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Abstract

Abstract

Self-similar traffic has been observed in teletraffic networks over al time scales of
engineering interest. Thistype of traffic has no characteristic time scale due to its burstiness
and causes the network buffers to overflow affecting Quality of Service (QoS). Self-similar
traffic has been modelled via stochastic methods. It has also been modelled using non-linear
dynamics. In thisthesis we use techniques from non-linear dynamicsin the teletraffic
modelling of modern packetised telecommunications networks. We develop a novel
teletraffic framework for the modelling of self-similar traffic in a parsimonious,
parameterisable and predictable manner based on the use of non-linear dynamics modelsin the
form of a chaotic map family. Thisfamily consists of models, based on intermittency maps,
for the accelerated simulation of self-similar behaviour of individual sources and aggregated
traffic in such networks. We have significantly extended the characterisation of the individual
source map models of Pruthi and Erramilli. The extension accounts for the impact of al five
parameters (e and m for both states, and d) on H, the parameterisation for load via the
invariant density, and the parameterisation for heavy tailed sojourn timesin the ON and OFF
states viathe transit-time. These new aggregate traffic models provide up to two orders of
magnitude speed-up over FBM/FGN and Pruthi’s N one-step methods.

We perform mathematical analysis of the map family with respect to H proving the conjecture
put forward by Pruthi that asymptotically H is only dependent on the dominant value of m.
Numerical results show that convergence is slow and that for the coupled map H differs
substantially from the theory. However the deviation from the theoretical is predictable and
thisleads to an empirical fit for the asymptotic dependence of H on m. These results also
show that the underlying dynamics of the map persist in al of the map interpretations. The
numerical results also show limitations of parameter ranges on H, particularly for d (0.1 <d
<0.9). However, thislimit can be overcome practically to some degree by manipulating the
time resolution of theiterates. Transit-time analysis of the map family highlights a further
parameter limitation which stems from e; any value of e >0 effectively limits the range of
time-scales over which LRD occurs. These numerical limitations apply to al map

interpretations.

We have developed a method of measuring H via the map’ s variance that is promising for
measuring H on-line. We have also found, by comparing for accuracy this and the Abry-
Veitch method for measuring H, that H by itself as a parameter for modelling self-similar
traffic in a“parsimonious’ manner may not be enough. This conclusion is drawn from
observing different queueing behaviour with input traffic having the same H. Thisleadsto the
suggestion that reliance on a single method for determining H on-line may prove unwise. This
comparison also shows the flexibility that these map models have in specifying key LRD
behaviour that determines the impact on queueing. Thisflexibility is derived from the
intuitive relationship that these map models have to their underlying physical ON-OFF

process.
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Chapter 1: Introduction

1

Introduction

Self-similar traffic has been mainly modelled via stochastic means, such as Fractional
Gaussian Noise (FGN) and Fractional Brownian Motion (FBM). Thereis an alternative
method for modelling such traffic, i.e. vianon-linear dynamic models. In thisthesis we study
non-linear dynamic models. We have developed novel interpretations on the use of these
models as prameterisable and predictable models for the accelerated simulation of self-similar
behaviour of individual sources and aggregated traffic in telecommunications networks.
Throughout this work we refer to them as “non-linear models”, “non-linear map models” or
“chaotic map models’; in the interests of brevity some times we simply call them “chaotic

maps’, “map models’ or simply “maps’*.

We focus on two theoretical areas of non-linear map models: their analytical tractability and
their parameter interdependence with regard to the Hurst parameter H. We areinterested in H
because of its adverse affects on cell loss [NOR93, 95, ERR96]. We use results of the
theoretical investigation to develop interpretations on the chaotic maps with respect to source
aggregation that yield significant benefits for accelerated simulation models of self-similar
traffic.

This thesis draws extensively on recent research in various fields but is primarily motivated by
the observations on self-similar traffic initially made by Fowler and Leland [FOW91, LEL 93,
LEL94] who were following up on the measurement of Ethernet traffic initiated by Shoch and
Hupp [SHO80]. Leland and Fowler were able to make precise measurements of Ethernet
traffic over many years which showed that the variation in peak traffic load extended over
many orders of magnitude. This called into question the Markov based models then currently
used to predict network performance. These models aggregate to white noisei.e. the peaksin
traffic load were smoothed out as traffic aggregation period was extended. This type of
aggregation behaviour is not that witnessed in real traffic measurements. This type of
behaviour is most strikingly exhibited by the “visual proof diagrams’ (fig 4 in [LEL94]).
Others have also questioned the validity of Markov based models, for example Paxson and
Floyd [PAX95].

These observations led to the proposal of various stochastically self-similar models which
render “redlistic” traffic in simulators. Early contributors to self-similar models were most
notably Norros [NOR93, 95], Veitch [VEI92] and Leland et al in [LEL94]. These models are
inspired by the work undertaken by Mandelbrot and co-workersin the 1960's [MANG3, 65,
68a, 68b, 68c]. The family of models that Mandelbrot proposed are termed FBM models and
are drawn from observations in hydrological records and error clusters in communication
systems. Asrecently as 1995-96 Huang et al [HUA95], Slimane and Le-Ngoc [SL195] and

! Strictly speaking there are classes of non-linear models that are not chaotic.
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Lau et al [LAU95] had published papers on FBM a gorithms for traffic simulation. Moreover
Chen et al [CHEH96] has evaluated the relative performance of such algorithms in terms of
accuracy and speed of sample generation. The main limitation with this type of model is that
they generate their samples off-linei.e. their traces have to be generated separately form the
simulation that is going to use them. The reason for thisis mainly due to the algorithm’s need

for knowledge of al past samplesin order to generate the next sample.

There are aternative models to FBM developed by Erramilli, Singh and Pruthi [ERR94a, 94b,
94d, 958, PRU953a, 95b]. These alternative models are non-linear dynamic map models. As
such these models use chagtic intermittency maps to model fractal-traffic. Pruthi [PRU95b]
has shown that fractal traffic models using chaotic maps produce the required stretched
exponential queue length distributions and that when these models aggregate they tend to
FBM. These models can be use on-line because. the required self-similarity isinherent in the
dynamics of the maps, allowing them to produce resultsin rea time. However their behaviour
has not been compl etely characterised in terms of the map’s parameter interdependence on H.
To exploit these models fully we need to understand the behaviour of the chaotic map models
with regard to aterationsin the model parameters. Thisthesis has contributed to the
understanding of the map’s parameter interdependence through contributions to the theoretical
understanding of the map’ s transit time, which is the Long Range Dependent (LRD)
component of the chaotic map. Thisline of investigation led to a proof on the asymptotic
dependence of H on a single map parameter for a de-coupled map. Numerical
experimentation supporting the proof highlighted the effect coupling has on the map resulting
in the development of an empirical dependence on H for asingle map parameter. An
expression for the variance of the map output has also been developed which has lead to the
development of atechnique for measuring the H value of the map output on-line. Using the
insight that these preliminary studies gave, aggregate map models were then devel oped which
took advantage of the invariant densities of the mapsin order to preserve the effects of self-
similarity under aggregation of bursty traffic sources. However, theinitial aggregate map
models possessed limitations, principally in the type of LRD that could be modelled. This
limitation motivated the development of the Bulk Property map which is an accelerated map
that has an order of magnitude speed up over other map model techniques.

Analysis of queueing systems fed by self-similar traffic has been undertaken. The theoretical
basis for the analysis of FBM source fed queues stems from Tagqu [TAQ86, 97] and Norros
[NOR93]. Tagqu has theoretically shown that the aggregation of heavy tailed ON/OFF source
models tends to FBM. Norros [NOR93] has shown that the queue length distributions are of
the stretched exponential type. Tagqu's theoretical predictions have been evidenced in real
traffic measurements by Willinger [WIL97]. These studies have motivated others to assess
the impact of Long Range Dependence (LRD) exhibited by fractal traffic, on networking

issues such as;
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gueueing performance (Erramilli et al [ERR964]),
Quality of Service (Duffield et al [DUF95h])?,
bandwidth allocation and short term traffic prediction (Norros [NOR95]), and
the length of time necessary for effective correlation analysis of traffic (Addie et al
[ADD95]).
Others (Beran et al [BER95]) have examined particular types of traffic for LRD.

There is another reason for studying chaotic map models. Fowler and Leland [FOW91]
summarise clearly the congestion problems that bursty traffic inflicts on a network i.e. the
traffic remains bursty over all times scales of engineering interest and that no amount of buffer
space will ever prevent loss, and raise the question of how to combat the effects of bursty
traffic. Non-linear dynamics and in particular the idea of chaotic control present an
opportunity to move away from the present stochastic view of networks to a more dynamical
systems view, enabling the problem of congestion to be combated using dynamical rather then
stochastic techniques. Thisview is supported by recent advances in the chaotic control of
Coupled Map Lattices (CML) [MON97b, OKE95, SEP95, YOU95]. CML's and high speed
data networks have similar topologies. It isthis similarity that makes the use of chaotic
control as amethod for the prevention of network congestion very appealing. I1n achaotic
system the chaotic controller exploits the “complexity” of the system dynamics such that a
small change in the parameters can change the system to arequired state. However, we
should remark that in telecommunications networks the control must change the statistical
behaviour of the traffic. For thisreason akey stage in the development of a“ statistical
chaotic” control for networks is the identification of parameter adjustment in the statistical
output of the chaotic map models. Thisthesisisasignificant step towards developing
theoretical understanding necessary for statistical chaotic control of networks since it
addresses the stochastic aspects of traffic generation from chaotic map models that are used to
depict network traffic.

The remainder of thisthesisis organised as follows: Chapter 2 reports on network
measurements carried out in the late 1980’ s and early 1990's, in which self-similar traffic was
observed. It mentions the problems that this type of traffic brings and the various modelling
methods employed to cope with it. Chapter 3 introduces the concepts behind stochastic self-
similarity traffic. Chapter 4 explains the concepts of non-linear dynamics that are used to

construct the non-linear models used in this thesis.

Chapter 5 presents theoretical work on intermittency map models which is used to develop an
approximation of the intermittency map transit time in a perturbed system. We use this

approximation to provide a proof of the dependence of H on the parameter m for the

2 Note: In redlity thisis alarge deviation theory approach. However it isincluded here
because it attacks the same problem of an event occurring in the tail of a distribution.
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decoupled map, and derive an empirical dependence on H for a coupled map from
experimental data. We then develop a method of measuring the H parameter through the
measurement of the variance of these map models and investigate the interdependence of

parameters and their effect on the value of H.

Chapter 6 investigates source aggregation of a single intermittency map through the
development of approximations on the single intermittency map’ sinvariant density. Thisis
done to provide a method of composition and de-composition of aggregate traffic at a node.
Chapter 7 extends the work of Chapter 6 by introducing the Bulk Property map. This type of
model is applicable to single and double intermittency maps. Bulk Property map isan
accelerated map for usein on-line modelling. The Bulk Property map is devised to compose
and decompose traffic at anode. We show that the underlying dynamics of the Bulk Property
map persist in the map’s output. We also show results on the Bulk Property map
interdependence of parameters on H. We show the speed-up in simulation time over the
single intermittency map. We also suggest an aggregated method for measuring the variance
using these maps based on the technique developed in Chapter 5. Chapter 8 develops the
method of measuring H viathe map’s variance (initially discussed in Chapter 5). We show
that this method is promising for measuring H on-line.

In Chapter 9 we propose a new network control scheme based on chaotic contral in which the
aggregation techniques devel oped in Chapters 6 and 7 combined with the on-line
measurement techniques of Chapter 8 form apivota part. Thismethod isintended to control

data flows (non-real time) in high speed networks. Chapter 10 lays out the conclusions.
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2 Background

In this chapter we place into context the effects that self-similar traffic has on current networks
and proceed to argue the case for viewing these problems in an alternative way: that of a non-

linear dynamical systems approach to traffic modelling.

2.1 Introduction
Recent highly accurate traffic measurements of high speed networks, with time stamps
accurate to within 100ms, have uncovered new phenomenain the time-series reflecting the
behaviour of the network traffic [FOW91]. The phenomena present itself as bursty traffic
over al time intervals of engineering interest. This observation caused great interest at the
time since Markovian based models were being used to portray aggregated traffic in the
network models and these models tended to white noise as the level of aggregation increased.
Clearly thisisin conflict with actual observations of network traffic. The engineering
implications of using incorrect models in the design and planning stages of new networksis
quite staggering since the robustness of a new design to congestion and its side effects on the
systems when congestion occurs depends on the realism of the model used. The observations
outlined above are particularly relevant to ATM. Thisisbecause ATM is becoming the
transport vehicle for awide variety of traffic streams, whether it islegacy traffic, LAN-LAN,
Internet IP, multimedia, etc. ATM was created as a unifying transport mechanism. The
mechanism provides the means to statistically multiplex variable and constant bit rate streams.
One of the main features of ATM isits statistical multiplexing gain [SAI94]. Statistical
multiplexing gain arrives out of multiplexing traffic streams where the sum of the individual
peak bandwidths is greater than the capacity of agiven link [CHET95]. Thisis possible
because the peaks in the individual traffic streams seldom occur together. Therefore the
statistical multiplexing effect relies on the condition that enough sources are multiplexed and
that they are not correlated [PRY 91].

The analysis of such a gain has been attempted under the assumptions of Poisson arrival
processes and exponential distributed holding times [SAI94]. Theimplication of this type of
analysisisthat such traffic streams when aggregated tend to white Gaussian noise, i.e. the
variation of the traffic would eventually smooth out (see Figure 2.1). However, traffic
measurements carried out in the late 1980’ s and early 1990’ s reveal ed that whereas the
correlations of the traffic were thought to decay exponentially fast (Markovian in structure)
the traffic measured in real networks possessed correlation structures which decayed much
slower than exponentially [FOW91]. Thistype of traffic has become known as Long Range
Dependent (LRD). To resolve thisissue new models and approaches have been sought which
describe/analyse the network behaviour correctly. Broadly speaking the approaches come

under two categories:
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Remain within Markovian framework, but characterise behaviour at the appropriate time
scale of interest, an example being Large Deviation Theory as advocated by Duffield,
Lewis and O’ Connel [DUF94b, 95b] which assesses impact of rare events.
Adopt a self-similar framework.
The former approach views how a population introduces non-stationary into teletraffic via
service usage e.g. diurnal variations, which needs to be factored out for explicitly. The later
approach views the LRD characteristics of individual services types as underlying cause for

self-similarity but maintains the view that the traffic is stationary.

In asef-similar framework, stochastic self-similarity expresses how the probabilistic structure

of a process varies with the time scale. There are two broad approaches to self-similar traffic

modelling:
Fractional Brownian/Gaussian Motion as advocated by Leland, Veitch and Norros
[LEL94, VEI92, NOR93, NOR95]. These models have the attraction of parsimony i.e.
they use asmall number of parameters. These models use H as their principal parameter.
However these models have a drawback in that they lack the intuitive relationship to
underlying physical process, and the traces they produce may not have the specified H. It
isthislast point that prevents their use as an on-line model, or
Chaotic maps as advocated by Erramilli and Pruthi [ERR94a, 94b, 94d, 95a,PRU953,
95b]. Here the models utilise non-linear dynamical ideas to model traffic. These models
were limited in application by analytical tractability and poor aggregate modelling.
However they have the advantage of parameter parsimony and are predictable with
respect to the H obtained. Furthermore these models have an intuitive relationship to the
underlying physical ON-OFF process. These factors permit their on-line use and
combined with dynamic parameter changing enables the self-similar framework to

address non-stationary issues aswell as LRD.

2.2 Characteristics of High Speed Network Traffic
Fowler [FOW91] reported on studies conducted at the end of the 1980's and early 1990's that

packet traffic exhibited burstiness over alarge number of time scales. There had been earlier
studies that had also reported similar results [SHO80] and independent studies which had
confirmed the scale of the observed burstiness and the failure of current models to portray this
behaviour [PAX95]. Fowler's study isimportant because it was the first time that accurate
measurements were made at fine time scales and thus the scaleability of a burst was reliably
observed. These bursts existed at every time scale, from milliseconds to days and they looked
similar independently of the time scale, i.e. the traffic is self-similar. One characteristic of this
self-similar trafficisthat it is correlated at al time scales of engineering interest, i.e. the traffic
has LRD. The self-similarity and the LRD are quantified by the Hurst parameter H (*2£H<1).
Large values of H correspond to larger fluctuations on the burst size and stronger correlations

in the traffic. The significance of this observation lies in the correlation structure of the LRD
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traffic. A traffic source that possesses a sojourn distribution whose tail probabilities decay as
apower rather than an exponential law is said to have a“heavy tail”. It isthis heavy
tailedness, exhibited as non-negligible correlationsin the traffic over large lagswhich is
known as LRD. Heuristically, one can view the individual traffic stream correlation as
overhanging each other when aggregated, causing an increase in the probability of the large
aggregated bursts occurring. More importantly the aggregated traffic streams do not tend to
white Gaussian noise (see Figure 2.1). In actual fact the aggregated traffic process tends
towards a second-order statistically self-similar process which remains bursty over many time
scales[TAQ97, WIL97]. We can state this more clearly in the following way:

2 RD of individual  aS8lomy decaying corrdation. a&dlf - dmilarityin g

& surces ;p & dructures ;p 8aggrega¢ed traffic
This burstiness over many time scales combined with LRD is a characteristic of fracta time
series. These time series are dominated by their low frequency behaviour. For various and
more detailed explanations of this, the interested reader is directed to [TAQ86, TAQ97,
BER94, BER95, ERR96a, KRI96]. Thislow frequency behaviour of the traffic poses
problems for the traffic control schemes designed for ATM. In ATM preventative congestion
control is preferred over reactive congestion control schemes. This is because the reactive
control becomes inadequate in terms of response times for the high bit ratesused in ATM
[CHET95]. The preventative measures are concentrated in the connection admission control
schemes (CAC) used to make decisions on the acceptance of callsinto the system. Leland et
al [LEL93, LEL94] have studied the effectiveness of CAC in the context of LRD traffic and
found that CAC cannot minimise the congestion within the network and increasing buffer

Sizes appear to have no effect.

Real Traffic Markov Models
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Figure 2.1 Real traffic trace against Markov model based trace for the same load. (The picture
istaken from figure 4 in [LEL94]. Reproduced with permission).

2.3 Effects of Self-similarity on Queues
The burstiness in the traffic measurements stems from the fluctuations in the heavy tailed

distributions of the individual traffic sources [LEL94, TAQ97, WIL97]. The probability of
higher buffer occupancy has been linked to heavy tail distributions [NOR93, 95]. Practically
theincrease in probability has a drastic effect on the buffer occupancy since providing more
buffer space is not a solution to buffer saturation [ERR96]. Eventually the buffer will fill up.
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The implication of an increasing value of H isthat it ultimately leads to higher buffer state
occupancy [NOR93, ERR96] and hence increased probability of network congestion.
Analysis of queueing systems fed by self-similar traffic has been undertaken. The theoretical
basis for the analysis of FBM source fed queues stems from Tagqu [TAQ86, 97] and Norros
[NOR93]. Tagqu has theoretically shown that the aggregation of heavy tailed ON/OFF source
models tendsto FBM. Norros [NOR93] has shown that the queue length distributions are of
the stretched exponential type. Taqqu's theoretical predictions have been evidenced in real
traffic measurements by Willinger [WIL97]. The effect of self-similar traffic on the queue
blocking probability using Norros' blocking formula [NOR93] for a given load and varying
H.can be seen in Figure 2.2.
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Figure 2.2 Queue state occupancy P(K>k) for 50 homogenous sources, with LRD (a =1.5)
and mean load r = 0.7, for different self-similar traffic. H=0.5 equates to Poisson traffic

One approach which one would have thought would reduce the impact of self-similar traffic
on the network buffers would have been traffic shaping. One would have thought that
spreading the burstiness of the individual traffic sources would have altered the characteristics
of the traffic sufficiently to the point where individual traffic streams did not become a
problem. Unfortunately thisis not the case [LEL94]. Work undertaken recently by Molonar
[MOL97] shows that shaping will not alter greatly the self-similarity present in the traffic. A
robust indication of this could be implied form the work of Erramilli [ERR96] where
experiments on reshuffled LRD data were undertaken. Essentially the entire order of a data
stream had to be shuffled randomly before the LRD nature in the stream was lost. If al the
LRD streams are shaped then all that is achieved is an extension over the period over which
the self-similar traffic is present. Thisis because shaping still preserves the order of the data
and the queue acts as alow passfilter. Naturaly, the effects of self-similarity has motivated

othersto assess the impact of LRD in terms of queueing performance [ERR96a], Quality of
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Service [DUF95b]°, bandwidth allocation and short term traffic prediction [NOR95], and the
length of time necessary for effective correlation analysis of traffic [ADD95]. While others
[BER95] have examined particular types of traffic for LRD.

2.4 Traffic Modelling
Conventional stochastic source models have a very intuitive interpretation in the form of

simple ON-OFF models. These models have been extended to reflect aggregate traffic
behaviour in the form of Markov Modulated models. Unfortunately these models are hard to
parameterise. The conventional models are also restrictive since they describe real traffic only

over asingletime scale. They do not have LRD (see Figure 2.1).

There exist aternative stochastic traffic models known as FBM, and its incremental process
FGN [MANG8a, 68b, 68c, NOR93, 95]. These models describe the traffic characteristics of
real traffic, the self-similarity and LRD. These models were developed as a modification to
standard Brownian Mation (SBM). SBM can be interpreted as the limit of a random walk.
SBM is an attractive model for computer networks because the first order approximation of
the arrival behaviour in such a network can be viewed as independent events and can thus be
viewed as aform of random walk. For introductory reading on SBM see Ross [ROS87]. The
problem with SBM isthat it does not describe the traffic withessed by Leland and Fowler in as
much as the variance does not scale as the sample size increases. What isrequired isa
stochastic process that is similar in definition to SBM but with additional scaling properties.
FBM and FGN have correlation structures that scale and which are parameterised by the Hurst
parameter H. Various models have been proposed using this process as the basis of the
models for network traffic which exhibit burstiness (see for example [VEI92, NOR93, LEL 94,
HUA95, LAU95]). These models have the additional appeal that for aggregate traffic
modelling they can be parameterised in a parsimonious way (have few parameters). However,
these models do not have the intuitive appeal that the conventional models have and the traffic

traces produced by these models are generated off-line.

There are traffic models based on non-linear chaotic maps that reproduce the properties of real
traffic [ERR94a, 94b, 953, 95b, |, 11]. The chaotic map approach stems from an iterated
dynamical systems approach to modelling®. The type of chaotic map that we are interested in
is one that displays intermittency. Intermittency in this context means that the orbit of the
map has protracted episodes of smooth behaviour interrupted by transitory bursts of activity.
Intermittency is one of the transitory paths to chaos [POM80]. A map which has orbits that
are intermittent also has LRD. It has been shown that when such source models are

aggregated they produce self-similar traffic [PRU95b]. These models are attractive because

®Note: In redlity thisis alarge deviation theory approach. However it isincluded here
because it attacks the same problem of an event occurring in the tail of a distribution.

* The interested reader is directed to [COL80, GUL92, DEV94, MAC95, SCHU95] for good
introductions into this subject of iterated dynamical systems.
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they retain the intuitive feel of the conventional ON-OFF model, possess the required self-
similarity and can be used on-line. This topic will be covered in greater depth in Chapter 4,
and throughout the rest of thisthesis. However these models are difficult to analyse and have

not been characterised fully.

2.5 Alternative Approaches to Traffic Modelling
Although we have concentrated on a self-similar interpretation of the traffic traces - an

interpretation which assumes stationarity, we can equally interpret the traffic as not being
stationary [DUF94a, VAT98]. Under this interpretation we can use large deviation theory to
assess the impact of bursty traffic on the system queues. In this approach the adequacy of
Markovian modelsis accepted and large deviation techniques are used to assess the impact of
the rare event "large bursts’ on a queueing system. The large deviation principle comes from
risk theory and was devel oped by the Swedish Mathematician Harald Cramér. The theory
predicts the probability of rare events. We are interested in the tail of queue length
distributions and more importantly the probability of buffer overflow. Large deviation theory
states that the tail of a queue decays as

P(Q>q) » e,

(2.1
where -d is the asymptotic slope of the queue length distribution as the queue state becomes
large, Q isthe queue length and q is agiven queue state. What this statesis that for higher
gueue states the queue length decays linearly on alin-log plot. Thisinformation can also be
used to accept/reject calls entering a network. This has led to the formulation of CAC
algorithms based on this principle [DUF94b, 94c, 953, 95b]. The main point of contention
between self-similar traffic modelling and large deviation assessment of traffic isthat for the
large deviation approach to hold, equ.(2.1) implies that the trafficisnot LRD. This
assumption questions that validity of self-similarity which requires LRD to be present in the
traffic in order for the traffic to exhibit self-similarity.

Naturally there have been approaches which combine self-similarity and large deviations
theory in order to arrive at some qualitative characterisation of the effects that self-similar
traffic has on network buffering systems. These approaches have led to the notion of the
cross-over effect [KRI96, FAN97]. This effect describes an increase in the multiplexing gain
in the buffering system when streams of self-similar traffic are multiplexed. The point in this
approach is that while the traffic isin the cross-over region, Markovian models (those with
H=0.5) provide good (conservative) estimates for the buffer size required by the systemsto
cope with self-similar traffic streams. However, doubt has recently been cast asto the validity

of cross-over effectsin high speed networks [I11].

The practicalities of modelling and/or assessing the effects of the traffic ultimately influence

the chosen method. For example, the large deviation method assumes that there is quite alot
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of knowledge about the sources feeding a network. Conversely, the LRD approach assumes
very little about the source other than it is an ON-OFF source that has protracted sojourn times
in either state [TAQ97]. Thislast assumption is quite attractive since it cuts down on the

complexity of the problem at hand and hence may influence the choice of technique.

2.6 Chaotic Maps and Traffic Modelling - Putting Things into Context
The generally accepted view on traffic measurements and modelling expressed during the

debate held in the Hot Topics session on self-similar traffic of Performance96 conference held

in Lausanne Switzerland in October of 1996, was as follows.

There was agreat deal of discussion on whether the traffic measured was self-similar or not.
Basically, the competing camps polarise into either LRD and self-similarity, or into large
deviations. The conflict between the two liesin the interpretation of the measured traces as
being stationary or not. In the large deviation approach the traces are assumed not to be
stationary or at least to be stationary and mixing (i.e. the theory takes into account the causal
effects) whereas the self-similar approach assumes that the traffic is stationary but with
stepped increments. In order to solve this quandary, effort was placed on the search for causal
effects. Againthe causal effects are divided into two camps. The large deviationists are
looking at network behavioural changesin order to justify their approach. An example of this
is the correlation between changes in network activity and network user idiosyncrasies, i.e.
breaks for lunch time, coffee, etc. Thistype of correlation is being given as areason for the
network not being stationary and therefore not self-similar. The long range dependencists are
looking at the traffic type as the cause of self-similarity. For example, they are looking at long
file transfers which are independent of the time of day and which therefore cause the traffic to

be stationary but with increments.

Notwithstanding the comments on stationary/non-stationary traffic, what the practitioners of
network design are looking for is areasonable general modelling/traffic assessment tool and
so are open to both ideas (large deviations and self-similarity). Presently there is a movement
away from the current Black Box approach to traffic modelling (Box-Jenkins). This stems
from the following argument. The traffic traces taken, for example, from a network at midday
on Tuesday and which are subsequently used to characterise traffic in a simulator will bear no
resemblance to the traffic traces taken at the same time the next day on the same network, i.e.
the traffic traces are too diurnally dependent. This diurnal dependence favoursthe large
deviation approach proposed by Lewis, Duffield, O’ Connell, Crosby and co-workers [CRO-A,
CRO-B, DUF94a, 94b, 953, 95b, OCOQ], provided that the causal effects are known. The
counter argument to thisisthat the traffic traces look self-similar and that they can be shown
to have Hurst parameters greater than Y%, indicating that the traces are positively correlated and

that the self-similarity is due to independent increments.
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From the preceding paragraph we can see that the traffic traces of Fowler and Leland have
proved to be very interesting. The traces called into question:

the suitability of Markov based models;

the assumption of stationarity;

the causal effects of the behaviour observed in the traces; which in turn,

questioned the generality of the modelling methods used to study the observed behaviour.

The position we take in choosing to study non-linear map models that produce self-similarity
we are agreeing implicitly with those who say that data traffic is self-similar. There are two
very good reasons for agreeing with this position:

al the causal effects (infinite knowledge) of a system can never be known; and

in order to begin to understand the complexity of the behaviour that has been witnessed we

need to abstract out as much of the complexity as possible but at the same time retain the

complex behaviour. Using self-similar models goes some way to achieving this.
Moreover, this type model can also address the non-stationary aspect traffic modelling since
these models can generate traffic and have their parameters altered on-line. Thisisin contrast
to the FBM/FGN approach to traffic modelling since the traffic traces are generated off-line

with their parameters fixed for the duration of the trace generation.

Finally, it is preferable to have an intuitive element in any approach used to modelling self-
similar traffic. Thisintuitive appeal can have far reaching consequences in as much asit can
lead to insight that permits problems to be approached in fresh ways. Non-linear models
permit this kind of approach because there is an intuitive connection to the underlying

physical ON-OFF process, which may render a new perspective to traffic modelling/control
problems, i.e. that of chaotic dynamics and chaotic control. Thisthesis sets out to exploit the
potential that these non-linear models have by furthering their analysis and the development of

source aggregation methods for chaotic map models.
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3 Stochastic Self-similarity and Teletraffic Modelling
Stochastic self-similarity was first alluded to by Mandelbrot in the late 1950's and early

1960's. The usefulness of his approach to measuring highly variable traffic only came to light
and popularity in the late 1980's and early 1990's through the results presented by Fowler
[FOW91]. Stochastic self-similarity as applied to time seriesis the preservation of the
probabilistic structure of the time series as the time scale over which measurements are taken
increases. The degree of stochastic self-similarity in the probabilistic structure is expressed
through the Hurst parameter H (0 EHE 1) and can be seen in the scaling of the sample

variance. A valueof H > % implies positive correlations and affects convergence of the

sample variance and the correlation decay. This effect is termed long range dependence
(LRD). Formulations exist which link the sample variance, the correlation decay and LRD to
H. Stochastic models such as FBM/FGN are based on the definition of H. The estimation of
H becomes increasingly difficult as H approaches its upper limit (1) because of its slow
convergence, which in turn makes parameterisation of self-similar models troublesome. For
this reason knowledge of the error bound on H is essential. An aternative to stochastic self-
similar modelsis to aggregate ON-OFF models that have LRD in at least one of its states.
The aggregation of this type of ON-OFF model tendsto FBM. Chaotic map formulations of
the ON-OFF models with LRD will be covered in the next chapter. This chapter introduces
the fundamental s required to understand self-similarity, long range dependence, the Hurst

parameter, and self-similar processes.

