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Abstract
Self-similar traffic has been observed in teletraffic networks over all time scales of

engineering interest.  This type of traffic has no characteristic time scale due to its burstiness

and causes the network buffers to overflow affecting Quality of Service (QoS).  Self-similar

traffic has been modelled via stochastic methods.  It has also been modelled using non-linear

dynamics.  In this thesis we use techniques from non-linear dynamics in the teletraffic

modelling of modern packetised telecommunications networks.  We develop a novel

teletraffic framework for the modelling of self-similar traffic in a parsimonious,

parameterisable and predictable manner based on the use of non-linear dynamics models in the

form of a chaotic map family.  This family consists of models, based on intermittency maps,

for the accelerated simulation of self-similar behaviour of individual sources and aggregated

traffic in such networks.  We have significantly extended the characterisation of the individual

source map models of Pruthi and Erramilli.  The extension accounts for the impact of all five

parameters (ε and m for both states, and d) on H, the parameterisation for load via the

invariant density, and the parameterisation for heavy tailed sojourn times in the ON and OFF

states via the transit-time.  These new aggregate traffic models provide up to two orders of

magnitude speed-up over FBM/FGN and Pruthi’s N one-step methods.

We perform mathematical analysis of the map family with respect to H proving the conjecture

put forward by Pruthi that asymptotically H is only dependent on the dominant value of m.

Numerical results show that convergence is slow and that for the coupled map H differs

substantially from the theory.  However the deviation from the theoretical is predictable and

this leads to an empirical fit for the asymptotic dependence of H on m.  These results also

show that the underlying dynamics of the map persist in all of the map interpretations.  The

numerical results also show limitations of parameter ranges on H, particularly for d (0.1 < d

<0.9).  However, this limit can be overcome practically to some degree by manipulating the

time resolution of the iterates.  Transit-time analysis of the map family highlights a further

parameter limitation which stems from ε: any value of ε >0 effectively limits the range of

time-scales over which LRD occurs.  These numerical limitations apply to all map

interpretations.

We have developed a method of measuring H via the map’s variance that is promising for

measuring H on-line.  We have also found, by comparing for accuracy this and the Abry-

Veitch method for measuring H, that H by itself as a parameter for modelling self-similar

traffic in a “parsimonious” manner may not be enough.  This conclusion is drawn from

observing different queueing behaviour with input traffic having the same H.  This leads to the

suggestion that reliance on a single method for determining H on-line may prove unwise.  This

comparison also shows the flexibility that these map models have in specifying key LRD

behaviour that determines the impact on queueing.  This flexibility is derived from the

intuitive relationship that these map models have to their underlying physical ON-OFF

process.
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1 Introduction
Self-similar traffic has been mainly modelled via stochastic means, such as Fractional

Gaussian Noise (FGN) and Fractional Brownian Motion (FBM).  There is an alternative

method for modelling such traffic, i.e. via non-linear dynamic models.  In this thesis we study

non-linear dynamic models.  We have developed novel interpretations on the use of these

models as prameterisable and predictable models for the accelerated simulation of self-similar

behaviour of individual sources and aggregated traffic in telecommunications networks.

Throughout this work we refer to them as “non-linear models”, “non-linear map models” or

“chaotic map models”; in the interests of brevity some times we simply call them “chaotic

maps”, “map models” or simply “maps”1.

We focus on two theoretical areas of non-linear map models: their analytical tractability and

their parameter interdependence with regard to the Hurst parameter H.  We are interested in H

because of its adverse affects on cell loss [NOR93, 95, ERR96].  We use results of the

theoretical investigation to develop interpretations on the chaotic maps with respect to source

aggregation that yield significant benefits for accelerated simulation models of self-similar

traffic.

This thesis draws extensively on recent research in various fields but is primarily motivated by

the observations on self-similar traffic initially made by Fowler and Leland [FOW91, LEL93,

LEL94] who were following up on the measurement of Ethernet traffic initiated by Shoch and

Hupp [SHO80].  Leland and Fowler were able to make precise measurements of Ethernet

traffic over many years which showed that the variation in peak traffic load extended over

many orders of magnitude.  This called into question the Markov based models then currently

used to predict network performance.  These models aggregate to white noise i.e. the peaks in

traffic load were smoothed out as traffic aggregation period was extended.  This type of

aggregation behaviour is not that witnessed in real traffic measurements.  This type of

behaviour is most strikingly exhibited by the “visual proof diagrams” (fig 4 in [LEL94]).

Others have also questioned the validity of Markov based models, for example Paxson and

Floyd [PAX95].

These observations led to the proposal of various stochastically self-similar models which

render “realistic” traffic in simulators.  Early contributors to self-similar models were most

notably Norros [NOR93, 95], Veitch [VEI92] and Leland et al in [LEL94].  These models are

inspired by the work undertaken by Mandelbrot and co-workers in the 1960’s [MAN63, 65,

68a, 68b, 68c].  The family of models that Mandelbrot proposed are termed FBM models and

are drawn from observations in hydrological records and error clusters in communication

systems.  As recently as 1995-96 Huang et al [HUA95], Slimane and Le-Ngoc [SLI95] and

                                                          
1 Strictly speaking there are classes of non-linear models that are not chaotic.
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Lau et al [LAU95] had published papers on FBM algorithms for traffic simulation.  Moreover

Chen et al [CHEH96] has evaluated the relative performance of such algorithms in terms of

accuracy and speed of sample generation.  The main limitation with this type of model is that

they generate their samples off-line i.e. their traces have to be generated separately form the

simulation that is going to use them.  The reason for this is mainly due to the algorithm’s need

for knowledge of all past samples in order to generate the next sample.

There are alternative models to FBM developed by Erramilli, Singh and Pruthi [ERR94a, 94b,

94d, 95a, PRU95a, 95b].  These alternative models are non-linear dynamic map models.  As

such these models use chaotic intermittency maps to model fractal-traffic.  Pruthi [PRU95b]

has shown that fractal traffic models using chaotic maps produce the required stretched

exponential queue length distributions and that when these models aggregate they tend to

FBM.  These models can be use on-line because. the required self-similarity is inherent in the

dynamics of the maps, allowing them to produce results in real time.  However their behaviour

has not been completely characterised in terms of the map’s parameter interdependence on H.

To exploit these models fully we need to understand the behaviour of the chaotic map models

with regard to alterations in the model parameters.  This thesis has contributed to the

understanding of the map’s parameter interdependence through contributions to the theoretical

understanding of the map’s transit time, which is the Long Range Dependent (LRD)

component of the chaotic map.  This line of investigation led to a proof on the asymptotic

dependence of H on a single map parameter for a de-coupled map.  Numerical

experimentation supporting the proof highlighted the effect coupling has on the map resulting

in the development of an empirical dependence on H for a single map parameter.  An

expression for the variance of the map output has also been developed which has lead to the

development of a technique for measuring the H value of the map output on-line.  Using the

insight that these preliminary studies gave, aggregate map models were then developed which

took advantage of the invariant densities of the maps in order to preserve the effects of self-

similarity under aggregation of bursty traffic sources.  However, the initial aggregate map

models possessed limitations, principally in the type of LRD that could be modelled.  This

limitation motivated the development of the Bulk Property map which is an accelerated map

that has an order of magnitude speed up over other map model techniques.

Analysis of queueing systems fed by self-similar traffic has been undertaken.  The theoretical

basis for the analysis of FBM source fed queues stems from Taqqu [TAQ86, 97] and Norros

[NOR93].  Taqqu has theoretically shown that the aggregation of heavy tailed ON/OFF source

models tends to FBM.  Norros [NOR93] has shown that the queue length distributions are of

the stretched exponential type.  Taqqu’s theoretical predictions have been evidenced in real

traffic measurements by Willinger [WIL97].  These studies have motivated others to assess

the impact of Long Range Dependence (LRD) exhibited by fractal traffic, on networking

issues such as:
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• queueing performance (Erramilli et al [ERR96a]),

• Quality of Service (Duffield et al [DUF95b])2,

• bandwidth allocation and short term traffic prediction (Norros [NOR95]), and

• the length of time necessary for effective correlation analysis of traffic (Addie et al

[ADD95]).

Others (Beran et al [BER95]) have examined particular types of traffic for LRD.

There is another reason for studying chaotic map models.  Fowler and Leland [FOW91]

summarise clearly the congestion problems that bursty traffic inflicts on a network i.e. the

traffic remains bursty over all times scales of engineering interest and that no amount of buffer

space will ever prevent loss, and raise the question of how to combat the effects of bursty

traffic.  Non-linear dynamics and in particular the idea of chaotic control present an

opportunity to move away from the present stochastic view of networks to a more dynamical

systems view, enabling the problem of congestion to be combated using dynamical rather then

stochastic techniques.  This view is supported by recent advances in the chaotic control of

Coupled Map Lattices (CML) [MON97b, OKE95, SEP95, YOU95].  CML’s and high speed

data networks have similar topologies.  It is this similarity that makes the use of chaotic

control as a method for the prevention of network congestion very appealing.  In a chaotic

system the chaotic controller exploits the “complexity” of the system dynamics such that a

small change in the parameters can change the system to a required state.  However, we

should remark that in telecommunications networks the control must change the statistical

behaviour of the traffic.  For this reason a key stage in the development of a “statistical

chaotic” control for networks is the identification of parameter adjustment in the statistical

output of the chaotic map models.  This thesis is a significant step towards developing

theoretical understanding necessary for statistical chaotic control of networks since it

addresses the stochastic aspects of traffic generation from chaotic map models that are used to

depict network traffic.

The remainder of this thesis is organised as follows: Chapter 2 reports on network

measurements carried out in the late 1980’s and early 1990’s, in which self-similar traffic was

observed.  It mentions the problems that this type of traffic brings and the various modelling

methods employed to cope with it.  Chapter 3 introduces the concepts behind stochastic self-

similarity traffic.  Chapter 4 explains the concepts of non-linear dynamics that are used to

construct the non-linear models used in this thesis.

Chapter 5 presents theoretical work on intermittency map models which is used to develop an

approximation of the intermittency map transit time in a perturbed system.  We use this

approximation to provide a proof of the dependence of H on the parameter m for the

                                                          
2 Note:  In reality this is a large deviation theory approach.  However it is included here
because it attacks the same problem of an event occurring in the tail of a distribution.
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decoupled map, and derive an empirical dependence on H for a coupled map from

experimental data.  We then develop a method of measuring the H parameter through the

measurement of the variance of these map models and investigate the interdependence of

parameters and their effect on the value of H.

Chapter 6 investigates source aggregation of a single intermittency map through the

development of approximations on the single intermittency map’s invariant density.  This is

done to provide a method of composition and de-composition of aggregate traffic at a node.

Chapter 7 extends the work of Chapter 6 by introducing the Bulk Property map.  This type of

model is applicable to single and double intermittency maps.  Bulk Property map is an

accelerated map for use in on-line modelling.  The Bulk Property map is devised to compose

and decompose traffic at a node.  We show that the underlying dynamics of the Bulk Property

map persist in the map’s output.  We also show results on the Bulk Property map

interdependence of parameters on H.  We show the speed-up in simulation time over the

single intermittency map.  We also suggest an aggregated method for measuring the variance

using these maps based on the technique developed in Chapter 5.  Chapter 8 develops the

method of measuring H via the map’s variance (initially discussed in Chapter 5).  We show

that this method is promising for measuring H on-line.

In Chapter 9 we propose a new network control scheme based on chaotic control in which the

aggregation techniques developed in Chapters 6 and 7 combined with the on-line

measurement techniques of Chapter 8 form a pivotal part.  This method is intended to control

data flows (non-real time) in high speed networks.  Chapter 10 lays out the conclusions.
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2 Background
In this chapter we place into context the effects that self-similar traffic has on current networks

and proceed to argue the case for viewing these problems in an alternative way: that of a non-

linear dynamical systems approach to traffic modelling.

2.1 Introduction
 Recent highly accurate traffic measurements of high speed networks, with time stamps

accurate to within 100µs, have uncovered new phenomena in the time-series reflecting the

behaviour of the network traffic [FOW91].  The phenomena present itself as bursty traffic

over all time intervals of engineering interest.  This observation caused great interest at the

time since Markovian based models were being used to portray aggregated traffic in the

network models and these models tended to white noise as the level of aggregation increased.

Clearly this is in conflict with actual observations of network traffic.  The engineering

implications of using incorrect models in the design and planning stages of new networks is

quite staggering since the robustness of a new design to congestion and its side effects on the

systems when congestion occurs depends on the realism of the model used.  The observations

outlined above are particularly relevant to ATM.  This is because ATM is becoming the

transport vehicle for a wide variety of traffic streams, whether it is legacy traffic, LAN-LAN,

Internet IP, multimedia, etc.  ATM was created as a unifying transport mechanism.  The

mechanism provides the means to statistically multiplex variable and constant bit rate streams.

One of the main features of ATM is its statistical multiplexing gain [SAI94].  Statistical

multiplexing gain arrives out of multiplexing traffic streams where the sum of the individual

peak bandwidths is greater than the capacity of a given link [CHET95].  This is possible

because the peaks in the individual traffic streams seldom occur together.  Therefore the

statistical multiplexing effect relies on the condition that enough sources are multiplexed and

that they are not correlated [PRY91].

The analysis of such a gain has been attempted under the assumptions of Poisson arrival

processes and exponential distributed holding times [SAI94].  The implication of this type of

analysis is that such traffic streams when aggregated tend to white Gaussian noise, i.e. the

variation of the traffic would eventually smooth out (see Figure 2.1).  However, traffic

measurements carried out in the late 1980’s and early 1990’s revealed that whereas the

correlations of the traffic were thought to decay exponentially fast (Markovian in structure)

the traffic measured in real networks possessed correlation structures which decayed much

slower than exponentially [FOW91].  This type of traffic has become known as Long Range

Dependent (LRD).  To resolve this issue new models and approaches have been sought which

describe/analyse the network behaviour correctly.  Broadly speaking the approaches come

under two categories:
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• Remain within Markovian framework, but characterise behaviour at the appropriate time

scale of interest, an example being Large Deviation Theory as advocated by Duffield,

Lewis and O’Connel [DUF94b, 95b] which assesses impact of rare events.

• Adopt a self-similar framework.

The former approach views how a population introduces non-stationary into teletraffic via

service usage e.g. diurnal variations, which needs to be factored out for explicitly.  The later

approach views the LRD characteristics of individual services types as underlying cause for

self-similarity but maintains the view that the traffic is stationary.

In a self-similar framework, stochastic self-similarity expresses how the probabilistic structure

of a process varies with the time scale.  There are two broad approaches to self-similar traffic

modelling:

• Fractional Brownian/Gaussian Motion as advocated by Leland, Veitch and Norros

[LEL94, VEI92, NOR93, NOR95].  These models have the attraction of parsimony i.e.

they use a small number of parameters.  These models use H as their principal parameter.

However these models have a drawback in that they lack the intuitive relationship to

underlying physical process, and the traces they produce may not have the specified H.  It

is this last point that prevents their use as an on-line model, or

• Chaotic maps as advocated by Erramilli and Pruthi [ERR94a, 94b, 94d, 95a,PRU95a,

95b].  Here the models utilise non-linear dynamical ideas to model traffic.  These models

were limited in application by analytical tractability and poor aggregate modelling.

However they have the advantage of parameter parsimony and are predictable with

respect to the H obtained.  Furthermore these models have an intuitive relationship to the

underlying physical ON-OFF process.  These factors permit their on-line use and

combined with dynamic parameter changing enables the self-similar framework to

address non-stationary issues as well as LRD.

2.2 Characteristics of High Speed Network Traffic
 Fowler [FOW91] reported on studies conducted at the end of the 1980's and early 1990's that

packet traffic exhibited burstiness over a large number of time scales.  There had been earlier

studies that had also reported similar results [SHO80] and independent studies which had

confirmed the scale of the observed burstiness and the failure of current models to portray this

behaviour [PAX95].  Fowler’s study is important because it was the first time that accurate

measurements were made at fine time scales and thus the scaleability of a burst was reliably

observed.  These bursts existed at every time scale, from milliseconds to days and they looked

similar independently of the time scale, i.e. the traffic is self-similar.  One characteristic of this

self-similar traffic is that it is correlated at all time scales of engineering interest, i.e. the traffic

has LRD.  The self-similarity and the LRD are quantified by the Hurst parameter H (½≤H<1).

Large values of H correspond to larger fluctuations on the burst size and stronger correlations

in the traffic.  The significance of this observation lies in the correlation structure of the LRD
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traffic.  A traffic source that possesses a sojourn distribution whose tail probabilities decay as

a power rather than an exponential law is said to have a “heavy tail”.  It is this heavy

tailedness, exhibited as non-negligible correlations in the traffic over large lags which is

known as LRD.  Heuristically, one can view the individual traffic stream correlation as

overhanging each other when aggregated, causing an increase in the probability of the large

aggregated bursts occurring.  More importantly the aggregated traffic streams do not tend to

white Gaussian noise (see Figure 2.1).  In actual fact the aggregated traffic process tends

towards a second-order statistically self-similar process which remains bursty over many time

scales [TAQ97, WIL97].  We can state this more clearly in the following way:
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 This burstiness over many time scales combined with LRD is a characteristic of fractal time

series.  These time series are dominated by their low frequency behaviour.  For various and

more detailed explanations of this, the interested reader is directed to [TAQ86, TAQ97,

BER94, BER95, ERR96a, KRI96].  This low frequency behaviour of the traffic poses

problems for the traffic control schemes designed for ATM.  In ATM preventative congestion

control is preferred over reactive congestion control schemes.  This is because the reactive

control becomes inadequate in terms of response times for the high bit rates used in ATM

[CHET95].  The preventative measures are concentrated in the connection admission control

schemes (CAC) used to make decisions on the acceptance of calls into the system.  Leland et

al [LEL93, LEL94] have studied the effectiveness of CAC in the context of LRD traffic and

found that CAC cannot minimise the congestion within the network and increasing buffer

sizes appear to have no effect.

 

Real Traffic Markov Models

©1994IEEE

Figure 2.1 Real traffic trace against Markov model based trace for the same load. (The picture
is taken from figure 4 in [LEL94].  Reproduced with permission).

2.3 Effects of Self-similarity on Queues
 The burstiness in the traffic measurements stems from the fluctuations in the heavy tailed

distributions of the individual traffic sources [LEL94, TAQ97, WIL97].  The probability of

higher buffer occupancy has been linked to heavy tail distributions [NOR93, 95].  Practically

the increase in probability has a drastic effect on the buffer occupancy since providing more

buffer space is not a solution to buffer saturation [ERR96].  Eventually the buffer will fill up.
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The implication of an increasing value of H is that it ultimately leads to higher buffer state

occupancy [NOR93, ERR96] and hence increased probability of network congestion.

Analysis of queueing systems fed by self-similar traffic has been undertaken.  The theoretical

basis for the analysis of FBM source fed queues stems from Taqqu [TAQ86, 97] and Norros

[NOR93].  Taqqu has theoretically shown that the aggregation of heavy tailed ON/OFF source

models tends to FBM.  Norros [NOR93] has shown that the queue length distributions are of

the stretched exponential type.  Taqqu’s theoretical predictions have been evidenced in real

traffic measurements by Willinger [WIL97].  The effect of self-similar traffic on the queue

blocking probability using Norros’ blocking formula [NOR93] for a given load and varying

H.can be seen in Figure 2.2.
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Figure 2.2  Queue state occupancy P(K>k) for 50 homogenous sources, with LRD (α =1.5)
and mean load ρ = 0.7, for different self-similar traffic.  H=0.5 equates to Poisson traffic

 One approach which one would have thought would reduce the impact of self-similar traffic

on the network buffers would have been traffic shaping.  One would have thought that

spreading the burstiness of the individual traffic sources would have altered the characteristics

of the traffic sufficiently to the point where individual traffic streams did not become a

problem.  Unfortunately this is not the case [LEL94].  Work undertaken recently by Molonár

[MOL97] shows that shaping will not alter greatly the self-similarity present in the traffic.  A

robust indication of this could be implied form the work of Erramilli [ERR96] where

experiments on reshuffled LRD data were undertaken.  Essentially the entire order of a data

stream had to be shuffled randomly before the LRD nature in the stream was lost.  If all the

LRD streams are shaped then all that is achieved is an extension over the period over which

the self-similar traffic is present.  This is because shaping still preserves the order of the data

and the queue acts as a low pass filter.  Naturally, the effects of self-similarity has motivated

others to assess the impact of LRD in terms of queueing performance [ERR96a], Quality of
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Service [DUF95b]3, bandwidth allocation and short term traffic prediction [NOR95], and the

length of time necessary for effective correlation analysis of traffic [ADD95].  While others

[BER95] have examined particular types of traffic for LRD.

2.4 Traffic Modelling
 Conventional stochastic source models have a very intuitive interpretation in the form of

simple ON-OFF models.  These models have been extended to reflect aggregate traffic

behaviour in the form of Markov Modulated models.  Unfortunately these models are hard to

parameterise.  The conventional models are also restrictive since they describe real traffic only

over a single time scale.  They do not have LRD (see Figure 2.1).

 

 There exist alternative stochastic traffic models known as FBM, and its incremental process

FGN [MAN68a, 68b, 68c, NOR93, 95].  These models describe the traffic characteristics of

real traffic, the self-similarity and LRD.  These models were developed as a modification to

standard Brownian Motion (SBM).  SBM can be interpreted as the limit of a random walk.

SBM is an attractive model for computer networks because the first order approximation of

the arrival behaviour in such a network can be viewed as independent events and can thus be

viewed as a form of random walk.  For introductory reading on SBM see Ross [ROS87].  The

problem with SBM is that it does not describe the traffic witnessed by Leland and Fowler in as

much as the variance does not scale as the sample size increases.  What is required is a

stochastic process that is similar in definition to SBM but with additional scaling properties.

FBM and FGN have correlation structures that scale and which are parameterised by the Hurst

parameter H.  Various models have been proposed using this process as the basis of the

models for network traffic which exhibit burstiness (see for example [VEI92, NOR93, LEL94,

HUA95, LAU95]).  These models have the additional appeal that for aggregate traffic

modelling they can be parameterised in a parsimonious way (have few parameters).  However,

these models do not have the intuitive appeal that the conventional models have and the traffic

traces produced by these models are generated off-line.

 

 There are traffic models based on non-linear chaotic maps that reproduce the properties of real

traffic [ERR94a, 94b, 95a, 95b, I, II].  The chaotic map approach stems from an iterated

dynamical systems approach to modelling4.  The type of chaotic map that we are interested in

is one that displays intermittency.  Intermittency in this context means that the orbit of the

map has protracted episodes of smooth behaviour interrupted by transitory bursts of activity.

Intermittency is one of the transitory paths to chaos [POM80].  A map which has orbits that

are intermittent also has LRD.  It has been shown that when such source models are

aggregated they produce self-similar traffic [PRU95b].  These models are attractive because

                                                          
3 Note:  In reality this is a large deviation theory approach.  However it is included here
because it attacks the same problem of an event occurring in the tail of a distribution.
 4 The interested reader is directed to [COL80, GUL92, DEV94, MAC95, SCHU95] for good
introductions into this subject of iterated dynamical systems.
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they retain the intuitive feel of the conventional ON-OFF model, possess the required self-

similarity and can be used on-line.  This topic will be covered in greater depth in Chapter 4,

and throughout the rest of this thesis.  However these models are difficult to analyse and have

not been characterised fully.

2.5 Alternative Approaches to Traffic Modelling
 Although we have concentrated on a self-similar interpretation of the traffic traces - an

interpretation which assumes stationarity, we can equally interpret the traffic as not being

stationary [DUF94a, VAT98].  Under this interpretation we can use large deviation theory to

assess the impact of bursty traffic on the system queues.  In this approach the adequacy of

Markovian models is accepted and large deviation techniques are used to assess the impact of

the rare event "large bursts" on a queueing system.  The large deviation principle comes from

risk theory and was developed by the Swedish Mathematician Harald Cramér.  The theory

predicts the probability of rare events.  We are interested in the tail of queue length

distributions and more importantly the probability of buffer overflow.  Large deviation theory

states that the tail of a queue decays as

 ( )P Q q e q> ≈ −δ ,

 (2.1)

 where -δ is the asymptotic slope of the queue length distribution as the queue state becomes

large, Q is the queue length and q is a given queue state.  What this states is that for higher

queue states the queue length decays linearly on a lin-log plot.  This information can also be

used to accept/reject calls entering a network.  This has led to the formulation of CAC

algorithms based on this principle [DUF94b, 94c, 95a, 95b].  The main point of contention

between self-similar traffic modelling and large deviation assessment of traffic is that for the

large deviation approach to hold, equ.(2.1) implies that the traffic is not LRD.  This

assumption questions that validity of self-similarity which requires LRD to be present in the

traffic in order for the traffic to exhibit self-similarity.

 

 Naturally there have been approaches which combine self-similarity and large deviations

theory in order to arrive at some qualitative characterisation of the effects that self-similar

traffic has on network buffering systems.  These approaches have led to the notion of the

cross-over effect [KRI96, FAN97].  This effect describes an increase in the multiplexing gain

in the buffering system when streams of self-similar traffic are multiplexed.  The point in this

approach is that while the traffic is in the cross-over region, Markovian models (those with

H=0.5) provide good (conservative) estimates for the buffer size required by the systems to

cope with self-similar traffic streams.  However, doubt has recently been cast as to the validity

of cross-over effects in high speed networks [III].

 

 The practicalities of modelling and/or assessing the effects of the traffic ultimately influence

the chosen method.  For example, the large deviation method assumes that there is quite a lot
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of knowledge about the sources feeding a network.  Conversely, the LRD approach assumes

very little about the source other than it is an ON-OFF source that has protracted sojourn times

in either state [TAQ97].  This last assumption is quite attractive since it cuts down on the

complexity of the problem at hand and hence may influence the choice of technique.

2.6 Chaotic Maps and Traffic Modelling - Putting Things into Context
 The generally accepted view on traffic measurements and modelling expressed during the

debate held in the Hot Topics session on self-similar traffic of Performance96 conference held

in Lausanne Switzerland in October of 1996, was as follows.

 

 There was a great deal of discussion on whether the traffic measured was self-similar or not.

Basically, the competing camps polarise into either LRD and self-similarity, or into large

deviations.  The conflict between the two lies in the interpretation of the measured traces as

being stationary or not.  In the large deviation approach the traces are assumed not to be

stationary or at least to be stationary and mixing (i.e. the theory takes into account the causal

effects) whereas the self-similar approach assumes that the traffic is stationary but with

stepped increments.  In order to solve this quandary, effort was placed on the search for causal

effects.  Again the causal effects are divided into two camps.  The large deviationists are

looking at network behavioural changes in order to justify their approach.  An example of this

is the correlation between changes in network activity and network user idiosyncrasies, i.e.

breaks for lunch time, coffee, etc.  This type of correlation is being given as a reason for the

network not being stationary and therefore not self-similar.  The long range dependencists are

looking at the traffic type as the cause of self-similarity.  For example, they are looking at long

file transfers which are independent of the time of day and which therefore cause the traffic to

be stationary but with increments.

 

 Notwithstanding the comments on stationary/non-stationary traffic, what the practitioners of

network design are looking for is a reasonable general modelling/traffic assessment tool and

so are open to both ideas (large deviations and self-similarity).  Presently there is a movement

away from the current Black Box approach to traffic modelling (Box-Jenkins).  This stems

from the following argument.  The traffic traces taken, for example, from a network at midday

on Tuesday and which are subsequently used to characterise traffic in a simulator will bear no

resemblance to the traffic traces taken at the same time the next day on the same network, i.e.

the traffic traces are too diurnally dependent.  This diurnal dependence favours the large

deviation approach proposed by Lewis, Duffield, O’Connell, Crosby and co-workers [CRO-A,

CRO-B, DUF94a, 94b, 95a, 95b, OCO], provided that the causal effects are known.  The

counter argument to this is that the traffic traces look self-similar and that they can be shown

to have Hurst parameters greater than ½, indicating that the traces are positively correlated and

that the self-similarity is due to independent increments.
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 From the preceding paragraph we can see that the traffic traces of Fowler and Leland have

proved to be very interesting.  The traces called into question:

• the suitability of Markov based models;

• the assumption of stationarity;

• the causal effects of the behaviour observed in the traces; which in turn,

• questioned the generality of the modelling methods used to study the observed behaviour.

 The position we take in choosing to study non-linear map models that produce self-similarity

we are agreeing implicitly with those who say that data traffic is self-similar.  There are two

very good reasons for agreeing with this position:

• all the causal effects (infinite knowledge) of a system can never be known; and

• in order to begin to understand the complexity of the behaviour that has been witnessed we

need to abstract out as much of the complexity as possible but at the same time retain the

complex behaviour.  Using self-similar models goes some way to achieving this.

Moreover, this type model can also address the non-stationary aspect traffic modelling since

these models can generate traffic and have their parameters altered on-line.  This is in contrast

to the FBM/FGN approach to traffic modelling since the traffic traces are generated off-line

with their parameters fixed for the duration of the trace generation.

Finally, it is preferable to have an intuitive element in any approach used to modelling self-

similar traffic.  This intuitive appeal can have far reaching consequences in as much as it can

lead to insight that permits problems to be approached in fresh ways.  Non-linear models

permit this kind of approach because there is an intuitive connection to the underlying

physical ON-OFF process, which may render a new perspective to traffic modelling/control

problems, i.e. that of chaotic dynamics and chaotic control.  This thesis sets out to exploit the

potential that these non-linear models have by furthering their analysis and the development of

source aggregation methods for chaotic map models.
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3 Stochastic Self-similarity and Teletraffic Modelling
Stochastic self-similarity was first alluded to by Mandelbrot in the late 1950's and early

1960's.  The usefulness of his approach to measuring highly variable traffic only came to light

and popularity in the late 1980's and early 1990's through the results presented by Fowler

[FOW91].  Stochastic self-similarity as applied to time series is the preservation of the

probabilistic structure of the time series as the time scale over which measurements are taken

increases.  The degree of stochastic self-similarity in the probabilistic structure is expressed

through the Hurst parameter H ( )10 ≤≤ H  and can be seen in the scaling of the sample

variance.  A value of 
2
1>H  implies positive correlations and affects convergence of the

sample variance and the correlation decay.  This effect is termed long range dependence

(LRD).  Formulations exist which link the sample variance, the correlation decay and LRD to

H.  Stochastic models such as FBM/FGN are based on the definition of H.  The estimation of

H becomes increasingly difficult as H approaches its upper limit (1) because of its slow

convergence, which in turn makes parameterisation of self-similar models troublesome.  For

this reason knowledge of the error bound on H is essential.  An alternative to stochastic self-

similar models is to aggregate ON-OFF models that have LRD in at least one of its states.

The aggregation of this type of ON-OFF model tends to FBM.  Chaotic map formulations of

the ON-OFF models with LRD will be covered in the next chapter.  This chapter introduces

the fundamentals required to understand self-similarity, long range dependence, the Hurst

parameter, and self-similar processes.

3.1 Traditional 1/N Sample Convergence
The difference between “traditional” time series and self-similar time series lies in the

dependence of sample estimates to converge on their true values as a function of the number

of samples.  In “traditional” time series this convergence goes as N −1 , where N is the number

of samples.  In self-similar time series the convergence is much slower and goes as N −β

where 0 1< <β .

