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ABSTRACT 

Primary cilia are sensory organelles found on most vertebrate cells during interphase. 

They play key roles in development, cell signalling and cancer, and are involved in 

signal transduction pathways such as Hh and Wnt signalling. The adrenal cortex 

produces steroid hormones essential for controlling homeostasis and mediating the 

stress response. Signalling pathways involved in the process of its development and 

differentiation are still being identified but include Hh and Wnt, and adrenal 

development is thus likely to require cilia. 

I have demonstrated that inhibiting cilia formation, using siRNA targeted to different 

ciliary components, results in reduced differentiation of the human adrenal carcinoma 

cell line H295R towards a zona glomerulosa (zG)-like phenotype. These data suggest 

that primary cilia play a key role in adrenal differentiation, but which signalling 

pathways are involved still remains unclear. I have also discovered that adrenals from 

Bardet-Biedl syndrome (BBS) mice, the most prominently studied ciliopathy, have thin 

capsules, the proposed adrenal stem cell niche, and abnormal histology, while 

zebrafish embryos injected with morpholinos targeting BBS genes show delayed and 

reduced expression of ff1b, a marker of interrenal tissue. These data further suggest a 

role for primary cilia in adrenal development and maintenance. 

These studies are the foundation for elucidating the role of primary cilia in the 

development and function of the adrenal gland, and furthering our understanding of 

adrenocortical development. This promises to lead to improved management of 

adrenal dysfunction, and demonstrating that adrenal defects are a characteristic of 

ciliopathies will potentially inform new strategies for patient care. 
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1.1 The Adrenal Gland 

The adrenal gland is a bilateral organ that sits on top of the kidneys and produces 

hormones essential to maintain everyday life. It has an outer cortex and inner medulla 

which are embryonically distinct tissues. The cortex is established from intermediate 

mesoderm, while the medulla arises from neuroectoderm.  

The adrenal cortex, and its homologues, are essential for mediating the stress 

response and maintaining homeostasis, which they achieve by the production of 

steroid hormones. In humans, the cortex has 3 distinct concentric zones, named from 

outer to inner as the zona glomerulosa (zG), zona fasciculata (zF) and zona reticularis 

(zR) (Arnold, 1866; Rainey et al, 2004), and is surrounded by a mesenchymal capsule 

(Figure 1.1.1). 

The zG and zF produce mineralocorticoids and glucocorticoids respectively, while the 

zR produces adrenal androgens in humans and primates. These zones can be 

characterised by their expression of specific steroidogenic enzymes required for the 

production of adrenal steroid hormones, by their responsiveness to specific peptide 

hormones (Keegan & Hammer, 2002), and are distinguishable morphologically and 

ultrastructurally (Vinson, 2003). The medulla is the innermost part of the adrenal 

gland, and forms part of the sympathetic nervous system, producing catecholamines 

that control heart rate and blood pressure during stress (Kempna & Fluck, 2008). 

Adrenal failure or insufficiency can lead to disrupted electrolyte balance, impaired 

carbohydrate metabolism, and in the most severe cases hypoglycaemic coma, and 

even death (Kempna & Fluck, 2008). 
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Figure 1.1.1 – The human adrenal gland (Wang & Rainey, 2012) 
Diagram depicting the zones of the human adrenal gland and the steroid hormones they produce. AII; 
angiotensin II, ACTH; adrenocorticotropic hormone, DHEA; dehydroepiandrosterone. 
 

1.1.1 Steroidogenesis 

Steroidogenesis is a complex cascade of sequential enzymatic steps, starting with the 

principal precursor cholesterol, and resulting in the production of aldosterone, cortisol, 

and DHEA (dehydroepiandrosterone) in primates (Figure 1.1.2). The majority of 

steroidogenic cholesterol is obtained from high-density lipoproteins (HDLs) in the 

circulating blood plasma (Yaguchi et al, 1998), with only about 20% being synthesised 

de novo from acetate (Borkowski et al, 1967). HDL receptors have been shown to be 

expressed in the steroidogenic cells of human adrenal tissue (Liu et al, 2000). 

Cholesterol is carried across the mitochondrial membrane by the transporter protein 

StAR (steroidogenic acute regulatory protein). This is the rate-limiting step of 

steroidogenesis and is closely followed by the conversion of cholesterol to 

pregnenolone, catalysed by the enzyme cytochrome P450 side chain cleavage (P450scc 

or CYP11A1). Pregnenolone is then transported from the mitochondria to the smooth 

endoplasmic reticulum, where the intermediate enzymatic steps occur. The final steps 

of steroid synthesis take place back in the mitochondria, where aldosterone synthase 
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(CYP11B2) and 11β-hydroxylase (CYP11B1) are located. CYP11B2 is required for the 

end point reaction resulting in aldosterone production in the zG, whereas CYP11B1 is 

involved in the hydroxylation of 11-deoxycortisol to produce cortisol in the zF (Gazdar 

et al, 1990; Simpson et al, 1992). As CYP11B1 is only expressed in the zF, and CYP11B2 

in the zG, antibodies for these two enzymes can be used to visualise functional adrenal 

zonation (Ogishima et al, 1992). The expression of their mRNAs, or detection of the 

proteins themselves, can also be used to determine zonal identity.  

As well as CYP11B1, CYP17 (cytochrome P450 c17) activity is essential for cortisol 

production in primates. CYP17 has both 17α-hydroxylase and 17,20 lyase activities. 

17α-hydroxylase activity in the zF allows cortisol to be produced, while combining both 

17α-hydroxylase and 17,20 lyase activities in the zR allows the synthesis of C19 

androgens (Miller et al, 1997; Rainey et al, 2004; Staels et al, 1993). In rodents 

however, corticosterone is produced instead of cortisol and there are no adrenal 

androgens, as adult murine adrenals lack the enzyme CYP17, and therefore do not 

have a functional zR. 

 

 

Figure 1.1.2 – Human adrenal steroidogenesis (Gazdar et al, 1990; Oskarsson et al, 2006; Rainey et al, 
2002; Samandari et al, 2007) 
 

1.1.2 The stress system, HPA axis, and RAA system 

The stress response, first described by Hans Selye in 1936 (Selye, 1998), involves 

changes in behaviour, autonomic function, hormone secretion, and activation of the 

hypothalamic-pituitary-adrenal (HPA) axis and the renin-angiotensin-aldosterone 
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(RAA) system regardless of the type of stressor (Figure 1.1.3). It is designed to increase 

our chances of survival, but can be adapted over time with conditioning to either 

reinforce fears (stressors), or desensitise them. 

Upon activation of the HPA axis, parvocellular neurons of the hypothalamic 

paraventricular nucleus synthesise and secrete corticotrophin-releasing hormone 

(CRH) and arginine vasopressin (AVP) into the hypophysial portal circulation (Carrasco 

& Van de Kar, 2003; Chrousos, 1995; Sapolsky et al, 2000; Van de Kar & Blair, 1999). 

CRH is the main regulator of the release of adrenocorticotropic hormone (ACTH), also 

known as corticotrophin, from the anterior lobe of the pituitary gland into the systemic 

circulation (Carrasco & Van de Kar, 2003; Levens, 1990). AVP has a synergistic role in 

helping CRH to cause ACTH release, however, it is ineffective in the absence of CRH 

(Chrousos, 1995). CRH neurons also stimulate ACTH production, as some of them 

project from the paraventricular nucleus of the hypothalamus onto pro-

opiomelanocortin-containing neurons in the hypothalamic arcuate nucleus. They 

stimulate pro-opiomelanocortin (POMC) release, which is cleaved to form ACTH 

(Keegan & Hammer, 2002).  

ACTH binds to MC2R (melanocortin receptor 2), a 7-transmembrane G-protein coupled 

receptor (GPCR), causing the α-subunit of the heterotrimeric Gs-protein to associate 

with adenylate cyclase. This catalyses the conversion of ATP to cAMP, and causes 

activation of downstream signalling pathways, including protein kinase A (PKA). PKA 

phosphorylates and activates cholesteryl ester hydrolases and StAR, increasing the 

amount of cholesterol delivered to the inner mitochondrial membrane. cAMP also 

induces the transcription of StAR and CYP11A1, and CYP17 to promote cortisol 

production (Aumo et al, 2010; Rainey et al, 2004).  

Cortisol is the principal glucocorticoid produced by the zF of the human adrenal cortex, 

and has influential effects on metabolism, the cardiovascular system and the immune 

system. Although at basal levels it has a rather permissive role, allowing the effects of 

other agents, it is released in response to stress. Glucocorticoids increase blood 

glucose levels by stimulating gluconeogenesis, inhibiting glucose storage and stimulate 

lipolysis in adipose tissue releasing free fatty acids. They can also cause proteolysis in 

some muscle tissues. In the cardiovascular system cortisol increases the transcription 
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of receptors for angiotensin II, epinephrine and norepinephrine, to regulate blood 

pressure, contractility and tone of the heart (Sakaue & Hoffman, 1991).  

Glucocorticoids are released as a feedback mechanism of the immune system to 

reduce inflammation, by inhibiting the actions of immune cells (T and B lymphocytes), 

and the synthesis and release of cytokines (interleukins 1-6, IL-12, IFN-γ, TNF-α, 

chemokines) and other inflammatory mediators (histamine, bradykinin). In this way 

cortisol prevents excessive inflammation, and tissue and organ damage. They also 

form a negative feedback loop inhibiting the secretion of CRH and AVP by the 

hypothalamus, and POMC cleavage in the pituitary to reduce the production of ACTH 

and therefore cortisol itself (de Kloet, 1995). 

The renin-angiotensin-aldosterone (RAA) system has little control over arterial blood 

pressure under normal circumstances, but plays a pivotal role when sodium levels fall 

or haemorrhage occurs, as it has major vasoconstrictor capabilities (Collier et al, 1973; 

Scornik & Paladini, 1964). Renin is a proteolytic enzyme that cleaves angiotensinogen, 

synthesised by the liver, into angiotensin I (Miller, 1981). It is released from the 

juxtaglomerular cells of the kidney into the blood, stimulated by sympathetic nerve 

inputs, catecholamines, decreased renal perfusion pressure and decreased sodium 

delivery to the distal tubule (Johnson & Davis, 1973; Tobian et al, 1959). Angiotensin I 

is hydrolysed by angiotensin I-converting enzyme (ACE), found at the surface of 

pulmonary and renal endothelium, forming angiotensin II (AngII) (Oparil et al, 1970). 

This causes vasoconstriction of arteriolar smooth muscle, increases the contraction of 

the heart (positive inotropic effect) and stimulates the release of catecholamines. It 

also stimulates aldosterone production by the zG of the adrenal cortex. 

Aldosterone production is controlled by plasma potassium levels and ACTH, although 

AngII is the primary regulator. AngII binds the AT1 cell surface receptor, which is a 

GPCR coupled to phosphoinositidase C (PI3C) (Bird et al, 1993). PI3C causes hydrolysis 

of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), generating inositol 1,4,5-

trisphosphate (Ins(1,4,5)P3) and 1,2-diacylglycerol (DAG). Ins(1,4,5)P3 is an intracellular 

second messenger that opens calcium channels on intracellular stores, resulting in the 

release of calcium into the cytoplasm, increasing its concentration (Wojcikiewicz & 
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Nahorski, 1993). Elevated intracellular calcium levels activate calmodulin (calcium 

modulated protein) and CaMK (calmodulin dependent protein kinases), which 

modulate aldosterone production, possibly by phosphorylation of transcription factors 

regulating CYP11B2 transcription (Pezzi et al, 1997). DAG activates protein kinase C 

(PKC) resulting in phosphorylation and activation of other second messenger cascades.  

Aldosterone is the primary mineralocorticoid produced by the zG of the adrenal cortex, 

regulating sodium retention, water balance and blood pressure. Sodium is actively 

reabsorbed in the distal nephron of the kidney via ENaC sodium channels, which are 

mediated by aldosterone. This coincides with passive water reabsorption, to increase 

the extracellular and blood fluid volumes, and therefore blood pressure (Miller, 1981). 

Aldosterone also has effects on the cardiovascular system, and can cause cardiac 

fibrosis due to activation of an inflammatory cascade (Fuller & Young, 2005; Wehling et 

al, 1998). 

While the stress response is important in certain circumstances, chronic elevated 

glucocorticoids however can lead to a myriad of health problems. It can be associated 

with muscle wastage and diabetes due to excess energy mobilisation, hypertension 

due to increased blood pressure, stomach ulcers, irregular periods/amenorrhea or 

reduced testosterone levels due to suppressed reproductive function, and increased 

susceptibility to infectious diseases due to chronic suppression of the immune system. 

In rare cases, children may also suffer from psychogenic dwarfism; short stature as a 

result of growth inhibition caused by excessive stress (Sapolsky, 2000).  
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1.1.3 Cortisol, aldosterone and adrenal androgens 

As described above; glucocorticoids stimulate gluconeogenesis, inhibit further energy 

storage and have a permissive role in increasing blood pressure. Cortisol exerts its 

actions by binding to glucocorticoid receptors (GRs) in the cytoplasm of target cells. 

These are ligand-activated transcription factors, which bind glucocorticoids at the 

carboxy terminus (Arlt & Allolio, 2003). GRs are associated with a complex of heat 

shock proteins including hsp90, which facilitate the binding of cortisol, and then 

dissociate from the active steroid-receptor complex (Rhen & Cidlowski, 2005; Sinars et 

al, 2003; Tao & Zheng, 2011). This then translocates to the nucleus and binds to 

glucocorticoid-response elements (GRE) in the enhancers or repressors of target 

genes, causing either their up-regulation or down-regulation. The steroid-receptor 

complex may also interact with other transcription factors (Marik, 2007). 