3.1 Traditional 1/N Sample Convergence
The difference between “traditional” time series and self-similar time seriesliesin the

dependence of sample estimates to converge on their true values as a function of the number
of samples. In“traditional” time series this convergence goesas N, where N is the number

of samples. In self-similar time series the convergence is much slower and goesas NP

where O<b <1.

Traditionally we say that the sample variance decays as the inverse of the sample size. This

occurs under the following conditions. Suppose we have taken a series of samples

{ X1, X5+, Xy} which areindependent and identically distributed (11D) and where
themean m° E(X;) existsand isfinite, and
the variance s ? © var(X; ) exists and is finite.

Under these conditions, the sample mean is given by

Xi .

Qoz

g=1
N ¢

1
(31)
The variance of the sample mean is
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and since by definition s ? = var(X;) then we can see that the variance of the mean decays as

2
afunction of the sample size var(>_() = SW T Thetype of behaviour leading from this

assumption is given by the right hand side of Figure 2.1.

3.2 Stationarity and Ergodicity
The analysis of stochastic time series depends on the stationarity of the realisation process.

Moreover, stationarity implies that the realisation process of the traffic is Ergodic. Both

concepts are central to the analysis of stochastic time series.

A stationary process can be loosely defined as one in which the statistical properties of the
process do not change over time. By this we mean that the system has reached equilibrium in
the sense that realisations of the process at a particular time look as the same other realisation
of the process at some time displaced from the original instance of measurement. Priestly
[PRI94] terms this “ Statistical Equilibrium”. There are two types of stationarity that we are
interested in. These are “ Completely stationary” and “ Stationary up to order m” . Aswe shall
see the former isamuch stricter definition of stationarity. In practice the latter definitionis

more usually used.

Definition - Completely Stationary [PRI94]. A stochastic process { X(t)} is said to be
completely stationary if for any admissible ty,t,,...,t, and any k, the joint probability
distribution of {X(t;),X(t), ... ,X(t,)} isidentical to thejoint probability distribution of
{X(t1+k) X(t2 +K), ... X(t,+K)}. Priestly further clarified this point by stating the following
property

FX(tl),-.-X(tn)(Xl,-o-Xn) °F (t1+k) (t +k) (Xl1"'xn)

(3.3
where F(.) denotes the distribution function of the random variables X(t;). What equ.(3.3)
statesis that in probability the process structure of a completely stationary processis invariant

under time, i.e. any shift in the time origin does not affect the distribution function.

" We can say this because the definition of var(X) = E[X]? - (E[ )_(])2 , and because of the

¢1 ) U mey p W
independence between samples we can say var(X) = E E€é—a XU - SEé—Q X U .This
eNiL g e eND
v 185 2 i Nvar (XI) var(x;)
reduces to var(X)zvia:l{E[Xi] - (E[Xi]) %z N2 SN and henceﬁ
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The stationarity definition given above s, for practical purposes, alittle too stringent. Itis
very difficult to obtain areal random process especially those realised in network traffic which
do not posses fluctuations which would prevent them from being considered compl etely
stationary.

Definition - Stationary up to order m [PRI94]. A stochastic process { X(t)} issaid to be
stationary up to order m if for any admissible ty,t,,....t, and any k, the joint moments up to
order mof {X(ty),X(tp), ... ,X(t,)} exist and equal the corresponding joint moments up to order
mof {X(t;+k),X(tx +K), ... . X(t, +K)}. Thatisto say

Eg X(tl)}ml{ X(tz)}mz“'{ X(tn)}w gz Eg X(u+ k)}ml{ X[t + k)}mz{ X(ty+ k)}mq g

34
What equ.(3.4) statesisthat all moments of the process up to order m are independent of ti(me.)
In particular what we seek is stationarity up to order m=2. Thisimplies that the mean and
variance of the process are independent of timei.e.

the mean of the process: E[ X(t)] = misaconstant (i.e. independent of time)
the second moment of the process: E[ X 2(t)] =m, isalso aconstant

hence, the variance: var(X(t)) = m, - n? =s 2 isalso independent of time.

Furthermore, we are in a position to simplify the time dependence of the covariance structures
of the process so as to include the time of measurement only, i.e.

cov{ X(t)X(s)} © E|X(t)X(s)|- n?. Because the mean isindependent of time then the
{x(0)x (s} ° E[x(t)X(9)] ep

only time dependence that existsin the structure is due to t and s which amounts to the lag
involved in the measurement.

Ergodicity is an important concept that was originally used in statistical mechanics (G.
Birkoff). It dealswith the behaviour of time averages of a system. If asystem isergodic then
the time average over alimited number of finite points, N say, will produce an estimate of the
averagewhichas N ® ¥ will converge on the true average value. Theimplication of
ergodicity is that the system does not have any “strange” states in which the system can
remain indefinitely. Evenif the system startsin a“strange” state it will eventually escape this
state and behave in an average (equilibrium) like manner.®> Thisis adifficult concept to prove
in many real systems. For thisreason ergodicity is often assumed (a reasonabl e assumption
often borne out of measurement). In our case the system is the stochastic process which yields
the behaviour of network traffic and we assume it to be ergodic. Under this assumption we
expect measurements of network traffic taken over a set of measurement days to be

representative of the network traffic behaviour.

® For more of an explanation of this see [GAR95] pp 61-63.
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3.3 Self-similar Processes
There are many forms of self-similarity. The most obvious forms that one can usually

imagine are geometric fractal shapes where the shapeis repeated at all scales. Asthe observer
zoomsin and out on the shape he observes recursively the same shape. An example of thisis
aKoch curve (see [SCHR91] p8). In 1941 Kolmogorov introduced self-similar processesin
the context of turbulence in fluids. Much later Mandelbrot and co-workers put self-similarity
into a statistical context. Their motivation was to find a model that captured the high
variability observed by Hurst in measurements of reservoir water levels. In stochastic
processes the recursive nature of self-similarity cannot be readily seen. The fractal behaviour
in aself-similar stochastic process lies in the relationship of the probability distribution to the
number of measurements required to determine the distribution and can be described as

preserving the probabilistic structure of a process regardless of the time scale.

3.4 Stochastic Self-similarity
Definition - Stochastic self-similarity. Let Z(t) be a stochastic process with continuous time

parameter t. Z(t) is called self-similar with self-similarity parameter H, if for any positive
stretching factor a, the re-scaled process with time scale at, a ™" Z(a t) isequal in
distribution to the original process Z(t)
Z(t)=a "z(at).

(t)za "z(ay

(35
By rearranging this we can restate this as
H
Z|t)=Zl|at
a"z(t)=2(at)

(3.6)
where H isthe Hurst parameter and, H T (0,1) and = means equal in distribution. The
discrete version of this for discrete samples, ,, of a self-similar processis
Y=t Hy,.

3.7

The Hurst parameter describes the degree of self-similarity. For H>0.5 the realisation of the
process has positive correlations. For H< 0.5 the realisation of the process has negative
correlations. For H=0.5 the realisation of the processistotally random in the sense that the
realisations produce uncorrelated random variates. An example of a process with H=0.5is

traditional Brownian motion.

In practice, stochastic self-similarity means that the traces of Z(t) and Z(a t) look qualitatively
the same up to the scaling /stretching factor used. However, it should be noted that, unlike the
self-similarity present in fractal sets such as Mandelbrot and Julia setsin which the detail of a
pictureis preserved exactly as we zoom in and out from the picture, stochastic self-similarity
preserves the probabilistic structure of the picture as we zoom in and out in terms of time

scales.
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3.5 Partial Sums
An important factor in determining whether atime seriesis stochastically self-similar liesin

the behaviour of its partial sums. In this respect we expect to see some form of scaling of the
stochastic attributes of the time series over subsets of the complete time series. In order to

explain this further we define stationary increments of atime series.

Definition - Stationary I ncrements of a Time Series [BER94]. If for any k3 0 and any k time
points, t;,t,,--+,t, , the distribution of (Z(tl+c)- Z(t1+c— 1),~-,Z(tk +c)- Z(’[k +cC- 1))

does not depend on cl R, thenwe say that Z(t) has stationary increments.

The above definition is needed so that we can state the following theorem which links partial
sums which we have used earlier in the magnification of the time series to the stochastic self-

similarity parameter H. The theorem is stated without proof.

Theorem - Relationship of normalised partial sumsto the Hurst parameter H [BER94].
Suppose that Z(t) is a stochastic process such that Z(1) * 0 with positive probability and Z(t) is
the limit in distribution of the sequence of normalised partial sums
[At]

St 10 )
—=—a X(i), n=12,--.

(3.8)
Where [Nt] indicates the integer part of N't, X(1), X(2),--- isastationary sequence of
random varigblesand a;,a,,--- isasequence of positive normalising constants such that

In(aN)® ¥ . Then thereexistsaH > 0 such that forany b> 0,

. a
lim SNo —pH
N® ¥ aN

(3.9
Thisis an important theorem since it links the scaling through partial sums of atime series

X(t) to the self-similarity parameter H. All self-similar processes with stationary increments

and H>0 can be obtained by partial sums from times series of the type defined above.

3.6 Symptoms of Self-similarity
We can assess heuristically whether data gathered from a system is self-similar. There are

certain symptoms that prevail in systems which are stochastically self-similar. These
symptoms usually include the following:
The variance of the sample mean appears to decay to zero at aslower rate than 1/N where
N isthe sample size. Moreover the rate of decay is more likely to be of the form 1/N?

where a exitsin theinterval al (0,1).
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The sample correlations (k) = g(k)/g(0) decay at arate proportional to the lag k i.e.
rA(k) » ]/ka again for some a intheinterval al (0,1).

The periodogram and spectral profiles of the sample data are divergent as the frequency

a

tendsto zero, f (w) »wW™ < . More specifically, on a doubly-logarithmic plot of amplitude

against the frequency we observe a decay with a negative slope for some a in the interval
al (0,2).
Figure 2.1 shows typical traffic traces that display stochastic self-similarity and /N sample
convergence. The left-hand side of the figure displays stochastic self-similarity, i.e. the upper
and lower traces appear the same regardless of the aggregation level. The right-hand side of
the figure shows a good example of a stochastic process in which the assumption that the

variance has an inverse dependence on the sample size holds.

3.7 Long Range Dependence
LRD can be thought of in traffic measurements as there still being a high degree of

correlations between measurements long after we expected there to be none. Unfortunately
there is no absolute dividing line between LRD and Short Range Dependence (SRD). Aswe
shall see later Tagqu [ TAQ86,97] and Willinger [WIL97] have connected the aggregation of
traffic sources which display LRD to stochastic self-similarity. LRD can be defined in the

time and frequency domains. Both definitions are equivalent.

Definition - Correlation decay [BER94]. Let X(t) be a stationary process for which the
following holds. There exists area number a in theinterval al (0,1) and some constant C,
>0 such that

limr (k) = ,
k® ¥

C k?
(3.10)

where C, = :—gz and C, = 2C; G(2(1- H))sin(p(H - %)) . Then X(t) is called a stationary

process with long memory or LRD or strong dependence, or a stationary process with slowly

decaying correlations or long range correlations.
Definition - Spectral decay [BER94]. Let X(t) be a stationary process for which the following
holds. There exists areal number a intheinterval al (0,1), and a constant C; >0 such that

lim f(w)= 1 -
W® ¥ C; wl

(311)
where C; =Sp—2c:r G(2H - Y)sin(p(1- H)) and s * = var(X(t)). Then X(t) iscalled a

stationary process with long memory or LRD or strong dependence, or a stationary process.
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The definitions given above merely state what has been observed in terms of decay with

increasing lag and the shape of the spectral decay as the frequency tends to zero.

3.8 Hurst Parameter’s Relationship to Decay Rates
What the preceding definitions have not said is how these decays relate to the Hurst

parameter. What we now give are two theorems, given without proof, of how these decays
relate to the Hurst parameter.

Theorem - Hurst parameter’ s relation to Spectral decay [BER94]. Suppose that the
definition of correlation decay holds with the following constraint ona: 0<a =2(1- H)<1.

Then the spectral density exists and asymptotically has the following form

lim f(w) = ﬁ
we ¥ Cy (H)wl

(3.12)
where C; :s|o_2C' G(2H - Ysin(p(1- H)) and s * = var(X(t)).

Theorem - Hurst parametersrelation to Correlation decay [BER94]. Suppose that the
definition of the spectral decay holds with the following constraint ona: O0<a =2H - 1<1.
Then the correlation decay exists and asymptotically has the following form
1
li K)=———
k(l@rg r ( ) C, k2(H— 1)

(3.13)
where C, ::—gzand Cy =2C; G(2(1- H))sin(p(H - %)) :

The two previous theorems rely on the correlation and spectral decays for their relationship to
the Hurst parameter. Another statistical property of atime serieswhich it is convenient to

relate to the Hurst parameter is the variance.

Theorem - Hurst parametersrelation to the variance of the time series[BER94]. Let X(t) be
astationary process with LRD. Then

. &é\l ()9 CQNZH
imvaga XUz=ponTy

(3.14)

where N is the number of samplesand C, = 2CfG(2(1- H))sin(p(H - %))

Observation: Here we note that all of the relationshipsto H are of an asymptotic nature. This
has a practical significance which is most ably demonstrated by the spectral decay. In order to

measure high values of H we have to wait along time for the very rare eventsto “cycle” by.
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This means that for high H we have to wait for a (very) long time for estimates of H to

converge.

3.9 Stochastic Self-similar Models
The two most common stochastic self-similar models were developed by Mandelbrot and co-

workersin the 1960's[MANG3, 65, 68a, 68b, 68c]. These models are FBM and FGN. FBM
isanon-stationary stochastic process that was developed as a generalisation of the standard
Brownian motion model. FGN is a stationary process. FGN isrelated to FBM since FGN is
produced by taking the differencesin FBM readlisations.

FBM isatype of Gaussian random function based on standard Brownian motion. If B(t) is
standard Brownian Motion and H is some parameter in the range O<H<1 then FBM of

exponent H is aweighted moving average process of dB(t) in which past increments are

weighted by akernel function (t- g e

BH(t)zm Ot- 9" #dB(s).

(3.15)
We can see from this structure how LRD arises to give self-similar behaviour. The realisation

of the self-similar process takes into account all past realisations.

Definition - Fractional Brownian Motion [MANG68a]. Fractional Brownian Motion of Hurst

exponent 0< H <1 isazero mean Gaussian process {BH(t),tT R} such that
1 B4(0)=0

2. By =N(osh")

3. By(t+d)- BH(t)jN(O,s|d|H).

That isto say: normal distributed non-stationary zero mean process that has a variance that
scales exponentially with H. FGN isthe incremental process of FBM and assuchitisa

stationary process.

Definition - Fractional Gaussian Noise[MANG68a]. Fractional Gaussian Noise of Hurst

exponent 0< H <1 isazero-mean Gaussian process {GH’d (1),(t,d)1 R’ R} defined by

Guat) = 3 (Bu(t+)- Bu(t).

(3.16)
Having defined stochastic self-similar processes we now go on to examine the covariance

structures of such processes.
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3.10 Auto-Covariance Structure of Self-similar Processes
The covariance, (f.), isfirst product moment about the means of two random variables and is

defined as
g(tpts) © {[th )- m[X(tz) - n]}
(3.17)

We could compare displaced samples of the same series. Thisis termed the auto-covariance
and is defined as

ott) o E{[x - m[xG+t)- n]}.

The auto-correlation, r (.), is defined in terms of the autocovariance,

(1) A

9(0)

(3.18)

(3.19)
Werecall that FBM is a zero-mean process with stationary increments. Consider discrete

samples'Y;, Ys of an FBM process with s<t. The covariance function is

oy (t.9) = cov{¥, ).

(3.20)
Because FBM is a zero-mean process we can write the variance as
2
2 _ E[(Yt - Yt-l) ]= E[le] '
(3.22)
and because of stationary increments we can say
2
E[(Yt-Ys) ]=E[(Yt - ) ] E[ ]
(3.22)
Using the self-similar property, see equ.(3.7), and the result of equ.(3.21) then we write
E[Ytz] = 2H E[Y12] = t2Hg 2
(3.23)
and equ.(3.22) as
V2] = (t- 92" E[¥2] = (t- 9?'s 2.
(3.29)
The covariance can be written in an alternative manner
E[(Y Y, ] E[¥2]+ E[¥?]- 20v(t.9).
(3.25)
By substitution of eguations (3.23) and (3.24) in the above we obtain
( )ZH 2 _ t2Hg 2+52H52+29Y(t'3).
(3.26)
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(3.27)
which is the auto-covariance structure of FMB.

Recall that FGN istheincremental process of FBM, X, =Y, - Y., which is stationary and
has a zero-mean. The auto-covariance function isthen

9x (K) = cov( X, X ) = Cov( Xy, Xpaie) = E[ X X |

(3.28)
because of stationarity. We can write the product term X, X, as
Xt Xt+k = X1X1+k
B 0 @k O @ O ag O
_Gax +9axl_ ta X -ta X;:
|1ﬁ12ﬁg:ﬂg':ﬂ
(3.29)

By using equ.(3.29) and substituting X; by, - Y;_; in the summations and expanding we can

write the auto-covariance as

1 2 2 2 2|
gx (k) = Py E[(Yk+1' Yo) +E (Yk-l' Yo) ] E[(Yk - Yo) ] E[(Yk - Yo) ]%
(3.30)
We use equ.(3.24) in the above and obtain
S 2H 2H 2H
gx(k):z{(kﬂj - 2k 4 (k- )77}
(3.32)
We are interested in the behaviour ask® ¥. To do this we write equ.(3.31) as
sk?" 2Hj
ax (K) = 5 (1+ ) -2+(1- %) g
(3.32)
and define the function g(.)
g(x)° (1+ x)2H - 2+(1- x)2H .
(3.33)
The covariance is then
sk &lo
k) = —
9x(K %5
(3.34)
We apply Taylor’s expansion to the function g(.) and obtain
gx(k) » SH(2H - 1)k2H'2 .
(3.35)
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This is the asymptotic auto-covariance structure of FGN. We can see clearly form equ.(3.27)
that FBM is not stationary and from equ.(3.35) that FGN is stationary. For more details on the

derivation of the covariance structures see Appendix A.

3.11 Estimators of the Hurst Parameter
The study of statistical estimators of H isasubject in it self. There are many estimators of the

Hurst parameter. Some are easier to understand than others. The first statistical method for
estimating H was developed by Hurst in an attempt to capture the scaling of the variability
seen in hydrographic records. The method he developed is called the Rescaled Range
Statistic, R/S, method. This method is a good example of the partial sum approach to
estimating H (see section 3.5). Aswe have seen earlier there are many relationshipsin terms
of decay to the Hurst parameter (for example the variance, correlation and spectral decays), all
of which can be adapted to give an estimate of H. The interested reader is referred to [BER94]
Chapter 4 for more detail and discussion of the subject. However not all these methods are
Maximum Likelihood Estimators (MLE). We are primarily concerned with MLE because
some form of error bound on the estimate can be developed. Until recently there was only one
reliable estimator of H. Thiswas Whittles MLE (see [BER94] Chapters 5 and 6). The main
drawback with Whittles MLE was its evaluation time. Recently newer methods have been
developed for estimating H based on wavelet transforms [ABR95, 98]. These methods are
more of anatural measure of H since wavel et transformations actually rely on scaling to work,
see for example Figure 1in [ABR95 p19]. In thisthesis we have used the wavelet method
developed by Abry et al for the measurement of H.

For a given octet range j; to j, the wavelet based estimator of H is given by the following

components. A weight term given by

_nin?2
i_F

(3.36)
where n is the number of samples (must be a power of 2) and j is the octave in question, i.e. §

is the weighted sum of the number of samples of the octave in question. d,(j,k) isthek”

wavelet coefficient for the octave j. The squared average coefficient wavelet valuein log,

form given by
a, N 0
1 y2e
hj = |ngg_é |dx(J 'k)|2_
n; k=1 2

(3.37)
The estimator is then defined as
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géz (l,z éz 3
Lea Jh - aisans g
|:| . ,. o _§I=11 J i1 1=h 1= + u
(Jl JZ) 2? I 2 aE'Jz (jz lu
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& i=ih =i i=h @ ]
(3.38)
Thevarianceis given by
Ag. . 2 1 2(]2' ]1)
var (i J2) = In?2 (i2- ) - )0
n,, In’ 9[221((J-Jl)+4+2 215
(3.39)
The confidence intervals are then
H- Z,/var I:|(j1,j2) EHEH+Z, var I:|(j1,j2) ,
(3.40)

whereZ, isthe 1- b quantile of the standard Gaussian distribution.

The estimator is speedy and can be programmed up relatively easily. See [PRE94] for
routines which render the wavelet transform. This estimator has been used as the preferred

method of measuring H used in thisthesis.

3.12 ON-OFF Self-similar Traffic Modelling
Recently a connection has been established between ON-OFF sources and the appearance of

self-similar traffic in aggregated traffic streams [TAQ97, WIL97]. The theorem developed by
Taqqu et al [TAQ97] can be stated as follows:

“ The superposition of many strictly alternating independent and identically

distributed ON/OFF sources (packet trains) each of which exhibits the Noah effect®

resultsin self- similar traffic”
Theimplication of this to teletraffic is that the ON-OFF model has sojourn lengths in the ON
and/or OFF statesthat can be very large with non-negligible probability. This meansthat if
we are to model this type of traffic we require source models to exhibit sojourn characteristics
over awide range of time scales. In effect the sojourn characteristic of the stochastic model
has to be governed by the Noah effect. The Noah effect can be modelled by heavy tailed
distributions with infinite variance or truncated state distributions. The importance of the
Noah effect cannot be understated. In fact Tagqu identifies the Noah effect as:

“ essential point of departure from traditional to self-similar traffic modelling” .

This means that the intensity of the tail of the sojourn distribution controls the variance of the
distribution. Moreover there is arelationship between the parameter which describes the tail
intensity and the Hurst parameter, H. In reality the tail intensity describesthe LRD and H
describes the overall self-similarity’.

® Thisis an analogous reference to the variability in Biblical flood levels witnessed by Noah.
" Occasionally H istermed the Joseph effect. Thisis another analogous reference to the
Biblical frequency of abundance and famine witnessed by Joseph.
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The practical significance of Taggu'sresultsisthat when thereis alarge enough number of
ON-OFF sources, the aggregated traffic converges to a second order self-similar process
within the bounds of natural cut off limits. These natural limits are determined by the
following:
lower cut off - thisis areflection of the behaviour of the medium access control (MAC)
protocol,

upper cut off - thisis areflection of the natural diurnal variations.

Taqgqu’ s theory relies on the superposition of alternating renewal processes which have
retention probability distributions which can be characterised by slow varying functions. The
aggregation of many such processes leads in the limit to FBM. Each reward process
represents a cell/packet train. The reward processis defined in a strict alternating sense, i.e.
ON periods are always followed by OFF periods and viceverca. Thisstrict alternation
conforms to the accepted ON-OFF traffic source models. The reward process for an

individual sourceisdefined as:

_ 11,  whilesourceisin ON state

{w(t).t2 0wt 10, whilesourceisin OFF state’

(3.41)
W(t) asthe reward at time t. W(t) applies to the whole period in which the source is either ON

or OFF. A further simplification isto assume that the lengths of the ON periods are I1D as are

the lengths of the OFF periods®. Tagqu then examines the time series of the aggregated
reward process of M traffic sources {W(M) (t) ts 0} . Thisisthe superposition of the

cumulative call/packet counts from the M sourcesin the given timet,

Wy, () ° @ W™ (1)

m=1

(3.42)
If we assume that the aggregated process scales (i.e. has self-similar properties), then the

cumulative cell/packet count can be re-scaled by afactor T,

Tt (aM A

. Fo 0
w;, (Tt) = (éa w (t)Zdu.

0 °m=1 g

(3.43)
Thisisthe aggregated cumulative packet count in interval [0,Tt). It isthe stochastic behaviour

of W (Tt) as T and M get large, i.e. as the time interval and the number of aggregated sources
increases, that is of interest. Theinterested reader isreferred to [FEL66] Chapter 11 for a
general treatment of renewal theory and [COX67] Chapter 6 for the superposition renewals.

8 This condition can be relaxed without affecting the end result in that ON-OFF periods may
have different distributions.
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Taqgqu’' s theorem requires the ON-OFF distributions to be chosen such that the cumulate
traffic convergesto FBM or the aggregated traffic (without cumulating) convergesto FGN. In
order to satisfy these conditions the ON-OFF distributions must be chosen such that as

M® ¥, T® ¥ theaggregated process {WM (Tt),t3 O} adequately normalised becomes

{s im By (1), 13 0} , Where By(t) is FBM and has covariance structure dependent on H, and

S\im is afinite normalising constant determined by the behaviour of the sojourn distributionsin
the ON and OFF states. The normalising constant required by Tagqu’ s theorem depends on
the complementary distribution of the sojourn time having the characteristic of a slow varying

function at infinity. A function L;(t) is slowly varying at infinity if for any multiplying factor
o _Ly(T) o
T > 1 thefollowing limit holds, Im; T =1. The complementary distribution of the
t
sojourn time is the probability of remaining in the ON or OFF state. In the general case of the

ON or OFF distributions, if the probability density is denoted by f; (t) , then its distribution is

t
givenby F;(t) = ¢)f; (x)dx and the complementary distribution is given by Fo(t) =1- F(t).
0

Itis ch(t) which must be heavy tailed and slowly varying at infinity. Fort® ¥ thisfunction
[
can be approximated as Fj.(t) » ta—ll L; (t). Herewe note that l; >0 is a constant and a; isthe
tail decay rate. The subscript j, j=1,2 refersto the ON and OFF states respectively.
For 1<a < 2thevariance s; isinfinite and we define the constant g to be a; = I]-G(Z— aj)
J ] :
‘aj - 1,

For a > 2, s; isfinite and we set a;=2, ;=1 and a; :sjz/z. The normalisation constant S,

then depends on the ratio of the slow varying function in the ON and OFF states. |f we define
bas
b=lim——73

t(lé)rg t%2 L, (t)

(3.44)
thenif a; =a, and O<b<¥, inthiscase a,;, =a; =a,. Noteapm, setsthe largest value of H

and hence the dominant term is given by

2mab+m?a,)
s = and L=L,.
" (n1+mz)3G(4' amin) ’

(3.45)
On the other hand ifa; >a, thenb=0or if a, <a, then b=¥, then we have a dominant a

term and
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MMhaPun o =L
m+ n"5)36(4_ amin)

2
Siim = (
(3.46)
whereministheindex 1 if b=¥, i.e. ON has the dominant sojourn, and min isthe index 2 if

b=0, i.e. OFF has the dominant sojourn.

Theorem - Homogenous Case [TAQ97]. For large T and M, the aggregated cumul ative
traffic process behaves statistically like

W, (Tt) = Ttm ﬁ +TRs i JL{)M By (t)

(3.47)
where H =(3- a,;,)/2 and s is as outlined at equs.(3.45) and (3.46). In fact the theorem

depends on convergence in probability as the limits of T and M are taken in the right order,

that is

F (1)-Tm M2
LlimLlim M2 g mBu(t).-
TOY M®Y TH\/L(t)M

(3.48)
In the heterogeneous case we suppose that there are R distinctive types of r sources being

aggregated, i.e. r =1.--R types of sources. The characteristics of each source of typer are

denoted Fj(r),a('),s (") L) 1f thereis atotal of M sources then there is a proportion

M () / M of typer of the total number being aggregated and if we assume that this proportion

isnot negligibleas M ® ¥ , then under these assumptions we can modify the homogenous

theorem in the following way.

Theorem - Heterogeneous Case [TAQ97]. For large M) , Fr=2--R andlargeT, the
aggregated cumul ative packet/cell traffic behaves statistically as

. &g e &
Wj, (Tt)=Tt§a m (0 m{:;a TH s OVLIMMO B ) (1),
r=1 r=1

(3.49)
where H() = (3- a,(Tﬁi)n) /2 and B, are independent fractional Brownian motions.

The implications of this are the following:

Behaviour - the limit is a superposition of independent fractional Brownian motions with
different Hurst parameters H(") |

Fluctuations - the term with the highest H(") (or smallest a ) ultimately dominates as
Te¥.
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The contribution of sources with finite variance is smply that of ordinary Brownian

motion.

Here we note that these theorems were arrived at by taking the limitsin the correct order (see
equ.(3.48)). Tagqu has extended the theorems by taking the limitsin the reverse order.
However he points out the practical significance of thisis (at the moment) unclear. For this

reason we have only included the main result in its homogenous and heterogeneous forms.

Aswe have seen it is the aggregation of ON-OFF sources with LRD in at least one of the
states that leads to self-similar traffic. ON-OFF sources can aso be modelled via chaotic
maps, moreover chaotic maps can have LRD built into the dynamics of the map. It isthese
attributes of chaotic maps that make them an attractive base for self-similar traffic modelling

and will be the topic of the next chapter.

Telecoms Research Group. Queen Mary and Westfield College, University of London
40



Chapter 4: Teletraffic Modelling Using Non-linear Dynamical Maps

4 Teletraffic Modelling Using Non-linear Dynamical Maps
The application of non-linear dynamics theory to teletraffic modelling draws heavily on the

theories of intermittency developed in the investigation of turbulence in thermodynamic
systems. Teletraffic modelling is not only a new application for the existing theory, but has
also required extensions to analyse the statistical characteristic behavioursrelevant to a
teletraffic interpretation of the models.