Traditionally we say that the sample variance decays as the inverse of the sample size.  This

occurs under the following conditions.  Suppose we have taken a series of samples

{ }X X X N1 2, , ,L  which are independent and identically distributed (IID) and where

• the mean ( )µ ≡ E X i exists and is finite, and

• the variance ( )σ 2 ≡ var X i exists and is finite.

 Under these conditions, the sample mean is given by

 X
N

X i

i

N

=
=
∑1

1

.

 (3.1)
 The variance of the sample mean is
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 and since by definition ( )σ 2 = var X i  then we can see that the variance of the mean decays as

a function of the sample size ( )var X
N

=
σ 2

†.  The type of behaviour leading from this

assumption is given by the right hand side of Figure 2.1.

3.2 Stationarity and Ergodicity
 The analysis of stochastic time series depends on the stationarity of the realisation process.

Moreover, stationarity implies that the realisation process of the traffic is Ergodic.  Both

concepts are central to the analysis of stochastic time series.

 

 A stationary process can be loosely defined as one in which the statistical properties of the

process do not change over time.  By this we mean that the system has reached equilibrium in

the sense that realisations of the process at a particular time look as the same other realisation

of the process at some time displaced from the original instance of measurement.  Priestly

[PRI94] terms this “Statistical Equilibrium”. There are two types of stationarity that we are

interested in.  These are “Completely stationary” and “Stationary up to order m”.  As we shall

see the former is a much stricter definition of stationarity.  In practice the latter definition is

more usually used.

 

 Definition - Completely Stationary [PRI94].  A stochastic process {X(t)} is said to be

completely stationary if for any admissible  t1,t2,…,tn and any k, the joint probability

distribution of {X(t1),X(t2), … ,X(tn)}  is identical to the joint probability distribution of

{X(t1+k),X(t2 +k), … ,X(tn +k)}.  Priestly further clarified this point by stating the following

property

 ( ) ( ) ( ) ( ) ( ) ( )F x x F x x
X t X t n X t k X t k n

n n1 1
1 1, ,
, ,

L L
L L≡

+ +

 (3.3)
 where F(.) denotes the distribution function of the random variables X(ti).  What equ.(3.3)

states is that in probability the process structure of a completely stationary process is invariant

under time, i.e. any shift in the time origin does not affect the distribution function.

 

                                                          
† We can say this because the definition of ( ) [ ] [ ]( )var X E X E X= −2 2

, and because of the

independence between samples we can  say ( )var X E
N

X E
N

Xi
i

N

i
i

N

=












−
























= =
∑ ∑1 1

1

2

1

2

. This

reduces to ( ) [ ] [ ]( ) ( ) ( )
var

var var
X

N
E X E X

N X

N

X

Ni i
i

N
i i

= −


= =
=
∑1

2

2 2

1
2  and hence 

σ

N
.
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 The stationarity definition given above is, for practical purposes, a little too stringent.  It is

very difficult to obtain a real random process especially those realised in network traffic which

do not posses fluctuations which would prevent them from being considered completely

stationary.

 

 Definition - Stationary up to order m [PRI94].  A stochastic process {X(t)} is said to be

stationary up to order m  if for any admissible  t1,t2,…,tn and any k, the joint moments up to

order m of {X(t1),X(t2), … ,X(tn)} exist and equal the corresponding joint moments up to order

m of {X(t1+k),X(t2 +k), … ,X(tn +k)}.  That is to say

 ( ){ } ( ){ } ( ){ } ( ){ } ( ){ } ( ){ }E X t X t X t E X t k X t k X t k
m m

n

m m m

n

mn n

1 2 1 2
1 2 1 2

L L






= + + +





 (3.4)
 What equ.(3.4) states is that all moments of the process up to order m are independent of time.

In particular what we seek is stationarity up to order m=2.  This implies that the mean and

variance of the process are independent of time i.e.

• the mean of the process: ( )[ ]E X t = µ  is a constant (i.e. independent of time)

• the second moment of the process: ( )[ ]E X t2
2= µ '  is also a constant

• hence, the variance: ( )( )var 'X t = − =µ µ σ2
2 2  is also independent of time.

 Furthermore, we are in a position to simplify the time dependence of the covariance structures

of the process so as to include the time of measurement only, i.e.

• ( ) ( ){ } ( ) ( )[ ]cov X t X s E X t X s≡ − µ 2 .  Because the mean is independent of time then the

only time dependence that exists in the structure is due to t and s which amounts to the lag

involved in the measurement.

 

 Ergodicity is an important concept that was originally used in statistical mechanics (G.

Birkoff).  It deals with the behaviour of time averages of a system.  If a system is ergodic then

the time average over a limited number of finite points, N say, will produce an estimate of the

average which as N → ∞  will converge on the true average value.  The implication of

ergodicity is that the system does not have any “strange” states in which the system can

remain indefinitely.  Even if the system starts in a “strange” state it will eventually escape this

state and behave in an average (equilibrium) like manner.5  This is a difficult concept to prove

in many real systems.  For this reason ergodicity is often assumed (a reasonable assumption

often borne out of measurement).  In our case the system is the stochastic process which yields

the behaviour of network traffic and we assume it to be ergodic.  Under this assumption we

expect measurements of network traffic taken over a set of measurement days to be

representative of the network traffic behaviour.

                                                          
 5 For more of an explanation of this see [GAR95] pp 61-63.
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3.3 Self-similar Processes
 There are many forms of self-similarity.  The most obvious forms that one can usually

imagine are geometric fractal shapes where the shape is repeated at all scales.  As the observer

zooms in and out on the shape he observes recursively the same shape.  An example of this is

a Koch curve (see [SCHR91] p8).  In 1941 Kolmogorov introduced self-similar processes in

the context of turbulence in fluids.  Much later Mandelbrot and co-workers put self-similarity

into a statistical context.  Their motivation was to find a model that captured the high

variability observed by Hurst in measurements of reservoir water levels.  In stochastic

processes the recursive nature of self-similarity cannot be readily seen.  The fractal behaviour

in a self-similar stochastic process lies in the relationship of the probability distribution to the

number of measurements required to determine the distribution and can be described as

preserving the probabilistic structure of a process regardless of the time scale.

3.4 Stochastic Self-similarity
 Definition - Stochastic self-similarity.  Let Z(t) be a stochastic process with continuous time

parameter t. Z(t) is called self-similar with self-similarity parameter H, if for any positive

stretching factor α, the re-scaled process with time scale αt, ( )α α− H Z t  is equal in

distribution to the original process Z(t)

 ( ) ( )Z t Z t
d

H= −α α .

 (3.5)
 By rearranging this we can restate this as

 ( ) ( )α αH

d
Z t Z t=

 (3.6)
 where H is the Hurst parameter and, ( )H ∈ 0 1,  and =

d
 means equal in distribution.  The

discrete version of this for discrete samples, Yn, of a self-similar process is

 Y t Yt
d

H= 1.

 (3.7)
 The Hurst parameter describes the degree of self-similarity.  For H>0.5 the realisation of the

process has positive correlations.  For H< 0.5 the realisation of the process has negative

correlations.  For H=0.5 the realisation of the process is totally random in the sense that the

realisations produce uncorrelated random variates.  An example of a process with H=0.5 is

traditional Brownian motion.

 

 In practice, stochastic self-similarity means that the traces of Z(t) and Z(α t) look qualitatively

the same up to the scaling /stretching factor used.  However, it should be noted that, unlike the

self-similarity present in fractal sets such as Mandelbrot and Julia sets in which the detail of a

picture is preserved exactly as we zoom in and out from the picture, stochastic self-similarity

preserves the probabilistic structure of the picture as we zoom in and out in terms of time

scales.



Chapter 3: Stochastic Self-similarity and Teletraffic Modelling

Telecoms Research Group. Queen Mary and Westfield College, University of London

29

3.5 Partial Sums
 An important factor in determining whether a time series is stochastically self-similar lies in

the behaviour of its partial sums.  In this respect we expect to see some form of scaling of the

stochastic attributes of the time series over subsets of the complete time series.  In order to

explain this further we define stationary increments of a time series.

 

 Definition - Stationary Increments of a Time Series [BER94].  If for any k ≥ 0 and any k time

points, t t tk1 2, , ,L , the distribution of ( ) ( ) ( ) ( )( )Z t c Z t c Z t c Z t ck k1 1 1 1+ − + − + − + −, ,L

does not depend on c R∈ , then we say that Z(t) has stationary increments.

 

 The above definition is needed so that we can state the following theorem which links partial

sums which we have used earlier in the magnification of the time series to the stochastic self-

similarity parameter H.  The theorem is stated without proof.

 

 Theorem - Relationship of normalised partial sums to the Hurst parameter H [BER94].

Suppose that Z(t) is a stochastic process such that Z(1) ≠ 0 with positive probability and Z(t) is

the limit in distribution of the sequence of normalised partial sums

 ( )
[ ]

S

a a
X i n

Nt

N N i

Nt

= =
=
∑1

1 2
1

, , ,L .

 (3.8)
 Where [ ]Nt  indicates the integer part of N t, ( ) ( )X X1 2, ,L  is a stationary sequence of

random variables and a a1 2, ,L  is a sequence of positive normalising constants such that

( )ln a N → ∞ .  Then there exists a H > 0 such that for any b > 0 ,

 lim
N

Nb

N

Ha

a
b

→∞
= .

 (3.9)
 This is an important theorem since it links the scaling through partial sums of a time series

X(t) to the self-similarity parameter H.  All self-similar processes with stationary increments

and H>0 can be obtained by partial sums from times series of the type defined above.

3.6 Symptoms of Self-similarity
 We can assess heuristically whether data gathered from a system is self-similar.  There are

certain symptoms that prevail in systems which are stochastically self-similar.  These

symptoms usually include the following:

• The variance of the sample mean appears to decay to zero at a slower rate than 1/N where

N is the sample size.  Moreover the rate of decay is more likely to be of the form 1/Nα

where α exits in the interval α∈(0,1).
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• The sample correlations ( ) ( ) ( )$ $ $ρ γ γk k= 0  decay at a rate proportional to the lag k i.e.

( )$ρ αk k≈ 1 again for some α in the interval α∈(0,1).

• The periodogram and spectral profiles of the sample data are divergent as the frequency

tends to zero, ( )f ω ω α≈ − .  More specifically, on a doubly-logarithmic plot of amplitude

against the frequency we observe a decay with a negative slope for some α in the interval

α∈(0,1).

Figure 2.1 shows typical traffic traces that display stochastic self-similarity and 1/N sample

convergence.  The left-hand side of the figure displays stochastic self-similarity, i.e. the upper

and lower traces appear the same regardless of the aggregation level.  The right-hand side of

the figure shows a good example of a stochastic process in which the assumption that the

variance has an inverse dependence on the sample size holds.

3.7 Long Range Dependence
LRD can be thought of in traffic measurements as there still being a high degree of

correlations between measurements long after we expected there to be none.  Unfortunately

there is no absolute dividing line between LRD and Short Range Dependence (SRD).  As we

shall see later Taqqu [TAQ86,97] and Willinger [WIL97] have connected the aggregation of

traffic sources which display LRD to stochastic self-similarity.  LRD can be defined in the

time and frequency domains.  Both definitions are equivalent.

Definition - Correlation decay [BER94].  Let X(t) be a stationary process for which the

following holds.  There exists a real number α in the interval α∈(0,1) and some constant Cρ

>0 such that

( )lim
k

k
C k→∞

=ρ
ρ

α

1
,

(3.10)

where C
C

ρ
γ

σ
=

2
and ( )( ) ( )( )C C H Hfγ π= − −2 2 1 1

2Γ sin .  Then X(t) is called a stationary

process with long memory or LRD or strong dependence, or a stationary process with slowly

decaying correlations or long range correlations.

Definition - Spectral decay [BER94].  Let X(t) be a stationary process for which the following

holds.  There exists a real number α in the interval α∈(0,1), and a constant Cf >0 such that

( )lim
ω αω

ω→∞
=f

C f

1
,

(3.11)

where ( ) ( )( )C C H Hf = − −
σ
π

πρ

2

2 1 1Γ sin  and ( )( )σ 2 = var X t .  Then X(t) is called a

stationary process with long memory or LRD or strong dependence, or a stationary process.
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The definitions given above merely state what has been observed in terms of decay with

increasing lag and the shape of the spectral decay as the frequency tends to zero.

3.8 Hurst Parameter’s Relationship to Decay Rates
What the preceding definitions have not said is how these decays relate to the Hurst

parameter.  What we now give are two theorems, given without proof, of how these decays

relate to the Hurst parameter.

Theorem - Hurst parameter’s relation to Spectral decay [BER94].  Suppose that the

definition of correlation decay holds with the following constraint on α: ( )0 2 1 1< = − <α H .

Then the spectral density exists and asymptotically has the following form

( )
( )

lim
ω

ω
ω→∞ −=f

C Hf
H

1
1 2

(3.12)

where ( ) ( )( )C C H Hf = − −
σ
π

πρ

2

2 1 1Γ sin  and ( )( )σ 2 = var X t .

Theorem - Hurst parameters relation to Correlation decay [BER94].  Suppose that the

definition of the spectral decay holds with the following constraint on α: 0 2 1 1< = − <α H .

Then the correlation decay exists and asymptotically has the following form

( ) ( )lim
k Hk

C k→∞ −=ρ
ρ

1
2 1

(3.13)

where C
C

ρ
γ

σ
=

2
and ( )( ) ( )( )C C H Hfγ π= − −2 2 1 1

2Γ sin .

The two previous theorems rely on the correlation and spectral decays for their relationship to

the Hurst parameter.  Another statistical property of a time series which it is convenient to

relate to the Hurst parameter is the variance.

Theorem - Hurst parameters relation to the variance of the time series [BER94].  Let X(t) be

a stationary process with LRD.  Then

( ) ( )lim var
N

i

N H

X i
C N

H H→∞ =
∑









 =

−
1

2

2 1
γ

,

(3.14)

where N is the number of samples and ( )( ) ( )( )C C H Hfγ π= − −2 2 1 1
2Γ sin .

Observation:  Here we note that all of the relationships to H are of an asymptotic nature.  This

has a practical significance which is most ably demonstrated by the spectral decay.  In order to

measure high values of H we have to wait a long time for the very rare events to “cycle” by.
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This means that for high H we have to wait for a (very) long time for estimates of H to

converge.

3.9 Stochastic Self-similar Models
The two most common stochastic self-similar models were developed by Mandelbrot and co-

workers in the 1960’s [MAN63, 65, 68a, 68b, 68c].  These models are FBM and FGN.  FBM

is a non-stationary stochastic process that was developed as a generalisation of the standard

Brownian motion model.  FGN is a stationary process.  FGN is related to FBM since FGN is

produced by taking the differences in FBM realisations.

FBM is a type of Gaussian random function based on standard Brownian motion.  If B(t) is

standard Brownian Motion and H is some parameter in the range 0<H<1 then FBM of

exponent H is a weighted moving average process of dB(t) in which past increments are

weighted by a kernel function ( )t s
H− − 1

2 , i.e.

( ) ( ) ( ) ( )B t
H

t s dB sH
H

t

=
+

− −

−∞
∫

1
1

2

1
2

Γ
.

(3.15)
We can see from this structure how LRD arises to give self-similar behaviour.  The realisation

of the self-similar process takes into account all past realisations.

Definition - Fractional Brownian Motion [MAN68a].  Fractional Brownian Motion of Hurst

exponent 0 1< <H  is a zero mean Gaussian process ( ){ }B t t RH , ∈  such that

1. ( )BH 0 0=

2. ( ) ( )B t N tH
d

H= 0,σ

3. ( ) ( ) ( )B t B t NH H
d

H+ − =δ σ δ0, .

That is to say: normal distributed non-stationary zero mean process that has a variance that

scales exponentially with H.  FGN is the incremental process of FBM and as such it is a

stationary process.

Definition - Fractional Gaussian Noise [MAN68a].  Fractional Gaussian Noise of Hurst

exponent 0 1< <H  is a zero-mean Gaussian process ( ) ( ){ }G t t R RH , , ,δ δ ∈ × +  defined by

( ) ( ) ( )( )G t B t B tH H H,δ δ
δ= + −

1
.

(3.16)

Having defined stochastic self-similar processes we now go on to examine the covariance

structures of such processes.
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3.10 Auto-Covariance Structure of Self-similar Processes
The covariance, γ(.), is first product moment about the means of two random variables and is

defined as

( ) ( )[ ] ( )[ ]{ }γ µ µt t E X t X t1 2 1 2, ≡ − − .

(3.17)
We could compare displaced samples of the same series.  This is termed the auto-covariance

and is defined as

( ) ( )[ ] ( )[ ]{ }γ τ µ τ µt E X t X t1, ≡ − + − .

(3.18)
The auto-correlation, ρ(.), is defined in terms of the autocovariance,

( ) ( )
( )

ρ τ
γ τ
γ

≡
0

.

(3.19)
We recall that FBM is a zero-mean process with stationary increments.  Consider discrete

samples Yt, Ys of an FBM process with s<t.  The covariance function is

( ) ( )γ Y t st s Y Y, cov ,= .

(3.20)
Because FBM is a zero-mean process we can write the variance as

( )[ ] [ ]σ 2
1

2

1
2= − =−E Y Y E Yt t ,

(3.21)
and because of stationary increments we can say

( )[ ] ( )[ ] [ ]E Y Y E Y Y E Yt s t s t s− = − =− −
2

0
2 2 .

(3.22)
Using the self-similar property, see equ.(3.7), and the result of equ.(3.21) then we write

[ ] [ ]E Y t E Y tt
H H2 2

1
2 2 2= = σ

(3.23)
and equ.(3.22) as

[ ] ( ) [ ] ( )E Y t s E Y t st s
H H

− = − = −2 2
1
2 2 2σ .

(3.24)
The covariance can be written in an alternative manner

( )[ ] [ ] [ ] ( )E Y Y E Y E Y t st s t s Y− = + −
2 2 2 2γ , .

(3.25)
By substitution of equations (3.23) and (3.24) in the above we obtain

( ) ( )t s t s t sH H H
Y− = + +2 2 2 2 2 2 2σ σ σ γ , .

(3.26)
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Hence

( ) ( ){ }γ
σ

Y
H H Ht s t s t s, = + − −

2
2 2 2

2
,

(3.27)
which is the auto-covariance structure of FMB.

Recall that FGN is the incremental process of FBM, X Y Yt t t= − −1 , which is stationary and

has a zero-mean.  The auto-covariance  function is then

( ) ( ) ( ) [ ]γ X t t k k t t kk X X X X E X X= = =+ + +cov , cov ,1 1

(3.28)
because of stationarity.  We can write the product term X Xt t k+  as

X X X X

X X X X

t t k k

j

j

k

j

j

k

j

j

k

j

j

k

+ +

=

+

= = =

+

=

=










 +











 −











 −











∑ ∑ ∑ ∑

1 1

1

1
2

2

2

1

2

2

1
2

.

(3.29)
By using equ.(3.29) and substituting X j  by Y Yj j− −1  in the summations and expanding we can

write the auto-covariance as

( ) ( )[ ] ( )[ ] ( )[ ] ( )[ ]γ X k k k kk E Y Y E Y Y E Y Y E Y Y= − + − − − − −
+ −

1

2 1 0

2

1 0

2

0

2

0

2
.

(3.30)
We use equ.(3.24) in the above and obtain

( ) ( ) ( ){ }γ
σ

X
H H Hk k k k= + − + −

2
1 2 12 2 2 .

(3.31)
We are interested in the behaviour as k→∞.  To do this we write equ.(3.31) as

( ) ( ) ( )γ
σ

X

H

k

H

k

H
k

k
= + − + −



2
1 2 1 2

2
1 2 1

(3.32)
and define the function g(.)

( ) ( ) ( )g x x x
H H≡ + − + −1 2 1

2 2
.

(3.33)
The covariance is then

( )γ
σ

X

H

k
k

g
k

= 





2

2

1
.

(3.34)
We apply Taylor’s expansion to the function g(.) and obtain

( ) ( )γ σX
Hk H H k≈ − −2 1 2 2 .

(3.35)
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This is the asymptotic auto-covariance structure of FGN.  We can see clearly form equ.(3.27)

that FBM is not stationary and from equ.(3.35) that FGN is stationary.  For more details on the

derivation of the covariance structures see Appendix A.

3.11 Estimators of the Hurst Parameter
The study of statistical estimators of H is a subject in it self.  There are many estimators of the

Hurst parameter.  Some are easier to understand than others.  The first statistical method for

estimating H was developed by Hurst in an attempt to capture the scaling of the variability

seen in hydrographic records.  The method he developed is called the Rescaled Range

Statistic, R/S, method.  This method is a good example of the partial sum approach to

estimating H (see section 3.5).  As we have seen earlier there are many relationships in terms

of decay to the Hurst parameter (for example the variance, correlation and spectral decays), all

of which can be adapted to give an estimate of H.  The interested reader is referred to [BER94]

Chapter 4 for more detail and discussion of the subject.  However not all these methods are

Maximum Likelihood Estimators (MLE).  We are primarily concerned with MLE because

some form of error bound on the estimate can be developed.  Until recently there was only one

reliable estimator of H.  This was Whittles MLE (see [BER94] Chapters 5 and 6).  The main

drawback with Whittles MLE was its evaluation time.  Recently newer methods have been

developed for estimating H based on wavelet transforms [ABR95, 98].  These methods are

more of a natural measure of H since wavelet transformations actually rely on scaling to work,

see for example Figure 1 in [ABR95 p19].  In this thesis we have used the wavelet method

developed by Abry et al for the measurement of H.

For a given octet range j1 to j2 the wavelet based estimator of H is given by the following

components.  A weight term given by

S
n

j j
= +

ln2

1

2

2

(3.36)
where n is the number of samples (must be a power of 2) and j is the octave in question, i.e. Sj

is the weighted sum of the number of samples of the octave in question.  ( )d j kx ,  is the kth

wavelet coefficient for the octave j.  The squared average coefficient wavelet value in log2

form given by

( )η j
j

x

k

n

n
d j k

j

=














=
∑log ,2

2

1

1
.

(3.37)
The estimator is then defined as
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( )$ ,H j j

S j S jS S

S j S jS

j
j j

j

j j
j j

j

j
j j

j

j j
j j

j

j
j j

j

j
j j

j

j
j j

j1 2

2

2

1

2
11

2

1

2

1

2

1

2

1

2

1

2

1

2

≡

−

−












+

























= = = =

= = =

∑ ∑ ∑ ∑

∑ ∑ ∑

η η

.

(3.38)
The variance is given by

( )
( )

( ) ( )( ) ( )
var $ ,

ln
H j j

n j jj

j j

j j j j
1 2 2

2 1
2 2

2

2

1 2

1 2 4 21

2 1

2 1 2 1

=
−

− − + +





−

− − − −
.

(3.39)
The confidence intervals are then

( ) ( )$ var $ , $ var $ ,H Z H j j H H Z H j j− ≤ ≤ +β β1 2 1 2 ,

(3.40)
where Zβ  is the 1− β quantile of the standard Gaussian distribution.

The estimator is speedy and can be programmed up relatively easily.  See [PRE94] for

routines which render the wavelet transform.  This estimator has been used as the preferred

method of measuring H used in this thesis.

3.12 ON-OFF Self-similar Traffic Modelling
Recently a connection has been established between ON-OFF sources and the appearance of

self-similar traffic in aggregated traffic streams [TAQ97, WIL97].  The theorem developed by

Taqqu et al [TAQ97] can be stated as follows:

“The superposition of many strictly alternating independent and identically

distributed ON/OFF sources (packet trains) each of which exhibits the Noah effect6

results in self- similar traffic”

The implication of this to teletraffic is that the ON-OFF model has sojourn lengths in the ON

and/or OFF states that can be very large with non-negligible probability.  This means that if

we are to model this type of traffic we require source models to exhibit sojourn characteristics

over a wide range of time scales.  In effect the sojourn characteristic of the stochastic model

has to be governed by the Noah effect.  The Noah effect can be modelled by heavy tailed

distributions with infinite variance or truncated state distributions.  The importance of the

Noah effect cannot be understated.  In fact Taqqu identifies the Noah effect as:

“essential point of departure from traditional to self-similar traffic modelling”.

This means that the intensity of the tail of the sojourn distribution controls the variance of the

distribution.  Moreover there is a relationship between the parameter which describes the tail

intensity and the Hurst parameter, H.  In reality the tail intensity describes the LRD and H

describes the overall self-similarity7.

                                                          
6 This is an analogous reference to the variability in Biblical flood levels witnessed by Noah.
7 Occasionally H is termed the Joseph effect.  This is another analogous reference to the
Biblical frequency of abundance and famine witnessed by Joseph.
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The practical significance of Taqqu’s results is that when there is a large enough number of

ON-OFF sources, the aggregated traffic converges to a second order self-similar process

within the bounds of natural cut off limits.  These natural limits are determined by the

following:

• lower cut off - this is a reflection of the behaviour of the medium access control (MAC)

protocol,

• upper cut off - this is a reflection of the natural diurnal variations.

 

 Taqqu’s theory relies on the superposition of alternating renewal processes which have

retention probability distributions which can be characterised by slow varying functions.  The

aggregation of many such processes leads in the limit to FBM.  Each reward process

represents a cell/packet train.  The reward process is defined in a strict alternating sense, i.e.

ON periods are always followed by OFF periods and viceverca.  This strict alternation

conforms to the accepted ON-OFF traffic source models.  The reward process for an

individual source is defined as:

 ( ){ } ( )W t t W t
while source is in ON state

while source is in OFF state
,

,

,
≥ =





0
1

0
.

 (3.41)
 W(t) as the reward at time t.  W(t) applies to the whole period in which the source is either ON

or OFF.  A further simplification is to assume that the lengths of the ON periods are IID as are

the lengths of the OFF periods8.  Taqqu then examines the time series of the aggregated

reward process of M traffic sources ( ) ( ){ }W t tM , ≥ 0 .  This is the superposition of the

cumulative call/packet counts from the M sources in the given time t,

 ( ) ( ) ( )W t W tM
m

m

M

≡
=

∑
1

.

 (3.42)
 If we assume that the aggregated process scales (i.e. has self-similar properties), then the

cumulative cell/packet count can be re-scaled by a factor T,

 ( ) ( ) ( )W Tt W t duM
m

m

MTt

* =










=
∑∫

10

.

 (3.43)
 This is the aggregated cumulative packet count in interval [0,Tt).  It is the stochastic behaviour

of W*
M(Tt) as T and M get large, i.e. as the time interval and the number of aggregated sources

increases, that is of interest.  The interested reader is referred to [FEL66] Chapter 11 for a

general treatment of renewal theory and [COX67] Chapter 6 for the superposition renewals.

                                                          
 8 This condition can be relaxed without affecting the end result in that ON-OFF periods may
have different distributions.
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 Taqqu’s theorem requires the ON-OFF distributions to be chosen such that the cumulate

traffic converges to FBM or the aggregated traffic (without cumulating) converges to FGN.  In

order to satisfy these conditions the ON-OFF distributions must be chosen such that as

M T→ ∞ → ∞,  the aggregated process ( ){ }W Tt tM
* , ≥ 0  adequately normalised becomes

( ){ }σ lim ,B t tH ≥ 0 , where BH(t) is FBM and has covariance structure dependent on H, and

σlim is a finite normalising constant determined by the behaviour of the sojourn distributions in

the ON and OFF states.  The normalising constant required by Taqqu’s theorem depends on

the complementary distribution of the sojourn time having the characteristic of a slow varying

function at infinity.  A function Lj(t) is slowly varying at infinity if for any multiplying factor

T > 1  the following limit holds, 
( )
( ) 1lim =

∞→ tL

TtL

j

j

t
.  The complementary distribution of the

sojourn time is the probability of remaining in the ON or OFF state.  In the general case of the

ON or OFF distributions, if the probability density is denoted by ( )f tj , then its distribution is

given by F t f x dxj j

t

( ) ( )= ∫
0

 and the complementary distribution is given by ( ) ( )F t F tjc j= −1 .

It is ( )F tjc  which must be heavy tailed and slowly varying at infinity.  For t → ∞ this function

can be approximated as ( )F t
l

t
L tjc

j
jj

( ) ≈ α .  Here we note that lj >0 is a constant and αj is the

tail decay rate.  The subscript j, j=1,2 refers to the ON and OFF states respectively.

 For 1 2< <α the variance σj is infinite and we define the constant aj to be 
( )

( )1

2

−

−Γ
=

j

jj
j

l
a

α

α
.

For α > 2 , σj is finite and we set αj=2, lj=1 and a j j= σ 2 2 .  The normalisation constant σlim

then depends on the ratio of the slow varying function in the ON and OFF states.  If we define

b as

 
( )
( )b

t

t

L t

L tt
=

→∞
lim

α

α

1

2

1

2

 (3.44)
 then if α α1 2= and 0<b<∞, in this case α α αmin = =1 2 .  Note αmin sets the largest value of H

and hence the dominant term is given by

 
( )

( ) ( )min
3

21

2
2

11
2

22
lim

4

2

αµµ

µµ
σ

−Γ+

+
=

aba
 and L=L2.

 (3.45)
 On the other hand ifα α1 2>  then b=0 or if α α1 2<  then b=∞, then we have a dominant α

term and
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( ) ( )min

3
21

min
2
max2

lim
4

2

αµµ

µ
σ

−Γ+
=

a
 and L=Lmin.

 (3.46)
 where min is the index 1 if b=∞, i.e. ON has the dominant sojourn, and min is the index 2 if

b=0, i.e. OFF has the dominant sojourn.

 

 Theorem - Homogenous Case [TAQ97].  For large T and M, the aggregated cumulative

traffic process behaves statistically like

 ( ) ( ) ( )W Tt TtM T L t M B tM
H

H
*

lim .=
+

+
µ

µ µ
σ1

1 2

 (3.47)
 where ( )H = −3 2αmin  and σlim is as outlined at equs.(3.45) and (3.46).  In fact the theorem

depends on convergence in probability as the limits of T and M are taken in the right order,

that is

 
( )

( )
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 (3.48)
 In the heterogeneous case we suppose that there are R distinctive types of r sources being

aggregated, i.e. r R= 1L  types of sources.  The characteristics of each source of type r are

denoted ( ) ( ) ( ) ( )F Lj
r r r r, , ,α σ .  If there is a total of M sources then there is a proportion

( )M Mr  of type r of the total number being aggregated and if we assume that this proportion

is not negligible as M → ∞ , then under these assumptions we can modify the homogenous

theorem in the following way.

 

 Theorem - Heterogeneous Case [TAQ97].  For large ( )M r , r R= 1L  and large T, the

aggregated cumulative packet/cell traffic behaves statistically as

 ( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )W Tt Tt M T L T M B tM
r

r

r r
r

R
H r r r

H
r

R
r

r
*

lim .=
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
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






 +

= =
∑ ∑µ

µ µ
σ1

1 21 1

,

 (3.49)

 where ( ) ( )( )H r r= −3 2α min  and ( )B
H r are independent fractional Brownian motions.

