Transfer Part (MTP) Level 3

Message Transfer Part (MTP) Level 2

Message Transfer Part (MTP) Level 1
 

Figure 3-14 : INAP and SS7 

SIBs need to be broken down into operations performed by the physical nodes 

involved in the SIB and the information flow between the nodes. For example, the 

service data management SIB is used to retrieve or update records in the service data 

function. The nodes involved in this SIB are the service control point and the service 

data point. These nodes are referred to as the application process. Each application 

process will contain the protocol and mechanisms relating to information flows to and 

from other application processes in application entities. As such each application 

process may contain more than one application entity. An instance of a application 

entity being used is termed an application entity invocation. 

Application Process : 
Service Control Function

Application Entity
Invocation (AEI)

Application Entity
Invocation (AEI)

Application Process : 
Service Data Function

Application Entity
Invocation (AEI)

Application Process : 
Service Switching Function

Application Entity
Invocation (AEI)

 

Figure 3-15 : Relationship between application processes and their application entities. 
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Functional relationships between two application processes are termed application 

associations. Since an application entity defines all the functional exchanges between 

two application process, it will contain several application associations. Each 

application association has a single association object which contains all the 

communications capabilities needed by that application association. These 

communication capabilities are defined in terms of application service elements. Each 

single association object may contain several application service elements, therefore 

the ordering and co-ordination of application service elements is carried out by the 

single association control function.  

 

Application Entitty Invocation (AEI)

Single Assoication Object (SAO)

Single
Association
Control
Function
(SACF)

ASEs

 

Figure 3-16 :  Relationship between AEIs and application service elements 

In INAP, SIBs are realised using application service elements, where the protocol 

elements needed for a SIB could be realised as a single or a collection of application 

service elements. The mapping of SIBs to application service elements may be one to 

one, one to many or many to one. This is the relationship between SIBs and 

application service elements with respect to signalling.  

 

In GSM each entity is allocated a sub-systems number for the routing of signalling 

messages from the signalling connection control part to the appropriate user. In 

intelligent networks its left to the discretion of the network operator to decide which 

sub-system numbers are routed to the intelligent network application part. 
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3.10 THE FUTURE - IN? 

Is IN the answer to all our problems? Certainly not. The concept is sound but it still 

has several shortcomings. If IN is to become a common platform from which all 

access networks can access services, the single point of control will need to be 

modified to cater for type B services. Type A services catered for in CS-1 are a severe 

limitation on the variety of services offered. Type A services may be adequate for the 

POTS access network, but it will not be adequate for the provision of complex 

services in either BISDN or mobile networks which may require multiple points of 

control. It is hoped that CS-3 will rectify this short coming and will cater for 

interaction between service control points.  

 

The approach for the invocation of services using a state model will become 

restrictive as the complexity of services increase and so will the use of a hardwired 

solution for service interaction. A knowledge based flexible approach is required. 

Another restricting factor is the user interface. The instruments used today were not 

designed for accessing IN services and as such the use of the ‘*’ and the ‘#’ keys on 

the instrument for invoking services is not user friendly. Therefore a more user 

friendly interface is required to exploit the full potential of IN services. 

These are problems that will be solved with evolution. IN is a sound, tried and tested 

concept that will (hopefully) withstand the test of time. Today it would appear as the 

path forward. 
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4. GSM / IN - AN INTEGRATION APPROACH 

4.1 MOTIVATION FOR INTEGRATION 

The two previous chapters served as an introduction to GSM and IN. It is the purpose 

of this chapter to describe in detail the author’s methodology for integrating the GSM 

and IN networks and the resulting GSM-IN architecture. The integrated architecture 

was first published in [i] and the associated performance issues in [ii]. The integrated 

architecture is described in detail in section 4.3. This thesis is the first work to use the 

concept of IN SIBs in offering GSM mobility and hence the use of an IN platform for 

GSM mobility, with INAP as the signalling protocol for the control network.  In 

references [26-28, 30, 32, 36, 37 ] the inclusion of IN elements in mobile networks 

have been investigated, but none have adopted the IN concept wholly or, more 

importantly, considered the use of an IN platform as the control platform for GSM; 

they have been at a conceptual level.  

 

The primary objective of GSM is the provision of mobility and, originally the 

provision of supplementary services was not a key objective. As GSM is a digital 

network, facilities were made for the provision of a limited number of supplementary 

services internally. GSM failed to provide a dedicated environment for the 

development and provision of supplementary services. As the importance of 

supplementary services to network operators became apparent, GSM operator’s 

developed a solution for service creation and provision in GSM networks, CAMEL. 

CAMEL is based on IN principles, which enables call processing to be suspended 

while a request for information on the completion of the call is made to the home 

network. The problem with CAMEL is the lack of interaction or interworking between 

INAP used for service provision and MAP for mobility management. The local 

processing of services is also not possible with CAMEL. In the short term CAMEL is 

a solution to service provision in the home and roamed networks. However it is not a 

long term solution that would truly integrate GSM and IN. Before the integrated 

architecture is presented, the need for such an architecture must be justified.  
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The justification is found by looking to the future. GSM is a second generation mobile 

network standard that has out-performed all expectations to become a world standard 

and Universal Mobile Telecommunications System (UMTS) is the next generation 

mobile network system that is being standardised by ETSI. Intelligent networks 

(which separate service control from bearer control) will form the platform that will 

be used for control of mobility in UMTS. The nature of UMTS is such that from a 

single control platform it will offer coverage to several radio access technologies 

while sharing a common backbone network with the fixed network. For GSM to be 

one of the access networks covered by UMTS, GSM will need to migrate to UMTS. 

For the migration to take place, GSM mobility management needs to be transferred to 

an IN platform away from the existing GSM switches, VLRs and HLRs. The 

contribution of this thesis is a pre-UMTS architecture in which GSM’s mobility 

management functionality is transferred to an IN platform.  

 

Once again the need for a pre-UMTS architecture needs to be justified against a direct 

step from GSM to UMTS. The step from second generation mobile telephony (GSM) 

to third generation mobile telephony (UMTS) will be an evolution rather than a 

revolution[32]. There will be several aspects of UMTS that will be revolutionary, such 

as the new radio access networks offering high bandwidth radio interfaces, but these 

new radio access networks will coexist with existing technology. Furthermore, GSM 

operators view the GSM / IN integrated pre-UMTS architecture as the launching pad 

for UMTS[43]. This would enable the reuse of existing infrastructure and allow for a 

fast track approach to UMTS leading to the gradual introduction of the UMTS 

network sooner rather than introducing a completely new system later. 

 

In the GSM-IN pre-UMTS architecture described here, mobility management 

functionality is separated from the GSM access network and is offered as a service 

from the IN platform. This results in both mobility services and supplementary 

services existing on a single platform. This single IN platform will allow new 

supplementary services based on mobility or otherwise to be developed rapidly and 

with ease for the GSM network. Furthermore, this proposal offers a single unified 

platform for service creation and evolution. The structure also eliminates today’s 

problems of having to develop services excluding GSM mobility functionality, coping 
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with the incompatibilities between the service domain and the mobility management 

domain and reverting to the home network for service provision. Having eliminated 

the dependence of mobility management on the radio access network, it now becomes 

possible to offer mobility based supplementary services such Universal Personal 

Telecommunications (UPT) services using mobility procedures based on GSM. 

 

Standardisation bodies are currently working on introducing mobility procedures to 

intelligent networks. This thesis proposes the use of the tried and tested GSM mobility 

procedures as the basis for mobility in IN, instead of redefining mobility procedures 

for IN and reinventing the wheel. However IN mobility procedures will need to 

address different access networks (such as DECT) and although GSM mobility 

procedures may not be suitable for all these new access technologies, they can be used 

as the basis on which other mobility services are built. The principal behind IN is the 

reuse of existing functionality as much as possible and the addition of new 

functionality only as and when it is needed. So IN only needs to add to the GSM 

mobility functionality when it cannot cater for mobility management in another access 

network by reusing GSM mobility functionality. If GSM and IN are not merged now 

to form a unified standard there is the danger of two sets of standards being produced, 

each duplicating the other’s functionality[33]. This is a situation that must surely be 

avoided. 

 

The aim of this thesis is not to reinvent GSM or dispose of the existing GSM system, 

but to reuse as much of the existing system as possible with the minimum of change. 

To this effect the following aims have been identified for the integrated architecture 

(GSM-IN) : 

• Separate the radio access elements and the mobility management elements of the 

GSM network.  

• Retain the radio access network with minimal change.  

• Transform the mobility management and call handling network architecture to an 

IN architecture, as mobility will be offered from an IN platform. 

This chapter will discuss the GSM-IN architecture, the entities used in the architecture 

and identifies the changes to current entities, if any. The later part of the chapter will 

detail the GSM mobility procedures implemented from an IN platform as envisaged 
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by the author and hence identify the mobile SIBs necessary for GSM mobility 

services. 

4.2 GSM / IN INTEGRATED ARCHITECTURE 

The integrated network (GSM-IN) proposed here will be GSM in the radio access 

network with IN dominance over the control (core) network. The point of interaction 

between the radio access network and control network (IN) will continue to be the 

MSC. The MSC will include elements of both IN and GSM. The MSC will have to be 

equipped with functionality to recognise and manage IN service requests, i.e. with 

Service Switching Functionality (SSF). The MSC is the logical point for mounting 

the service switching functionality, as all mobility management messages and service 

messages from and to the mobile terminal  are aimed at the MSC for forwarding or 

processing in the GSM network. The switching point between the radio access 

network and the outside world will remain the MSC, as there is no reason to change 

this. The physical node with both MSC and service switching functionality will be 

referred to as the Mobile Service Switching Point (MSSP). 

 

The mobility functionality from the MSC, VLR and HLR will be mounted on the 

Mobile Service Control Point
6
 (MSCP). Service and mobility data stored on the HLR 

in GSM network will be moved to the Mobile Service Data Point (MSDP) and 

integrated with IN service data and user data. Hence a service data point with mobility 

data will be referred to as mobile service data point. Once this is achieved, the HLR 

will no longer be required. 

 

The VLR in GSM serves two purposes: it provides mobility control functionality and 

serves as a temporary database where user information is stored when the user is 

roaming the MSC it serves. Caching user information on the VLR reduces the number 

of occasions on which it needs to be retrieved from the HLR, thereby reducing the 

total signalling traffic on the network. Once the information on the user is downloaded 

by the VLR, no further request for information from the HLR is necessary. With the 

                                                 
6
 The term ‘mobile’ is used to distinguish IN entities with mobility functions. This is not to infer that the 

functionality of an entity with the ‘mobile’ prefix is different to an entity without the prefix. For an 
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mobility control functions moved to the MSCP, the VLR now serves only as a 

temporary database. In GSM-IN the temporary database attached to a MSSP will 

contain both IN and GSM user data and hence is referred to as MSDPtemp. It is 

possible to offer mobility services without the temporary database. A comparison of a 

‘pseudo’ GSM implementation of GSM-IN with MSDPtemp will be compared to a 

‘classical’ IN implementation without a temporary database in Chapter 6. As a result 

two variations of GSM-IN arise, the first with a MSDPtemp attached to the mobile 

service switching point as shown in Figure 4-1 and the alternative without a 

MSDPtemp. 
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Figure 4-1 : GSM / IN integrated architecture functionality, illustrating the distribution of 
GSM functionality. 

 

                                                                                                                                            
example, MSCP refers to a SCP with SIBs to provide mobile services, whereas a SCP does not have 
SIBs to provide mobile services. 
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Figure 4-2 : A physical implementation of GSM-IN. 

Once on the IN platform each GSM mobility service will be offered as a combination 

of SIBs. SIBs will be determined by decomposing GSM mobility functionality to 

‘atomic’ elements. It will then be possible to identify common elements among the 

various mobility procedures. In the case of common elements, a single SIB will be 

reused. For an example, the authentication procedure is used in more than one GSM 

mobility procedure (such as call setup, location updating), so the ‘authentication SIB’ 

can be reused in several mobility services. The following sections look at the 

integrated architecture in detail. 

4.3 SIGNALLING IN THE INTEGRATED ARCHITECTURE 

Having proposed an integrated architecture it is necessary to consider a signalling 

system to make the architecture functional.  An initial approach might have been to 

use existing MAP protocols from IN platforms. This would have been the simplest 

solution available, and from the routing point of view there are no conflicts at the 

SCCP between MAP and INAP. MAP is identified by subsystem numbers from 5 to 

10, while INAP subsystem numbers are defined by the operator. Since routing of 

messages to the application is flexible, it will be possible to route both INAP and 

MAP messages to the same user part. Hence there is no conflict, and messages can be 

routed correctly.  
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The problem arises at the transaction capabilities layer. If mobility services (i.e. MAP) 

are to be combined with supplementary services (i.e. INAP) then it will be necessary 

to mix messages from both protocols during a dialogue. The problem in SS7 is that 

the application context (i.e. MAP or INAP) needs to be agreed on prior to the start of 

any communications [73]. Defining a new MAP / INAP combined application context 

and using that for signalling in the integrated architecture would lead to conflicts 

between INAP and MAP operations; these conflicts arise as a result of both MAP and 

INAP using the same local values for operation,  hence the local values are not 

unique. For example, in GSM local operation value 26 is used for the ‘page’ message 

while in IN ‘EventNotificationCharging’ message has the  same value. This is not the 

only example. Hence MAP operations cannot co-exist with INAP operations without 

modifications. A solution to this problem is to renumber the MAP operation local 

values (also suggested by [33], where the suggestion was made to add a prefix to all 

MAP local values). Another suggestion in [33] was the use of object identifier values 

for each operation, making them unique, but this will add an enormous price in 

message length and processing overheads. The problem with these suggestion is, 

effectively, there will still be two protocols; also by retaining MAP, it will be 

necessary to retain the HLR and the VLR for carrying out some of the MAP 

operations. 