Theinitia investigations on non-linear teletraffic models were carried out by Pruthi, Erramilli
and Singh [ERR94a, 94b, 95a, PRU953a, 95b]. They used non-linear rather than stochastic
models in their search for alternative parsimonious models that displayed 2™ order self-
similarity. Pruthi and Erramilli advanced the use of non-linear teletraffic models by
developing techniques for the determination of the models’ invariant density, and through the
study of the models' aggregate behaviour. The true value of non-linear modelsliesin their
simplicity and speed of sample generation. However these models have their drawback in
terms of their analytical tractability, in particular, for their behaviour near the point of
bifurcation (for transit times when e > 0), the prediction of H in a coupled map, and the
behaviour of the map under aggregation. These drawbacks are addressed in the chapters that
follow, where contributions are made to transit time analysis, H prediction and aggregate map
modelling.

Effective teletraffic models must have the following teletraffic properties: capacity to set the
state sojourn time, the traffic load, and the degree of self-similarity (i.e. their scaling factor).
The properties of non-linear dynamical models that relate to these teletraffic properties are
transit time analysis, the invariant density and the spectral decay. These model properties also
relate to the applicability of non-linear dynamical models as self-similar teletraffic modelsin
the following way.

The transit time (and therefore its physical ON/OFF behaviour) can be made to have long run
correlations that are heavy tailed. The heavy tailednessin its correlations leads to LRD, which
isthen reflected in self-similar behaviour dependent on H. Moreover thereis an intuitive
appeal in those non-linear dynamical models that link their underlying physical process to
standard teletraffic ON/OFF model interpretations. The link between those non-linear
dynamica maps and standard teletraffic models can be explained via analogy between asingle
intermittency map and a single ON/OFF teletraffic model. In the single intermittency map the
physical meaning of transit time probability is the probable duration (in terms of the number

of iterates) that an orbit of the map takes to leave the influence of one of its fixed points. This
equates to the sojourn time of an ON/OFF teletraffic model, i.e. the time it takes for a source
to leave the influence of a particular state. The invariant density of the single intermittency

map captures the long run orbital behaviour of the map (in effect the long-term influence of
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the fixed points on the map’s orbit) and hence reflects the probability of the map being in a
particular state i.e. itsload. Thisisthe equivalent of the probability density in an ON/OFF
teletraffic model. Finally, the LRD nature of the single intermittency map is related to its
transit time, and is reflected in its spectral density and correlation structures that are dependent

onH. The sameistrue for the sojourn time of teletraffic ON/OFF models.

In this chapter we refer to non-linear dynamical models as “non-linear models’, “non-linear
map models’ or “chaotic map models’; in the interests of brevity some times we simply call

them “chaotic maps’, “map models’ or simply “maps’.

4.1 Justification of Non-linear Map Models
An important observation of Fowler [FOW91] was that the bursts of traffic activity had no

characteristic scale (they appeared scale invariant). Leland [LEL94] noted that the spectral
decay of thetraffic was divergent at the origin. Schuster [SCHU95 p94] noted that there have
been many observations, in avariety of physical systems, of divergent spectra at the origin.
This phenomenon is called 1/f noise. Schroeder [SCHR91] points out that in many physical
solid-state systems the 1/f power spectrum can be explained through their relaxation times”. In
an analogy with solid-state physics, one could try to explain the 1/f spectrum observed in
network traffic by equating the solid-state systems’

energy barriers to the emission rates of the traffic sources, and

excited state to the on probability of the traffic source.

Divergent spectra and scale invariance are also typical of critical phenomena. Willson first
proposed the investigation of critical phenomena through Renormalization Group Theory
(RNG) in the analysis of thermodynamic systems [WILS74, 75]. Garrod [GAR95 pp 268-
269] states that the fundamental assumptions of Willson'sinitial analysis on the
renormalization group treatment of critical phenomena were:

at the critical point, the probability distribution of the fluctuations in the order parameter is

scaleinvariant; and

the scale invariant distribution can be obtained as a non-trivial (unstable) fixed point of a

properly formulated renormalization transformation.
Non-trivia (unstable) fixed points describe the critical points of the associated thermodynamic
system. At the critical point the correlation function has a power law decay. The stability
properties of the fixed points are closely associated with the decay of the correlation function
in the states described by those fixed points, i.e. the states have long range dependence (LRD).
Unstable fixed points give power law decays, while stable fixed points describe states whose
correlation function has an exponential decay, i.e. the states have short range dependence
(SRD).

° An example of thisis given by Schroeder in [SCHR91, p124].
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4.2

42.1

A fundamental requirement for renormalization to work is self-similarity; thisis because many
critical phenomenain physics show self-similar behaviour near the critical point. These
phenomena are amenabl e to renormalization theoretic treatment, yielding the critical

exponents for the correlation length and other important parameters.

A striking characteristic of critical phenomenais the fact that certain detailed quantitative
measures of a system’s behaviour near a critical point are quite independent of the interactions
between the parameters that go to make up the system. This characteristic is called
universality. The chaotic maps that we use exhibit structural universality. Structural
universality occurs where the pattern of the chaotic maps functionsis retained as the function

describing the dynamics is composed with itself.

The physical phenomena of turbulence displays scale invariance and 1/f noise. Turbulence
has been extensively studied by non-linear dynamicists and theories of intermittency as
explanations for turbulence have been put forward [POM80, HIR82a, KLA93, YANY4,
HEA94, LUS96] some of which use RNG [HIR82b, PRO83] as pivotal point of their
explanation. It isthistheory which has been adapted to provide the non-linear models of
bursty traffic used in this thesis.

For further explanations on intermittency and turbulence including various discussions and
treatments on intermittency and the onset of chaos, the interested reader is referred to Chapter
4 in Schuster [SCHU95], section 8.2 in Ott [OTT94] and Chapter 10 in McCauley [MCC95].

Iterated systems

Central to the chaotic map models that we use is the notion of an iterated system. Iterated

systemsinvolve functions that take initial values as their argument and yield the next initial

values astheir results, i.e. X,,; = f(X,). Thefunction that operates on the argument is well

described and confined to agiven interval. The whole system is deterministic since the
behaviour of the functionsis known. For agood general treatment of iterated systems the
interested reader is referred to [COL80].

Some Essential Definitions
These following definitions are after Gulick [GUL92].

Definition - Iterates of a function. Let f be function and let xq be in the domain of f (i.e. Xy is

avauein theinterval over which the function exists) then

f (xo) = f 1(xo) = thefirst iterate of x, for f

f (f (xo)) =f 2(xo) = the second iterate of X, for f.
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More generally if nis any positive integer, and x, is the n"™ iterate of x, for f , then

Xns1 = T(%,) isthe (n+1)™ iterate of xo. Thisisusually denoted
Xne1 = f n+l(XO) '

Definition - Orbit of a function. The infinite sequence of iterates of the function f, from an

initial condition x,, is termed the orbit of Xy, i.e.

{ f “(Xo)} ::O = orbit of X .

Definition - Fixed point. Let x, beinthe domain of f. Then x, is afixed point of f if

o= 1[x,).

Definition - Attracting fixed point. Let x, be afixed point of f. The point x, is an attracting

fixed point of f provided that thereis an interval (X,-e , X,+€) containing X, such that if xisin

the domain of f and in (x-e, X,+€) then f"(x)® x, asn® ¥.

Definition - Repelling fixed point. Let x, be afixed point of f. The point x, isarepelling
fixed point of f provided that thereis an interval (x,-e , X,+€) containing X, such that if xisin

the domain of f and in (x-€, X,+€) but x 1 x, then |f(x)- xp| >|x- xp|.

The following theorem deals with the identification of the fixed point through the function f.

Theorem - fixed points. Suppose the function f is differentiable at the fixed point x,. Then

1. if |f (xp)| < lthenx, isattracting.
2. if |f ((xp)| > 1 then x, is repalling.

3. if |f t(xp)| = 1then X, can be either attracting, repelling or neither.

Definition - Periodic orbit. Let x, bein the domain of f. Then x; has period niif " (x,) = X,
and the iterates are distinct, i.e. if g has period n then the orbit X, is

{xo, f l(xo), f 2(xo),--~, f ”(xo)} :

Thisis occasionally termed an n-cycle periodic orbit.

We can see from these definitions that in a chaotic map the fixed points are where X, = X1 .
To make fixed points easier to spot a“reflection line” (where x, = X,,;) isintroduced into the

map diagram, see Figure 4.1. This also makes the orbit of the map easier to follow.
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Xne1
Xy = X1

Xa
Figure4.1 The“reflectionlin€”, X, = X4

4.2.2 Required Ingredient for Chaos in lterated Systems
Generally for an iterated system to be chaotic it must fulfil the following criteria[DEV 94]:

the system has sensitive dependence on initial conditions,

the periodic orbits of the system are dense in the space in which the system exists, and

there exists an orbit of the system which is dense.
It is now widely accepted that the last two criteriaimply the first. Note that by “dense” we
mean that an orbit of the system will approach every point in the space within which the
system exits with arbitrary accuracy.

4.2.3 Sensitive Dependence on Initial Conditions (SIC)
Sensitive Dependence on Initial Conditions (SIC) means that points which areinitially very

close together but separated by some small error, e, will diverge exponentially as the system
evolves with time. Mathematically this can be expressed as the difference between iterates of
a chaotic map with starting points separated by some small error

el =|f N(xo- €)- fN(xo)|.

4.1
The Lyupanov exponent, b, gives the rate of divergence of the points, and this can be
expressed mathematically as
18" 1
— lim = — £ ()
b = lim ni61:0|n|f IE nln‘f ¢(>q)‘
4.2

All chaotic systems exhibit SIC.

4.3 Intermittency as the Basis for Map Models
The types of chaotic map chosen for investigation are those which display intermittency.

Intermittency as defined by Schuster is:
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“ the occurrence of a signal that alternates randomly between regular (laminar) phases and
relatively short irregular bursts’
Such signals have been detected in alarge number of physical systems. Intermittency is
connected to the transition to chaos in dynamical systems. Pomeau and Manneville [POM80]
have classified intermittency in chaotic maps. The classification relies on the type of
bifurcation that leads to chaos from the intermittent behaviour at the fixed point. The type of
bifurcation depends on the manner in which their eigenvalues cross the unit circle (how they

become unstable). Their classification is obtained in the following way. Suppose that thereis

an iterated function system that is dependent on some parameter r, i.e. X.q = f(,) .

Furthermore the parameter r takes on some critical valuer,. Stable oscillations, r <r,,
correspond to stable fixed points. Above r. this fixed point can be come unstable. There are
three ways in which a fixed point can be come unstable. In all three the modulus of the
eigenvalue becomes larger than the unit circle and the eigenvalue leads to the classification of
the type of intermittency:

Real Pair of eigenvalues crossthe unit circleat +1 ® TYPE | intermittency.

Complex conjugate pair of eigenvalues cross the unit circle (at any point not +1) ® TYPE

Il intermittency.

Real Pair of eigenvalues crossthe unit circleat -1 ® TYPE Il intermittency.

Type | intermittency is associated with tangent node bifurcation (saddle node bifurcation).
The f 3(x) logistic map (see Figure 4.2) displays this type of bifurcation behaviour. The
bifurcation occurs when two fixed points - one stable and the other unstable - merge. This
occurs at the point of tangency (hence its name - see Figure 4.3). For:

r <r. - the map has a stable fixed point
r =r, - tangency is achieved and we have a single fixed point that is both attracting and
repelling
r >r, - there are no stable fixed points.
The width of the critical regione, e =r - r., determines how fast the orbit passes through the

restriction. The narrower the restriction the longer the orbit takes to pass through the critical
region. Thistype of behaviour is reminiscent of memory since the orbit appears to remember
the fixed point being there. In this case we can see that long run correlations in the orbit

values can build up and LRD behaviour appears for sufficiently small values of e.
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n+1

X

n

Figure 4.2 Logistic Map: f,(x,) =rx,(1- x,). Displayed isthef,*(x), (third iterate) logistic

map showing region of intermittency -A. The logistic map depends on the parameter r for its
behaviour

r>r.=>e>0
?

r<r,=>e<0

X, unstable fixed point

Xt

X, Stablefunstable fixed point

stable fixed point

-~ xa

X

n

Figure 4.3 Detail of Figure 4.2 around the Region of Intermittency, A, showing: stable fixed
pints xs; unstable fixed points x, and marginally stable fixed point X, at the point of criticality.
The parameter also shows the relationship between the parameter e and the map parameter r of
the logistic map and its value at criticality, r.

In short, any dynamical system that displays inverse tangent bifurcation has Type |
intermittency. A map of such a system isthe logistic map. The chaotic map models that we
will use are constructed from this behaviour. Such models are constructed in one of two ways.
Either by:

approximating the curve at tangency viaa Taylor series expansion around the point of
tangency, or
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using the structural universality present in the dynamical system at the point of criticality.
In this case we have scale invariance in the correlations and use a renormalization group
approach to obtain the deterministic equations of interest.

In either event the properties of the system should be able to be derived from either approach,

although some properties may be easier to deduce using one method rather than the other.

OFF ON

f(e,d, m,, x)
/ ~C

N\

€

Xn
Figure 4.4. ON/OFF Source Model interpretation by use of the indicator variable and
intermittency map functions

4.4 Chaotic Map Models - Derivation
Aswe have seen in Section 4.2.2. for the map to be chaotic it must have SIC. Initerated

systems SIC arises out of the mixing of the iterates due to some stretching and folding action
of the map function. It isthe mixing which gives the orbit it apparent randomness. To
achieve this mixing we have to have a map function that not only renders intermittent
behaviour but one which aso incorporates a method for obtaining the mixing as part of the
system description. Manneville [MANBSO0] proposed such a system for maps with Type |
intermittency constructed on the unit interval as a method for simplifying the analysis of
intermittency. His proposal was to introduce an intermittency map with two functions, F,(.)
and F,(.), which mutually inject into the critical regions of the map when the iterate value
passes some discriminate value, d. F;(.) isrestricted to the interval [0,d] and F,(.) to the
interval (d,1]. Their mutual interaction performs the necessary mixing. Both functions
perform stretching: F1(.) performs a stretching on iterate valuesin (0,d] to avaluesin (0,1),
while F5(.) stretchesiteratesin (d,1] to (0,1). The folding occurs on transitions from Fy(.) ®
F,(.) and vice versa, i.e. F,(.) injectsinto interval (0,d) while Fy(.) injectsinto interval(d,1).
The structure of the map models can be seen in Figure 4.4. From this construction we can see
that in order to obtain map functions that yield intermittent behaviour the functions must

comply with the following boundary conditions on the interval:

Fl(o) =0, Fl(d) =1
Fz(l) =1 Fz(d) =0’
(4.3)
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4.4.1

4.4.2

Derivation: Taylor's Series Approach
The logistic map is described by the following equation

f, (x) =Xr (1- x)

(4.4
wherer is some control parameter. The map can be iterated many times. The behaviour of
the map in the region labelled A in Figure 4.2 isthe area of interest. Thisissince the curve of
the logistic map and the reflection line form a channel through which the orbits of the system
have to pass. It has been shown that this mathematical description is akin to laminar flow in
fluids, with gjection from region A being similar to the onset of turbulence [MANNS0]. In
this context the laminar flow phase of the orbit corresponds to the sojourn time of atraffic
source and the emission of the orbit from this region to the arrival of afull cell/packet. The
curve of the function near tangency of the logistic map can be approximated by a Taylor series
expansion about the point of tangency, x.. For the third iterate of the logistic map thisis:

fra(xc B (X' Xc))» fra(xc)-"(x' Xc)flraq:(xc)-"M erZ(XC)+"'+(r' rc)fr03¢(rc)+"'

2
(4.5)
By letting
%)
a;=——— and b= frc3¢(rc)
(4.6)
and defining the following
yn o M' aO aCbC >1' eD (r _ rc)
b
4.7
equ.(4.5) becomes
Y1 = @Yn” + Yo +€.
(4.8)
To determine the value of the constant term, a, we apply the boundary conditions, obtaining
_1-e-d
==
(4.9)

Derivation: Renormalization Group Approach
In this approach we commence with a generalised Taylor’s series approximation to the curve

at tangency for the unperturbed system x., = x, +ax,™ and in functional
form f(x) = x+ax™. For there to be functional self-similarity (structural universality) we

need the following condition f "(x ® 0) = x+ax™. Thiscan be seen in the following

example. For the second iterate of the generalised case we have

£2(x) = (x+ax™) +a(x+ax™)", and since X" ® 0 faster than x® 0, we regain, after
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appropriate scaling, our original function f?(x® 0) = x+ax™. Sowe can seethat thereis
structural universality present in the generalised function. Furthermore, if repeated operation
of the doubling operator T leads to afixed point f”(x) of T, then f"(x) hasthe required

structure for structural renormalizationi.e. Tf " (x) =af [ f (al)] = 7(x), wheretheterm a

determines the class of structural universality. Following Hu and Rudnick [HU 82] we write

the following recursion relation f (x) = x¢ in implicit form™:

G(x4 =G(x)- a,

(4.10)
where a is some free parameter. Therefore we can say
x€x) =G YG(x)- a] = f(x).

(4.11)
For there to be structural universality we require ax#x) = x¢ax) . This follows from
f"(ax) =af "2(x) where the functional self-similarity must also work equally well for
forward as well as backward iterates. Applying the function G(.) we arrive at
Glaxd = G[Xt(ax)] =Glax)- a.

(4.12)
However we note the structure at equ.(4.10) then
G(x# =G(x¢- a=G(x)- 2a.

(4.13)
Thisimplies that
%G(X@ :%G(x)- a.

(4.14)

If we compare equ.(4.14) with equ.(4.12) we note that the solution to the fixed point equation
G (x) = G'(ax) must have the property 1G’(x) = G™(ax) . Sitable ansatz solutions for

G'(x) that fulfil the boundary conditions for the original function f(0) =0, f ¢0) =1 are

Y™ with 27 andsince G [G'(x)- a] = F"(x) then
1 uﬁ _ X
Woan [1_ axm 1)]# '

f*(x) =

D: M D~

X™1- a

(4.15)

19 Here we note that we are implying the following functional relationship
f(x) % %® x¢

x€x) % Hh® f(x)
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4.4.3

We now need to determine the value of the parameter a. This can be determined by the map

boundary conditions at d. With these conditions we obtain

_1- g™
T gmy

(4.16)

Generalised Map Equations
From the derivation of the Taylor and RNG approaches to intermittency we arrive at the

following generalised equations for the map family that is used in this study.

Taylor Series Expansion

T R
" ’ TFZ(Xn):Xn'ez'Cz(l- Xn)m2 d<x,<1
(4.17)
, (1‘ e - d) (d -e )
with Cl:d—lml d c, :m
Renormalization Group
i X
i Filx)=ey+ . 0<x, £d
oo = Fx0) = | - e |
:':Fz(xn)=1- e, - — d<x,<1
i [1- ¢ (1- mt] ™
(4.18)
with ¢, = (1-e)""-an and c, = (1- €)™ - (1-d)™"
1 (1_ el)ml-ldml-l (1_ ez)rrb-l(l_ d)nb.l

Indicator variable
In order to simplify things we introduce an indicator variable, y,, with the following behaviour

(4.19)

Theindicator variable is used to indicate the presence or absence of a packet/full cell.
Naturally thereis no prohibition to using the reverse definition of the variable. The
interpretation of the intermittency map as an ON/OFF traffic model is shown in Figure 4.4.

4.5 Transit Time Probability

A property of the map that we require for transit time analysis is the duration that an orbit of
the map takes to leave the critical region. This equates to the sojourn time of a source, the
length of time spent in a particular state. In terms of iterates of the map, this is the number of

iterations required to leave the laminar region. In the simplified model of Manneville
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45.1

[MANNSO] thiswould be the length of continuous 1's and O’ s that would be observed at the
indicator variable y,. By judicious rephrasing of the question what we are really need to find
isthe probability P(l) of having alaminar length of I. The determination of this quantity can

be more easily approached through the renormalization formulation of the intermittency map.

Derivation: Transit Time Probability
Following Ben-Mizrachi [BEN85], the length of the laminar region is dependent on its starting

point X,. We require the probability of being injected into this region, P(x). In our map
model the function f(x,) ceases to affect the orbit past the discriminator value d, then the most

the iterate value can beisd. Therefore we can say that the laminar region is determined by

| =1(x,d) where(.) is the function determining the length. From the derivation of the RNG

method we note that structural universality works for both forward and backward iterates.

Using the idea of structural universality we can say that astarting point is X, = %,(1,d) where
xo() is the function determining the value of xo, which we can argue is dependent of the

length, |, and the end point d.

The probability of injection to a start point between x, and x, +dx, is denoted by ﬁ’(xo)dxo.

Therefore we can write that the probability of having alaminar length P(1) is

Bxo ) = P ,d))%dl o p(l)dl .

(4.20)
The function xO(I ,d) can be found viaRNG. Thisis done by noting that the end point d must

be afixed point of the doubling operator T. Moreover, we are concerned with doubling like

behaviour we are therefore interested in lengths | = 2" >>1. Since forward and backward

iterates behave functionally the same then

%o = X(1,d) U d = X(I,%).

(4.21)
We then solve
x(|=2”,x0)=ainf*(a”x0)=d
n
ainf*(anXO):ain. a Xy —+
[1_ k(anxo)m'llm-l
d= o
- o)™
(4.22)
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rearranging this to obtain the backward iterate of x, i.e. d we obtain the function xO(I ,d)

d

Xo = I =x0(l=2”,d).
1+ k(a nd)m'l]m-l
(4.23)
1
Recall from ansatz solutions to the RNG method we used a =2™1  thenas n® ¥ the
behaviour of equ.(4.23) is dominated by
n 1
XA ~ i = Zl-im = |FT‘I
0 an .
(4.24)
The probability P(I) isthen
R e logm
B(xo e, = Pge” 1Emattm = P()d
@
(4.25)
where ¢ is some constant, and for | ® ¥ this becomes
_m
P(1) ~ P(0)1+-m.
(4.26)

The result shows that provided P(x,)isfiniteand x, » O then we can obtain sojourn times of

arbitrary length in the unperturbed system.

Observation: We have seen that because of structural universality, not only is the map
function dependent on m but also the sojourn time probability is dependent on m. 1t would
therefore not be unreasonable to assume that the spectral decay is also solely dependent on this

parameter.

4.6 Spectral Decay

We note from Chapter 3 that the spectral decay for stochastic self-similarity has the form
lim f(w) = % , where C; =§Cr Gl2H - 1)sin(p(1- H)) and s 2 = var(X(t)).
we ¥ C (H)wl p

Since this type of spectral decay refers to 1/f noise then the intermittency maps must also have
asimilar spectral decay structure. To obtain the spectral decay of the maps we follow the
method used by Ben-Mizrachi [BEN85]:

We require the correlation function C(m) of the indicator variabley,. We areinterested in

’
the behaviour of C(m) for C(m) Y Fh® C(t) . This requires convolution in the time

domain.
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The convolution is easier in the complex frequency (s=s +iw) domain. Thisrequires
the Laplace transform.™

We use this result to obtain the spectral density, f (w) .

Unfortunately the Laplace transform is not invertable and therefore we have to take the

1 *
limit s® iw of the Laplace transform and its conjugate i.e. sI(ém E[C(S)Jrc (s)].
w

4.6.1 The Correlation Function
The correlation function is obtained by using Manneville's [MANNS80] simplification of the

intermittency signal that views the regions of regular laminar flow as periods of constant value
indicator variable output. The transitions between laminar and turbulent behaviour make up a

binary time series. We analyse this signal through the use of the correlation function R(m)

=8 & wlxin) x(O)rix(o

(4.27)
where W(X(m), X(O)) isthe joint probability of seeing asignal X(0) (0 or 1) at the zero™
iteration and asignal X(m) present at the m" iteration. Using the dependent probability
identity™® we define the following
i) wx(m) =1x(0) =1,

(4.28)
where Cm(]jl) is the conditional probability of seeing a nonzero signal at the m" iteration. The

correlation sum can then be written as

(4.29)
From this we can see that the low frequency portion of the maps spectrum will be due to the

long run (long wavelength) correlations of the indicator variable - long strings of contiguous

1'sor contiguous O0's, and that this will be determined by Cm(]jl) . If we assume that the
probability of a continuous intermission of length k is P(K), then we can write Cm(]jl) inan

aternative way (dropping the (]J]) notation for convenience)

! The Laplace transform is taken in preference to the Fourier transform out of consideration to
the boundary conditions.
P(AH)

12 P(AIH)=W.
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4.6.2

c(m) :ém c(m- k)P(k)

(4.30)

where C(m— k) is the autocorrelation. We are interested in the behaviour of autocorrelation in

thelimitas m® ¥ . For this reason we can pass into the continuous time domain and write

t

C(t) = cp(t- t)P(t)dt +d(t).

0
(4.31)

We need the d(t) term in equ.(4.31) because of the definition of C(m). If we consider C(0)

we obtain the following sum

=0

3

c(0) = & c(o- k)P(k).
k=0
(4.32)
This naturally yields no term. However with alag of zero (k = 0) we should have a
correlation of 1i.e. C(0) =1 and P(0) = 0. Therefore,
g
c(m) =g ¢(m- k)P(k) +c(0).
k=0
(4.33)
Thisisimportant because in the continuous limit the correlation becomes
t
C(t) = ¢t - t)P(t )t
0
(4.34)

which excludes the autocorrelation with lag zero. For this reason the inclusion of the Dirac

deltafunction is necessary in order to regain this term.

The Spectrum
Normally, to calculate the spectrum we would perform the following cosine transformation

¥

f(w) = (olt) codw)et

0
(4.35)
Theintegral at equ.(4.34) is the convolution integral which can be manipulated better in the
complex frequency domain. Taking the Laplace transform of the integral and rearranging it to

isolate the correl ation term we obtain
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&5l = &5 * &t~ P et + &y e
_ 1 |
cls)= 1- P(s)

(4.36)
To obtain the spectrum of the correlation we have to solve equ.(4.36) for C(s). Normally this
would involve taking the inverse Laplace transform. Unfortunately thereis no inverse
transform for this equation. A different approach is therefore required to find the spectral
decay. Thisisachieved by taking limits of C(s) as the complex frequency, s, tends to zero,

lim f(w)= SIéTN%[C(SHC*(s)].

w® 0

(4.37)
To perform this operation we require the Laplace transform of P(k), where P(k) isthe
probability of arun of k 1'sor k 0's. Thiswe have already donein section 4.5. The Laplace

transform of P(l) is

¥
¢y “17nd
-1
P(S) T ¥
Qe rd
1
(4.38)
The integration of equ. (4.38) depends on the values that mtakes. For m? 2,2 > P(s) hasthe

form P(s) =s Z(3(2, s) ,where G(z,9) is the incomplete gamma function and z=- 1/ (m- 1).

This result also has a series interpretation

=5 el § £

“on(z+n
(4.39)
_Es) _ Es(s)
For the special cases m=2,3 > P(s) hasthe form P(s]m:2 ] and P(Slng =

¥
where E,(.) is the exponential integral E,(z)= (¥ 7t "dt for n=1,2%4, and Re()>0. In these
1

cases we can use the following equivalence and recursive relationships to again obtain a series

representation for P(s):

ci=-0-nie- & LI g,

(4.40)
Enld)= 2o 2 (2] n=123.-

(4.41)
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By substituting the appropriate series representations for P(s) in equ.(4.36) and taking the
limits of equ.(4.37) we obtain the following spectral decays™

-}-w' ™1 2<m<3

:

T 1

T m=2

; w|in(w)?
lim f () b 3<m<2
w® 0 H : 2

i Infw) m=3

:

: const m<3

:

(4.42)

4.7 Lower and Upper Bounds on the Transit-Time
Since we know the spectral decays dependence on the map parameter m, and we know the

relationship between spectral decay and the Hurst parameter, H, we can now place some limits
on the upper and lower bounds on the transit time'*. The upper and lower bounds can be
derived from the Taylor series formulation of the intermittency map. Recall the generalised
map function given by

X1 = OKT + X, e,

(4.43)
where c is a constant defined in terms of the parameters of the map and e is the width of the

critical region™. For values of x, very close to the critical region the distance between
successive map iteratesis very small. Equation (4.8) can therefore be rearranged to form a
difference equation by dividing through by the difference in distance between iterates

Xne1 = X

% =cx"+e.
(4.44)

As DI ® 0 then we obtain adifferential equation. The solution to this equation yields the

time taken to escape the influence of the function, i.e. the transit time. The differential

equation corresponding to equ.(4.44) for agiven start and stop value of the iteratesis given by

d
< dx

L=0 =
~ex™ +e

n

(4.45)

13 Both Ben-Mizarachi [BEN85] and Schuster [SCHU95] present extend results on spectral
decays, i.e. for m>3. The results shown here stop at m<3. The reason for thisis that for
2<m<3 we again have a power law decay, admittedly outside the interval of interest (see
below). However this observation isincluded since it may become useful in developing other
kinds of traffic model based on this type of chaotic map.

Y Thisis so because for positive correlations, i.e. HI [¥21] mtakes valuesin the range,

mi [1,2].

5 1n actual fact eis the perturbation to the equation.
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4.7.1

4.7.2

where L isthe number of iterates to leave the left hand (LH) side of the map for an entry point
of X, and an exit point of d". Here we note that the upper limit of integration is set to d since
(naturally) there can be no higher iterate values than this before escape from the LH half of the
map occurs (see Figure 4.4). We know that mis bounded, i.e. mi [1,2]. Thisyieldsthe

following solutions for an upper and lower bound on L.

Casem=1
This case yields the lower bound on the number of iterations required to escape the LH side of

themap. For m= 1 equ.(4.45) becomes

d
< dx

y\ocx +e’
Nin

I-mzl -

(4.46)
This can be solved quite easily viathe transformation A=cx+e . The solution to the integral
then becomes
| _1f @cd+e ol
mL C'If gc}’in "’e;Iv)'

(4.47)

Thisyields the lower bound resullt.