Aldosterone stimulates sodium and water reabsorption in the kidney to increase blood 

pressure. It exerts its actions by binding to the intracellular mineralocorticoid receptor 

(MR) at its C-terminal ligand binding domain. It is a ligand-activated transcription 

factor, and like the glucocorticoid receptor (GR), hsp90 facilitates ligand binding which 

causes an activating conformational change (Couette et al, 1998). The ligand-receptor 

complex then translocates to the nucleus to mediate transcription of 

mineralocorticoid-responsive genes, or stimulate second messenger pathways, 

although its primary role is as a transcription factor (Fuller & Young, 2005).  

Both mineralocorticoids and glucocorticoids, two different classes of steroid 

hormones, can bind the mineralocorticoid receptor. They bind with an equal affinity 

(Rupprecht et al, 1993), however circulating levels of cortisol are much greater than 

those of aldosterone (Rogerson & Fuller, 2000), and so mechanisms are required to 

allow aldosterone-specific activation of the receptor and downstream signalling. In 

most tissues expressing mineralocorticoid receptors, glucocorticoids are inactivated by 

11β-hydroxysteroid dehydrogenase (11βHSD2), which converts cortisol to cortisone, 

and corticosterone in rodents to 11-dehydrocorticosterone (Sapolsky et al, 2000). This 

is referred to as pre-receptor regulation of steroid access. Activation of the ligand-

receptor complex by cortisol requires 10 times the concentration needed for activation 
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by aldosterone, as aldosterone has a higher efficacy. This confers aldosterone 

specificity upon the receptor, by intrinsic-receptor mechanisms (Lombes et al, 1994).  

Adrenal androgens, dehydroepiandrosterone (DHEA), dehydroepiandrosterone 

sulphate (DHEAS) and androstenedione, also known as C19 steroids, are produced by 

the zR. They are precursor sex hormones released into the blood stream, and taken up 

by the testis and ovaries to produce testosterone and oestrogen. Their production is 

regulated by ACTH, however it is unclear exactly how, or what regulatory machinery is 

involved, as only primates produce adrenal androgens, making them more difficult to 

study.  

1.2 Development of the adrenal glands 

1.2.1 Organogenesis and zonation 

Although there are some differences between species in the structure and function of 

the mammalian adrenal gland, the basic principles of cortex development are very 

similar (Figure 1.2.1). The urogenital ridge is the shared common origin of the adrenals, 

gonads and kidneys (Hatano et al, 1996; Mesiano & Jaffe, 1997; Morohashi, 1997), and 

contains the adrenogonadal primordium composed of coelomic epithelium and the 

surrounding mesenchymal cells. The urogenital ridge is the first tissue to express the 

transcription factor SF-1 (steroidogenic factor 1) during development, and therefore is 

the earliest developing steroidogenic tissue, as SF-1 is a marker of steroidogenic 

capacity (Kim & Hammer, 2007; Mesiano & Jaffe, 1997). SF-1 expression is first seen at 

embryonic day 9 (E9) in mice, and embryonic week 4 (Ewk4) in humans. It is required 

for both adrenal and gonadal development, with SF-1 null mice lacking both these 

tissues (Luo et al, 1994). 

The adrenogonadal primordium splits to form the adrenocortical primordium and the 

gonadal primordium, with the former going on to form the adrenal cortex. Migrating 

sympathetic neural crest cells move into the ‘adrenal anlage’, forming chromaffin cells 

of the medulla (Mitani et al, 1999), while the gland is encapsulated by mesenchymal 
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cells. As the cells proliferate, the cortex grows and expands, and concentric zones of 

steroidogenically-distinct cells start to form.  

The human adrenocortical primordium consists of a large ‘foetal’ zone, surrounded by 

a much smaller definitive zone (Mesiano & Jaffe, 1997). The foetal zone is responsible 

for steroidogenesis during gestation, while the definitive zone takes over after birth. 

This is reflected by the gradual expansion and zonation of the definitive zone 

perinatally, and the regression of the foetal zone by 6 months. The foetal zone 

produces DHEA and DHEAS (Mesiano & Jaffe, 1997), with aldosterone and cortisol 

being produced when the zG and zF form. In mice, the foetal/X zone is of unknown 

function and involutes at the onset of puberty in males, and after the first pregnancy in 

females (Laufer et al, 2012). CYP11B1 expression is detected in the definitive adrenal 

by E16, marking a functionally active zF, while development of the zG lags behind, with 

CYP11B2 expression evident at E20, just before birth (King et al, 2009; Mitani et al, 

1999). 
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Figure 1.2.1 – Adrenal development (Keegan & Hammer, 2002) 
Comparison of human (A) and mouse (B) adrenal development. Sf-1; steroidogenic factor-1, Dax-1; 
dosage-sensitive sex-reversal adrenal hypoplasia congenita on the X chromosome, gene 1, w; week, E; 
embryonic day, P; postnatal day, m; month, y; year. 
 

1.2.2 Signalling pathways 

Signalling pathways and transcription factors that govern initial formation of the 

adrenocortical primordium, as well as its differentiation and zonation to form the 

cortex, are not well characterised. The hedgehog (Hh) signalling pathway has been 

identified as a key player in adrenal development, and possibly the maintenance of a 

(sub)capsular mesenchymal stem cell population in adults (King et al, 2009). It is 

discussed further in section 1.4. Disruption of this pathway may be responsible for 

some cases of adrenal hypoplasia (King et al, 2008; Laufer et al, 2012). 

Other factors of interest include WT1 (Wilms’ tumour 1), Cited2 (CREB-binding 

protein/p300-interacting transactivator, with ED-rich tail, 2) and SF-1. WT1 is a tumour 

suppressor gene, and transcriptional regulator. It is one of the earliest genes to specify 

kidney, gonadal and adrenal cell lineages during development (Keegan & Hammer, 
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2002), with WT1 mutant mice lacking all three (Kreidberg et al, 1993; Moore et al, 

1999). The transcriptional co-factor Cited2 interacts with WT1, and together they 

stimulate SF-1 expression in the adrenogonadal primordium, which is essential for 

adrenocortical development (Val et al, 2007). WT1 is present in the urogential ridge at 

E9, but is not expressed in the adrenal glands, while Cited2 expression is first detected 

at E10. Cited2-/- mice have reduced SF-1 expression, and fail to develop adrenals.  

The transcription factor SF-1 is an orphan nuclear receptor, and as previously 

mentioned, is the earliest marker of steroidogenic capacity, with its absence leading to 

failure of the adrenal glands and gonads to develop (Luo et al, 1994; Luo et al, 1995; 

Sadovsky et al, 1995). It is co-activated by WT1, and is required for adrenal cortex 

formation and differentiation. It stimulates the transcription of many steroidogenic 

genes, including StAR and CYP11A1, and in adults is expressed throughout the cortex, 

although it is not present in the capsule (Babu et al, 2002; Luo et al, 1994). A small 

subset of subcapsular cells that are SF-1-positive, do not express steroidogenic 

enzymes due to inhibition of SF-1 mediated transcription (Kim & Hammer, 2007). The 

mechanisms by which SF-1 is inhibited in these cells is still unclear, but may involve 

varying degrees of SF-1 sumoylation (Lee et al, 2011). 

Dax1 (dosage-sensitive sex-reversal adrenal hypoplasia congenita on the X 

chromosome, gene 1), is also a nuclear hormone receptor implicated in adrenocortical 

and gonadal development. It co-localises with SF-1 at the urogenital ridge at E9.5 in 

mice (Ikeda et al, 1996), but its exact function may vary between different mammalian 

species. Dax1 knockout (KO) mice show decreased CYP11A1 expression in the zF, with 

otherwise normal adrenal function (Ito et al, 1997; Yu et al, 1998). However, in 

humans, mutations or deletion of Dax1 are responsible for X-linked adrenal hypoplasia 

congenita (AHC) (Muscatelli et al, 1994; Zhang et al, 1998). Patients present with 

primary adrenal insufficiency, characterised by reduced glucocorticoid and 

mineralocorticoid levels. They also lack clearly defined cortex zonation.  

Wnt (wingless-related mouse mammary tumour virus integration site) signalling has 

roles in proliferation, cell fate specification, stem cell maintenance and differentiation 

(Logan & Nusse, 2004), and is another pathway implicated in adrenal development. In 
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the absence of the Wnt ligand, cytoplasmic β-catenin is degraded via ubiquitin-

mediated proteolysis, by a complex consisting of Axin, APC (adenomatous polyposis 

coli) and Gsk3β (glycogen synthase kinase 3β) (Figure 1.2.2). When Wnt binds to the 

membrane receptor frizzled, the protein dishevelled is recruited, disrupting this 

complex, and permitting β-catenin accumulation and translocation to the nucleus. 

There it interacts with Lef/Tcf (lymphoid enhancer-binding factor/T-cell factor) to 

activate the transcription of canonical Wnt signalling target genes (Kim et al, 2008a; 

Lienkamp et al, 2012). The protein inversin inhibits dishevelled-stimulated canonical 

Wnt signalling, and promotes non-canonical PCP (planar cell polarity) signalling 

(Lienkamp et al, 2012). 

β-catenin is expressed in the adrenocortical primordium at E12.5 in mice, overlapping 

with the expression of SF-1. It then becomes restricted to the subcapsule, with only a 

subset of these cells maintaining active canonical Wnt signalling in the adult. Mice with 

conditionally inactivated β-catenin have adrenal aplasia by E18.5, with reduced SF-1 

expression in adrenal cells prior to this. This is due to decreased proliferation of 

adrenocortical precursor cells causing regression of the gland. Partial β-catenin 

inactivation also shows depletion of adrenocortical cells in the adult by apoptosis (Kim 

et al, 2008a). β-catenin forms part of a transcriptional protein complex with SF-1 to 

synergistically activate target genes (Gummow et al, 2003; Mizusaki et al, 2003), 

possibly those essential for adrenocortical proliferation, or to inhibit apoptosis, and 

those required to maintain the cortex in the adult.  

Wnt4 is expressed in the urogenital ridge at E11.5, also in a pattern corresponding to 

that of SF-1 at this time. This area of Wnt4 is later distinguished as the cortex, and in 

particular the zG, with expression correlating to the zG markers CYP11B2 and PREF1 

(preadipocyte factor 1). Wnt4 mutant mice have reduced CYP11B2 levels, and 

therefore aldosterone, as well as reduced PREF1, indicating problems with 

development of the zG (Heikkila et al, 2002). They also show signs of abnormal kidney 

development (Vainio & Uusitalo, 2000), and have partial female to male sex reversal 

(Heikkila et al, 2002) as the urogenital ridge is the shared common origin of the 

adrenal, gonads and kidneys. Wnt4, is therefore likely to be required for proper 

formation of the zG. In humans, a Wnt4 loss of function mutation has been identified 
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in SERKAL (SEx Reversion, Kidneys, Adrenal and Lung dysgenesis) syndrome (Mandel et 

al, 2008). This is an autosomal recessive disorder resulting in female to male sex 

reversal, and renal, adrenal and lung dysgenesis. 
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1.2.3 Adrenocortical stem/progenitor cells 

It has long been thought that undifferentiated, pluripotent stem cells exist in the 

adrenal cortex to maintain homeostasis in the adult. For instance, in remodelling 

experiments, feeding rats a low sodium diet results in expansion of the zG. This allows 

CYP11B2 activity to increase, and produces a greater secretion of aldosterone to cope 

with the new demands imposed on the system (Aguilera et al, 1980; LeHoux et al, 

1997). Stem/progenitor cells within the cortex must therefore undergo proliferation 

and differentiation to provide the means to supply the necessary steroidogenic output. 

Transplantation of primary bovine adrenocortical cells to adrenalectomised SCID mice 

results in the formation of fully functional, and architecturally normal, adrenocortical 

tissue (Thomas et al, 2000), also indicating the presence of stem cells within the 

adrenal cortex. 

While many agree on the existence of a stem cell population in the adrenal cortex, the 

origin of these regenerating cells remains ambiguous. An initial hypothesis; that each 

zone has its own stem cell population, now seems rather unlikely, as the majority of 

proliferation takes place in the subcapsular region, and apoptosis mainly occurs at the 

zR:medullary boundary. It is now thought that the capsule and subcapsular region are 

a likely source of stem cells, and this hypothesis would support the migration theory, 

first proposed by Gottschau in 1883 (Gottschau, 1883).  

The migration theory proposes that cells migrate centripetally from the outer to the 

inner adrenocortical layers, ending up at the medullary boundary, where macrophages 

reside and therefore apoptosis occurs. This would require a stem cell population to 

reside in the capsule or subcapsular region, and for each cell to be able to differentiate 

from a zG cell into a zF cell. Although the process of lineage determination is still 

currently being investigated, enucleation and lineage studies support both the 

centripetal migration theory and the existence of a stem cell population in the 

capsule/subcapsular region. 

Enucleation studies involve the removal of the inner contents of the adrenal leaving 

just the capsule and subcapsular cells. The ability of the cortex to regenerate from 

these cells alone is then examined. Studies using this technique have shown that the 
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cortex is able to regenerate and form steroidogenically functional tissue (Greep & 

Deane, 1949; Ingle, 1938; Perrone et al, 1986; Skelton, 1959), indicating that a stem 

cell population must reside within the capsule and/or subcapsule. 

Lineage studies involve labelling a parental cell with a specific marker, which can then 

be passed on to all of its progeny. This can include dyes such as trypan blue, and 

genetic markers for example GFP. Genetic recombination is also a frequently used tool 

for lineage tracing (Kretzschmar & Watt, 2012). A combination of studies, using a 

variety of different labelling techniques, have revealed the presence of perpendicular 

columns of cells spanning from the capsule to the medulla (Greep & Deane, 1949; King 

et al, 2009; Morley et al, 1996; Salmon & Zwemer, 1941; Zajicek et al, 1986), and have 

shown that both Shh (sonic hedgehog)-expressing cells, and capsular cells are capable 

of giving rise to all steroidogenic cells types of the cortex. It is therefore possible that 

several different pools of stem cells may exist within the adrenal cortex (King et al, 

2009). 