 

Having considered these options and other possibilities such as (a) different encoding 

schemes or (b) the use of flags and tagging, the result is that a considerable effort 

needs to be expended in making INAP and MAP co-exist. What is suggested here is to 

take the process a step further and absorb MAP into INAP, eliminating MAP 

completely. The advantage of the absorption is that INAP does not yet cater for 

mobility but in the future, it will. If MAP is absorbed into INAP now, then INAP does 

not have to reinvent the wheel on mobility and the possibility of conflict between 

MAP procedures and INAP mobility procedures is also eliminated.  

 

A problem posed by the definition of MAP is the need for a node involved in a MAP 

transaction to contain the complete set of MAP application service elements. By 

moving MAP to INAP not only is MAP broken up into smaller and more efficient 
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components, but MAP operations are defined as INAP operations with unique 

operation codes eliminating conflicts with INAP. Furthermore if MAP procedures are 

defined in INAP generically then they can be reused to support mobility in other 

access networks as well.  

 

4.4 MOBILE SERVICE SWITCHING POINT 

The previous sections have described the GSM-IN architecture and the associated 

signalling. In this and the next two sections the functional and physical entities in 

GSM-IN are described in detail, starting with the mobile service switching point. 

There are two aspects to a mobile service switching point; the service switching 

function and the call control function. The service switching function is part of 

intelligent networks and is standardised under IN, while the call control functionality 

is a part of the local access network. Although both functionalities are mounted on a 

same physical node they are independent functional entities. The interface between the 

functionalities is internal; it is therefore not subject to standardisation and is left to the 

discretion of the manufacturer.  

 

Recapping, the call control function manages normal call processing (i.e. switching), 

provides a trigger mechanism for accessing IN functionality and monitors the progress 

of calls. The service switching functionality extends the logic needed to process 

requests for IN services, manages the signalling between the call control function and 

the service control function and controls the switch at the request of the service 

control function. 

 

There are two possible locations for the placement of the service switching function: 

the MSC or the BSC as they are both call control functions. The MSC is chosen for 

the following reasons: 

• All mobility management messages and service messages from and to the mobile 

terminal are aimed at the MSC for forwarding or processing in the GSM network. 

Therefore it is in the ideal location to detect and process messages both from the 

mobile terminal and service control points. In addition, the MSC already has 

mechanisms to detect service requests and a call state model. 
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• The present GSM architecture will enable several BSCs to access a single service 

switching function attached to a MSC. In terms of network efficiency and network 

evolution, mounting the service switching functionality on the MSC is much more 

efficent than having service switching functionality on every BSC. 

• By not introducing IN elements to the radio access network, it will be possible in 

the future for the radio access network to evolve independently of the intelligent 

network and visa versa. This would be an advantage during the evolution of the 

GSM network to UMTS.  

 

How will the MSC need to be changed to accommodate the service switching function 

and hence transform to the mobile service switching point? There are two aspects to 

the MSC: management of the radio network and mobility management. In the 

proposal here the MSC will retain all of its radio channel and radio network control / 

management functionality, but all mobility procedures will be moved to the service 

control point, with the exception of inter cell and inter BSC handovers. Although 

handovers are defined as mobility procedures there are different levels of handovers. 

Inter-cell handovers are managed by the BSC and the MSC only receives an 

acknowledgement once the handover is complete; inter-BSC and inter-MSC 

handovers are managed by the MSC because the MSC is the switching point for these 

handovers. The service control point sees the MSC and the radio access network 

below it as one entity. Therefore, any internal switching of paths need not be visible to 

the service control point. Both inter-cell and inter-BSC handovers are in effect 

switching in the radio access network and the service control point need not be aware 

of these procedures. Furthermore not involving the service control point improves the 

speed of handovers. But the control of inter-MSC handovers will be controlled by the 

service control point. The reasons for implementing inter-MSC handovers as an IN 

service are; 

• If the IN network sees the MSC and the radio network below it as one entity, then 

an inter-MSC handover involves two entities from the IN viewpoint. Furthermore 

the point of service interaction changes to the new MSC (i.e. the MSSP) and the 

service control point needs to be aware of the change. 
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• Inter-MSC handovers are defined as part of the mobile application part (MAP) 

protocol and keeping in line with the proposal to eliminate the use of MAP and 

transfer all MAP functionality to INAP. 

• In GSM the first MSC involved in the call remains a stable switching point from 

which all subsequent inter-MSC handovers are executed (i.e. the anchor MSC). 

With the control of inter-MSC handovers transferred to the service control point, it 

will be possible to switch the call to the new MSC via the shortest path and not via 

the anchor MSC as illustrated in Figure 4-3. 

• Finally, with the possibility of multimode terminals in the future, there will be a 

need for handovers between different types of mobile networks (Eg. between GSM 

and DECT). These handovers will need to be carried out at the MSC level. So by 

moving the control of inter-MSC handovers to the service control point, handovers 

between MSCs from different networks can be catered for by adding intelligence to 

the basic handover service.  

MSC new

TX/SSP

Call path after a GSM inter MSC handover.

Call path after a IN inter MSC handover.

MSCP

MSC old  

Figure 4-3 : A comparison of call paths after inter-MSC handovers.  

The MSC will require functionality to detect requests for IN services (i.e. mobility and 

supplementary services). In GSM there are two scenarios where IN services are 

requested: the first is during a call when services such as call waiting, conference call 

and handovers can be requested; the second is in the absence of a call, when services 

such as location updating and Short Messaging Service (SMS) are requested.  

 

In IN CS-1, services are triggered by arming detection points in the basic call state 

model, but if no call is present, a call state model will not exist and therefore requests 

for services such as location updating cannot be processed. Remember that the call 
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state model is controlled by the call control function and not by the service switching 

function. Hence IN networks are not involved in detecting requests for IN services and 

so  a GSM specific triggering mechanism can be used in the GSM-IN integrated 

network and this will not conflict with IN standards. The functionality to detect 

mobility management requests already exists in GSM: when a location update request 

is made in GSM it is detected and the associated processing is initiated. So the 

existing mechanism can be used for detecting and triggering IN services outside a call.  

 

The call state model used in GSM is not in line with the basic call state models 

recommended for the call control function by IN, (the GSM’s model is tailored for 

mobility management) so the GSM model needs to be enhanced to meet IN 

requirements. At the same time, the GSM model cannot simply be replaced by the IN 

basic call state model. The sequential nature of the basic call state model used in 

fixed networks places severe limitations on the call processing ability of mobile 

networks and there will be times when parallel processing of services will be required 

in the IN environment. For an example, when a user is using the call waiting service 

and a handover request is made. Both services are time critical and will need to be 

processed simultaneously. Unlike the situation in the basic call state model, the 

handover request processing cannot wait until processing of the existing service is 

complete as the call may be lost. Neither is the IN point in call concept applicable 

here because handovers must be capable of taking place at any time. The GSM 

mechanism for detecting call and mobility service requests will have to be used to 

detect and trigger IN services in the presence or absence of a call. This functionality 

needs to be enhanced to be able to inform the service switching function that a request 

for a service has been made and forward the appropriate parameters necessary for the 

service to the service switching function. 

 

When a call is present, its state needs to be monitored as most services need to know 

the state of a call and / or are dependent on the state of the call. Therefore, a call 

monitoring function will need to be added if one does not already exist. The same 

function will need to monitor the progress of service executions in the absence of a 

call. The feasibility of this approach is yet to be verified and as such marked for 

further study.  
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In the proposal here, all GSM mobility control procedures will be transferred to a 

common IN platform (MSCP) from the various GSM nodes (HLR, MSC, VLR), but 

none of the procedures are modified. To the radio access network and the GSM user 

the change in the control point is transparent. The mobile terminal does not see any 

changes in the network and, the mobile terminal still functions as if it were 

communicating with the MSC and is unaware of any IN components. As IN mobility 

control functionality imitates GSM functionality there is no need to suspend call 

processing as in POTS to conduct IN processing. This is only true for GSM mobility 

procedures offered as IN services. When GSM mobility procedures offered as IN 

services are combined with other IN supplementary services it may become necessary 

to suspend call processing and transfer control to the service control point. 

 

For the execution of mobility services outside a call, knowledge about the state of the 

switch  is not required by the service control point and there is adequate information 

within the GSM message to provide the service. If a request for an inter MSC 

handover is made, then knowledge of the switch state must be made known to the 

service control point and the service control point will need control over the switch. 

At present the capabilities offered by CS-1 IN-switch state model would seem 

adequate to meet these requirements.  

 

Services may be invoked in the absence of a call, during a call and in parallel with the 

execution of a current service. As such the question of compatibility and interaction 

between services becomes complex. The approach in the IN CS-1 features interaction 

manager for solving interaction and compatibility issues between services by 

maintaining a look up table of all possible interactions for all possible combination of 

services is  not viable. What is required is a knowledge based approach combined  

with a database approach. In Figure 4-4 modifications to CS-1 service switching 

function and the MSC functions are shown. 
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Figure 4-4 : Mobile service switching point (MSSP) functionality identifying the MSC 
and SSF functionality and the elements that require enhancement . 

Having discussed the functionality of the mobile service switching point 

(MSC+MSSF) the signalling perspective on the mobile service switching point is now 

discussed. The mobile service switching point will need to be implemented with a new 

functionality which is referred to as the ‘translation function’ (Figure 4-5) for 

interworking between GSM and IN. The translation function will be responsible for 

interpreting the signalling messages between the mobile terminal and the radio access 

network, and the IN control network. GSM messages to and from the mobile terminal 

and the radio network will be translated by this function to INAP messages and visa 

versa. This functionality is restricted to translating signalling messages where the 

MSC acts as a relay between the mobile terminal and the service control point 

because message number used by INAP will not necessarily be the same as those used 

by messages in the radio access network.  
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Figure 4-5 : The signalling protocol stack for the mobile service switching point 
illustrating the interworking between the service switching function and the MSC.  

4.5 MOBILE SERVICE CONTROL POINT  

The term Mobile Service Control Point (MSCP), will be used to identify a service 

control point that has the functionality to cater for mobility services. Hence within 

mobile service control points must reside Mobile SIBs (MSIBs), which are dedicated 

mobility functions. This is the only difference between mobile service control points 

and service control points. 

 

In  IN CS-1, service control points cannot interact to share, negotiate or handover 

control between service control points; CS-3 will provide this functionality, which 

will be of benefit for the efficient provision of GSM services from an IN platform. 

CS-3 also introduces multiple points of control which again will be of benefit.  

4.5.1 MOBILE SERVICE INDEPENDENT BUILDING BLOCKS 

By modularising [32,51] the GSM mobility procedures (location updating, handovers, 

call set up, etc.) described in Chapter 2, it is possible to identify commonality within 

the various procedures. Examples of common sub-procedures are authentication, 

issuing a new TMSI, paging, database enquiry and database updating among others. 

These sub-procedures are self contained and identical irrespective of the mobility 
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procedure using  it. Each of these sub procedures will need to be converted to a SIB, 

i.e. Authentication SIB, Paging SIB and TMSI SIB. For database enquiry and database 

updating a modified version of the IN CS-1 service data management (SDM) SIB can 

be used and this will be referred to as mobile service data management (MSDM) SIB. 

The complete list of SIBs necessary to offer GSM mobility functionality is listed 

below. 

• Authentication SIB - Calculates RAND and forwards it to the mobile terminal and 

checks the calculated value against the returned value. 

• Cipher SIB - Instructs the radio access network to cipher a channel to mobile 

terminal. 

• TMSI SIB - Issues a new TMSI to the mobile terminal. 

• MSDM SIB - Used for creating, updating and deleting records on databases. 

• Paging SIB - Instructs the radio access network to page a mobile terminal in a 

specified area. 

• Location_Update SIB - If the location update procedure was successful then the 

user is informed accordingly or else the SIB is used to process any errors that may 

have occurred during the procedure and forward the appropriate error message to 

the user (Eg. Roaming not allowed). 

• Call_Setup_Incoming SIB - Instructs the mobile service switching point to check 

compatibility of incoming call with the mobile terminal and capture a radio channel 

to the mobile terminal. This SIB also process any error that arise during the service 

and generates the necessary response. 

• Call_Setup_Outgoing SIB - Checks the compatibility of the service requested by 

the user with the subscription for the user. Instructs the MSC capture a radio 

channel to the mobile terminal and forwards instruction on call completion to the 

mobile service switching point. Errors arising are also processed generating the 

appropriate response. 

• GSM_GSM_Handover SIB - Dedicated to handling GSM inter-MSC handovers, it 

instructs the new MSC to allocate a radio channel for the user.  The user is 

informed when a new radio channel is available and instructed to handover. This 

SIB also handles all error processing. 
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4.6 MOBILE SERVICE DATA POINT 

A Mobile Service Data Point (MSDP) is a service data function, where users service 

data and mobility data are stored. A users ‘character set’ will contain users mobility 

data (such as the location of MSC being roamed and roaming limitations) and 

supplementary service data (such as supplementary services subscribed). The 

advantage of a combined ‘character set’ is the availability of complete user 

information locally. The location of the mobile service data point will be identified 

from the users telephone number just as the address of the HLR is derived from the 

users number in GSM. 

4.6.1 MOBILE SERVICE DATA POINT TEMPORARY 

The temporary databases functionality is identical to the mobile service data point. 