Casem=2
This case yields the upper bound in the number of iterations required to escape the LH side of

themap. For m= 2 equ.(4.45) becomes

d
< dx

n

(4.48)

To solve this equation we apply the transformation tanq = y\/E/ Je. The integral to thisis

13 i
Ly = ﬁ { arctan(d \/%) - arctan(yin \/g)% .
(4.49)
Thisyields the upper bound result.

Comment: In iterated map systems such as the maps that we use, the unit of time at each
iteration is“timeless’ since the user sets the time unit of the model. This means that each
iteration of the map portrays some specific time increment of the system to be modelled.
What the transit time actually refersto isthe number of iterations reguired to leave the critical
region of the map, not the actual time duration (e.g. seconds, milliseconds etc.) taken to leave

the critical region.

" Here we can see that the unperturbed map, e = 0, poses no analytical problems since
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4.8 Invariant Densities - The Statistics of the Dynamics
We have presented the dynamics of the map as a dynamical system in which the iterates of the

map follow some pre-described path given by known functions of the LH and RH halves of
the map. We now describe the dynamicsin a statistical manner. Pruthi [PRU95a] has already
investigated the stochastic aspect of chaotic maps. We only summarise the important features

here.

The stochastic representation of the orbit is done in terms of the invariant density®®, r (x) .

Thisisthe probability that an orbit will visit agiven interval of the map. For thereto be
equivalence between the invariant density and a probability, the invariant density must be
normalizable, i.e. the sum of all the invariant densities must equal unity. Thisimpliesthat the

integral of the invariant density is finite"’.

The determination of the invariant density stems from solving the Frobenius-Perron equation

() = O n(y)dix- £(y)idy
(4.50)

where f() isthe forward iterate function of the map, r (/) isthe invariant density at iteration

n, and the summation is performed over all backward iterates of the map, i.e. y = f () . If

18 19

the maps are ergodic™® *° and chaotic® then the r n(x) becomes independent of time and can

be termed invariant. Here we point out that not all maps have invariant densities. The

invariant density then becomes the solution to the steady state Frobenius-Perron equation, i.e.

M nea(X) =1 a(X) =1 (x) , then equ.(4.50) becomes

r ()

¢ (v)dix- f(y)1dy.

(4.51)

equ.(4.45) becomes asimple integral.

1 Here the term “invariant” is used because the visitations of the map’s orbit to points on the
interval with arbitrary accuracy containing the map have reached a “ steady” and hence
“invariant” state.

7 This does not mean that the density itself be finite - thisisin contrast to the interpretation
given by Pruthi in [PRU954] as applied to this particular kind of mapi.e. TYPE |
intermittency map.

18 Ergodic in this sense means a unique initial condition that leads to “on average” behaviour.
19 To prove that the maps are ergodic is very difficult to do theoretically. It essentially boils
down to having a positive Lyupanov exponent. If we have a positive Lyapanov exponent then
we have a system which will exponentially diverge with a good chance of the orbit of the map
visiting all points of the spacein which it is described. This spreading is due to the stretching
and folding of the map, which makes initial points arbitrarily close to each other spread all
over theinterval. Then any one starting point will look much the same as any other and the
resulting invariant density will be the same. All that we can say about the maps that we use is
that they appear to be ergodic since their invariant densities appear to be invariant regardless
of the start position and that the averages of the system converge.

0 See earlier “Required Ingredient for Chaos in Iterated Systems” in this chapter, specifically
with regard to item three.
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Through the use of the Dirac delta function identities:

dt- t,)
dr(tn)

dr(]=a

dt
(4.52)
a+r;d
Of (t)d(t- a)dt = f (),
) (4.53)

we can substitute equ.(4.52) into equ.(4.51) and precede the integral by the summation sign
without any ill effect.
o | d(y -y )
raX=a g n(y)—n dy .
n |df (yn )/ dy|
(4.54)

We can now apply the identity given by equ.(4.53) to the numerator of the abovein order to
obtain the final form that we use in our investigations

_ 2 rn(yn)
b of

(4.55)
See Appendix B for more information on Dirac impulse function identities.

If welet Y = f,"X(x) bethe backward iterate of the f;th. functionand f,'(x) isthe forward
differential of the f;th. function, then for the generalised equations given in section 4.4.3 we
can summarise the contributions to the invariant density as

)

fléYl) e-1£x<1

|
|
i
1.
I.
|
i
i
I

r(x) =i r(Yl) + r(YZ) g Ex<eg-1
i[rv) [rdv)
| r(Yz) O£ x<g
i 14%)

(4.56)
The dependence of the contributions to the invariant density on the values of e; and e, can be

seen more clearly in Figure 4.5.
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Figure 4.5 Relationship between the backward iterate, y and the zones of contribution to the
invariant density

4.9 Invariant Density Approximation
Much effort has been placed in obtaining analytically the invariant density from the map

parameters, most notably by Pruthi [PRU95a], who investigated several methods for obtaining
theinvariant density. More recently, Mondragdn [MON98] has made further advances on the
analytic approximation of the invariant density via a method which de-couples the LH and RH
halves of the map. Both approximations rely on the behaviour around the fixed pointsto
dominate the invariant density. The reasons for concentrating on analytic methods for the
approximation of the invariant density are two-fold:

analytic methods are rapid, and

they provide agood initial guess for iterative methods (again providing some form of

speed up).

4.9.1 The Pruthi Approximation
This method is derived from considerations on a coupled set of the backward iterates of the

map functions. If we suppose that the backward iterates of the map functions are

a=f"y) and b=1f;%y),

(4.57)
we can then define the probabilities with respect to the invariant density of the map as
y a b d
P(y)° (‘)' (x)ax, P(a)° c‘)’ (x)ax, P(b)e c‘)’ (x)ax, P(d)° (‘)' (x)dix.
0 0 0 0
(4.58)
Under these definitions we can then say
y b
P(y)- P(a)= (‘)' (x)dx, P(b)- P(d)= c‘)’ (x)ax .
a d
(4.59)
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4.9.2

By using the Frobenius-Perron operator and considerations on the contributions of the map
functions to the invariant density we obtain

b

(x)ox = ¢ (x)ox+ ¢y (x)ox

QD

OQ,‘<

P(y)=P(a)+P(b)- P(d)
(4.60)
and for y<<1 we can say
r(y)= P(YJ: :(a) and 1 (b)= P(bb: Z(d).
(4.61)
Dividing r (y) by r (b) and substituting equ.(4.57) where appropriate we obtain

r (y)=Mr (1))

y- flhl(y)
(4.62)
By taking the limit y® 0 we finally obtain
. f,Y(y)- d
| =2\ ~,(d
Aol
(4.63)

By asimilar process we obtain

. _f}y)-d
=y @
(4.64)

For more details see [PRU95a pp88-98].

The Mondrag6n Approximation
This method is applicable when the Taylor’ s series derivation has been used for the map

functions. The assumptions made in this method are:
the transitions between halves of the map are viewed as random, decoupling the map
halves; and
e=0.

Under these assumptions the invariant density can be analytically approximated. The

contribution to the invariant density form on map half can then be viewed as
- Fif2(x)
rix)= +K,
g f &f 1(x))
(4.65)

where K is a constant (this can be viewed as the contribution to the invariant density from the

other half of the map), r (x) istheinvariant density of the half of the map in question, f*(x) is
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the backward iterate and f €x) is the derivative of the forward iterate of the map in question.
If we assume that equ.(4.65) has the form
(1+ emx™ g - (1+ ox™ 1)’"%

F(x,d,m,K)»-K —
mCZXZm- 2(1+ CXm_ l)

(4.66)
wherec = (1- d)/d™, the approximation is always valid if x<<1, or in the interval (0,d) if
c<1, or d"+ d-1<1. Inthese casestheinvariant density is given by

ir,(xd,my,K,)=r(x1- d,m, 1)K, x>d
r(x)=j e .
i rl(x,d,ml,Kl)—r(x,d,ml,l)Kl x<d

(4.67)
The ON and OFF probabilities are then given by
1
I = pz(xidvmz'Kz): (\)'~(X11' d’mz'Kz)dX
d
d
1-1 = py(x.d,m,Ky)= ¢y (x.d, m, Ky Jdx
0
(4.68)
The solution for thisintegral is
X
p(x,d,m,K):(‘f(y,d,m,K)dy
0
= +C MX+ :
czmé 2-m - 2m
KA 2 Epem F & L M 0
& € m1m-1"p
i @® 3-2m 2- O, m & 2- 1 il
- Xj{m- 2)x,F,cm,———; ,ZE+CX L, Fem——;———, 2]
}( )213 m-1 m-1"5 2" o me 2
(4.69)
where A= 1 , B:czm(2m2— 7m+6), C :c(2m2- m- 3), z=-cx™and

c¢?(m- 2)2m- 3)m
2F1(.) isthe Hypergeometic function. For more detailed description of the method see
[MONO9g].

4.10 Summary
In this chapter we have examined non-linear dynamical maps as teletraffic models. Central to

their effectiveness as teletraffic models that can replicate LRD and self-similar traffic isthe
relationship between extended sojourn times witnessed in real traffic and the maps' orbital
behaviour. The part of amap’s orbit that produces the correct behaviour occurs near
bifurcation in amap with TYPE | intermittency. In order to track the evolution of the map's

orbit in this intermittent region we applied boundary conditions to formulations for an
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intermittency map derived from Taylor’s Series and Renormalization Group approaches. Key
properties for this map at the point of bifurcation (the critical point) was obtained through the
Renomalization Group approach while behaviour near the critical point was obtained through
the Taylor’s Series approach. The intermittency map forms the basis for chaotic map models
that display LRD and self-similarity and is the subject of the next chapter.
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5 Mathematical Analysis of Intermittency Map Models
The previous chapter introduced the basic intermittency map models and the important

properties that are relevant to their teletraffic interpretation and application. Pruthi [PRU95g]
investigated a variety of chaotic maps and found the fixed point double intermittency map to
be of most use. However, his parameterisation of the double intermittency map was limited:
he set the parameter e to zero; and conjectured that H depends only on the value of mfor one
side of the map. Furthermore, his aggregate source models gave poor performance when used

for studying queueing behaviour.

A recent result of Willinger et al [WIL97] has shown that it is the aggregation of ON-OFF
sources with LRD in either ON or OFF states which leads asymptotically to 2nd order self-
similarity. This chapter introduces a“family” of intermittency maps, specified by five
parameters: e and min both sides of the map, and d, the discriminator value. This“family”
can produce a variety of behaviour when aggregated, which can lead to asymptotic 2nd order
self-similarity depending on the map parameters. The following two chapters develop new
parameterisation methods that allow these maps to represent aggregate traffic behaviour

accurately, focusing on the invariant density.

In this chapter, we present new analysis of the intermittency maps’ transit-time (in the general
case of perturbed maps), spectral decay, and H (in the specific case for epsilon set to zero).
Pruthi and Erramilli [PRU95a, ERR94b] termed e athrowaway parameter. The setting of
epsilon to zero was done in part for analytical tractability and also to ensure that there would
be bursts over all time scales, i.e. so that the probability of infinite sojourn timesin the ON or
OFF period would exist. An infinite sojourn period in the ON state would mean that the
source was permanently on. Similarly, an infinite sojourn period in the OFF state would mean
that the source was permanently off. However, Fowler [FOW91] observed that the bursts
occurred over all time scales of engineering interest, i.e. over afinite number of time scales.
Thetransit time analysis performed in this chapter shows an important dependence on e. This
limits the time scales over which stochastic self-similarity is present supporting the view of
Fowler. Interms of chaotic map models this means that eis not such a discardable parameter
aswas first thought. The Hurst parameter analysis confirms Pruthi’ s conjecture and shows

that, in the limit, the dominant m value determines the value of H.

We also present numerical results for the H behaviour of the maps which illustrate a complex
dependence between both portions of the map, and the values of mand d. The H behaviour is
predictable, but differs substantially from the limit behaviour suggested by the analysis. We
present an empirical fit for H which gives substantially better prediction than analysis for

practical casesin acoupled map. In addition, we present a new method for estimating H
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based on the correlation structure of the maps, and thisis compared with other estimation
methods in Chapter 8.

5.1 A Family of Chaotic Maps as Self-similar Traffic Sources
The chaotic map family is described by a common set of equations. Individual members of

the family are identified viatheir parameter values. The common set of equations which
describes this map family viathe Taylor series formulation is given by

(1_(:—;;00)(;*& 0<x, £d

(- e) '

Fz(xn): Xp - € - W(l xn)mz d<x,<1

]

: Fl(xn) =e +X,+
Xne1 = F(Xn) = :

1I.

(5.1
where 1 £ m;,m, £2, 0<d <1, 0£e,e, <<1 areparametersand 0< x, <1. An ON-OFF
source model can be constructed from these equations via the use of an indicator variable, y,,
which simulates the presence or absence of teletraffic

_]0, 0<x,£d, passve "OFF" state

X =
(%) 11, d<x,£1 active"ON" state

(5.2
Werefer to the x, of equ.(5.2) as the underlying dynamics; this corresponds to the realisation
of astochastic process. We refer to the y, as the overlying dynamics; this corresponds to the

visual element of the realisation process.

The nomenclature of the map family is asfollows:
for my and m, =1: Bernoulli shift map - this produces SRD in both halves of the map;
for m=1 and m,>1, or, m>1 and m,=1: single intermittency map - this produces SRD in
one half and LRD in the other; and
for my and my>1: double intermittency map; this produces LRD in both halves of the map.

Pruthi [PRU95a] explored many determinist chaotic maps as traffic source models. The
model which he found to be of most useful was the Fixed Point Double Intermittency map
(FPDI). The reason for this was that the FPDI map rendered LRD in both halves of the map.
However, recently Willinger et al [WIL97] have shown that it is ON-OFF sources having
LRD in at least one state (either ON or OFF) that when aggregated will cause 2™ order self-
similarity. Classifying individual maps into afamily as described above enables usto view

these models as suitable for modelling aggregated data traffic.

5.2 State Transit-time Analysis
Thetransit timeisthetimeit takes an orbit to leave the ON or OFF state of amap. Transit-

time analysis of chaotic maps is problematic because analytic solutions to the perturbed map

can only be found at certain values of the parameter m (eg. m=1, 3/2, 2). Further, analytic
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5.2.1

forms for the transit time values of the perturbed map for rational mi (1,2) have not been
found for the Taylor formulation of the map family. In this section we develop an
approximation for the transit time of the perturbed map for rational m. In our development we

concentrate only on one half of the map®.

Werecall that the basic equation for the map is given by
Xne1 = er';n X, *te,

(5.3)

where c is a constant defined in terms of the parameters of the map and eis the distance
between the reflection line and the curve (see section 4.4.3). In actua fact eisthe
perturbation to the equation. Equation (5.3) can be rearranged to yield a difference equation
by dividing through by the difference in distance between iterates

Xn+1 ™ Xp

o =cx, +e.

(5.4
As DI ® 0 we approximate a differential equation. The solution to this equation yields the
time taken to leave a map state (for example the ON or OFF state), i.e. the transit time. The
differential equation corresponding to equ.(5.4) #is

d
< dx

L=0 =
~ex™ +e

n

(5.5)

where L isthe number of iterates to leave a map state for an entry point of x;, and an exit point
of d. We note that the upper limit of integration is set to d since higher iterate values mean
that the orbit has escaped the map state.

Lower and Upper Bounds on the Transit-time
We can determine the upper and lower bounds on the transit time. We know that mis

bounded; mi [1,2], in order to give the correct range of H. Thisyields the following solutions

for an upper and lower bound on L (see Section 4.7). The case m= 1 yields the lower bound

11, eecd+e Of

(5.6)
The case m = 2 yields the upper bound
13 i
Ly = ﬁ { arctan(d \/%) - arctan(yin \/g)% .
(5.7)

2! The other half of the map isidentical in structure and can be analysed in the same way.
%2 Here we can see that the unperturbed map, e = 0, poses no problems since equ.(5.5)
becomes asimpleintegral.
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5.2.2 Transit-time Approximation: Rational powers of mi (1,2)

We require an expression that describes the transit time for rational powers of mwithin the

domain of m. To achieve this we apply the following transformation

m
:Cy_ dy:df'A ,
e m1
aiomA m
eg

to equ.(5.5) which yields the following integral
- ang Auut

egmfa AN dA

i) T T Q. m
A (A+D)A ™

(5.8)

We can expand the integrand as a power series (binomially) and form a series of integrals™

e m 4 Hou Arﬁ ‘
LmT[lz] =——a OTA]dA'
o men o An
(5.9
Integrating this yields
( m+1 m+l oy
Ti g i TT'IA) m g j TT'IA m P
~ - 1 ut _ _1\J n a
mi[12] = mc% ;a:.( ) m +1 ja:.O( ) mj_,_l)g
(5.10)
We separate out terms not dependent on j and define the function k(m) as
(%)
K(m)® =—
rmﬁ
(5.11)

Using this definition we can define the general transit time through a map state to be the

difference in summation terms

} ¥ [ ] L& (- ]
mk( )1 T ( A\Jut) ‘Aﬁa( An)

Lo [12]

(5.12)

As a check we can expand out the summations and recover the upper and lower bounds on the

L . $ (-A

transit time. The expansion of g J—+
j=0

does not converge easily because of oscillating

% We can do this because the reversal of the summation and integration terms, as a result of
the series expansion, does not alter the original integration as the additional terms are covered
by the summation to infinity preceding the term by term integration.
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terms. Moreover since A hasa e™! dependence and asj becomes large and as e® 0 the

oscillations become large exacerbating the convergence of the series.

Transforming the series into a function whose convergence properties are known can ease the
problem of convergence. Such a seriesis the hypergeometric series (see [GRA80] pp1039-
1059 and [ABRAG5] Ch.13, 15). In particular we are interested in an elementary function of

the hypergeometric family known as the Gauss series. The Gauss seriesis defined as

(abcz) 2F1(abcz)

g (a),(b), "
a (c) n!

_ G ¢ da+nab+n) "
"G T dern)

(5.13)

The summation terms in equ.(5.12) can be transformed into a hypergeometric function , then

the following holds

§LA o g ez
UL RS, g e

(5.14)

We now require valuesfor a, b, cand Z. An obvious equivalenceis,- A=Z anda=1. The

values of b and ¢ can be found by expanding the Gamma function in the summation

40N _dod (i~ 1+b)(j - 2+b)(j - 3+b)--(1+b)ocle) |
oM +1 " Glb) Zo(i-1+0)(j- 2+¢)(j- 3+¢)- (1+c)cG(c)
(5.15)
. . . 1 1+m .
from which we obtain the following values azlbza,c=7 (for amore detailed
derivation see Appendix C). Therefore we can say that
v ‘
s (- A 1. ml
& el
(5.16)

Again as a check we can recover the upper and lower bounds on the transit time. Therefore

we can write our origina integral given by equ.(5.8) as
Lotias) = TR Ao (L5002, ) A R, )

(5.17)
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_(m)
e nm l1-e-d
,C:—

—— and ,F(abc2isa

c
Wherequgyrr,”,Zn:-Aq,k(nﬂ: T
mm

hypergeometric function. A comparison between the theoretical transit times and actual
transit times for an intermittency map with the following parameters: e=1*10%%, d = 0.5. m=
1,15, 1,8, 2. isshownin Figure 5.1. We note that for m= 1.8 thereisa dight “waobble” in the
theoretical prediction. Thisisdue to the numerical evaluational methods used by Maple™. If
another algorithm were used then a better result may be obtained.

E R e

6_

B 4 i

12 10 r .
logly,}

Figure5.1. Comparisons of map iterations (lines) against theory (crosses) for the case: m=1
(red), m=1.5 (green), m=1.8 (blue), and m=2 (brown)

The hypergeometric function has its convergence defined on the unit circle |z| =1. The
convergent behaviour of this seriesis asfollows:

divergent when A(c- a- b) £ - 1;

absolutely convergent when A(c- a- b) >0;

conditionally convergent when - 1< A(c- a- b) £0.

Introducing the constant terms we obtain A (”Wm - 1- %) = 0. Thisimpliesthat the seriesis

conditionally convergent. However, we know that provided e>0 the transit times are finite
and bounded to a maximum value set by e and m=1,2. Therefore transit-times for ml (1,2)
will aso be finite and the series converges. We also have the added advantage that these

hypergeometric functions can be numerically computed quite rapidly [PRE94].
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5.3 The Mean Transit-time
Schuster [SCHU95] has given a general formulation for the mean transit-time

¥

(1y=cplhar,

0

(5.18)

where P(l) is the probability of having atransit time of duration |. Thisisrelated to the entry
probability at a given point, P(Xp), via the following transformation (see equ.(4.20))

Pl)= o) %)

(5.19)
where P(x,) isthe estimated probability of having a starting point, .
In the case of chaotic map models, the entry point probability corresponds to the invariant

density at the point of entry. Thisissincethe invariant density is the frequency of the orbit’s

visitation to a particular part of the interval. Hence

=t (x| ¥
P(l) =T (XO) dl
(5.20)
and the average length is then given by
(=" g (i(x)dx
xi {ON}
(5.22)

Since l(x) can be expressed as a hypergeometric function, then we can write the mean transit
time in terms of this function, which takes a point of entry, xo, asits argument, i.e. I(x) can be
expressed as

(ko) = mi(m{ala)s , 225 2(0)- Ao )7 Py 25220 )
(5.22)
This leads to the following expression for the mean transit time for a chaotic map source for
rational powers of ml (1,2).
{1 = mk(m) A(d)# ) Fl(l,%;“Tm; z(d))l - mk(m) (‘)A(x)% ) Fl(l,%;“Tm; z(x))r (x)dx .
xo1 {ON}

(5.23)
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5.4 Relationship between Transit-time and Correlation
The correlation of the map at the L™ iteration, C(L), can be considered to be the probability of

all starting pointsin the interval of interest iterated L times and terminating in an emissionii.e.
y(x)=1. Thiscan be written as**

cL)=1 ¢ bv{r ko,

i {ON}
(5.24)

where y(f(L)(x)) isthe value of the indicator variable (termination’s of O or 1), f (V)(x)is

the L" forward iterate of the map, r (x) isthe invariant density and x1 {ON} isthe set of all

starting points in the ON region of the map®. The probability P(l) of having an iterative

sequence of contiguous events (either all ones or zeros) is given by[ SCHU95]

Pl) = P29

(5.25)

For the intermittency map family we can approximate the probability of a particular entry
point X, corresponds to the invariant density at Xo, i.€. Is(.)—~ r () . Therefore we can

approximate the invariant density by

d
r(x) = P(I)& .
(5.26)
We can substitute thisinto equ.(5.22) obtaining
¥
1 \
clL) = |—93(I)y(f O ) .
(5.27)

The L™ forward iterate of the map counts the probability of all combinations of contiguous

blocks of length L. Hence

P(I)y(1(x)) = iju) ° P(I<L).
(5.28)

Therefore we can say

? The correlation is defined as C(L) ° E[y(xn)y(xn+m)] . Weareinterested in transitions
starting and ending in an emission, C(L) = P[y(xn) =1 y(xmm) = 1] . Viathe probability
identity P(AB) = P(B)P(AB) we obtain C(L) = Py(x,)=1P|y(%,m)=1y(x,) =1] which
when considering the probability in terms of its invariant density becomes

c()=1 ¢ b (.

xi {ON}

®Recall that | = () (x)dx .This can be, depending on interpretation, the intervals [0,d] or
xi {ON}

(d,1].
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limc(L) =

1
L® ¥ |

L
OP(l < L)d.
0
(5.29)
If we now employ the following result of Pruthi [PRU95a] concerning the cumulative

probability of lengths and derived from the renormalization group approach,

_1
m-1

Pl<L)=al
(5.30)
On substituting the above into equ.(5.29) and by noting that we cannot have correlation

lengths less than 1 we obtain

limc(L) =
L® ¥

(5.31)
Evaluating this integral and examining its behaviour asit approaches L® ¥ we arrive at

(5.32)
where a is some constant. As| aso playsapart in the transit-time analysis (see equ.(5.22))

then we can also see that there is a connection between the transit-time and the correlation.

We use thisrelationship later to prove a theorem on the Hurst parameter H.

5.5 Hurst Parameter Prediction
Self-similar traffic has a significant effect on the occupancy of buffersin a network: it

produces a heavy tailed distribution [NOR93, 95]. This means, from a practical point of view,
that providing more buffer spaceis not a solution to buffer saturation because eventually, the
buffer will fill up. The probability of high buffer occupancy has been linked to the LRD of the
network traffic [ERR96a]. This means that high values of the Hurst parameter produce a
higher than normal probability of buffer occupancy for a given traffic load.

To study and understand packet traffic, a model must be able to reproduce the traffic load and
the variability and self-similarity of real traffic. In particular, it isimportant that the model
can generate traffic that has a specific Hurst parameter value. Erramilli [ERR94b, 953], and
Pruthi and Erramilli [PRU95a, 95b], show that these maps are good traffic models and
conjectured that the Hurst parameter, H, depends only on one power of the non-linear portion
H=Sm-4

2(m- 1)

(5.33)

For the case of the intermittency map family we extended Erramilli’ s conjecture to a theorem

using considerations from the correlation function via results from transit-time analysis.
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Theorem - Intermittency map Family H dependence on the dominant m. For the
intermittency map family, with my,myl (1,2), the Hurst parameter, H, is dependent on the

dominant value of m. That isto say

i m>m,3 3
i 2(m- 1)

H= 3 - m,>m 3 3
2(m,- 1)

(5.34)
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05-

16 14 12 {
”‘2 "
Figure5.2. Theoretical dependence of H on my and m,
The theoretical surface of H due to the interaction between m; and m, is shown in Figure 5.2.
The proof for this comes from considerations on the transit time (Sections 5.2.2, 5.3 and 5.4)
and its behaviour in the complex plane. If we can show that the transit-time isanalytici.e. is
continuous, single valued and has a derivative, then we can show the above theorem to be

true.

Definition - Continuity in the complex plane. A function f(2) is said to be continuous at 7, if

forany z>0% d>Osuchthat |f(z)- f(z)|<z whenever [z- z|<d.
In the case of the transit-time we need to show that it is continuous, " z, y 1 {ON} — Az

‘ZFl(Lﬁ;mT"l;z)- 2F1(Lﬁ;m7+1;zo)‘<z whenever [z- z5| <d . If we write the hypergeometric

function asits series expansion
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3‘ 1 g 1
a—z7-a-— 77

1 1
J:oj+m ]:OJ m

<zb <z

(20+d)' - 2!

j+

g 1
a1
j:O m
then the requirement for continuity can be reduced to the requirement that

j(i@n;(zo +d)J - Zy) =k; >0 and since the mapping y T {ON} > Ar> z, isamonotonic
]

increasing one then k; > 0 will always be true. Therefore we will always be able to define

some 0<k; <z "yT{ON} > A zb |z- z|<d. Thereforefor al zvaues of interest

2F1(.;2) is continuous.

The derivative of f(Z) also exists and is a property of the hypergeometric function

%ZFl(a,b;c; z) =%2 Fl(a+],b+];c+];z),

(5.35)
Since the transit-time stems from a bounded system, and we know that at the upper and lower
bounds the function »F4(.;2) is a monotonic single valued function, and as the function results
from a series expansion which will also lead to a single valued monotonic function, then we

can say that for values of interest >0,y T {ON}, ,F4(.;2) isanalytic. If the function ,Fy(.;2)

isanalytic then

2':1(-; Zm=2)> ZFl(-;Zl<m<2)> 2':1(-; Zm:l) .

(5.36)
Thisimplies that the lengths L
Lie2 > Licmes > Lyt -
(5.37)
Thisin turnimpliesthat if L islarger then P(I<L) will also be larger and therefore
L) > S Lucmen) > S Liea)
(5.38)

If the largest correlation is dependent on the largest m then this will also set the dominant H.
This relationship can be seen from earlier work on the interaction between correlation and

transit-time. This completes the proof.

Remark: If we apply the relationship of the Hurst parameter to the exponent dependence of
the correlation (see Section 5.4) we once again obtain our theoretical dependence on H of the

map parameter m

(5.39)
We have run numerical experiments using the double intermittency map to determine the

dependence of H on m. The results of these experiments are shown in Figure 5.3. What we
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can see from these resultsis that there is ageneral increase in H with increasing m, which is
predicted by the theory. However the plane of H is different from that predicted.

u—
il

RE
08
H07

= o
7.5

Figure5.3. H profile for variationsin m; and m, of the double intermittency map: e,=e,=0
andd=0.5

5.6 Empirical Fit of H
The experimental results show that the dependence of H on my and m, is not quite the same as

that predicted. Intheoriginal derivation of the parameter dependence of H on m the following
were assumed:

auniform injection probability into the restriction region, and

that the dynamics of the map once iterated out of the restriction region was independent of

the event causing injection into the restriction region.
In our map family the assumption of independence is not valid because the transition between
the halves of the map are deterministic. In fact the results suggest that the coupling performs
an averaging on H. We can geometrically construct such an averaging behaviour in the
following way (see Figure 5.4). We can say that geometrically the radius R is dependent on
the values of my and my. If welet my,;,=1 then

2 2
R=J(ml- Myin) + (M, - Myin)”
(5.40)
We know tana from the behaviour of R at R., the maximum value of H,,,,=1, and H's

midrange value Hos=1/2. Hence
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tana = Hmax B H0.5 — 1

J2 2J2°
(5.41)

Furthermore we know that R,,» occurs when my=m,=2 and R5 has a value of \/5 . The

estimate of H isthen given by

A = Hog + J{m- m)” +(m, - my)”

242
(5.42)
2
Hye H
m,
R
Hos 2
R R
1
2 m, 1

Figure 5.4 Derivation of Empirical Fit

We can see from this construction that coupling imparts dependence of H on contributions
from both sides of the map. The H profile for the dependence of H on my and m, using this
method is shown in Figure 5.5. This has been compared against the actual H profile for my
and m, and this result is shown in Figure 5.6, where the difference between the empirical fit
and thereal datais plotted against variationsin my and m,. As can be seen the empirical fit

gives areasonable fit to the data.