Shh-expressing cells also express SF-1, but they do not express the terminal 

steroidogenic enzymes CYP11B1 and CYP11B2, and are therefore considered to be 

steroidogenically inactive. These undifferentiated cells form a layer between the zG 

and the zF of the rat adrenal cortex, termed the zU, first identified by Mitani et al. in 

1994 (Mitani et al, 2003; Mitani et al, 1994). Further analysis of the zU has revealed it 

is composed of two types of cells. An outer layer, next to the zG that is Shh-positive, 

SF-1-positive and weakly CYP11A1-positive, and an inner layer bordering the zF, which 

is Shh-negative, SF-1-positive and has higher CYP11A1 expression equivalent to that of 

the zG and zF, but is still aberrant of CYP11B1 and CYP11B2 expression (Guasti et al, 

2011).  

The exact function of the zU is still unknown, however, it has been stipulated that 

these cells may be progenitor cells for steroidogenic cortical lineages, and/or their 

expression of Shh could be involved in maintaining a stem cell niche within the 

capsule/subcapsule, the location of Hh-responsive cells (Laufer et al, 2012). Either way, 

this population of cells, albeit in different histological locations, is conserved between 

species. In mice, non-steroidogenic, Shh-expressing cells are found in clusters within 
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the zG (King et al, 2009), and a similar expression pattern is predicted in the human 

adrenal cortex (Laufer et al, 2012). 

1.2.4 Adrenal dysregulation 

Adrenal dysfunction can occur for a number of reasons. It can result from incorrect or 

incomplete adrenal development, defects in steroidogenesis, disturbances in pituitary-

adrenal communication or degenerative immune disorders (Else & Hammer, 2005; 

Kempna & Fluck, 2008). As a consequence, levels of circulating adrenal steroids may be 

altered, and the adrenal cortex may appear hypo- or hyper- plastic. 

Adrenal hypoplasia congenita (AHC) is an example of adrenal insufficiency. Patients 

have increased serum ACTH, while cortisol and aldosterone production is severely 

reduced. This results in symptoms such as dehydration, hyponatremia, hyperkalemia, 

hypotension, hypoglycaemia and hyperpigmentation. The majority of cases are caused 

by mutations in the Dax1 gene on the X chromosome, and therefore adrenal 

development is disrupted. The adrenal cortex appears disorganised, with enlarged 

vacuolated cells, and persistence of the foetal zone. In males, hypogonadotropic 

hypogonadism is also common (Else & Hammer, 2005; Scriver, 1995; Zanaria et al, 

1994). Several patients, in which no Dax1 mutation is present, have mutations in SF-1, 

also essential for correct adrenal development (Phelan & McCabe, 2001). Another type 

of AHC exists in which normal adrenal zonation is apparent, but the gland is 

undersized. The underlying genetic causes for this have not as yet been identified 

(Scriver, 1995). 

Adrenal hypoplasia has also been described in patients with familial glucocorticoid 

deficiency (FGD) caused by mutations in the ACTH receptor, MC2R (Clark & Weber, 

1998; Lin et al, 2007), or its accessory protein, MRAP (Akin et al, 2010), and in the 

MC2R knockout mouse, a model of FGD type 1 (Chida et al, 2007). Symptoms of FGD 

include hypoglycaemia, jaundice and hyperpigmentation due to increased plasma 

ACTH and reduced cortisol (Chung et al, 2010; Clark et al, 1993; Metherell et al, 2005). 

ACTH is required to provide trophic support for the adrenal cortex during development 

and in the adult, and mutations in MC2R or MRAP prevent its downstream signal 

transduction. 
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Unlike AHC and FGD, which manifest themselves in early childhood, the onset of 

Addison’s disease usually occurs in adults. While development of the adrenal glands is 

normal, an autoimmune response against CYP21, and the tissue where it is 

synthesised, results in their destruction (Nikoshkov et al, 1999). Glucocorticoids and 

mineralocorticoids can therefore not be produced, causing chronic 

hypoadrenocorticism with corresponding elevated serum ACTH. Patients present with 

fatigue, muscle weakness, weight loss, vomiting and hyperpigmentation (Zhou et al, 

2009). It is unknown what triggers the autoimmune response. 

CYP21 deficiency, when not associated with a degenerative immune disorder, is the 

most common cause of congenital adrenal hyperplasia. These patients cannot produce 

adequate levels of cortisol, and inefficient aldosterone production is also common. 

Adrenal androgens are produced in excess, as this is the only biosynthesis pathway 

available for the accumulating cortisol precursors. CRH in the hypothalamus and ACTH 

from the pituitary are over synthesised due to the absence of negative feedback loops. 

Symptoms include virilised external genitalia in females, accelerated growth, 

hyperplasia of the adrenal glands and hyponatremic dehydration (Mornet et al, 1989; 

Scriver, 1995; White & Speiser, 2000).  

Adrenal hyperplasia can also be caused by lipid accumulation or tumour formation. 

Mutations in StAR cause congenital lipoid adrenal hyperplasia. Cholesterol cannot be 

converted to pregnenolone resulting in the accumulation of cholesterol esters in lipid 

droplets within the cells of the adrenal cortex. As the lipid droplets increase in size, 

they cause cellular damage, and further perturb steroidogenesis. Cortisol, aldosterone 

and androgen levels are reduced, while plasma ACTH is increased. Patients have 

hyponatremia, hyperkalemia, hypotension, dehydration, hypoglycaemia, 

hyperpigmentation and males have female external genitalia (Bose et al, 1996). 

ACTH overproduction by benign pituitary corticotroph adenomas cause the most 

frequent type of Cushing’s disease. Pituitary derived ACTH is required for adrenal 

growth and maintenance, but excess ACTH leads to adrenal hyperplasia and chronic 

glucocorticoid excess. Cushing’s patients have increased plasma cortisol which causes 
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weight gain, hypertension, osteoporosis and adrenal hyperplasia. Overproduction of 

cortisol is also caused by adrenal tumours (Dworakowska & Grossman, 2011). 

Glucocorticoid and mineralocorticoid replacement therapy is the main treatment for 

adrenal insufficiency. They may also be required after the removal of pituitary or 

adrenal tumours causing glucocorticoid excess, if normal pituitary or adrenal function 

is not restored. A better understanding of adrenocortical development and 

remodelling, and the role primary cilia play, will hopefully lead to improved 

management of adrenal dysfunction, and pave the way for progression towards gene 

repair and cell replacement therapies. These would be a welcome alternative to 

lifelong therapeutic intervention by hormone replacement, which is still associated 

with reduced quality of life and significantly increased mortality, that can have the side 

effects of psychological disturbances and does not address secondary issues present 

occasionally, such as infertility. 

Adrenocortical cancer is another form of adrenal dysregulation. The majority of 

tumours are benign adrenocortical adenomas (ACAs), with malignant adrenocortical 

carcinomas (ACCs) occurring far less frequently. ACAs tend to be asymptomatic, while 

ACCs are far more aggressive and have a poor prognosis (Lehmann & Wrzesinski, 

2012). Adrenocortical tumours (ACTs) may secrete cortisol, aldosterone or androgens 

(Low et al, 2012).  

The underlying molecular basis of ACTs is not well characterised. SF-1 up-regulation 

has been reported in ACCs (Almeida et al, 2010), as well as excessive canonical Wnt 

signalling resulting from β-catenin stabilisation, or loss of the repressor APC (El Wakil & 

Lalli, 2011; Gaujoux et al, 2011; Simon & Hammer, 2012). IGF2 (insulin-like growth 

factor 2), required for growth of the adrenal gland during embryogenesis, and 

expressed in the capsule in the adult (Mesiano et al, 1993), is also overexpressed in 

ACAs and ACCs (Demeure et al, 2011; Lehmann & Wrzesinski, 2012). Loss of function 

mutations in the gene encoding p53, which regulates the cell cycle and apoptosis, 

occur in approximately 50% of all cancers, including ACTs (Lin et al, 1994; Reincke et al, 

1994). Although aberrant Hh signalling or Gli expression has been implicated in many 
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cancers, especially medulloblastomas and BCCs, there have been no reports of up-

regulation of Hh pathway constituents in ACCs (Giordano et al, 2009). Further 

characterisation of adrenocortical stem/progenitor cells will be beneficial for the 

identification of the underlying molecular mechanisms involved in adrenocortical 

tumourigenesis, and may reveal new therapeutic targets (Simon & Hammer, 2012). 

1.3 Adrenal cell lines  

When identifying adrenal model systems, one needs to consider cell growth, response 

to agonists, and steroidogenic capacity (steroidogenic enzyme expression), which can 

change over time in culture. Primary cultures may be used, but these require frequent 

animal sacrifice, as cells have a limited life span ending in senescence (Staels et al, 

1993). Also, not all cells isolated will have steroidogenic capacity, and those that do 

rapidly loose ACTH and cAMP responsiveness (Rainey et al, 2004). 

One of the first cell lines used to study adrenal endocrinology is the Y1 cell line, 

derived from a zF originating tumour from a male LAF1 mouse. These cells are 

hypodiploid, containing 39 chromosomes instead of 40 (Yasumura et al, 1966), and 

have a doubling time of approximately 30-40hrs. The original tumour produced 

corticosterone and responded to ACTH (Cohen et al, 1957), however, the cell line 

produces 20αdihydroxyprogesterone, 11β,20α-dihydroxyprogesterone, and 20α-

hydroxysteroid dehydrogenase (Pierson, 1967), but is deficient of CYP21, so cannot 

produce corticosteroids. They can be transfected with genomic plasmids encoding 

CYP21, to restore its activity, and corticosterone synthesis (Parker et al, 1985). ACTH 

can stimulate steroid biosynthesis in Y1 cells, but the amount produced varies between 

clonal isolates, and some are completely resistant to it (Yasumura et al, 1966). They do 

not respond to AngII stimulation, and as they are murine cells they do not produce 

cortisol or adrenal androgens. These cells are now mainly used to study the actions 

and mechanisms of ACTH. 

The human adrenal carcinoma cell line NCI-H295 was the first adrenal cell line 

established that retains its steroidogenic capacity, and expresses all enzymes required 
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for adrenocortical steroidogenesis (Staels et al, 1993). It was isolated from an 

adrenocortical carcinoma belonging to a 48 year old black female (Gazdar et al, 1990). 

H295 cells are aneuploid and hypertriploid, with the modal number of chromosomes 

being 62, held by approximately 30% of cells (Gazdar et al, 1990). This original line 

grows slowly in suspension, with a doubling time of approximately 5 days (Rainey et al, 

2004). They produce their own cholesterol for steroidogenesis, and like the tumour 

from which they originated, mainly produce androgens, with low mineralocorticoid 

and glucocorticoid synthesis, making them analogous to the foetal adrenal, with 

pluripotent capabilities (Gazdar et al, 1990).  

Like adrenocortical cells in vivo, they respond to second messenger pathways (Staels et 

al, 1993). AngII increases intracellular calcium levels via AT1 activation, and this along 

with PKC signalling preferentially induces CYP11B2 transcription to produce 

aldosterone (Bird et al, 1993). Potassium also causes increased intracellular calcium 

levels, and aldosterone release (Pezzi et al, 1997). This response is identical to AngII 

and potassium stimulation of the zG. Most strains are however, unresponsive to ACTH, 

probably stemming from low MC2R levels (Mountjoy et al, 1994), but as the cAMP 

pathway remains intact, it can be activated by forskolin (Fsk). Fsk acts at adenylate 

cyclase to increase cAMP levels, preferentially inducing CYP17 and CYP11B1 

transcription, resulting in cortisol production (Denner et al, 1996). It also activates the 

PKA pathway. This response is the same as ACTH stimulation of the cAMP pathway via 

MC2R in the zF. Chronic Fsk treatment shifts the steroidogenic pathway towards 

androgen production of the zR, with increased DHEA and DHEAS levels (Cobb et al, 

1996). 

A strain of H295 cells selected for their ability to grow in an adherent monolayer, and 

their shorter population doubling time of approximately 2 days, is now the adrenal cell 

line most frequently used. This strain, named H295R, also expresses all enzymes 

required for steroidogenesis, produces mainly androgens with low levels of cortisol 

and aldosterone, and is responsive to AngII, potassium and Fsk. By altering steroid 

production to resemble that of the zG or zF/zR with the addition of AngII or Fsk 

respectively, these cells can be used to study adrenal development and zonation in 

vitro. Without the addition of AngII or Fsk, H295/R cells are zonally undifferentiated. 
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More recently, another adrenocortical cell line has been developed that is reported to 

express all enzymes required for cortisol, aldosterone and DHEA production, and are 

responsive to Fsk, AngII and potassium. These human adrenocortical carcinoma cells, 

named HAC15 (Parmar et al, 2008), were derived from an adrenal tumour in an 11 

month old female, but are not yet readily available for purchase. They have a similar 

steroidogenic profile to H295/Rs, but produce slightly more cortisol than aldosterone. 

Unlike H295/Rs, they also respond well to ACTH treatment and have higher MC2R 

levels. Chronic AngII or ACTH treatment has not yet been tested, but as the only 

alternative human adrenocortical cell line available, and the first to respond to ACTH 

as well as potassium and AngII, they will be an essential part of further studies on the 

actions and mechanisms of ACTH. 

1.4 Shh signalling 

The Hedgehog gene was first identified in the 1980s in the fruit fly; Drosophila 

melanogaster (Nusslein-Volhard & Wieschaus, 1980). It is a segment polarity gene, 

which when mutated results in altered segment organisation and patterning in 

Drosophila larva (Bumcrot et al, 1995; Nusslein-Volhard & Wieschaus, 1980). Many 

invertebrate and vertebrate homologues have since been identified all of which have 

been shown to encode intercellular signalling proteins important for embryonic 

development (Ingham & McMahon, 2001). Hh proteins are involved in tissue 

patterning such as the anterior-posterior axis of the limb and the dorso-ventral axis of 

the neural tube, heart development and inducing asymmetry in the left-right body 

axis. They are also involved in cell proliferation and differentiation, and in the adult, 

tissue homeostasis and maintaining stem cell niches (Christensen et al, 2007). 