The temporary database is used by a user only when roaming an associated MSC. The 

service control point will use the MSC - mobile service data point temporary 

association to find location of the mobile service data point temporary. 

4.7 IN / GSM MOBILITY PROCEDURES 

This section describes GSM mobility procedures offered from an IN platform as 

envisaged by the author. The SIBs required to offer these services and their 

functionalities are identified. The estimates of the signalling messages sizes are based 

on corresponding messages for GSM procedures. As mentioned earlier, the IN 

procedures will mimic GSM procedures, the difference will be the network entities 

involved in the transactions. 

4.7.1 LOCATION UPDATING PROCEDURE 

There are two types of location updating procedures that will need to be defined. Intra-

MSC and inter-MSC (the procedure for intra-MSC and periodic location updates are 

the same). Also two variations on the GSM-IN architecture have been identified: with 

MSDPtemp and without MSDPtemp. This results in four possible procedures for location 

updating.  
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4.7.1.1 LOCATION UPDATE PROCEDURES WITH A MSDPTEMP. 

MT {Detects that coverage is provided by a new location area} 
 Initiate location update procedure 

 {Transmit a LOCATION UPDATE REQUEST message over the standalone 
dedicated control channel. The message contains the International Mobile Subscriber 
Identity or the Temporary Mobile Subscriber Identity and the new location area 
identity} 

 
MSSP {Treat message from MT as a service trigger.}  
 Compose INAP message and forward message to service control point  
 {LOCATION UPDATE REQUEST} 
 
MSCP Invoke (Location update service logic program) 
 if (old MSC = new MSC) {i.e. intra MSC location update} 
 Begin(1)  
  Invoke (Mobile service data management SIB)  {to request authentication data on 

 user from MSDPtemp} 
  
MSDPtemp  Return (Authentication data for user) 
 
MSCP  Invoke (Authentication SIB)  
  Authentication SIB forward RAND to mobile terminal. 
 
MSSP   Translate and compose GSM message and forward message to mobile terminal 
  {AUTHENTICATE REQUEST message forwarded to mobile terminal} 
  {All messages between the MT & SCP go through a translate and compose at the 

 MSSP} 
 
MT  Calculate SRES and return SRES. 
 
MSCP  if (Authentication outcome == success) proceed 
  else exit ( invoke Location Update SIB(Authentication failed, Error)) 
 End(1) 
 
MSCP if ( old MSC != new MSC) {i.e. inter MSC location update} 
 Begin(2)  
 
  Invoke (mobile service data management SIB) {to request user data from old 

 MSDPtemp} 
 
MSDPtemp(old) Return user record. 
 
MSCP    ~ Authentication using authentication SIB as in previous case. ~ 

 
  Invoke (mobile service data management SIB) {to update user record on mobile 

 service data point (MSDP) (i.e. users home database) with new MSC location.} 
  Invoke mobile service data management SIB {to create new user record on 

 MSDPtemp.} 
  Invoke mobile service data management SIB {to delete user record on old

 MSDPtemp.} 
 End(2) 
 
 Invoke (Cipher SIB) {to cipher channel to mobile terminal} 
  
BSC Cipher channel and acknowledge. 
 
MSCP Invoke (TMSI SIB) {to issue new TMSI to mobile terminal} 
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MT Acknowledge TMSI. 
 
MSCP Invoke (Location update SIB (location update accepted)) 
 {Location update SIB inform mobile terminal : LOCATION UPDATE ACCEPTED 

message.} 
 

The same service is used in both cases and the global service logic for ‘location 

update’ service shown in Figure 4-6. 
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Figure 4-6 : Global service logic for ‘Location Update’ service when MSDPtemp is 
present. 
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Figure 4-7 : Intra-MSC location updating signalling procedure with a MSDPtemp present. 
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Figure 4-8 : Inter-MSC location updating signalling procedure with a MSDPtemp present. 
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4.7.1.2 LOCATION UPDATE PROCEDURES WITHOUT A MSDPTEMP. 

The global service logic for location updating service when MSDPtemp is not present is 

shown in Figure 4-9. In the absence of MSDPtemp the same procedure is used for intra-

MSC and inter-MSC location updates. 

 
MT {Detects that coverage is provided by a new location area} 
 Initiate location update procedure 

{Transmit a LOCATION UPDATE REQUEST message over the standalone dedicated 
control channel. The message contains the International Mobile Subscriber Identity or the 
Temporary Mobile Subscriber Identity and the new location area identity} 

 
MSSP {Treat message as a service trigger.} 
  Compose INAP message, and forward message to service control point  
 {LOCATION UPDATE REQUEST message is forwarded.} 
 
MSCP Invoke (Location update service logic program) 
 {Since no temp databases exist, both intra and inter MSC location updates are handled in 

an identical fashion.} 
 Invoke (Mobile service data management SIB) {to request authentication data on user 

from MSDP} 
  
MSDP Return authentication data for user. 
 
MSCP Invoke (Authentication SIB) 
 Authentication SIB forward RAND to mobile terminal 
 
MT Calculate SRES and return SRES. 
 
MSCP if (Authentication outcome = success) proceed 
 else exit ( invoke (Location Update SIB(Authentication failed, Error))) 
 
 Invoke (Mobile service data management SIB) {to update user record on MSDP} 
 {Users home database updated with new MSC location and / or new location area 

identity.} 
 Invoke (Cipher SIB) {to cipher channel to mobile terminal} 
  
BSC Cipher channel and acknowledge. 
 
MSCP Invoke (TMSI SIB) {issue new TMSI to mobile terminal} 
 
MT Acknowledge TMSI. 
 
MSCP Invoke (Location update SIB (location update accepted)) 
 {Location update SIB inform mobile terminal : LOCATION UPDATE ACCEPTED 

message.} 
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Figure 4-9 : Global service logic for location updating service in the absence of 
MSDPtemp. 
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Figure 4-10 : Signalling procedure for the location updating procedure in the absence 
of MSDPtemp. 

4.7.2 GATEWAY MSC FUNCTIONALITY AND MOBILE CALL TERMINATION 

In GSM mobile terminating call from the fixed network are directed to a gateway 

MSC when the fixed network is unable to interrogate the HLR directly. The gateway 

MSC provides the routing  information for roamed MSC by interrogating the HLR. 

HLR interrogation is just a database look up function. In the GSM-IN integrated 

architecture, this function translates to the mobile service database management SIB. 
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As in other MSCs the gateway MSC will have a service switching function attached to 

it, hence it will be referred to as the gateway mobile service switching point.  

 

A call arriving from the fixed network at the gateway mobile service switching point 

will trigger a routing service with the mobile users number. The local service control 

point will then interrogate the mobile service data point for the user and receive 

routing information to the roamed MSC. The result of which is forwarded to the 

gateway mobile service switching point and the call is routed to the roamed MSC.  

 

Once the call arrives at the roamed mobile service switching point (i.e. the roamed 

MSC), the CALL_SETUP_INCOMING service is triggered. The procedure for the 

service is described here. 

 
MSSP {Receives a initial address message to setup a call to a user roaming the MSC, identified by 

roaming number.} 
 Compose INAP message to initiate CALL_SETUP_INCOMING service  
 
MSCP Invoke (CALL_SETUP_INCOMING service logic program) 
 Begin {CALL_SETUP_INCOMING service} 

 Invoke (Mobile service management SIB) {To request authentication and location 
data from MSDPtemp. For the architecture where MSDPtemp is absent, this data is 
retrieved from MSDP} 
 

MSDPtemp  Return (authentication data, TMSI and location area info. for user) 
 
MSCP  Invoke (Page SIB) {Page user in location area being roamed} 
 
MSSP  Translate and forward page request to BSC {All further communications between  

the MSCP and the radio access network is translated by the MSSP} 
 
MT  Acknowledge paging request. 
 
MSCP  Invoke (Authentication SIB) 
  Authentication SIB forward RAND to mobile terminal. 
 
MT  Calculate SRES and return SRES. 
 
MSCP  if (Authentication outcome == success) proceed 
  else exit ( invoke (call_setup_incoming  SIB (Authentication failed, Error))) 
  Invoke (Cipher SIB) {to cipher channel to mobile terminal} 
  
BSC  Cipher channel and acknowledge. 
 
MSCP  Invoke (TMSI SIB) {to issue new TMSI to mobile terminal.} 
 
MT  Acknowledge TMSI. 
 
MSCP  Invoke (Call_setup_incoming  SIB). 
  Call_setup_incoming  SIB forward call complete message to MSSP. 
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 End {CALL_SETUP_INCOMING service} 
 
MSSP Forward SETUP message to MT {This message will begin call establishment with the 

MT} 
 
MT Acknowledge with Call Confirmed message {Having checked compatibility with 

incoming call}   
 
MSSP Instruct radio network to assign a radio channel to the MT 
 
MT Send Alerting message 
 
MSSP Send Address Complete Message to call originating party. 
 

Figure 4-11 is a global service logic for the CALL_SETUP_INCOMING service. 

Figure 4-12 shows the signalling exchanges for setting up a mobile terminating call 

with the estimated signalling message sizes used for simulation purposes. 
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Figure 4-11 : Global service logic for mobile terminating calls. 
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Figure 4-12 : Signalling procedure for a mobile terminating call. 

4.7.3 MOBILE ORIGINATING CALL 

The procedure for a mobile originating call is described here.  
MT {When the send button is pressed on the mobile terminal} 

Send service request message to network. 
 
MSSP {Detects that a request for a outgoing call setup has been made} 
 Forward service request to MSCP. 
 
MSCP Invoke (CALL_SETUP_OUTGOING service logic program) 
 Begin { CALL_SETUP_OUTGOING service } 
  Invoke (Authentication SIB) 
  Authentication SIB forward RAND to mobile terminal. 
 
MT  Calculate SRES and return SRES. 
 
MSCP  if (Authentication outcome == success) proceed 
  else exit ( invoke (Call_setup_outgoing SIB(Authentication failed, Error))) 
  Invoke (Cipher SIB) {to cipher channel to mobile terminal.} 
  
BSC  Cipher channel and acknowledge. 
 
MSCP  Invoke (TMSI SIB) {to issue new TMSI to mobile terminal.} 
 
MT  Acknowledge TMSI  
  Send Setup message info for outgoing call. 
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MSCP  Invoke (Call_setup_outgoing SIB) 
  Begin { Call_setup_outgoing SIB } 
    Check outgoing call info. against user subscription parameters. 
    If ( Requested call is allowed ) proceed  
    else exit (Unsubscribed service error) 

If (called number == mobile number) Initiate (Routing_Info service) {If 
its a mobile terminating call then use routing service to find roaming MSC 
for terminating call. This is also true for ‘freephone’ call etc.} 

   Inform MSSP to complete call. 
  End { Call_setup_outgoing SIB } 
 
 End { CALL_SETUP_OUTGOING service } 
 
MSSP Inform MT call is proceeding. 
  ~ Assign radio channel to mobile terminal ~ 
 Send initial address message to called party. 
 
The call is connected through when the calling party answers. 
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Figure 4-13 : Global service logic for mobile originating calls. 
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Figure 4-14 : Signalling procedure for a mobile originating call.  

4.7.4 INTER MSC HANDOVERS 

Earlier in this chapter the reasons for only conducting inter-MSC handovers from the 

IN platform were given. The procedure for inter-MSC handovers is described here is 

limited in one respect, the lack of interworking between service control points. The 

interworking between service control points is yet to be defined by IN CS-3. If in the 

physical implementation of GSM-IN architecture, a service control point is associated 

with each MSC, then service control for the user needs to be handed over to the new 

service control point to enable efficient handling of services at local level. 

Unfortunately this is not possible at the moment, and will not be until IN CS-3 define 

inter-SCP control handovers.  

 

The second limitation is the shortest path to the new MSC cannot be routed directly to 

new MSC due to buffering at MSC old. 
BSCold {Decides a handover is required and forwards the list of target cells to MSC (i.e. MSSP)} 
 Send handover required message to MSC. 
 
MSSPold {Detects that a handover is required and forwards message to MSCP} 

Forward service request to MSCP as perform handover message 
 
MSCP Invoke (HANDOVER service logic program) 
 Begin {HANDOVER service} 
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  if (Handover == GSM to GSM) { Decide on handover type} 
   Begin {GSM to GSM handover} 
  if (roaming limitation violated == TRUE) exit(error) 
  Invoke (GSM_GSM_Handover SIB) 
  Begin (GSM_GSM_Handover SIB) 
   Send allocate radio channel message {Instructs MSSPnew to   

 allocate a radio channel in the desired cell site with parameters in message} 
 
MSSPnew   Instructs cell site to allocate a radio channel. 
   If (radio channel allocation == success) return allocate radio channel 

  ack message {This message also contains a reference number used in  
  setting up the land line to the MSSPnew } 

 
MSCP   Instructs MSSPold to setup a connection to MSSPnew. 
   Forwards new radio channel details to MSSPold. 
   Send perform handover ack message to MSSPold. {Both the previous 

  instructions are carried in this single message} 
  End (GSM_GSM_Handover SIB) 
 
MSSPold  Send IAM to MSSPnew 
 
MSSPnew  Reply with ACM. 
 
MSSPold  If (ACM == received) send handover command message to mobile terminal. 
 
MT  Perform handover. 
 
MSSPnew  Forward end signal message to MSCP. 
 
MSCP   End {GSM to GSM handover} 
 End {HANDOVER service}  
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All Error 
Exits
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Figure 4-15 : The global service logic for inter-MSC GSM handovers. 
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Figure 4-16 : Signalling procedure for inter-MSC handovers. 