Figure5.5. Empirical fiton H
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Figure5.6. Error in H using the Empirical fit

5.7 Dependence of H on other Map Parameters
We have examined the dependence of H on m; and m, and found that the coupling affects the

convergence of H on m. It would then be reasonable to assume that this coupling will also
affect H in terms of other map parameters. In order to establish the validity of this
assumption, numerical experiments where carried out to establish the dependence of H on:

e, and my while holding m, fixedat 1 and d at 0.5

& and m, while holding m, fixed at 1 and d at 0.5

d and my while holding m, fixed at 1 and e, €,=0

d and m, while holding m, fixed at 1 and e, =0
Here we also note that the emitting half of the map contains m, and e,. The Abry-Veitch
Wavelet analysis was used to measure H with a sample window size set to 65536 samples. A
total of 1000 sample windows were used to establish the value of H for a particular parameter

combination. The results of these experiments are shown in Figure 5.7-Figure 5.10.

The results of the effects that the ateration of e and matching m have on H are shown in
Figure 5.7 and Figure 5.8. We notice that the only appreciable effect on the alteration of eon
H isthat any alteration of e away from 0 sets the upper value of H to a constant value less than
1. Inthe above experimentsthiswas H » 0.83. Thiswas to be expected since e sets the
maximum sojourn time and therefore any method which uses a regression technique to aline,
asisthe case of the Wavelet based method, will be affected by points which ater the general

trend of the line. Altering e setsthe upper cut off on the transit times (LRD) and hence will
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affect the regression fit that can be achieved; however, this does not affect the slope of the
ling, just where the line is perceived to end.

logis) -14° 1

Figure5.7. H profile for variationsin m; and e; of the double intermittency map: m, =1, e, =
0and d=0.5, myisinthe ON state

0.6

IG
LG

-10

logys ) -12

147 1

Figure5.8. H profilefor variationsin m, and e, of the double intermittency map: m; =1, g, =
Oand d=0.5, myisinthe ON state

The results of the effects of atering d and mon H are shown in Figure 5.9 and Figure 5.10.
From these results we noticed that as d alters, the value of H also aters. The value of H
diminishes as d movesto lessen the interval in which mexists. Take for example the OFF

state x1 (O, d) , where my describes the order of the polynomial. In this case; asd movesto
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lessen the size of theinterval, i.e. d ® 0, theinjectionsinto thisinterval from the ON state
are presented with a smaller target area from which long run correlations will result. This has
the effect of reducing the number of long run correlation events in an experiment of set length.
Thisin turn affects the convergence of H. High H values require many long run correlation
events to assure convergence on the true value. Less events simply impliesthat H as not yet
converged, which is the artefact witnessed in Figure 5.9 and Figure 5.10.

0.6
1 0.8 d

Figure5.9. H profile for variationsin my and d of the normal map: m, =1 and e; =&, =0, m, is
in the ON state

Figure5.10. H profile for variationsin m, and d of the normal map: m; =1 and e, =&, =0, m,
isin the ON state
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We aso note from the results, that Figure 5.9 and Figure 5.10 form mirror images of each
other. This has the following implications:
Asm, and m, are varied then the convergence effect on H through the variation of d
should bereduced. Thisisbecause asd is altered, the LRD from one half of the map
reduces while the LRD from the other increases.
Due to the maps coupling then an average value of H will be observed, hence reducing
the effect that d has on the convergence of H.

5.8 Aggregate Behaviour of the Indicator Variable
So far we have only considered the behaviour of the underlying dynamics with regard to H,

the correlation and the transit-time. We now direct our attention to the overlying dynamics,
i.e. to the behaviour of theindicator variable. In order to consider this behaviour we require a
formulation for the measurement of H as observed viathe indicator variable. We noted in
Chapter 2 that an essential ingredient for self-similarity is aggregation. We also noted that if
LRD is present and aggregation is taking place then the variance of the process has a 2H
dependence. In order to simplify the analysis we follow Ben-Mizrachi [BEN85] and assume

that the indicator variable' s realisation processis aresult of a Bernoulli trial.

We study the maps’ self-similar behaviour by observing the cumulative behaviour of the

K

o]
indicator variable after K iterations z, = @ Y, , from which the average number of
i=1

emission will scale as

1y &k 6 .
ela) = lim 8 fa y_=Kely) =K g (Joc=K
=1€j=1 @ xi {ON}
(5.43)
and the variance will scale as
N aeK ('jz
. 1 o &0 9
Var(ZK): Naga yj- Kl
i=legj=1 g
5 &
=Kl (- Kl )+2Q & E(y.y )
i=1 j>i
(5.44)

For derivations of these equations and subsequent ones see Appendix C. If we examine the
correlation term in equ.(5.44) we note that the y; can only take on the value of 0 or 1.

Therefore the expectation can only take on non-zero valueswheny, andy; = 1, i.e.

E(yi Yj ) = P{ yj =1y = ]} . If we consider the expectationsin terms of probabilities and use
the probability identity P( A, B) = P(B) P(AIB) , then the expectation can be written as

E(yiy]-):P{yj:],yi:]} P{y, ]}P{yJ 1y = ]} Since Py, =1} =1, then we have
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the relationship E(yi Yj ) =1 P{ yj = ]jyi = ]} . By replacing the expectation with the
probability and performing the double summation of equ.(5.44) and defining
C(n=j-i)° P{ y; =1y, = ]} we notice that aregular pattern emerges from which we can

write

K-1
var(z )= KI (1- KI )+20 g (K- )C(i)

i=1

(5.45)

where C(i) is the correlation function. We now have a method for measuring the variance via
the correlation function C(i).

If we recall the relationship between transit-time and correlation (Section 5.4) we can go

further and use this relationship to obtain upper bound on the aggregated variance in terms of
H. A trid fit for the correlation functionis C(i) »ai ®+1 ¥, whereb containstermsinm. We

can substitute this ansatz for C(i)

K-1

var(z )= Kl (1- KI )+20 § {(K- N@i® +I1 )}.

i=1

(5.46)

We can expand thisto obtain
I%—l
var(z¢)=KI (- KI )+2lag i® (K- ).
i=1
(5.47)

We can approximate this summation with an integral an obtain an inequality which becomes

the upper bound for the aggregate variance

K-1
varg'zK Qe ki (1-1)+2a Ob(K i)di
1
(5.48)
On integration and after taking limitsas K ® ¥ we obtain
. i Kb+2 _ K Kb+2_ 1u
Q . ‘ ) v
varg'ZKygEKl (1 I)+2Ia+ b1 b2 g
(5.49)

What we can see hereis that as the K becomes large the upper bound on the variance has a

b+2 dependence. When m3 g this relates to a dependence on the dominant map parameter m

of (3m- 4)/ (m- 1). We have tested this method of measuring H on the Bernoulli shift map

¥ Compare with equ.(5.32).
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(m;=m,=1) where we can recover H analytically. For the Bernoulli shift map the invariant
1
density, r (x), is constant. The average loadis | = (‘?r (X)dx=1-d and C(n=j- i) =1 for

all n, hence the variance of a Bernoulli random processis var(zK) =Kil (1— I ) , which has a

slope of unity. Thisequatesto a Hurst parameter H=%.. This has been confirmed by

numerical experiments, the results of which are shown in Figure 5.11.

100

10

var(zk)

/ ——C(l)
’/{/’ —+—E(xy)

—=— Theoretical

0.1
K

Figure5.11. Measurement of H for the Bernoulli shift map using the for the relationships
given by equ.(5.44) and equ.(5.45) against theoretical results.

A

1

Xn+1

0 -

0 a d a 1
X,
Figure5.12. Separation of the correlated and decorrelated regions of the map via Ben-
Mizrachi’s a.

5.9 Remarks and Conclusions
Remark: Theoretical Considerations on H and Convergence

The theoretical considerations on H stem from Ben-Mizarachi’s [BEN85] simplification of an
intermittency map model. Their model assumed that the intermittent behaviour was separated

by laminar regions caused by random reinjectionsinto the neck region of their map with a
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uniform probability distribution. The resulting laminar transients (transients of high
correlation) eventually escape past some point a, (see left hand side of Figure 5.12).

In the intermittency map family the laminar transitions are coupled because the left-hand (LH)
and right-hand (RH) halves of the map are deterministically linked. Therefore, we are
dependent on the invariant density of the non-active half of the map for the reinjection
probability into the active half of the map. Subsequently the predicted values of H become
distorted with respect to d since thiswill decide the balance of the reinjection probability.

This type of behaviour can be seen in Figure 5.9 and Figure 5.10. We also note that once past
m = 3/2 the convergence to stable value of H becomes problematic. Thisis sincethe
correlation sum (equ.(5.45)) behaves as a Riemann Zeta function and it is known that the
convergence of thisfunction is very slow for exponent values near 1 (see for example Bender
and Orzag p397.[BEND84])®. This effect is demonstrated in Figure 5.13 where the estimate
of H from the Abry Veitch wavelet analysis is shown against sample size. We can see that for
avalue of m< 3/2 the convergence is well behaved as the sample sizeisincreased. However
the same cannot be said for the case of m > 3/2 where the mean value converges slowly and

has considerable variance from which confidence in atrend would be hard to justify.

1.6

1.4+

12+

11 —e—mi=2m2=2 £ { {

—6—m1=2, m2=2 (Theory) /
T 4
08 —A—m1=15, m2=15 s

—A—m1=1.5, m2=1.5 (Theory)

la gl
L al
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02—+
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Figure5.13 Convergence of H on sample size for 1000 experiments. H calculated using
Abry-Veitch wavelet analysis

Remark: The separation of map LRD and SRD behaviour

We note that the theory still gives reasonable estimates of H. Thisis since some decorrelation
between the map halves occurs. We can see from Figure 5.12 that past some point ain the LH
half of the map (and a™ in the RH half of the map) the long run correlations will end in an
apparent random reinjection into the other half of the map. Thisresultsin ato-and-fro of
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iterations between the LH and RH halves of the map reminiscent of the behaviour observed in
the Bernoulli shift map (thisis the hatched region in Figure 5.12). We can go further than this
and obtain an idea of how big the distancea - a” is. Thiscan be done by comparing when
iterations for the Double intermittency and the Bernoulli shift maps have similar transit times
for acommon starting point, y;.’. Thistype of analysisis shown in Figure 5.14, where the
differencesin transit-time, Dt , between a double intermittency map (with parameters my, m,=
2 and d = 0.75) and the Bernoulli shift map (with d = 0.75) are compared for y;, values in the
range, O £ y;, < d and evaluesin therange 1* 102 £ e £ 1*10™*. In Figure 5.14 we have also
plotted a plane surface (blue) held at alevel of Dt corresponding to when Dt becomes less
than one order of magnitude. Where the (y;,, €) plane cuts the plane surface we consider the
double intermittency and Bernoulli shift maps to have the same transit time behaviour, i.e. the
double intermittency map begins to decorrelate. They;, value at which the intersection
between the planes occurs is taken to be the value of a. In this example the point ais
considered to be a» 0.12. Similar results can be obtained for the other half of the map.
Therefore we can say that the region of the map that is contained within a-a” is the zone of

decorrelation.

Yin

Figure5.14. log(Dt) against y;, and log (e) for case d =0.75

From this last remark we make the following conjecture: Ben Mizrachi’s point a exists and
acts as the separation between LRD and SRD behaviour. That isto say that when
X,<a we have LRD iff e <<1.

X,>a we have SRD.

¥
[o]

% The Reimann Zeta function z(b) is defined in terms of an infinite sum: z(b) =an®.
n=1
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Thisissince for mi [3/2,2] for x,>a behaves like ml [1,3/2). Therefore SRD can be defined
as occurring when the order of magnitude, O,, to leave the state, is the same as an equivalent

Bernoulli shift map.

Remark: Decoupling the Map

Thislast remark leads to the suggestion that if the LH and RH halves of the map could be
decoupled, then the theoretical predictions for H would improve. This could be done by
randomising the transition entry point into the other half of the map. In actua fact work
carried out recently by Mondragon [MONG98] has investigated this.

Remark: Time Granularity

A more appropriate measure than time is the number of iterates required to leave a map state.
Thisis since the granularity of the map can then be set to reflect the time scale over which the
emissions of the map are being considered. In short the iterations are really atimeless
quantity that is given meaning by applying some timeinterval corresponding to each iteration
of the map.

Theoretical Behaviour of H

What we have found is that when the map family has both halves of the map coupled, then the
behaviour of H depends on all the map’s parameters. This parameter dependence is not given
by asimple formula. Nevertheless, these restrictions on the theory do not constrain their use
astraffic models. Dueto their evaluational simplicity it is easy to obtain a parameterisation of
H with the map’s parameters, providing a good tool to simulate traffic with a specific self-
similarity. It isproposed that since the map family can generate traffic speedily and easily
then it would not be difficult to obtain numerical parameterisations of H with respect to a
given set of map parameters. The differences between the theory and experiment are due to
the strong assumption that the ON and OFF events are independent.

The Contribution

The contribution in this chapter has been:
A generalised formulation on the transit time which holds for the perturbed map family.
The potential that this formulation hasisthat it can form the basis for input to queueing
analysis with heavy tailed ON/OFF distributions.
An improved theory of H dependence on the parameter m for the map family. The
improved theory of H dependenceisin two parts: alimiting behaviour on the dominant m,
and an empirical fit for practical caseswhen d = 0.5. Furthermore, we have shown that a
numerical parameterisation approach is possible for H because the maps produce
predictable results. We have also shown that for the coupled map d has a major impact on

H because of the determinism in the transitions that the coupling forces on the map.

%" Recall that the Bernoulli shift map produces random (decoupled) behaviour.
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A connection between transit-time and the correlation function which has enabled a
variance method to be devel oped for the measurement of H from a map’s indicator

variable.
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6 Source Aggregation
The results of Taqqu[ TAQ86, 97] and Williger [WIL95, 97] show that ON-OFF sources with

LRD in at least one state, when aggregated , yield second order self-similar traffic. We know
from the previous chapter that non-linear chaotic maps can be parameterised to give LRD in
either ON/OFF state. Studies carried out by Ben-Mizrachi [BEN85] show that the type of
non-linear map used by Pruthi [PRU95a] has the correct type of realisation behaviour that

yields a Hurst parameter in the desired range H 1 (% ,1) .

Pruthi [PRU953a, 95b] developed a“one-step” and an “N one-step” aggregate model. The
resulting behaviour of the former was not accurate [I], and the latter sacrificed speed for
increased accuracy. In the next chapter we develop a new accelerated “two-step” aggregate

model which shows a speed improvement over Pruthi’s “N one-step” model.

Because non-linear map models can model individual source streamsthen it is possible to

model the aggregated traffic stream behaviour by a single non-linear “equivalent” map. In

this chapter we report on aggregation methods that achieve this. The aggregation methods

developed here depend on the preservation of the invariant density of the aggregated traffic

stream. The motivation for doing thisistwo-fold, i.e. by preserving the invariant density:
we preserve the dynamics of the arrivals; and

we also preserve the LRD structure of the aggregated traffic stream

In this chapter we also develop a new parameterisation method for an equivalent aggregate
map iterated N times (i.e for asingle intermittency map representing N sources). We
investigate four methods for the parameterisation of the map’s discriminator value, d, viathe
invariant density and required load. The map parameter d can be viewed as a course adjuster
for the bursty behaviour of the map. The parameterisation methods are compared and the
most accurate method is then selected. We then use this parameterisation method to
parameterise an aggregate map and compare the queueing behaviour of the aggregated map
against the queueing behaviour of multiple map sources, showing good performance over a

range of parameter values.

6.1 Derivation of the Equivalent Single Map Parameters
The mathematical description of the single intermittency map is given by

e+x, +cx)' 0<x,£d

X -
: d<x, <1

]I.
Xnep =1
t 1-d

(6.1)

where c = (1-e-d)/d. Theindicator variable y, =1 indicates when afull packet/cell is

generated and is related to the map iterates by
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j0 ,0<x, £d

¥n :}1 ,d<x, <1
(6.2
The single intermittency map is shown in Figure 6.1. The properties that this map hasin

common with traffic are:

it displays L/f noise with a power spectrum decay of w @m3)[(M-1) wherew isthe
frequency if 3/2< m< 2,
it produces self-similar traffic with Hurst parameter H=(3m-4)/(2m-2) if 3/2< m< 2.

The parameters e and m are related to the intermittent behaviour of the map. If an iterate of the

map is very closeto the origin, the orbit slowly moves away from the origin. The average

number of iterates to move away from the origin is proportional to e w2 ang corresponds
to a passive period where no traffic is generated. The average time that an orbit of the map
spends in the ON region can be obtained from the invariant density via the Frobenius-Perron
equation (see section 4.8)

g‘;(y)d( ().

6.3)
A OFF ON
1 ,
///
///
yd
Xn+1 //
yd
///
yd
yd
VW
o€ -
4 0 d 1
X

Figure 6.1 The singleintermittency map
Theinvariant density describes how often an orbit of the map visits any region of the interval
(0,1). For the case where m = 2, the calculation of the invariant density for the intermittency

map can be simplified by splitting the invariant density into contributory regions as follows

() 0<x,£e

[i4y.)

W) *
+

+ e<x,<1

Hidy) [ tw)

(6.4)
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where y; = f;” l(x) the backward iteration of the map and f;€.) isthefirst derivative of the
forward iteration of x,. By performing the backward iteration and taking the derivative,
equ.(6.4) becomes

i (1- d)r (x(2- d)+d) 0<x,£e
r(x) :J{ rf%’lg

(- d)r (x@- d)+d) e<x <1

(6.5
Asit stands this equation is a bit unpalatable but nevertheless is useful since some
approximations can be made for certain points on the invariant density curve
r (X) » (1- d)r (d)
x1 [O,e)
(6.6)
. 4c(x-€)-10
)|(I®I’T1r §—Zc r'a® r(d)
e® 0
(6.7)
from which we can make the following approximation for x =1, e® 0
d
r (1) » d ( ) .
(2-d)
(6.8

For e<x<<1 the bottom of equ.(6.5) can be approximated to give thefirst differential of the
invariant density

) (1- d)p(d) +2¢(x- €)r (x) .
) e(l- 2¢(x- e))

(6.9)
Withr’(x) = O thisyields an implicit equation for peak of the invariant density but more
importantly from our point of view we can see that in this region the invariant density falls off

as 1/e.

The relationship between the points given above (equ.(6.6) to equ.(6.8)) and the invariant
density is shown in Figure 6.2. The average time that the orbit spendsin the ON region or
equivalently the average number of packets generated by the map after N iterationsis

Nl =N é’ (x)dx.
(6.10)

Hence, the parameter d can be used to adjust the average load of the traffic but is also related
to the bursty behaviour of the map.
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6.1.1

r(x)

Figure 6.2 The single intermittency map invariant density showing the pointsr (d) and r (1)

Under aggregation we require a single map to produce traffic which is similar in output to
aggregation of the single maps. To do this we require a method to preserve the tail of the
invariant density of the individual map sources®. It is the aggregation of many such map
sources which gives the LRD and self-similar behaviour [PRU95b]. From equ.(6.8) we know

the value of two points on the invariant density curve in terms of the map parameter d
(r(9.d) and (r(x), 1.
(6.12)

These points are used to derive the approximations for the tail in terms of the map parameters.

Exponential Approximation
Thetail of theinvariant density curve decays as a Pareto law. Hence we use an approximation

of theform
y=Axt,
(6.12)
From this we can form a set of simultaneous equations
r(x)=Ax* and r()=A,
(6.13)
from which we can isolate the constant A
r(d)
r()=Ap m .
(6.14)

Moreover, we now have a genera approximation for the tail of the curve in terms of a

parameter of the map

% Intuitively this is analogous to preserving the events which occur in the tail of the
distributions seen in the real traffic measurements [ERR96, PAX95, LEL94].
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6.1.2

(6.15)
The area under the curve between d and 1 yields the probability of the source being ON, iel ,
and is given by®

1
\

(6.16)
Integrating the above yields
=) o
(2- d) edg
(6.17)
which if rearranged yields
(2-d)
d=e '@
(6.18)

The difficulty with equ (6.18) isthat it is a parametric equation. However we can obtain an
empirically derived value for r (1) and by equ (6.14) we can obtain avalue for r (d), and equ
(6.18) becomes

d=e '@,
(6.19)
Hence, we can obtain the equivalent map discriminant value and predict the behaviour of the

maps under aggregation.

Modified Exponential Approximation
An dternative to the approximation at equ.(6.19) can be made in the following manner. From

equ (6.16) we note that on integrating we obtain alogarithm. We can approximate this
integral in the following way

l@iio<d<<%i
X X

1+

(6.20)
whered=1/y andidedly y >>1. Subsequently we can obtain an approximation for | of the
form

F(d) a1 r(d) % 1
| = A-dX @—— A dx ,
- d) & "2 d) O

(6.21)

which on integration yields

% Here we have intentionally used | for the probability of being on since thistiesin with the
mean arrival rate into a queueing system.
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6.1.3

6.1.4

(6.22)

We can then isolate d and by substituting for r (d) where appropriate we obtain the

approximation

(6.23)

Trapezoidal Approximation
An intuitive approximation for the tail of a distribution that decays very slowly is a trapezoidal

approximation. The advantage of this approximation isits ssimplicity. The equation for the

areaof atrapeziumis

A= %(b +cle,
(6.24)
where we interpret the above as:
A isthe probability of being on, i.e. |
eisthedistance (1-d)
b isthe point r (d) taken from the aggregated density curve, and
cisthepoint r (1) taken form the aggregated density curve.
By substituting appropriate values we arrive at the following expression for |
| = %(r(d)+r(]))(1- d).
(6.25)

From equ (6.14) we substitute r (1) for the r (d) term and we then obtain an expression for d in

terms of the invariant densities of the map

4%, 16- 4(3“}2;)2')
d= > .

(6.26)

Improved Exponential Approximation
We can also add a further constant term to equ (6.12) and obtain a hyperbolic equation of the

form
y=Ax1+B.
(6.27)

Telecoms Research Group. Queen Mary and Westfield College, University of London

93



Chapter 6: Source Aggregation

We can obtain simultaneous equations in terms of known points of the invariant density.

Solving these equations we arrive at expressions for A and B

A=dr (1)

B=(1-d)r (1)
(6.28)
The approximation for the invariant density is then
r(x) = r(l)é%+(l- d)g
(6.29)
From thiswe can obtain | ,
1
_ \éd U
| = r(1)d0&+(1 d)gix.
(6.30)
Integrating equ.(6.16) yields
| = r(])[(l- d)2- dm(d)] .
(6.31)

What we now have isan implicit equation in terms of d. Thisisimpossibleto solve
analytically. However we can still solve this numerically in the following way. We define a
new function F(d,h), where h isdefined as | /r (1). F(d,h) isthen

F(d,h) = (1- d)*- dIn(d)- h.

(6.32)
We can solve F(d,h) = 0 numerically using Newton-Raphson.
— F(d,.n)
LTI R (d, n)
(6.33)
The numerical solution for d against h is
d = 100037 - 100005h + 04265612 - 0.258587h°.
(6.34)

An interesting point from this result is that knowing that the emissions (full/empty
cells/packets) from the maps are totally independent of each other, i.e. the events are mutually
exclusive, then we can use the same technique to predict the required map d parameter from
combination (aggregation) of more than two maps. Thisis since under normalisation we have

the following behaviour
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A P
e
e

(6.35)

where | . and r (1)y, refer to the single equivalent map values, and N is the total number of
sources being aggregated. Since the definition of htisin effect | \/r (1)n. then cancellation
of N occurs. We can therefore say that

N

o]
al
i=

ho= 5.

é r(l)i

i=1

(6.36)

6.2 Limitations on the Methods

Asd® 1 the map becomesincreasingly linear in its behaviour and as aresult tends to awhite
noise generator (random number generator in theinterval (0,1)). Similarly if d ® 0 then again
the map tends to a white noise generator. The difference between the two isin the
interpretation of the indicator variable. For example, if iterates of the map falling to the left of
d areinterpreted as a packet generation/full cell emissionthenasd ® 1 the source becomes
permanently off. The extreme effects of d on the invariant density can be seen in Figure 6.3.
What we gather from this observation is that for the intermittency map to be a good imitator of

bursty traffic then d has to be placed in-between the extremes.
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Figure 6.3 Effects of extreme d on invariant density of the single intermittency map

As we have seen the usefulness of the single intermittency map as amodel of a bursty traffic

source breaks down as the map discriminant, d, approaches the limits of the map interval. For
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this reason some realistic limits must be assumed for the traffic behaviour under aggregation
that we wish to model, i.e. over what range of utilisation values do we wish to predict the
effects of aggregation using the intermittency map. Studies of connectionless traffic [FOW91,
SHOB80] suggested external daily link utilisation values of around 1% and external peak
minute utilisation values of around 17% as being realistic; Fowler [FOW91] also mentions
that the peak internal minute utilisation is occasionally in excess of 50%. Under these
guidelines we have assumed the overall aggregated |oad for the simulators to be in the range
001<r £05,

(6.37)

wherer 1 isthe overall utilisation for the traffic entering the simulators.

6.3 Aggregation Scenario
In order to test out the ideas of source aggregation using chaotic maps the following scenario

was used. This scenario assumes that utilisation of the network will remain at levels equal to
or less than 50%.

Experimental Test Bed

Source Map 1

Data Interleaving

’ Combined Map 2
dl
————>
Source Map 2

d,

Compare: /
. Invariant Densities (Red)
Derived Map 1 Probability (dgq)  (Blue)

dq
f(A1dyA,dy) — dg

Figure 6.4 Map aggregation test-bed

The test-bed models traffic on alink between nodes, i.e. we are examining the traffic profiles
before they enter any kind of queueing system. A schematic of the test-bed is shown in Figure
6.4. We aggregate single intermittency maps with different parameters - initially two such
sources are aggregated. We then recreate the aggregated traffic behaviour through a single
“equivalent” map that has parameters derived from the parent maps. After aggregation we
compare the aggregated traffic stream statistics with the derived single map statistics. The
error in behaviour between the single map and the aggregated traffic is then compared.

The four prediction methods given in section 6.1 have been compared over the utilisation
ranges given in section 6.2. For convenience in these evaluations we assume that the total ON

probability of the map (area under the invariant density curves between d and the interval limit
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1) is equivalent to the mean inter-arrival time, | , of the sources entering a deterministic server

gueueing system, such that the combined | of the mapsis equal to the utilisation of the

system.

In order to obtain the utilisation values required one of the maps' d parametersis held fixed at

avalue near the interval extrema (di = 0.1 or 0.9). The other maps d parameter is permitted to
vary intheinterval [0.1, 0.9]. The evaue for the mapsis held fixed at e = 0.0001 throughout

these sets of experiments.

The results are obtained in the following manner:

Thel for theindividual maps are calculated. - the map densities are obtained by using the

Frobenius-Perron operator.

Themaps' | arethen combined and | . calculated.

From the individual map densitiesther (1) are extracted and combined to give r (1), -

Thel . and r (1)y. are then used to predict avaue of d, for a new single map which will

yield thesamel . .

This new map invariant density is then obtained using Frobenius-Perron.

Themap| , is calculated and compared against | .. and this comparison isrecorded. This

is done through obtaining an error value, i.e.

Ezln_lNL
INL

(6.38)

The difference between the map d valuesis aso recorded and is termed the D value, ie

D=|d; - d.

(6.39)

The results are displayed as a plots of the error in the single map | against the discriminant D

value. Table 6.1 summarises the plot scenarios.

Fig. Map;, d (fixed) Map, d (range)
Figure 6.5 01 0.1t0 0.9
Figure 6.6 0.9 09to0.1
Figure 6.8 0.25 0.25t0 0.9
Figure 6.9 0.9 0.9t00.25

Table 6.1 Summary of Plot Scenarios

6.4 Results: Prediction of d
From the results show in Figure 6.5and Figure 6.6 we noticed that:

the Improved Exponential Approximation (IEA) method performed the best with an error

range of +15% to -5 % error,
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the next best approximation is the Trapezoidal (TRAP) with an error range of -18% to -
11%.

the remaining prediction techniques do not perform aswell. But it isinteresting to see that
the Modified Exponential Approximation (MEA) follows closely the Exponential
Approximation (EA) (this may yet turn out to be a useful approximation technique).
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Figure 6.5 Comparison for various| prediction methods for a two map scenario: Map; d
value fixed at 0.1. Map, variabled T (0.1, 0.9)
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Figure 6.6 Comparison for various| prediction methods for atwo map scenario: Map, d
value fixed at 0.9. Map, variabled 1 (0.1, 0.9)

Although values of d can be obtained for h > 1 we know from the function F(d,h) that ash
>1, d goes out of bounds and it can no longer be relied upon. A plot of the function F(d,h) is
shown in Figure 6.7. For this reason atwo part algorithm is used to determined. Forh > 1
we use the polynomial approximation given in equ.(6.34) and for h £ 1 we use equ.(6.33) to
find d.
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Figure 6.7 Curvefit of function d = F(h)

We can see from this that the approximation technique can only be used with certainty in the

range O0<h £1. For this reason the experiments were re-run with d in areduced range (0.25,

0.9) corresponding to the permissible range for h. These results are shown in Figure 6.8 and
Figure 6.9. From these plots we can see that by restricting the range over which d varies the
accuracy of the prediction for the IEA improves. Thisissince less of the peak of the invariant
density isincluded inthe desired | value. Inthe best case the error is around £5%. Moreover
the range of utilisation values covered still remains within the experimental objectives
outlined earlier, and this can be seen from Figure 6.10.
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Figure 6.8 Comparison for various| prediction methods for atwo map scenario: Map, d
value fixed at 0.25. Map, variabled1 (0.25, 0.9)
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Figure 6.9 Comparison for various| prediction methods for a two map scenario: Map; d

value fixed at 0.9. Map, variable di (0.25, 0.9)
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Figure6.10 Therangeof | values against D used in the prediction experiments

6.5 Sensitivity of the IEA Method
All the estimation methods presented for d were derived for the case m= 2. Since these

estimation methods rely on the estimation of two points, r (d) and r (1), of the invariant density

(which is dependent on m) then the methods for estimating d presented in this chapter should

perform reasonably well for mi [1,2]. Of the methods investigated, the IEA method

performed the best. However we note that this method is sensitive to values of r (1); thisis

because r (1)<<1 and isin the denominator. In order for the method to function properly r (1)

must have a stable value. In this subsection we explore the use of regression techniques to

stabilise the effects of r (1) on d and we check to see if the prediction method is still applicable

for ¥ £m<2.
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Theinstability in the IEA method can be seen in Figure 6.11 and Figure 6.12 where the
%error ind and | . are shown respectively for different values of mand e. The most striking
feature in these figuresis that the variability in the result increases as e decreases. This can be
explained by the behaviour of the map. Ase® 0 more of the orbits time will be spent in the
restriction region (near the origin of Figure 6.1). Thisthen affects the estimate of the invariant
density at r (1) for an experiment of the same run length, i.e. for the same number of iterations
with adecreasing value of e less events will be recorded for the event r (1). Hencethe
estimate of d will be adversely affected.
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Figure6.11 Plot of d vs % Error in d before corrections for the case e = 1*10™, 1¥10™*
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Figure6.12 Plot of | y vs% Error in| y_before corrections for the casee = 1*10*, 1*10™?
Applying standard least mean sguare regression techniquesto | . and d can reduce this

problem. Thisisachieved in the following manner:
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r(1)

We know that | . is asmoothed estimate of the cumulative density in the ON region of
themap, i.e. al the individua effects witnessed in the individual bins of the invariant
density are averaged out, and hence smoothed.