1.4.1 Hh proteins  

There are three vertebrate homologues of the Drosophila Hh gene, encoding 

extracellular signalling proteins of the same name. These are Desert hedgehog (Dhh), 

mainly involved in germ cell development (Bitgood et al, 1996), Indian hedgehog (Ihh), 
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for bone development (Vortkamp et al, 1996), and Sonic hedgehog (Shh), also known 

as vhh-1 or Hhg-1 (Bumcrot et al, 1995). Shh is the best characterised and plays the 

most extensive role in development.  

All three Hh proteins are produced at the endoplasmic reticulum as approximately 

45kDa full length precursor proteins. They are then processed post-translationally to 

give rise to a 19-20kDa amino terminal fragment (Hh-N), and a 25-27kDa carboxy 

terminal fragment (Hh-C). Hh-N is further modified by the addition of cholesterol and a 

palmitoyl moiety (Buglino & Resh, 2008; Chamoun et al, 2001; Etheridge et al, 2010), 

and is responsible for transducing the Hh signal. The Hh-C fragment is thought to be 

required for the autocatalytic internal cleavage of peptide bonds resulting in the two 

proteins (Porter et al, 1996). Secretion of Hh-N from the cell involves the 12-pass 

transmembrane protein Dispatched1, which facilitates the formation of Hh-N 

multimers, wherein all hydrophobic lipid modifications are concealed, making a soluble 

and freely diffusible structure (Zeng et al, 2001).  

1.4.2 Signalling components  

Once released from the cell, Hh binds to a complex of proteins on a Hh-receiving cell. 

This complex includes the Hh-binding protein Patched-1 (Ptch1), which has a high 

affinity for all Hh ligands (Stone et al, 1996). It is a 12-pass transmembrane protein, 

and in the absence of Hh inhibits the actions of the downstream signalling component 

Smoothened (Smo). The mechanism by which Ptch1 exerts this effect is not well 

characterised, but it does not bind directly to Smo (Taipale et al, 2002), and current 

hypotheses involve Smo regulation by an as yet unidentified small molecule, possibly 

an oxysterol, which are natural intracellular Smo agonists (Corcoran & Scott, 2006; 

Dwyer et al, 2007; Rohatgi & Scott, 2007). Ptch1 is related to the resistance, 

nodulation, cell division (RND) family of bacterial proton-driven transmembrane 

molecular transporters. By containing a proton-pump (Etheridge et al, 2010), Ptch1 

may change the concentration or localisation of a small-molecule that regulates Smo 

conformation and localisation. 
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Upon binding of Hh to Ptch1, inhibition of Smo in relieved (Figure 1.4.1). Smo is the Hh 

pathway signal transducer, and a member of the GPCR superfamily, with seven 

structurally similar transmembrane domains. Activation of Smo involves changes in its 

conformation in the extracellular and cytosolic domains, conferring different degrees 

of activity (Chen et al, 2002b; Wilson et al, 2009). In an active conformation, Smo 

prevents the processing of the Gli transcription factors, either by directly interacting 

with them, or via interactions with the complex of proteins involved in their processing 

(Yue et al, 2008).  

There are three Gli genes in mammals; Gli1, Gli2 and Gli3, homologues of the single 

Drosophila gene Cubitus interruptus (Ci). They encode a family of zinc finger 

transcription factors. In the absence of Hh and activated Smo, full length Gli3 and Gli2 

are proteolytically processed resulting in the removal of the carboxyl-terminal 

activation domain (Pan & Wang, 2007). In this form (GliRs), these transcription factors 

act to repress transcription, although the majority of Gli2R is degraded by the 

proteasome (Pan et al, 2006). Disruption of this processing by Smo, allows full length 

Gli3 and Gli2 to translocate to the nucleus and act as transcriptional activators (GliAs). 

Gli1 is not expressed in the absence of Hh, but is up-regulated by the pathway, so can 

be used as a marker for active Hh signalling (Vokes et al, 2007). It only acts as a 

transcriptional activator, further augmenting Hh pathway activity. The ratio between 

GliRs and GliAs varies as the concentration of Hh ligand changes, allowing different 

target genes to be expressed or de-repressed. There may also be different GliA and 

GliR binding sites within the promoters of target genes, or these sites may have 

different affinities for each Gli transcription factor (Vokes et al, 2007). 
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Figure 1.4.1 – Schematic diagram of the mammalian Hh pathway (Hui & Angers, 2011) 
Hh; hedgehog, Ptch; patched, Smo; smoothened, Gas1; growth arrest-specific protein 1, Cdo; CAM-
related/down-regulated by oncogenes, Boc; brother of Cdo, Kif7; kinesin family member 7, SuFu; 
suppressor of fused, PKA; protein kinase A, CK1; casein kinase 1, GSK3; glycogen synthase kinase 3, β-
TrCP; β-transducing repeat-containing protein, Gli

R
; Gli repressor, Gli; glioma-associated, krupple 

family member, Gli
A
; Gli activator, SPOP; speckle-type PDZ protein. 

It is now generally accepted that correct Hh signalling is highly dependent on the 

structural cellular component, the primary cilium (see section 1.5). Ptch1 is located 

within the ciliary membrane, but when bound to Hh, the Hh-Ptch1 complex is 

internalised (Figure 1.4.2). This then moves out of the cilium, as Smo moves in (Rohatgi 

et al, 2007). Gli transcription factors, and components of the protein complex required 

for their proteolytic processing, have also been found localised at the tip of the cilium 

(Haycraft et al, 2005; Satir & Christensen, 2007). 
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Figure 1.4.2 – Primary cilia and Hh signalling (Hui & Angers, 2011) 
Schematic diagram showing the involvement of primary cilia in Hh signal transduction. SuFu; 
suppressor of fused, Gli; glioma-associated, krupple family member, Ptch; patched, Smo; smoothened, 
Gli

R
; Gli repressor, Hh; hedgehog, Gli

A
; Gli activator. 

 

1.4.3 Agonists and Antagonists 

The majority of Hh pathway agonists and antagonists exert their actions via Smo, 

binding to its heptahelical bundle and causing changes in its conformation. Commonly 

used agonists include purmorphamine and SAG (smoothened agonist) which allow 

Smo ciliary translocation (Wang et al, 2009). Cyclopamine is the main antagonist, 

derived from the Veratrum Californicum genus of plants, and was the first small 

molecule shown to selectively inhibit Hh signalling in vertebrates. It also causes 

translocation of Smo to the cilium, but in an inactive conformation (Wang et al, 2009). 

1.4.4 Hh signalling in the adrenal 

Shh is first present in the adrenocortical primordium at E12.5 in mice (King et al, 2009). 

It is expressed along with SF-1, but not CYP11B1 or CYP11B2, at the periphery of the 

adrenal cortex (Bitgood & McMahon, 1995; Ching & Vilain, 2009; Huang et al, 2010; 

King et al, 2009). At E12.5-14.5, Gli1 and Ptch1 are expressed in the mesenchyme 

surrounding the SF-1-positive cells, and at later time points, in the capsule and a few 

subcapsular cells that are non-steroidogenic (King et al, 2009).  
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Conditional Shh-inactivation results in reduced adrenal mass and adrenal hypoplasia 

with thinning of the capsule compared to the wild-type mice (Ching & Vilain, 2009; 

Huang et al, 2010; King et al, 2009). Bose et al. also report that truncated Gli3 mutant 

mice, in which Gli3 cannot become a transcriptional activator, have adrenal agenesis, 

first detectable at E15.5 (Bose et al, 2002). In humans, patients with 

holoprosencephaly frequently present with adrenal hypoplasia and insufficiency 

(Begleiter & Harris, 1980), and of the seven genes implicated in causing it, three are 

from the Hh pathway; Shh, Ptch and Gli2 (Dubourg et al, 2007). 

Shh signalling is clearly required for normal development of the adrenal cortex, 

however its exact function in this process is still to be determined. King et al. have 

proposed a novel two-lineage model of adrenocortical development involving Hh (King 

et al, 2009). In this model, a primary adrenal lineage is derived from SF-1-positive cells 

of the adrenogonadal primordium, in a Shh-independent manner. As the adrenal 

anlage segregates, these cells then start to express Shh, which induces Gli1 expression 

in the surrounding mesenchymal cells. The mesenchymal cells move in and 

encapsulate the gland, possibly in part due to the chemoattractive properties of Shh. 

The majority go on to form the capsule; however, a few cells end up residing in the 

subcapsular region. It is proposed that some Gli1-positive, SF-1-negative cells, possibly 

those in the subcapsule, form a secondary adrenal cell lineage, dependent upon Hh-

signalling. 

Evidence for this model stems from the formation of the adrenal gland in conditional 

Shh null mice, and therefore a Hh-independent lineage must exist. However, the gland 

that forms in these mice is significantly smaller in size, and has a thinner capsule, 

representative of failure of expansion and maintenance of the gland in the absence of 

Hh signalling. Lineage studies performed by the group also show that both Shh-positive 

cells and Gli1-positive cells are capable of giving rise to steroidogenic adrenocortical 

cells, suggesting either or both may be the location of a stem/progenitor cell 

population, and a secondary adrenal lineage could arise from the Gli1-positive capsular 

cells. 
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Huang et al. also show that the adrenal cortex can form with proper zonation and the 

ability to produce steroids in the absence of Shh (Huang et al, 2010), consistent with 

the idea of a Hh-independent primary cell lineage. They too report that the gland is 

smaller, with a thinner capsule and cortex than the wild-type mice, which is due to 

reduced proliferation in the capsule. Zonation and differentiation of a primary cell 

lineage appear to be Hh-independent processes, while expansion of the capsule and 

cortex by stem/progenitor cells, both during development and in the adult rely on Hh 

signalling. 

1.5 Primary Cilia 

Cilia are organelles which evolved in eukaryotes as separate cytoplasmic 

compartments. There are three different types; motile, nodal and primary. Motile cilia 

are usually present in large numbers, and beat in unison to cause fluid flow. They have 

9 pairs of microtubules around the outside of the ciliary axoneme, connected by radial 

spokes to a central pair of microtubules. These move relative to each other, causing 

the cilium to bend and therefore move (Tobin & Beales, 2007). Nodal cilia can also 

beat, but lack the central pair of microtubules. They are present on cells of the 

embryonic node during development, and cause preferential morphogen gradients 

helping to establish left-right body axis asymmetry. Exactly how they are able to beat is 

still unclear.  

Primary cilia (Figure 1.5.1) have only recently become of interest in the last 10 years, 

and were previously considered vestigial. As the name suggests, only one projects 

from each cell, but they are present on nearly all cells during interphase (Santos & 

Reiter, 2008). They have a 9+0 microtubule arrangement, so they do not have the 

central pair of microtubules, and are therefore immotile. They extend from the cell 

surface with an axoneme diameter of approximately 0.25µm, but they vary in length 

depending on cell type and function. Their membrane is continuous with that of the 

cell membrane, but they are separated from the main cytoplasm by the transition 

zone, where the basal body resides. The basal body forms from the mother centriole of 

the cell (Jurczyk et al, 2004), which is required to migrate to the membrane where the 
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cilium will assemble (Kim et al, 2008b). It is here that proteins are sorted and screened 

for those containing ciliary localisation motifs. All proteins must pass through the 

transition zone to enter or leave the cilium, as it is devoid of ribosomes so no protein 

synthesis occurs within (Singla and Reiter 2006).  

The main function of primary cilia is to act as chemo- and mechano-sensors (Satir & 

Christensen, 2007), to transfer information from the extracellular environment to the 

inside of the cell. This signal transduction usually leads to a change in transcription 

rates, and can therefore control a cellular process to suit the needs of the cell. The 

cilium is thought to be an ideal candidate for passing sensory information to the cell, 

as it acts to concentrate signalling modules resulting in efficient and rapid signal 

transduction (Marshall & Nonaka, 2006). It may also order and allow a specific 

sequence of protein interactions or modifications to occur (Caspary et al, 2007).  

 

 

Figure 1.5.1 – Schematic representation of a primary cilium (Sen Gupta et al, 2009) 
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1.5.1 IFT 

The intraflagellar transport (IFT) system is responsible for axoneme assembly and 

maintenance. It is an ancient process that evolved along with the establishment of cilia 

in early eukaryotic development (Christensen et al. 2007), and so is highly conserved 

between many organisms. It is a bidirectional system, consisting of two motors, plus a 

number of IFT protein particles.  

The IFT particles are composed of approximately 17 proteins arranged into two 

complexes; A and B. Proteins identified in complex A so far include; IFT43, IFT122A, 

IFT122B, IFT139, IFT140 and IFT144, while IFT20, IFT27, IFT46, IFT52, IFT57, IFT72, 

IFT74, IFT80, IFT81, IFT88 and IFT172 have been found in complex B (Tobin & Beales, 

2009). These complexes are bridged together by accessory proteins, and contain 

protein-protein interaction motifs like TPRs (tetratricopeptide repeats). These are 

likely to facilitate the particle’s interaction with axonemal and signalling pathway 

components, to transport them within the cilium. 

Proteins that are intended to enter the cilium are transported in vesicles from the golgi 

to the transition zone, where they are loaded onto IFT protein particles attached to 

microtubule motor protein complexes. As growth of the cilium occurs from the distal 

tip (Sen Gupta et al, 2009), the motors move the IFT protein particles and cargo along 

the microtubules of the cilium in an anterograde direction, to deposit components of 

ciliary assembly and signalling pathways. They transport material out of the cilium, by 

moving the particles and cargo in a retrograde direction. Anterograde transport is 

powered by a kinesin-2 microtubule motor protein, while a cytoplasmic dynein-

dynactin motor complex powers retrograde transport.  