4.8 INTEGRATION SCENARIOS 

The advantage of an IN approach to the provision of mobility is the availability of  IN 

platforms on most networks today and the next generation of mobile networks will be 

built around the IN concept. With the transformation of GSM mobility functions into 

IN services, the provision of GSM mobility services is no longer restricted to the 

GSM network; with the lifting of this restriction, several implementation scenarios 

become possible, some of which are outlined here. 

4.8.1 GSM - IN: INTEGRATED APPROACH EXAMPLE 

An example of a mobile originating call is used to illustrate (Figure 4-17) the 

workings of the GSM-IN architecture. The mobile terminal informs the network of the 

need for service and a signalling channel is allocated to the mobile terminal over the 

radio interface. The mobile terminal passes the type of service required to the MSC 

(i.e. the mobile service switching point) as a call set-up request message (1). The 

mobile service switching point treats this message as a trigger for the 

‘call_setup_outgoing’ service and composes a INAP message with a request for the 

service which is then sent to the mobile service control point (2). The 

‘call_setup_outgoing’ service will require information on the user and this is obtained 

from the mobile service data point or mobile service data point temp using the mobile 

service database management SIB (3)(4). The mobile service control point will send 

an authenticate request to the user via the mobile service switching point, which now 

acts as a translation function for messages between the control point and the mobile 

terminal (5). Once authentication is successfully completed (6), a channel is ciphered 

and a new TMSI is issued by the mobile service control point (7)(8)(9). The number 

of the called party and the type of service is now sent by the mobile terminal to the 
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mobile service control point (10). The control point checks the requested service type 

against the users subscription parameters and instructs the mobile service switching 

point to setup up a path to the called party with the necessary bearer capabilities and to 

allocate a radio channel to the mobile terminal(11). The call is connected through 

when answered. 
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7 8

9
11

LE / TX MSSP

 

Figure 4-17 : Example of a IN / GSM call. 

4.8.2 THIRD GENERATION MOBILE NETWORKS - UMTS 

UMTS is a mobile network system planned to succeed GSM, offering broadband 

services up to 2Mbits/s and an enhanced range of services based on the IN concept. It 

is widely accepted that the step between GSM and UMTS will be evolutionary rather 

than revolutionary, because of the financial constraints and the widespread use of 

GSM by the time UMTS is introduced. What is ideally required is a set of stepping 

stones for GSM to evolve to UMTS.The integrated architecture and GSM / IN 

mobility procedures presented in this thesis provide those stepping stones. 

 

UMTS architecture (Figure 4-18) is based on IN architecture, so as to allow easy 

integration with the fixed network and therefore shares a common core network 

(BISDN). UMTS is intended to be the umbrella from which a wide variety of mobile 

services (such as paging, domestic cordless telephony, wireless PBXs, radio LANs, 

PMR and public cellular services) are offered. The provision of mobility in UMTS is 

from mobility and service control points rather than from mobile switches as in GSM. 

Therefore by transferring mobility control procedures to a mobile service control point 

it will be possible to modify the GSM network to be ready for UMTS as soon as 

UMTS is introduced. Then radio access network GSM will become one of the many 

radio access networks within UMTS.  
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Figure 4-18 : UMTS functional architecture. 

4.8.3 MOBILE SIBS ON FIXED NETWORKS 

GSM mobility defined in terms of IN SIBs allows the provision of a GSM network as 

an ‘access network’ for a fixed network operator; obviously this may cause regulatory 

problems. By mounting the GSM mobility SIBs on a service control point in the fixed 

network, it will be possible to access the GSM radio access network directly from the 

fixed network without requiring a gateway MSC. When a GSM number is called from 

a fixed network phone, the service switching point at the local or trunk exchange will 

recognise it as a trigger for the IN service, just as dialling a freephone number. The 

service switching function will recognise the number dialled as a GSM number and 

invoke the GSM CALL_SETUP_INCOMING (described in Section 4.7.2). The call 

setup procedure is identical to one carried out by a mobile service control point in the 

GSM network, except here its controlled by a service control point in the fixed 

network. The process is depicted in Figure 4-19. 

 

The advantages of this approach are that the user location is determined and the 

mobile terminal is paged prior to making a connection to the GSM network. Therefore 

route duplication does not take place and network resources are utilised only if the 

mobile terminal is available. Obviously a conscious decision has to be made to decide 

when a originating network conducts the GSM mobile terminating call service 

otherwise excessive signalling delays may be experienced.  
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Figure 4-19 : A GSM call, setup from outside the GSM network. 
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5. SIMULATION MODELLING 

In the previous chapter a new integrated architecture for GSM and IN networks was 

proposed and the signalling exchanges in the core network for the various mobility 

functionalities were described. Having identified the functional architecture for the 

GSM-IN network it is necessary to investigate using simulations [47, 49, 50, 52-57, 

81, 82] the effect of different physical implementations of the functional architecture 

on the performance of mobility procedures.  

 

Having proposed the signalling exchanges between the network nodes and identified 

message sizes, the volume of signalling traffic through the core network can be 

calculated theoretically. This is also true for various degrees of mobility, as mobility 

can be modelled using a simple equation[60, 61]. But the nature of networks is such 

that the estimation of mobility procedure performance becomes too complex for 

mathematical analysis. Neither will the results produced by mathematical analysis be a 

true representation of the system because the signalling messages pass through several 

interfaces of differing transmission rates, because packet sizes in the SS7 network are 

variable and because the signalling message sizes are different over the radio interface 

and the fixed interfaces. Therefore simulation models are required to calculate the 

completion times for the various mobility procedures.  

 

At the outset there were two options: either to develop a simulator specifically for this 

problem or to use a commercial simulator. A purpose-built simulator will certainly be 

faster in terms of execution time, but the savings made on the execution time are 

likely to be more than offset for by the development time. Preliminary tests showed 

that the purpose-built simulator would not be much faster than current commercial 

tools. Furthermore the benefit of a commercial simulator is the availability of existing 

library models and the ability to plug in the models developed by the author for further 

work. 

 

The commercial simulator used was OPNET™, a general purpose 

telecommunications network simulation tool. OPNET is a discrete event simulator: 

the discrete event in models described here will be the signalling packets.  OPNET 
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uses a graphical interface where simulation models are defined at four levels. The top 

level is the network level, where the topology of the simulated network model is 

defined; the interconnection of networks (e.g. ATM links, BISDN, radio interfaces.) 

are also identified at this level. At the second level (the node level) the elements that 

make up the network nodes and their interconnections within the networks are 

defined; these elements include queues, processes, sources, receivers and transmitters. 

The functionality of each process or queue element is defined in terms of a finite state 

diagram and the transitions between states; this is the third level. The fourth and final 

level is where the processing in each of the states in the finite state diagram is defined 

in C code. 

 

Firstly an account of the models developed is given. These will include the 

assumptions made, the techniques used and the incorporation of measurements from 

the GSM network in the models. Finally a section on verification and validation is 

presented. 

 

The results from the GSM-IN simulation model will need to be compared against the 

GSM network. For this comparison a model of GSM network is required as well as 

the GSM-IN model. The results from the two models will be used for comparison of 

performance. To add validity to the comparison, the GSM model will be calibrated 

against data [58, 59] from Cellnet’s GSM network and the assumptions used in the 

calibration of the GSM model will be implemented in the GSM-IN model, in order to 

increase the accuracy of this model. 

 

The performance of networks will be analysed by comparing the signalling load on 

networks, signalling network dimensions and completion times for mobility 

procedures. 
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5.1 SIMULATION MODEL OF THE GSM AND GSM-IN ARCHITECTURES 

Both the GSM and GSM-IN architectures makes use of three types of transmission 

mechanisms for signalling. The radio interface is used between the mobile terminal 

and the cell, LAPD (a derivative of NISDN signalling) for the Abis interface and SS7 

message transfer part between all other network nodes. The modelling of the radio 

access network is first discussed. 

5.1.1 RADIO ACCESS NETWORK 

The radio network is not simulated in any great detail, because: 

• its complexities will degrade the performance of the simulator; 

• the radio access network will is the same in both networks. 

A simplified model has been built, using data from the GSM radio network for fine 

tuning. However each component of the radio access network is modelled in a simple 

manner: this will facilitate detailed modelling of the radio access network if the need 

were to arise in the future.  

5.1.1.1 GSM RADIO INTERFACE 

The GSM radio interface is a mixture of FDMA and TDMA. Each FDMA channel is 

200kHz wide, with 0.577ms wide TDMA slots. 

 

For time critical signalling during an active call, the Fast Associated Control 

CHannel (FACCH) is used for signalling. This channel ‘steals’ a data slot from the 

channel being used for voice or data. This allows for higher transmission rates over 

the radio link for time critical signalling, such as handovers. With the fast associated 

control channel, a slot is available every 8 slots, i.e. 0.577ms slot every 4.615ms. This 

channel is used for handovers and signalling associated with an active call. LAPDm 

frames are used to transmit signalling messages over the fast associated control 

channel, with a LAPDm frame of 23 bytes. The frame uses a control byte and an 

address byte, leaving 21 bytes for information. Each frame is interleaved over 4 full 

bursts, for improving transmission quality. Therefore, the effective transmission rate is 

21 bytes every 18.46ms (4 x 4.65ms). Hence the effective bit rate for the fast 

associated control channel is 9.1Kbits/s ( 21 x 8bits / 18.46ms). 
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For signalling outside a call, the Stand-alone Dedicated Control CHannel (SDCCH) 

is used for procedures such as location updating. This channel is given a slot for every 

8 slots a fast associated control channel receives, hence the transmission rate is 

1.138Kbits/s . 

 

Propagation delay will depend on the position of the mobile station relative to the cell 

site. In reality, the delay will vary as the user moves and different delays will be 

experienced by different users. To simplify the simulation model, a constant 

propagation delay is used for all mobile terminals. Assuming the average distance 

between a cell and mobile terminal is 1000m, the one way propagation delay will be 

3.3µs at the speed of light. Due to the very low transmission rates over the radio 

channel, propagation delays are negligible compared to the delays in transmission. For 

a signalling message of 20 bytes, the transmission delay will be approximately 150ms. 

Although the propagation delay is negligible it has been included in the model. 

5.1.1.2 ABIS INTERFACE 

The LAPD is used over the Abis interface. The cell site and the BSC are connected via 

a 64kbits/s link and again a constant propagation delay for the link between cell sites 

and the BSC is assumed. The average distance between cell sties and BSCs is 

assumed to be 5km, giving a delay of 33.3µs (assuming half the speed of light).  

 Total delay (Abis) =  Transmission delay + Propagation delay 

5.1.2 MODELLING OF RADIO ACCESS NETWORK 

The simulation model of the radio access network (shown in Figure 5-1) is modelled 

as a single network module. Several of these radio access network modules are 

connected to a single MSC, each with a single a 64kbits/s link.  
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Figure 5-1 : Simulation model of the radio access network. 

Delay processing within the BSC is modelled as shown Figure 5-2; the processing is 

identical for packets from the cell site. The message transfer part (MTP) processing 

delay is set 1ms and the message transfer delay is set to 400µs [58]. Packets to the 

MSC from the BSC are sent to a queue which places the packet on to a 64kbits/s link 

to the MSC. 

Message Transfer 
Delay

MTP Processing
Delay

MTP Processing
Delay

From MSC To Cell Site

BSC Model

 

Figure 5-2 : Delay processing in the BSC module. 

 

The Abis interface module calculates the transmission delay at 64kbps transmission 

rate and adds the fixed propagation delay. The cell site will add a further 400µs delay 

to all packets crossing its path, i.e. the local transfer delay. 
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The radio interface module will calculate the delay for a packet on the radio interface 

depending on the nature of the signalling packet. If the signalling message occurs 

outside a call then the transmission delay is calculated at the stand-alone dedicated 

control channel rate and at the fast associated control channel rate for signalling 

during a call. The propagation delay across the radio interface is fixed for all packets. 

Error free transmission is assumed on all interfaces within the radio access network.  

 

In Figure 5-1, the reader will notice the only queue module in the radio access 

network is on the link to the MSC. The radio access network model does not contain 

any other queues because: 

• a single cell site is used to model all cell sites in the network, so there is no 

multiplexing of traffic from the various cell sites at the BSC; 

• instantaneous access to the radio interface by the signalling packets is assumed; 

• multiple radio channels are not modelled so there is no multiplexing of traffic from 

the various radio channels at the cell site. 

The modelling of the mobile terminal is described in detail in the next section.  

 

Requests for mobility services will be generated by the source models. In this 

simulation study, individual users are not modelled, although each request is modelled 

on an individual basis. As the interest is in the aggregated behaviour of users, the aim 

is to model the inter-arrival time between requests for services as seen by the network. 

The source models are as follows; 

1. Location Update Requests : The rate of location updates (λlu) is determined by 

the mobility model described further on in this chapter. Location updates are 

Poissonian in nature [elec-letter] and therefore the inter-arrival time between 

location updates is determined by an exponential distribution.  

2. Handover Requests : Handover rates (λho) will be determined by the mobility 

model and by the probability of a user being engaged in a call (Pcall). As with 

location updates, handovers are Poissonian in nature. 

3. Mobile Originating Call Requests : The rate of call requests (λmo) will be 

determined using data from Cellnet’s network. Once again the Poisson distribution 

is used. 
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5.1.3 MOBILE TERMINAL 

The mobile terminal module has the capability either to initiate a service or to respond 

to a signalling request from the control network for mobility procedures. Only the 

positive outcomes for the mobility procedures are modelled. The module will generate 

the appropriate signalling messages, set the appropriate parameters and set the size of 

the signalling message[6].  