A regressed curve fit can be obtained for various values of d against | \ (see Figure
6.13).

A regressed curve fit can be obtained for various values of r (1) against d (see Figure
6.14).

Then for arequired value of | . we can obtain d. From d we can obtain r (1). Knowing

[ o @nd r (1) we can estimate d via the preferred method.
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Figure6.13 Plot of | . vsdfor thecasese= 1*10", 1*10
09
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Figure 6.14 Plot of d vsr (1) for the casese= 1¥10™, 1* 10"
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Figure6.16 Plot of | y vs% Error in| . after corrections for the case e = 1*10, 1¥10™
A natural improvement for this method would be to have an accurate analytic approximation
of | \ for agiven set of map parameters. Thisis an arearecommended for further work. We
can see by comparing Figure 6.11 with Figure 6.15 that this method improves the reliability of
the estimated value of d. The curvesin Figure 6.15 are much smoother than those of Figure
6.11 and, more importantly, the method gives reasonable approximations for d (error of 10%
or less) from around d=0.3. The same improvement in | . can be seen when comparing
Figure 6.12 with Figure 6.16. The improvement in stability allows| . loads of up to 50%
with around 10% error. The other feature that we note is that as m decreases the error remains
fairly constant over the whole interval of d regardless of the value of e used. The reason for

thisisthat as m® 1 the map behaviour tends towards that of a Bernoulli shift map in which all
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the regions of the map are visited with equal probability and hencer (1) will be visited with
(relatively) more frequency and its variability will be reduced.

6.6 Queueing Behaviour of the IEA Method
The single equivalent map’ s queueing behaviour in terms of cell loss probability (CLP) has

been compared against the original individua queueing effects of the independent sources
feeding an M/D/1 queue. Asapoint of reference the Schormans et al M/D/1 [SCHO96]
approximation isincluded in the result. The approximation for the M/D/1 loss probability for
cell scale queueing is

P(k>K)=(1-1 ) -1- =2,
e 2

(6.40)
where| isthe arrival rate and k is the queue state. To obtain the queueing statistics, the
queues were run for atotal of 30 experiments, each experiment consisting of 30* 10° cell slots
(map iterations). Two scenarios of the single equivalent map at the extremes of behaviour
were compared:

The modelling of an aggregate total of N=5, 50 sources with e = 1*10™. Theindividual
sources were chosen such that the mean d value was known (d=0.6) a priori. The service
rate was then set in order to obtain a system load of 0.8 (the individual overall system
loads determined to be 0.795 (N=5) and 0.888 (N=50)). The results of this comparison
are shown in Figure 6.17.

The modelling of an aggregate total of N=5, 44 sources with e = 1*10™2. The mean value
of d for the aggregate sources was chosen to be 0.6 apriori. The results for this scenario
aregivenin Figure 6.18.

1 10 100 1000

1.0E+00 \Qs\

1.0E-01 +

1.0E-02 +

1.0E-03 +

P(K>k)

——N=5

1.0E-04 —o—N=5 (equivalent)

—4—N=50

—4&—N=50 (equivalent)
N=5 M/D/1 (approx)

1.0E-05 + N=50 M/D/1 (approx)

1.0E-06

Figure6.17 CLP with its 95% confidence interval for single intermittency map and
equivaent map for the case N=5 and N=50 Sources. Load for N=5 - 0. 0.795. Load for N=50
0.888. Map e=1*10". Mean d= 0.6 equivalent d =0.599862, m;=2.0 m, =1
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1000
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P(k>K)
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1.0E-03 —o—N=44

—o— N=44 (equivalent)

—&— N=44 (equivalent 2)
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1.0E-04

Figure 6.18 CLP with its 95% confidence interval for single intermittency map and
equivalent map: for the case N=5 and 44 sources. Load 0. 76 (N=5) and 0.9 (N=44). Map
parameters e = 1*10™2. Mean d= 0.6 equivalent d=0.599862 (N=5) and 0.602584 (N=44),
m;=2.0m, =1

We can see from Figure 6.17 that the single equivalent map and the original traffic queue
behaviour convergesin thetail. Thisresult leads to the following comment on the sampling
method used with regard to the equivalent map orbit and the total number of iterationsin each
experiment.
In Figure 6.17 the results were obtained by modelling the N number of sourcesiterated a
total of K iterations. Thisleadsto the single equivalent map being iterated atotal of KN
times with the equivalent map being reseeded at the end of the KN iterations. This means
that only one sample orbit was taken for each experiment and the sample length of the
orbit was KN iterations.
However there is an aternative sampling strategy. We can run the experiment with the
single equivalent map being given atotal of N seeds and each seed point is iterated K
timesi.e. N sample orbits of length K were taken from the orbit of the single equivalent
map.
A comparison of the two strategies is shown in Figure 6.18. The results of the first sample
strategy are shown as N=44 (equivalent 2) in Figure 6.18. and that of the second as N=44
(equivalent) in Figure 6.18. What we can see from this that taking more samples (of shorter

length) from the orbit improves the convergence of the model.

A final observation that we can draw from these resultsis that the sojourn timeis reflected in
the queueing results. After aregion affected by the sojourn lengths of the map (the true LRD

affected region of the queue statistics) the queue decay will again become cell scale in nature.
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This can be reasoned in the following way: the burst scale queueing is due to the excess
arrivals building up in the queue, the arrivalsin this region will have burst scale queueing
decays. After the mean burst length has been accommodated, any subsequent arrival will be

due to individual arrivals entering the queue after the burst. These arrivals will have cell scale

decays.

6.7 Summary
In this chapter we have developed an aggregate map model that isiterated N times to represent

the N aggregate sources. This model preserves the invariant density of the aggregate traffic
stream and as such retains the bursty nature of the original traffic. This development
represents an improvement over the Pruthi “one step” aggregation method reported in
[PRU95a, 95b]. The aggregated map model uses the IEA parameterisation method for
determining the aggregate map d value. We have seen that the IEA method for determining d
works well with an error span of +15% to -5 %. The stability in the IEA method can be
improved by the use of regression techniques. We have also shown that the method works
reasonably well for range mi [1,2]; this is because the invariant density takes into account the
effects of m. The range of m covers the LRD behaviour of the map and because the choice of
ON or OFF portion of the map is purely arbitrary then the LRD behaviour can be chosen to be
in either state. The single equivalent map derived has queueing behaviour that shows
convergence in the tail when compared to the queueing behaviour generated by the original
traffic stream. There are limits to the IEA method which limit the arrival rate of the map
when fixed to one time resolution. However if traffic is being modelled in scenarios where
theindividual traffic source arrival rates, | , arein a spread which is relatively tight™, then the
IEA technique will predict parameters for an equivalent single map to within £5% of the

actua | v figure.

% An example of such atight spread would be where the maximum span (I ma- | min) = 0.48
and studies [FOW91, SHO80] show this to be a reasonable figure.
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7 A Fast Source Aggregation Model
Pruthi [PRU95a] produced two aggregate traffic models: a*“one-step” and an “N one-step”.

The “step” refersto the number of stages that are used in determining the number of packets
being emitted at each iteration of the map. One-step means that thereisasingle step in
obtaining the number of emissions. N one-step means that the single step is repeated N times

to determine the number of emissions.

The “one-step” model of Pruthi produced Lk packets at each iteration if in the ON portion of
the map, where L is the number of sources being aggregated and k is the packet length. This
approach gave inaccurate queueing behaviour. 1nthe “N one-step” model of Pruthi there are
N individual 11D. maps, each map emitting k packets in length. At the end of the iteration
cycle there will have been kj packets emitted with probability P(j) wherej istaken from the

binomial distribution P(j)=NC;1 1(L- I )N"7 and | isthetotal average ON probability. This

approach sacrifices speed for greater accuracy.

The single equivalent map of the previous chapter iterates an equivalent map N times, to
produce any number from O up to N in atime slot. This produces better queueing behaviour,
much closer to that obtained by multiplexing N individual maps. However, the invariant

density parameterisation method is limited to a single intermittency map.

The new “Bulk Property” map introduced in this chapter is a“two-step” approach which uses
the iterate value in the ON portion of the map to index into a specific batch size varying
between 1 and N. This approach can be applied to either single or double intermittency maps.
This chapter describes how the Bulk Property batch size is parameterised from the invariant
density, presents results for the H dependence on the map parameters, and illustrates the speed
up over other methods.

7.1 Current Thinking: ON/OFF Sources
Current thinking on the traffic modelling of high speed networks suggests that individual

sources can be described by ON/OFF models in which the model is either emitting traffic at a
maximum rate or is completely idle [WILL94]. An example of this interpretation is the use of
the indicator variable of the intermittency map family. There have been recent studies on
intermittency maps which employ this ON/OFF interpretation by emitting a fixed number of
packets/full ATM cells on each iteration in the ON state of the map [PRU95b]. Queueing
behaviour produced from the use of such intermittency maps produces extremes of behaviour,
i.e. either;

when thetail of the invariant density corresponds to the ON portion of the map the state

probabilities decay exponentially; or
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when the head of the invariant density corresponds to the ON portion of the map we obtain
apower law decay of the state probabilities.
In both instances it has been shown that when intermittency maps with the ON behaviour
described above are aggregated then the queueing behaviour (state occupancy) tendsto a
stretched exponential [PRU95b]. The speed with which the stretched exponential distribution
is achieved depends on the ON interpretation being used. Faster convergence is achieved

when using the second interpretation.

If we are to model an aggregated traffic stream as an ON/OFF model then the maximum rate
behaviour described above would be incorrect. For example, suppose there are 50 sources
feeding into asinglelink. 1f an ON/OFF model of the type described above were used to
model this behaviour, then there would be 50 sources emitting full ATM cells when ON, and
no full cells being emitted when OFF. Clearly this cannot betrue. There must bea
compromise between the extremes which properly describes the actual behaviour. To resolve

this problem we propose a continuum of behaviour between the extremes.

7.2 The Bulk Property
In the single intermittency maps used so far we have interpreted the ON region as the partition

of theinterval corresponding to m,=1 with e,=0. What we have noticed isthat asingle
emission event (cell or packet) is coincident with a near uniform invariant density in the
emitting region, i.e. the uniform invariant density gives rise to a single emission. We could
then view a non-uniform invariant density as corresponding to the probability of more than
one emission. This notion leads to an interesting interpretation of the intermittency map
family and its invariant density that can be used to

depict network behaviour; and

provide a method of giving a continuum of ON behaviour.

Furthermore it was noticed in experiments conducted with the equivalent single intermittency
map of Chapter 6 that it yielded the same mean emission rate whether the map was emitting
from its linear region (m,=1) or from its non-linear region (Mm;>1). The map remains the same,
suggesting that the map is depicting the underlying behaviour of the network traffic and not

just the sources.

What these observations lead to is the “Bulk Property” interpretation for the intermittency
map family. Thisinterpretation comes from what the “bulk” of the network traffic is doing,
i.e. are we examining a single source or are we examining a collection of sources. The bulk
property is used to relate the map dynamics at each iteration to the aggregate number of
emitting sources. The manner in which thisis achieved is by aligning the mode of the

invariant density to the mode emission rate of the sources. In thisway the invariant density
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not only characterises the sojourn times for ON and OFF states but also gives a measure of the
“ON-ness’ of the aggregated sources. Thisideaisillustrated in Figure 7.19.

A OFF ON A

contribution to more than
one emission

r(x)

contribution to one

0 d 1
Figure 7.1 Aggregate map: Contribution of r (X) to the number of emissions
To simplify this approach it is easier to work with the cumulative distribution functions of the
map and the probability of the number of sources being ON arranged in back-to-back fashion.
Thisisillustrated in Figure 7.20.

p(sig N) P(x, £ X)

<

! —
| :

N Si Xn 1
Figure 7.2 Single equivalent map cumulate invariant density P(X3 x,) iterate x. mapped to
the corresponding source emission cumulate probability P(N 3 s) | of emitting sources
We can see from Figure 7.20 that in terms of the cumulate probabilities a map iterate value, X;,

has a corresponding number of sources, s, that are ON associated with it.

7.3 The Bulk Property Map
The Bulk Property map is a single map source that is the aggregated equivalent of the N map

sources. This aggregated map isiterated once and the value of the iterate yields information in
the ON-ness of the emitting sources. The benefit of this approach istwo-fold:
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7.3.1

it permits a speed-up in the simulation of on-line traffic generation; and
it acts as an enabling step towards the application of chaotic control to networks via
Coupled Map L attice techniques (see Chapter 9).

To develop the Bulk Property map, we start by considering aggregation as taking place in the

aggregation plane, where the types of aggregation are given by the axes Sources and Time
(see Figure 7.21).

Time (K)

(77) ss0.nos

Y

Figure 7.3. Conceptua view of the aggregation plane

In the Bulk Property map the evolution of the map’s iterates leads to aggregation in time, and
the superposition of the source probabilities on top of the iterates |eads to aggregation in
SOUrCes.

Aggregation in Time
The aggregation in time comes from considering the probability of a single emission from a
total of L sources. If we assume that the sources are 11D and that members of the map family
can model the traffic streams then the probability of emission from an individual sourceis
Pj(l)zl | = (‘j J-(x)dx,

I {oN}

(7.41)
and the probability of no emission is given by P;(0) = 1-1 ;. If we now consider two cell
streams that are aggregated under the following rule: zeros are only preserved in the output
stream when there are two coincident zeros in the input streams, then the probability of an
emission (at least one) in the output stream would be

R (1) = RP W)+ R)R,(0)+ R(O)R,().

(7.42)
The probability of no emission in the output stream would then be

R (0)=R(0R(0).

(7.43)
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7.3.2

7.3.3

It is easier to write the probability of an emission in the output stream in terms of the

probability of no emission

P2 [)=1- ROR0)

=1- I:)ou'[ (O)
(7.44)
This can be readily extended to L sources
s
PY =1-QP(0)°L,,
j=1
(7.45)

1
where L isthe aggregate map ON probability i.e. L | = C‘f agg (X)AXxand dagg and 1 59q are the
d

agg

aggregate map discriminate and invariant densities respectively.

Aggregation in Sources
The aggregation of sources arises out of considering the number of emitting sources at each

iteration of the map. If we suppose that the sources are 11D then the mean arrival rate at each

iteration interval is

— 19
Ir=—ali-
LS

(7.46)

The probability of M emitting sourcesin atotal number of L sourcesis given by

& O0-ml —\L-M
fom)=¢g V@1 :
L gM 3 T ( T)

(7.47)

The cumulate probability distribution that we superimpose onto the invariant density is then

f(i).

F.(mem)=

Qo=

0

(7.48)

The mean of such adistributionis LI ; .

Effect of Aggregation on the Mean and Variance of the Bulk Property
Map
The results of equ.(7.45) and equ.(7.47) are used to show the effect of aggregation on the

cumulate traffic produced by the Bulk Property map. The Bulk Property map aggregates both
intime, K, and sources L. We have formulations for the variance and the mean of asingle
source aggregated in time (see Chapter 5). Recall that we had defined the cumulate traffic

from a single source as
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&
°ay
i=1
(7.49)
wherey; isthe value of the indicator variable at discrete timei. Also recall that the
expectation and variance of the cumulate traffic from a single source was given by
N aeK 0
1 o S0 e N
E(ZK): lim Wa ca yj;:KE(y) =K O Xdx=KI
Now N 8B xi {oN}
(7.50)
Ko-l
var(ze )=KI (- KI )+2 q (K- i)C(i)
i=1
(7.51)

where C(i) isthe correlation function and r (x) is the map’ sinvariant density. What we require
isasimilar development of the aggregated map. There are two reasons for this:
we would like to have a method which can check on the Hurst performance of the
aggregated map; and
we would like to develop a method of measuring the Hurst parameter of the aggregated
traffic on-line.

In order to do this we reassess the function of the indicator variable. We define the indicator

variable for the aggregated map as
_10 x,1{OFF}
g”(X”)_} 1 x,1T{ON} -

(7.52)

For the aggregated map the indicator variable acts as a step function for the probability of the
number of sources being oni.e. if g, = 1 then we will have the probability f | (M) of having M

sources on at discrete time n, whileif g,= 0 then there are no sources on. Thisisillustrated in

Figure 7.22.
Iteration interval
n n+1 n+2 n+3
<> >&—> >
g1 g,=0 g =1 9=1

Figure7.4 Interpretation of g; asastep function: If g; =1 then M; is the number of sources on.
If Oi =0 then M;=0

We can see that there are two things to consider:
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K
the probability of the aggregated map being ON in thetime K. If we define Vi °© é g
i=1

5
then the required probability is given by E(Vi )= lim = 13 a Ga gT=KL "

Lo¥ L n=1ei=1 Q
the mean number of emissions at each iteration from the aggregate of L sources, which is

E(f L (M )) = LI; by virtue of the source distribution being Binomial.

In light of the behaviour of the indicator variable we can therefore say that in the aggregation
of L sources over time K, the average number of emissions, S, will be
E(Sc)=EMEF (M) =KL Lis

(7.53)

Here we note that there is an alternative formulation for the above result that may be useful

later. We can define the expectation of S¢ in the following way

(7.54)

where g; isthe indicator variable and M; is the number of ON sources at discretetimei. Since
the g; isindependent of the M;, i.e. the M; and the g; can be generated separately without

affecting the end result, then we can say

K e N\ 0
o) 1o .
E(SK):a ¢lim—q 9,M,=
ke V¥ N 2}
(7.55)
and because of the independence we can write
E(S¢ )= QGIlmiag ‘Gllm—aM T
88N®¥ N éN®¥ N5 %,
=KL Ll
(7.56)

which is the same result as equ.(7.53).

We are now in a position to obtain the variance of the aggregate process var(S¢). For thiswe

use the definition of the variance

TWhere D= () ago(X)dx and I agq(X) isthe invariant density of the aggregated map.
x1 {ON}
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7.3.4

2

(s¢)=li 1368 M KLLIQ
ar = lim = M. - ;
var{sk N'®¥N?:lgjazlgu i L T;
1 Q& & & 0
:;\If@mﬁaga gM;a 9iM; - 2KL LI+ g giMi'(KLLUT)Z;
n=legj=1 =1 j=1 [,]
(7.57)
.18 & & & _ & — 20
var(SK)=,\Ill®rT;Naga (giMi)2+2aa(gingiMj)‘ 2KL LI+ gM; - (KLLLlT) -
n=lgj=1 i=1 j>i j=1 "]
(7.58)

By applying similar techniques to those used in Chapter 5 for the variance of a single map

model we can obtain the variance of the aggregate map model. After simplification in which

C(i) isthe correlation term for themap and C(i) = C(n = j - i) , we can similarly define the

correlation terms for the M sources as C(i) = C(n = j - i). Therefore we can write

K-1

var(Se )= KL LIz (0)+ Lt (- KL )]+ 2LL 1% a (k- il)e ().

(7.59)

Equation(7.59) tells us that the correlation term is dependent on the correlation of the map
which possesses LRD and on the correlation of the number of sources emitting, which is SRD.
The net result is that the LRD dominates since it has a slower decay and therefore we can say
that the underlying dynamics of the Bulk Property map will permeate through to the overlying
dynamics of the indicator variable (the actual number of sources emitting). This means that
no matter what distribution we impose on top of the underlying dynamics the LRD and hence
the H will still be there.

Consideration of the Invariant Density
The Bulk Property map associates the invariant density to the probability of a number of

emissions. In order to perform this association we introduce the following concept.

Equivalent uniform invariant density. The equivalent uniform invariant density, r(x) , is

the contribution of the invariant density in the ON state which corresponds to only one source

being active. In theintermittency map this can be thought of asthe invariant density at the

point d being constant over the whole of the ON interval i.e. ry(x)=r(d) " xT {ON}.

Under this definition we can say that any r (x) > r(x) contributes to the ON-ness of other

emitting sources. This concept isillustrated in Figure 7.19.
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Definition - Modified cumulate invariant density. Thisis defined as

0] (x)ax

Raln X))~
o} (x)dx

x.J {ON}
(7.60)

where r () isthe invariant density of the aggregated map and X T {ON} .

We use the concepts of equivalent uniform and modified cumulate invariant densitiesin the
following way. The distribution of r(x) > r(x) isnot uniform. Thisimpliesthat the
aggregated map has favoured intervals that the orbits of the map prefer. This preferencein the
orbits amounts to a preference in the number of emitting sources. If x, istheiterate at

discrete time n then this corresponds to some number of emitting sources M,,,i.e. X, P M, .

Theorem 1: Existence of E(x,).

$X,, X, T {ON} such that E(x,) has afinite mean i.e. E(xn) = Of (Wdx<¥ .
x,1 {ON}

Proof. The normality of the aggregate map is assured by exclusion of the fixed points from

the interval in which the map exists, i.e.

1

"xo 1 (0,1) R(1) = (‘) (X)dx < ¥ .

0

(7.61)

Then any subset of x1 (0,1) will also have a summable finite invariant density, i.e.

"%, T{ON} 1 (01) $x, suchthat E(xn) = Ol (Wdx < ¥ .
x,1{ON}

Corollary: If theinvariant density is normalisable for al subsetsof xT (0,1), then we can say

that there exits a modified cumulate invariant density that is finite and bounded.

Remark: We can now state the following correspondence in probability between the modified
cumulate invariant density and the probability distribution of the number of emitting sources
as adirect conseguence of the equivalent uniform invariant density. There exits amodified
cumulate invariant density R, (xﬂ £ X) such that
Ra (% £ X)0 F(m, £M).

(7.62)

Consequently we can say
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dR(x, £ X) ¢F (m,+DMEM)- F (m, £M)u
dx g Dm i

(7.63)

where » [] signifies the closest discrete probability to the modified invariant density.

Theorem 2: Existence of mappings of the aggregate map iterate to the number of emitting

sources.

sg "l [@EK) B T LLT)
s [E)] o f )T L

where LI ; isthe expected number of sources that are on.

Proof: The proof for these mappings arises out of the proof for the existence of E(x,) and
knowledge of the invariant density. That isto say if x, hasar (x,) then

" ¥, 1 {ONJsr (3,)0 Ry (%, £ X)),

and since by correspondence in probability

Fy(m,+Dm<M)- F (m, <M)
Dm

:fL(M)*

where f (M) isthe probability density of M sources emitting out of atotal of L sources, then
" %,1 {ON}$x,0 m, and thisimplication is achieved by the mapping g and h, since E(x,)
and Li; arefinite and are contained within their respective intervals. Therefore E(x,) and

LI_T act as natura partition values for those intervals in which the mapping exists.
Both g and h are 1:1 mappings that are continuous and single valued functions. Thisis
illustrated in Figure 7.23. The functions g and h are hard to obtain. However the proof
outlined above indicates a method for circumventing the mapping which is outlined below:
1. Obtain x, by iterating the aggregate map.
2. Obtain Ry (x, £ X).
3. Obtain equivalent F (m, £M).
4. Find solutionsfor [F  (k, +Dk £ K)- F (k, £ K)|/Dk.
5. If more than one solution: perform Bernoulli trial for the selection of the solution.
6. Return m,.
Steps 2 -5 can be simplified and sped up through the use of look-up tables, since
Ra (X, £ X),F(k, £K) and [F  (k, +Dk£K)- F  (k, £ K)]/Dk can be tabulated.

The advantage of this method is that even though the original modified invariant density of the
aggregate map may not be multi-valued it will still give an indication of intervals that yield

highly probable emissions from those which yield low probability emissions. For example

Telecoms Research Group. Queen Mary and Westfield College, University of London

116



Chapter 7: A Fast Source Aggregation Model

with e = 0 the modified invariant density is single valued. However the mapping to the source

probability density yields multi-valued results.

'

(%) : h(% )

F(K)

Figure 7.5 Mapping of invariant density to source pdf. for the double intermittency map

Strictly speaking the aggregate map maps a specific iterate to an emission sequence. To
accomplish this coupling between an iteration and a number of sources emitting would be
difficult. A way around this problem of coupling isto view theiteration in terms of its
cumulative invariant density and to relate this to the cumulate density of source emissions as
outlined above. Under thisinterpretation we view the cumulate invariant density asthe
probability of al orbits (x,) having been visited up to X,. Thisthen equates to a probability of

Telecoms Research Group. Queen Mary and Westfield College, University of London

117



Chapter 7: A Fast Source Aggregation Model

emitting al sources k up to source K. Thisisillustrated in Figure 7.24. Inthisway thereis

connectivity between the iterate value and the number of sources emitting.

A P,(x<X)
F.(msM)
FumsM) et Pux<a)
i | <d
M= M=m I)\</I:1 x=a x=1

Figure 7.6 Equivalence relations for the cumulative distributes of the sources and invariant
density
Observation: “d-walk-back” and emergent self-similar and LRD behaviour
The ON probability of the aggregated map is set by

1

- =lim—al,.
T N®¥Nna:'l“

(7.64)

If we now suppose that the number of sources increases, this would imply that the network
utilisation increases. Thisisusually the casein real networks. The implication of thisin the

aggregated map isthat as | + ® 1 (increasein utilisation) d ® 0. The movement of d

towards O is termed “d-walk-back”. The effect of d-walk-back on the traffic generated by the
aggregated map is an apparent loss of independence of the sources. The justification of thisis
in the following argument: a self-similar source is characterised as much by its silent sojourn
periods as by its active sojourn periods™. Therefore as the aggregation level increases the
probability of a silent period being retained in the output aggregate traffic diminishes. Thisis
the equivalent of alossin information. The net effect is that the independent nature of the
sources begins to appear dependent and hence correlations appear in the aggregated traffic
which lead to self-similar and LRD behaviour.

Remark: Aggregation Order

Here we note that the aggregation performed by the Bulk Property map is aggregating in the
correct order since the source terms are included within the summationsto K, i.e. we are
aggregating in the limits described by Taqqu et al.[ TAQ97].

% For example, consider a self-similar source modelled by a chaotic map that has the
dominant min the OFF state.
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7.4 The Source Aggregation of Erramilli and Pruthi

7.4.1

Willinger et al [WILL97] used an aggregated process Wy, ,(j) generated by:

aggregating 0/1 sequence output of M ON-OFF sources; and then,

aggregating the resulting sequence in time over non-overlapping blocks of size b.
If each source has a heavy tail sojourn timein ON and OFF (see Chapter 3 for more details)
and the probability that given a period of continuous zeros (0) and ones (1) = % the aggregated
process Gy ¢ (), t* 0 is FGN, then the following limit in distribution applies

JM & . bM &
limy limg ~—— o o (j) - =—=2=6,,. ().
1M M ngM,b() > g H,s()
(7.65)

The implication of thisisthat the map family will tend to FGN when aggregated over M

sources and then b blocks of output data.

Pruthi’s Aggregation Model
Pruthi [PRU95a] describes mathematically the output behaviour of his“N one-step”

aggregation model in the following way. He considered the aggregate behaviour of a number

of sources {i:1.N} over adiscreet timeindex n=1,2,...