 The implications of this are the following:

• Behaviour - the limit is a superposition of independent fractional Brownian motions with

different Hurst parameters ( )H r .

• Fluctuations - the term with the highest ( )H r  (or smallest ( )α r ) ultimately dominates as

T→∞.
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• The contribution of sources with finite variance is simply that of ordinary Brownian

motion.

Here we note that these theorems were arrived at by taking the limits in the correct order (see

equ.(3.48)).  Taqqu has extended the theorems by taking the limits in the reverse order.

However he points out the practical significance of this is (at the moment) unclear.  For this

reason we have only included the main result in its homogenous and heterogeneous forms.

As we have seen it is the aggregation of ON-OFF sources with LRD in at least one of the

states that leads to self-similar traffic.  ON-OFF sources can also be modelled via chaotic

maps, moreover chaotic maps can have LRD built into the dynamics of the map.  It is these

attributes of chaotic maps that make them an attractive base for self-similar traffic modelling

and will be the topic of the next chapter.
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4 Teletraffic Modelling Using Non-linear Dynamical Maps
The application of non-linear dynamics theory to teletraffic modelling draws heavily on the

theories of intermittency developed in the investigation of turbulence in thermodynamic

systems.  Teletraffic modelling is not only a new application for the existing theory, but has

also required extensions to analyse the statistical characteristic behaviours relevant to a

teletraffic interpretation of the models.

The initial investigations on non-linear teletraffic models were carried out by Pruthi, Erramilli

and Singh [ERR94a, 94b, 95a, PRU95a, 95b].  They used non-linear rather than stochastic

models in their search for alternative parsimonious models that displayed 2nd order self-

similarity.  Pruthi and Erramilli advanced the use of non-linear teletraffic models by

developing techniques for the determination of the models’ invariant density, and through the

study of the models’ aggregate behaviour.  The true value of non-linear models lies in their

simplicity and speed of sample generation.  However these models have their drawback in

terms of their analytical tractability, in particular, for their behaviour near the point of

bifurcation (for transit times when ε > 0), the prediction of H in a coupled map, and the

behaviour of the map under aggregation.  These drawbacks are addressed in the chapters that

follow, where contributions are made to transit time analysis, H prediction and aggregate map

modelling.

Effective teletraffic models must have the following teletraffic properties: capacity to set the

state sojourn time, the traffic load, and the degree of self-similarity (i.e. their scaling factor).

The properties of non-linear dynamical models that relate to these teletraffic properties are

transit time analysis, the invariant density and the spectral decay.  These model properties also

relate to the applicability of non-linear dynamical models as self-similar teletraffic models in

the following way.

The transit time (and therefore its physical ON/OFF behaviour) can be made to have long run

correlations that are heavy tailed.  The heavy tailedness in its correlations leads to LRD, which

is then reflected in self-similar behaviour dependent on H.  Moreover there is an intuitive

appeal in those non-linear dynamical models that link their underlying physical process to

standard teletraffic ON/OFF model interpretations.  The link between those non-linear

dynamical maps and standard teletraffic models can be explained via analogy between a single

intermittency map and a single ON/OFF teletraffic model.  In the single intermittency map the

physical meaning of transit time probability is the probable duration (in terms of the number

of iterates) that an orbit of the map takes to leave the influence of one of its fixed points.  This

equates to the sojourn time of an ON/OFF teletraffic model, i.e. the time it takes for a source

to leave the influence of a particular state.  The invariant density of the single intermittency

map captures the long run orbital behaviour of the map (in effect the long-term influence of
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the fixed points on the map’s orbit) and hence reflects the probability of the map being in a

particular state  i.e. its load.  This is the equivalent of the probability density in an ON/OFF

teletraffic model.  Finally, the LRD nature of the single intermittency map is related to its

transit time, and is reflected in its spectral density and correlation structures that are dependent

on H.  The same is true for the sojourn time of teletraffic ON/OFF models.

In this chapter we refer to non-linear dynamical models as “non-linear models”, “non-linear

map models” or “chaotic map models”; in the interests of brevity some times we simply call

them “chaotic maps”, “map models” or simply “maps”.

4.1 Justification of Non-linear Map Models
An important observation of Fowler [FOW91] was that the bursts of traffic activity had no

characteristic scale (they appeared scale invariant).  Leland [LEL94] noted that the spectral

decay of the traffic was divergent at the origin.  Schuster [SCHU95 p94] noted that there have

been many observations, in a variety of physical systems, of divergent spectra at the origin.

This phenomenon is called 1/f noise.  Schroeder [SCHR91] points out that in many physical

solid-state systems the 1/f power spectrum can be explained through their relaxation times9.  In

an analogy with solid-state physics, one could try to explain the 1/f spectrum observed in

network traffic by equating the solid-state systems’

• energy barriers to the emission rates of the traffic sources, and

• excited state to the on probability of the traffic source.

Divergent spectra and scale invariance are also typical of critical phenomena.  Willson first

proposed the investigation of critical phenomena through Renormalization Group Theory

(RNG) in the analysis of thermodynamic systems [WILS74, 75].  Garrod [GAR95 pp 268-

269] states that the fundamental assumptions of Willson’s initial analysis on the

renormalization group treatment of critical phenomena were:

• at the critical point, the probability distribution of the fluctuations in the order parameter is

scale invariant; and

• the scale invariant distribution can be obtained as a non-trivial (unstable) fixed point of a

properly formulated renormalization transformation.

Non-trivial (unstable) fixed points describe the critical points of the associated thermodynamic

system.  At the critical point the correlation function has a power law decay.  The stability

properties of the fixed points are closely associated with the decay of the correlation function

in the states described by those fixed points, i.e. the states have long range dependence (LRD).

Unstable fixed points give power law decays, while stable fixed points describe states whose

correlation function has an exponential decay, i.e. the states have short range dependence

(SRD).

                                                          
9 An example of this is given by Schroeder in [SCHR91, p124].
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A fundamental requirement for renormalization to work is self-similarity; this is because many

critical phenomena in physics show self-similar behaviour near the critical point.  These

phenomena are amenable to renormalization theoretic treatment, yielding the critical

exponents for the correlation length and other important parameters.

A striking characteristic of critical phenomena is the fact that certain detailed quantitative

measures of a system’s behaviour near a critical point are quite independent of the interactions

between the parameters that go to make up the system.  This characteristic is called

universality.  The chaotic maps that we use exhibit structural universality.  Structural

universality occurs where the pattern of the chaotic maps functions is retained as the function

describing the dynamics is composed with itself.

The physical phenomena of turbulence displays scale invariance and 1/f noise.  Turbulence

has been extensively studied by non-linear dynamicists and theories of intermittency as

explanations for turbulence have been put forward [POM80, HIR82a, KLA93, YAN94,

HEA94, LUS96] some of which use RNG [HIR82b, PRO83] as pivotal point of their

explanation.  It is this theory which has been adapted to provide the non-linear models of

bursty traffic used in this thesis.

For further explanations on intermittency and turbulence including various discussions and

treatments on intermittency and the onset of chaos, the interested reader is referred to Chapter

4 in Schuster [SCHU95], section 8.2 in Ott [OTT94] and Chapter 10 in McCauley [MCC95].

4.2 Iterated systems
Central to the chaotic map models that we use is the notion of an iterated system.  Iterated

systems involve functions that take initial values as their argument and yield the next initial

values as their results, i.e. ( )x f xn n+ =1 .  The function that operates on the argument is well

described and confined to a given interval.  The whole system is deterministic since the

behaviour of the functions is known.  For a good general treatment of iterated systems the

interested reader is referred to [COL80].

4.2.1 Some Essential Definitions
These following definitions are after Gulick [GUL92].

Definition - Iterates of a function.  Let f be function and let x0 be in the domain of f (i.e. x0 is

a value in the interval over which the function exists) then

( ) ( )f x f x0
1

0=  = the first iterate of x0 for f

( )( ) ( )f f x f x0
2

0=  = the second iterate of x0 for f.
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More generally if n is any positive integer, and xn is the nth. iterate of x0 for f , then

( )x f xn n+ =1  is the (n+1)th. iterate of x0.  This is usually denoted

( )x f xn
n

+
+=1

1
0 .

Definition - Orbit of a function.   The infinite sequence of iterates of the function f, from an

initial condition x0, is termed the orbit of x0, i.e.

( ){ }f xn

n0 0=

∞
 = orbit of x0 .

Definition - Fixed point.  Let xp be in the domain of f.  Then xp is a fixed point of f if

( )x f xp p= .

Definition - Attracting fixed point.   Let xp be a fixed point of f.  The point xp is an attracting

fixed point of f provided that there is an interval (xp-ε , xp+ε) containing xp such that if x is in

the domain of f and in (xp-ε , xp+ε) then ( )f x xn
p→  as n → ∞.

Definition - Repelling fixed point.  Let xp be a fixed point of f.  The point xp is a repelling

fixed point of f provided that there is an interval (xp-ε , xp+ε) containing xp such that if x is in

the domain of f and in (xp-ε , xp+ε) but x ≠ xp then ( )f x x x xp p− > − .

The following theorem deals with the identification of the fixed point through the function f.

Theorem - fixed points.  Suppose the function f is differentiable at the fixed point xp. Then

1. if ( )′f x p  < 1 then xp  is attracting.

2. if ( )′f x p  > 1 then xp  is repelling.

3. if ( )′f x p  = 1 then xp  can be either attracting, repelling or neither.

Definition - Periodic orbit.  Let x0 be in the domain of f.  Then x0 has period n if ( )f x xn
0 0=

and the iterates are distinct, i.e. if x0 has period n then the orbit x0 is

( ) ( ) ( ){ }x f x f x f xn
0

1
0

2
0 0, , , ,L .

This is occasionally termed an n-cycle periodic orbit.

We can see from these definitions that in a chaotic map the fixed points are where x xn n= +1 .

To make fixed points easier to spot a “reflection line” (where x xn n= +1 ) is introduced into the

map diagram, see Figure 4.1.  This also makes the orbit of the map easier to follow.
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xn =xn+1

xn+1

xn 

Figure 4.1  The “reflection line”, x xn n= +1

4.2.2 Required Ingredient for Chaos in Iterated Systems
Generally for an iterated system to be chaotic it must fulfil the following criteria [DEV94]:

• the system has sensitive dependence on initial conditions,

• the periodic orbits of the system are dense in the space in which the system exists, and

• there exists an orbit of the system which is dense.

It is now widely accepted that the last two criteria imply the first.  Note that by “dense” we

mean that an orbit of the system will approach every point in the space within which the

system exits with arbitrary accuracy.

4.2.3 Sensitive Dependence on Initial Conditions (SIC)
Sensitive Dependence on Initial Conditions (SIC) means that points which are initially very

close together but separated by some small error, ε, will diverge exponentially as the system

evolves with time.  Mathematically this can be expressed as the difference between iterates of

a chaotic map with starting points separated by some small error

( ) ( ) ( )ε εβe f x f xN x N N0
0 0= − − .

(4.1)

The Lyupanov exponent, β, gives the rate of divergence of the points, and this can be

expressed mathematically as

( ) ( ) ( )β = ′ =
′

→∞ =

−

∑lim ln ln
n

i
i

n
n

in
f x

n
f x

1 1

0

1

.

(4.2)

All chaotic systems exhibit SIC.

4.3 Intermittency as the Basis for Map Models
The types of chaotic map chosen for investigation are those which display intermittency.

Intermittency as defined by Schuster is:
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 “the occurrence of a signal that alternates randomly between regular (laminar) phases and

relatively short irregular bursts”

Such signals have been detected in a large number of physical systems.  Intermittency is

connected to the transition to chaos in dynamical systems.  Pomeau and Manneville [POM80]

have classified intermittency in chaotic maps.  The classification relies on the type of

bifurcation that leads to chaos from the intermittent behaviour at the fixed point.  The type of

bifurcation depends on the manner in which their eigenvalues cross the unit circle (how they

become unstable).  Their classification is obtained in the following way.  Suppose that there is

an iterated function system that is dependent on some parameter r, i.e. ( )x f xn r n+ =1 .

Furthermore the parameter r takes on some critical value rc .  Stable oscillations, r rc< ,

correspond to stable fixed points.  Above rc this fixed point can be come unstable.  There are

three ways in which a fixed point can be come unstable.  In all three the modulus of the

eigenvalue becomes larger than the unit circle and the eigenvalue leads to the classification of

the type of intermittency:

• Real Pair of eigenvalues cross the unit circle at +1 → TYPE I intermittency.

• Complex conjugate pair of eigenvalues cross the unit circle (at any point not ±1) → TYPE

II intermittency.

• Real Pair of eigenvalues cross the unit circle at -1 → TYPE III intermittency.

 

 Type I intermittency is associated with tangent node bifurcation (saddle node bifurcation).

The f 3(x) logistic map (see Figure 4.2) displays this type of bifurcation behaviour.  The

bifurcation occurs when two fixed points - one stable and the other unstable - merge.  This

occurs at the point of tangency (hence its name - see Figure 4.3).  For:

• r rc<  - the map has a stable fixed point

• r rc=  - tangency is achieved and we have a single fixed point that is both attracting and

repelling

• r rc>  - there are no stable fixed points.

The width of the critical region ε, ε = −r rc , determines how fast the orbit passes through the

restriction.  The narrower the restriction the longer the orbit takes to pass through the critical

region.  This type of behaviour is reminiscent of memory since the orbit appears to remember

the fixed point being there.  In this case we can see that long run correlations in the orbit

values can build up and LRD behaviour appears for sufficiently small values of ε.
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Xn+1

Xn

A

Figure 4.2 Logistic Map: ( ) ( )f x rx xr n n n= −1 . Displayed is the fr
3(x), (third iterate) logistic

map showing region of intermittency -A.  The logistic map depends on the parameter r for its
behaviour

Xn+1

Xn

r - rc = ε = 0

r  < rc = >ε < 0

r > rc => ε > 0

xs  stable fixed point

xc  stable/unstable fixed point

xu  unstable fixed point

Figure 4.3  Detail of Figure 4.2 around the Region of Intermittency, A, showing: stable fixed
pints xs; unstable fixed points xu and marginally stable fixed point xc at the point of criticality.

The parameter also shows the relationship between the parameter ε and the map parameter r of
the logistic map and its value at criticality, rc.

 In short, any dynamical system that displays inverse tangent bifurcation has Type I

intermittency.  A map of such a system is the logistic map.  The chaotic map models that we

will use are constructed from this behaviour.  Such models are constructed in one of two ways.

Either by:

• approximating the curve at tangency via a Taylor series expansion around the point of

tangency, or
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• using the structural universality present in the dynamical system at the point of criticality.

In this case we have scale invariance in the correlations and use a renormalization group

approach to obtain the deterministic equations of interest.

 In either event the properties of the system should be able to be derived from either approach,

although some properties may be easier to deduce using one method rather than the other.

 

OFF

ε1

d

Xn

Xn+1

ON

ε2

f1(ε1 , d , m1 , xn)

f2(ε2 , d , m2 , xn)

≤

Yn = 0

OFF

Xn ≤  ≤   d

Yn = 1

  ON

Xn > d

Figure 4.4.  ON/OFF Source Model interpretation by use of the indicator variable and
intermittency map functions

4.4 Chaotic Map Models - Derivation
 As we have seen in Section 4.2.2. for the map to be chaotic it must have SIC.  In iterated

systems SIC arises out of the mixing of the iterates due to some stretching and folding action

of the map function.  It is the mixing which gives the orbit it apparent randomness.  To

achieve this mixing we have to have a map function that not only renders intermittent

behaviour but one which also incorporates a method for obtaining the mixing as part of the

system description.  Manneville [MAN80] proposed such a system for maps with Type I

intermittency constructed on the unit interval as a method for simplifying the analysis of

intermittency.  His proposal was to introduce an intermittency map with two functions, F1(.)

and F2(.), which mutually inject into the critical regions of the map when the iterate value

passes some discriminate value, d.  F1(.) is restricted to the interval [0,d] and F2(.) to the

interval (d,1].  Their mutual interaction performs the necessary mixing.  Both functions

perform stretching: F1(.) performs a stretching on iterate values in (0,d] to a values in (0,1),

while F2(.) stretches iterates in (d,1] to (0,1).  The folding occurs on transitions from F1(.) →

F2(.) and vice versa, i.e. F2(.) injects into interval (0,d) while F1(.) injects into interval(d,1).

The structure of the map models can be seen in Figure 4.4.  From this construction we can see

that in order to obtain map functions that yield intermittent behaviour the functions must

comply with the following boundary conditions on the interval:

 
( ) ( )
( ) ( )

F F d

F F d

1 1

2 2

0 0 1

1 1 0

= =

= =

,

,
.

 (4.3)
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4.4.1 Derivation:  Taylor’s Series Approach
 The logistic map is described by the following equation

 ( ) ( )xxrxfr −= 1

 (4.4)

 where r is some control parameter.  The map can be iterated many times.  The behaviour of

the map in the region labelled A in Figure 4.2 is the area of interest.  This is since the curve of

the logistic map and the reflection line form a channel through which the orbits of the system

have to pass.  It has been shown that this mathematical description is akin to laminar flow in

fluids, with ejection from region A being similar to the onset of turbulence [MANN80].  In

this context the laminar flow phase of the orbit corresponds to the sojourn time of a traffic

source and the emission of the orbit from this region to the arrival of a full cell/packet.  The

curve of the function near tangency of the logistic map can be approximated by a Taylor series

expansion about the point of tangency, xc.  For the third iterate of the logistic map this is:

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) LL +
′

−++
″−

+
′

−+≈−− crccr
c

crccrccr rfrrxf
xx

xfxxxfxxxf
c

33333

!2
.

 (4.5)
 By letting

 
( ) ( )a

f x
and b f rc

r c
c r cc

=
′

= ′
3

3

2

 (4.6)
 and defining the following

 
( )

c

cn
n b

xx
y

−
≡ , a a bc c≡ > 1 , ( )ε ≡ −r rc

 (4.7)

 equ.(4.5) becomes

 y ay yn n n+ = + +1
2 ε .

 (4.8)

 To determine the value of the constant term, a, we apply the boundary conditions, obtaining

 a
d

d
=

− −1
2

ε
.

 (4.9)

4.4.2 Derivation:  Renormalization Group Approach
 In this approach we commence with a generalised Taylor’s series approximation to the curve

at tangency for the unperturbed system x x axn n n
m

+ = +1  and in functional

form ( )f x x axm= + .  For there to be functional self-similarity  (structural universality) we

need the following condition ( )f x x axn m→ = +0 .  This can be seen in the following

example.  For the second iterate of the generalised case we have

( ) ( ) ( )f x x ax a x axm m m2 = + + + , and since xm → 0  faster than x → 0 , we regain, after
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appropriate scaling, our original function ( )f x x axm2 0→ = + .  So we can see that there is

structural universality present in the generalised function.  Furthermore, if repeated operation

of the doubling operator T leads to a fixed point ( )f x∗  of T, then ( )f x∗  has the required

structure for structural renormalization i.e. ( ) ( )[ ] ( )Tf x f f f xx∗ ∗ ∗ ∗= =α α , where the term α

determines the class of structural universality.  Following Hu and Rudnick [HU 82] we write

the following recursion relation ( )f x x= ′  in implicit form10:

 ( ) ( )G x G x a′ = − ,

 (4.10)

 where a is some free parameter.  Therefore we can say

 ( ) ( )[ ] ( )′ = − =−x x G G x a f x1 .

 (4.11)

 For there to be structural universality we require ( ) ( )α α′′ = ′x x x x .  This follows from

( ) ( )f x f x* *2α α=  where the functional self-similarity must also work equally well for

forward as well as backward iterates.  Applying the function G(.) we arrive at

( ) ( )[ ] ( )G x G x x G x aα α α′′ = ′ = − .

 (4.12)

 However we note the structure at equ.(4.10) then

 ( ) ( ) ( )G x G x a G x a′′ = ′ − = − 2 .

 (4.13)

 This implies that

 ( ) ( )1

2

1

2
G x G x a′′ = − .

 (4.14)

 If we compare equ.(4.14) with equ.(4.12) we note that the solution to the fixed point equation

( ) ( )G x G x* *= α  must have the property ( ) ( )1
2

G x G x* *= α .  Suitable ansatz solutions for

( )G x*  that fulfil the boundary conditions for the original function ( ) ( )f f0 0 0 1= ′ =,  are

( )1
1

x
m−

 with −2
1

m  and since ( )[ ] ( )G G x a f x− − =1 * *  then

 ( )
( )[ ]

f x
x a

x

ax
m

m

mm
* =

−









 =

−
−

−

−−

1

1
1

1

1
1

1
11

.

 (4.15)

                                                          
 10 Here we note that we are implying the following functional relationship

 
( )
( ) ( )

f x x

x x f x

fwd

bwd

 → ′

′  →
.



Chapter 4: Teletraffic Modelling Using Non-linear Dynamical Maps

Telecoms Research Group. Queen Mary and Westfield College, University of London

51

 We now need to determine the value of the parameter a.  This can be determined by the map

boundary conditions at d.  With these conditions we obtain

 
( )

( )a
d

d

m

m
=

− −

−

1 1

1
.

 (4.16)

4.4.3 Generalised Map Equations
 From the derivation of the Taylor and RNG approaches to intermittency we arrive at the

following generalised equations for the map family that is used in this study.

 Taylor Series Expansion

 ( ) ( )
( ) ( )x F x

F x x c x x d

F x x c x d x
n n

n n n
m

n

n n n

m

n
+ = =

= + + < ≤

= − − − < <






1

1 1 1

2 2 2

1

2

0

1 1

ε

ε
,

 (4.17)

 with 
( )

c
d

d m1
11

1
=

− −ε
 and

( )
( )

c
d

d m2
2

1 2
=

−

−

ε
.

 Renormalization Group

 ( )
( )

[ ]
( )

( )[ ]
x F x

F x
x

c x
x d

F x
x

c x
d x

n n

n
m

n

n
m

n

m

m

+

−

−

= =

= +
−

< ≤

= − −
−

− −
< <













−

−

1

1 1

1
1

2 2

2
1

1
0

1
1

1 1
1

1

1

1 1

2

1

2 1

ε

ε
,

 (4.18)

 with 
( )
( )

c
d

d

m m

m m1
1

1 1

1

1 1

1

1

1
1

1
1

=
− −

−

− −

− −

ε

ε
 and 

( ) ( )
( ) ( )

c
d

d

m m

m m2
2

1 1

2
1 1

1 1

1 1

2 2

2 2
=

− − −

− −

− −

− −

ε

ε
.

 Indicator variable
 In order to simplify things we introduce an indicator variable, yn, with the following behaviour

 y
x d

d xn
n

n

=
< ≤
< <





0 0

1 1

,

,
.

 (4.19)

 The indicator variable is used to indicate the presence or absence of a packet/full cell.

Naturally there is no prohibition to using the reverse definition of the variable.  The

interpretation of the intermittency map as an ON/OFF traffic model is shown in Figure 4.4.

4.5 Transit Time Probability
 A property of the map that we require for transit time analysis is the duration that an orbit of

the map takes to leave the critical region.  This equates to the sojourn time of a source, the

length of time spent in a particular state.  In terms of iterates of the map, this is the number of

iterations required to leave the laminar region.  In the simplified model of Manneville
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[MANN80] this would be the length of continuous 1’s and 0’s that would be observed at the

indicator variable yn.  By judicious rephrasing of the question what we are really need to find

is the probability P(l) of having a laminar length of l.  The determination of this quantity can

be more easily approached through the renormalization formulation of the intermittency map.

4.5.1 Derivation:  Transit Time Probability
 Following Ben-Mizrachi [BEN85], the length of the laminar region is dependent on its starting

point x0.  We require the probability of being injected into this region, P(x0).  In our map

model the function f(xn) ceases to affect the orbit past the discriminator value d, then the most

the iterate value can be is d.  Therefore we can say that the laminar region is determined by

( )l l x d= 0 , where l(.) is the function determining the length.  From the derivation of the RNG

method we note that structural universality works for both forward and backward iterates.

Using the idea of structural universality we can say that a starting point is ( )x x l d0 0= ,  where

( )x0 . is the function determining the value of x0, which we can argue is dependent of the

length, l, and the end point d.

 

 The probability of injection to a start point between x x dx0 0 0and + is denoted by ( )$P x dx0 0 .

 Therefore we can write that the probability of having a laminar length ( )P l  is

 ( ) ( )( ) ( )$ $ ,P x dx P x l d
dx

dl
dl P l dl0 0 0

0= ≡ .

 (4.20)

 The function ( )x l d0 ,  can be found via RNG.  This is done by noting that the end point d must

be a fixed point of the doubling operator T.  Moreover, we are concerned with doubling like

behaviour we are therefore interested in lengths l n= >>2 1 .  Since forward and backward

iterates behave functionally the same then

 ( ) ( )x X l d d X l x0 0= ⇔ =, , .

 (4.21)
 

 We then solve

 ( ) ( )X l x f x dn
n

n= = =∗2
1

0 0,
α

α

 

( )
( )[ ]

( )[ ]

1 1

1

1

0
0

0

1
1

1

0

0

1
1

1

α
α

α
α

α

α

n
n

n

n

n m m

n m m

f x
x

k x

d
x

k x

∗

− −

− −

=

−

=

−

.

 (4.22)
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 rearranging this to obtain the backward iterate of x0 i.e. d we obtain the function ( )x l d0 ,

 

( )[ ]
( )x

d

k d

x l d
n m m

n
0

1
1

1

0

1

2=

+

= =
− −α

, .

 (4.23)

 Recall from ansatz solutions to the RNG method we used α = −2
1

1m , then as n → ∞  the

behaviour of equ.(4.23) is dominated by

 x l
n

n

m m
0

1

1

11
2~

α
= =− − .

 (4.24)

 The probability ( )P l  is then

 ( ) ( )$ $P x dx P c l l P l dlm

m

m
0 0

1

1 1= ×








 =− −

 (4.25)

 where c is some constant, and for l → ∞  this becomes

 ( ) ( )P l P l
m

m~ 0 1− .

 (4.26)

 The result shows that provided ( )P x0 is finite and x0 0≈  then we can obtain sojourn times of

arbitrary length in the unperturbed system.

 

 Observation:  We have seen that because of structural universality, not only is the map

function dependent on m but also the sojourn time probability is dependent on m.  It would

therefore not be unreasonable to assume that the spectral decay is also solely dependent on this

parameter.

4.6 Spectral Decay
 We note from Chapter 3 that the spectral decay for stochastic self-similarity has the form

( )
( )lim

ω
ω

ω→∞
−=f

C Hf
H

1
1 2 , where ( ) ( )( )C C H Hf = − −

σ
π

πρ

2

2 1 1Γ sin  and ( )( )tXvar2 =σ .

Since this type of spectral decay refers to 1/f noise then the intermittency maps must also have

a similar spectral decay structure.  To obtain the spectral decay of the maps we follow the

method used by Ben-Mizrachi [BEN85]:

• We require the correlation function C(m) of the indicator variable yn.  We are interested in

the behaviour of C(m) for ( ) ( )C m C tm
lim
→∞ → . This requires convolution in the time

domain.
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• The convolution is easier in the complex frequency ( )s i= +σ ω  domain.  This requires

the Laplace transform.11

• We use this result to obtain the spectral density, ( )f ω .

• Unfortunately the Laplace transform is not invertable and therefore we have to take the

limit s i→ ω  of the Laplace transform and its conjugate i.e. ( ) ( )[ ]lim
s i

C s C s
→

∗+
ω

1

2
.

4.6.1 The Correlation Function
The correlation function is obtained by using Manneville’s [MANN80] simplification of the

intermittency signal that views the regions of regular laminar flow as periods of constant value

indicator variable output.  The transitions between laminar and turbulent behaviour make up a

binary time series.  We analyse this signal through the use of the correlation function R(m)

( ) ( ) ( )( )
( )( )

( ) ( )R m W X m X X m X
X mX

=
= =

∑∑ , 0 0
0 0

1

0

1

(4.27)

where ( ) ( )( )W X m X, 0  is the joint probability of seeing a signal ( )X 0  (0 or 1) at the zeroth

iteration and a signal ( )X m  present at the mth iteration.  Using the dependent probability

identity12 we define the following

( ) ( ) ( )( )C W X m Xm 11 1 0 1≡ = = ,

(4.28)

where ( )Cm 11 is the conditional probability of seeing a nonzero signal at the mth iteration.  The

correlation sum can then be written as

( ) ( ) ( )( )
( )( )

( ){ } ( ){ }

( ) ( )( )

R m C W X X m X

C W X

m

X mX

m

= = = =

= =

= =
∑∑ 11 0 1 1 0 1

11 0 1

0 0

1

0

1

.

(4.29)

From this we can see that the low frequency portion of the maps spectrum will be due to the

long run (long wavelength) correlations of the indicator variable - long strings of contiguous

1’s or contiguous 0’s, and that this will be determined by ( )Cm 11 .  If we assume that the

probability of a continuous intermission of length k is P(k), then we can write ( )Cm 11  in an

alternative way (dropping the ( )11 notation for convenience)

                                                          
11 The Laplace transform is taken in preference to the Fourier transform out of consideration to
the boundary conditions.

12 ( ) ( )
( )

P A H
P AH

P H
= .
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( ) ( ) ( )C m C m k P k
k

m

= −
=

∑
0

(4.30)

where ( )C m k− is the autocorrelation.  We are interested in the behaviour of autocorrelation in

the limit as m → ∞ .  For this reason we can pass into the continuous time domain and write

( ) ( ) ( ) ( )C t C t P d t
t

= − +∫ τ τ τ δ
0

.

(4.31)

We need the ( )δ t  term in equ.(4.31) because of the definition of C(m).  If we consider C(0)

we obtain the following sum

( ) ( ) ( )C C k P k
k

m

0 0
0

0

= −
=

=

∑ .

(4.32)

This naturally yields no term.  However with a lag of zero (k = 0) we should have a

correlation of 1 i.e. C(0) = 1 and P(0) = 0.  Therefore,

( ) ( ) ( ) ( )C m C m k P k C
k

m

= − +
=

∑
0

0 .

(4.33)

This is important because in the continuous limit the correlation becomes

( ) ( ) ( )C t C t P d
t

= −∫ τ τ τ
0

(4.34)

which excludes the autocorrelation with lag zero.  For this reason the inclusion of the Dirac

delta function is necessary in order to regain this term.

4.6.2 The Spectrum
Normally, to calculate the spectrum we would perform the following cosine transformation

( ) ( ) ( )f C t dtω ω=
∞

∫
0

cos .

(4.35)

The integral at equ.(4.34) is the convolution integral which can be manipulated better in the

complex frequency domain.  Taking the Laplace transform of the integral and rearranging it to

isolate the correlation term we obtain
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( ) ( ) ( ) ( )

( ) ( )sP
sC

dttedtdPtCedttCe st
t

stst

−
=

+−= ∫∫ ∫∫
∞

−
∞

−
∞

−

1

1
00 00

δτττ
.

(4.36)

To obtain the spectrum of the correlation we have to solve equ.(4.36) for C(s).  Normally this

would involve taking the inverse Laplace transform.  Unfortunately there is no inverse

transform for this equation.  A different approach is therefore required to find the spectral

decay.  This is achieved by taking limits of C(s) as the complex frequency, s, tends to zero,

( ) ( ) ( )[ ]sCsCf
is

∗

→→
+=

2

1
limlim

0 ωω
ω .