 

For the purpose of analysis and tracking of procedures, each service request is 

assigned a unique ID. This ID is included in all signalling messages associated with 

that instance of the service.  

 

The mobile terminal module is developed as a finite state machine. Once initialisation 

of the module is complete at the beginning of the simulation, the module goes to the 

‘idle’ state. It remains in the ‘idle’ state until it receives a request from one of the 

sources or a signalling message from the network. The transition to the next state is 

determined by the nature of the request or signalling message. Once at the new state, 

the processing for that state is carried out. This will usually involve composing a 

signalling message and transmitting the message to the network with a composing 

delay. The composing delay is set to 800µs. Once the processing is complete the 

transition is either back to the ‘idle’ state or to a new state. The state diagram for the 

mobile terminal module is shown in Figure 5-3. 
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Authentication
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Figure 5-3 : Mobile Terminal module processing states. 
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Data was obtained from Cellent’s GSM network on the time taken by mobile 

terminals to respond to paging messages during call setup to a mobile terminal. From 

the data a best fit distribution [63, 81] for the data was found to be a log-normal 

distribution. When responding to page requests from the network, the mobile terminal 

module responds with a random delay generated from this distribution. The raw 

paging data and the best fit probability distribution are shown in Figure 5-4. 
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Figure 5-4 : Graph illustrating the raw paging data and the theoretical fit. 

The mobile terminal needs to determine whether the call setup requested is a land 

(fixed) terminating call or mobile terminating call. Using data from Cellnet’s network 

the ratio of mobile to land, termination was found to be approximately 0.1(Table 5.1). 

 

Calls per Hour Mobile to Land Mobile to Mobile Land to Mobile 

Answered 184619 13559 141623 

Not Answered 36478 3602 35423 

Table 5.1 :  Data on the number of calls made in and out of Cellnet’s TACS network per 
hour. 

The mean call holding times were also determined using data from Cellnet’s network 

(Table 5.2). Call holding times are assumed to be exponentially distributed. Once a 

call has been setup, the mobile terminal will generate a random time for the duration 
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of the call based on the given data. A call terminate message is sent after the random 

delay. 

Type of call Mobile to Land Mobile to Mobile Land to Mobile 

Mean holding time(Sec) 111 126 126 

Table 5.2 : Mean Call Holding Times for the Holborn area of London. 

5.2 MSC AND MSCP NODE MODELS 

This simulation model is a signalling protocol based model so that it is necessary to 

generate the appropriate signalling messages in the correct sequence. To achieve this, 

every request for a service must be processed on an individual basis and the progress 

of each service request must be tracked.  

 

This is achieved using the dynamic processes capabilities in OPNET. It was found 

that the best way to model a services was to use the IN principal of service built using 

SIBs. This is an object-oriented approach that allows for the reuse of functionality. 

The service ( e.g. location updating, handovers, mobile originating call, mobile 

terminating call) is a process defined in terms of a finite state diagram which defines 

the path followed by each service. Each state may carry out processing by itself or 

request a SIB (e.g. authentication function, TMSI function, database management 

function, paging function) to carry out the processing. If a SIB is request and the result 

of the SIB processing is sequential to the service processing it will remain in the same 

state until the outcome of the SIB process is known. If the SIB processing can be done 

in parallel with the service, then the service will move to the next state. SIBs are also 

processes defined in terms of finite state diagrams. Processing within a SIB is fixed; 

only the parameters for the processing can be changed. 

 

The node ( the MSC or the MSCP) is the parent process. This is a static process that 

will last throughout the simulation. The primary functions of the parent process are 

described below. 

• Initialisation of the simulation environment is done by reading in data from 

initiation files and gathering the necessary routing information for the duration of 

the simulation. 
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• The node will be in receipt of two types of signalling packets: the packets making 

the initial request for service and packets in return for requests made by the node in 

reply to a service process.  

• The parent process will need to invoke the correct service based on the initial 

service request, place the service process on a list of service and pass the 

appropriate parameters to the service process.  

• Each service process or SIB process has a unique process ID. All signalling packets 

generated by a service or SIB will contain this ID; the reply to signalling messages 

will also contain this ID. The parent process maintains the list of service and SIB 

processes and their corresponding IDs. The parent process will forward the 

signalling message to either the service process or SIB with that ID. 

• Each service process is assigned a timer. Each service has a maximum completion 

time and if the time taken to complete a service overruns this value, the node 

process will abandon the service, kill the service process and all associated SIB 

processes. 

• The node process also maintains a data collection functionality to collect data on 

service processing. 

The node or ‘parent’ process can have any number (limited only by the limitations of 

the machine) of processes running under it.  

For each service request, the node process will create a child process, that is the 

process for the service requested. The service process will create SIB processes or 

‘grandchild’ processes. The service process will pass all the necessary parameters to 

the SIB process and the SIB process will identify the service process using the parent 

(service process) child (SIB process) relationship. Figure 5-5 illustrates this. 
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Figure 5-5 : MSCP and GSM MSC node process relationship with service and SIB 
processes. 

5.2.1 DATABASE PROCESSING 

In order to simplify the database model, packets sent to databases contain the size of 

the packet to be returned. The database functionality will compose a reply to the 

request and set the size of the reply to the specified packet size. Depending on the 

nature of the request, the database process will send the packet with a delay: read from 

database requests is 3ms, write to a database is 6ms and delete a record from the 

database is 10ms.  

5.2.2 MODELLING THE SS7 SIGNALLING LINK 

A SS7 link consists of the  three layers of the message transfer part. A simplified 

model of the SS7 link is used in the study here with a fixed delay of 1ms [66] assumed 

for processing at layers 2 and 3. Functionality to monitor the nature of signalling 

traffic is installed in layers 2 and 3. These include the monitoring of link utilisation, 

packet loss, arrival rates, interarrival times for signalling packets and packet sizes. 
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The physical layer may have more than one link, each with a fixed buffer set at the 

beginning of the simulation. Signalling packets from layer 2 are sent to the link with 

the most free space in its buffer. Packet loss occurs when the size of the signalling 

packet exceeds the biggest available free buffer space. The link transmission rate is 

64kbits/s and queue service [62, 63] is first in first out. The delays in buffers and in 

transmission are added to the total delay experienced by the packet. Propagation delay 

on the link is determined by the length of the link using a value of half the speed of 

light for propagation over the link. Figure 5-6 illustrates SS7 message transfer part 

models in GSM and GSM-IN nodes. 

 

Signalling
Messages

to and from
user layers

Message Transfer Part
2 & 3 processing

 

Figure 5-6 : SS7 message transfer part model. 

The other part of the SS7 signalling network is the signalling transfer point, 

responsible for routing and switching of signalling messages. All routing functionality 

is carried out at layer 3. Furthermore the data is collected on the behaviour of each 

link into the signalling transfer point.  

 

At the beginning of a simulation, the signalling transfer point will initialise its routing 

table using routing packets set by nodes attached to it. These packets are then sent to 

all other nodes attached to the signalling transfer point. As the packets propagate a 

routing plan of the network is built.  
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Figure 5-7 : Signalling transfer point model 

5.3 MOBILITY BEHAVIOUR 

User mobility is modelled using a fluid flow model [60] which derives the rate of 

user-crossings from an area. This model assumes that the movement of users are not 

correlated, the direction of movement is uniformly distributed between 0 and 2π and 

the user density is evenly distributed in the area of interest.  

 

Users are assumed to have a velocity magnitude of v, with f being the probability 

density function of v. The number of users in an area is given by ρs, where ρ is the 

user density and s the surface area.  

α

v
dl

User

 

Figure 5-8 : A user with velocity v. 

Consider a small section of the boundary dl (boundary element) of an area as shown in 

Figure 5-8. It is now possible to calculate the number of users leaving the area via this 

boundary element in time dt.  
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Consider a user with velocity magnitude of v, where the velocity vector forms an 

angle α with the perpendicular to the boundary element dl. The users crosses the 

boundary if located in the rectangle of sides dl and v cosα dt. 

 

Therefore the number of users crossing the boundary element is distributed according 

to the following density, 

dM(d d ,d ,  dt) =  f( ) d  
d
2

   cos   dt dlα
α
π

ρ α, v l v v v      (1) 

dM(d ,  dt) =  
2

f( )  cos( ) d  d  dt d
0

+

- /2

/2

l v v v l
ρ
π

α α
π

π ∞

∫∫     (2) 

 f(v) is a probability density function, therefore by definition 

f( )  =  Vv v
0

+∞

∫       (3) 

 where V is the mean velocity. 

Therefore    dM (dl,  dt) =  
V

dl dt
ρ
π ∫∫   (4) 

Integrating with respect dl for the boundary of a circle will give the circumference L. 

Therefore rate of crossing out a circular area is given by 

dM
dt

 
V L

=
ρ
π

    (5) 

This equation is used for calculating user mobility rates in this study. 

5.4 VERIFICATION AND VALIDATION 

Having developed a simulation model, the mode needs to be verified and validated. 

Verification determines whether the model does indeed perform as intended and 

validation shows whether the model is a true and accurate representation of the system 

modelled [82]. This needs to be carried out at two levels, the first on a fine scale by 

looking at individual objects that make up the network and then at the whole network. 

 

The simulation model used some library models supplied with OPNET: the receiver, 

transmitter and physical link models. In addition to which node processes were 

developed to model GSM and IN functionality. All library function were verified and 

tested using purpose built test models.  
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Although various queueing models were provided within OPNET, these were found to 

be inadequate to model multiple server queues with individual buffers serving packets 

from a single source. A queue module [62, 63] was developed that would receive 

packets from a single source and place the packet into the queue with the largest free 

buffer for service. This single queue module is capable of modelling ‘n’ buffers and 

servers serving a single source. The reason for using a single module is that a single 

queue module serves a single logical link, even if the link has n x 64kbits/s SS7 

channels. This simplified data collection on link behaviour between two nodes.  

 

A modular approach was used. This allowed for each functionality within the queue 

module to be tested individually and independently. Once it was established that each 

functionality operated as intended, the complete module was verified using single 

stepping techniques and recording the state of the system. This showed that the 

module operated as expected. Furthermore the module was tested against known 

simplistic mathematical models such as a M/D/1 queue [62, 63, 81], some of the 

results of which are shown in Figure 5-9 and Figure 5-10. 
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Figure 5-9 : Comparison of simulated and theoretical mean waiting times for a M/D/1 
queue. 
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Figure 5-10 : Comparison between the mean number of packets for a M/D/1 theoretical 
queue and simulated case. 

The node processes for GSM and IN functionality was developed in a similar fashion. 

These were again verified using single step techniques and tested using test modules. 

Service dependent processing was verified against GSM recommendations to 

ascertain that the operations and the resulting signalling messages generated were in 

accordance with the recommendation and so was the sequence in which they occurred.  

 

The next step was the validation of the complete GSM simulation model. This was 

carried out using measurements made on the GSM network. Ideally the measurements 

available would have been segmented providing a view of various parts of the GSM 

network, i.e. data over the radio interface, data over the A and Abis interface. 

However the data available was taken by driving around London in a car and 

attempting call setups. The holding times for the SDCCH were noted for call setups. 

One hundred samples of SDCCH holding times were made and a distribution was 

found to fit the data. The best fit distribution was a log-normal curve.  
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Figure 5-11 : Graph showing the normalised simulation and GSM data for the 
distribution of SDCCH holding times for mobile originating calls. 

The data from simulation and GSM network were shifted (normalised) to the origin to 

carry out a comparison of results. Figure 5-11 illustrates the good fit between the two 

data sets, the main difference being the higher peak experienced by the simulation 

data. The simulation data shown here is for one simulation scenario, in which case the 

network conditions over the course of the simulation will remain static, so that a 

clustering of SDCCH holding times would be expected. The real data shows 

measurements made at various points in the network at various times in the day: 

therefore, the longer tail and shallower peak are to be expected. If compensation is 

made for errors induced by the simplicity of the radio access model, the simulated 

model is a good representation of the actual network. 

 

There is a difference in the mean values obtained from the simulation results and data 

from the GSM network. Therefore all results need to be scaled by this factor to make 

then more realistic in terms of delays. The difference in the mean values are: 0.3s for 

mobile originating calls; 0.24s for location updates; 0.18s for mobile terminating 

calls.  

 

As a means of secondary validation, the signalling link behaviour was considered. It is 

well know that signalling traffic in mobile networks is very bursty. On all signalling 
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links in the model, link utilisation measurements were taken every second. The Figure 

5-12 illustrates the bursty nature of signalling traffic that was observed. 

 

Figure 5-12 : Link utilisation over 10000 seconds 
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6. ANALYSIS & SIMULATION RESULTS 

In the previous chapter simulation models produced as part of this research to 

investigate the performance of the GSM-IN architecture were described. The focus of 

the simulations is to investigate the influence of IN architecture on mobility service 

performance. Mobility performance in GSM will be used as the benchmark.  

 

Several physical architectures are possible for the GSM-IN integrated architecture 

present in Chapter 4. These variations need to be investigated as different operators 

will chose the most suitable architectures for their requirements. Each of these 

physical architectures will generate a different amount of signalling traffic in the core 

network and hence influence the performance of mobility procedures. The two 

principal philosophies influencing the physical architectures are oriented towards 

mobility or intelligent networks. A GSM operator will be likely to tailor the GSM-IN 

architecture to a mobile environment resulting in the traditional mobile architecture, 

where the mobile service control point, the mobile service switching point and the 

temporary database (MSDPtemp) are co-located on a single platform. If a single 

control point supports more than one mobile service switching points, then the control 

point is located away from the mobile service switching points resulting in a physical  

architecture more in keeping with the IN philosophy.  