To prevent accumulation of IFT particles and cargo in the cilium, retrograde transport 

is slightly faster than anterograde transport, 1.1µm/s and 0.7µm/s respectively 

(Blacque et al, 2004; Tobin & Beales, 2009). However, it is still unclear how the IFT 

system switches between the anterograde and retrograde transport motors (Marshall 

and Nonaka 2006). Disrupting the IFT system can lead to complete loss of cilia, or their 

stunted growth (Pazour et al, 2000), with obvious repercussions on the signalling 

pathways that utilise them. 
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1.5.2 Signalling pathways 

Signalling pathways known to rely, at least in part, on primary cilia include; Hh 

signalling (Haycraft et al, 2005; Roy, 2012), PDGFRα growth factor signalling (Schneider 

et al, 2010; Schneider et al, 2005), epidermal growth factor signalling (Ma et al, 2005), 

5-HT6 serotonin signalling (Brailov et al, 2000), Wnt signalling and polycystin signalling. 

It is likely though that there are a great many more that have not yet been identified. 

Many components of the Hh pathway are enriched in the primary cilium, for example; 

Gli1, Gli2A and Gli3A (Haycraft et al, 2005; Satir & Christensen, 2007). Smo localises to 

the cilium in response to Shh stimulation (Corbit et al, 2005), and its translocation, 

which requires the IFT system (May et al, 2005), is essential, although not sufficient 

alone, for downstream Hh signalling. Ptch1 has now also been shown to localise to 

primary cilia in mouse embryonic fibroblasts (MEFs), NIH3T3s (a mouse fibroblast cell 

line) and mouse embryonic mesoderm cells, but is internalised when bound to Hh, and 

the complex moves out of cilium (Rohatgi et al, 2007). In mice, Tg737 is the gene 

encoding IFT88. Cilia are absent in Tg737Δ2-3β-gal mutant mice (complete loss of 

function), and there is no Gli1 or Ptch1 expression. They have high levels of full length 

Gli3 which would normally be proteolytically processed to its repressor form in the 

absence of Hh pathway stimulation. Also, primary cultures derived from the limb buds 

of these mice lack responsiveness to Shh (Haycraft et al, 2005). Cilia are therefore 

required for up-regulation of Hh target genes in response to pathway agonists, and are 

also involved in Gli processing and activity (May et al, 2005). The current view is that 

primary cilia are essential for normal Hh signal transduction in all systems studied (Roy, 

2012). 

The platelet derived growth factor (PDGF) pathway is involved in tissue homeostasis, 

inflammation response and wound healing, and cell growth, proliferation, migration, 

survival and apoptosis. Dimeric PDGF glycoproteins bind and activate PDGF receptor 

tyrosine kinase homodimers such as PDGFRαα. PDGFRα and downstream signalling 

components have been shown to localise to the cilium in mouse fibroblast cells 

(Schneider et al, 2005). Tg737orpk mutant mice (hypomorphic allele), which have 

severely malformed cilia, have greatly reduced levels of PDGFRα, and reduced 

phosphorylation of downstream signalling components, such as Mek1/2 and Erk1/2. 



  CHAPTER 1: INTRODUCTION 

51 

(Schneider et al, 2005). IFT proteins are therefore required for PDGFRα up-regulation 

and signalling (Schneider et al, 2010). 

Canonical Wnt signalling regulates cell fate and patterning during development, while 

non-canonical PCP signalling is required for organogenesis, for example closure of the 

neural tube. Several pathway components have been found localised to the cilium, 

including inversin, β-catenin & APC (Corbit et al, 2005; Satir & Christensen, 2007; 

Simons et al, 2005). Studies have shown that the cilium is required for Wnt signalling in 

renal cells, regulating canonical and non-canonical pathway activation to prevent 

excessive proliferation and allow correct tissue patterning during development 

(Eggenschwiler & Anderson, 2007; Lienkamp et al, 2012). It is however, not essential in 

all tissues, and therefore characteristics of disrupted Wnt signalling are not always 

present in ciliopathic disorders. 

Correct polycystin signalling in the kidney works in conjunction with Wnt signalling to 

regulate cell growth and proliferation. Bending of the cilium as a result of fluid flow 

causes calcium uptake at PC2, a calcium selective ion channel. This stimulates 

downstream signalling events which regulate cell proliferation. Incorrect localisation of 

polycystin and Wnt pathway components, or stunted cilia which cannot bend, may 

lead to polycystic kidney disease (PKD). Kif3B, a subunit of the kinesin 2 motor, and 

IFT20 have been linked to ciliary localisation of PC2 (Singla & Reiter, 2006; Wu et al, 

2006). 

1.6 Nonmotile Ciliopathies 

Nonmotile ciliopathies are a class of disorders in which disturbed primary ciliogenesis 

is accountable for the disease phenotypes. An extensive list has been compiled, so far 

including; Bardet-Biedl Syndrome (BBS), Nephronophthisis (NPHP), Senior-Loken 

Syndrome (SNLS), Alstrom Syndrome (ALMS), Meckel Syndrome (MKS), Joubert 

Syndrome (JBTS), Oral-Facial-Digital Type 1 (OFD 1), Jeune Asphyxiating Thoracic 

Dystrophy (JATD), Ellis Van Creveld (EVC), Leber Congenital Amaurosis (LCA) and both 

dominant and recessive Polycystic Kidney Diseases (PKD) (Tobin & Beales, 2009). 
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However, mixed phenotypes within, and overlapping characteristics between 

ciliopathies make diagnosis of separate syndromes ever more challenging. 

Studying ciliopathies has helped to reveal new insights into cell biology and human 

genetics, and may also help identify the mechanisms of common medical conditions. 

Obesity, for example, is a feature of many ciliopathies, but is also an ever increasing 

health concern in the general population. Understanding the underlying mechanisms 

that contribute to obesity in patients with ciliopathies may help in the development of 

patient-wide treatments. 

1.6.1 Bardet-Biedl Syndrome 

Bardet-Biedl Syndrome (BBS; OMIM 209900) has become the most prominently 

studied ciliopathy due to its lack of early lethality, while maintaining clear phenotypic 

affects. It also involves many organ systems, and was the first disease to be associated 

with primary cilia defects.  

It is an autosomal recessive disorder characterised by rod-cone dystrophy, polydactyly, 

obesity, cognitive impairment, hypogonadism and renal anomalies (Beales et al, 1999), 

phenotypes that are similar to those observed from disrupted Hh signalling. 

Neurological problems and developmental delay, polyuria/polydipsia, ataxia and poor 

coordination, mild spasticity, diabetes mellitus, dental anomalies, hepatic fibrosis and 

hypertension may also be present (Beales et al, 1999). Thus far, 15 genes have been 

identified which are mutated in BBS patient cohorts. These are BBS1-12, MKS1, MKS3 

(Meckel-Gruber syndrome) and CEP290, however the precise function of each of the 

proteins encoded by these genes is still being elucidated. Nachury et al. in 2007 

described a 438kDa BBSome complex containing seven BBS proteins; 1,2,4,5,7,8,9 

(Nachury et al, 2007). These are located in two pools; one at the centriolar satellites, 

and another within the cilium. Proteins within the BBSomes are required for correct 

targeting of post-golgi vesicles containing ciliary and signalling components. CEP290 

may be involved in BBSome formation (Kim et al, 2008b). 

BBS6, BBS10 and BBS12 resemble group II chaperonins, involved in the correct folding 

of proteins, such as those required for IFT/ciliogenesis (Tobin & Beales, 2007), while 

MKS1 & MKS3 are required for migration of the mother centriole to the apical 



  CHAPTER 1: INTRODUCTION 

53 

membrane (Tobin & Beales, 2009). BBS3 is an ARL (ADP-ribosylation factor-like) 

protein, which regulate microtubule dynamics and vesicle trafficking (Sen Gupta et al, 

2009), and BBS11 is an E3 ubiquitin ligase. 

BBS knockout mice have reduced ciliogenesis and/or cilium maintenance, and tend to 

be obese, have problems with olfaction and vision, and the males may be infertile due 

to aflagellate spermatozoa (Nachury et al, 2007; Sen Gupta et al, 2009). If BBS genes 

are knocked down in cultured cells, the Hh signalling pathway cannot be stimulated 

with administration of exogenous Shh ligand (Tobin et al, 2008; Tobin & Beales, 2009).  

1.7 Zebrafish 

Zebrafish (Danio rerio) are members of the teleost class of ray-finned fish, which 

originate from East India and Burma (McGonnell & Fowkes, 2006). They are a tropical 

freshwater fish, and a novel model organism for the study of endocrine development 

and disease (Hsu et al, 2006). Their popularity for study is growing due to a number of 

factors. Firstly they are vertebrates, so share many similarities with mammals, 

including having the capacity to form primary cilia, and secondly the sequencing of 

their genome is nearing completion, allowing models of genetic human diseases to be 

created. They have a short generation time; their body plan is established by 24hpf 

(hours post fertilisation), and most organs are visible by 5dpf (days post fertilisation). 

Sexual maturity is reached at about 3 months, and females can lay about 200 

synchronously developing eggs weekly. External fertilisation and transparency of the 

embryos make them easily accessible for developmental studies and the use of 

molecular markers. While many mutant lines are available, and they are a useful tool 

for reverse genetics, they also have the advantage of being able to be used to carry out 

large scale forward genetics and drugs screens (Löhr & Hammerschmidt, 2011). 

Compared to their murine counterparts, they are smaller, cheaper and easier to 

maintain. 

Most major aspects of the endocrine system and glands are conserved between 

teleosts and mammals, justifying their use as a model for future endocrine research 

(Liu, 2007; Löhr & Hammerschmidt, 2011; McGonnell & Fowkes, 2006). While the 
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tissue organisation may be different, the developmental processes of organogenesis 

and mechanisms controlling steroidogenesis and endocrine function are similar (Hsu et 

al, 2009; McGonnell & Fowkes, 2006). The interrenal is the zebrafish counterpart of 

the mammalian adrenal cortex, and sits at the level of the 3rd somite, with more tissue 

on the right side than the left (Chai et al, 2003; Hsu et al, 2003). Unlike the layered 

structural appearance of the adrenal gland, interrenal cells are interspersed with the 

medullary chromaffin cells, within the cephalic region of the teleost kidney (Grassi 

Milano et al, 1997; Nandi, 1962). However, as in higher vertebrates, the interrenal cells 

and developing pronephros are derived from intermediate mesoderm, and the 

medullary cells arise from the neural crest (An et al, 2002; Hsu et al, 2003; Reid et al, 

1995). These three cell types develop in parallel, but are governed by separate 

signalling events (Hsu et al, 2003). Interrenal cells do not contain lipid droplets, but 

have other typical ultrastructural characteristics of steroidogenic cells, for example 

they possess many mitochondria with tubulovesicular cristae (Hsu et al, 2003). 

1.7.1 Corticosteroids 

Cortisol is the main corticosteroid produced by zebrafish interrenal cells. They do not 

produce aldosterone due to the absence of aldosterone synthase (CYP11B2) (Bridgham 

et al, 2006). In the primate adrenal cortex, the zona reticularis produces precursor sex 

hormones (C19 steroids). Unlike in rodents, zebrafish interrenals do possess the CYP17 

gene, but it does not have 17,20 lyase activity in these cells, and so no C19 steroids are 

produced. Instead, the dual 17α-hydroxylase and 17,20 lyase activities of CYP17 are 

reserved for the gonadal cells (Zhou et al, 2007). Zebrafish chromaffin cells produce 

catecholamines in response to stress (Chai et al, 2003). 

In teleosts, POMC in the pituitary is cleaved to form ACTH, which acts at MC2R to 

stimulate cortisol production, a system which is conserved between species (To et al, 

2007). As in POMC null mice, in which adrenal hypoplasia occurs perinatally (Yaswen et 

al, 1999), MC2R mutant zebrafish only start to show signs of reduced steroidogenesis, 

and decreased interrenal tissue size/mass at the larval stage, at approximately 5dpf 

(To et al, 2007). Initial adrenal/interrenal development is therefore pituitary-

independent. 
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Due to the absence of aldosterone, cortisol in zebrafish has both energy metabolism 

and electrolyte homeostasis functions (Chester-Jones et al, 1987; Wendelaar Bonga, 

1997). It exerts its action by binding to either the mineralocorticoid or glucocorticoid 

receptors (MR and GR respectively). 11-deoxycorticosterone (DOC), the closest 

hormone resembling aldosterone that fish can synthesise, also binds and can activate 

the MR (Gilmour, 2005). However, recent experiments by McCormick et al. show that 

it does not appear to be responsible for salt water adaptation/osmoregulatory 

functions (McCormick et al, 2008), and rather cortisol does this. 

The mechanisms by which cortisol regulates hydromineral balance are not clearly 

understood, and vary between seawater and freshwater fish. In freshwater fish, such 

as the zebrafish, water is gained and ions are lost passively, due to the plasma osmotic 

concentration being higher than that of its surroundings (approximately 1/3rd osmotic 

concentration of seawater). To maintain this concentration, they produce large 

quantities of dilute urine, and actively take up sodium and chloride ions at the gills and 

in the kidneys. In these fish it is thought that cortisol acts via the MR to promote ion 

uptake at the gills. The opposite is the case in seawater fish, so they must drink water 

and actively pump out ions at the gills and in the kidneys. It is thought that cortisol acts 

via the GR in these fish to promote salt secretion (McCormick, 2001; McCormick et al, 

2008).  

1.7.2 Signalling pathways and transcription factors 

Ff1b and ff1d are the zebrafish co-orthologs of mammalian SF-1, a marker of 

steroidogenic capacity (Chai & Chan, 2000; Kuo et al, 2005; von Hofsten et al, 2005). 

Ff1b is the earliest molecular marker specifying interrenal cell lineages (Chai et al, 

2003), while ff1d specifies gonadal cells (von Hofsten et al, 2005). At 20-22hpf, ff1b is 

first detected in scattered bilateral cells within the pronephric field (Hsu et al, 2003; To 

et al, 2007). These proliferating non-steroidogenic cells then migrate medially, and 

coalesce so that by 24hpf two groups of cells are clearly visible either side of the 

notochord (Figure 1.7.1). It is at this point that expression of CYP11A1 and StAR are 

detected within a sub-population of the ff1b-positive cells (Chai et al, 2003; Hsu et al, 

2003; To et al, 2007). Fusion of the bilateral cell clusters occurs between 24 and 28hpf 
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(Hsu et al, 2003), and 3βHSD enzymatic activity begins between 28 and 29hpf (Chai et 

al, 2003; To et al, 2007). 