(4.37)

To perform this operation we require the Laplace transform of P(k), where P(k) is the

probability of a run of k 1`s or k 0’s.  This we have already done in section 4.5.  The Laplace

transform of P(l) is

( )

∫

∫
∞

∞
−

−

−

=

1

1

1

1

dll

dlle

sP

m
m

m
msl

.

(4.38)

The integration of equ. (4.38) depends on the values that m takes.  For 
2
3,2≠m , P(s) has the

form ( ) ( )szssP z ,Γ= − ,where Γ(z,s) is the incomplete gamma function and ( )11 −−= mz .

This result also has a series interpretation

( ) ( ) ( )
( )∑

∞

=

−

+
−

−Γ=
0

!

1

n

nn
z

nzn

s
zssP .

(4.39)

For the special cases 
2
3,2=m , P(s) has the form ( ) ( )

1
2

2 −
=

= m

sE
sP

m
 and ( ) ( )

1
3

2
3 −

=
= m

sE
sP

m
,

where En(.) is the exponential integral ( ) ∫
∞

−−=
1

dttezE nzt
n  for n=1,2,…, and Re(z)>0.  In these

cases we can use the following equivalence and recursive relationships to again obtain a series

representation for P(s):

( ) ( ) ( )
( ) πγ <

−
−−−= ∑

∞

=

z
nn

z
zzE

n

nn

arg
!

1
ln

1
1 ,

(4.40)

( ) ( )[ ] L,3,2,1
1

1 =−= −
+ nzzEe

n
zE n

z
n .

(4.41)
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By substituting the appropriate series representations for P(s) in equ.(4.36) and taking the

limits of equ.(4.37) we obtain the following spectral decays13

( )

( )

( )






















<

=

<<

=

<<

∝ −
−

−

−

−

→

2
3

2
3

2
3

2

0

ln

2

2
ln

1

32

lim 1
32

1
1

mconst

m

m

m

m

f m
m

m

ω

ω

ωω

ω

ω
ω

.

(4.42)

4.7 Lower and Upper Bounds on the Transit-Time
Since we know the spectral decays dependence on the map parameter m, and we know the

relationship between spectral decay and the Hurst parameter, H, we can now place some limits

on the upper and lower bounds on the transit time14.  The upper and lower bounds can be

derived from the Taylor series formulation of the intermittency map.  Recall the generalised

map function given by

x cx xn n
m

n+ = + +1 ε ,

(4.43)
where c is a constant defined in terms of the parameters of the map and ε is the width of the

critical region15.  For values of xn very close to the critical region the distance between

successive map iterates is very small.  Equation (4.8) can therefore be rearranged to form a

difference equation by dividing through by the difference in distance between iterates

 
x x

l
cx

n n
n
m+ −

= +1

∆
ε .

(4.44)

As ∆l → 0  then we obtain a differential equation.  The solution to this equation yields the

time taken to escape the influence of the function, i.e. the transit time. The differential

equation corresponding to equ.(4.44) for a given start and stop value of the iterates is given by

L
dx

cx m
x

d

in

=
+∫ ε

,

(4.45)

                                                          
13 Both Ben-Mizarachi [BEN85] and Schuster [SCHU95] present extend results on spectral
decays, i.e. for m>3.  The results shown here stop at m<3.  The reason for this is that for
2<m<3 we again have a power law decay, admittedly outside the interval of interest (see
below).  However this observation is included since it may become useful in developing other
kinds of traffic model based on this type of chaotic map.
14 This is so because for positive correlations, i.e. H∈[½,1] m takes values in the range,
m∈[1,2].
15 In actual fact ε is the perturbation to the equation.
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where L is the number of iterates to leave the left hand (LH) side of the map for an entry point

of xin and an exit point of d†.  Here we note that the upper limit of integration is set to d since

(naturally) there can be no higher iterate values than this before escape from the LH half of the

map occurs (see Figure 4.4).  We know that m is bounded, i.e. m∈[1,2].  This yields the

following solutions for an upper and lower bound on L.

4.7.1 Case m = 1
This case yields the lower bound on the number of iterations required to escape the LH side of

the map.  For m = 1 equ.(4.45) becomes

L
dx

cxm

x

d

in

= =
+∫1 ε

.

(4.46)

This can be solved quite easily via the transformation A cx= + ε .  The solution to the integral

then becomes

L
c

cd

cym
in

= =
+
+






















1

1
ln

ε
ε

.

(4.47)

This yields the lower bound result.

4.7.2 Case m = 2
This case yields the upper bound in the number of iterations required to escape the LH side of

the map.  For m = 2 equ.(4.45) becomes

L
dx

cxm

x

d

in

= =
+∫2 2 ε

.

(4.48)

To solve this equation we apply the transformation tanθ ε= y c .  The integral to this is

( ) ( )L
c

d ym
c

in
c

= = −
2

1

ε ε εarctan arctan .

(4.49)

This yields the upper bound result.

Comment:  In iterated map systems such as the maps that we use, the unit of time at each

iteration is “timeless” since the user sets the time unit of the model.  This means that each

iteration of the map portrays some specific time increment of the system to be modelled.

What the transit time actually refers to is the number of iterations required to leave the critical

region of the map, not the actual time duration (e.g. seconds, milliseconds etc.) taken to leave

the critical region.

                                                          
† Here we can see that the unperturbed map, ε = 0, poses no analytical problems since



Chapter 4: Teletraffic Modelling Using Non-linear Dynamical Maps

Telecoms Research Group. Queen Mary and Westfield College, University of London

59

4.8 Invariant Densities - The Statistics of the Dynamics
We have presented the dynamics of the map as a dynamical system in which the iterates of the

map follow some pre-described path given by known functions of the LH and RH halves of

the map.  We now describe the dynamics in a statistical manner.  Pruthi [PRU95a] has already

investigated the stochastic aspect of chaotic maps.  We only summarise the important features

here.

The stochastic representation of the orbit is done in terms of the invariant density16, ( )ρ x .

This is the probability that an orbit will visit a given interval of the map.  For there to be

equivalence between the invariant density and a probability, the invariant density must be

normalizable, i.e. the sum of all the invariant densities must equal unity.  This implies that the

integral of the invariant density is finite17.

The determination of the invariant density stems from solving the Frobenius-Perron equation

( ) ( ) ( )ρ ρ δn nx y x f y dy+ = −∫1 [ ]

(4.50)

where ( )f .  is the forward iterate function of the map, ( )ρn .  is the invariant density at iteration

n, and the summation is performed over all backward iterates of the map, i.e. ( )y f x= −1 . If

the maps are ergodic18 19 and chaotic20 then the ( )ρn x  becomes independent of time and can

be termed invariant.  Here we point out that not all maps have invariant densities.  The

invariant density then becomes the solution to the steady state Frobenius-Perron equation, i.e.

( ) ( ) ( )ρ ρ ρn nx x x+ = =1 , then equ.(4.50) becomes

( ) ( ) ( )ρ ρ δx y x f y dy= −∫ [ ] .

(4.51)

                                                                                                                                                                     
equ.(4.45) becomes a simple integral.
16 Here the term “invariant” is used because the visitations of the map’s orbit to points on the
interval with arbitrary accuracy containing the map have reached a “steady” and hence
“invariant” state.
17 This does not mean that the density itself be finite - this is in contrast to the interpretation
given by Pruthi in [PRU95a] as applied to this particular kind of map i.e. TYPE I
intermittency map.
18 Ergodic in this sense means a unique initial condition that leads to “on average” behaviour.
19 To prove that the maps are ergodic is very difficult to do theoretically.  It essentially boils
down to having a positive Lyupanov exponent.  If we have a positive Lyapanov exponent then
we have a system which will exponentially diverge with a good chance of the orbit of the map
visiting all points of the space in which it is described.  This spreading is due to the stretching
and folding of the map, which makes initial points arbitrarily close to each other spread all
over the interval.  Then any one starting point will look much the same as any other and the
resulting invariant density will be the same.  All that we can say about the maps that we use is
that they appear to be ergodic since their invariant densities appear to be invariant regardless
of the start position and that the averages of the system converge.
20 See earlier “Required Ingredient for Chaos in Iterated Systems” in this chapter, specifically
with regard to item three.
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Through the use of the Dirac delta function identities:

( )[ ]
( )

( )δ
δ

r t
t t

dr t

dt

n

nn

=
−

∑

(4.52)

and

( ) ( )f t t a dt f aδ − =
−∞

+∞

∫ ( ) ,

(4.53)

we can substitute equ.(4.52) into equ.(4.51) and precede the integral by the summation sign

without any ill effect.

( ) ( ) ( )
( )ρ ρ

δ
n n

n

nn

x y
y y

df y dy
dy+ =

−
∫∑1 .

(4.54)

We can now apply the identity given by equ.(4.53) to the numerator of the above in order to

obtain the final form that we use in our investigations

( )
( )

( )ρ
ρ

n
n n

nn

x
y

df y dy
+ = ∑1

.

(4.55)

See Appendix B for more information on Dirac impulse function identities.

If we let ( )Y f xi i= −1  be the backward iterate of the f thi .  function and ( )xfi '  is the forward

differential of the f thi .  function, then for the generalised equations given in section 4.4.3 we

can summarise the contributions to the invariant density as

( )

( )
( )
( )
( )

( )
( )

( )
( )

ρ

ρ
ε

ρ ρ
ε ε

ρ
ε

x

Y

f Y
x

Y

f Y

Y

f Y
x

Y

f Y
x

=

′
− ≤ <

′
+

′
≤ < −

′
≤ <


















1

1 1
2

1

1 1

2

2 2

1 2

2

2 2
1

1 1

1

0

.

(4.56)

The dependence of the contributions to the invariant density on the values of ε1 and ε2 can be

seen more clearly in Figure 4.5.
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ε1

d

Xn

Y
 =

 f
-1
(X

n)

ε2

f1(ε1 , d , m1 , xn)

f2(ε2 , d , m2 , xn)

1−ε2

1

0
0 1

Figure 4.5  Relationship between the backward iterate, y and the zones of contribution to the
invariant density

4.9 Invariant Density Approximation
Much effort has been placed in obtaining analytically the invariant density from the map

parameters, most notably by Pruthi [PRU95a], who investigated several methods for obtaining

the invariant density.  More recently, Mondragón [MON98] has made further advances on the

analytic approximation of the invariant density via a method which de-couples the LH and RH

halves of the map.  Both approximations rely on the behaviour around the fixed points to

dominate the invariant density.  The reasons for concentrating on analytic methods for the

approximation of the invariant density are two-fold:

• analytic methods are rapid, and

• they provide a good initial guess for iterative methods (again providing some form of

speed up).

4.9.1 The Pruthi Approximation
This method is derived from considerations on a coupled set of the backward iterates of the

map functions.  If we suppose that the backward iterates of the map functions are

( ) ( )yfbyfa 1
2

1
1 and −− == ,

(4.57)

we can then define the probabilities with respect to the invariant density of the map as

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫∫∫ ≡≡≡≡
dbay

dxxdPdxxbPdxxaPdxxyP
0000

.,,, ρρρρ

(4.58)

Under these definitions we can then say

( ) ( ) ( ) ( ) ( ) ( )∫∫ =−=−
b

d

y

a

dxxdPbPdxxaPyP ρρ , .

(4.59)
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By using the Frobenius-Perron operator and considerations on the contributions of the map

functions to the invariant density we obtain

( ) ( ) ( )

( ) ( ) ( ) ( )dPbPaPyP

dxxdxxdxx
b

d

ay

−+=

+= ∫∫∫ ρρρ
00

(4.60)

and for y<<1 we can say

( ) ( ) ( ) ( ) ( ) ( )
db

dPbP
b

ay

aPyP
y

−
−

=
−
−

= ρρ and .

(4.61)

Dividing ( )yρ  by ( )bρ  and substituting equ.(4.57) where appropriate we obtain

( ) ( )
( )

( )( )yf
yfy

dyf
y 1

21
1

1
2 −

−

−

−
−

= ρρ .

(4.62)

By taking the limit y→0 we finally obtain

( ) ( )
( )

( )d
yfy

dyf
y

y
ρρ

1
1

1
2

0
lim −

−

→ −
−

= .

(4.63)

By a similar process we obtain

( ) ( )
( )

( )d
yfy

dyf
y

y
ρρ

1
2

1
1

1
lim −

−

→ −
−

= .

(4.64)

For more details see [PRU95a pp88-98].

4.9.2 The Mondragón Approximation
This method is applicable when the Taylor’s series derivation has been used for the map

functions.  The assumptions made in this method are:

• the transitions between halves of the map are viewed as random, decoupling the map

halves; and

• ε=0.

Under these assumptions the invariant density can be analytically approximated.  The

contribution to the invariant density form on map half can then be viewed as

( ) ( )( )
( )( ) K
xff

xf
x +

′
= −

−

1

1~
~ ρ
ρ ,

(4.65)

where K is a constant (this can be viewed as the contribution to the invariant density from the

other half of the map), ( )xρ~  is the invariant density of the half of the map in question, f-1(x) is
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the backward iterate and ( )xf ′  is the derivative of the forward iterate of the map in question.

If we assume that equ.(4.65) has the form

( )
( ) ( )

( ) 11222

11

1

111
,,,~

−−−

−−

+






 +−+

−≈
mmm

mmm

cxxmc

cxcmx
KKmdxρ

(4.66)

where c = ( ) mdd−1 , the approximation is always valid if x<<1, or in the interval (0,d) if

c<1, or dm + d -1<1.  In these cases the invariant density is given by

( ) ( ) ( )
( ) ( )




<=
>−=

=
dxKmdxKmdx

dxKmdxKmdx
x

11111

22222

1,,,~,,,

1,,1,~,,,

ρρ
ρρ

ρ .

(4.67)

The ON and OFF probabilities are then given by

( ) ( )

( ) ( )∫

∫

==−

−==

d

d

dxKmdxKmdxp

dxKmdxKmdxp

0

11111

1

22222

,,,~,,,1

,,1,~,,,

ρλ

ρλ

.

(4.68)

The solution for this integral is

( ) ( )
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
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(4.69)

where 
( )( )mmmc

A
322

1
2 −−

= , ( )672 22 +−= mmmcB , ( )32 2 −−= mmcC , 1−−= mcxz and

2F1(.) is the Hypergeometic function.  For more detailed description of the method see

[MON98].

4.10 Summary
In this chapter we have examined non-linear dynamical maps as teletraffic models.  Central to

their effectiveness as teletraffic models that can replicate LRD and self-similar traffic is the

relationship between extended sojourn times witnessed in real traffic and the maps’ orbital

behaviour.  The part of a map’s orbit that produces the correct behaviour occurs near

bifurcation in a map with TYPE I intermittency.  In order to track the evolution of the map’s

orbit in this intermittent region we applied boundary conditions to formulations for an
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intermittency map derived from Taylor’s Series and Renormalization Group approaches.  Key

properties for this map at the point of bifurcation (the critical point) was obtained through the

Renomalization Group approach while behaviour near the critical point was obtained through

the Taylor’s Series approach.  The intermittency map forms the basis for chaotic map models

that display LRD and self-similarity and is the subject of the next chapter.



Chapter 5: Mathematical Analysis of Intermittency Map Models

Telecoms Research Group. Queen Mary and Westfield College, University of London

65

5 Mathematical Analysis of Intermittency Map Models
The previous chapter introduced the basic intermittency map models and the important

properties that are relevant to their teletraffic interpretation and application.  Pruthi [PRU95a]

investigated a variety of chaotic maps and found the fixed point double intermittency map to

be of most use.  However, his parameterisation of the double intermittency map was limited:

he set the parameter ε  to zero; and conjectured that H depends only on the value of m for one

side of the map.  Furthermore, his aggregate source models gave poor performance when used

for studying queueing behaviour.

A recent result of Willinger et al [WIL97] has shown that it is the aggregation of ON-OFF

sources with LRD in either ON or OFF states which leads asymptotically to 2nd order self-

similarity.  This chapter introduces a “family” of intermittency maps, specified by five

parameters: ε and m in both sides of the map, and d, the discriminator value.  This “family”

can produce a variety of behaviour when aggregated, which can lead to asymptotic 2nd order

self-similarity depending on the map parameters.  The following two chapters develop new

parameterisation methods that allow these maps to represent aggregate traffic behaviour

accurately, focusing on the invariant density.

In this chapter, we present new analysis of the intermittency maps’ transit-time (in the general

case of perturbed maps), spectral decay, and H (in the specific case for epsilon set to zero).

Pruthi and Erramilli [PRU95a, ERR94b] termed ε a throwaway parameter.  The setting of

epsilon to zero was done in part for analytical tractability and also to ensure that there would

be bursts over all time scales, i.e. so that the probability of infinite sojourn times in the ON or

OFF period would exist.  An infinite sojourn period in the ON state would mean that the

source was permanently on. Similarly, an infinite sojourn period in the OFF state would mean

that the source was permanently off.  However, Fowler [FOW91] observed that the bursts

occurred over all time scales of engineering interest, i.e. over a finite number of time scales.

The transit time analysis performed in this chapter shows an important dependence on ε.  This

limits the time scales over which stochastic self-similarity is present supporting the view of

Fowler.  In terms of chaotic map models this means that ε is not such a discardable parameter

as was first thought.  The Hurst parameter analysis confirms Pruthi’s conjecture and shows

that, in the limit, the dominant m value determines the value of H.

We also present numerical results for the H behaviour of the maps which illustrate a complex

dependence between both portions of the map, and the values of m and d. The H behaviour is

predictable, but differs substantially from the limit behaviour suggested by the analysis.  We

present an empirical fit for H which gives substantially better prediction than analysis for

practical cases in a coupled map.  In addition, we present a new method for estimating H
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based on the correlation structure of the maps, and this is compared with other estimation

methods in Chapter 8.

5.1 A Family of Chaotic Maps as Self-similar Traffic Sources
 The chaotic map family is described by a common set of equations.  Individual members of

the family are identified via their parameter values.  The common set of equations which

describes this map family via the Taylor series formulation is given by

( )
( ) ( )

( ) ( )
( ) ( )

x F x
F x x

d

d
x x d

F x x
d

d
x d x

n n

n n m n
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n n m n
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+ = =
= + +

− −
< ≤

= − −
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
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2

ε
ε

ε
ε

,

(5.1)

 where 1 2 0 1 0 11 2 1 2≤ ≤ < < ≤ <<m m d, , , ,ε ε  are parameters and 0 1< <xn .  An ON-OFF

source model can be constructed from these equations via the use of an indicator variable, yn,

which simulates the presence or absence of teletraffic

( )y x
x d OFF

d x ONn n
n

n

=
< ≤
< ≤





0 0

1

, ,  passive  " "  state

1, ,  active " "   state
.

 (5.2)

 We refer to the xn of equ.(5.2) as the underlying dynamics; this corresponds to the realisation

of a stochastic process.  We refer to the yn as the overlying dynamics; this corresponds to the

visual element of the realisation process.

 

 The nomenclature of the map family is as follows:

• for m1 and m2 =1: Bernoulli shift map - this produces SRD in both halves of the map;

• for m1=1 and m2>1, or, m1>1 and m2=1: single intermittency map - this produces SRD in

one half and LRD in the other; and

• for m1 and m2>1: double intermittency map; this produces LRD in both halves of the map.

 

 Pruthi [PRU95a] explored many determinist chaotic maps as traffic source models.  The

model which he found to be of most useful was the Fixed Point Double Intermittency map

(FPDI).  The reason for this was that the FPDI map rendered LRD in both halves of the map.

However, recently Willinger et al [WIL97] have shown that it is ON-OFF sources having

LRD in at least one state (either ON or OFF) that when aggregated will cause 2nd order self-

similarity. Classifying individual maps into a family as described above enables us to view

these models as suitable for modelling aggregated data traffic.

5.2 State Transit-time Analysis
 The transit time is the time it takes an orbit to leave the ON or OFF state of a map.  Transit-

time analysis of chaotic maps is problematic because analytic solutions to the perturbed map

can only be found at certain values of the parameter m (eg. m = 1, 3/2, 2).  Further, analytic
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forms for the transit time values of the perturbed map for rational m∈(1,2) have not been

found for the Taylor formulation of the map family.  In this section we develop an

approximation for the transit time of the perturbed map for rational m.  In our development we

concentrate only on one half of the map21.

 

 We recall that the basic equation for the map is given by

 x cx xn n
m

n+ = + +1 ε ,

 (5.3)

 where c is a constant defined in terms of the parameters of the map and ε is the distance

between the reflection line and the curve (see section 4.4.3).  In actual fact ε is the

perturbation to the equation.  Equation (5.3) can be rearranged to yield a difference equation

by dividing through by the difference in distance between iterates

 
x x

l
cx

n n
n
m+ −

= +1

∆
ε .

 (5.4)

 As ∆l → 0  we approximate a differential equation.  The solution to this equation yields the

time taken to leave a map state (for example the ON or OFF state), i.e. the transit time.  The

differential equation corresponding to equ.(5.4) 22 is

 L
dx

cx m
x

d

in

=
+∫ ε

,

 (5.5)

 where L is the number of iterates to leave a map state for an entry point of xin and an exit point

of d.  We note that the upper limit of integration is set to d since higher iterate values mean

that the orbit has escaped the map state.

5.2.1 Lower and Upper Bounds on the Transit-time
 We can determine the upper and lower bounds on the transit time.  We know that m is

bounded; m∈[1,2], in order to give the correct range of H.  This yields the following solutions

for an upper and lower bound on L (see Section 4.7).  The case m = 1 yields the lower bound

 L
c

cd

cym
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
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(5.6)

 The case m = 2 yields the upper bound

 ( ) ( )L
c

d ym
c

in
c

= = −
2

1

ε ε εarctan arctan .

 (5.7)

                                                          
21 The other half of the map is identical in structure and can be analysed in the same way.
 22 Here we can see that the unperturbed map, ε = 0, poses no problems since equ.(5.5)
becomes a simple integral.
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5.2.2 Transit-time Approximation: Rational powers of m∈(1,2)
 We require an expression that describes the transit time for rational powers of m within the

domain of m.  To achieve this we apply the following transformation

 A
cy

dy
dA

m
c

A

m

m
m

m

= =


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,

 to equ.(5.5) which yields the following integral
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 (5.8)

 We can expand the integrand as a power series (binomially) and form a series of integrals23
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 Integrating this yields
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 We separate out terms not dependent on j and define the function k(m) as

 ( )
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ε
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1 .

 (5.11)

 Using this definition we can define the general transit time through a map state to be the

difference in summation terms
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 As a check we can expand out the summations and recover the upper and lower bounds on the

transit time.  The expansion of 
( )−

+
=

∞

∑ A

mj

j

j
1

0

 does not converge easily because of oscillating

                                                          
23 We can do this because the reversal of the summation and integration terms, as a result of
the series expansion, does not alter the original integration as the additional terms are covered
by the summation to infinity preceding the term by term integration.
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terms.  Moreover since A has a ε −1  dependence and as j becomes large and as ε→0 the

oscillations become large exacerbating the convergence of the series.

 

 Transforming the series into a function whose convergence properties are known can ease the

problem of convergence.  Such a series is the hypergeometric series (see [GRA80] pp1039-

1059 and [ABRA65] Ch.13, 15).  In particular we are interested in an elementary function of

the hypergeometric family known as the Gauss series.  The Gauss series is defined as
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 The summation terms in equ.(5.12) can be transformed into a hypergeometric function , then

the following holds
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 We now require values for a, b, c and Z.  An obvious equivalence is, − =A Z  and a = 1.  The

values of b and c can be found by expanding the Gamma function in the summation
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 from which we obtain the following values a b
m

c
m

m
= = =

+
1

1 1
, ,  (for a more detailed

derivation see Appendix C).  Therefore we can say that
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2 1
1 1, ; ; .

 (5.16)

 Again as a check we can recover the upper and lower bounds on the transit time.  Therefore

we can write our original integral given by equ.(5.8) as

 ( ) ( ) ( ) ( ){ }L mk m A F z A F z
m out m

m
m out in m

m
m in

m m
∈

+ += −
1 2 2 1

1 1
2 1

1 11 1

1 1
,

, ; ; , ; ;

 (5.17)
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 where A
c

yn n
m=

ε
, Z An n= − , ( )

( )

k m
mc

m
m

m

=
− −

ε
1

1 , c
d

d m
=

− −1 ε
 and ( )2 1F a b c z, ; ; is a

hypergeometric function.  A comparison between the theoretical transit times and actual

transit times for an intermittency map with the following parameters: ε=1*10-12, d = 0.5. m =

1, 1.5, 1,8, 2. is shown in Figure 5.1. We note that for m = 1.8 there is a slight “wobble” in the

theoretical prediction.  This is due to the numerical evaluational methods used by Maple™.  If

another algorithm were used then a better result may be obtained.

 

 Figure 5.1.  Comparisons of map iterations (lines) against theory (crosses) for the case: m=1
(red), m=1.5 (green), m=1.8 (blue), and m=2 (brown)

 The hypergeometric function has its convergence defined on the unit circle z = 1 .  The

convergent behaviour of this series is as follows:

• divergent when ( )ℜ − − ≤ −c a b 1 ;

• absolutely convergent when ( )ℜ − − >c a b 0 ;

• conditionally convergent when ( )− < ℜ − − ≤1 0c a b .

 Introducing the constant terms we obtain ( )ℜ − − =+1 11 0m
m m .  This implies that the series is

conditionally convergent.  However, we know that provided ε>0 the transit times are finite

and bounded to a maximum value set by ε and m=1,2.  Therefore transit-times for m∈(1,2)

will also be finite and the series converges.  We also have the added advantage that these

hypergeometric functions can be numerically computed quite rapidly [PRE94].
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5.3 The Mean Transit-time
 Schuster [SCHU95] has given a general formulation for the mean transit-time

 ( )∫
∞

=
0

ldllPl ,

 (5.18)

 where P(l) is the probability of having a transit time of duration l.  This is related to the entry

probability at a given point, P(x0), via the following transformation (see equ.(4.20))

 ( ) ( )
dl

dx
xPlP 0

0
ˆ= ,

 (5.19)

 where ( )$P x0  is the estimated probability of having a starting point, x0.

 

 In the case of chaotic map models, the entry point probability corresponds to the invariant

density at the point of entry.  This is since the invariant density is the frequency of the orbit’s

visitation to a particular part of the interval.  Hence

 ( ) ( )P l x
dx

dl
= ρ 0

0

 (5.20)

 and the average length is then given by

 ( ) ( )
{ }

l x l x dx
x ON

=
∈
∫ ρ .

 (5.21)

 Since l(x) can be expressed as a hypergeometric function, then we can write the mean transit

time in terms of this function, which takes a point of entry, x0, as its argument, i.e. l(x) can be

expressed as

 ( ) ( ) ( ) ( )( ) ( ) ( )( ){ }0
11

120
11

120 ;;,1;;,1
11

xzFxAdzFdAmmkxl
m

m
mm

m
m

mm ++ −= .

 (5.22)

This leads to the following expression for the mean transit time for a chaotic map source for

rational powers of m∈(1,2).

 ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
{ }

l mk m A d F z d mk m A x F z x x dxm m
m

m
m m

m
m

x ON

= −+ +

∈
∫

1 1

0

2 1
1 1

2 1
1 11 1, ; ; , ; ;λ ρ .

 (5.23)
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5.4 Relationship between Transit-time and Correlation
 The correlation of the map at the Lth iteration, C(L), can be considered to be the probability of

all starting points in the interval of interest iterated L times and terminating in an emission i.e.

y(xL)=1.  This can be written as24

 ( ) ( ) ( )( )( )
{ }
∫

∈

=
ONx

L dxxfyxLC ρλ ,

 (5.24)

 where ( )( )( )y f xL  is the value of the indicator variable (termination’s of 0 or 1), ( ) ( )f xL is

the Lth forward iterate of the map, ( )ρ x  is the invariant density and { }x ON∈  is the set of all

starting points in the ON region of the map25.  The probability P(l) of having an iterative

sequence of contiguous events (either all ones or zeros) is given by[SCHU95]

 ( ) ( )P l P x
dx

dl
= $

0
0 ,

 (5.25)

 For the intermittency map family we can approximate the probability of a particular entry

point x0 corresponds to the invariant density at x0, i.e. ( ) ( ).~.ˆ ρ−P .  Therefore we can

approximate the invariant density by

 ( ) ( )ρ x P l
dl

dx
= .

 (5.26)

 We can substitute this into equ.(5.22) obtaining

 ( ) ( ) ( ) ( )( )C L P l y f x dlL=
∞

∫
1

0
λ

.

 (5.27)

 The Lth forward iterate of the map counts the probability of all combinations of contiguous

blocks of length L.  Hence

 ( ) ( ) ( )( ) ( ) ( )P l y f x dP l P l LL
L

= ≡ <∫
0

.

 (5.28)

 Therefore we can say

                                                          
24 The correlation is defined as ( ) ( ) ( )[ ]mnn xyxyELC +≡ .  We are interested in transitions

starting and ending in an emission, ( ) ( ) ( )[ ]1,1 === +mnn xyxyPLC .  Via the probability

identity ( ) ( ) ( )BAPBPABP =  we obtain ( ) ( )[ ] ( ) ( )[ ]111 ==== + nmnn xyxyPxyPLC  which

when considering the probability in terms of its invariant density becomes

( ) ( ) ( )( )
{ }
∫

∈

=
ONx

L dxxfyxLC ρλ .

 25 Recall that ( )
{ }

λ ρ=
∈
∫ x dx

x ON

.This can be, depending on interpretation, the intervals [0,d] or

(d,1].
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 ( ) ( )lim
L

L

C L P l L dl
→∞

= <∫
1

0
λ

.

 (5.29)

 If we now employ the following result of Pruthi [PRU95a] concerning the cumulative

probability of lengths and derived from the renormalization group approach,

 ( )P l L l m< = − −α
1

1 .

 (5.30)
 On substituting the above into equ.(5.29) and by noting that we cannot have correlation

lengths less than 1 we obtain

 ( )lim
L

L

C L l dlm

→∞

−= −∫
α
λ

1
1

1

.

 (5.31)
 Evaluating this integral and examining its behaviour as it approaches L → ∞  we arrive at

 ( ) ( )
( ) 



 −

−
−

= −
−

1
2

1
1
2

m
m

l
m

m
LC

λα
,

(5.32)
 where α is some constant.  As l also plays a part in the transit-time analysis (see equ.(5.22))

then we can also see that there is a connection between the transit-time and the correlation.

We use this relationship later to prove a theorem on the Hurst parameter H.

5.5 Hurst Parameter Prediction
 Self-similar traffic has a significant effect on the occupancy of buffers in a network: it

produces a heavy tailed distribution [NOR93, 95]. This means, from a practical point of view,

that providing more buffer space is not a solution to buffer saturation because eventually, the

buffer will fill up. The probability of high buffer occupancy has been linked to the LRD of the

network traffic [ERR96a].  This means that high values of the Hurst parameter produce a

higher than normal probability of buffer occupancy for a given traffic load.