 

A result of combining mobile and IN architecture philosophies is the resulting pseudo 

architectures, where one has elements of the other. The temporary database 

(MSDPtemp or VLR) is a mobile network concept aimed at reducing signalling traffic 

in the core network and improving service provision times. A mobile network 

architecture without the temporary database is referred to as a pseudo mobile 

architecture and an IN architecture with a temporary database will be referred to as a 

pseudo IN architecture. Figure 6-1 outlines the different physical implementations 

used in the simulation study. An architecture not considered here is when the control 

point is separated from the mobile service switching point but has a temporary 

database attached to the control point. This architecture may cause contention and 

future evolutionary problems because an element of an access network (the temporary 
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database) is introduced into the control architecture. For these reason this architecture 

is avoided.  
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Figure 6-1 : Physical implementations for the GSM-IN integrated architecture. 

The results presented in the following sections will be from two sources; an analytical 

approach to calculating signalling load and the use of simulations for performance 

measures of mobility services and signalling network.  

6.1 SIGNALLING LOAD ANALYSIS 

The GSM-IN architecture implements no changes to the radio access network and as 

such the signalling volume in the radio access network is unchanged for any physical 

implementation of the GSM-IN architecture. It is the signalling volume in the core 

network that varies for different physical implementations and hence determines the 

difference in the quality of service. Any future reference to signalling volume or 

signalling traffic refers, thereafter, to that in the core network unless specifically stated 

otherwise. This section will analyse the effect various physical implementations of the 

GSM-IN architecture will have on the volume of signalling traffic.  

 

The analysis [50, 52, 56] will first involve calculating the signalling load generated by 

each mobility procedure for different physical implementations using the signalling 

transactions identified in Chapters 2 and 4. Secondly, the rates at which the 

procedures are invoked will be identified and finally the total signalling load is 

calculated.  



 

Page 112  

 

The signalling volume generated by each procedure is given in Figure 6-2 for the 

different physical architectures. The signalling analysis in this section is for a network 

covered by a single MSC and the parameters [47, 48, 58, 59] for which are given in 

Table 6.1. The variable rates are calculated using the fluid flow technique given in 

Chapter 5. 

Parameter Value 

Area covered by MSC (Circular radius of 30miles) 2826 sq. miles 

Number of Location Areas in MSC Variable 

Size of Location Areas Variable 

Number of mobile users covered by MSC (Cusers) 500,000 

Average speed of mobile users 5 miles / hour 

Average number of Calls to and from a user (Ccall) 1 call / hour 

Rate of calls to and from MSC (λcall) 139 / second 

Ratio of mobile originating calls to mobile terminating calls 
(Pmo:Pmt) 

0.56 : 0.44 

Mean call holding time for User(Cht) 120 seconds 

Average number of Power Ups for User (Cpu) 2 / day / user 

Rate of Power Ups in MSC(λpu) 11.6 / second 

Rate of Inter-MSC crossing (λlu_inter_MSC) 14.74 / second 

Rate of Intra-MSC crossing (λlu_intra_MSC) Variable 

Rate of Inter-MSC handovers (λho-inter_MSC) 0.05 / second 

Table 6.1: MSC parameters for signalling load analysis 

For the GSM network used as the benchmark, the MSC and the VLR are assumed to 

be co-located keeping with the standard GSM architecture. For entities that are co-

located, a internal interface is used and as such signalling between co-located entities 

will not appear in the calculations. This assumption is used for the GSM-IN 

architectures and when the temporary mobile service data point in the GSM-IN 

architecture is co-located with the mobile service switching point.
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The total signalling load [54] on the core network (σtotal) (per second) is given by 

 

σtotal =   (Llu_inter_MSC x λlu_inter_MSC)(1- Pin_call) + (Llu_intra_MSC x λlu_intra_MSC)(1- 

Pin_call) 

+ ((Lho_inter_MSC x λho_inter_MSC) + (Lpu x λpu)  

+ (Lmo_call)( λcall x Pmo_call) + (Lmo_call)( λcall x Pmo_call)       ……….(1) 

 

where P denotes the probability of the event. The signalling volume generated by a 

user (σuser ) per hour on the core network is given by  

 

σuser = (Llu_inter_MSC x Plu_inter_MSC)(1- Pin_call) + (Llu_intra_MSC x Plu_intra_MSC)(1- 

Pin_call)  

+ (Lho_inter_MSC x Pho_inter_MSC) + (Cpu / 24) Lpu 

+ (Lmo_call)(Ccall x Pmo_call) + (Lmo_call)(Ccall x Pmo_call)     …………..(2) 

 

Figure 6-3 illustrate the total signalling load generated based on the above 

assumptions, parameters in  Table 6.1 and messages sizes in Figure 6-2, as a function 

of the number of location areas in the switch (i.e. MSC). Similarly Figure 6-4 shows 

the volume of signalling generated per user per hour.  

 

Increasing the number of location areas within a switch reduces the size of location 

areas. Hence increasing the number of crossings of location areas boundaries by users. 

Varying the number of location areas within a MSC does not affect the rate of inter-

MSC location updates and handovers as the size covered by the MSC remains 

constant; only the rate of intra-MSC location updates and handovers will increase. The 

increase is reflected in both the graphs (Figure 6-3 and Figure 6-4), where the volume 

of signalling increases with the number of locations areas for all but the traditional 

mobile architectures (GSM and GSM-IN). For these two architectures intra-MSC 

location update and handover signalling is contained within the access networks and 

hence an increase in mobility is not reflected by increased signalling in the core 

network. The traditional mobile GSM-IN architecture generates 1% higher signalling 

volume than the GSM architecture, as the GSM-IN architecture transfers users 
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supplementary services and mobility data across the network as opposed to just 

mobility data in GSM. 
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Figure 6-3 : Signalling load on the core network per second for the various physical 
implementations. 
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Figure 6-4 : The signalling load generated per user per hour for the various physical 
implementations. 
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The lack of a temporary database in the pseudo mobile GSM-IN architecture means 

the permanent database needs to be accessed for intra-MSC location updates. 

Therefore an increase in intra-MSC location updates will be reflected in the signalling 

volume. For a single location area the pseudo mobile GSM-IN architecture generates 

22% more core network signalling than a GSM network and 46% for 10 location areas 

in a switch. As the number of location areas within a switch is increased, the resulting 

increase in signalling load is not linear. The rate of increase flattens out as the number 

of location areas increase. The is to be expected as the user density is assumed to 

remain constant even when the size of location areas decreases.  

 

Although the increase in signalling in the core network for the pseudo mobile 

architecture is small, the disadvantage is the greater number of transactions to the 

users permanent database as shown in Figure 6-5. 
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Figure 6-5 : Comparison of transaction to the permanent database per user per hour 
relative to GSM. 

For the classical IN and pseudo IN GSM-IN architectures signalling volume increases 

by a factor of 3.9 and 4.3 respectively for 1 location area compared to GSM. For 10 

location areas the increase is by a factor of 4.5 and 4.9. The separation of the mobile 

service switching point and the mobile service control point in these two architectures 

accounts for the higher volume of signalling traffic. This is a result of having to 
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transmit each and every control message through the core signalling network. The 

separation produces a steeper gradient in the rise in signalling volume with increasing 

number of location areas compared to the pseudo mobile architecture. As with the 

pseudo mobile GSM-IN architecture, the rate of increase tails off for the classical IN 

and pseudo IN GSM-IN architectures. The pseudo IN GSM-IN architecture generates 

more signalling traffic than the classical IN architecture which does not have a the 

temporary database. This is a result of having to update three databases for an inter-

MSC location update when a temporary database is present as opposed to only the 

permanent database (one) when the temporary database is absent from the 

architecture. This results from separating the temporary database from the control 

point, even though the aim behind the temporary database is to reduce the signalling 

in the core network. It is interesting to note that when the control point and the mobile 

service switching point are separated, network efficiency in terms of signalling load is 

superior without a temporary database. 

 

Summarising, the traditional mobile GSM-IN architecture generates the same level of 

signalling as the GSM network, both in total signalling volume and per user. 

Therefore a traditional mobile GSM-IN physical implementation will not detract from 

the performance of a GSM network. The pseudo mobile GSM-IN architecture 

generates a 35% increase signalling volume on average and only a 46% increase for 

10 location areas. Considering the architecture is not fully oriented towards mobility 

the increase is acceptable. 

 

Both the classical IN and pseudo IN GSM-IN physical architectures on average 

generate in excess of a four fold increase in signalling volume compared to GSM. 

Merely considering the signalling load would suggest that the performance obtained 

from these two network architectures would be severely impaired. Although the 

number of signalling links needed to accommodate the classical IN and pseudo IN 

architectures will be approximately 5 times greater, this need not detract from the 

service performance as shown in the next section. 
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6.2 SIMULATION RESULTS 

The simulation models described in Chapter 5 were used to model the GSM network 

and the four different physical architectures for the GSM-IN architecture (Figure 6-1). 

The results from these simulation models are presented in this section; these results 

include the time taken to complete mobility services and the probability of losing a 

service because of packet loss in the network or because of expired timers as a result 

of excessive delays in the network. The timers were set at 5 seconds for all services, a 

realistic figure. 

6.2.1 SCENARIO 1 

This scenario will serve as a one-to-one comparison between the different 

implementations of GSM-IN physical architectures. Some of the results will not be 

‘realistic’, because real networks will not operate with such poor quality of service, 

but this comparison helps illustrate the relative performance of the different physical 

architectures under similar network loads.  

 

The GSM network is used as the benchmark. The core signalling network was 

dimensioned for the GSM network to achieve a near loss less network with minimal 

delays in queues by maintaining link utilisation levels at 30%. The corresponding 

loads were then applied to all similarly dimensioned GSM-IN networks to analyse 

their relative performance. The parameters for this scenario are as given in Table 6.1  

with the exception of the number of calls to / from a user set at 0.3 calls/ hour. Each 

node was connected to the signalling transfer point (STP) using 3 x 64kbits/s links 

each with 16kbit buffers. The GSM and GSM-IN simulation model configurations for 

this scenario are shown in Figure 6-6. 

6.2.1.1 RESULTS FOR SCENARIO 1 

A comparison of intra-MSC location update service completion times against the 

number of location areas in the switch is given in Figure 6-7. These times are relative 

to the mean intra-MSC location update time for the GSM network with 3 location 

areas (1.31seconds), as intra-MSC location update procedures occur in GSM only 

when more than one location areas exists within a MSC. The traditional mobile GSM-

IN physical architecture takes on average 1% longer than GSM to complete the intra-
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MSC location update procedure. As both have identical physical architectures, 

performance similar to that for GSM is expected. The involvement of the service 

control point in the GSM-IN architecture and the resulting processing time will 

account for the 1%.  
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Figure 6-6 : Simulation network configuration for a) The GSM architecture, b) the 
traditional mobile and pseudo mobile GSM-IN physical architectures and c) the 

classical IN and pseudo IN GSM-IN physical architectures.  

Due to the absence of the temporary database in the pseudo mobile GSM-IN physical 

architecture, every intra-MSC location update involves querying the permanent 

database (MSDP). Hence intra-MSC location update procedures take 14% longer than 

GSM in the pseudo mobile GSM-IN physical architecture. The signalling traffic for 

the pseudo mobile architecture increase with the number of location areas (Figure 6-3) 

as a result of the increasing number of intra-MSC location updates. The pseudo 

mobile architecture absorbs the increase in signalling traffic without degradation in the 

quality of service. This can be seen in Figure 6-7, as the delay for intra-MSC location 

updates remain at 14% for increasing number of location areas. A 14% increase for 

the intra-MSC location update completion time is quite acceptable, especially since 

that service is not real-time.  
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For the classical IN and pseudo IN GSM-IN physical architectures a degradation in 

the quality of service was expected, due to the distributed nature of the architecture 

and the resulting increase in signalling load (Figure 6-2and Figure 6-3). The intra-

MSC location update times for the classical IN physical architecture show an increase 

of 155% for 3 location areas and 180% for 10 location areas. For the pseudo IN  

architecture, increases of 125% through to 150% were recorded. These large service 

completion times are due to the signalling traffic generated by these two architectures 

(Figure 6-3) exceeding the signalling capacity of the network. As a result, the key 

signalling links
7
 are operating around the 98% utilisation mark, hence resulting in 

large waiting times in buffers (16k buffer = 0.25seconds on a 64kbits/s link). This 

explains the large delays associated with the classical IN and the pseudo IN GSM-IN 

physical architectures. 
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Figure 6-7 : Comparison of intra-MSC location update service completion times.  

The signalling volume generated by the pseudo IN physical architecture is greater than 

that for the classical IN physical architectures (Figure 6-3) and therefore longer 

service completion times for pseudo IN physical architecture would be expected. In 

Figure 6-7 this is not the case. The reason for that is: the signalling load for the pseudo 

IN case concentrated on the MSCP - MSSP link; as a result, the probability of  packet 

                                                 
7
 For the pseudo IN physical architecture the key link is between the MSCP and the MSSP. For the 

classical IN physical architecture the key links are between the MSCP and the MSSP, and the MSCP 
and the MSDPs. 
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loss is higher in the pseudo IN physical architectures (Figure 6-13) compared with the 

classical IN architecture where the traffic from the MSCP is distributed fairly evenly 

between the MSSP and MSDPs. When a packet is lost, the service associated with 

that packet is terminated and hence the service produces no further signalling packets. 

The higher packet loss in the pseudo IN architecture has the net effect of reducing the 

volume of signalling traffic below levels generated by the classical IN architecture. 

Hence shorter service completion times are experienced in the pseudo IN architecture 

than those of the classical IN architecture. This is also true for all other services. 