Xf(]izl =j|[ fl(xr(,i_)) 0f x,(]') <d
i f.(x0) dex® g1
(7.66)
with the packet cell generation for the sourcei being given by
N0 :}O 0f Xf(fii)) <d
11 dExy’' £1
(7.67)

The number of packets generated k, k T [l¥) is the number of packets generated by each

source at every iteration when in the ON state (fixed length). The output of the traffic stream

isthen
N
=k 2 )
Yo=ka yn -
i=1
(7.68)
For the characterisation of the aggregated traffic we assume 1ID. therefore
| = E[yg)] = O (Qdx.
ON
(7.69)
The mean traffic rateis then
r=E[Y,]=Nd .
(7.70)
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71.4.2

Because the N sources are independent the probability of j data sourcesis given by
. aNo, N- i
P(j)=c . = H(1- 1),
()=, 2 (1)
(7.72)

for j =012,---,N. Therefore at each iteration a batch of kj packetsis generated with the

probability given above. The variance of the output process is then given by

var(y,) = E[(Yn )= Nk (- ),
(7.72)
The peakedness, more formally the index of dispersion for counts (IDC), is given by
var(Yn)
a= =k(1-1).
EiYni
(7.73)

Scaling the fluctuations
For the double intermittency map the problem exists of finding the mean. To get around this

Pruthi constructed a zero mean process from the aggregate of the individual maps,

, kN
W

(7.74)

i.e. haf the mean value from the cumulative total. A fluctuation term is then constructed

2 [var(Y,)

> to which the mean, E[Y, ] is added. Therefore the aggregated output of the maps

can then be written as

yi _2 /Var(Y”)YZ+E[Y]
n k N n n
=E %(Y”)Yn- JNvar(Y,) +E[Y,]

(7.75)

7.5 Bulk-property Map H-profiles

We have run numerical experiments on the bulk-property map to examine it’s dependence of
H on its parameter values. The experiments were conducted in a manner identical to that
outlined in Chapter 5. The source emission distribution for the bulk-property map was chosen
to be 100 I1D. sources with a mean emission rate of 0.014190 cells/second. This corresponds
to 100 bursty Ethernet sources at 2.2 Mb/s feeding into a155Mb ATM backbone link.
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Figure 7.7 H profilefor variationsin m; and m, of the Bulk Property map: e,=e,=0andd =
0.5. Modelling 100 Sources, Mean Arrival Rate per source 0.014190 (2.2Mb Ethernet link on
al155Mb ATM link)

0.15
0.1

0.05
AH o

14
j 1.2

Figure 7.8. Error in H using the Empirical fit for variationsin my and m, of the Bulk
Property map: e,= e =0and d = 0.5. Modelling 100 Sources, Mean Arrival Rate per source
0.014190 (2.2Mb Ethernet link on a 155Mb ATM link)
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< o B, . y
logiz) -14

Figure7.9. H profilefor variationsin my and e; of the Bulk Property map: m, =1, &, =0 and
d=0.5, myisin the ON State, Modelling 100 Sources, Mean Arrival Rate per source 0.014190
(2.2Mb Ethernet link on a 155Mb ATM link)

Figure 7.10. H profilefor variationsin m, and e, of the Bulk Property map: m; =1, ¢, =0 and
d=0.5, myisinthe ON State, Modelling 100 Sources, Mean Arrival Rate per source
0.014190 (2.2Mb Ethernet link on a 155Mb ATM link)
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1.6

"y

Figure 7.11. H profile for variationsin m; and d of the Bulk Property map: m, =1 and e, =&, =
0, myisinthe ON State, Modelling 100 Sources, Mean Arrival Rate per source 0.014190
(2.2Mb Ethernet link on a 155Mb ATM link)

Figure 7.12. H profile for variationsin m, and d of the Bulk Property map: my =1 and e, =&, =
0, my isin the ON State, Modelling 100 Sources, Mean Arrival Rate per source 0.014190
(2.2Mb Ethernet link on a 155Mb ATM link)

The results of Figure 7.25-Figure 7.30 show that the bulk-property map hasits H profile
governed by the underlying dynamics. Generally the bulk-property map follows the same
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profiles obtained for the intermittency maps of Chapter 5. However it is noticeable that there
are artefacts present in these results which are due to the a gorithm that imposes the source
distribution onto the underlying dynamics. Thisis most noticeably evidenced in the results
where variations of parameters (m, and &,) in the emitting half of the map are made (see
Figure 7.28 and Figure 7.30).

7.6 Bulk Property Map - Speed up
The Bulk Property map has been compared for speed of sample generation against the results

reported in Chen et al [CHEH96]. Although the methods reported in [CHEH96] are for off-
line generation of self-similar samples we can compare the time it takes to generate a given
number of samples. Under the test conditions stipulated by Chen — Sun SPARC 5 running at
70 MHz requiring the generation of 16384 samples — the best performing algorithm was the
Maximum Likelihood Estimator (MLE). This generated the required number of samplesin

0.6 seconds. The bulk properties map generated the same number of samplesin 0.03 seconds.

Sources (N)

=} o o Q =} Q =} o Q =} =}
o o =} =} =} =} o Q =} S = I @ I n @ = =} = =}
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Figure 7.13 Comparative evaluation times (in ns) for the Normal — Pruthi sample generation
(standard map ) and the bulk properties map for increasing number of sources, N, together
with their 95%tile error bars

The second comparison performed was against the sample generation method proposed by
Pruthi and outlined earlier. In this comparison the number of aggregated sources modelled are
increased form 10 to 200. The average time to generate a sampleis then calculated along with
the 95% confidence interval around the generation time. The results of this comparison are
shown in Figure 7.31. What we can see from this result is that for the Pruthi method, the
sample generation time increases as the number of modelled aggregated sources increases,
whereas the Bulk Property map has a generation time which is more or less constant as the
number of modelled aggregated sources increases. However it should be pointed out that the
variability of the generation time is much higher for the Bulk Property map than for the Pruthi
method. Thisvariability is due to the search algorithm employed by the map.
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7.7 Summary
In this chapter we have investigated a new map — the Bulk Property map. This map models

aggregate self-similar traffic on-line. We have seen that the underlying dynamics of the map
parameters permeates through to the output variable of the map enabling H to be set in the
same way as the double intermittency map. Moreover we have seen that imposing a source
onto the underlying dynamics permits the Bulk Property map to produce sample output
between one and two orders of magnitude faster than MLE and Pruthi’s method. However,
the Bulk Property map is still in its early stages and artefactsin the H profiles need to be
explained. These artefacts could be sourced from a number of places; for example the search
algorithm used to find the batch size could be imparting an effect on H since the index is
derived from the value of the map iterate. Furthermore, because map is still coupled it could
be suffering from similar problems at the extremes of d. Or indeed the artefacts could be
combinations of the above. However, progress can be made in counteracting these artefacts
since their effects are predictable, so a numerical parameterisation would be reliable. This

map is honethel ess promising and should be devel oped further.

Telecoms Research Group. Queen Mary and Westfield College, University of London

125



Chapter 8: On-line Measurement of H

8 On-line Measurement of H
There are many estimators for H. There are those which are heuristic in nature, for example

R/S statistics, correlograms, and there are those which are more statistically robust, such as
Whittle's estimator [BER94] and more recently Abry and Veitch’s wavel et based estimator
[ABR98]. The more rigorous the estimator the more complex in nature it becomes. For an
on-line estimator of H the practical requirements ater slightly from the theoretical ones.
These alterations really reduce to one of a compromise between speed and accuracy. The best
on-line estimator would be one that:

can produce areasonably stable estimate of H in the fastest possible time (stability in

convergence);

is reasonably stable to short term fluctuations in the arrival rate;

gives an idea of the error around the measurement in H;

in terms of hardware would require as little memory as possible and, could classify the

readings as they are taken.

In this chapter we asses the Indicator Variable Variance (IVV) method developed for
measuring H in Chapter 5 as an on-line measurement method of H from a single traffic source.
We compare this method for accuracy against measurements taken by the Abry and Veitch’'s
wavelet based estimator. The interest in comparing these methods for accuracy liesin the fact
that the IVV estimation method is derived from a correlation structure where as the Abry and
Veitch method is wavelet based. From ateletraffic point of view a correlational method may
be more significant in terms of understanding the queueing behaviour produced by self-similar
traffic.

8.1 Assessment of the IVV Method
The IVV method calculates H from the variance of a single source as the lag increases over

which the variance is calculated. H is measured from the cumulative arrival process of the
source via the asymptotic relationship, var(Z, ) p K?"', for K >>1 (see Chapter 3). Self-

K

AT . . . . . . o}

similarity in atraffic stream is embodied in the cumulative arrival process, z, = qQ Y; , Where
i=1

K indicates the lag and y; indicates the presence of afull cell/packet in theinterval i. The
suitability of the IVV methods as on-line indicators of H arises out of noting that the mean

arrival rate for agivenlag K, | , isthe average of the cumulate arrival process, i.e.

¢« = <zK > / K and by noting that the cumulate arrivals generalise irrespective of the source

used. Therefore the IVV method should be applicable to any traffic stream.

The aim of this section isto assess the IVV method against similar computational methods for

stability of H, convergence onto a stable value of H and computational speed. The IVV
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method was compared by cal culating the cumulative variance of asingle map source. Ina
map source this amounts to measuring the variance of the indicator variabley,. Three
methods were compared in the numerical experiments for their convergence, i.e. all the
methods give rise to the same value, however their convergence behaviour is different. These

methods ranged from the most simplistic to those rather more involved. The equations for the

methods are
I%—l
var(ZKy)z KI1- K )+21 g (K-i)c(i) vV,
i=1
(8.1)
& &
var(ZKy)z KI - ki )+23 & Elyy;) Method 1,
i=1 j>i
(8.2)
& &
var(ZKy): KI (- kI )+21 § § Ply; =1y, =1) Method2,
i=1 j>i
(8.3)

where| isthe mean arrival rate, E(.) isthe expectation operator, P(.) is the dependent
probability and C(.) isthe correlation. For the derivation of these equations see Chapter 5.
We compared the IVV method, Method 1 and Method 2 against two separate evaluational
methods, Comp A and Comp B.

2 2
var(ZKy) = E(ZKV) - (E(ZKV)) Comp A.
(8.9
18 & o’
var(Z,)=lim =9 ¢q vy, - KI ~ Comp B.
St
(8.5)

Comp A and Comp B are there to check the validity of IVV and methods 1 and 2. Thisis
because these methods do not involve any kind of measurement of the correlation structure
possessed by the map source.

A number of numerical experiments were undertaken on 1VV and methods 1 and 2. Each
numerical experiment consisted of 100 sub-experiments of 80,000 full cells. For each sub-
experiment the variance was calculated using a selected method. The gradient was then
calculated from the variance. At the end of the experiment an overall gradient was calculated
(cumulated reading over al of the sub-experiments) and the batch mean value of the gradient
was calculated from the empirical distribution of the gradients of the sub-experiments. The
result of this was plotted on a doubly logarithmic plot. A double intermittency map with the
parameterse;= &, = 0, m=1.6, my=1.8 and d=0.7 was used throughout the experiments. The

maximum lag that was examined was K=400.
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8.2 Assessment Results
The stability of H for variationsin arrival rate, | are shownin Table 8.1 and Figure 8.1. Table
8.1 shows that the mean value of H for each of Comp A and B falls within the 90% confidence
intervals for H for al the methods used. Moreover, Table 1 also showsthat IVV performs
best since it is closer to the target value of H=0.8.

Mean H H: 5%tile H: 95%tile
Method 1 0.742334 0.902709 0.58196
Method 2 0.794418 0.887013 0.701822
Vv 0.794295 0.88011 0.708481
Comp A 0.842139
Comp B 0.841648

Table 8.1 Relative stability of H for variationsin |
Figure 8.1 shows that the numerical evaluation of H is sensitive to the estimation of | over the

90% confidenceinterval for | . Method 2 and IVV are more stable to variationsin| than
Method 1.

1

0.9 4

0.8 4

0.7 4

0.6 4

0.4 4

0.3 4

0.2 4

—8—Method 1
—&—Method 2
014 —o—IwW

Figure 8.1 Relative stability of Hurst Parameter (H) for Method 1, Method 2 and IVV vs.
Arrival Rate(l ).

Figure 8.2 displays the relative convergence of the measurement methods onto a stable value
of H. Theleftmost Y axis gives the measure of the convergence of the calculational methods.
Thisis achieved by calculating the running average of the slope value after the 10"
experiment. As more experiments are performed, the chosen method should start to converge
on a stable value for the slope (and hence H) thisis since the law of large numbers starts to
affect the result. Therightmost Y axis gives ameasure of the variation in convergence. This
can be viewed as the stability of the method. If the variance of the running averageis
converging on afixed value then the method is stable. Its relative stability can be assessed by
how quickly the variance converges on to afixed value. What we observe from these results

isthat if the mean slope value converges and the variance of the mean slope also converges
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(i.e. the error around the mean becomes stable) then the method is stable. With thisin mind
we can see that that Comp A is stable, Method 1 is stable but is converging very slowly, and
Method 2 and the 1VV method display the best stability since they appear to converge the
fastest. Another possible way of assessing the relative performance of the methods liesin the
number of missing readings (gaps in the data traces in Figure 8.2). These missing readings
arise in the following manner. Since the slopeis plotted on adoubly logarithmic plot then this
implies that all the readings are positive (otherwise no logarithmic value can be obtained). A
lack of positivenessin the reading can indicate that the reading has not yet stabilised, hence it

isan indicator of stability. However why this should be so is a matter of further investigation.

oCompA(grad)  AMethod 1 (grad)  OMethod 2 (grad) ~ OIVV (grad) ~ ®CompA(var)  AMethod1(var)  WMethod 2 (var) @IV (var)
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Figure 8.2 Relative convergence on a stable value of H for Comp A, Method 1, Method 2 and
(\YAYS

Figure 8.3 shows the speed of the IVV method, Methods 1 and Method 2. Two different
processors were used, one running at 70 MHz and the other running at 143 MHz. Itisclear

from the figure that 1VV outperforms the other evaluation methods.

Figure 8.4 and Figure 8.5 show the overall slopes for the variance of Z, against K on doubly
logarithmic plots for the numerical experiments conducted. Figure 8.4 shows the effects of
the worst case influence of the arrival rate on the slopes of methods 1,2 and IVV. Comp A
and B methods are included in the traces for comparison. Figure 8.5 shows the effect of the
best case influence of the arrival rate on the slopes of methods 1,2 and IVV. Once again

Comp A and B methods' traces are included for comparison.
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Figure 8.3 CPU system time (n6) vs. Lag (K). Two processor speeds shown: (143) indicates
143MHz Ultra Sparc, (70) indicates 70MHz mSparc 2.
What these plots show is the variation and hence the convergence of Methods 1,2 and IVV are
quite good compared with Comp A and B. Thisis observed in the linearity (lack of
fluctuations) in the traces for Methods 1,2 and IVV. Method 2 and IVV are far more stable to
variations in the arrival rate since they both follow the traces of Comp A and B far more

closely than Method 1.
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Figure 8.4 Variance Slopes. Qualitative Assessment (Worst Case)

The other notable point that the results presented in Figure 8.4 and Figure 8.5 show isthat for
large K the variance has long range dependence which exhibits itself as a variance which has
both alinear dependence with K on a doubly logarithmic plot and a gradient bounded between
1and 2. Thisequatesto HI (%,1).
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Figure 8.5 Variance Slopes: Qualitative Assessment (Best Case)

The conclusion that we can draw from the assessment of the IVV method is that it can
produce relatively stable values of H on-line once the correlation statistics have been amassed.
We can see from Figure 8.2 that the experiments required around 800000 sample points for
stability. However once this number of samples had been reached an estimate of H could be
obtained every subsequent sample. It should also be pointed out that for higher values of H, a

greater number of samples will be required in order to obtain the stable estimates of H.

8.3 Accuracy Comparison of IVV and Abry-Veitch H estimation
methods
The IVV and Abry-Veitch methods are very different in their approaches to obtaining an

estimate of H. Essentially the IVV method measures the cumulate arrivals to obtain the
scaling and hence H, whereas the Abry-V eitch method uses a window sampling technique and
wavelet binary decimation in order to determine the scaling and hence H. In both instances
the final result depends on some form of linear regression to a gradient line which determines
the estimate of H. Notwithstanding these differences one would expect that given an identical
set of experimental conditions both would render the same estimated value of H within some
given margin for error. Two sets of experiments were conducted to seeif this assumption was

true. These experiments revealed interesting results that require further investigation.

In the first set of experiments a given combination of parametersm, and m, (see Table 8.1)
with e, &, =0 were fed into an intermittency map. 1VV, Abry-Veitch and R/S methods
measured the resulting time series for H. The R/S method was included as an additional
reference marker. The window size for the Abry-Veitch method was set to 2™ samples (this
was following guidance obtained from results in Chapter 5). The experiment was then
repeated with the value of my and m, reversed. The results of these experiments are tabulated
in Table 8.2 and displayed in Figure 8.6.
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The second set of experiments consisted of repeating the experiments conducted in Chapter 5

reguired to produce the results seen in Figure 5.7 of that chapter. In these experiments a

double intermittency map with the following parameters. my=1, =0, and d=0.5 with m; and

e, variable was used to generate atime series. The time series produced by this map was

measured for H using the IVV method. The results of these experiments are shown in Figure

8.7.
11
0.9 1 1
0.8 +
H o7
0.6 +
05+
—o—H(IVV)
04+ ——H(RS)
—&— H(Wav)
0.3 + + + + + t
0 1 2 3 4 5 6 7
Experiment No.
Figure 8.6 Behaviour of H on dominant m.
Expnt | m | M | Hovv) | HRS) | H(Wave) | +95%Conf |+95%Conf | +95%Conf
(IVV) (RS) (Wave)
1 15| 1.8 | 0.697486 | 0.926343 | 0.907626 | 0.311187 | 0.000553 | 0.028213
2 1.8 | 1.5 | 0.812903 | 0.825452 | 0.911258 | 0.032674 | 0.000259 | 0.031741
3 16 | 1.8 | 0.723913 | 0.91165 | 0.932778 | 0.313278 | 0.000533 | 0.027295
4 1.8 | 1.6 | 0.826458 | 0.841017 | 0.933758 | 0.030684 | 0.000445 | 0.038404
5 17 | 1.8 | 0.781727 | 0.896696 | 0.965118 | 0.248511 | 0.000428 | 0.03363
6 1.8 | 1.7 | 0.850897 | 0.859873 | 0.960563 | 0.070523 | 0.000385 | 0.028605

Table 8.2 Table of Experiment Number, Double intermittency map m parameter values, the
resulting estimate on H for map variance, R/S statistic and wavelet analysis methods together
with their 95% confidence values

The striking feature that the results of Figure 8.6 show is that while Abry-Veitch retains the

same value of H for the given parameter set which is predicted by the theory, the IVV method

shows entirely different behaviour, most notably:

when the dominant misin the emitting ON part of the map, the variability of H is

enormous. Thisisin contrast to the dominant m being in the OFF part of the map.

A lower mean value of H is obtained when the dominant misin the emitting half of the

map.
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As the values of m approach each other, the variability in the map’s output due to the
dominant min the emitting half of the map diminishes.
In addition to these observations, the R/S method (used as an additional marker) more or less
gives the same results as the Abry-V eitch method when the dominant misin the emitting half
of the map while it gives the same results as the IVV method when the subdominant misin
the emitting half.

H0.8-0.85
00.75-0.8
30.7-0.75
m0.65-0.7
10.6-0.65
M0.55-0.6
M0.5-0.55

1.00E-09
1.00E-06
1.00E-05
1.00E-04

Figure 8.7 Single intermittence map variationsin e; and m; against H using IVV

Recently Naranyan [NAR98] has formulated queueing behaviour dependent on H for input
traffic that is self-similar. However if one combines the observations given above with recent
reports that self-similar traffic with the same H produces vastly queueing behaviour [VAT9g],
then one can put forward the conjecture that the variability of H and the LRD of the emitting
half of the source would give a better indication of the self-similar behaviour of the queue.
The results shown in Figure 8.6 support this view and oppose the formulation proposed by

Naranyan.

The results of Figure 8.7 show that e has an effect on H. It setsthe upper value of H. Thisis
in contrast to the results of Figure 5.7. The theory statesthat H (asymptotically) is not
dependent on e. Thisisborne out by the results of Chapter 5 Figures 5.7 and 5.8. However
we know that e sets the upper limit to the scaling of the burst of the source, i.e. the maximum
sojourn time, and therefore sets the LRD which does affect H. Thisis evidenced in the results
of Figure 8.7. This contradiction shows that to be able to capture the effect of self-similarity
in measurements an appreciation of the way in which H is measured isrequired. Although
both methods regress to aline, the Abry-Veitch method determines only the slope of the low
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frequency component that requires the same regression of the linear points. 1VV, on the other
hand, is affected by the capping that e has on the slope. This last observation suggests that
reliance on a single method for determining H on-line may prove unreliable. Comparing the
results of Figure 8.7 and Figure 5.7 show this.

8.4 Conclusion
What we have seen in this chapter is that the IVV method is computationally tractable after a

cumulation time required amassing the statistics. We have also seen that it convergesat a
reasonable rate, is stable and that this method is promising for the on-line measurement of H.
However, we note from the accuracy comparisons with the Abry-Veitch method that H by
itself as a parameter for modelling self-similar traffic in a“parsimonious’ manner may not be
enough. From these results it appears that there is a unique H associated with a given set of
parameters. However it also appears that H does not describe adequately the instantaneous
variability of the traffic, which may ultimately affect the behaviour of the queue, especially
when the dominant LRD in a source may not be due to the active phase of asource. Itisaso
worth noting that reliance on a single method for determining H on-line may prove unwise.
The IVV method is derived from the correlation structure of the map (an LRD source). The
implication of thisisthat it will yield results for H that more closely match the effect that H
has on queueing behaviour i.e. the manner in which the arrivals into a queue appear.
Furthermore, the IVV method is responsive to the effect of limiting the transit time (effects of
e) and to whether the LRD isin the ON or OFF phase of a source. Both of these effects are
missed by the Abry-Veitch method and for this reason the IVV method establishesiits
usefulness as a complementary method to the Abry-Veitch method. This confirmsthe

usefulness of the map as an accurate and flexible model.

One final comment. Asymptotic queue behaviour dependent on H may have no practical
meaning. Based on thiswe can further conjecture that what may be of more useisa
dynamical formulation of the queue behaviour, as this can yield instantaneous predictions on
“short term” buffer occupancy derived from dynamical formulations of long term correlation
and scaling at the point of criticality i.e. the point at which we obtain bursts over all time

scales of engineering interest.
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9 Discussion and Further Work

9.1 Parameter Effects on H
In Chapter 5 we noted that the transit time through a map state depends on all the parameters

of themap. That isto say that the transit time depends on e and m of the map state under
examination, together with d which is common to all map states, and r (xg), which isthe
injection probability into the point X, in the state being examined. r (.) isinfluenced by the
parameters of the other map state. We also saw that the length of contiguous events (such as
emissions of 1'sor 0's) defines the LRD produced by the map state and hence the H that the
model produces. We noted that e has the effect of setting the upper limit to the correlation
lengths. We also noted that m sets the value of H. Thisisalimiting relationship as the
frequency w® 0. H, in actual fact, relates the gradient of curves such as the variance and
correlation against lag. However we also noted that as d approaches the boundaries of the
map (0,1) it affects the value of H that iswitnessed. The reason for thisis that the coupling
between map states is governed by a set of equations. Due to this coupling the injectionsinto
the critical region of the map (the region that controls the LRD) is affected by the behaviour of
the other map state. Asd movesto its boundary values we require iterate values in the other
map state which are very closeto d. With d near its limits the invariant density is near
uniform for alarge part of the map interval. The effect of thisis that the injection probability
becomes very small. This affects the convergence rate on H. Fewer injectionsinto the critical
region mean that H takes longer to measure (as long-run contiguous chainsof 1'sor 0's
become less frequent). However, it isthought that convergence will improve by decoupling

the map states, thereby enabling true random injections into the map states on a transition.

9.2 Deficiencies — Invariant Density Approximation
A deficiency in the chaotic map models that we have used relates to their ability to obtain the

invariant density analytically. Moreover, if anon-linear traffic source were to be
characterised then this would require at least a good approximation of the sources’ invariant
density under all parameter conditions from which we can iterate rapidly to afinal solution for
the invariant density. At present we can approximate the invariant density of the chaotic maps
under limited conditions, principally with e= 0. What is required is parameterisation that
accounts for e 0 and my, m, in their full range mi [1,2]. The suggestion given above, that of
decoupling the map states, may be a reasonable first step in this direction. The lack of
adequate methods for obtaining individual densities limits the utility of these methods. Thisis
an area recommended for further work.
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9.3 Limitations of the Models
In Chapter 6 and 7 we explored two methods for aggregating traffic streams. In Chapter 6 we

focused on obtaining the aggregate invariant density of the equivalent map. Thiswas done by
averaging the invariant densities of the N individual maps over a number of cardinal points of
the invariant density (e.g. r (1) and r (d)) in order to produce the equivalent density. Then the
map was iterated N times per emission interval in order to produce the traffic. The resulting
traffic stream was queued and compared against the original traffic trace. We also compared
the behaviour of the equivalent map against Pruthi’ sinterpretation in which the aggregation of
N sources equates to a single map emitting N emissions per iteration. What we observed was
that for a small number of sources the equivalent map produced queuing behaviour closer to
the original trace than the method advocated by Pruthi. However we also noted that as the
aggregation level increased, the value of d “walked back” to the origin. We have seen that
this type of behaviour adversely affects the output behaviour of the map (see Chapter 5).

In order to overcome this obstacle we devised another method of aggregation. Thisisthe
method presented in Chapter 7. This method links the invariant density of the equivalent map
to the probability density of the number of emitting sources. The type of linkage described
here actually implies a correspondence (coupling) between a particular iterate value and a
particular number of emitting sources. In other words, there is an x, iterate value for which
there is a unique m, sources being emitted. Unfortunately this type of coupling between
overlying and underlying dynamics is difficult to achieve practically. We therefore relaxed
the condition on the coupling to a probabilistic one via considerations on the cumulate
invariant density and the cumulate source emission density. In other words, for an x,<X we
have the probability that the orbit has visited al points up to X; thisleads to an m,<M, which
is the probability of m, sources up to a maximum of M sources, being emitted. In thisway we
presume some coupling between underlying and overlying dynamics. Using this method we

achieved an order of magnitude speed-up over iterating M sources independently.

Thislimitation of the model due to d “walk back” can be overcomein a practical way by
viewing the time resolution of the map iterates. The low value of d is due to the fact that we
wish to model particular load values. If these |oad values are viewed from a single maximum
link rate then it may well be that the individual sourcerate isvery low compared to the link
rate, which leadsto alow source load value. However, when thisis viewed at the tributary
link rate, the load may be reasonable in the sense that d is no longer near its extremes. In
practical terms this means that rather than iterate the map at the maximum link rate (say every
iteration) we iterate the map at areduced rate (for example every 6" iteration) which

corresponds to the tributary link rate.

9.4 Superimposition of Source Distributions
A major assumption in Chapter 6 and Chapter 7 is that the sources being aggregated are 11D.

In practice this assumption may be an oversimplification of the reality that may exist in future
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networks. Thisis because feed-back control methods are currently being proposed and
implemented for datatrafficin ATM and IP6. The use of feed-back methods implies that the
behaviour of datatraffic arriving at a buffer will be dependent on al the other data sources
entering the same buffer. The sameistrueif priority buffering is used at the buffers. The
stochastic behaviour of the individual sources then becomes dependent rather than
independent. However, because the source distribution is simply a superimposition on the
underlying dynamics, then provided that the network still sees aggregate traffic with high H
values, a new source distribution which reflects reality would still work because we know that

the underlying dynamics permeates through to the overlying dynamics.

In fairness, we should also point out that superimposition of the source distribution as used by
the bulk properties map does distort the anticipated value of H from the model. This
distortion needs to be removed in order to make the model more effective. Thisisan areafor

further work.

9.5 Effectiveness of H
From the investigations into chaotic maps as traffic models we make the following remarks on

the effectiveness of H as a parameter of measured traffic and as a parameter to be modelled in

traffic simulations.

We noted in Chapter 8 from the comparisons of the IVV against Abry-Veitch methods of
measuring H, that H by itself as a parameter for modelling self-similar trafficin a
“parsimonious’ manner may not be enough. Thisis because, while it appearsthat thereisa
unique H associated with a given set of parameters, it also appears that, while H may describe
the long term scaling, it cannot adequately describe the “instantaneous’ short-term variability
of the traffic. Itisthis"“instantaneous’ behaviour which may ultimately affect the behaviour
of the queue, especially when the dominant LRD in a source may not be due to the active
(ON) phase of asource. Because of these observations we submit that reliance on asingle
method for determining H on-line may prove unwise and that, consequently, a combination of
dissimilar measurement methods as behavioural indicators of H on-line may prove more
useful. This submission is supported by comparing the results of Figure 8.6, Figure 8.7 and

Figure5.7.

We have aso examined, in alimited way, how H affects queue behaviour (Chapter 6). We
noted that it is possible to obtain H values for shorter measurement periods but that the
variability around the mean value of H is high (Chapter 8). We also noted that the LRD
prevaent in traffic arriving at a queue may not necessarily be the LRD value which dictates
the unique H value of the aggregate traffic (Chapter8). We also noted from experiments and
observations for high values of H that H converges very slowly (Chapter 5 and Chapter 8).
From this evidence we submit that H may have no practical meaning for queues other than for

assuring buffer overflow.
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With regard to modelling we note that, for true high value H traffic measured over realistic
measurement periods, evaluating queue behaviour (i.e. running experiments and gathering
statistics until some state evaluation of the queue behaviour is obtained) may become limited,
if not problematic. Thisis because high H affects convergence and relatively small
measurement periods result in high variability in the value of H; this makes the collection of
stable queue statistics problematic when modelling networks which have high H traffic. In

thislight a different approach to examining queues has to be thought of.

These observations lead us to the conclusion that while H is useful for determining the long
term scaling of the traffic it only forms part of the picture. The act of buffer overflow isa
dynamical process. Thisisin contrast to the accepted stochastic view of accounting for
enough buffer space such that, on average, the buffer overflow becomes acceptable. High
values of H imply that almost surely, regardless of the buffer size, the buffer will overflow.
We therefore further conjecture that what may be of more use is a dynamical formulation of
the queue behaviour which can yield instantaneous predictions on “short term” buffer
occupancy derived from:

dynamical formulations of long term correlation, and

dynamical scaling at the point of criticality i.e. the point at which traffic becomes bursty

over all time scales of engineering interest.

9.6 Remarks on Traffic Modelling and Stationarity
High H values cast some doubt on ideas of stationarity, at least in its practical sense. It takes

H along time to converge on stable results (longer than one can feasibly measure). This
indicates, in a practical sense, that the time series behaves in a non-stationary way over the
measurement period. Under thislight perhapsit is better to view the problem of self-similar
traffic and its modelling in a different way. The realism in modelling comes from modelling
what is present in the traffic streams. The benefit of modelling comes from observing the
effect of the model on network elements (buffers and the like). If stationarity is an issue due
to high variability then analysis via other means such as dynamics may again prove useful, for
example the map family has H in built into the map, however the map family isflexible
enough to have its parameters adjusted on line. In this manner the non-stationary nature of the
traffic could be captured. The determination of such an approach isan areathat is

recommended for further work.

9.7 Remarks on Chaotic Maps and ON-OFF Self-similar Traffic
Modelling
Tagqu’' s theorem, mentioned in Chapter 3 [TAQ97], isreally an extension/justification of the

self-similar traffic model first presented by Norrosin [NOR93]. The main difference with
Norros' model isthat Tagqu employs avalidity condition that states that in order to obtain
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self-similar traffic the individual ON-OFF sources must have an element of LRD either in ON
or OFF states. We summarise the results of Tagqu in the following manner:
the ON state must have LRD, AND/OR the OFF state must have LRD,
the ON and OFF states are independent of each other,
the ON and OFF states need not have the same distribution.
Thisis interesting from a chaotic map modelling standpoint because the conditions stated
above correspond to a chaotic map model:
that belongs to the intermittency map family with amap parameter combination of g® 0
and mi (1,2), where g hasto be small enough to have burst behaviour over the time scales
of interest;
where the aggregated distributions of ON periods can be assumed to be Gaussian
distributed at any instance, t, of inspection for a sufficiently large aggregation level.
This aggregate behaviour can be modelled by a bulk properties map with random injection
into the ON and OFF regions of the map, i.e. a decoupled bulk properties map.