 

 To study and understand packet traffic, a model must be able to reproduce the traffic load and

the variability and self-similarity of real traffic.  In particular, it is important that the model

can generate traffic that has a specific Hurst parameter value.  Erramilli [ERR94b, 95a], and

Pruthi and Erramilli [PRU95a, 95b], show that these maps are good traffic models and

conjectured that the Hurst parameter, H, depends only on one power of the non-linear portion

 
( )

H
m

m
=

−
−

3 4

2 1
1

1

.

 (5.33)

 For the case of the intermittency map family we extended Erramilli’s conjecture to a theorem

using considerations from the correlation function via results from transit-time analysis.
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 Theorem - Intermittency map Family H dependence on the dominant m.  For the

intermittency map family, with m1,m2∈(1,2), the Hurst parameter, H, is dependent on the

dominant value of m.  That is to say
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 (5.34)

Figure 5.2.  Theoretical dependence of H on m1 and m2

 The theoretical surface of H due to the interaction between m1 and m2 is shown in Figure 5.2.

The proof for this comes from considerations on the transit time (Sections 5.2.2, 5.3 and 5.4)

and its behaviour in the complex plane.  If we can show that the transit-time is analytic i.e. is

continuous, single valued and has a derivative, then we can show the above theorem to be

true.

 

 Definition - Continuity in the complex plane.  A function f(z) is said to be continuous at z0 if

for any ζ > 0 ∃ δ > 0 such that ( ) ( )f z f z− <0 ζ  whenever z z− <0 δ .

 In the case of the transit-time we need to show that it is continuous, { }∀ ∈z y ON A z, ,a a

 ( ) ( )2 1
1 1

2 1
1 1

01 1F z F zm
m

m m
m

m, ; ; , ; ;+ +− < ζ  whenever z z− <0 δ .  If we write the hypergeometric

function as its series expansion
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 then the requirement for continuity can be reduced to the requirement that

( )lim
j

j j
jz z k

→∞
+ − = >0 0 0δ  and since the mapping { }y ON A z∈ a a ,  is a monotonic

increasing one then kj > 0 will always be true.  Therefore we will always be able to define

some 0 < <k j ζ  { }∀ ∈ ⇒ − <y ON A z z za a , 0 δ .  Therefore for all z values of interest

2F1(.;z) is continuous.

 

 The derivative of f(z) also exists and is a property of the hypergeometric function

 ( ) ( )d

dz
F a b c z

ab

c
F a b c z2 1 2 1 1 1 1, ; ; , ; ;= + + + .

 (5.35)

 Since the transit-time stems from a bounded system, and we know that at the upper and lower

bounds the function 2F1(.;z) is a monotonic single valued function, and as the function results

from a series expansion which will also lead to a single valued monotonic function, then we

can say that for values of interest { }ε > ∈0, y ON , 2F1(.;z) is analytic.  If the function 2F1(.;z)

is analytic then

 ( ) ( ) ( )2 1 2 2 1 1 2 2 1 1F z F z F zm m m.; .; .;= < < => > .

 (5.36)

 This implies that the lengths L

 L L Lm m m= < < => >2 1 2 1 .

 (5.37)
 This in turn implies that if L is larger then P(l<L) will also be larger and therefore

 ( ) ( ) ( )C L C L C Lm m m= < < => >2 1 2 1 .

 (5.38)

 If the largest correlation is dependent on the largest m then this will also set the dominant H.

This relationship can be seen from earlier work on the interaction between correlation and

transit-time.  This completes the proof.

 

 Remark:  If we apply the relationship of the Hurst parameter to the exponent dependence of

the correlation (see Section 5.4) we once again obtain our theoretical dependence on H of the

map parameter m
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 (5.39)

 We have run numerical experiments using the double intermittency map to determine the

dependence of H on m.  The results of these experiments are shown in Figure 5.3.  What we
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can see from these results is that there is a general increase in H with increasing m, which is

predicted by the theory.  However the plane of H is different from that predicted.

 

 Figure 5.3.  H profile for variations in m1 and m2 of the double intermittency map: ε1 = ε2 = 0
and d = 0.5

5.6 Empirical Fit of H
 The experimental results show that the dependence of H on m1 and m2 is not quite the same as

that predicted.  In the original derivation of the parameter dependence of H on m the following

were assumed:

• a uniform injection probability into the restriction region, and

• that the dynamics of the map once iterated out of the restriction region was independent of

the event causing injection into the restriction region.

 In our map family the assumption of independence is not valid because the transition between

the halves of the map are deterministic.  In fact the results suggest that the coupling performs

an averaging on H.  We can geometrically construct such an averaging behaviour in the

following way (see Figure 5.4).  We can say that geometrically the radius R is dependent on

the values of m1 and m2.  If we let mmin=1 then

 ( ) ( )R m m m m= − + −1
2

2
2

min min .

 (5.40)
 We know tanα from the behaviour of R at Rmax, the maximum value of Hmax=1, and H’s

midrange value H0.5=1/2.  Hence
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 tan max .α =
−

=
H H0 5

2

1

2 2
.

 (5.41)

 Furthermore we know that Rmax occurs when m1=m2=2 and Rmax has a value of 2 .  The

estimate of H is then given by
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H H
m m m m

= +
− + −
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 (5.42)
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 Figure 5.4 Derivation of Empirical Fit

 We can see from this construction that coupling imparts dependence of H on contributions

from both sides of the map.  The H profile for the dependence of H on m1 and m2 using this

method is shown in Figure 5.5.  This has been compared against the actual H profile for m1

and m2 and this result is shown in Figure 5.6, where the difference between the empirical fit

and the real data is plotted against variations in m1 and m2.  As can be seen the empirical fit

gives a reasonable fit to the data.

 Figure 5.5.  Empirical fit on H
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 Figure 5.6.  Error in H using the Empirical fit

5.7 Dependence of H on other Map Parameters
 We have examined the dependence of H on m1 and m2 and found that the coupling affects the

convergence of H on m.  It would then be reasonable to assume that this coupling will also

affect H in terms of other map parameters.  In order to establish the validity of this

assumption, numerical experiments where carried out to establish the dependence of H on:

• ε1 and m1 while holding m2 fixed at 1 and d at 0.5

• ε2 and m2 while holding m1 fixed at 1 and d at 0.5

• d and m1 while holding m2 fixed at 1 and ε1, ε2=0

• d and m2 while holding m1 fixed at 1 and ε1, ε2=0

 Here we also note that the emitting half of the map contains m2 and ε2.  The Abry-Veitch

Wavelet analysis was used to measure H with a sample window size set to 65536 samples.  A

total of 1000 sample windows were used to establish the value of H for a particular parameter

combination.  The results of these experiments are shown in Figure 5.7-Figure 5.10.

The results of the effects that the alteration of ε and matching m have on H are shown in

Figure 5.7 and Figure 5.8.  We notice that the only appreciable effect on the alteration of ε on

H is that any alteration of ε away from 0 sets the upper value of H to a constant value less than

1.  In the above experiments this was 83.0≈H .  This was to be expected since ε sets the

maximum sojourn time and therefore any method which uses a regression technique to a line,

as is the case of the Wavelet based method, will be affected by points which alter the general

trend of the line.  Altering ε  sets the upper cut off on the transit times (LRD) and hence will
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affect the regression fit that can be achieved; however, this does not affect the slope of the

line, just where the line is perceived to end.

 
 Figure 5.7.  H profile for variations in m1 and ε1  of the double intermittency map: m2 =1, ε2 =

0 and d = 0.5, m2 is in the ON state

 Figure 5.8.  H profile for variations in m2 and ε2  of the double intermittency map: m1 =1, ε1 =
0 and d = 0.5,  m2 is in the ON state

The results of the effects of altering d and m on H are shown in Figure 5.9 and Figure 5.10.

From these results we noticed that as d alters, the value of H also alters.  The value of H

diminishes as d moves to lessen the interval in which m exists.  Take for example the OFF

state ( )dx ,0∈ , where m1 describes the order of the polynomial.  In this case; as d moves to
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lessen the size of the interval, i.e. 0→d , the injections into this interval from the ON state

are presented with a smaller target area from which long run correlations will result.  This has

the effect of reducing the number of long run correlation events in an experiment of set length.

This in turn affects the convergence of H.  High H values require many long run correlation

events to assure convergence on the true value.  Less events simply implies that H as not yet

converged, which is the artefact witnessed in Figure 5.9 and Figure 5.10.

 
 Figure 5.9. H profile for variations in m1 and d of the normal map: m2 =1 and ε1 =ε2 = 0, m2 is

in the ON state

 
 Figure 5.10. H profile for variations in m2 and d of the normal map: m1 =1 and ε1 =ε2 = 0, m2

is in the ON state
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We also note from the results, that Figure 5.9 and Figure 5.10 form mirror images of each

other.  This has the following implications:

• As m1 and m2 are varied then the convergence effect on H through the variation of d

should be reduced.  This is because as d is altered, the LRD from one half of the map

reduces while the LRD from the other increases.

• Due to the maps coupling then an average value of H will be observed, hence reducing

the effect that d has on the convergence of H.

5.8 Aggregate Behaviour of the Indicator Variable
 So far we have only considered the behaviour of the underlying dynamics with regard to H,

the correlation and the transit-time.  We now direct our attention to the overlying dynamics,

i.e. to the behaviour of the indicator variable.  In order to consider this behaviour we require a

formulation for the measurement of H as observed via the indicator variable.  We noted in

Chapter 2 that an essential ingredient for self-similarity is aggregation.  We also noted that if

LRD is present and aggregation is taking place then the variance of the process has a 2H

dependence.  In order to simplify the analysis we follow Ben-Mizrachi [BEN85] and assume

that the indicator variable’s realisation process is a result of a Bernoulli trial.

 

 We study the maps’ self-similar behaviour by observing the cumulative behaviour of the

indicator variable after K iterations z yK i
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 and the variance will scale as
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 (5.44)

 For derivations of these equations and subsequent ones see Appendix C.  If we examine the

correlation term in equ.(5.44) we note that the yi can only take on the value of 0 or 1.

Therefore the expectation can only take on non-zero values when yi and yj = 1, i.e.

( ) { }E y y P y yi j j i= = =1 1, .  If we consider the expectations in terms of probabilities and use

the probability identity ( ) ( ) ( )P A B P B P A B, = , then the expectation can be written as

( ) { } { } { }E y y P y y P y P y yi j j i i j i= = = = = = =1 1 1 1 1, .  Since { }P yi = 1 = λ, then we have
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the relationship ( ) { }E y y P y yi j j i= = =λ 1 1 .  By replacing the expectation with the

probability and performing the double summation of equ.(5.44) and defining

( ) { }C n j i P y yj i= − ≡ = =1 1  we notice that a regular pattern emerges from which we can

write

 ( ) ( ) ∑
−

=

−+−=
1

1

)()(21var
K

i
K iCiKKKz λλλ ,

 (5.45)

 where C(i) is the correlation function.  We now have a method for measuring the variance via

the correlation function C(i).

 

 If we recall the relationship between transit-time and correlation (Section 5.4) we can go

further and use this relationship to obtain upper bound on the aggregated variance in terms of

H.  A trial fit for the correlation function is ( )C i i≈ +α λβ ‡, where β contains terms in m.  We

can substitute this ansatz for C(i)

 ( ) ( ) { }∑
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+−+−=
1

1

))((21var
K

i
K iiKKKz λαλλλ β .

 (5.46)

 We can expand this to obtain

 ( ) ( ) ∑
−

=

−+−=
1

1

)(21var
K

i
K iKiKKz βλαλλ .

 (5.47)

 We can approximate this summation with an integral an obtain an inequality which becomes

the upper bound for the aggregate variance

 ( ) ( )var Z K i K i diK

K

y
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 (5.48)

 On integration and after taking limits as K → ∞ we obtain

 ( )var Z K
K K K
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 (5.49)

 What we can see here is that as the K becomes large the upper bound on the variance has a

β+2 dependence.  When m ≥ 3
2  this relates to a dependence on the dominant map parameter m

of ( ) ( )143 −− mm .  We have tested this method of measuring H on the Bernoulli shift map

                                                          
‡ Compare with equ.(5.32).
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(m1=m2=1) where we can recover H analytically.  For the Bernoulli shift map the invariant

density, ρ(x), is constant.  The average load is ( )λ ρ= = −∫ x dx d
d

1
1

 and ( )C n j i= − = λ  for

all n, hence the variance of a Bernoulli random process is ( ) ( )var z KK = −λ λ1 , which has a

slope of unity.  This equates to a Hurst parameter H=½.  This has been confirmed by

numerical experiments, the results of which are shown in Figure 5.11.
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 Figure 5.11.  Measurement of H for the Bernoulli shift map using the for the relationships
given by equ.(5.44) and equ.(5.45) against theoretical results.
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Figure 5.12.  Separation of the correlated and decorrelated regions of the map via Ben-
Mizrachi’s a.

5.9 Remarks and Conclusions
 Remark: Theoretical Considerations on H and Convergence

 The theoretical considerations on H stem from Ben-Mizarachi’s [BEN85] simplification of an

intermittency map model.  Their model assumed that the intermittent behaviour was separated

by laminar regions caused by random reinjections into the neck region of their map with a
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uniform probability distribution.  The resulting laminar transients (transients of high

correlation) eventually escape past some point a, (see left hand side of Figure 5.12).

 In the intermittency map family the laminar transitions are coupled because the left-hand (LH)

and right-hand (RH) halves of the map are deterministically linked.  Therefore, we are

dependent on the invariant density of the non-active half of the map for the reinjection

probability into the active half of the map.  Subsequently the predicted values of H become

distorted with respect to d since this will decide the balance of the reinjection probability.

This type of behaviour can be seen in Figure 5.9 and Figure 5.10.  We also note that once past

m = 3/2 the convergence to stable value of H becomes problematic.  This is since the

correlation sum (equ.(5.45)) behaves as a Riemann Zeta function and it is known that the

convergence of this function is very slow for exponent values near 1 (see for example Bender

and Orzag p397.[BEND84])26.  This effect is demonstrated in Figure 5.13 where the estimate

of H from the Abry Veitch wavelet analysis is shown against sample size.  We can see that for

a value of m < 3/2 the convergence is well behaved as the sample size is increased.  However

the same cannot be said for the case of m > 3/2 where the mean value converges slowly and

has considerable variance from which confidence in a trend would be hard to justify.
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 Figure 5.13  Convergence of H on sample size for 1000 experiments. H calculated using
Abry-Veitch wavelet analysis

 Remark: The separation of map LRD and SRD behaviour

 We note that the theory still gives reasonable estimates of H.  This is since some decorrelation

between the map halves occurs.  We can see from Figure 5.12 that past some point a in the LH

half of the map (and a` in the RH half of the map) the long run correlations will end in an

apparent random reinjection into the other half of the map.  This results in a to-and-fro of
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iterations between the LH and RH halves of the map reminiscent of the behaviour observed in

the Bernoulli shift map (this is the hatched region in Figure 5.12).  We can go further than this

and obtain an idea of how big the distance a - a` is.  This can be done by comparing when

iterations for the Double intermittency and the Bernoulli shift maps have similar transit times

for a common starting point, yin
27.  This type of analysis is shown in Figure 5.14, where the

differences in transit-time, ∆τ, between a double intermittency map (with parameters m1, m2 =

2 and d = 0.75) and the Bernoulli shift map (with d = 0.75) are compared for yin values in the

range, 0 ≤ yin < d and ε values in the range 1*10-12 ≤ ε ≤ 1*10-4 .  In Figure 5.14 we have also

plotted a plane surface (blue) held at a level of ∆τ corresponding to when ∆τ becomes less

than one order of magnitude.  Where the (yin, ε) plane cuts the plane surface we consider the

double intermittency and Bernoulli shift maps to have the same transit time behaviour, i.e. the

double intermittency map begins to decorrelate.  The yin value at which the intersection

between the planes occurs is taken to be the value of a.  In this example the point a is

considered to be a ≈ 0.12.  Similar results can be obtained for the other half of the map.

Therefore we can say that the region of the map that is contained within a-a` is the zone of

decorrelation.

 

 Figure 5.14.  log(∆τ) against yin and log (ε ) for case d =0.75

 From this last remark we make the following conjecture:  Ben Mizrachi’s point a exists and

acts as the separation between LRD and SRD behaviour.  That is to say that when

• xn<a we have LRD iff ε <<1.

• xn>a we have SRD.

                                                                                                                                                                     

 26 The Reimann Zeta function ( )ζ β is defined in terms of an infinite sum: ( )ζ β β= −

=

∞

∑n
n 1

.
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 This is since for m∈[3/2,2] for xn>a behaves like m∈[1,3/2).  Therefore SRD can be defined

as occurring when the order of magnitude, On, to leave the state, is the same as an equivalent

Bernoulli shift map.

 Remark: Decoupling the Map

 This last remark leads to the suggestion that if the LH and RH halves of the map could be

decoupled, then the theoretical predictions for H would improve.  This could be done by

randomising the transition entry point into the other half of the map.  In actual fact work

carried out recently by Mondragón [MON98] has investigated this.

 

 Remark: Time Granularity

 A more appropriate measure than time is the number of iterates required to leave a map state.

This is since the granularity of the map can then be set to reflect the time scale over which the

emissions of the map are being considered.  In short the iterations are really a timeless

quantity that is given meaning by applying some time interval corresponding to each iteration

of the map.

 Theoretical Behaviour of H

 What we have found is that when the map family has both halves of the map coupled, then the

behaviour of H depends on all the map’s parameters.  This parameter dependence is not given

by a simple formula.  Nevertheless, these restrictions on the theory do not constrain their use

as traffic models. Due to their evaluational simplicity it is easy to obtain a parameterisation of

H with the map’s parameters, providing a good tool to simulate traffic with a specific self-

similarity.  It is proposed that since the map family can generate traffic speedily and easily

then it would not be difficult to obtain numerical parameterisations of H with respect to a

given set of map parameters.  The differences between the theory and experiment are due to

the strong assumption that the ON and OFF events are independent.

 The Contribution

 The contribution in this chapter has been:

• A generalised formulation on the transit time which holds for the perturbed map family.

The potential that this formulation has is that it can form the basis for input to queueing

analysis with heavy tailed ON/OFF distributions.

• An improved theory of H dependence on the parameter m for the map family.  The

improved theory of H dependence is in two parts: a limiting behaviour on the dominant m,

and an empirical fit for practical cases when d = 0.5.  Furthermore, we have shown that a

numerical parameterisation approach is possible for H because the maps produce

predictable results.  We have also shown that for the coupled map d has a major impact on

H because of the determinism in the transitions that the coupling forces on the map.

                                                                                                                                                                     
 27 Recall that the Bernoulli shift map produces random (decoupled) behaviour.
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• A connection between transit-time and the correlation function which has enabled a

variance method to be developed for the measurement of H from a map’s indicator

variable.
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6 Source Aggregation
The results of Taqqu[TAQ86, 97] and Williger [WIL95, 97] show that ON-OFF sources with

LRD in at least one state, when aggregated , yield second order self-similar traffic.  We know

from the previous chapter that non-linear chaotic maps can be parameterised to give LRD in

either ON/OFF state.  Studies carried out by Ben-Mizrachi [BEN85] show that the type of

non-linear map used by Pruthi [PRU95a] has the correct type of realisation behaviour that

yields a Hurst parameter in the desired range ( )H ∈ 1
2 1, .

Pruthi [PRU95a, 95b] developed a “one-step” and an “N one-step” aggregate model.  The

resulting behaviour of the former was not accurate [I], and the latter sacrificed speed for

increased accuracy.  In the next chapter we develop a new accelerated “two-step” aggregate

model which shows a speed improvement over Pruthi’s “N one-step” model.

Because non-linear map models can model individual source streams then it is possible to

model the aggregated traffic stream behaviour by a single non-linear “equivalent” map.  In

this chapter we report on aggregation methods that achieve this.  The aggregation methods

developed here depend on the preservation of the invariant density of the aggregated traffic

stream.  The motivation for doing this is two-fold, i.e. by preserving the invariant density:

• we preserve the dynamics of the arrivals; and

• we also preserve the LRD structure of the aggregated traffic stream

In this chapter we also develop a new parameterisation method for an equivalent aggregate

map  iterated N times (i.e  for a single intermittency map representing N sources). We

investigate four methods for the parameterisation of the map’s discriminator value, d, via the

invariant density and required load.  The map parameter d can be viewed as a course adjuster

for the bursty behaviour of the map.  The parameterisation methods are compared and the

most accurate method is then selected.  We then use this parameterisation method to

parameterise an aggregate map and compare the queueing behaviour of the aggregated map

against the queueing behaviour of multiple map sources, showing good performance over a

range of parameter values.

6.1 Derivation of the Equivalent Single Map Parameters
The mathematical description of the single intermittency map is given by

 x
x cx x d
x d

d
d xn

n n
m

n

n
n

+ =
+ + < ≤

−
−

< <






1

0

1
1

ε ,

,

 (6.1)

 where c = (1-ε-d)/d.  The indicator variable yn = 1  indicates when a full packet/cell is

generated and is related to the map iterates by
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 (6.2)

 The single intermittency map is shown in Figure 6.1.  The properties that this map has in

common with traffic are:

• it displays 1/f noise with a power spectrum decay of ω-(2m-3)/(m-1) where ω is the

frequency if 3/2 < m < 2,

• it produces self-similar traffic with Hurst parameter H=(3m-4)/(2m-2) if 3/2 < m < 2.

 The parameters ε and m are related to the intermittent behaviour of the map. If an iterate of the

map is very close to the origin, the orbit slowly moves away from the origin. The average

number of iterates to move away from the origin is proportional to ( )ε − −m m 1  and corresponds

to a passive period where no traffic is generated.  The average time that an orbit of the map

spends in the ON region can be obtained from the invariant density via the Frobenius-Perron

equation (see section 4.8)

 ( ) ( ) ( )( )ρ ρ δx y x f y dy= −∫
0

1

.

 (6.3)
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Figure 6.1  The single intermittency map

 The invariant density describes how often an orbit of the map visits any region of the interval

(0,1).  For the case where m = 2, the calculation of the invariant density for the intermittency

map can be simplified by splitting the invariant density into contributory regions as follows
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 where ( )y f xi i= −1  the backward iteration of the map and ′fi (.)  is the first derivative of the

forward iteration of xn.  By performing the backward iteration and taking the derivative,

equ.(6.4) becomes

 ( )
( ) ( )

( ) ( )
ρ

ρ ε

ρ

ε
ρ ε

ε
x

d x d d x

c x
d x d d x

n

c x
c

n
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
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
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− +
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
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− + −

1 1 0

4 1
1 1 1

4 1 1
2

( ) ,

( )
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.

 (6.5)

 As it stands this equation is a bit unpalatable but nevertheless is useful since some

approximations can be made for certain points on the invariant density curve

 ( )
[ )

( ) ( )ρ ρ
ε

x d d
x ∈

≈ −
0

1
,

 (6.6)
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 from which we can make the following approximation for x = 1, ε→0

 ( ) ( )
( )

ρ
ρ

1
2

≈
−
d

d
.

 (6.8)

 For ε<x<<1 the bottom of equ.(6.5) can be approximated to give the first differential of the

invariant density

 ( ) ( ) ( ) ( ) ( )
( )( )′ ≈

− + −

− −
ρ

ε ρ

ε ε
x

d p d c x x

c x

1 2

1 2
.

 (6.9)

 With ρ’(x) = 0 this yields an implicit equation for peak of the invariant density but more

importantly from our point of view we can see that in this region the invariant density falls off

as 1/ε.

 

 The relationship between the points given above (equ.(6.6) to equ.(6.8)) and the invariant

density is shown in Figure 6.2.  The average time that the orbit spends in the ON region or

equivalently the average number of packets generated by the map after N iterations is

 N N x dx
d

λ ρ= ∫ ( )
1

.

 (6.10)

 Hence, the parameter d can be used to adjust the average load of the traffic but is also related

to the bursty behaviour of the map.
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Figure 6.2  The single intermittency map invariant density showing the points ρ(d) and ρ(1)

 Under aggregation we require a single map to produce traffic which is similar in output to

aggregation of the single maps.  To do this we require a method to preserve the tail of the

invariant density of the individual map sources28.  It is the aggregation of many such map

sources which gives the LRD and self-similar behaviour [PRU95b].  From equ.(6.8) we know

the value of two points on the invariant density curve in terms of the map parameter d

 ( ) ( )ρ ρ( ) ,x d and (x) ,  1 .

 (6.11)

 These points are used to derive the approximations for the tail in terms of the map parameters.

6.1.1 Exponential Approximation
 The tail of the invariant density curve decays as a Pareto law.  Hence we use an approximation

of the form

 y Ax= −1 .

 (6.12)

From this we can form a set of simultaneous equations

 ( ) ( )ρ ρx Ax and A= =−1 1 ,

 (6.13)

 from which we can isolate the constant A

 ( )ρ
ρ

( )
( )

1
2

= ⇒
−

A
d

d
.

 (6.14)

 Moreover, we now have a general approximation for the tail of the curve in terms of a

parameter of the map

                                                          
 28 Intuitively this is analogous to preserving the events which occur in the tail of the
distributions seen in the real traffic measurements [ERR96, PAX95, LEL94].
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 The area under the curve between d and 1 yields the probability of the source being ON, ie λ,

and is given by29
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Integrating the above yields
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 which if rearranged yields

 

( )

d e

d

d=
−

−2

ρ
λ

( ) .

 (6.18)

 The difficulty with equ (6.18) is that it is a parametric equation.  However we can obtain an

empirically derived value for ρ(1) and by equ (6.14) we can obtain a value for ρ(d), and equ

(6.18) becomes

 ( )d e=
−

λ
ρ 1 .

 (6.19)

 Hence, we can obtain the equivalent map discriminant value and predict the behaviour of the

maps under aggregation.

6.1.2 Modified Exponential Approximation
 An alternative to the approximation at equ.(6.19) can be made in the following manner.  From

equ (6.16) we note that on integrating we obtain a logarithm.  We can approximate this

integral in the following way

 2
1

1
0,

11
<<<≅

+
δ

δxx
,

 (6.20)

 where δ = 1/ψ  and ideally  ψ >> 1.  Subsequently we can obtain an approximation for λ of the

form
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 (6.21)

 which on integration yields

                                                          
 29 Here we have intentionally used λ for the probability of being on since this ties in with the
mean arrival rate into a queueing system.
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 We can then isolate d and by substituting for ρ(d) where appropriate we obtain the

approximation
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6.1.3 Trapezoidal Approximation
 An intuitive approximation for the tail of a distribution that decays very slowly is a trapezoidal

approximation.  The advantage of this approximation is its simplicity.  The equation for the

area of a trapezium is

 ( )A b c e= +
1

2
,

 (6.24)

 where we interpret the above as:

• A is the probability of being on, i.e. λ

• e is the distance (1-d)

• b is the point ρ(d) taken from the aggregated density curve, and

• c is the point ρ(1) taken form the aggregated density curve.

 

 By substituting appropriate values we arrive at the following expression for λ

 ( ) ( )( )( )λ ρ ρ= + −
1

2
1 1d d .

 (6.25)

 From equ (6.14) we substitute ρ(1) for the ρ(d) term and we then obtain an expression for d in

terms of the invariant densities of the map

 

( )
( )( )

d =
± −

−
4 16 4

2

3 1 2

1

ρ λ
ρ

.

 (6.26)

6.1.4 Improved Exponential Approximation
 We can also add a further constant term to equ (6.12) and obtain a hyperbolic equation of the

form

 y Ax B= +−1 .

 (6.27)
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 We can obtain simultaneous equations in terms of known points of the invariant density.

Solving these equations we arrive at expressions for A and B
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( ) ( )
A d

B d
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1 1
.

 (6.28)

The approximation for the invariant density is then

 ( ) ( ) ( )ρ ρx
d

x
d= + −





1 1 .

 (6.29)

From this we can obtain λ,

 ( ) ( )λ ρ= + −



∫1 1

1
d

x
d dx

d

.

 (6.30)

Integrating equ.(6.16) yields

 ( ) ( ) ( )[ ]λ ρ= − −1 1
2

d d dln .

 (6.31)

 What we now have is an implicit equation in terms of d.  This is impossible to solve

analytically.  However we can still solve this numerically in the following way.  We define a

new function F(d,η), where η is defined as λ/ρ(1).  F(d,η) is then

 ( ) ( ) ( )F d d d d, lnη η= − − −1
2

.

 (6.32)

 We can solve F(d,η) = 0 numerically using Newton-Raphson.

 
( )
( )d d

F d

dF d
n n

n

n
+ = −1

,

,

η

η
.

 (6.33)

The numerical solution for d against η is

 d = − + −100037 100005 0 426561 0 2585872 3. . . .η η η .

 (6.34)

 An interesting point from this result is that knowing that the emissions (full/empty

cells/packets) from the maps are totally independent of each other, i.e. the events are mutually

exclusive, then we can use the same technique to predict the required map d parameter from

combination (aggregation) of more than two maps.  This is since under normalisation we have

the following behaviour
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 where λNL and ρ(1)NL refer to the single equivalent map values, and N is the total number of

sources being aggregated.  Since the definition of ηT is in effect λNL/ρ (1)NL then cancellation

of N occurs.  We can therefore say that
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.

 (6.36)

6.2 Limitations on the Methods
 As d → 1 the map becomes increasingly linear in its behaviour and as a result tends to a white

noise generator (random number generator in the interval (0,1)).  Similarly if d → 0 then again

the map tends to a white noise generator.  The difference between the two is in the

interpretation of the indicator variable.  For example, if iterates of the map falling to the left of

d are interpreted as a packet generation/full cell emission then as d → 1 the source becomes

permanently off.  The extreme effects of d on the invariant density can be seen in Figure 6.3.

What we gather from this observation is that for the intermittency map to be a good imitator of

bursty traffic then d has to be placed in-between the extremes.
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Figure 6.3  Effects of extreme d on invariant density of the single intermittency map

 As we have seen the usefulness of the single intermittency map as a model of a bursty traffic

source breaks down as the map discriminant, d, approaches the limits of the map interval.  For
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this reason some realistic limits must be assumed for the traffic behaviour under aggregation

that we wish to model, i.e. over what range of utilisation values do we wish to predict the

effects of aggregation using the intermittency map.  Studies of connectionless traffic [FOW91,

SHO80] suggested external daily link utilisation values of around 1%  and external peak

minute utilisation  values of around 17% as being realistic; Fowler [FOW91] also mentions

that the peak internal minute utilisation is occasionally in excess of 50%.  Under these

guidelines we have assumed the overall aggregated load for the simulators to be in the range

 0 01 0 5. .< ≤ρT ,

 (6.37)
 where ρT is the overall utilisation for the traffic entering the simulators.

6.3 Aggregation Scenario
 In order to test out the ideas of source aggregation using chaotic maps the following scenario

was used.  This scenario assumes that utilisation of the network will remain at levels equal to

or less than 50%.
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Figure 6.4  Map aggregation test-bed

 The test-bed models traffic on a link between nodes, i.e. we are examining the traffic profiles

before they enter any kind of queueing system.  A schematic of the test-bed is shown in Figure

6.4.  We aggregate single intermittency maps with different parameters - initially two such

sources are aggregated.  We then recreate the aggregated traffic behaviour through a single

“equivalent” map that has parameters derived from the parent maps.  After aggregation we

compare the aggregated traffic stream statistics with the derived single map statistics.  The

error in behaviour between the single map and the aggregated traffic is then compared.