 

Figure 6-8 illustrates the performance of inter-MSC location update service 

completion times relative to the GSM time for 1 location area (1.58seconds). The 

pseudo mobile GSM-IN physical architecture shows a 6% improvement on GSM. 

This is a result of the smaller signalling volume the inter-MSC location update service 

generates for the pseudo mobile physical architecture than for GSM. The GSM and 

traditional mobile GSM-IN physical architecture experience near identical levels of 

performance. The classical IN physical architecture experiences a 19% increase for 1 

location area; for 3 location areas or more, the service completion times for inter-MSC 

increase by over 100%. For 1 location area, the network is able to cope with the 

volume of signalling generated by the classical IN architecture, but for 3 or more 

location areas, the volume of signalling exceeds the capacity resulting in excessive 

delays as explained earlier. For the pseudo IN physical architecture an increase 

ranging from 80% for 1 location area to 105% for 10 location areas was recorded. 

 

Figure 6-9, Figure 6-10 and Figure 6-11 show the performance of mobile to fixed, 

fixed to mobile and mobile to mobile calls respectively. These values are relative to 

the time taken for the equivalent GSM service with one location area. The general 

trends observed for the location update services are present here as well. For both 

mobile to fixed (mobile originating) and fixed to mobile (mobile terminating) the 

pseudo mobile GSM-IN physical architecture generates twice the signalling traffic in 

the core network as does GSM. This does not result in a two fold increase in the time 

taken to complete these services, but only a 6% increase. The rate of signalling over 

the radio interface is approximately 1/64th of the SS7 signalling links and, as a result, 

even a large increase in core signalling traffic has only a small influence on the service 
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completion times. The relative performance of the mobile to mobile calls are better, 

because the ratio of radio interface signalling volume to core network signalling is 

higher, therefore the portion of the delay due to the core network is even smaller. In 

Figure 6-11 no values are shown for the pseudo IN physical architecture or for 10 

location areas in the classical IN physical architecture because the services took 

longer than 5 seconds to be completed. This is as a result of excessive delays and 

packet loss in the core networks.  
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Figure 6-8 : Comparison of inter-MSC location update service completion times. 
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Figure 6-9 : Comparison of call setup times for a mobile to fixed network calls. 
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Figure 6-10 : Comparison of call setup times for a fixed network to mobile calls. 
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Figure 6-11 : Comparison of mobile to mobile call setup times. 
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Figure 6-12 : Comparison of inter-MSC handover times. 

For the traditional mobile and pseudo mobile physical architectures, the time taken to 

conduct inter-MSC handovers is comparable with GSM. As with other mobility 

services, inter-MSC handovers experience in excess of 2 fold delays for the classical 
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IN and pseudo IN physical architectures. The comparison of inter-MSC handover 

times is shown in Figure 6-12. 

 

Figure 6-13 shows the probability of losing a service either through to packet loss or 

through the service completion time exceeding the 5 second limit set for all services. 

For the classical IN physical architecture; the signalling capacity is capable of coping 

with the volume of traffic for 1 location area, but experiences increasing amount of 

loss for increasing number of location areas in the switch. For the pseudo IN physical 

architecture, the signalling capacity used in this scenario is inadequate and is reflected 

in the service loss probability. All other physical architectures operate at near loss less 

levels. 
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Figure 6-13 : Probability of losing a service due to either packet loss or an expired 
timer. 
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Figure 6-14 : A comparison of service loss probability for 16kbit and 32kbit buffers. 

For the pseudo IN and classical IN physical architectures, increasing the buffer on the 

signalling links from 16kbits to 32kbits has an adverse effect on the overall 

performance. The increase in the buffer size reduces the packet loss probabilities, but 

increases the overall service completion for all services due to the larger buffers and 

the network running at its full capacity. Therefore, the number of services taking 

longer than 5 seconds to be completed is far greater and in the case of the classical IN 

physical architectures nearly all services take longer than 5 seconds. 

 

6.2.2 SCENARIO 2 

It is known that classical IN and pseudo IN GSM-IN physical architectures generate a 

greater volume of signalling traffic than the other physical implementations. In this 

scenario allowance is made in the network’s capacity for the increased volume of 

signalling traffic. Simulation scenario 2 has the same input parameters as scenario 1 

and the total capacity of core signalling network has been increased by 66% (from 3 

links between nodes to 5 links). Only the two physical architectures (the classical IN 

and the pseudo IN GSM-IN) that required the increased signalling capacity are 

considered here. The results are presented relative to the equivalent GSM service 

completion time for a GSM network with 3 signalling links (i.e. scenario 1). The 
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graphs also include the results for the two physical architectures from scenario 1 for 

comparison. 

 

If sufficient provision is made for the higher volume of signalling load generated by 

the classical IN and the pseudo IN GSM-IN physical architectures, then the level of 

performance is quite acceptable as illustrated in Figure 6-15 to Figure 6-20. With the 

exception of the results for 10 location areas for the pseudo IN architecture, all 

mobility procedures are completed within a range of 5% to 30% in excess of the GSM 

times. Considering the distributed nature of these two physical implementations, these 

levels of performance are promising. The deterioration of performance occurs for 10 

location areas because the level of signalling traffic approaches even the increased 

signalling capacity. 
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Figure 6-15 : Comparison of intra-MSC location update service completion times for the 
classical IN and pseudo IN physical architectures. 
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Figure 6-16 : Comparison of inter-MSC location update service completion times for the 
classical IN and pseudo IN physical architectures. 
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Figure 6-17 : Comparison of mobile to fixed network call setup times for the classical IN 
and pseudo IN physical architectures. 
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Figure 6-18 : Comparison of fixed network to mobile call setup times for the classical IN 
and pseudo IN physical architectures. 
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Figure 6-19 : Comparison of mobile to mobile call setup times for the classical IN and 
pseudo IN physical architectures. 
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Figure 6-20 : Comparison of inter-MSC handover times for the classical IN and pseudo 
IN physical architectures. 

6.3 SUMMARY OF GSM-IN PHYSICAL ARCHITECTURES 
PERFORMANCE 

From the results it is possible to make the following comparisons between the types of 

architectures. 

• Tradition mobile GSM-IN physical architecture : Overall performance on par 

with GSM. 

• Pseudo mobile GSM-IN physical architecture : Generates 20% to 30% more core 

network signalling traffic than GSM. Mobility services take 6% to 15% longer to 

complete than GSM, with the exception of inter-MSC location updates which is 

quicker by 6%.  

• Pseudo IN GSM-IN physical architecture : If allowance is made for the 

increased signalling traffic volume; service times are 15% to 30% longer than 

GSM. The disadvantage is the four fold increase in signalling volume in the core 

network. 

• Classical IN GSM-IN physical architecture : Generates 10% less signalling 

volume than pseudo IN GSM-IN physical architecture and services take 5% to 25% 

longer than GSM when allowance is made for the extra signalling volume.  
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Simulation results have clearly shown for a GSM-IN architecture based on the 

traditional mobile architecture, performance is identical to GSM. For architectures 

other than the traditional mobile architecture, different degrees of increase in the core 

signalling load is found, depending on the architecture. Although today the signalling 

traffic generated by mobility is greater than that generated by supplementary services, 

as the complexity of supplementary services increases it may not continue to be the 

case. Therefore the network architectures may be determined by efficiency of 

providing services rather than mobility. If this be the case, relatively larger mobility 

signalling volume might be acceptable. In material of the volume of signalling traffic 

in the core network, it has been shown the level of performance is within acceptable 

limits for mobile type network architectures or otherwise. 
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7. DISCUSSION 

The aim of this research was to determine a path for the evolution of GSM to UMTS 

making minimal changes to the GSM radio access network and to develop an 

architecture to enable the rapid development of new services in GSM. Since it became 

apparent that GSM will be the backbone from which UMTS services will be 

introduced, the evolutionary platform must be more than just a GSM platform for 

UMTS, but rather a UMTS platform itself. The GSM-IN architecture proposed by the 

author meets these requirements and has resulted in an architecture that can be 

considered as a first phase UMTS platform. 

 

First part of the work reported in this thesis establishes the validity of the architecture. 

The use in the proposed architecture of standardised IN functionality and interfaces 

ensures compatibility and conformance with existing and future IN platforms. The 

only non-standard (i.e. new) interface is that between the GSM access network and the 

IN platform at the mobile service switching function. By using an interworking 

function at this interface, both networks can retain standard interfaces and any 

incompatibility can be solved by the interworking function. Furthermore, by 

maintaining a strict separation between the radio access and core networks, the 

possibility of any conflicts or contentions have been avoided. The result is a 

trustworthy network architecture that adheres to the standards and solves the current 

issues of incompatibilities between the two networks. 

 

The mapping of GSM mobility procedures to IN services was the next step in the 

verification. Unlike conventional MAP (where all mobility procedures are bundled 

together in a single package) the mobility procedures from the IN platform are offered 

as a combination of individual “mini procedures”. This is because the break-up of 

MAP allows the relevant components to be efficiently included in new procedures; the 

complete protocol set, does not have to be included. Furthermore it offers the freedom 

to alter a single procedure without changing the whole protocol. Therefore, the issue 

of mapping GSM procedures to IN SIBs needs to be done with care. In a recent paper 

‘Performance evaluation of IN based mobility management’ by M. Bafutto et al [51] 

the methodology for deriving service logic description using SIBs is outlined and a 



 

Page 133  

performance modelling approach for IN is also given. This methodology describes the 

mapping of services from their service description, from which the service logic is 

derived and then mapped onto the different IN conceptual planes. The resulting 

functional entity actions and signalling message flows in the physical plane are 

identified: hence the SIBs are also defined. The same approach is used in this thesis, 

the service description being derived from the GSM mobility management procedure 

requirements and the service then mapped on to the different conceptual planes. 

Following this the functional entities are identified and the signalling flow between 

the physical implementation of the functional entities are defined. Furthermore, the 

signalling flows are tied to the GSM signalling flows at the appropriate interfaces. The 

approach used to map GSM mobility procedures to IN services in this thesis is 

therefore consistent with the approach presented in the above paper and hence 

validates the approach used here.  

 

In mapping the GSM mobility procedures, no modifications have been made to the  

procedures as described in the GSM standards[9]. Adhering to the standards ensures 

backward compatibility is maintained, at the same time allowing for modifications 

and improvement in GSM mobility procedures in the future. By applying this 

approach to mapping, the result is a trustworthy set of GSM mobility procedures 

offered from an IN platform. Although modifications have been made to some of the 

mobility procedures to accommodate the changes in the architecture (such as the 

option not to have a temporary database MSDPtemp) the procedures have not been 

changed in principle.  The use of GSM’s tried and tested mobility management 

procedures in generating mobility services for IN has resulted in a reliable set of IN 

mobility services.  

 

Although MAP is a complete package, within the package the sub-procedures are 

defined in a modular fashion. These sub-procedures were used in identifying the SIBs 

for the IN procedures, thereby adhering to GSM MAP recommendation (GSM 09.02) 

in defining the SIBs. 

 

In chapter 5 the simulation models produced in the research were discussed, the 

results being presented in chapter 6. Throughout the various stages of producing  the 
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models, verification was carried out in the form of single step tracing, testing in 

isolated modules and using models derived using data from the Cellent’s GSM 

network. These steps only validate the operations but not the approach to modelling 

the GSM-IN network. 

 

The approach taken used to model the GSM-IN is identical to the approach used by 

Bafutto et al [51] for developing a performance evaluation tool for IN networks. The 

four step approach is:  

• performing a flow analysis for IN which yields the signalling exchanges;  

• using this to perform a flow analysis for the signalling network and the load on 

signalling elements;  

• performing a SS7 delay analysis; 

• using the SS7 delay analysis to perform IN delay analysis.  

 

The difference between the two models is the lack of priority mechanism in the GSM-

IN model. However, in the research here, the signalling protocol, message exchanges 

and flow, have been implemented in a very detailed manner. Using, where possible, 

data from the Cellnet GSM network as a base for assumptions and to scale and fine 

tune the simulation model and characterisation of the radio network. This coupled, 

with the fluid flow technique [60] for modelling mobility, results in an accurate model 

of the GSM-IN network. This is reinforced by the comparison between the results of 

the  simulation and the GSM network data, described in chapter 6. 

 

To assess the feasibility of the GSM-IN architecture proposed here, it needs to be 

compared with other proposals addressing similar issues. The aim of this comparison 

is to establish whether the integration approach meets the requirements of such an 

integrated architecture and how it compares against other similar approaches. 

Publications in this area are few, of which most discuss GSM and IN integration in 

terms of supplementary service integration [26-28, 30] and not mobility or 

architectural integration. The two papers that have addressed the relevant areas 

discussed here. 
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The first by M.Laitinen et al have considered the question of integrating IN services 

into future GSM networks[37]. The paper is based on a project of the European 

Institute for Research and Strategies studies in Telecommunications (EURESCOM), 

‘Enabling Pan-European Services by Co-operation of Public Network Operators IN 

Platforms’ (PEIN). The paper proposes two stages of integration as shown in Figure 7-

1. The first stage is the addition of service switching function and service resource 

functionality to the MSC and the second stage is integration of the HLR with the 

service data point. In both stages multiple signalling protocols are used and MAP is 

used for all mobility management. The paper does not discuss the integration in any 

great detail but it does identify; the advantages of the two integration stages, the 

problems faced with integration beyond the second stage and a ‘wish list’ for future 

interworking between the two platforms. These issues were discussed in the paper 

using UPT service as an implementation example.  