The use of morpholinos (MO) targeted to ff1b have revealed it is absolutely required 

for initiation of interrenal primordial differentiation and steroidogenesis (Liu, 2007). 

Zebrafish embryos injected with MO-ff1b lack interrenal tissue, and therefore CYP11A1 

and 3βHSD expression is lost, along with 3βHSD enzymatic activity (Chai et al, 2003). 

This is analogous to the phenotype described in SF-1 knockout mice (Luo et al, 1994; 

Luo et al, 1995; Sadovsky et al, 1995). If left to develop to larval stages, they develop 

fluid accumulation most pronounced in the abdomen, a clear sign of impaired 

osmoregulation, and a consequence of compromised interrenal steroidogenesis and 

diminished cortisol production (Chai et al, 2003). 

WT1, as in mammals, is essential for interrenal and kidney development in teleosts. It 

is expressed in the pronephric primordium at approximately 20hpf, from which 

interrenal cells arise, but is not present in the interrenal cells themselves (Chai et al, 

2003; Hsu et al, 2003). WT1 knockdown results in a smaller interrenal primordium with 

reduced ff1b, showing that WT1 is a determining factor for ff1b expression (Hsu et al, 

2003). In mice, WT1 is required for SF-1 activation (Val et al, 2007). 

Dax1 expression has also been seen in interrenal cells at 31hpf (Zhao et al, 2006). 

Zebrafish embryos injected with MO-Dax1 have reduced levels of CYP11A1 and StAR, 

but there is no change in ff1b expression, or the structural organisation of the 

interrenal tissue. If allowed to develop to larval stages, these fish have disturbed 

osmoregulation, indicating interrenal function is impaired. It is therefore hypothesised 

that zebrafish Dax1, although not required for structural development, may be 

required for the correct acquisition of some aspects of steroidogenic capacity (Ekker, 

2000). Dax1 mutations in humans are responsible for X-linked congenital adrenal 

hypoplasia (Muscatelli et al, 1994; Zhang et al, 1998). 
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Figure 1.7.1 – Schematic diagram depicting interrenal development in the zebrafish (Liu, 2007) 
Dorsal view of the zebrafish embryo at different developmental stages from initial specification of 
cells, to assembly of the interrenal organ. NC; notochord, 2S; second somite, 3S; third somite, IR; 
interrenal. 
 

1.7.3 Hh signalling and primary cilia 

Experiments by Bergeron et al. indicate that Hh signalling is required, at least in part, 

for correct interrenal development (Bergeron et al, 2008). Microarray and in situ 

hybridisation analysis showed that both ff1b and WT1 expression was reduced in 

mutant fish with inactive Hh signalling. Conversely, these transcription factors were 

increased in fish embryos injected with Shh mRNA. As previously mentioned, WT1 

knockdown also results in reduced ff1b expression, so perhaps this is only a secondary 

characteristic in these experiments. However, disruption of WT1 will have significant 

implications for both kidney and interrenal development. 

The requirement of cilia for Hh and Wnt signalling in non-mammalian vertebrates 

remains a controversial topic. It was suggested by Lunt et al. that Hh signalling in 

zebrafish does not require primary cilia (Lunt et al, 2009). However, another report by 

Huang and Schier attempts to clarify the situation (Huang & Schier, 2009). They 

suggest that upstream Hh pathway components share functional roles with their 

mammalian homologues, and are dependent upon cilia. However, the regulation and 

roles of the Gli transcriptional mediators has diverged. Gli1 is not fully dependent on 
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Hh signalling (Karlstrom et al, 2003; Ninkovic et al, 2008), and therefore is expressed 

even in the absence of cilia. Using a germline replacement technique (Ciruna et al, 

2002), they generate the MZovl (maternal zygotic oval) mutant. Oval is the gene that 

codes for IFT88/Polaris, and these mutants lack all cilia. The resultant phenotype is 

reduced Hh signalling, but in an expanded area, as shown by Ptch1 and Gli1 in situ 

hybridisation. Maximal Hh pathway activation is reduced, but low level signalling does 

not require cilia. Wnt signalling was not affected in these mutants, and therefore does 

not rely on cilia for its function. They conclude that there is a conserved requirement 

of cilia for ‘normal’ Hh signalling across the entire vertebrate lineage. 
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1.8 Aims of the project 

The key aim of this project is to use cell based and animal models to investigate the 

role of primary cilia and hedgehog signalling in adrenal function. The human adrenal 

carcinoma cell line H295R will be used for in vitro experiments aimed at advancing our 

understanding of the role of Sonic Hedgehog signalling in adrenal differentiation, and 

expanding on preliminary studies indicating that signalling through primary cilia may 

be involved in this process. The use of mouse and zebrafish models of ciliopathies will 

also be used to indicate the likely outcomes of cilia defects on adrenal function in vivo. 
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All chemicals were obtained from Sigma Aldrich unless otherwise stated. 

2.1 Cell culture 

The human adrenocortical carcinoma cell line H295R (CRL-2128) was obtained from Ian 

Mason, University of Edinburgh and grown at 37°C with 5% CO2 in 50% DMEM 

(Dulbecco’s Modified Eagles Medium), 50% Nutrient Mixture F12 Ham, supplemented 

with 2% Ultroser G (BioSepra), 1% ITS (containing 1mg/ml insulin, 0.55mg/ml 

transferrin and 0.5µg/ml sodium selenite) and 1% Pen/Strep (5000U/ml penicillin and 

5mg/ml streptomycin) (Cobb et al, 1996). The mouse fibroblast cell line Shh Light II 

(CRL-2795) was obtained from Phil Beachy, The Johns Hopkins University School of 

Medicine, USA. These cells were grown at 37°C with 10% CO2 in DMEM containing 

4mM L-glutamine, 4.5g/L glucose and 3.7g/L sodium bicarbonate, supplemented with 

10% FBS (heat-inactivated foetal bovine serum; Invitrogen), 0.4mg/ml G-418 and 

0.15mg/ml Zeocin (Invitrogen) (ATCC product information sheet for CRL-2795).  

2.1.1 Trypsinisation 

Media was removed from the culture flask or dish and cells washed with DPBS 

(Dulbecco’s Phosphate Buffered Saline). Trypsin-EDTA (0.5g/l trypsin, 0.2g/l 

Ethylenediaminetetraacetic acid; Invitrogen) was used to detach the cells for 2-5 

minutes, and then inactivated by adding media containing 10% FBS. The cell 

suspension was centrifuged at 160 x g (times gravity) for 5 minutes and the 

supernatant was removed. The cell pellet was then re-suspended in fresh media and 

cells were re-plated as required.  

2.1.2 Freezing down cells 

Cells were grown until confluent, then trypsinised and transferred to a 15ml falcon 

tube. They were centrifuged at 160 x g for 5 minutes and the media removed. The cell 

pellet was then re-suspended in a freezing solution containing 90% FBS and 10% DMSO 
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(Dimethyl Sulfoxide), and cooled at a maximum of 1oC/min to -80°C in 1ml cryotubes. 

The tubes were transferred to a liquid nitrogen tank for long term storage. 

2.1.3 Counting cells – Haemocytometer 

After trypsinising, a 50µl sample of cells was removed and injected into the channel of 

a slide displaying two haemocytometer grids (Figure 2.1.1). Cells were counted in four 

corners of one of the grids on the slide using the Leica DMIL light microscope with 10x 

objective. Each corner has an area of 1mm2 and a depth of 0.1mm, making the volume 

100nl. If more than 500 cells were counted, the cell stock was diluted and another 

sample taken. If there were fewer than 200 cells, all four corners of both grids were 

counted. The following calculations were then made; 

 

                       

                         
                       ⁄  

 

                          ⁄                    ⁄  

 

                 ⁄                                                        

                       

 

 

Figure 2.1.1 – Haemocytometer Grid, adapted with permission from (Wheeler, 2010) 
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2.2 Differentiation 

H295R cells were seeded into 6- or 12-well plates and grown until 60-70% confluent. 

They were then differentiated over a 72-96 hour period, with fresh media containing 

10µM Angiotensin II (AngII) or Forskolin (Fsk) added at 0, 24, 48 and 72 hour time 

points. At the end of the differentiation period, cells were harvested to make RNA, an 

ELISA assay performed, or if grown on cover slips assayed for 3βHSD content. Some 

cells were also treated with 0.35µg/ml ShhN (R&D systems) at the same time as AngII 

or Fsk treatments. Cells transfected with siRNA were differentiated for 40hrs, with 

10µM AngII or Fsk given at 0 and 24 hours. 

AngII increases intracellular calcium levels, stimulating PKC signalling that 

preferentially induces CYP11B2 expression, and therefore aldosterone production (Bird 

et al, 1993; Cobb et al, 1996). Fsk activates adenylate cyclase to increase cAMP levels, 

thus activating PKA, and preferentially inducing CYP11B1 expression and cortisol 

production (Denner et al, 1996; Oskarsson et al, 2006).  

2.3 RNA Extraction 

Cells grown in 6- or 12-well plates were washed with cold PBS (Phosphate Buffered 

Saline containing 0.01M phosphate buffer, 0.0027M potassium chloride and 0.137M 

sodium chloride, pH7.4), and lysed directly in the wells by adding 350µl buffer RLT 

from the Qiagen RNeasy mini kit, containing β-mercaptoethanol. Lysis was aided by 

using a cell scraper, and then the contents of the wells were transferred to 1.5ml 

microfuge tubes. RNA was extracted from all samples as described in the Qiagen 

RNeasy mini kit. The RNA concentration was determined by measuring the optical 

density of the samples at 260nm using the Nanodrop ND-1000 spectrophotometer. 

2.3.1 DNase treatment 

2µg RNA, 5µl 10x DNase Turbo buffer (Ambion), 0.5µl RNase inhibitor (40u/µl; 

Promega) and 1µl Deoxyribonuclease I (≥ 10,000u/mg) were placed in a 1.5ml 

microfuge tube, and RNase free water (Qiagen) added to a final volume of 50µl. 
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Samples were then briefly vortexed and centrifuged, and incubated at 37°C for 15 

minutes. DNase treatment cleaves and fragments any genomic DNA contamination 

within the samples. The RNase inhibitor prevents RNases degrading the RNA during 

the treatment. 

2.3.2 Phenol extraction 

An amount of phenol (pH4.7) equal to the volume of each sample was added to the 

microfuge tubes. They were then vortexed for 30 seconds, and centrifuged for 1 

minute at >10,000 x g. The upper aqueous layer was removed into a new 1.5ml 

microfuge tube, and the organic and inter- phases discarded. Phenol is an organic 

solvent acid used to denature and remove protein contaminants from the RNA. With a 

pH of 4.7 is will also denature contaminating genomic DNA, so only RNA is partitioned 

into the aqueous phase. 

2.3.3 RNA precipitation 

To precipitate RNA from the residual phenol, 3M sodium acetate buffer - pH5.3 (BDH 

Chemicals) was added at an amount equal to 1/10th of the volume of RNA, along with 

2µl glycogen (5mg/ml; Ambion) and 125µl ethanol (2 ½ times the volume of RNA). The 

samples were then incubated at -20°C for 1 hour or -80°C for 20-30 minutes. After 

leaving for the allotted time the samples were centrifuged for 10 minutes at 4°C and 

>10,000 x g to pellet the precipitate. The supernatant was then aspirated and the 

pellet washed with 70% ethanol to dissolve the sodium acetate. Samples were 

centrifuged again at 4°C and >10,000 x g for 5 minutes, and the ethanol aspirated. 

2.4 First strand cDNA synthesis 

To each 2µg pellet of RNA, 12.5µl RNase free water and 0.25µl random primers 

(500µg/ml; Promega) were added. They were vortexed to dissolve the RNA, and 

centrifuged briefly before being heated to 80°C for 10 minutes to denature the 

hydrogen bonds within the single stands of RNA. Samples were then cooled on ice for 
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1-2 minutes to allow the random primers to anneal within the secondary structure of 

the RNA, and given a quick centrifuge to ensure pooling of any condensation.  

At this point, 1µl was removed from each sample and placed in separate PCR tubes for 

use as negative reverse transcription (RT) controls. A master mix containing 4µl 5x 

MMLV RT-buffer (Promega), 2µl DTT (Dithiothreitol 0.1M), 1µl dNTPs (deoxynucleoside 

triphosphates 10mM A+C+G+T; Promega), 0.5µl RNase inhibitor (40u/µl) and 1µl 

MMLV RT-enzyme (200u/µl; Promega) per sample was created, and 8.5µl added to 

each tube (total volume now 20µl). Samples were then vortexed and briefly 

centrifuged, prior to being incubated at 37°C for 1 hour to allow reverse transcription 

to occur. After incubation 20µl of distilled water was used to dilute each sample 1 in 2. 

cDNA was stored at -20°C. 

2.5 Polymerase chain reaction 

Each 10µl reaction contained 1µl cDNA, 0.5µl dNTPs (10mM A+C+G+T), 1µl primers 

(10µM Forward+Reverse), 2µl 10x PCR buffer, 15.25µl H2O and 0.25µl Taq (Thermus 

aquaticus) DNA polymerase (5u/µl).  
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Standard Program: 

Cycles  Temperature Time   

1  94°C 5 minutes 

 

Strand separation - denaturation of hydrogen bonds within the 

double stranded cDNA 

35 

 

94°C 30 seconds 

58°C 30 seconds  

Annealing - allows the primers to bind to a section of the single 

stands of DNA for which they have been specifically designed. 