 

 The four prediction methods given in section 6.1 have been compared over the utilisation

ranges given in section 6.2.  For convenience in these evaluations we assume that the total ON

probability of the map (area under the invariant density curves between d and the interval limit
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1) is equivalent to the mean inter-arrival time, λ, of the sources entering a deterministic server

queueing system, such that the combined λ of the maps is equal to the utilisation of the

system.

 

 In order to obtain the utilisation values required one of the maps’ d parameters is held fixed at

a value near the interval extrema (df = 0.1 or 0.9).  The other maps d parameter is permitted to

vary in the interval [0.1, 0.9].  The ε value for the maps is held fixed at ε = 0.0001 throughout

these sets of experiments.

 

 The results are obtained in the following manner:

• The λ for the individual maps are calculated. - the map densities are obtained by using the

Frobenius-Perron operator.

• The maps’ λ are then combined and λNL calculated.

• From the individual map densities the ρ(1) are extracted and combined to give ρ(1)NL .

• The λNL and ρ(1)NL are then used to predict a value of dn for a new single map which will

yield the same λNL .

• This new map invariant density is then obtained using Frobenius-Perron.

• The map λn is calculated and compared against λNL. and this comparison is recorded.  This

is done through obtaining an error value, i.e.

 E n NL

NL

=
−λ λ
λ

.

 (6.38)

• The difference between the map d values is also recorded and is termed the ∆ value, ie

 ∆ = −d df .

 (6.39)

 The results are displayed as a plots of the error in the single map λ against the discriminant ∆

value.  Table 6.1 summarises the plot scenarios.

 

 Fig.  Map1 d (fixed)  Map2 d (range)

 Figure 6.5  0.1  0.1 to 0.9

 Figure 6.6  0.9  0.9 to 0.1

 Figure 6.8  0.25  0.25 to 0.9

 Figure 6.9  0.9  0.9 to 0.25

Table 6.1 Summary of Plot Scenarios

6.4 Results: Prediction of d
 From the results show in Figure 6.5and Figure 6.6 we noticed that:

• the Improved Exponential Approximation (IEA) method performed the best with an error

range of +15% to -5 % error,
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• the next best approximation is the Trapezoidal (TRAP) with an error range of  -18% to -

11%.

• the remaining prediction techniques do not perform as well.  But it is interesting to see that

the Modified Exponential Approximation (MEA) follows closely the Exponential

Approximation (EA) (this may yet turn out to be a useful approximation technique).
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Figure 6.5  Comparison for various λ prediction methods for a two map scenario: Map1 d
value fixed at 0.1. Map2 variable d ∈(0.1, 0.9)
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Figure 6.6  Comparison for various λ prediction methods for a two map scenario: Map1 d
value fixed at 0.9. Map2 variable d ∈(0.1, 0.9)

Although values of d can be obtained for η > 1 we know from the function F(d,η) that as η

>1, d goes out of bounds and it can no longer be relied upon.  A plot of the function F(d,η) is

shown in Figure 6.7.  For this reason a two part algorithm is used to determine d.  For η > 1

we use the polynomial approximation given in equ.(6.34) and for η ≤ 1 we use  equ.(6.33) to

find d.
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Figure 6.7  Curve fit of function d = F(η)

We can see from this that the approximation technique can only be used with certainty in the

range 0 1< ≤η .  For this reason the experiments were re-run with d in a reduced range (0.25,

0.9) corresponding to the permissible range for η.  These results are shown in Figure 6.8 and

Figure 6.9.  From these plots we can see that by restricting the range over which d varies the

accuracy of the prediction for the IEA improves.  This is since less of the peak of the invariant

density is included in the desired λ value.  In the best case the error is around ±5%.  Moreover

the range of utilisation values covered still remains within the experimental objectives

outlined earlier, and this can be seen from Figure 6.10.
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Figure 6.8  Comparison for various λ prediction methods for a two map scenario: Map1 d
value fixed at 0.25. Map2  variable d ∈(0.25, 0.9)
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6.5 Sensitivity of the IEA Method
All the estimation methods presented for d were derived for the case m = 2.  Since these

estimation methods rely on the estimation of two points, ρ(d) and ρ(1), of the invariant density

(which is dependent on m) then the methods for estimating d presented in this chapter should

perform reasonably well for m∈[1,2].  Of the methods investigated, the IEA method

performed the best.  However we note that this method is sensitive to values of ρ(1); this is

because ρ(1)<<1 and is in the denominator.  In order for the method to function properly ρ(1)

must have a stable value.  In this subsection we explore the use of regression techniques to

stabilise the effects of ρ(1) on d and we check to see if the prediction method is still applicable

for 22
3 <≤ m .
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The instability in the IEA method can be seen in Figure 6.11 and Figure 6.12 where the

%error in d and λNL are shown respectively for different values of m and ε.  The most striking

feature in these figures is that the variability in the result increases as ε decreases.  This can be

explained by the behaviour of the map.  As ε→0 more of the orbits time will be spent in the

restriction region (near the origin of Figure 6.1).  This then affects the estimate of the invariant

density at ρ(1) for an experiment of the same run length, i.e. for the same number of iterations

with a decreasing value of ε less events will be recorded for the event ρ(1).  Hence the

estimate of d will be adversely affected.
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Figure 6.11  Plot of d vs % Error in d before corrections for the case ε = 1*10-4, 1*10-12
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Figure 6.12  Plot of λNL vs % Error in λNL before corrections for the case ε = 1*10-4, 1*10-12

Applying standard least mean square regression techniques to λNL and d can reduce this

problem.  This is achieved in the following manner:
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• We know that λNL is a smoothed estimate of the cumulative density in the ON region of

the map, i.e. all the individual effects witnessed in the individual bins of the invariant

density are averaged out, and hence smoothed.

• A regressed curve fit can be obtained for various values of d against λNL (see Figure

6.13).

• A regressed curve fit can be obtained for various values of ρ(1) against d (see Figure

6.14).

• Then for a required value of λNL we can obtain d.  From d we can obtain ρ(1).  Knowing

λNL and ρ(1) we can estimate d via the preferred method.
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Figure 6.13  Plot of λNL vs d for the cases ε = 1*10-4, 1*10-12
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Figure 6.16  Plot of λNL vs % Error in λNL after corrections for the case ε = 1*10-4, 1*10-12

A natural improvement for this method would be to have an accurate analytic approximation

of λNL for a given set of map parameters.  This is an area recommended for further work.  We

can see by comparing Figure 6.11 with Figure 6.15 that this method improves the reliability of

the estimated value of d.  The curves in Figure 6.15 are much smoother than those of Figure

6.11 and, more importantly, the method gives reasonable approximations for d (error of 10%

or less) from around d=0.3.  The same improvement in λNL can be seen when comparing

Figure 6.12 with Figure 6.16.  The improvement in stability allows λNL loads of up to 50%

with around 10% error.  The other feature that we note is that as m decreases the error remains

fairly constant over the whole interval of d regardless of the value of ε used.  The reason for

this is that as m→1 the map behaviour tends towards that of a Bernoulli shift map in which all
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the regions of the map are visited with equal probability and hence ρ(1) will be visited with

(relatively) more frequency and its variability will be reduced.

6.6 Queueing Behaviour of the IEA Method
The single equivalent map’s queueing behaviour in terms of cell loss probability (CLP) has

been compared against the original individual queueing effects of the independent sources

feeding an M/D/1 queue.  As a point of reference the Schormans et al M/D/1 [SCHO96]

approximation is included in the result.  The approximation for the M/D/1 loss probability for

cell scale queueing is

( )
k

eKkP 





 −−−=>

3

2
11)(

λ
λ λ ,

(6.40)

where λ is the arrival rate and k is the queue state.  To obtain the queueing statistics, the

queues were run for a total of 30 experiments, each experiment consisting of 30*106 cell slots

(map iterations).  Two scenarios of the single equivalent map at the extremes of behaviour

were compared:

• The modelling of an aggregate total of N=5, 50 sources with ε = 1*10-4.  The individual

sources were chosen such that the mean d value was known (d=0.6) a priori.  The service

rate was then set in order to obtain a system load of 0.8 (the individual overall system

loads determined to be 0.795 (N=5) and 0.888 (N=50)).  The results of this comparison

are shown in Figure 6.17.

• The modelling of an aggregate total of N=5, 44 sources with ε = 1*10-12.  The mean value

of d for the aggregate sources was chosen to be 0.6 a priori.  The results for this scenario

are given in Figure 6.18.
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Figure 6.17  CLP with its 95% confidence interval for single intermittency map and
equivalent map for the case N=5 and N=50 Sources. Load for N=5 - 0. 0.795.  Load for N=50

0.888.  Map ε = 1*10-4.  Mean d= 0.6 equivalent d =0.599862, m1=2.0 m2 =1



Chapter 6: Source Aggregation

Telecoms Research Group. Queen Mary and Westfield College, University of London

105

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00
1 10 100 1000K

P
(k

>K
)

N=5 

N=5 (equivalent)

N=44

N=44 (equivalent)

N=44 (equivalent 2)

N=44 M/D/1 (approx)

N=5 M/D/1 (approx)

Figure 6.18  CLP with its 95% confidence interval for single intermittency map and
equivalent map: for the case N=5 and 44 sources. Load 0. 76 (N=5) and 0.9 (N=44). Map

parameters ε = 1*10-12.  Mean d= 0.6 equivalent d=0.599862 (N=5) and 0.602584 (N=44),
m1=2.0 m2 =1

We can see from Figure 6.17 that the single equivalent map and the original traffic queue

behaviour converges in the tail.  This result leads to the following comment on the sampling

method used with regard to the equivalent map orbit and the total number of iterations in each

experiment.

• In Figure 6.17 the results were obtained by modelling the N number of sources iterated a

total of K iterations.  This leads to the single equivalent map being iterated a total of KN

times with the equivalent map being reseeded at the end of the KN iterations.  This means

that only one sample orbit was taken for each experiment and the sample length of the

orbit was KN iterations.

• However there is an alternative sampling strategy.  We can run the experiment with the

single equivalent map being given a total of N seeds and each seed point is iterated K

times i.e. N sample orbits of length K were taken from the orbit of the single equivalent

map.

A comparison of the two strategies is shown in Figure 6.18.  The results of the first sample

strategy are shown as N=44 (equivalent 2) in Figure 6.18. and that of the second as N=44

(equivalent) in Figure 6.18.  What we can see from this that taking more samples (of shorter

length) from the orbit improves the convergence of the model.

A final observation that we can draw from these results is that the sojourn time is reflected in

the queueing results.  After a region affected by the sojourn lengths of the map (the true LRD

affected region of the queue statistics) the queue decay will again become cell scale in nature.
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This can be reasoned in the following way: the burst scale queueing is due to the excess

arrivals building up in the queue, the arrivals in this region will have burst scale queueing

decays.  After the mean burst length has been accommodated, any subsequent arrival will be

due to individual arrivals entering the queue after the burst.  These arrivals will have cell scale

decays.

6.7 Summary
In this chapter we have developed an aggregate map model that is iterated N times to represent

the N aggregate sources.  This model preserves the invariant density of the aggregate traffic

stream and as such retains the bursty nature of the original traffic.  This development

represents an improvement over the Pruthi “one step” aggregation method reported in

[PRU95a, 95b].  The aggregated map model uses the IEA parameterisation method for

determining the aggregate map d value.  We have seen that the IEA method for determining d

works well with an error span of  +15% to -5 %.  The stability in the IEA method can be

improved by the use of regression techniques.  We have also shown that the method works

reasonably well for range m∈[1,2]; this is because the invariant density takes into account the

effects of m.  The range of m covers the LRD behaviour of the map and because the choice of

ON or OFF portion of the map is purely arbitrary then the LRD behaviour can be chosen to be

in either state.  The single equivalent map derived has queueing behaviour that shows

convergence in the tail when compared to the queueing behaviour generated by the original

traffic stream.  There are limits to the IEA method which limit the arrival rate of the map

when fixed to one time resolution.  However if traffic is being modelled in scenarios where

the individual traffic source arrival rates, λ, are in a spread which is relatively tight30, then the

IEA technique will predict parameters for an equivalent single map to within  ±5% of the

actual λNL figure.

                                                          
30 An example of such a tight spread would be where the maximum span (λmax - λmin) = 0.48
and studies [FOW91, SHO80] show this to be a reasonable figure.
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7 A Fast Source Aggregation Model
Pruthi [PRU95a] produced two aggregate traffic models: a “one-step” and an “N one-step”.

The “step” refers to the number of stages that are used in determining the number of packets

being emitted at each iteration of the map.  One-step means that there is a single step in

obtaining the number of emissions. N one-step means that the single step is repeated N times

to determine the number of emissions.

The “one-step” model of Pruthi produced Lk packets at each iteration if in the ON portion of

the map, where L is the number of sources being aggregated and k is the packet length.  This

approach gave inaccurate queueing behaviour.  In the “N one-step” model of Pruthi there are

N individual IID. maps, each map emitting k packets in length.  At the end of the iteration

cycle there will have been kj packets emitted with probability P(j) where j is taken from the

binomial distribution ( ) ( ) jNj
j

N CjP −−= λλ 1  and λ is the total average ON probability.  This

approach sacrifices speed for greater accuracy.

The single equivalent map of the previous chapter iterates an equivalent map N times, to

produce any number from 0 up to N in a time slot.  This produces better queueing behaviour,

much closer to that obtained by multiplexing N individual maps.  However, the invariant

density parameterisation method is limited to a single intermittency map.

The new “Bulk Property” map introduced in this chapter is a “two-step” approach which uses

the iterate value in the ON portion of the map to index into a specific batch size varying

between 1 and N.  This approach can be applied to either single or double intermittency maps.

This chapter describes how the Bulk Property batch size is parameterised from the invariant

density, presents results for the H dependence on the map parameters, and illustrates the speed

up over other methods.

7.1 Current Thinking: ON/OFF Sources
 Current thinking on the traffic modelling of high speed networks suggests that individual

sources can be described by ON/OFF models in which the model is either emitting traffic at a

maximum rate or is completely idle [WILL94].  An example of this interpretation is the use of

the indicator variable of the intermittency map family.  There have been recent studies on

intermittency maps which employ this ON/OFF interpretation by emitting a fixed number of

packets/full ATM cells on each iteration in the ON state of the map [PRU95b].  Queueing

behaviour produced from the use of such intermittency maps produces extremes of behaviour,

i.e. either;

• when the tail of the invariant density corresponds to the ON portion of the map the state

probabilities decay exponentially; or
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• when the head of the invariant density corresponds to the ON portion of the map we obtain

a power law decay of the state probabilities.

 In both instances it has been shown that when intermittency maps with the ON behaviour

described above are aggregated then the queueing behaviour (state occupancy) tends to a

stretched exponential [PRU95b].  The speed with which the stretched exponential distribution

is achieved depends on the ON interpretation being used.  Faster convergence is achieved

when using the second interpretation.

 

 If we are to model an aggregated traffic stream as an ON/OFF model then the maximum rate

behaviour described above would be incorrect.  For example, suppose there are 50 sources

feeding into a single link.  If an ON/OFF model of the type described above were used to

model this behaviour, then there would be 50 sources emitting full ATM cells when ON, and

no full cells being emitted when OFF.  Clearly this cannot be true.  There must be a

compromise between the extremes which properly describes the actual behaviour.  To resolve

this problem we propose a continuum of behaviour between the extremes.

7.2 The Bulk Property
 In the single intermittency maps used so far we have interpreted the ON region as the partition

of the interval corresponding to m2=1 with ε2=0.  What we have noticed is that a single

emission event (cell or packet) is coincident with a near uniform invariant density in the

emitting region, i.e. the uniform invariant density gives rise to a single emission.  We could

then view a non-uniform invariant density as corresponding to the probability of more than

one emission.  This notion leads to an interesting interpretation of the intermittency map

family and its invariant density that can be used to

• depict network behaviour; and

• provide a method of giving a continuum of ON behaviour.

 

 Furthermore it was noticed in experiments conducted with the equivalent single intermittency

map of Chapter 6 that it yielded the same mean emission rate whether the map was emitting

from its linear region (m2=1) or from its non-linear region (m1>1).  The map remains the same,

suggesting that the map is depicting the underlying behaviour of the network traffic and not

just the sources.

 

 What these observations lead to is the “Bulk Property” interpretation for the intermittency

map family.  This interpretation comes from what the “bulk” of the network traffic is doing,

i.e. are we examining a single source or are we examining a collection of sources.  The bulk

property is used to relate the map dynamics at each iteration to the aggregate number of

emitting sources.  The manner in which this is achieved is by aligning the mode of the

invariant density to the mode emission rate of the sources.  In this way the invariant density
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not only characterises the sojourn times for ON and OFF states but also gives a measure of the

“ON-ness” of the aggregated sources.  This idea is illustrated in Figure 7.19.

 d0 1

ρρ((x))

contribution to more than
 one emission

contribution to one
 emission

OFF ON

Figure 7.1  Aggregate map: Contribution of ρ(x) to the number of emissions

 To simplify this approach it is easier to work with the cumulative distribution functions of the

map and the probability of the number of sources being ON arranged in back-to-back fashion.

This is illustrated in Figure 7.20.

 

P (si ≤ N ) P(xn ≤ X)

λ
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 Figure 7.2 Single equivalent map cumulate invariant density P(X ≥ xn) iterate xc mapped to
the corresponding source emission cumulate probability P(N ≥ si) λ of emitting sources

 We can see from Figure 7.20 that in terms of the cumulate probabilities a map iterate value, xn,

has a corresponding number of sources, si, that are ON associated with it.

7.3 The Bulk Property Map
 The Bulk Property map is a single map source that is the aggregated equivalent of the N map

sources.  This aggregated map is iterated once and the value of the iterate yields information in

the ON-ness of the emitting sources.  The benefit of this approach is two-fold:
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• it permits a speed-up in the simulation of on-line traffic generation; and

• it acts as an enabling step towards the application of chaotic control to networks via

Coupled Map Lattice techniques (see Chapter 9).

To develop the Bulk Property map, we start by considering aggregation as taking place in the

aggregation plane, where the types of aggregation are given by the axes Sources and Time

(see Figure 7.21).

 

Time (K)

Sources (L
)

Figure 7.3.  Conceptual view of the aggregation plane

In the Bulk Property map the evolution of the map’s iterates leads to aggregation in time, and

the superposition of the source probabilities on top of the iterates leads to aggregation in

sources.

7.3.1 Aggregation in Time
The aggregation in time comes from considering the probability of a single emission from a

total of L sources.  If we assume that the sources are IID and that members of the map family

can model the traffic streams then the probability of emission from an individual source is

( ) ( )
{ }
∫

∈

==
ONx

jjj dxxP ρλ1 ,

(7.41)

and the probability of no emission is given by Pj(0) = 1-λj.  If we now consider two cell

streams that are aggregated under the following rule: zeros are only preserved in the output

stream when there are two coincident zeros in the input streams, then the probability of an

emission (at least one) in the output stream would be

( ) ( ) ( ) ( ) ( ) ( ) ( )1001111 212121
)2( PPPPPPPout ++= .

(7.42)

The probability of no emission in the output stream would then be

( ) ( ) ( )000 21
)2( PPPout = .

(7.43)
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It is easier to write the probability of an emission in the output stream in terms of the

probability of no emission

( ) ( ) ( )
( )01

0011 21
)2(

out

out

P

PPP

−=

−=
.

(7.44)

This can be readily extended to L sources

( ) L

L

j

j
L

out PP Λ≡−= ∏
=1

)( 01 ,

(7.45)

where ΛL is the aggregate map ON probability i.e. ∫=Λ
1

)(

aggd

aggL dxxρ and dagg and ρagg are the

aggregate map discriminate and invariant densities respectively.

7.3.2 Aggregation in Sources
The aggregation of sources arises out of considering the number of emitting sources at each

iteration of the map.  If we suppose that the sources are IID then the mean arrival rate at each

iteration interval is

∑
=

=
L

i
iT L

1

1
λλ .

(7.46)

The probability of M emitting sources in a total number of L sources is given by

( ) ( ) ML
T

M
TL M

L
M

−
−








= λλφ 1 .

(7.47)

The cumulate probability distribution that we superimpose onto the invariant density is then

( ) ( )∑
=

=≤Φ
M

j
LL jMm

0

φ .

(7.48)

The mean of such a distribution is TLλ .

7.3.3 Effect of Aggregation on the Mean and Variance of the Bulk Property
Map
 The results of equ.(7.45) and equ.(7.47) are used to show the effect of aggregation on the

cumulate traffic produced by the Bulk Property map.  The Bulk Property map aggregates both

in time, K, and sources L.  We have formulations for the variance and the mean of a single

source aggregated in time (see Chapter 5).  Recall that we had defined the cumulate traffic

from a single source as
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 z yK i

i

K

≡
=
∑

1

,

 (7.49)

 where yi is the value of the indicator variable at discrete time i.  Also recall that the

expectation and variance of the cumulate traffic from a single source was given by

 ( ) ( ) ( )
{ }

E z
N

y KE y K x dx KK
N

j
j

K

i

N

x ON

=










 = = =

→∞ == ∈
∑∑ ∫lim

1

11

ρ λ

 (7.50)

 ( ) ( ) ∑
−

=

−+−=
1

1

)()(21var
K

i
K iCiKKKz λλλ

 (7.51)

 where C(i) is the correlation function and ρ(x) is the map’s invariant density.  What we require

is a similar development of the aggregated map.  There are two reasons for this:

• we would like to have a method which can check on the Hurst performance of the

aggregated map; and

• we would like to develop a method of measuring the Hurst parameter of the aggregated

traffic on-line.

 In order to do this we reassess the function of the indicator variable.  We define the indicator

variable for the aggregated map as

 ( ) { }
{ }g x

x OFF

x ONn n
n

n

=
∈
∈





0

1
.

 (7.52)

 For the aggregated map the indicator variable acts as a step function for the probability of the

number of sources being on i.e. if gn = 1 then we will have the probability φL(M) of having M

sources on at discrete time n, while if gn = 0 then there are no sources on.  This is illustrated in

Figure 7.22.

I terat ion interval
n

gi = 1 gi = 1gi = 0

n+1 n+3n+2

gi = 1

Figure 7.4  Interpretation of gi as a step function:  If gi =1 then Mi is the number of sources on.
If gi =0 then Mi=0

 We can see that there are two things to consider:
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• the probability of the aggregated map being ON in the time K.  If we define ς K i
i

K

g≡
=
∑

1

then the required probability is given by ( ) L

L

n

K

i
i

L
K Kg

L
E Λ=










= ∑ ∑

= =
∞→

1 1

1
limς †;

• the mean number of emissions at each iteration from the aggregate of L sources, which is

( )( ) TL LME λφ =  by virtue of the source distribution being Binomial.

In light of the behaviour of the indicator variable we can therefore say that in the aggregation

of L sources over time K, the average number of emissions, SK, will be

( ) ( ) ( )( ) TLLKK LKMEESE λφς Λ== .

(7.53)

Here we note that there is an alternative formulation for the above result that may be useful

later. We can define the expectation of SK in the following way

( )E S
N

g MK
N

i i
i

K

n

N

=








→∞ ==

∑∑lim
1

11

,

(7.54)

where gi is the indicator variable and Mi is the number of ON sources at discrete time i.  Since

the gi is independent of the Mi, i.e. the Mi and the gi can be generated separately without

affecting the end result, then we can say

( ) ∑ ∑
= =

∞→ 









=

K

k

N

n
nn

N
K Mg

N
SE

1 1

1
lim

(7.55)

and because of the independence we can write

( )

TL

K

j

N

n
n

N

N

n
n

N
K

LK

M
N

g
N

SE

λΛ=



































= ∑ ∑∑

= =
∞→

=
∞→

1 11

1
lim

1
lim

,

(7.56)

which is the same result as equ.(7.53).

We are now in a position to obtain the variance of the aggregate process var(SK).  For this we

use the definition of the variance

                                                          
† Where ( )

{ }
∆ =

∈
∫ ρagg

x ON

x dx  and ( )ρagg x is the invariant density of the aggregated map.
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( ) ( ) ( ) ( )∑ ∑ ∑ ∑∑
= = = =>
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By applying similar techniques to those used in Chapter 5 for the variance of a single map

model we can obtain the variance of the aggregate map model.  After simplification in which

( )C i  is the correlation term for the map and ( ) ( )C i C n j i= = − , we can similarly define the

correlation terms for the M sources as ( ) ( )C Ci n j i= = − .  Therefore we can write

( ) ( ) ( )[ ] ( ) ( ) ( )∑
−

=

−Λ+Λ−+Λ=
1

1

210var
K

i
TLLTLTLK iiCiKLKLLKS Cλλφλ .

(7.59)

Equation(7.59) tells us that the correlation term is dependent on the correlation of the map

which possesses LRD and on the correlation of the number of sources emitting, which is SRD.

The net result is that the LRD dominates since it has a slower decay and therefore we can say

that the underlying dynamics of the Bulk Property map will permeate through to the overlying

dynamics of the indicator variable (the actual number of sources emitting).  This means that

no matter what distribution we impose on top of the underlying dynamics the LRD and hence

the H will still be there.

7.3.4 Consideration of the Invariant Density
The Bulk Property map associates the invariant density to the probability of a number of

emissions.  In order to perform this association we introduce the following concept.

Equivalent uniform invariant density.  The equivalent uniform invariant density, ( )ρ1 x , is

the contribution of the invariant density in the ON state which corresponds to only one source

being active.  In the intermittency map this can be thought of as the invariant density at the

point d being constant over the whole of the ON interval i.e. ( ) ( ) { }ρ ρ1 x d x ON= ∀ ∈ .

Under this definition we can say that any ( ) ( )ρ ρx x> 1  contributes to the ON-ness of other

emitting sources.  This concept is illustrated in Figure 7.19.
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Definition - Modified cumulate invariant density.  This is defined as

( )
( )

( )
{ }
∫

∫

∈

≡≤Ρ

ONx

X

d
nM

n

dxx

dxx

Xx
ρ

ρ

(7.60)

where ( )ρ x  is the invariant density of the aggregated map and { }X ON∈ .

We use the concepts of equivalent uniform and modified cumulate invariant densities in the

following way.  The distribution of ( ) ( )ρ ρx x> 1  is not uniform.  This implies that the

aggregated map has favoured intervals that the orbits of the map prefer.  This preference in the

orbits amounts to a preference in the number of emitting sources.  If xn  is the iterate at

discrete time n then this corresponds to some number of emitting sources Mn , i.e. x Mn n⇒ .

Theorem 1:  Existence of E(xn).

{ }∃ ∈x x ONn n,  such that E(xn) has a finite mean i.e. ( ) ( )
{ }

E x x x dxn n

x ONn

= < ∞
∈
∫ ρ .

Proof.  The normality of the aggregate map is assured by exclusion of the fixed points from

the interval in which the map exists, i.e.

( ) ( ) ( )∀ ∈ = < ∞∫x x dxn 0 1 1
0

1

, Ρ ρ .

(7.61)

Then any subset of ( )x ∈ 0 1,  will also have a summable finite invariant density, i.e.

{ } ( )∀ ∈ ⊂ ∃x ON xn n0 1,  such that ( ) ( )
{ }

E x x x dxn n

x ONn

= < ∞
∈
∫ ρ .

Corollary:  If the invariant density is normalisable for all subsets of ( )x ∈ 0 1, , then we can say

that there exits a modified cumulate invariant density that is finite and bounded.

Remark:  We can now state the following correspondence in probability between the modified

cumulate invariant density and the probability distribution of the number of emitting sources

as a direct consequence of the equivalent uniform invariant density.  There exits a modified

cumulate invariant density ( )XxnM ≤Ρ  such that

( ) ( )MmXx nLnM ≤Φ⇔≤Ρ .

(7.62)

Consequently we can say
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( ) ( ) ( )






∆
≤Φ−≤∆+Φ

≈
≤Ρ

m

MmMmm

dx

Xxd nLnLn ,

(7.63)

where [].≈  signifies the closest discrete probability to the modified invariant density.

Theorem 2: Existence of mappings of the aggregate map iterate to the number of emitting

sources.

( )( ) ( ) ( )
( )[ ] ( ) [ ]LLkxExh

LkxEdxg

TL

h

nn

TL

g

nn

,1,

,1,

λφ

λφ

∈∈∀∃

∈∈∀∃

a

a
,

where TLλ  is the expected number of sources that are on.

Proof:  The proof for these mappings arises out of the proof for the existence of E(xn) and

knowledge of the invariant density.  That is to say if xn has a ρ(xn) then

{ } ( ) ( )XxPxONx nMnn ≤⇔∃∈∀ ρ ,

and since by correspondence in probability

( ) ( ) ( )M
m

MmMmm
L

nLnL φ=
∆

<Φ−<∆+Φ
,

where ( )MLφ  is the probability density of M sources emitting out of a total of L sources, then

{ } nnn mxONx ⇔∃∈∀  and this implication is achieved by the mapping g and h, since ( )E xn

and TLλ  are finite and are contained within their respective intervals.  Therefore ( )E xn  and

TLλ  act as natural partition values for those intervals in which the mapping exists.

Both g and h are 1:1 mappings that are continuous and single valued functions.  This is

illustrated in Figure 7.23.  The functions g and h are hard to obtain.  However the proof

outlined above indicates a method for circumventing the mapping which is outlined below:

1. Obtain xn by iterating the aggregate map.

2. Obtain ( )XxnM ≤Ρ .

3. Obtain equivalent ( )MmnL ≤Φ .

4. Find solutions for ( ) ( )[ ] kKkKkk nLnL ∆≤Φ−≤∆+Φ .

5. If more than one solution: perform Bernoulli trial for the selection of the solution.

6. Return mn.

Steps 2 -5 can be simplified and sped up through the use of look-up tables, since

( )XxnM ≤Ρ , ( )KknL ≤Φ  and ( ) ( )[ ] kKkKkk nLnL ∆≤Φ−≤∆+Φ  can be tabulated.

The advantage of this method is that even though the original modified invariant density of the

aggregate map may not be multi-valued it will still give an indication of intervals that yield

highly probable emissions from those which yield low probability emissions.  For example
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with ε = 0 the modified invariant density is single valued.  However the mapping to the source

probability density yields multi-valued results.

φL(K)

ρ'(x)

d 1

1 L

LλλT

M < LλT M > LλT

xn < E(xn) xn > E(xn)

E(xn)

g(xn(i)) h(xn(i) )

Figure 7.5  Mapping of invariant density to source pdf. for the double intermittency map

Strictly speaking the aggregate map maps a specific iterate to an emission sequence.  To

accomplish this coupling between an iteration and a number of sources emitting would be

difficult.  A way around this problem of coupling is to view the iteration in terms of its

cumulative invariant density and to relate this to the cumulate density of source emissions as

outlined above.  Under this interpretation we view the cumulate invariant density as the

probability of all orbits (xn) having been visited up to Xn.  This then equates to a probability of
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emitting all sources k up to source K.  This is illustrated in Figure 7.24.  In this way there is

connectivity between the iterate value and the number of sources emitting.

x=dM=L
xi=a

PM(x    X)

1

0

M=1
x=1M=m

ΦL(m    M)

PM(x    a)ΦL(m    M)<

<

<

<

Figure 7.6  Equivalence relations for the cumulative distributes of the sources and invariant
density

Observation:  “d-walk-back” and emergent self-similar and LRD behaviour

The ON probability of the aggregated map is set by

λ λT
N

n
n

N

N
=

→∞ =
∑lim

1

1

.