SSF
MSC

SRF VLR

HLRSDF

SCF

SSF
CCF

SSP

INAP

MAP

SSF
MSC

SRF VLR

SCF

SSF
CCF

SSP

INAP

MAP

SDF
HLR

 

Figure 7-1: Stage 1 and stage 2 of integration. 

The paper identifies the lack of a direct signalling link between IN and GSM 

architectures today and the need to set up a connection for GSM to access IN services. 

In the first stage of integration this is overcome by adding a service switching function  

to the MSC which provides a direct signalling link to the service control function. In 

the second stage the GSM and IN databases are integrated into the IN database 

allowing the IN functionality access to GSM mobility data. The GSM-IN architecture 

proposed in this thesis incorporates both these stages of integration and more. As with 

stage one a direct signalling link is provided between GSM and IN and furthermore, 

by the use of INAP for both service provision and mobility management, the need for 

multiple signalling protocols within the core network is eliminated. However, in the 

two stages proposed by Laitinen multiple protocols are needed, to allow for the 
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continued use of MAP without any alterations. The disadvantage of that approach is 

that complete integration is not possible; incompatibilities between the two protocols 

will continue to exist, mobility cannot be integrated into IN services and the result 

will be two sets of standards duplicating services. These problems are eliminated by 

the use of only INAP in the GSM-IN architecture. 

 

In the second stage integration proposed by Laitinen, the databases are integrated such 

that the IN has access to GSM mobility data from the service data point and not visa 

versa. In the GSM-IN approach, by using only IN control functionality for both 

networks and forming a unified character set, both networks have access to data 

related to the other. Laitinen points out that if a unified service profile exists, then 

authentication for IN services like UPT can reuse GSM authentication. This is exactly 

what the GSM-IN architecture offers.  

 

Laitinen identified a shortcoming for stage one: inter-MSC handovers should be 

prevented during UPT user procedures. If a UPT service is active at the time of inter-

MSC handover, then the service control function must be informed of the address of 

MSCnew by MSCold. MSCnew will also need to be informed of the service control 

point’s address and both MSCs must be enhanced to handle UPT services and posses 

the ability to exchange user status information. The GSM-IN architecture does not 

face this problem because all the complexity is taken away from the MSCs: inter-

MSC handover is seen as any other service and using the service interaction 

mechanisms it is possible to determine if the handover service is compatible or not 

with an existing service or not. Furthermore by having the complexity in the service 

control function, a new service request will be co-ordinated with any existing services 

so avoiding Laitinen’s problems. Furthermore with the ‘intelligence’ away from the 

switches (MSC) it is not necessary to check if the MSCnew is capable of catering for 

the service; all that is necessary is that the MSCnew is a mobile service switching point. 

 

It is possible that two service associated with a call are handled by separate mobile 

service control points (MSCP) or service control points. Consider an example where 

MSCP A sets up a UPT call to a GSM terminal. An inter-MSC handover is required 

by the GSM terminal, which contacts the MSCP closest to it, MSCP B. Now there are 
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two service control functions involved. The co-ordination of services between 

separate service control functions and handover of control is being studied by IN CS3 

working group. The co-ordination and handover of control between service control 

points in a mobile environment is an area that requires further study.  

 

A further issue raised by Laitinen is that new services for IN and GSM will be 

developed at different times and that one system may not be able to support the new 

service developed for the other. Furthermore, services developed for different systems 

may be incompatible or conflict. Assuming that the new service is independent of the 

access technology, the above problems will not arise in the GSM-IN architecture, 

because all services will be IN services and the GSM-IN platform will be able to offer 

all IN services.  

 

As part of the wish list, Laitinen points out that close integration of IN and GSM 

network architectures, including shared services and subscriber data will allow new 

kinds of mobility-related IN services. Furthermore, these services can take advantage 

of GSM subscriber data by accessing it during IN service operations and will have the 

ability to trigger IN services from mobility management operations and not just from 

IN call models.  The GSM-IN architecture offers all these capabilities plus a fully 

integrated environment for mobility and IN services. 

 

The paper does identify the challenges associated with charging in a integrated 

network. Although charging issues are not addressed in this thesis, it is felt that 

complex charging issues can be resolved by using sophisticated charging SIBs. The 

advantage of having a modularised approach is the ability to add to the existing 

system as the required level of complexity dictates. 

 

As the Laitinen paper does not present the methodology behind their approach, it is 

difficult to make a one to one comparison of techniques. As shown the issues and 

criteria identified by the paper have been addressed by the approach presented in this 

thesis. 
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In the paper ‘Intelligent Network Concepts in Mobile Communications’ by 

B.Jabbari[36], two possible integration architectures are identified. In the first 

architecture, HLR functions (including equipment registry and the authentication 

centre) are implemented from the service control point. The VLR functionality is 

implemented as an adjunct as high speed transaction processing is required at the 

VLR. MAP is used as the signalling protocol. In the second architecture, both VLR 

and HLR functionality are transformed to separate service control points, the SCPVLR 

and SCPHLR.  Again MAP is used for signalling between the service control points 

and other network entities.  

 

This paper was published in 1992 and does not address the issues of supplementary 

services in GSM. Both architectures have been aimed at moulding IN principles to 

suit mobile network architectures. This is contrary to the approach taken in this thesis 

where the mobile network architecture is moulded to fit the IN architecture and 

concepts. The approach in this thesis to mobility is generic and independent of the 

network architecture which could be mobile specific or otherwise: this is required for 

UMTS. In Jabbari’s paper, replacing the HLR or the VLR with a service control point 

provides a solution specific to GSM-like architectures. The signalling protocol used in 

both the architectures presented in the paper is MAP but, as pointed out earlier, the 

continuous use of MAP in an mobile IN environment will lead to the development of 

two sets of signalling protocols (MAP and INAP), each duplicating the other. This 

situation needs to be avoided. The paper does not discuss IN / GSM in any great depth 

or address any further issues on integration. Once again is it impossible to make one-

to-one comparison between this thesis and the paper. 

 

The two drawbacks of the GSM-IN architecture presented in this thesis are the 

increased levels of signalling in the core for any physical architecture different to the 

traditional GSM architecture and the need to transform the current GSM core network 

architecture. In Chapter 6, the signalling volume in the GSM-IN architecture was 

compared with the signalling volume in the current GSM physical architecture. Any 

physical architecture different from the traditional mobile architecture resulted in 

increased signalling load in the core network: this is the price to be paid for a versatile 

and adaptable platform. However, the results showed that this increase in load is 
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within acceptable bounds. The modular approach applied to mobility in this thesis is 

required as the future GSM network architecture may be very different to today’s, 

because GSM will be used as the backbone for UMTS. For example the influence of 

computer network architecture in telecommunications networks is ever increasing and 

the future mobile architecture will be based on distributed processing,  where 

dedicated servers will be interconnected via ATM switches [42]. These servers will be 

dedicated to functionality such as handover control, mobility management, connection 

control etc. With such an architecture in the future, the approach used in this thesis is 

essential as it enables the introduction of distributed processing. Having such a 

modularised approach enables the introduction of new efficient mobility management 

and user tracking mechanisms. Although increased levels of signalling volume will 

result, the benefits of an IN approach outweigh this.  

 

Transforming the existing GSM network to GSM-IN architecture is not something 

that can be achieved in a single step. The most viable approach will be to introduce 

service control points when new MSCs are introduced or old ones replaced. This can 

be achieved with the existing network in place, although interworking functions will 

be required to continue to communicate with existing GSM MSCs and VLRs. These 

interworking functions can reside either at the service control point or the GSM 

nodes.  

 

An issue not addressed in this thesis is the setup of the shortest path between users for 

inter-MSC handovers. In GSM, the anchor MSC concept is used, where the setting up 

of new paths as a result of handovers is only from the anchor MSC onwards. 

Switching at the anchor MSC might not result in the shortest path between users. For 

data calls the anchor MSC is the buffering point and changing the route during a 

handover would need the buffering point to be changed without the loss of data. As a 

result of this, the question of shortest path after a handover is left for further study. 

 

Handovers in an IN environment pose several interesting challenges. In can be 

envisaged that inter service control point handovers will need to take place. This is a 

handover in the control plane rather than the transport plane and will involve the 
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transfer of the users switch state and the associated control states. Therefore the area 

of handovers in the control planes needs to be studied further.  

 

With the IN approach the need for complex handover procedures arise where the it 

may be necessary to ‘handover an active service’ as well. The issue of transferring the 

service status from an old switch to a new switch when a handover takes place has not 

been addressed in this thesis. For an example, GSM user A is engaged in call to party 

X and has party Y on hold using the call waiting service, suppose then the GSM 

terminal requires an inter-MSC handover. In this case a radio channel has to be 

allocated for the terminal in the MSCnew, two lines will need to be setup from MSCnew 

to the switching points for calls X and Y (which may or not be different) and the state 

of the switch in MSCold has to be transferred to MSCnew prior to the execution of the 

handover. The FIM will have to check the status of active services, before a decision 

on the complexity of the handover procedure can be made. The handover capability 

covered in this thesis is for the basic call inter-MSC handovers and the transfer of 

service status is not included in the handover procedure defined. This area is marked 

for further study. 

 

In chapter 4, the limitations of using the CS-1 BCSM in a mobile environment were 

identified and the thesis suggests the use of an enhanced version of the existing 

triggering mechanism and a service status monitor in place of the BCSM. The BCSM 

needs to be replaced because services are invoked in the absence of a call in mobile 

telephony and under these conditions a BCSM does not exist and parallel execution of 

service control are required in mobile networks, which is not supported by the 

sequential processing of CS-1 BCSM. Although the use of an enhanced GSM 

triggering mechanism and service status monitor are suggested, details of its 

implementation have not been defined here. It may be necessary to combine the 

triggering mechanism and status monitor to form a service state model whenever a 

service is invoked. Therefore, the service state model will exist even if a call is not 

present and if a call is present, the service state model will become a call state model 

capable of handling simultaneous execution of services. However, the concept of a 

state model appears to be too rigid for such a applications and a preferable solution 
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lies in a more flexible approach to service triggering and status monitoring. The use of 

a more ‘intelligent’ service model needs to be investigated.  

 

As mentioned earlier the UMTS core network control is based on the IN architecture. 

The introduction of UMTS is expected to be in islands feeding into the GSM 

backbone network with GSM continuing to offer umbrella coverage under which a 

multiplicity of different radio access networks will operate. By having a generic 

control platform (IN) each access network will be able to interwork with the other. As 

GSM will be the backbone in the initial phases of UMTS introduction, it is essential 

that GSM has a suitable control platform for interworking with other access networks 

and one which will evolve to be the UMTS control platform. 

 

This evolutionary scenario has been the rational for the work of this thesis.
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8. CONCLUSION 

Intelligent Network is a concept introduced to enable the rapid creation and 

deployment of services in telecommunication networks, by the separation of service 

provision from call and bearer control (i.e. the switch). This is achieved by the 

Intelligent Network Conceptual Model, which provides a clear understanding of the 

intelligent network concept. The advantage of which is, it is implementation 

independent and hence independent of the access network the service is offered in. 

Intelligent networks are widely used in fixed networks and will be used in the UMTS 

core network. Mobility in UMTS will be provided as added intelligence from the 

intelligent network UMTS core platform. Furthermore, the intelligent network core 

will facilitate the convergence of fixed and wireless networks. 

 

The GSM-IN architecture presented in this thesis which integrates GSM and IN 

networks as a step in the GSM evolution to UMTS, was shown to meet the 

requirements of such an architecture. Furthermore, the techniques used to implement 

GSM functionality on IN platforms has been validated against known service 

derivation techniques and backward compatibility with GSM has been maintained. 

The GSM-IN architecture has also facilitated the rapid creation and deployment of 

supplementary services in the GSM network; and the environment to integrate 

mobility functionality with supplementary services. 

 

It was shown for a GSM network, replacing the core network with an intelligent 

network (traditional mobile physical architecture) results in no degradation in the 

quality of service offered and signalling traffic levels were of a similar level to GSM. 

A change in the physical architecture away from traditional mobile architecture did 

result in an increase in the core network signalling traffic, but the quality of service as 

perceived by the user remained comparable to GSM. 

 

In comparison with other methodologies for integrating GSM and IN, this thesis offers 

the advantage of a modularised GSM protocol (i.e. modularization of MAP). This 

makes evolution and integration easier for the GSM network as the modules are more 
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manageable than the complete set of MAP protocols. It also avoids having the 

complete set of MAP protocols on every node involved in a MAP transaction as it 

currently is in GSM. Furthermore by using a single protocol within the core network, 

the complexities of running two protocols simultaneously are removed. 

 

This thesis aimed to investigate the feasibility of a concept (offering GSM mobility 

procedures from an IN platform) and has demonstrated its viability both in-terms of 

performance and implementation. In the process several issues that need to be 

resolved to enable and optimise the integrated scenario have been highlighted. Issues 

such as; improvements to the call state models to cope with out of call and services 

executed in parallel; improvements to the features interaction manager to cope with 

the large number of services and increase complexity of services; handover of service 

logic between service control points; and optimisation of the route to the new MSC 

after an inter-MSC handover. Some of these issues are for further study, while studies 

are underway on others. 

 

This thesis has described in detail an architecture for integrating GSM and intelligent 

networks, and the implementation of GSM mobility functionality from the integrated 

platform. This method has enabled the evolution of GSM to UMTS and support the 

full potential of UMTS, which may otherwise have resulted in an evolution to support 

only a limited set of UMTS capabilities due to the limitations of the current GSM 

network. This integrated architecture has also provided the opportunity for fixed 

network operators with intelligent networks to operate a GSM access network. 
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