This temperature may vary slightly depending on the Tm 

(melting temperature) of the primers 

72°C 30 seconds  

Extension - Taq DNA polymerase binds to the primers and uses 

dNTPs as building blocks to enzymatically synthesise a 

complementary strand of DNA. The newly formed cDNA 

contains one strand of parental DNA, and one newly 

synthesised strand. This process is repeated 25-35 times to 

amplify the piece of DNA between the forward and reverse 

primer sequences 

1  72°C 7 minutes  Further elongation 

1  4°C ∞  Preservation 

      

2.5.1 Gel electrophoresis 

After cDNA amplification, samples were combined with 5µl of loading dye containing 

bromophenol blue (Fermentas) and loaded onto a 1-2% agarose gel containing 

0.5µg/ml ethidium bromide, within an electrophoresis chamber filled with TAE buffer 

(Tris-acetate-ethylenediamenetetraacetic acid buffer; National Diagnostics). The 

loading dye adds weight to the cDNA to contain it within the wells of the gel. The 

percentage gel depends on the size of cDNA that has been amplified, as higher 

molecular weights are separated more easily on lower percentage gels. An electrical 

current was passed through the tank, and the cDNA visualised in the gel using a UVP 

UV transilluminator. 
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2.5.2 Primers, probes and siRNA sequences 

Table 2.5.1 – Sequences 

Description Tm  

(˚C) 

Annealing 

Temperature 

(˚C) 

Sequence 

5’ – 3’ 

Product 

Length 

(bps) 

18S Forward + Reverse  60 Eurogentec RT-CKFT-18S 121 

GAPDH Forward 62.5 58-60 TGCACCACCAACTGCTTAG 177 

GAPDH Reverse 63.0 GGATGCAGGGATGATGTTC 

Reverse complement  GAACATCATCCCTGCATCC 

PPIA Forward 60.0 58-60 TTCATCTGCACTGCCAAGAC 158 

PPIA Reverse 60.0 TCGAGTTGTCCACAGTCAGC 

Reverse complement  GCTGACTGTGGACAACTCGA 

Shh Forward 64.9 58-60 

 

 

ACATCACCACGTCTGACCG 218 

 

 

Shh Reverse 65.1 GCTCAGGTCCTTCACCAGC 

Reverse complement  GCTGGTGAAGGACCTGAGC 

Ptch1 Forward 63.8 58-60 TGATGTTTTTCTTCTGGCCC 209 

Ptch1 Reverse 64.0 ACACCACTACTACCGCTGCC 

Reverse complement  GGCAGCGGTAGTAGTGGTGT 

Ptch2 Forward 63.6 58-60 AAAATGGAATGATTGAGCGG 217 

Ptch2 Reverse 64.0 GCCTTGTCTAGCAGCTCCC 

Reverse complement  GGGAGCTGCTAGACAAGGC 

Smo Forward 63.8 58-60 CAAAGCGGATCAAGAAGAGC 240 

Smo Reverse 63.7 TGACAGAAATATCCTGGGGC 

Reverse complement  GCCCCAGGATATTTCTGTCA 

Gli1 Forward 63.7 58-60 

 

CTACAGTGGAGCCCAAGAGG 209 

 Gli1 Reverse 64.2 GGAGAGGTCTTCAGTGCTGC 

Reverse complement  GCAGCACTGAAGACCTCTCC 

Gli2 Forward 63.6 58-60 CAAGGAAGATCTGGACAGGG 205 

Gli2 Reverse 64.0 CTTGAAGGGCTTCTGCTCC 

Reverse complement  GGAGCAGAAGCCCTTCAAG 

Gli3 Forward 63.7 58-60 TATGCAGCCACAGAATGTCC 216 

Gli3 Reverse 64.2 AAGGCAGGGAAAAGATGAGG 

Reverse complement  CCTCATCTTTTCCCTGCCTT 

FoxD1 Forward 59.8 58-60 TATCGCGCTCATCACTATGG 217 

FoxD1 Reverse 60.9 GTCCAGCGTCCAGTAGTTGC 
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Reverse Complement  GCAACTACTGGACGCTGGAC 

NR4A1 Forward 66.4 58-60 ATACACCCGTGACCTCAACCA 151 

NR4A1 Reverse 67.3 TTCTGCACTGTGCGCTTGAA 

Reverse complement  TTCAAGCGCACAGTGCAGAA 

(Bassett et al, 2004a; Bassett et al, 2004b) 

IFT88 Forward 63.9 58-60 GAGAGGCTCTGCATTTGACC 197 

IFT88 Reverse 64.1 TTCTTCCTGCATCTTTTGCC 

Reverse complement  GGCAAAAGATGCAGGAAGAA 

BBS4 Forward 60.0 60 ACTTTGATGTTGCCCTCACC 143 

BBS4 Reverse 59.9 GTAGTTGGCTCGTTTCAGGC 

Reverse complement  GCCTGAAACGAGCCAACTAC 

BBS6 Forward 60.2 60 CCTCAGGTAGGCTGAAGCAG 126 

BBS6 Reverse 59.8 TGGAGGCTGTCAGGATCTTT 

Reverse complement  AAAGATCCTGACAGCCTCCA 

AT1 Forward 77.8 58-60 GGCCCTCGGCGGGACGTG Variable 

depending 

on splicing 
AT1 Reverse 59.9 ACTGTATAAAGTAGGAATCAT 

Reverse complement  ATGATTCCTACTTTATACAGT 

(Warnecke et al, 1999) 

18S Forward + Reverse 

(Taqman) 

 60 Eurogentec RT-CKFT-18S 121 

18S Taqman probe   Eurogentec RT-CKFT-18S 

FAM-TAMRA 

 

CYP11B1/B2 Forward 

(Taqman) 

66.5 60 GGCAGAGGCAGAGATGCTG CYP11B1 

72 

CYP11B2 

71 

 

 

 

CYP11B1 Reverse 

(Taqman) 

66.3 TCTTGGGTTAGTGTCTCCACCTG 

Reverse complement  CAGGTGGAGACACTAACCCAAGA 

CYP11B2 Reverse 

(Taqman) 

65.5 CTTGAGTTAGTGTCTCCACCAGGA 

Reverse complement  TCCTGGTGGAGACACTAACTCAAG 

CYP11B1 Taqman probe 75.3 TGCTGCACCATGTGCTGAAACACCT 

FAM-TAMRA 

CYP11B2 Taqman probe 72.0 CTGCACCACGTGCTGAAGCACT 

FAM-TAMRA 

(Fallo et al, 2002) 
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Negative control siRNA  Applied Biosystems AM4611  

siIFT88 Sense  GGCAGUUACUAGACCUAUAtt  

Target sequence GGCAGTTACTAGACCTATAGC 

siIFT88 Antisense UAUAGGUCUAGUAACUGCCgt 

Target sequence GCTATAGGTCTAGTAACTGCC 

siBBS4 Sense  CUCAAUUUCCUGUAUCUACtt  

Target sequence CTCAATTTCCTGTATCTAC 

siBBS4 Antisense  GUAGAUACAGGAAAUUGAGtt  

Target sequence GTAGATACAGGAAATTGAG 

siBBS6 Sense  GAGUGAACCACUGACAACUtt  

Target sequence GAGTGAACCACTGACAACT 

siBBS6 Antisense  AGUUGUCAGUGGUUCACUCtt  

Target sequence AGTTGTCAGTGGTTCACTC 

 

2.5.3 Gel purification 

After cutting out a band of cDNA from the agarose gel, a volume of 6M NaI (sodium 

iodide) three times that of the gel was added, and heated to 55°C for 5 minutes to 

dissolve the agarose. 10µl of glass milk (silica in suspension in 3M NaI) was then used 

to absorb the nucleic acid for 5 minutes at room temperature, and a pellet of cDNA 

collected by centrifugation for 15 seconds at >10,000 x g. The supernatant was 

aspirated, and the pellet washed twice with New Wash containing 50mM NaCl (sodium 

chloride), 10mM TrisHCl pH7.5 (Tris Base; Fisher BioReagents, HCl; BDH chemicals), 

50% ethanol and 7.5mM EDTA to remove impurities. The pellet was then re-suspended 

in 10µl distilled H2O, heated to 55°C for 2 minutes, and centrifuged for 1 minute at 

>10,000 x g, to elute the cDNA from the silica (Brown, 1997). The supernatant was 

transferred to a new tube, and either sent for sequencing, or made up to 50µl with 

distilled H2O for use in real-time qPCR standard curves.  
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2.6 Real-time qPCR  

A DNA template is replicated, as in end-point PCR, but then quantified in real time by 

the detection of fluorescence. The amount of fluorescence recorded is proportional to 

the amount of DNA amplified, so DNA copy numbers, and therefore mRNA levels can 

be determined. The Ct value is the threshold cycle value, and the point at which 

amplification is first detectable above background fluorescence. A lower Ct indicates a 

greater amount of amplification target in the starting DNA. The Ct is measured during 

the exponential phase of replication, before a plateaux is reached, and is best recorded 

just as the fluorescent threshold has been met. A standard curve of known DNA 

concentrations for each gene of interest (GOI) is used to calculate the DNA copy 

numbers from the Ct values. The quantity of a reference RNA, such as GAPDH or 18S 

ribosomal RNA (Ginzinger, 2002), is also determined to account for differences in the 

amount of cDNA loaded. A sample containing H2O instead of cDNA, termed the no 

template control (NTC), is measured to distinguish between actual gene expression 

and background. The Ct of the NTC must either be undetectable, or much higher than 

that of the GOI. 

The following criteria were used for results inclusion;  

 

                                    

                       

             

 

2.6.1 SYBRGREEN I  

SYBRGREEN is a DNA-binding dye that will fluoresce with light excitation when bound to 

double stranded DNA. This method of generating a fluorescent signal is cheap and easy 

to use, as the same dye can be used for all genes. However, this does mean it lacks in 

specificity, so the quantity of only one gene per well can be measured. Amplification in 

the NTC is also often seen, as it cannot distinguish between real template and artefact 

bands, such as those created by primer-dimers. 
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Each 10µl reaction contained 2µl cDNA template, 5µl 2x SYBRGREEN I master mix 

(KapaBiosystems), 0.2µl low ROX (KapaBiosystems), 0.5µl primers (10µM 

Forward+Reverse) and 2.3µl sterile H2O. The 2x SYBRGREEN I master mix contains the 

SYBRGREEN I fluorescent dye, MgCl2, dNTPs, stabilisers and DNA polymerase. ROX is used 

as a reference dye for evaporation during cycling. See Table 2.5.1 for list of primers. 

Using the Stratagene MX4000 real-time thermocycler a quantitative cycle program was 

selected, with results displayed as DNA copy numbers. Comparisons of the data can be 

made once the GOI values have been divided by the values obtained for the reference 

gene. 

 

Quantitative fast cycle program: 

Cycles  Temperature Time   

1  95°C 3 minutes 

 

Strand separation 

35 

 

95°C 3 seconds 

60°C 30 seconds 

 

Annealing and extension 

72°C 1 second 

1  95°C 1 minute 

 

Dissociation melt 1  60°C 30 seconds 

1  95°C 30 seconds 

      

The dissociation melt separates double stranded DNA back to its single stranded form. 

As different genes have different melting temperatures, the quality of the 

amplification product can be assessed. All wells amplified with the same primers 

should contain the same cDNA, with only one peak detected. Primer-dimers, or 

amplification of more than one DNA template may result in a second smaller peak.  
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2.6.2 Taqman  

The Taqman method for generating a fluorescent signal requires specifically designed 

dual-labelled oligonucleotide probes, with a 5’ fluorophore such as FAM (6-

carboxyfluorescein), in close proximity to a 3’ quencher such as TAMRA 

(tetramethylrhodamine). This probe will bind a region in the 3’-5’ strand of the cDNA 

targeted for amplification, without emitting a fluorescent signal due to FRET 

(fluorescence resonance energy transfer) by the quencher. As this strand is amplified 

by extension of the primers, the probe is degraded by the exonuclease activity of Taq 

polymerase, allowing the fluorophore to move away from the quencher, and a 

fluorescent signal to be detected. 

By specifically designing probes that anneal to the region of DNA for amplification, 

fluorescence is directly correlated to the amount of real template, without the 

detection of artefact bands. This means there should be no amplification in the NTC, 

and there is little need to perform a dissociation melt. Multiple probes, and 

corresponding primers, can also be added to the same well to record the expression of 

several genes, provided they utilise different fluorophores and quenchers. However, 

with increased specificity comes an increase in cost, as new probes must be created for 

every gene template.  

Each 10µl reaction contained 2µl cDNA template, 5µl 2x Taqman Universal PCR master 

mix (Applied Biosystems), 0.5µl primers (10µM Forward+Reverse), 0.2µl Taqman probe 

(10µM) and 2.3µl sterile H2O. The Taqman master mix contains AmpliTaq Gold DNA 

polymerase, dNTPs, a passive reference dye, buffer components and AmpErase UNG to 

prevent reamplification of carryover PCR products. See Table 2.5.1 for a list of primers 

and probes. 

Plates were run by the Queen Mary Genome Centre, using the ABI 7900HT Fast Real-

time PCR instrument, and a quantitative cycle program. 
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Quantitative cycle program: 

Cycles  Temperature Time   

1  50°C 2 minutes  UNG activation 

1  95°C 10 minutes 
 Strand separation, AmpliTaq Gold DNA polymerase activation 

and UNG inactivation 

40 

 

95°C 15 seconds 

 

Strand separation, annealing and extension 

60°C 1 minute 

1  4°C ∞  Preservation 

      

2.7 Transfections 

Lipofectamine 2000 (Invitrogen) was diluted with optimem I (Gibco), and left to stand 

at room temperature for 5 minutes. The DNA or RNAi was also diluted with optimem I 

then combined with the lipofectamine, vortexed, and left at room temperature for 20 

minutes. Cells were then given fresh media and 100µl of the lipofectamine/DNA or 

lipofectamine/RNAi mix. After 8-24 hours the media was changed again. Table 2.7.1 

shows the quantities used for transfection. 