(7.64)

If we now suppose that the number of sources increases, this would imply that the network

utilisation increases.  This is usually the case in real networks.  The implication of this in the

aggregated map is that as λT → 1 (increase in utilisation) d → 0 .  The movement of d

towards 0 is termed “d-walk-back”.  The effect of d-walk-back on the traffic generated by the

aggregated map is an apparent loss of independence of the sources.  The justification of this is

in the following argument: a self-similar source is characterised as much by its silent sojourn

periods as by its active sojourn periods31.  Therefore as the aggregation level increases the

probability of a silent period being retained in the output aggregate traffic diminishes.  This is

the equivalent of a loss in information.  The net effect is that the independent nature of the

sources begins to appear dependent and hence correlations appear in the aggregated traffic

which lead to self-similar and LRD behaviour.

Remark: Aggregation Order

Here we note that the aggregation performed by the Bulk Property map is aggregating in the

correct order since the source terms are included within the summations to K, i.e. we are

aggregating in the limits described by Taqqu et al.[TAQ97].

                                                          
31 For example, consider a self-similar source modelled by a chaotic map that has the
dominant m in the OFF state.
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7.4 The Source Aggregation of Erramilli and Pruthi
Willinger et al [WILL97] used an aggregated process ( )W jM b,

∗  generated by:

• aggregating 0/1 sequence output of M ON-OFF sources; and then,

• aggregating the resulting sequence in time over non-overlapping blocks of size b.

 If each source has a heavy tail sojourn time in ON and OFF (see Chapter 3 for more details)

and the probability that given a period of continuous zeros (0) and ones (1) = ½ the aggregated

process ( )G t tH , ,σ ≥ 0  is FGN, then the following limit in distribution applies

 ( ) ( )lim lim , ,d
b

d
M

H M b H

M

b
W j

bM
G j

→∞ →∞

∗ −




 =

2 σ .

 (7.65)

 The implication of this is that the map family will tend to FGN when aggregated over M

sources and then b blocks of output data.

7.4.1 Pruthi’s Aggregation Model
 Pruthi [PRU95a] describes mathematically the output behaviour of his “N one-step”

aggregation model in the following way.  He considered the aggregate behaviour of a number

of sources { }i N: ..1 over a discreet time index n = 1,2,…

 ( )
( )( ) ( )

( )( ) ( )x
f x x d

f x d x
n
i n

i
n
i

n
i

n
i+ =

≤ <

≤ ≤




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1

1

2

0

1

 (7.66)

 with the packet cell generation  for the source i being given by

 ( ) ( )

( )y
x d

d x
n
i n

i

n
i

= ≤ <
≤ ≤






0 0

1 1
.

 (7.67)

 The number of packets generated [ )k k, ,∈ ∞1  is the number of packets generated by each

source at every iteration when in the ON state (fixed length).  The output of the traffic stream

is then

 ( )Y k yn n
i

i

N

=
=
∑

1

.

 (7.68)

 For the characterisation of the aggregated traffic we assume IID. therefore

 ( )[ ] ( )λ ρ= = ∫E y x dxn
i

ON

.

 (7.69)

 The mean traffic rate is then

 [ ]r E Y Nkn= = λ .

 (7.70)
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 Because the N sources are independent the probability of j data sources is given by

 ( ) ( )P j
N

j
j N j=







 − −λ λ1 ,

 (7.71)

 for j N= 0 1 2, , , ,L .  Therefore at each iteration a batch of kj packets is generated with the

probability given above. The variance of the output process is then given by

 ( )[ ] ( )var( )Y E Y r Nkn n= − = −
2 2 1λ λ .

 (7.72)

 The peakedness, more formally the index of dispersion for counts (IDC), is given by

 
( )

( ) ( )a
Y

E Y
k

n

n

= = −
var

1 λ .

 (7.73)

7.4.2 Scaling the fluctuations
 For the double intermittency map the problem exists of finding the mean.  To get around this

Pruthi constructed a zero mean process from the aggregate of the individual maps,

 Y Y
kN

n
z

n= −
2

 (7.74)

 i.e. half the mean value from the cumulative total.  A fluctuation term is then constructed

2

k

Y

N
nvar( )

 to which the mean, [ ]E Yn  is added.  Therefore the aggregated output of the maps

can then be written as
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 (7.75)

7.5 Bulk-property Map H-profiles
We have run numerical experiments on the bulk-property map to examine it’s dependence of

H on its parameter values.  The experiments were conducted in a manner identical to that

outlined in Chapter 5.  The source emission distribution for the bulk-property map was chosen

to be 100 IID. sources with a mean emission rate of 0.014190 cells/second.  This corresponds

to 100 bursty Ethernet sources at 2.2 Mb/s feeding into a 155Mb ATM backbone link.
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Figure 7.7  H profile for variations in m1 and m2  of the Bulk Property map: ε1 = ε2 = 0 and d =
0.5.  Modelling 100 Sources, Mean Arrival Rate per source 0.014190 (2.2Mb Ethernet link on

a 155Mb ATM link)

Figure 7.8.  Error in H using the Empirical fit for variations in m1 and m2  of the Bulk
Property map: ε1 = ε2 = 0 and d = 0.5.  Modelling 100 Sources, Mean Arrival Rate per source

0.014190 (2.2Mb Ethernet link on a 155Mb ATM link)
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Figure 7.9.  H profile for variations in m1 and ε1  of the Bulk Property map: m2 =1, ε2 = 0 and
d = 0.5, m2 is in the ON State, Modelling 100 Sources, Mean Arrival Rate per source 0.014190

(2.2Mb Ethernet link on a 155Mb ATM link)

Figure 7.10.  H profile for variations in m2 and ε2  of the Bulk Property map: m1 =1, ε1 = 0 and
d = 0.5,  m2 is in the ON State, Modelling 100 Sources, Mean Arrival Rate per source

0.014190 (2.2Mb Ethernet link on a 155Mb ATM link)
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Figure 7.11. H profile for variations in m1 and d of the Bulk Property map: m2 =1 and ε1 =ε2 =
0, m2 is in the ON State, Modelling 100 Sources, Mean Arrival Rate per source 0.014190

(2.2Mb Ethernet link on a 155Mb ATM link)

Figure 7.12. H profile for variations in m2 and d of the Bulk Property map: m1 =1 and ε1 =ε2 =
0, m2 is in the ON State, Modelling 100 Sources, Mean Arrival Rate per source 0.014190

(2.2Mb Ethernet link on a 155Mb ATM link)

The results of Figure 7.25-Figure 7.30 show that the bulk-property map has its H profile

governed by the underlying dynamics.  Generally the bulk-property map follows the same
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profiles obtained for the intermittency maps of Chapter 5.  However it is noticeable that there

are artefacts present in these results which are due to the algorithm that imposes the source

distribution onto the underlying dynamics.  This is most noticeably evidenced in the results

where variations of parameters (m2 and ε2) in the emitting half of the map are made (see

Figure 7.28 and Figure 7.30).

7.6 Bulk Property Map - Speed up
The Bulk Property map has been compared for speed of sample generation against the results

reported in Chen et al [CHEH96].  Although the methods reported in [CHEH96] are for off-

line generation of self-similar samples we can compare the time it takes to generate a given

number of samples.  Under the test conditions stipulated by Chen – Sun SPARC 5 running at

70 MHz requiring the generation of 16384 samples – the best performing algorithm was the

Maximum Likelihood Estimator (MLE).  This generated the required number of samples in

0.6 seconds.  The bulk properties map generated the same number of samples in 0.03 seconds.
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Figure 7.13  Comparative evaluation times (in µs) for the Normal – Pruthi sample generation
(standard map ) and the bulk properties map for increasing number of sources, N, together

with their 95%tile error bars

The second comparison performed was against the sample generation method proposed by

Pruthi and outlined earlier.  In this comparison the number of aggregated sources modelled are

increased form 10 to 200.  The average time to generate a sample is then calculated along with

the 95% confidence interval around the generation time.  The results of this comparison are

shown in Figure 7.31.  What we can see from this result is that for the Pruthi method, the

sample generation time increases as the number of modelled aggregated sources increases,

whereas the Bulk Property map has a generation time which is more or less constant as the

number of modelled aggregated sources increases.  However it should be pointed out that the

variability of the generation time is much higher for the Bulk Property map than for the Pruthi

method.  This variability is due to the search algorithm employed by the map.
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7.7 Summary
In this chapter we have investigated a new map – the Bulk Property map.  This map models

aggregate self-similar traffic on-line.  We have seen that the underlying dynamics of the map

parameters permeates through to the output variable of the map enabling H to be set in the

same way as the double intermittency map.  Moreover we have seen that imposing a source

onto the underlying dynamics permits the Bulk Property map to produce sample output

between one and two orders of magnitude faster than MLE and Pruthi’s method.  However,

the Bulk Property map is still in its early stages and artefacts in the H profiles need to be

explained.  These artefacts could be sourced from a number of places; for example the search

algorithm used to find the batch size could be imparting an effect on H since the index is

derived from the value of the map iterate.  Furthermore, because map is still coupled it could

be suffering from similar problems at the extremes of d.  Or indeed the artefacts could be

combinations of the above.  However, progress can be made in counteracting these artefacts

since their effects are predictable, so a numerical parameterisation would be reliable.  This

map is nonetheless promising and should be developed further.
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8 On-line Measurement of H
There are many estimators for H.  There are those which are heuristic in nature, for example

R/S statistics, correlograms, and there are those which are more statistically robust, such as

Whittle’s estimator [BER94] and more recently Abry and Veitch’s wavelet based estimator

[ABR98].  The more rigorous the estimator the more complex in nature it becomes.  For an

on-line estimator of H the practical requirements alter slightly from the theoretical ones.

These alterations really reduce to one of a compromise between speed and accuracy.  The best

on-line estimator would be one that:

• can produce a reasonably stable estimate of H in the fastest possible time (stability in

convergence);

• is reasonably stable to short term fluctuations in the arrival rate;

• gives an idea of the error around the measurement in H;

• in terms of hardware would require as little memory as possible and, could classify the

readings as they are taken.

In this chapter we asses the Indicator Variable Variance (IVV) method developed for

measuring H in Chapter 5 as an on-line measurement method of H from a single traffic source.

We compare this method for accuracy against measurements taken by the Abry and Veitch’s

wavelet based estimator.  The interest in comparing these methods for accuracy lies in the fact

that the IVV estimation method is derived from a correlation structure where as the Abry and

Veitch method is wavelet based.  From a teletraffic point of view a correlational method may

be more significant in terms of understanding the queueing behaviour produced by self-similar

traffic.

8.1 Assessment of the IVV Method
The IVV method calculates H from the variance of a single source as the lag increases over

which the variance is calculated.  H is measured from the cumulative arrival process of the

source via the asymptotic relationship, ( )var Z KK
H∝ 2 , for K >> 1 (see Chapter 3).  Self-

similarity in a traffic stream is embodied in the cumulative arrival process, z yK i

i

K

=
=
∑

1

, where

K indicates the lag and yi indicates the presence of a full cell/packet in the interval i.  The

suitability of the IVV methods as on-line indicators of H arises out of noting that the mean

arrival rate for a given lag K, λK , is the average of the cumulate arrival process, i.e.

λK Kz K=  and by noting that the cumulate arrivals generalise irrespective of the source

used.  Therefore the IVV method should be applicable to any traffic stream.

The aim of this section is to assess the IVV method against similar computational methods for

stability of H, convergence onto a stable value of H and computational speed.  The IVV
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method was compared by calculating the cumulative variance of a single map source.  In a

map source this amounts to measuring the variance of the indicator variable yn.  Three

methods were compared in the numerical experiments for their convergence, i.e. all the

methods give rise to the same value, however their convergence behaviour is different.  These

methods ranged from the most simplistic to those rather more involved.  The equations for the

methods are

( ) ( ) ( ) ( )∑
−

=

−+−=
1

1

21var
K

i
K iCiKKKZ

y
λλλ  IVV,

(8.1)

( ) ( ) ( )∑∑
= >

+−=
K

i

K

ij
jiK yyEKKZ

y

1

21var λλ Method 1,

(8.2)

( ) ( ) ( )∑∑
= >

==+−=
K

i

K

ij
ijK yyPKKZ

y

1

1121var λλλ  Method 2,

(8.3)

where λ is the mean arrival rate, E(.) is the expectation operator, P(.) is the dependent

probability and C(.) is the correlation.  For the derivation of these equations see Chapter 5.

We compared the IVV method, Method 1 and Method 2 against two separate evaluational

methods, Comp A and Comp B.

( ) ( ) ( )( )var Z E Z E ZK K Ky y y
= −

2 2

 Comp A.

(8.4)
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λ  Comp B.

(8.5)

Comp A and Comp B are there to check the validity of IVV and methods 1 and 2.  This is

because these methods do not involve any kind of measurement of the correlation structure

possessed by the map source.

A number of numerical experiments were undertaken on IVV and methods 1 and 2.  Each

numerical experiment consisted of 100 sub-experiments of 80,000 full cells.  For each sub-

experiment the variance was calculated using a selected method.  The gradient was then

calculated from the variance.  At the end of the experiment an overall gradient was calculated

(cumulated reading over all of the sub-experiments) and the batch mean value of the gradient

was calculated from the empirical distribution of the gradients of the sub-experiments.  The

result of this was plotted on a doubly logarithmic plot.  A double intermittency map with the

parameters ε1= ε2 = 0, m1=1.6, m2=1.8 and  d=0.7 was used throughout the experiments.  The

maximum lag that was examined was K=400.
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8.2 Assessment Results
The stability of H for variations in arrival rate, λ are shown in Table 8.1 and Figure 8.1.  Table

8.1 shows that the mean value of H for each of Comp A and B falls within the 90% confidence

intervals for H for all the methods used.  Moreover, Table 1 also shows that IVV performs

best since it is closer to the target value of H=0.8.

Mean H H: 5%tile H: 95%tile

Method 1 0.742334 0.902709 0.58196
Method 2 0.794418 0.887013 0.701822

IVV 0.794295 0.88011 0.708481
Comp A 0.842139
Comp B 0.841648

Table 8.1 Relative stability of H for variations in λ

Figure 8.1 shows that the numerical evaluation of H is sensitive to the estimation of λ over the

90% confidence interval for λ.  Method 2 and IVV are more stable to variations in λ than

Method 1.
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Figure 8.1 Relative stability of Hurst Parameter (H) for Method 1, Method 2 and IVV vs.
Arrival Rate(λ).

Figure 8.2 displays the relative convergence of the measurement methods onto a stable value

of H.  The leftmost Y axis gives the measure of the convergence of the calculational methods.

This is achieved by calculating the running average of the slope value after the 10th

experiment.  As more experiments are performed, the chosen method should start to converge

on a stable value for the slope (and hence H) this is since the law of large numbers starts to

affect the result.  The rightmost Y axis gives a measure of the variation in convergence.  This

can be viewed as the stability of the method.  If the variance of the running average is

converging on a fixed value then the method is stable.  Its relative stability can be assessed by

how quickly the variance converges on to a fixed value.  What we observe from these results

is that if the mean slope value converges and the variance of the mean slope also converges
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(i.e. the error around the mean becomes stable) then the method is stable.  With this in mind

we can see that that Comp A is stable, Method 1 is stable but is converging very slowly, and

Method 2 and the IVV method display the best stability since they appear to converge the

fastest.  Another possible way of assessing the relative performance of the methods lies in the

number of missing readings (gaps in the data traces in Figure 8.2).  These missing readings

arise in the following manner.  Since the slope is plotted on a doubly logarithmic plot then this

implies that all the readings are positive (otherwise no logarithmic value can be obtained).  A

lack of positiveness in the reading can indicate that the reading has not yet stabilised, hence it

is an indicator of stability.  However why this should be so is a matter of further investigation.
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Figure 8.2 Relative convergence on a stable value of H for Comp A, Method 1, Method 2 and
IVV

Figure 8.3 shows the speed of the IVV method, Methods 1 and Method 2.  Two different

processors were used, one running at 70 MHz and the other running at 143 MHz.  It is clear

from the figure that IVV outperforms the other evaluation methods.

Figure 8.4 and Figure 8.5 show the overall slopes for the variance of Zk against K on doubly

logarithmic plots for the numerical experiments conducted.  Figure 8.4 shows the effects of

the worst case influence of the arrival rate on the slopes of methods 1,2 and IVV.  Comp A

and B methods are included in the traces for comparison.  Figure 8.5 shows the effect of the

best case influence of the arrival rate on the slopes of methods 1,2 and IVV.  Once again

Comp A and B methods’ traces are included for comparison.
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What these plots show is the variation and hence the convergence of Methods 1,2 and IVV are

quite good compared with Comp A and B.  This is observed in the linearity (lack of

fluctuations) in the traces for Methods 1,2 and IVV.  Method 2 and IVV are far more stable to

variations in the arrival rate since they both follow the traces of Comp A and B far more

closely than Method 1.
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The other notable point that the results presented in Figure 8.4 and Figure 8.5 show is that for

large K the variance has long range dependence which exhibits itself as a variance which has

both a linear dependence with K on a doubly logarithmic plot and a gradient bounded between

1 and 2.  This equates to H∈(½,1).
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The conclusion that we can draw from the assessment of  the IVV method is that it can

produce relatively stable values of H on-line once the correlation statistics have been amassed.

We can see from Figure 8.2 that the experiments required around 800000 sample points for

stability.  However once this number of samples had been reached an estimate of H could be

obtained every subsequent sample.  It should also be pointed out that for higher values of H, a

greater number of samples will be required in order to obtain the stable estimates of H.

8.3 Accuracy Comparison of IVV and Abry-Veitch H estimation
methods

The IVV and Abry-Veitch methods are very different in their approaches to obtaining an

estimate of H.  Essentially the IVV method measures the cumulate arrivals to obtain the

scaling and hence H, whereas the Abry-Veitch method uses a window sampling technique and

wavelet binary decimation in order to determine the scaling and hence H.  In both instances

the final result depends on some form of linear regression to a gradient line which determines

the estimate of H.  Notwithstanding these differences one would expect that given an identical

set of experimental conditions both would render the same estimated value of H within some

given margin for error.  Two sets of experiments were conducted to see if this assumption was

true.  These experiments revealed interesting results that require further investigation.

In the first set of experiments a given combination of parameters m1 and m2  (see Table 8.1)

with ε1, ε2 =0 were fed into an intermittency map.  IVV, Abry-Veitch and R/S methods

measured the resulting time series for H.  The R/S method was included as an additional

reference marker.  The window size for the Abry-Veitch method was set to 215 samples (this

was following guidance obtained from results in Chapter 5).  The experiment was then

repeated with the value of m1 and m2 reversed.  The results of these experiments are tabulated

in Table 8.2 and displayed in Figure 8.6.



Chapter 8: On-line Measurement of H

Telecoms Research Group. Queen Mary and Westfield College, University of London

132

The second set of experiments consisted of repeating the experiments conducted in Chapter 5

required to produce the results seen in Figure 5.7 of that chapter.  In these experiments a

double intermittency map with the following parameters: m2=1, ε2=0, and d=0.5 with m1 and

ε1 variable was used to generate a time series.  The time series produced by this map was

measured for H using the IVV method.  The results of these experiments are shown in Figure

8.7.
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Figure 8.6  Behaviour of H on dominant m.

Expnt m1 m2 $H (IVV) $H (R/S) $H (Wave) ±95%Conf
(IVV)

±95%Conf
(RS)

±95%Conf
(Wave)

1 1.5 1.8 0.697486 0.926343 0.907626 0.311187 0.000553 0.028213
2 1.8 1.5 0.812903 0.825452 0.911258 0.032674 0.000259 0.031741
3 1.6 1.8 0.723913 0.91165 0.932778 0.313278 0.000533 0.027295
4 1.8 1.6 0.826458 0.841017 0.933758 0.030684 0.000445 0.038404
5 1.7 1.8 0.781727 0.896696 0.965118 0.248511 0.000428 0.03363
6 1.8 1.7 0.850897 0.859873 0.960563 0.070523 0.000385 0.028605

Table 8.2  Table of Experiment Number, Double intermittency map m parameter values, the
resulting estimate on H for map variance, R/S statistic and wavelet analysis methods together

with their 95% confidence  values

The striking feature that the results of Figure 8.6 show is that while Abry-Veitch retains the

same value of H for the given parameter set which is predicted by the theory, the IVV method

shows entirely different behaviour, most notably:

• when the dominant m is in the emitting ON part of the map, the variability of H is

enormous.  This is in contrast to the dominant m being in the OFF part of the map.

• A lower mean value of H is obtained when the dominant m is in the emitting half of the

map.
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• As the values of m approach each other, the variability in the map’s output due to the

dominant m in the emitting half of the map diminishes.

In addition to these observations, the R/S method (used as an additional marker) more or less

gives the same results as the Abry-Veitch method when the dominant m is in the emitting half

of the map while it gives the same results as the IVV method when the subdominant m is in

the emitting half.
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Figure 8.7  Single intermittence map variations in ε1 and m1  against H using IVV

Recently Naranyan [NAR98] has formulated queueing behaviour dependent on H for input

traffic that is self-similar.  However if one combines the observations given above with recent

reports that self-similar traffic with the same H produces vastly queueing behaviour [VAT98],

then one can put forward the conjecture that the variability of H and the LRD of the emitting

half of the source would give a better indication of the self-similar behaviour of the queue.

The results shown in Figure 8.6 support this view and oppose the formulation proposed by

Naranyan.

The results of Figure 8.7 show that ε has an effect on H.  It sets the upper value of H.  This is

in contrast to the results of Figure 5.7.  The theory states that H (asymptotically) is not

dependent on ε.  This is borne out by the results of Chapter 5 Figures 5.7 and 5.8.  However

we know that ε sets the upper limit to the scaling of the burst of the source, i.e. the maximum

sojourn time, and therefore sets the LRD which does affect H.  This is evidenced in the results

of Figure 8.7.  This contradiction shows that to be able to capture the effect of self-similarity

in measurements an appreciation of the way in which H is measured is required.  Although

both methods regress to a line, the Abry-Veitch method determines only the slope of the low
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frequency component that requires the same regression of the linear points.  IVV, on the other

hand, is affected by the capping that ε has on the slope.  This last observation suggests that

reliance on a single method for determining H on-line may prove unreliable.  Comparing the

results of Figure 8.7 and Figure 5.7 show this.

8.4 Conclusion
What we have seen in this chapter is that the IVV method is computationally tractable after a

cumulation time required amassing the statistics.  We have also seen that it converges at a

reasonable rate, is stable and that this method is promising for the on-line measurement of H.

However, we note from the accuracy comparisons with the Abry-Veitch method that H by

itself as a parameter for modelling self-similar traffic in a “parsimonious” manner may not be

enough.  From these results it appears that there is a unique H associated with a given set of

parameters.  However it also appears that H does not describe adequately the instantaneous

variability of the traffic, which may ultimately affect the behaviour of the queue, especially

when the dominant LRD in a source may not be due to the active phase of a source.  It is also

worth noting that reliance on a single method for determining H on-line may prove unwise.

The IVV method is derived from the correlation structure of the map (an LRD source).  The

implication of this is that it will yield results for H that more closely match the effect that H

has on queueing behaviour i.e. the manner in which the arrivals into a queue appear.

Furthermore, the IVV method is responsive to the effect of limiting the transit time (effects of

ε ) and to whether the LRD is in the ON or OFF phase of a source.  Both of these effects are

missed by the Abry-Veitch method and for this reason the IVV method establishes its

usefulness as a complementary method to the Abry-Veitch method.  This confirms the

usefulness of the map as an accurate and flexible model.

One final comment.  Asymptotic queue behaviour dependent on H may have no practical

meaning.  Based on this we can further conjecture that what may be of more use is a

dynamical formulation of the queue behaviour, as this can yield instantaneous predictions on

“short term” buffer occupancy derived from dynamical formulations of long term correlation

and scaling at the point of criticality i.e. the point at which we obtain bursts over all time

scales of engineering interest.
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9 Discussion and Further Work

9.1 Parameter Effects on H
In Chapter 5 we noted that the transit time through a map state depends on all the parameters

of the map.  That is to say that the transit time depends on ε and m of the map state under

examination, together with d which is common to all map states, and ρ(x0), which is the

injection probability into the point x0 in the state being examined.  ρ(.) is influenced by the

parameters of the other map state.  We also saw that the length of contiguous events (such as

emissions of 1’s or 0’s) defines the LRD produced by the map state and hence the H that the

model produces.  We noted that ε has the effect of setting the upper limit to the correlation

lengths.  We also noted that m sets the value of H.  This is a limiting relationship as the

frequency ω → 0.  H, in actual fact, relates the gradient of curves such as the variance and

correlation against lag.  However we also noted that as d approaches the boundaries of the

map (0,1) it affects the value of H that is witnessed.  The reason for this is that the coupling

between map states is governed by a set of equations.  Due to this coupling the injections into

the critical region of the map (the region that controls the LRD) is affected by the behaviour of

the other map state.  As d moves to its boundary values we require iterate values in the other

map state which are very close to d.  With d near its limits the invariant density is near

uniform for a large part of the map interval.  The effect of this is that the injection probability

becomes very small.  This affects the convergence rate on H.  Fewer injections into the critical

region mean that H takes longer to measure (as long-run contiguous chains of 1’s or 0’s

become less frequent).  However, it is thought that convergence will improve by decoupling

the map states, thereby enabling true random injections into the map states on a transition.

9.2 Deficiencies – Invariant Density Approximation
A deficiency in the chaotic map models that we have used relates to their ability to obtain the

invariant density analytically.  Moreover, if a non-linear traffic source were to be

characterised then this would require at least a good approximation of the sources’ invariant

density under all parameter conditions from which we can iterate rapidly to a final solution for

the invariant density.  At present we can approximate the invariant density of the chaotic maps

under limited conditions, principally with ε = 0.  What is required is parameterisation that

accounts for ε ≠ 0 and m1, m2 in their full range mi∈[1,2].  The suggestion given above, that of

decoupling the map states, may be a reasonable first step in this direction. The lack of

adequate methods for obtaining individual densities limits the utility of these methods.  This is

an area recommended for further work.
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9.3 Limitations of the Models
In Chapter 6 and 7 we explored two methods for aggregating traffic streams.  In Chapter 6 we

focused on obtaining the aggregate invariant density of the equivalent map.  This was done by

averaging the invariant densities of the N individual maps over a number of cardinal points of

the invariant density (e.g. ρ(1) and ρ(d)) in order to produce the equivalent density.  Then the

map was iterated N times per emission interval in order to produce the traffic.  The resulting

traffic stream was queued and compared against the original traffic trace.  We also compared

the behaviour of the equivalent map against Pruthi’s interpretation in which the aggregation of

N sources equates to a single map emitting N emissions per iteration.  What we observed was

that for a small number of sources the equivalent map produced queuing behaviour closer to

the original trace than the method advocated by Pruthi.  However we also noted that as the

aggregation level increased, the value of d “walked back” to the origin.  We have seen that

this type of behaviour adversely affects the output behaviour of the map (see Chapter 5).

In order to overcome this obstacle we devised another method of aggregation.  This is the

method presented in Chapter 7.  This method links the invariant density of the equivalent map

to the probability density of the number of emitting sources.  The type of linkage described

here actually implies a correspondence (coupling) between a particular iterate value and a

particular number of emitting sources.  In other words, there is an xn iterate value for which

there is a unique mn sources being emitted.  Unfortunately this type of coupling between

overlying and underlying dynamics is difficult to achieve practically.  We therefore relaxed

the condition on the coupling to a probabilistic one via considerations on the cumulate

invariant density and the cumulate source emission density.  In other words, for an xn<X we

have the probability that the orbit has visited all points up to X; this leads to an mn<M, which

is the probability of mn sources up to a maximum of M sources, being emitted.  In this way we

presume some coupling between underlying and overlying dynamics.  Using this method we

achieved an order of magnitude speed-up over iterating M sources independently.

This limitation of the model due to d “walk back” can be overcome in a practical way by

viewing the time resolution of the map iterates.  The low value of d is due to the fact that we

wish to model particular load values. If these load values are viewed from a single maximum

link rate then it may well be that the individual source rate is very low compared to the link

rate, which leads to a low source load value.  However, when this is viewed at the tributary

link rate, the load may be reasonable in the sense that d is no longer near its extremes.  In

practical terms this means that rather than iterate the map at the maximum link rate (say every

iteration) we iterate the map at a reduced rate (for example every 6th iteration) which

corresponds to the tributary link rate.

9.4 Superimposition of Source Distributions
A major assumption in Chapter 6 and Chapter 7 is that the sources being aggregated are IID.

In practice this assumption may be an oversimplification of the reality that may exist in future
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networks.  This is because feed-back control methods are currently being proposed and

implemented for data traffic in ATM and IP6.  The use of feed-back methods implies that the

behaviour of data traffic arriving at a buffer will be dependent on all the other data sources

entering the same buffer.  The same is true if priority buffering is used at the buffers.  The

stochastic behaviour of the individual sources then becomes dependent rather than

independent.  However, because the source distribution is simply a superimposition on the

underlying dynamics, then provided that the network still sees aggregate traffic with high H

values, a new source distribution which reflects reality would still work because we know that

the underlying dynamics permeates through to the overlying dynamics.

In fairness, we should also point out that superimposition of the source distribution as used by

the bulk properties map does distort the anticipated value of H from the model.  This

distortion needs to be removed in order to make the model more effective.  This is an area for

further work.

9.5 Effectiveness of H
From the investigations into chaotic maps as traffic models we make the following remarks on

the effectiveness of H as a parameter of measured traffic and as a parameter to be modelled in

traffic simulations.

We noted in Chapter 8 from the comparisons of the IVV against Abry-Veitch methods of

measuring H, that H by itself as a parameter for modelling self-similar traffic in a

“parsimonious” manner may not be enough.  This is because, while it appears that there is a

unique H associated with a given set of parameters, it also appears that, while H may describe

the long term scaling, it cannot adequately describe the “instantaneous” short-term variability

of the traffic.  It is this “instantaneous” behaviour which may ultimately affect the behaviour

of the queue, especially when the dominant LRD in a source may not be due to the active

(ON) phase of a source.  Because of these observations we submit that reliance on a single

method for determining H on-line may prove unwise and that, consequently, a combination of

dissimilar measurement methods as behavioural indicators of H on-line may prove more

useful.  This submission is supported by comparing the results of Figure 8.6, Figure 8.7 and

Figure 5.7.

We have also examined, in a limited way, how H affects queue behaviour (Chapter 6).  We

noted that it is possible to obtain H values for shorter measurement periods but that the

variability around the mean value of H is high (Chapter 8).  We also noted that the LRD

prevalent in traffic arriving at a queue may not necessarily be the LRD value which dictates

the unique H value of the aggregate traffic (Chapter8).  We also noted from experiments and

observations for high values of H that H converges very slowly (Chapter 5 and Chapter 8).