9.8 Chaotic Maps - Potential Application Areas
The importance of H liesin the fact that queue length distributions are sensitive to its value

[NOR93]. The higher the value of H the higher the probability of high queue state occupancy.
The implication of controlling H (and its derivative) is that congestion within the network can
be controlled. Animportant first step in this direction is through the on-line modelling of
network elements such as switches. Aswe have seen the bulk properties map technique
enables the adjustment of H viathe alteration of parameters eand m. We therefore submit that

the bulk properties map technique is a contribution in this direction.

The bulk properties map can be used to generate self-similar traffic on-line with HI (1/2,1).
Thisisin contrast with other approaches such as FBM and FGN which generate samples off-
line. We have also seen that manipulation of the map parameter e away from zero
increasingly destroys the self-similarity produced by the chaotic map. These results (on-line
generation and on-line parameter manipulation) are promising for the development of network
control techniques based on chaos theory and the coupling of chaotic maps (for the description
of such atechnique see[MON97h]). These techniquesrely solely on local information
present at a network element, and as such prove attractive as areas of future research because:
they are inherently scaleable; and

they would reduce global control signalling across networks.

On this theme we again comment on the theorem put forward by Tagqu [TAQ97] with regard
to the modelling of aggregate heterogeneous ON-OFF traffic sources. The heterogeneous
traffic equation
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has implications for the control of networks from a“fairness’ allocation point of view for the
following reasons:
the result can be viewed as a model description of traffic entering an aggregation point,
such as a switch;
the controlled traffic mean level is dependent on the mean value of aggregation and thisis

given by the term
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Thisrelies only on local knowledge of the R types of sources arriving at the node, and,
the allocated bandwidth is a proportion to the ratio of the mean sojourn lengthsi.e. the
ratio

nl(r)/(nl(r) + ”h(r)) _
(9.8
Network control is affected by altering the variability term that is represented by the second

summative term, that is
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More precisely, network control is affected by altering the variance in the traffic stream
produced by traffic of typer, wherer isthe traffic from the most dominant LRD traffic
source. Therefore by modelling the source traffic on-line we can identify the dominant LRD

traffic and take controlling actions accordingly.

Further insight into network control may be gained from employing some ideas from the
dynamics of Lévy flights. Formally Lévy flights have been studied as jump models. These
are models in which the particle moves instantaneously between periods of halt. The use of
jump modelsis not unknown in teletraffic analysis because they are the base behaviour behind
that of Markov chains (for an explanation on the relationship between jump models and
Markov chains see [KLE75, GIL92]). The interesting thing about Lévy flightsisthat they can
also be modelled by chaotic maps which exhibit intermittency [ZUM93, GEI92, KLA93]. In
these models, constant velocity Lévy flights are interpreted as particles moving with constant
velocity between halts, with the intermittency region of the map providing the constant

velocity episodes. When applying these models to tel etraffic we may interpret the constant
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velocity episodes as a cell or packet transiting through a network before appearing as an

emission into aqueuei.e. a halt.

The reason for pursuing dynamical formulations for network behaviour, for example the one
outlined above, rather than the stochastic ideas commonly employed, is that the network
congestion problems itemised by Fowler [FOW91] can be approached using non-linear
chaotic control ideas developed by Ott, Grebogi and Y orke] OTT90] and extended to lattice
networks by Mondragén and Arrowsmith [MON97b]. For this reason further investigation of
non-linear dynamical map models, with emphasis placed on developing such models for

chaotic control of networks, is encouraged.

9.9 Non-linear Control - A New Network Control Paradigm

9.9.1

In this subsection we propose a new network control methodology based on the results of the
research reported in this thesis. The aim of our approach is to consider the control of a
network containing self-similar traffic which we can model using chaotic (intermittency)
maps. Each chaotic map describes the traffic generated by an element of the network
(computer data, voice data, etc.). These maps are coupled due to the aggregation, switching,
and routing of the traffic in the network. A network of such mapsissimilar in formto a
lattice structure. Such lattice structures can be controlled using chaotic control methods. The
method of controlling "chaos" developed by Ott, Grebogi and Y orke (OGY) [OTT90] has
recently been extended to the control of non-linear networks such as lattices. There have been
several successful approaches to controlling a network of chaotic elements (Mondragén and
Arrowsmith [MON97b], Oketani et al, [OKE95] Sepulchre and Babloyants [SEP95],

Y oussefmir and Huberman [Y OU95]). We begin by outlining current network control
methodology by citing the example of network control applied to ATM.

Traditional Control
Traditional control in network traffic is based on the following ethos. There are three levels of

immediate control which look at the time scales of call-by-call duration. These levels of
control can be summarised as]CHET95]:

instantaneous - this level of control relates to the selective discard of cells, cell scheduling,
traffic shaping and User Parameter Control (UPC);

end-to-end propagation delay - this level of control relatesto the tagging of cells, explicit
forward congestion indication and fast resource protocol; and

end-to-end round trip delay - this relates to routing and Connection and Admission Control
(CAC) functions.

Above these immediate levels of control lies the management plane which traditionally looks
at time scales longer than that of a call-by-call duration, i.e. it looks at the medium to long
term control of the network such as provisioning and restructuring of the network in order to

cope with changing demands on the system.
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9.9.2

In order to achieve the above levels of control, the following kinds of control are applied:

1. Call level control - Permits traffic onto the network provided that there are enough
resources on the requested path which permit the incoming traffic to propagate across the
network without causing congestion at the cell level.

2. Cdll level control - Allocates resources in the network (such as buffer space) in order to
accommodate the call in terms of cells or allow some traffic loss according to some pre-
agreed cell lossrate.

Both (1) and (2) have been traditionally handled on entry onto the network via CAC

algorithms. They have taken various guises from:

purely mathematical/theoretical in their approach to the CAC problem (examples of this
type can be found in Gibbens et al [GIB95] and Borst and Mitra[BOR96]) to,

those based on heuristicg/intelligent learning approaches (examples of these can be found
in Ramalho [RAM96] and Hiramatsu [HIRA90]).

As admission into the network is carried out on alink by link basis then the decisions made

are usually conservative because the bandwidth for the call is governed by the link rate of the

slowest link (bottle neck) on the call path. Additionally (ii) can be approached viathe design

/dimensioning of switches and cell level control methods such as UPC.

Chaotic control can be applied to the three levels of control mentioned above. In chaotic
control, call level control istermed “order”. Thisisthe selection of acall or burst based on a
weighted decision derived from the dynamics of the system (network). Cell level control is
termed “procession” and is the effect of control on the dynamical system which permits the

transfer of data between source and sink.

Dynamical Systems Approach to Teletraffic
Asafirst stage in developing a chaotic control method for telecommunication networks we

have studied how H changes with the map parameters. A decision to alter H based on the
adjustment of these parameters can be interpreted as the controlling action. For example, an
alteration in the value of e imposes an upper cut-off on the correlation, an aterationin d
changes the mean traffic load and changes in m; and m, change the sojourn time of the ON
and OFF statesi.e. the LRD of the traffic and its H value. These effects have already been
studied in Chapters 5,6, and 7.

Chapter 5 shows how an individual source can be modelled by a member of the map family.
Chapter 6 and 7 show how aggregate sources can be modelled by an equivalent map which
preservesthe traffic load and H. The parameterisation of this“equivalent” map isreported in
Samuel et al [I, 1], and Chapter 8 suggests how to measure H on-line.
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Figure9.1 Latticeinterpretation of atelecommunications network

9.9.3 The MAPS Control Paradigm
We have mentioned how chaotic maps can be used to provide aggregate models for self-

similar traffic. We considered the case of aggregation at asingle node[l]. A natural
extension of nodal modelsisto couple them together to form networks and then attempt to
model and control the characteristics of these networks. In such amodel the nodes would be
the switching sites and the couplings between the nodes would represent the links between the
switching sites. The simplest mathematical models which resemble such a construction are
Coupled Map Lattices (CML) where adynamical system at each node will produce the local
traffic input. Coupling will be provided by external input from neighbouring nodes due to the

gueueing (aggregation) and switching. Thisis shown schematically in Figure 9.1.

Investigations have been made into regular lattice structures where coupling exists between
nodal sites. Animportant property has been the discovery that global control across al nodes
can be obtained vialocal control at each node [MON97a, 97b, ARR96, OTT90].

In these investigations the dynamical behaviour of each nodal site is modelled by a chaotic
map and the coupling to the neighbouring nodes imparts perturbations into the orbits of the
dynamical system containing the node. Since the chaotic map's orbit possesses the property
that any orbit will approach arbitrarily closely every point of the plane described by the
chaotic map, then at some point the orbit must take it near to adesired control state. A small
feedback control applied at the target point in the orbit places the dynamics of the node into a
required state, since the same structure occurs at all nodes. Experimental evidence shows that
if adesired control stateis prescribed for all nodes then eventually the lattice becomes
controllable. However, it is possible for neighbouring dynamical behaviour to kick a node out
of equilibrium viathe coupling and so "occasiona feedback control” is introduced where the
feedback control is activated within the control region around the desired equilibrium for only
part of the allowable time [MON974].
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The outline given above (see aso [1]) describes how each node site of the lattice structure can
be modelled by a controlling map. Theindividua traffic streams entering a node can be
modelled by chaotic maps and in certain model s the maps can be aggregated into a single map
which describes the behaviour of the traffic at the node. The next step isto provide on-line
information on H. Thisis necessary to enable the construction of an active dynamic control

environment.

We propose a control scheme that actively manipulates the value of H. Our intended
approach is based in manipulating H via the mean, peakedness and LRD of the traffic stream
characteristics by means of alocal control strategy. The "philosophy" is not to destroy the
chaotic behaviour of the traffic but instead to use its variability as a method of control.
Chaotic systems are everywhere unstable and thus a small change in the system at any instant
produces alarge change at later times (thisis SIC or, more colloquialy, "the butterfly effect").
This gives the controller "agility" to changes in the traffic over many timescales. Moreover,
aswas noted earlier, successful control of coupled chaotic systems can be instigated by the
local control of each system. Theimplication of this to networks should be significant, since
it suggests that for relatively small control actions applied locally the congestion/buffer
occupancy on local and remote switches (relative to the control site) should be reduced. Itis
thought that in transport systems such as ATM mechanisms like ABR via a chaotically
initiated control sequence would provide a mechanism for the reduction of H and subsequent

control of congestion.

We are proposing two different mechanismsto control traffic that is aready in the network.
The first mechanism seeks to reduce the variability of the traffic in a specific channel. This
can be done by "careful" introduction of empty cells. This control mechanism would modify
but not destroy the highly variable behaviour of the traffic. We conjecture that, individualy,
each of these controlled channels would change very little but that these changes would have a

larger effect when the traffic is aggregated in the queue.

The second mechanism is based in arandom selector of callsin anode. The random selector
would choose which call to admit by weighting dynamically the statistics of the traffic
variability. The selector, modelled by a chaotic map, would assign larger probabilities to

some channels than others but all the channels would have positive probabilities to be served.

Thefirst control mechanism is termed "Procession” and the second "Order". Conceptual

views of the proposed chaotic control regime can be found in Figure 9.2.
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Figure 9.2 Conceptual view of chaotic network control as applied to ABR

These two mechanisms of control can be developed using chaotic maps as models of self-
similar traffic because it is known that they have the correct characteristics and, moreover, that
they can model high traffic rates efficiently [1, I1].
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10 Conclusions
In this thesis, we have applied techniques from non-linear dynamicsto the teletraffic

modelling of modern packetised telecommunications networks. Measurements from these
networks have revealed self-similar behaviour, i.e. burstiness ranging over all time-scales of
engineering interest. This burstiness can have a significant impact on network resource
occupancy. We have developed a nhovel teletraffic framework for the use of non-linear
dynamics models in the form of intermittency maps which consist of parsimonious,
parameterisable and predictable models for the accelerated simulation of both self-similar

behaviour of individual sources and aggregate traffic in such networks.

The teletraffic framework consists of afamily of maps based on the intermittency map with
single ON-OFF interpretations for individual sources, and either an N times iterated
equivalent single maps, or atwo-step bulk property interpretation for aggregate traffic
representation. These aggregate traffic models are novel and provide up to two orders of
magnitude speed-up over other methods (FBM/FGN and Pruthi’s N one-step method).
Further, we have significantly extended the characterisation of individual source models
previously carried out by Pruthi and Erramilli. The extension accounts for the impact of all
five parameters (e and mfor both states, and d) on H, the parameterisation for load via the
invariant density, and the parameterisation for heavy tailed sojourn timesin the ON and OFF

states via the transit-time.

The theoretical analysis of the maps with respect to H confirms the conjecture put forward by
Pruthi that asymptotically H is only dependent on the dominant value of m. Numerical results
show that convergence is slow and that for the coupled map H differs substantially from the
theory. However the deviation from the theoretical is predictable and this has lead to an
empirical fit for the asymptotic dependence of H on m. An important feature that these results
also show isthat the underlying dynamics of the map persist in al of the map interpretations.
The numerical results also show limitations of parameter ranges on H, particularly for d (d
must liein the range 0.1 to 0.9). However, thislimit can be overcome practically to some
degree by manipulating the time resolution of the iterates. A further parameter limitation
stems from e; any value of e >0 effectively limits range of time-scales over which LRD

occurs. These numerical limitations apply to al map interpretations.

We have developed a method of measuring H viathe map’s variance (1VV). We have shown
that this method is promising for measuring H on-line. We have aso found by comparing the
IVV and Abry-Veitch methods for measuring H, that H by itself as a parameter for modelling
self-similar traffic in a*“parsimonious’ manner may not be enough. This conclusion is drawn
from observing different queueing behaviour with input traffic having the same H. This

conclusion also leads to the practical suggestion that reliance on a single method for
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determining H on-line may prove unwise. Additionally, the results from the comparison of
IVV and Abry-Veitch show the flexibility that these map models have in specifying key LRD
behaviour that determines the impact on queueing. Thisflexibility is derived from the
intuitive relationship that these map models have to their underlying physical ON-OFF
process of cell/packet transfer in networks.

A further asset that increases the flexibility of these mapsis that they can depict non-
stationary traffic. Thisis because the maps can have their parameters altered dynamically.
Furthermore manipulation of the maps' parameters may point to the development of a control
schemes for telecoms networks based on non-linear dynamics.

Finally, analysing and understanding the statistical behaviour of these non-linear dynamics
modelsis a significant step towards devel oping the theoretical framework necessary for

statistical-chaotic control policies to address congestion avoidance in telecoms networks.
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Appendices

Appendix A - Covariance Structure of Self-similar Processes

In order to get from equ.(3.28) to equ.(3.35) in more detail we perform the following.
Because of stationarity, the lag is the important criterion therefore we can make the following
simplification:

9(k) = cov(X,, Xooie) = 00V Xg, Xgar ) = E[ X Xoi] -

Now if Y; process has a zero mean then we can also say that its incremental process X; will
also have azero mean. This helps greatly, since we can write the product term with the
equivalent expansion

K Kk = K Xprk

A S =
=fa X;I +fa XD -fa XD -qa X
81:1 7] 81':2 7] %j:l 7] %j:z a
(A
We can now write the covariance using this expansion
WAL SIS SV SO - o
COV(Xl’X1+k):§E.'. a X2 +ead X - ga Xz g X1y
f =1 @ j=2 @ =1 @ j=2 @ b
- €3
(A.2)
If we expand out the expansion term by term we see that we are left with the following
equivalent terms
ca XiZ =% Yo
=1 @
SO
%j:z 7]
= ¢ @ ¢
a Xl =t Xl =%-Y%
%j:l 7] gj:z 7]
The covariance can now be written with the inclusion of the equivalent terms
1 2 2 2 2|y
cov(xt,ka):E{E[(Ykﬂ- o) [+ E|(%.. - %) ] E[(Yk - Yo) ] E[(Yk - Y) ]%
(A.3)

Thisisthe covariance for incremental process X;. We now apply the following result

E[Yf S] =(t- 9" E[Yf] =(t- 9°"s 2 and obtain

COV(Xt,XHk) =%{(k+1)2H 2k (k- 1)2H} = g(K).

Telecoms Research Group. Queen Mary and Westfield College, University of London
155



Appendices

(A4)
The correlation r (k) comes from the standard result r (k) =g(k)/g(0) andsince g(0)=s

then
1
(k)= Sk - 22+ (k- ).
(A.5)
What remains now is to determine the asymptotic behaviour of r (K) ask® ¥. To be ableto do

thiswe apply Taylor’s expansion to the function r (k). To do this effectively we rewrite equ
(A.5) in the following way.

2H

r (k) :kT[(l+%)2H - 2+(1- %)ZH} .

(A.6)
We then define the function g(.) as
g(x)° (1+ x)2H - 2+(1- x)2H .
(A7)
The correlation can then be written in terms of the function g(.)
_ Kk Ao
(K=" %5
(A.8)

Using Taylor's expansion we find the dominant terms and determine the functions asymptotic

behaviour®. The correlation can be written then as

r (k) = ?{[(u X 2+(1- ]+
2H{(@+x)? 2 (1- 2]+
x?[2H(2H - D@+ 22 (1- 2]+
x?[2H(2H - D2 - @+ 22 (- 0]+ 3

(A9
kZH
Evaluating the differential terms at x=0 yields r (k) = T{ x?2H(2H - 1)+ H.0.T},
which is the first non vanishing term plus higher order terms. Since x = 1/k then these higher

order terms vanish rapidly ask® ¥ and the asymptotic behaviour of the correlation is then

% Recall that Taylor's expansion is :

x29¢%0) .\ x’gf0) s x"g"(0) .
3

9(x) = o(0) +xg¢0) + — n!

and the first three derivatives are given as
g¢(x) = 2H(1+x)*" - 2H(1- x)*"

2H-2 2H-2

g®(x) = 2H(2H - 1)(1+x)"" “- 2H(2H - 1)(1- X)

gt(x) = 2H(2H - D(2H - 2){(1+ W23 (1 02 3} .
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.2
r (k) » H(2H - 1)k2Ha%9 .

(A.10)

Appendix B - Dirac Impulse Function
The Dirac Impulse function is defined as

10, t10
d(t) = .
() 1¥, t=0

(A.11)

For convenience the d(t) is normalised such that

+¥

Ol(t)dt =1.

-¥
We now introduce two further identities that use this basic definition:

+¥

Of (t)d(t - a)dt = f (a)
-¥

(A.12)
and

dft- t,)
dr(tn) '

dt

d[r(t)] =é

(A.13)
What equ.(A.12) states is that the function f(t) is only switched on at the pulse position given

by d(t-a) and can only take on avalue at the time of activationi.e. whent = a. We can view
equ.(A.13) in the following manner. If d(t) isan impulse at the origin and d(t-t,) describes a
pulse shifted from the origin, or aternatively a pulse at t,, then d[r(t)] describes a series of
pulses in which the position of the pulseis being given by the roots of the function r(t). To

illustrate this consider the following example. Suppose we have afunction r(t)which has the

following form r(t) =t*- 1. Thishasrootsat (t- 1)(t +1) = 0. equ.(A.13) then becomes:

N=2
dit-t
d[t2 _ 1] - a ( n) ]
n=1 dr(tn)
at
(A.14)
We note that N=2 is since there are two roots which will yield an impulse. The first
dr(t
differentia of r(t) issimply % =2t . Therefore the full expansion of equ.(A.14) becomes
dlt-t dlt-t 1
dft?- 1] = ( 1)+ ) = Z(d(t+D +d(t- 1).
l2t,| ot,| 2
(A.15)
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Appendix C - Transit-Time Analysis

Trial constant values for a, b and c.
Trial value for constant a.

At this point it may be useful to recall the following Gamma Function identities
Gn+2)=(n-1+2(n- 2+2)---(1+2zG&(2),

d1+2 =2 =2,

q1) =

There isan obvious choice for the constant a. Since thereis afactorial term in the RHS
denominator of equ.(5.14) which is absent from the LHS then anatural choice for aisa=1,

since use of the Gamma identity G(1+ z) with a=1 will cancel out the factoria term occurs.

Trial valuesfor constantsb and c.
To obtain trial valuesfor b and ¢ we note that

¥
$ (- A g dp+i) |
eo mj +1 G(b)JaoG(C*J)

(A.16)
By using the Gamma function identities we expand out the G(1+ j) terms
$CA_ddy (i~ 1+b)(j - 2+b)(j - 3+b)--(1+b)ocl) |
oM +1 ~ db) 8 =0 (j - 1+c)(1 - 2+C)(j - 3+c) (1+c)cG(c)

(A.17)

The G[b) and G(c) are common for all summation termsin the RHS and can therefore be

cancelled with the G() outside the summation and we can therefore write

A

m +1

(J - 1+b)(] - 2+b)(] - 3+b) (1+b)bZj
o(] - 1+C)(j - 2+C)(j - 3+c) (1+c)c

o

3
a

j=0

j

(A.18)
Furthermore, if we assume some favourable cancellation occurs in the numerator and

denominator of the RHS and by rewriting the numerator and denominator of the LHS then,

¥ 1 ¥
o o b .
RGN L
o () e (e
(A.19)
Equating numerator and denominator of both sides yields the following result
b=
m
_1+m
m
(A.20)
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Therefore we can say that

_ j
ar)

a

j=0

(A.21)
We know this to be true since substitution of our trial valuesin to our eguations recovers the

original seriesrepresentation. Therefore we can write our original integral given by equ.(5.10)
as

Lmi(lyz) = mk(m){ Aout% 2 Fl(l'ﬁlhva Zout) Ain# 2 Fl(llﬁv:HTml Zm)}

(A.22)

_(m)
e nm l1-e-d
1C:

where A_ =§er, Z,=- A, k(m=

- —— and ,F(abczisa
mm

hypergeometric function

Recovery of Upper and Lower bounds from the Series Formulation
Asacheck weintroduce our trial valuesfor a, b, and c into our original equation and see if

we recover our original series

1.2+m. ) _ g G(1+I"I)G( )_n

2F1(1,ﬁv m )_ G(ZL)G(%) na:.o G(1+m+n) nl
g o ord) o)
o) oo 15 2+ S -fu ) o)

(A.23)
Whichistheoriginal series. Asafurther set of checks we can insert appropriate values of m

and recover the following hypergeometirc relations:
for m=1 we obtain , Fy(112;- 2) = % In(1- 2),

(A.24)

1
and for m=2 , Fl(],%;%;- zz) =;arctan(z) .

(A.25)

Intermittency Map Variance Structures
This section relates to the formulation of the variance structure for the intermittency family of

maps. Ranging from the Bernoulli shift map to the Double intermittency map. What is
required to show isthat the decay of the correlation structure and hence H can be determined
in terms of the map behaviours, i.e. through the statistical analysis of the maps in particular its
variance. There are three equations that are linked to the variance that we will show
derivationsfor: equ.(5.44), equ.(5.45) and equ.(5.49). Additionally we need to show that
equ.(5.44) and equ.(5.45) are functionally the same.
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Derivation of equ.(5.44)
Wefirst define ZKy as the total number of cells generated after k iterations using the indicator

variable interpretation y, i.e.

(x )_10, O<x,£d
W)=l dex, £1
K
[o]
ZKy °avy
i=1

(A.26)

The average number of packetsis then given by
EgzKyg = ,\|I'®”l W a Zk,
= lim —a ga y.

(A.27)
The N trials of can be viewed as independent and therefore the order of summation can be
reversed

K N
10%& O
E&, &= Iim— i
@Kyﬂ N|®n:4 N Ia=;|.§2.l yng

(A.28)
Thislimit isrelated to the invariant density of the map viathe following relationship

1
N N a Yo =1 ‘O(X)

(A.29)
which is the average number of emissions of the map (mean number of cells generated). We
can therefore say that

Elzq, )=KI .

(A.30)

The variance can be written in the traditional manner
.2
var(Z )— IlmiﬁoNl (a;eg yi - Kl 2
k)™ - =
No¥ N nzlgjzl : @

(A.30)

Expanding out the bracketed terms we arrive at
_ 123 g
vargZy, 5= nggﬁal‘?a b Ay, 2K a y; + (K1 )22
=1€j=1 j=1 ﬂ
(A.32)

We now examine the terms with in the brackets of equ.(A.32)
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K
]

&
a yja Yj :(Y1+Y2+"'+VK)(Y1+y2+"'+YK)

(v2 + y2+-+y2) +2(yays + yays - +yi.1vi)

(A.33)
Since by the definition of y then yiyj = y;y; and the above reduces to
K K
[o] O [o] 2 O
ay,ay, ay. +Zaay.y,-
j=1 j=1 i=1 j>i
(A.34)
We can now introduce the limits to thisterm
Y. :
im A A y;d v,z lim - a ‘fa Y, +2a a ViYL
n=18j=1  j=1 g NO¥ N84 i=1 j>i @
K K )
=k +28 & E(yy,)
=1 j>i
(A.35)
Examining the second term and introducing the limits
N & K 6 K ('j
im =8 2k § y;7=4 &k lim ia Yo
Ne¥ N nzlg i 1_18 el B
(A.36)
Thefinal term after introducing limitsis simply
14
lim=aq (kI )?=(k1)?,
N -~
n=1
(A.37)
The variance in equ.(A.32) can then be written as
K K
o O
var(ZKy)z KI @- ki )+23 & Elviy;).
i=1l j>i
(A.38)

Thisisthe same as equ.(5.44).

Derivation of equ.(5.45)
To show that equ.(5.44) and equ.(5.45) are the same we proceed as follows. We begin by
examining the correlation term of equ.(5.44) i.e. the E(yi Y; ) term. Sincethey; can only
take on values of 1 or O (see definition of y;) then the expectation can only take on non-zero

valueswheny; andy; =1, i.e. E(yi yj): P{yj =1y, :]} . Therefore if we consider the

expectations in terms of probabilities and use the probability identity P(A,B) = P(B) P(A{ B) .
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The expectation ca be written as E(yi y]-) = P{yj =1y, :]} =Py, :]}P{yj =1y, :]} and
since P{y, =1} isjust the probability of being on, | . Then we have the following relationship

E(yi yj):l P{y]- :]jyi :]}. We can now write equ.(13) in terms of this relationship

var(ZKy)z K (L-1)+2l éK 5 Ply, =1y, =1

i=1 j>i
(A.39)
If the summation term is expanded out we obtain the following pattern (the case of K=4is
shown)
K°:4K°=4
aa P{ =1y, = 1} = P{Yz =le1=1} + P{ys =1y, =J} + P{y4 =1y =1} +
i=1 j>i
P{ys :1|y1:1} + P{y4 :]hb :1} +
P{ Ya :1|yl :1}
i=1 i =2 i=3
(A.40)

The above summation has been arranged in a matrix formation so that the probabilities for a
giveni are arranged in columns and that probabilities where the difference betweeni and j are

the same form the rows . If we now define the following:

Cln=i-i)° Ply, =ty =1

(A.41)
We can therefore write the summation given above as
KraK=4
a a Py, =1y =g=c)+c)+c)+
i=1 j>i
c(2)+c(2)+
c3)
i=1 =2 =3
(A.42)
This RHS forms a series in terms of C(i) and there for we have an equivalent summation
K=4K=4
o O
a arly =1y =1= a K- k().
i=1 j>i i
(A.43)
The variance can therefore be written
[, )= - k1 )21 § (- )
varZKy =KI 1- KI )+ al K-i)Cli).
i=
(A.44)

Thisisthe same as equ.(5.45).
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Derivation of equ.(5.49)
To derive euq.(5.49) we have to use the ansatz C(i) »ai °+1 . We can write equ.(A.44). in

terms of the ansatz

K-1

var(ZKy)» ki 1- K )+20 § {i<- it +1 ).

i=1

(A.45)
Expanding out the bracketed term and splitting the summations we obtain
ﬁfl ﬁ;l §;l %;l
var(ZKy)» KI(1- Kl )+2Kag i® +21°Kq 1-2lag i®™- 22 i.
i=1 i=1 i=1 i=1
(A.46)
In order to simplify equ.(A.46) we use the following series identities
K
K(K +
éi:%; A Kl =K .
i=1 i=1
(A.47)
We apply the above to each the termsin equ. .(A.46)
5;1 5;1
2Ka@Qi®-20a@ i® =2Ka(1’ +2°+.+(K- 0)- 20 a(11b +22b+.+(K - D(K - 1))
i=1 i=1
=2 a1’ (K- 1) +2°(K- 2+-+(K- D°(K- (k- 1))
%;l
=2la@ i®(K-i)
i=1
(A.48)
5;1 %;l
21 2K 1- 212 i =21 °K(K - 1)- 1 °K(K - 1)
i=1 i=1
=12K(K- 1)
(A.49)
The variance can then be written as
5;1
var(zy, ) » K1 (1- KI )+ KI2(K- ) +2a g i°(K- )
i=1
5;1
»KI(1-1)+2lag i®(K-i)
i=1
(A.50)

Equ.(A.50) can be analysed in terms of an inequality relationship. The summation term can
be replaced by a continuous integration, and since they are equal only inthelimitas Di® 0
then we can form the following inequality

var(z, ) » ki (1- 1) +2 agib(K- )EK (1-1)+2la 6"’(K- i)l

(A.51)
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Carrying out the integration we obtain

K-1
vagZ, $»KI(1-1)+2a @ iP(K-)EK [L-1)+
i=1
i- K(K- 1)b+1_ K (K- 1)b+2 _ 1H

2 a;f b+1 ) b+2 i;
(A.52)
If welet KB ¥ we can see that the RHS becomes
. i Kb+2 _ K Kb+2 _ 1u
o} . : i .
varg'ZKygEKl (1 I)+2Ia+ ] 572 E; :
(A.53)

Thisisthe same as equ.(5.49).

Telecoms Research Group. Queen Mary and Westfield College, University of London
164



Appendices

Telecoms Research Group. Queen Mary and Westfield College University of London
165