From this evidence we submit that H may have no practical meaning for queues other than for

assuring buffer overflow.



Chapter 9: Discussion and Further Work

Telecoms Research Group. Queen Mary and Westfield College, University of London

138

With regard to modelling we note that, for true high value H traffic measured over realistic

measurement periods, evaluating queue behaviour (i.e. running experiments and gathering

statistics until some state evaluation of the queue behaviour is obtained) may become limited,

if not problematic.  This is because high H affects convergence and relatively small

measurement periods result in high variability in the value of H; this makes the collection of

stable queue statistics problematic when modelling networks which have high H traffic.  In

this light a different approach to examining queues has to be thought of.

These observations lead us to the conclusion that while H is useful for determining the long

term scaling of the traffic it only forms part of the picture.  The act of buffer overflow is a

dynamical process.  This is in contrast to the accepted stochastic view of accounting for

enough buffer space such that, on average, the buffer overflow becomes acceptable.  High

values of H imply that almost surely, regardless of the buffer size, the buffer will overflow.

We therefore further conjecture that what may be of more use is a dynamical formulation of

the queue behaviour which can yield instantaneous predictions on “short term” buffer

occupancy derived from:

• dynamical formulations of long term correlation, and

• dynamical scaling at the point of criticality i.e. the point at which traffic becomes bursty

over all time scales of engineering interest.

9.6 Remarks on Traffic Modelling and Stationarity
High H values cast some doubt on ideas of stationarity, at least in its practical sense.  It takes

H a long time to converge on stable results (longer than one can feasibly measure).  This

indicates, in a practical sense, that the time series behaves in a non-stationary way over the

measurement period.  Under this light perhaps it is better to view the problem of self-similar

traffic and its modelling in a different way.  The realism in modelling comes from modelling

what is present in the traffic streams.  The benefit of modelling comes from observing the

effect of the model on network elements (buffers and the like).  If stationarity is an issue due

to high variability then analysis via other means such as dynamics may again prove useful, for

example the map family has H in built into the map, however the map family is flexible

enough to have its parameters adjusted on line.  In this manner the non-stationary nature of the

traffic could be captured.  The determination of such an approach is an area that is

recommended for further work.

9.7 Remarks on Chaotic Maps and ON-OFF Self-similar Traffic
Modelling

 Taqqu’s theorem, mentioned in Chapter 3 [TAQ97], is really an extension/justification of the

self-similar traffic model first presented by Norros in [NOR93].  The main difference with

Norros’ model is that Taqqu employs a validity condition that states that in order to obtain
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self-similar traffic the individual ON-OFF sources must have an element of LRD either in ON

or OFF states.  We summarise the results of Taqqu in the following manner:

• the ON state must have LRD, AND/OR the OFF state must have LRD,

• the ON and OFF states are independent of each other,

• the ON and OFF states need not have the same distribution.

This is interesting from a chaotic map modelling standpoint because the conditions stated

above correspond to a chaotic map model:

• that belongs to the intermittency map family with a map parameter combination of εj→0

and mj∈(1,2), where εj has to be small enough to have burst behaviour over the time scales

of interest;

• where the aggregated distributions of ON periods can be assumed to be Gaussian

distributed at any instance, t, of inspection for a sufficiently large aggregation level.

This aggregate behaviour can be modelled by a bulk properties map with random injection

into the ON and OFF regions of the map, i.e. a decoupled bulk properties map.

9.8 Chaotic Maps - Potential Application Areas
The importance of H lies in the fact that queue length distributions are sensitive to its value

[NOR93].  The higher the value of H the higher the probability of high queue state occupancy.

The implication of controlling H (and its derivative) is that congestion within the network can

be controlled.  An important first step in this direction is through the on-line modelling of

network elements such as switches.  As we have seen the bulk properties map technique

enables the adjustment of H via the alteration of parameters ε and m.  We therefore submit that

the bulk properties map technique is a contribution in this direction.

The bulk properties map can be used to generate self-similar traffic on-line with H∈(1/2,1).

This is in contrast with other approaches such as FBM and FGN which generate samples off-

line.  We have also seen that manipulation of the map parameter ε away from zero

increasingly destroys the self-similarity produced by the chaotic map.  These results (on-line

generation and on-line parameter manipulation) are promising for the development of network

control techniques based on chaos theory and the coupling of chaotic maps (for the description

of such a technique see [MON97b]).  These techniques rely solely on local information

present at a network element, and as such prove attractive as areas of future research because:

• they are inherently scaleable; and

• they would reduce global control signalling across networks.

On this theme we again comment on the theorem put forward by Taqqu [TAQ97] with regard

to the modelling of aggregate heterogeneous ON-OFF traffic sources.  The heterogeneous

traffic equation
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has implications for the control of networks from a “fairness” allocation point of view for the

following reasons:

• the result can be viewed as a model description of traffic entering an aggregation point,

such as a switch;

• the controlled traffic mean level is dependent on the mean value of aggregation and this is

given by the term
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This relies only on local knowledge of the R types of sources arriving at the node, and,

• the allocated bandwidth is a proportion to the ratio of the mean sojourn lengths i.e. the

ratio

( ) ( ) ( )( )µ µ µ1 1 2
r r r+ .

(9.8)

Network control is affected by altering the variability term that is represented by the second

summative term, that is
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More precisely, network control is affected by altering the variance in the traffic stream

produced by traffic of type r, where r is the traffic from the most dominant LRD traffic

source.  Therefore by modelling the source traffic on-line we can identify the dominant LRD

traffic and take controlling actions accordingly.

Further insight into network control may be gained from employing some ideas from the

dynamics of Lévy flights.  Formally Lévy flights have been studied as jump models.  These

are models in which the particle moves instantaneously between periods of halt.  The use of

jump models is not unknown in teletraffic analysis because they are the base behaviour behind

that of Markov chains (for an explanation on the relationship between jump models and

Markov chains see [KLE75, GIL92]).  The interesting thing about Lévy flights is that they can

also be modelled by chaotic maps which exhibit intermittency [ZUM93, GEI92, KLA93].  In

these models, constant velocity Lévy flights are interpreted as particles moving with constant

velocity between halts, with the intermittency region of the map providing the constant

velocity episodes.  When applying these models to teletraffic we may interpret the constant
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velocity episodes as a cell or packet transiting through a network before appearing as an

emission into a queue i.e. a halt.

The reason for pursuing dynamical formulations for network behaviour, for example the one

outlined above, rather than the stochastic ideas commonly employed, is that the network

congestion problems itemised by Fowler [FOW91] can be approached using non-linear

chaotic control ideas developed by Ott, Grebogi and Yorke[OTT90] and extended to lattice

networks by Mondragón and Arrowsmith [MON97b].  For this reason further investigation of

non-linear dynamical map models, with emphasis placed on developing such models for

chaotic control of networks, is encouraged.

9.9 Non-linear Control - A New Network Control Paradigm
In this subsection we propose a new network control methodology based on the results of the

research reported in this thesis. The aim of our approach is to consider the control of a

network containing self-similar traffic which we can model using chaotic (intermittency)

maps.  Each chaotic map describes the traffic generated by an element of the network

(computer data, voice data, etc.).  These maps are coupled due to the aggregation, switching,

and routing of the traffic in the network.  A network of such maps is similar in form to a

lattice structure.  Such lattice structures can be controlled using chaotic control methods.  The

method of controlling "chaos" developed by Ott, Grebogi and Yorke (OGY) [OTT90] has

recently been extended to the control of non-linear networks such as lattices.  There have been

several successful approaches to controlling a network of chaotic elements (Mondragón and

Arrowsmith [MON97b], Oketani et al, [OKE95] Sepulchre and Babloyants [SEP95],

Youssefmir and Huberman [YOU95]).  We begin by outlining current network control

methodology by citing the example of network control applied to ATM.

9.9.1 Traditional Control
Traditional control in network traffic is based on the following ethos.  There are three levels of

immediate control which look at the time scales of call-by-call duration.  These levels of

control can be summarised as[CHET95]:

instantaneous - this level of control relates to the selective discard of cells, cell scheduling,

traffic shaping and User Parameter Control (UPC);

end-to-end propagation delay - this level of control relates to the tagging of cells, explicit

forward congestion indication and fast resource protocol; and

end-to-end round trip delay - this relates to routing and Connection and Admission Control

(CAC) functions.

Above these immediate levels of control lies the management plane which traditionally looks

at time scales longer than that of a call-by-call duration, i.e. it looks at the medium to long

term control of the network such as provisioning and restructuring of the network in order to

cope with changing demands on the system.
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In order to achieve the above levels of control, the following kinds of control are applied:

1. Call level control - Permits traffic onto the network provided that there are enough

resources on the requested path which permit the incoming traffic to propagate across the

network without causing congestion at the cell level.

2. Cell level control - Allocates resources in the network (such as buffer space) in order to

accommodate the call in terms of cells or allow some traffic loss according to some pre-

agreed cell loss rate.

Both (1) and (2) have been traditionally handled on entry onto the network via CAC

algorithms.  They have taken various guises from:

• purely mathematical/theoretical in their approach to the CAC problem (examples of this

type can be found in Gibbens et al [GIB95] and Borst and Mitra [BOR96]) to,

• those based on heuristics/intelligent learning approaches (examples of these can be found

in Ramalho [RAM96] and Hiramatsu [HIRA90]).

 As admission into the network is carried out on a link by link basis then the decisions made

are usually conservative because the bandwidth for the call is governed by the link rate of the

slowest link (bottle neck) on the call path.  Additionally (ii) can be approached via the design

/dimensioning of switches and cell level control methods such as UPC.

Chaotic control can be applied to the three levels of control mentioned above.  In chaotic

control, call level control is termed “order”.  This is the selection of a call or burst based on a

weighted decision derived from the dynamics of the system (network).  Cell level control is

termed “procession” and is the effect of control on the dynamical system which permits the

transfer of data between source and sink.

9.9.2 Dynamical Systems Approach to Teletraffic
 As a first stage in developing a chaotic control method for telecommunication networks we

have studied how H changes with the map parameters.  A decision to alter H based on the

adjustment of these parameters can be interpreted as the controlling action.  For example, an

alteration in the value of ε imposes an upper cut-off on the correlation, an alteration in d

changes the mean traffic load and changes in m1 and m2 change the sojourn time of the ON

and OFF states i.e. the LRD of the traffic and its H value.  These effects have already been

studied in Chapters 5,6, and 7.

 

 Chapter 5 shows how an individual source can be modelled by a member of the map family.

Chapter 6 and 7 show how aggregate sources can be modelled by an equivalent map which

preserves the traffic load and H.  The parameterisation of this “equivalent” map is reported in

Samuel et al [I, II], and Chapter 8 suggests how to measure H on-line.
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Figure 9.1  Lattice interpretation of a telecommunications network

9.9.3 The MAPS Control Paradigm
 We have mentioned how chaotic maps can be used to provide aggregate models for self-

similar traffic.  We considered the case of aggregation at a single node [I].  A natural

extension of nodal models is to couple them together to form networks and then attempt to

model and control the characteristics of these networks.  In such a model the nodes would be

the switching sites and the couplings between the nodes would represent the links between the

switching sites.  The simplest mathematical models which resemble such a construction are

Coupled Map Lattices (CML) where a dynamical system at each node will produce the local

traffic input.  Coupling will be provided by external input from neighbouring nodes due to the

queueing (aggregation) and switching. This is shown schematically in Figure 9.1.

 

 Investigations have been made into regular lattice structures where coupling exists between

nodal sites.  An important property has been the discovery that global control across all nodes

can be obtained via local control at each node [MON97a, 97b, ARR96, OTT90].

 

 In these investigations the dynamical behaviour of each nodal site is modelled by a chaotic

map and the coupling to the neighbouring nodes imparts perturbations into the orbits of the

dynamical system containing the node.  Since the chaotic map's orbit possesses the property

that any orbit will approach arbitrarily closely every point of the plane described by the

chaotic map, then at some point the orbit must take it near to a desired control state.  A small

feedback control applied at the target point in the orbit places the dynamics of the node into a

required state, since the same structure occurs at all nodes.  Experimental evidence shows that

if a desired control state is prescribed for all nodes then eventually the lattice becomes

controllable.  However, it is possible for neighbouring dynamical behaviour to kick a node out

of equilibrium via the coupling and so "occasional feedback control" is introduced where the

feedback control is activated within the control region around the desired equilibrium for only

part of the allowable time [MON97a].
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 The outline given above (see also [I]) describes how each node site of the lattice structure can

be modelled by a controlling map.  The individual traffic streams entering a node can be

modelled by chaotic maps and in certain models the maps can be aggregated into a single map

which describes the behaviour of the traffic at the node.  The next step is to provide on-line

information on H.  This is necessary to enable the construction of an active dynamic control

environment.

 

 We propose a control scheme that actively manipulates the value of H.  Our intended

approach is based in manipulating H via the mean, peakedness and LRD of the traffic stream

characteristics by means of a local control strategy.  The "philosophy" is not to destroy the

chaotic behaviour of the traffic but instead to use its variability as a method of control.

Chaotic systems are everywhere unstable and thus a small change in the system at any instant

produces a large change at later times (this is SIC or, more colloquially, "the butterfly effect").

This gives the controller "agility" to changes in the traffic over many timescales.  Moreover,

as was noted earlier, successful control of coupled chaotic systems can be instigated by the

local control of each system.  The implication of this to networks should be significant, since

it suggests that for relatively small control actions applied locally the congestion/buffer

occupancy on local and remote switches (relative to the control site) should be reduced.  It is

thought that in transport systems such as ATM mechanisms like ABR via a chaotically

initiated control sequence would provide a mechanism for the reduction of H and subsequent

control of congestion.

 

 We are proposing two different mechanisms to control traffic that is already in the network.

The first mechanism seeks to reduce the variability of the traffic in a specific channel.  This

can be done by "careful" introduction of empty cells.  This control mechanism would modify

but not destroy the highly variable behaviour of the traffic.  We conjecture that, individually,

each of these controlled channels would change very little but that these changes would have a

larger effect when the traffic is aggregated in the queue.

 

 The second mechanism is based in a random selector of calls in a node.  The random selector

would choose which call to admit by weighting dynamically the statistics of the traffic

variability.  The selector, modelled by a chaotic map, would assign larger probabilities to

some channels than others but all the channels would have positive probabilities to be served.

 

 The first control mechanism is termed "Procession" and the second "Order".  Conceptual

views of the proposed chaotic control regime can be found in Figure 9.2.
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Figure 9.2  Conceptual view of chaotic network control as applied to ABR

These two mechanisms of control can be developed using chaotic maps as models of self-

similar traffic because it is known that they have the correct characteristics and, moreover, that

they can model high traffic rates efficiently [I, II].
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10 Conclusions
In this thesis, we have applied techniques from non-linear dynamics to the teletraffic

modelling of modern packetised telecommunications networks.  Measurements from these

networks have revealed self-similar behaviour, i.e. burstiness ranging over all time-scales of

engineering interest.  This burstiness can have a significant impact on network resource

occupancy.  We have developed a novel teletraffic framework for the use of non-linear

dynamics models in the form of intermittency maps which consist of parsimonious,

parameterisable and predictable models for the accelerated simulation of both self-similar

behaviour of individual sources and aggregate traffic in such networks.

The teletraffic framework consists of a family of maps based on the intermittency map with

single ON-OFF interpretations for individual sources, and either an N times iterated

equivalent single maps, or a two-step bulk property interpretation for aggregate traffic

representation.  These aggregate traffic models are novel and provide up to two orders of

magnitude speed-up over other methods (FBM/FGN and Pruthi’s N one-step method).

Further, we have significantly extended the characterisation of individual source models

previously carried out by Pruthi and Erramilli.  The extension accounts for the impact of all

five parameters (ε and m for both states, and d) on H, the parameterisation for load via the

invariant density, and the parameterisation for heavy tailed sojourn times in the ON and OFF

states via the transit-time.

The theoretical analysis of the maps with respect to H confirms the conjecture put forward by

Pruthi that asymptotically H is only dependent on the dominant value of m.  Numerical results

show that convergence is slow and that for the coupled map H differs substantially from the

theory.  However the deviation from the theoretical is predictable and this has lead to an

empirical fit for the asymptotic dependence of H on m.  An important feature that these results

also show is that the underlying dynamics of the map persist in all of the map interpretations.

The numerical results also show limitations of parameter ranges on H, particularly for d (d

must lie in the range 0.1 to 0.9).  However, this limit can be overcome practically to some

degree by manipulating the time resolution of the iterates.  A further parameter limitation

stems from ε; any value of ε >0 effectively limits range of time-scales over which LRD

occurs.  These numerical limitations apply to all map interpretations.

We have developed a method of measuring H via the map’s variance (IVV).  We have shown

that this method is promising for measuring H on-line.  We have also found by comparing the

IVV and Abry-Veitch methods for measuring H, that H by itself as a parameter for modelling

self-similar traffic in a “parsimonious” manner may not be enough.  This conclusion is drawn

from observing different queueing behaviour with input traffic having the same H.  This

conclusion also leads to the practical suggestion that reliance on a single method for
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determining H on-line may prove unwise.  Additionally, the results from the comparison of

IVV and Abry-Veitch show the flexibility that these map models have in specifying key LRD

behaviour that determines the impact on queueing.  This flexibility is derived from the

intuitive relationship that these map models have to their underlying physical ON-OFF

process of cell/packet transfer in networks.

A further asset that increases the flexibility of these maps is that they can depict non-

stationary traffic.  This is because the maps can have their parameters altered dynamically.

Furthermore manipulation of the maps’ parameters may point to the development of a control

schemes for telecoms networks based on non-linear dynamics.

Finally, analysing and understanding the statistical behaviour of these non-linear dynamics

models is a significant step towards developing the theoretical framework necessary for

statistical-chaotic control policies to address congestion avoidance in telecoms networks.
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Appendices

Appendix A - Covariance Structure of Self-similar Processes
In order to get from equ.(3.28) to equ.(3.35) in more detail we perform the following.

Because of stationarity, the lag is the important criterion therefore we can make the following

simplification:

( ) ( ) ( ) [ ]γ k X X X X E X Xt t k k t t k= = =+ + +cov , cov ,1 1 .

Now if Yt process has a zero mean then we can also say that its incremental process Xt will

also have a zero mean.  This helps greatly, since we can write the product term with the

equivalent expansion
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We can now write the covariance using this expansion
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If we expand out the expansion term by term we see that we are left with the following

equivalent terms
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The covariance can now be written with the inclusion of the equivalent terms
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This is the covariance for incremental process Xt.  We now apply the following result
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 (A.4)
The correlation ρ(k) comes from the standard result ( ) ( ) ( ) ( )ρ γ γ γ σk k= =0 and since 0

then

( ) ( ) ( ){ }ρ k k k kH H H= + − + −
1

2
1 2 12 2 2 .

 (A.5)
What remains now is to determine the asymptotic behaviour of ρ(k) as k→∞.  To be able to do

this we apply Taylor’s expansion to the function ρ(k).  To do this effectively we rewrite equ

(A.5) in the following way.
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We then define the function g(.) as

( ) ( ) ( )g x x x
H H≡ + − + −1 2 1
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(A.7)
The correlation can then be written in terms of the function g(.)
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Using Taylor’s expansion we find the dominant terms and determine the functions asymptotic

behaviour32.  The correlation can be written then as
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Evaluating the differential terms at x=0 yields ( ) ( ){ }ρ k
k

x H H H O T
H

= − +
2

2

2
2 2 1 . . ,

which is the first non vanishing term plus higher order terms.  Since x = 1/k then these higher

order terms vanish rapidly as k→∞  and the asymptotic behaviour of the correlation is then

                                                          
32 Recall that Taylor’s expansion is :
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and the first three derivatives are given as
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Appendix B - Dirac Impulse Function
The Dirac Impulse function is defined as
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For convenience the δ(t) is normalised such that

( )δ t dt =
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∫ 1 .

We now introduce two further identities that use this basic definition:
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(A.13)
What equ.(A.12) states is that the function f(t) is only switched on at the pulse position given

by δ(t-a) and can only take on a value at the time of activation i.e. when t = a.  We can view

equ.(A.13) in the following manner.  If δ(t) is an impulse at the origin and δ(t-tn) describes a

pulse shifted from the origin, or alternatively a pulse at tn, then δ[r(t)] describes a series of

pulses in which the position of the pulse is being given by the roots of the function r(t).  To

illustrate this consider the following example.  Suppose we have a function r(t)which has the

following form ( )r t t= −2 1.  This has roots at ( )( )t t− + =1 1 0 . equ.(A.13) then becomes:

[ ] ( )
( )δ

δ
t

t t

dr t

dt

n

nn

N
2

1

2

1− =
−

=

=

∑ .

(A.14)
We note that N=2 is since there are two roots which will yield an impulse.  The first

differential of r(t) is simply 
( )dr t

dt
t= 2 .  Therefore the full expansion of equ.(A.14) becomes

[ ] ( ) ( )
( ) ( )( )δ

δ δ
δ δt

t t

t

t t

t
t t2 1

1

2

2

1
2 2

1

2
1 1− =

−
+

−
= + + − .

(A.15)
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Appendix C - Transit-Time Analysis

Trial constant values for a, b and c.
Trial value for constant a.

At this point it may be useful to recall the following Gamma Function identities

( ) ( )( ) ( ) ( )Γ Γn z n z n z z z z+ = − + − + +1 2 1L ,

( ) ( )Γ Γ1+ = =z z z z! ,

( )Γ 1 1= .

There is an obvious choice for the constant a.  Since there is a factorial term in the RHS

denominator of equ.(5.14) which is absent from the LHS then a natural choice for a is a=1,

since use of the Gamma identity ( )Γ 1+ z  with a=1 will cancel out the factorial term occurs.

Trial values for constants b and c.

To obtain trial values for b and c we note that

( ) ( )
( )

( )
( )

−
+

=
+

+=

∞

=

∞

∑ ∑A

mj

c

b

b j

c j
z

j

j

j

j
1

0 0

Γ
Γ

Γ

Γ
.

(A.16)
By using the Gamma function identities we expand out the ( )Γ 1+ j terms

( ) ( )
( )

( )( )( ) ( ) ( )

( )( )( ) ( ) ( )
−

+
=

− + − + − + +

− + − + − + +=

∞

=

∞

∑ ∑A

mj

c

b

j b j b j b b b b

j c j c j c c c c
z

j

j j

j

1

1 2 3 1

1 2 3 10 0

Γ
Γ

Γ

Γ

L

L
.

(A.17)
The ( )Γ b  and ( )Γ c  are common for all summation terms in the RHS and can therefore be

cancelled with the ( )Γ .  outside the summation and we can therefore write

( ) ( )( )( ) ( )

( )( )( ) ( )
−

+
=

− + − + − + +

− + − + − + +=

∞

=

∞

∑ ∑A

mj

j b j b j b b b

j c j c j c c c
z

j

j j

j

1

1 2 3 1

1 2 3 10 0

L

L
.

(A.18)
Furthermore, if we assume some favourable cancellation occurs in the numerator and

denominator of the RHS and by rewriting the numerator and denominator of the LHS then,

( )
( )

( ) ( )
1

1
0 0 1

m

mj
mj

j

j

jA
b

j c
z+

=

∞

=

∞

∑ ∑− =
− +

.

(A.19)
Equating numerator and denominator of both sides yields the following result

b
m

c
m

m

=

=
+

1

1
.

(A.20)
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Therefore we can say that

( ) ( )−
+

=
=

∞
+∑ A

mj
F z

j

j
m

m
m1

1
0

2 1
1 1, ; ; .

(A.21)
We know this to be true since substitution of our trial values in to our equations recovers the

original series representation.  Therefore we can write our original integral given by equ.(5.10)

as

( ) ( ) ( ) ( ){ }L mk m A F z A F z
m out m

m
m out in m

m
m in

m m
∈

+ += −
1 2 2 1

1 1
2 1

1 11 1

1 1
,

, ; ; , ; ;

(A.22)

where A
c

yn n
m=

ε
, Z An n= − , ( )

( )

k m
mc

m
m

m

=
− −

ε
1

1 , c
d

d m
=

− −1 ε
 and ( )2 1F a b c z, ; ; is a

hypergeometric function

Recovery of Upper and Lower bounds from the Series Formulation
As a check we introduce  our trial values for a, b, and c into our original equation and see if

we recover our original series

( ) ( )
( ) ( )

( ) ( )
( )

( )
( )

( )( ) ( ) ( )
( )( ) ( ) ( )

( )

2 1
1 1

1

1

1

1
0

1

1

1 1 1 1 1

1 1 1 1 1
0
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1
1

1

1 2 1

1 2 1

1

1
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n n
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n

n n
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m
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m
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m
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m
m

n
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m
m

m

m m m m m

m
m

m
m

m
m

m
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m
m

n

n

n
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, ; ;
!

+
+

+
=

∞

+

+ + + + +
=

∞

=

∞

=
+ +

+

=
− + − + +

− + − + +

=
+

∑

∑

∑

Γ

Γ Γ

Γ Γ

Γ

Γ

Γ

Γ

Γ

L

L

(A.23)
Which is the original series.  As a further set of checks we can insert appropriate values of m

and recover the following hypergeometirc relations:

for m=1 we obtain ( ) ( )2 1 11 2
1

1F z
z

z, ; ; ln− = − ,

(A.24)

and  for m=2 ( ) ( )2 1
1
2

3
2

21
1

F z
z

z, ; ; arctan− = .

(A.25)

Intermittency Map Variance Structures
This section relates to the formulation of the variance structure for the intermittency family of

maps. Ranging from the Bernoulli shift map to the Double intermittency map.  What is

required  to show is that the decay of the correlation structure and hence H can be determined

in terms of the map behaviours, i.e. through the statistical analysis of the maps in particular its

variance.  There are three equations that are linked to the variance that we will show

derivations for:  equ.(5.44), equ.(5.45) and equ.(5.49).  Additionally we need to show that

equ.(5.44) and equ.(5.45) are functionally the same.
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Derivation of equ.(5.44)
We first define ZKy

as the total number of cells generated after k iterations using the indicator

variable interpretation y, i.e.

( )y x
x d

d xn n
n

n

=
< ≤
< ≤





0 0

1 1

,

,

Z yK i
i

K

y
≡

=
∑

1

.

(A.26)
The average number of packets is then given by

E Z
N

Z

N
y

K
N

nK
n

N

N
i

i

K

n
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y y





 =
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









→∞ =

→∞ ==

∑

∑∑
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1

1

1

11

.

(A.27)
The N trials of can be viewed as independent and therefore the order of summation can be

reversed

E Z
N

yK
N

n
n

N

i

K

y





 =









→∞ ==

∑∑lim
1

11

.

(A.28)
This limit is related to the invariant density of the map via the following relationship

( )lim
N

n
n

N

d
N

y x dx
→∞ =

∑ ∫= =
1

1

1

λ ρ

(A.29)
which is the average number of emissions of the map (mean number of cells generated).  We

can therefore say that

( ) λKZE
yK = .

(A.30)
The variance can be written in the traditional manner

( )var limZ
N

y Kk
N

j
j

K

n

N

= −










→∞ ==

∑∑1

11

2

λ .

(A.31)
Expanding out the bracketed terms we arrive at

( )var limZ
N

y y K y KK
N

j j
j

K

j
j

K

j

K

i

N

y





 = − +











→∞ = ===

∑ ∑∑∑1
2

1 1

2

11

λ λ .

(A.32)
We now examine the terms with in the brackets of equ.(A.32)
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( )( )

( ) ( )

y y y y y y y y

y y y y y y y y y
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(A.33)
Since by the definition of y then yiyj = yjyi and the above reduces to

y y y y yj j
j

K

i
i

K

i j
j i
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i
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= = >==
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(A.34)
We can now introduce the limits to this term
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(A.35)
Examining the second term  and introducing the limits

( )2

1 11 1
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1
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(A.36)
The final term after introducing limits is simply

( ) ( )lim
1 2

1

2

N
K K

n

N

λ λ
=

∑ = .

(A.37)
The variance in equ.(A.32) can then be written as

( ) ( ) ( )∑∑
= >

+−=
K

i

K

ij
jiK yyEKKZ

y

1

21var λλ .

(A.38)
This is the same as equ.(5.44).

Derivation of equ.(5.45)
To show that equ.(5.44) and equ.(5.45) are the same we proceed as follows.  We begin by

examining the correlation term of equ.(5.44) i.e. the ( )E y yi j  term.  Since the yi can only

take on values of 1 or 0 (see definition of yi) then the expectation can only take on non-zero

values when yi and yj =1, i.e. ( ) { }E y y P y yi j j i= = =1 1, .  Therefore if we consider the

expectations in terms of probabilities and use the probability identity ( ) ( ) ( )P A B P B P A B, = .
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The expectation ca be written as ( ) { } { } { }E y y P y y P y P y yi j j i i j i= = = = = = =1 1 1 1 1, and

since { }P yi = 1 is just the probability of being on, λ.  Then we have the following relationship

( ) { }E y y P y yi j j i= = =λ 1 1 .  We can now write equ.(13) in terms of this relationship

( ) ( ) { }∑∑
= >

==+−=
K

i

K

ij
ijK yyPKZ

y

1

1121var λλλ

(A.39)
If the summation term is expanded out we obtain the following pattern (the case of K=4 is

shown)

{ } { } { } { }
{ } { }
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P y y P y y P y y P y y

P y y P y y

P y y

j i
j i

K

i

K

= = = = = + = = + = = +
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2 1 3 2 4 3

3 1 4 2

4 1
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i=1 i =2 i=3

(A.40)
The above summation has been arranged in a matrix formation so that the probabilities for a

given i are arranged in columns and that probabilities where the difference between i and j are

the same form the rows . If we now define the following:

( ) { }C n j i P y yj i= − ≡ = =1 1 .

(A.41)
We can therefore write the summation given above as
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(A.42)

This RHS forms a series in terms of ( )C i and there for we have an equivalent summation

{ } ( ) ( )iCiKyyP
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(A.43)
The variance can therefore be written

( ) ( ) ( ) ( )∑
−

=

−+−=
1

1

21var
K

i
K iCiKKKZ

y
λλλ .

(A.44)
This is the same as equ.(5.45).
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Derivation of equ.(5.49)
To derive euq.(5.49) we have to use the ansatz ( )C i i≈ +α λβ .  We can write equ.(A.44). in

terms of the ansatz

( ) ( ) ( )( ){ }∑
−
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+−+−≈
1

1

21var
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i
K iiKKKZ

y
λαλλλ β .

(A.45)
Expanding out the bracketed term and splitting the summations we obtain
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(A.46)
In order to simplify equ.(A.46) we use the following series identities
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(A.47)
We apply the above to each the terms in equ. .(A.46)
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(A.48)
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The variance can then be written as

( ) ( ) ( ) ( )
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(A.50)
Equ.(A.50) can be analysed in terms of an inequality relationship.  The summation term can

be replaced by a continuous integration, and since they are equal only in the limit as ∆i → 0

then we can form the following inequality
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(A.51)
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Carrying out the integration we obtain
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(A.52)
If we let K→ ∞ we can see that the RHS becomes
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(A.53)
This is the same as equ.(5.49).
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