Table 2.7.1 – Quantities used for transfection, adapted from Invitrogen Lipofectamine 2000 data sheet 
Cell 
type 

Culture 
vessel 

Surface 
area per 

well 

Shared reagents DNA transfection RNAi transfection 

Volume of 
plating 

medium 

Volume of 
dilution 
medium 

DNA Lipofectamine 
2000 

RNA Lipofectamine 
2000 

H295R 6-well 10cm2 1ml 2 x 50µl 6µg 10µl 100nM 7µl 

H295R 12-well 4cm2 500µl 2 x 50µl 3µg 5µl 100nM 4µl 

 

2.7.1 siRNA transfections 

H295R cells were seeded into 12-well plates and grown until 40-60% confluent. They 

were then transfected with 100nM siRNA, or a negative control (small interfering RNA; 

Applied Biosystems), using 4µl Lipofectamine 2000. After a minimum of 8 hours the 

media was changed, and some cells differentiated with the addition of 10µM 
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angiotensin II or forskolin at 8 and 32 hours after transfection (0 and 24 hours into the 

differentiation period, see section 2.2). Cells transfected with siRNA were grown for a 

maximum of 48 hours before being harvested to make RNA or for protein analysis, or if 

grown on cover slips processed for immunofluorescence. 

2.7.2 Dual-Luciferase reporter transfections 

H295R cells were seeded into 6- or 12-well plates and grown until approximately 70% 

confluent. They were then co-transfected with a firefly luciferase “experimental” 

reporter, and the pRL-CMV Renilla luciferase “control” reporter (Promega). After 48 

hours cells were harvested and a dual-luciferase reporter assay conducted. The 

“control” reporter is used to measure baseline luciferase activity inside the cells that 

should not vary with expression of the transcription factor of interest. The 

“experimental” reporter contains a promoter with binding sites for the transcription 

factor of interest, upstream of the firefly luciferase gene (Promega Technical Manual 

TM040). 

2.8 Dual-Luciferase reporter assay 

Cells co-transfected with a firefly luciferase “experimental” reporter, and the pRL-CMV 

Renilla luciferase “control” reporter (Promega) were washed twice in ice cold PBS. 

They were lysed by the addition of 120µl 1x passive lysis buffer (Promega) and the use 

of a cell scraper. Cell lysates were collected in 1.5ml microfuge tubes and incubated on 

ice for 20 minutes. After pelleting the cell debris by centrifuging for 1 minute at 

>10,000 x g, the supernatant was removed and 30µl transferred to a white walled 96-

well plate (Greiner Bio-One). The Promega Dual-Luciferase Reporter Assay System Kit, 

and BMG Labtech Omega luminometer were used to measure luciferase activities. 

Briefly, 80µl of Luciferase Assay Reagent II (LARII) was injected into the well containing 

the lysate. The firefly luciferase produced by the “experimental” reporter gene 

catalyses the conversion of beetle luciferin within LARII to oxyluciferin releasing a 

luminescent signal. 80µl of Stop & Glo Reagent was then injected into the well, 
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quenching the firefly luminescence reaction, and simultaneously activating the Renilla 

luciferase reaction, by providing the substrate coelenterazine. Coelenterazine is 

converted by the Renilla luciferase produced by the “control” reporter into 

coelenteramide and releases a luminescent signal. Both luminescent signals were 

measured, and the final luciferase values calculated by dividing the firefly luciferase 

readings by the Renilla luciferase values (Promega Technical Manual TM040). 

2.9 Shh Light II luciferase reporter assay 

Shh Light II cells were seeded into 12-well plates. After reaching confluence they were 

grown for a further 24 hours to achieve full contact inhibition of growth. They were 

then treated with 8µl/ml DMSO, 2µM Purmorphamine (Calbiochem), 0.35µg/ml ShhN 

(R&D Systems), 200nM SAG (Enzo Life Sciences), 2µM Cyclopamine (LC Laboratories), 

2µM Tomatidine, 20nM Vismodegib (LC Laboratories), 2µM Sant1 (Tocris Bioscience), 

10µM Forskolin, or 80µg/ml Cycloheximide (Calbiochem) in DMEM supplemented with 

0.5% FBS and 5mM HEPES buffer (pH 7.4). After 48 hours the cells were washed with 

ice cold PBS, and lysed using 120µl of 1x passive lysis buffer (Promega) and a cell 

scraper. The contents of the wells was then transferred to 1.5ml microfuge tubes and 

incubated on ice for 20 minutes. The tubes were centrifuged for 1 minute at >10,000 x 

g to pellet the cell debris, and 30µl of the supernatant loaded into a white walled 96-

well plate. (Greiner Bio-One). As in the dual-luciferase reporter assay system, the 

Promega kit and BMG Labtech Omega luminometer were used to measure luciferase 

activities. Shh Light II cells are stably transfected with the GLI-responsive firefly 

luciferase “experimental” reporter (Sasaki et al, 1997), and pRL-TK constitutive Renilla 

luciferase “control” reporter (Promega) (ATCC product information sheet for CRL-

2795). 
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2.10  Enzyme-Linked Immunosorbent Assay (ELISA) 

2.10.1 Aldosterone and Cortisol 

H295R cells were seeded into 12-well plates and differentiated for 96 hours with AngII 

or Fsk (see section 2.2). The media was then removed and centrifuged for 15 seconds 

at >10,000 x g to pellet any debris, and 25μl of supernatant was added to each well of 

a Demeditec ELISA microtiter plate. Plates were pre-coated with either an anti-

aldosterone or an anti-cortisol antibody. A standard curve containing known quantities 

of aldosterone or cortisol was also plated. 150μl of enzyme conjugate containing 

horseradish peroxidase was then added to each well and mixed for 10 seconds before 

being incubated at room temperature. After 60-90 minutes the contents of the wells 

were removed, and the wells washed five times with wash solution. 200μl of substrate 

solution containing tetramethylbenzidine was added to each well and incubated for 

15-20 minutes at room temperature. The enzyme reaction was stopped by adding 

100μl of stop solution, and the absorbance measured at 450nm using the Perkin Elmer 

Wallac Victor2 1420 Microplate reader. Aldosterone and cortisol concentrations were 

determined from the absorbance values generated by the standard curve. 

2.10.2 Corticosterone 

25μl of mouse serum was added to each well of an Abnova ELISA microplate, pre-

coated with an anti-corticosterone antibody. A standard curve containing known 

quantities of corticosterone was also plated. 25μl of biotinylated corticosterone was 

then added to each well and incubated at room temperature for 2 hours. The contents 

of the wells were removed, and the wells washed five times with wash buffer. 50μl of 

streptavidin-peroxidase conjugate was then added to each well. After 30 minutes 

incubation at room temperature, as before, the wells were washed five times with 

wash buffer. 50μl of chromogen substrate containing tetramethylbenzidine was then 

added to the wells and incubated for 20 minutes at room temperature. The enzyme 

reaction was stopped by adding 50μl of stop solution, and the absorbance measured at 

450nm using the Perkin Elmer Wallac Victor2 1420 Microplate reader. The 
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concentration of corticosterone was determined from the absorbance values 

generated by the standard curve. 

2.11  Cytotoxicity assays 

2.11.1 Lactate dehydrogenase (LDH)  

H295R cells were seeded into 96-well plates at a concentration of approximately 4x104 

cells per well, and left to attach overnight. They were then treated for 72 hours with 

8µl/ml DMSO, 2µM Purmorphamine (Calbiochem), 0.35µg/ml ShhN (R&D Systems), 

200nM SAG (Enzo Life Sciences), 2µM Cyclopamine (LC Laboratories), 2µM Tomatidine, 

20nM Vismodegib (LC Laboratories), 2µM Sant1 (Tocris Bioscience), 10µM Forskolin, or 

80µg/ml Cycloheximide (Calbiochem). The Promega CytoTox 96 Non-Radioactive 

Cytotoxicity Assay Kit was used to measure LDH levels. To record an average maximum 

LDH level, 10µl of lysis solution was added to six untreated wells of the 96-well plate 

containing cells to be analysed, and incubated at 37°C with 5% CO2 for 45 minutes. The 

media was then removed from all wells, centrifuged for 15 seconds at 4°C and >10,000 

x g to pellet any debris, and 50µl of supernatant added to each well of a new 96-well 

plate. 50µl of fresh media was also added to three of the wells to obtain an average 

background reading. 50µl of substrate mix was added to each sample, the plate gently 

mixed, and left for 30 minutes at room temperature protected from light. After 30 

minutes 50µl of stop solution was added to each sample, the plate gently mixed, and 

the absorbance measured at 490nm using the Perkin Elmer Wallac Victor2 1420 

Microplate reader. The average background absorbance value was subtracted from 

each of the other absorbencies recorded, and the maximum LDH values adjusted for 

the dilution created by adding the lysis solution. The percentages of cytotoxic cells 

were then calculated using the following equation; 
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2.11.2 Fluorescence-activated cell sorting (FACS) 

H295R cells were seeded into T-25 flasks at a concentration of approximately 0.7x106 

cells per flask, and left to attach overnight. As above, they were treated with 8µl/ml 

DMSO, 2µM Purmorphamine (Calbiochem), 0.35µg/ml ShhN (R&D Systems), 200nM 

SAG (Enzo Life Sciences), 2µM Cyclopamine (LC Laboratories), 2µM Tomatidine, 20nM 

Vismodegib (LC Laboratories), 2µM Sant1 (Tocris Bioscience), 10µM Forskolin, or 

80µg/ml Cycloheximide (Calbiochem). After 72 hours, the media was removed and 

collected in 50ml falcon tubes, along with any PBS used to wash the cells. The cells 

were then trypsinised and added to the previously collected media. The tubes were 

centrifuged for 5 minutes at 160 x g, and the cell pellet washed with PBS. The cells 

were fixed in 70% ethanol at 4°C overnight. After fixation, the ethanol was removed by 

centrifuging the cells for 5 minutes at 690 x g, and washing them with PBS. The cell 

pellet was then re-suspended at a concentration of 1-2 x 106 cells per ml in a PI/RNase 

mixture containing 50µg/ml propidium iodide, 100µg/ml RNase A and 3.8mM sodium 

citrate in sterile PBS, and incubated overnight at 4°C, protected from light. The 

samples were transferred to FACS tubes and analysed by flow cytometry, using the 

LSRII flow cytometer with FACSDiva software (v 5.1.03; BD Biosciences). 50,000 events 

were recorded per sample, with gating on pulse width and area to exclude clumps and 

doublets. Propidium iodide excitation occurs at 488nm, with emission collected in the 

610-620 channel. 

2.12 Protein Analysis 

2.12.1 Western Blot 

Cells were washed with cold PBS, and lysed by the addition of 120µl SDS PAGE (Sodium 

Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis) buffer containing 4% SDS, 20% 

glycerol, 10% 2-mercaptoethanol, 0.004% bromophenol blue, 0.125 M Tris HCl – pH6.8 

and protease inhibitors, followed by scraping. The lysates were transferred to 1.5ml 

microfuge tubes and heated to 95°C for 2-5 minutes. They were then centrifuged 

briefly, and 15µl of each sample was loaded on an Invitrogen NuPAGE Bis-Tris gel. The 
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gel was run at 150V for approximately 1 hour 15 minutes using MOPS running buffer 

containing SDS (Invitrogen). 

Semi-dry transfer was carried out at 15V for 45 minutes using a nitrocellulose transfer 

membrane (Whatman), and transfer buffer containing 25mM Tris base, 192mM glycine 

and 20% methanol. The membrane was blocked with 5% milk powder for 1 hour, then 

incubated overnight with primary antibodies for β-tubulin and IFT88 or BBS4 (Table 

2.12.1) . After washing in PBS-tween 0.1%, the secondary antibodies were added for 45 

minutes. 

The membrane was scanned using the Licor Odyssey infrared scanner. This system 

involves direct scanning of the membrane by two independent lasers, allowing 

detection of the infrared fluorescence emitted by two different secondary antibodies. 

The two colour detection system uses a 700nm and an 800nm channel, pseudo-

coloured with red and green respectively. Images of the blots were quantified using 

the Licor Odyssey imaging systems software. 

Table 2.12.1 – Antibodies used for western blotting 

Ab Antigen/Fluorophore Species Company Dilution 

1° β-tubulin Mouse monoclonal Sigma Aldrich T8328 1 in 5000 

2° IRDye 680CW Donkey anti-mouse Licor 926-32222 1 in 10,000 

1° IFT88 Rabbit polyclonal ProteinTech Group 13967-1-AP 1 in 1500 

2° IRDye 800CW Donkey anti-rabbit Licor 926-32214 1 in 10,000 

1° BBS4 Rabbit polyclonal Phil Beales, UCL London 1 in 1000 

2° IRDye 800CW Donkey anti-rabbit Licor 926-32214 1 in 10,000 

 

2.13 Cytology 

2.13.1 Fixation  

Cells grown on cover slips were washed twice with ice cold PBS, and fixed for 15 

minutes in 4% PFA (paraformaldehyde; BDH Chemicals) on ice. PFA holds the cells 



CHAPTER 2: MATERIALS AND METHODS 

80 

architecture in place by creating chemical cross-links that join proteins via their amino 

side chains. 

2.13.2 Immunofluorescence 

After fixation, cells were blocked for 1 hour with 10% normal donkey or goat serum in 

PBS-triton-Na azide containing 0.1% triton X-100 and 0.2% sodium azide (Fluka 

BioChemika), then incubated overnight at room temperature with primary antibodies 

(Table 2.13.1). Residual unbound primary antibodies were removed by washing the 

cells three times in PBS with 0.1% triton X-100 (PBS-triton) for 10 minutes each. 

Incubation with secondary antibodies was carried out for 3 hours at room 

temperature, before repeating the washes in PBS-triton to remove any unbound 

secondary antibodies. One drop of DAPI (4’,6-diamidino-2-phenylindole, 1 in 5000) was 

then added to each cover slip for 1 minute before being washed away. Cover slips 

were transferred onto microscope slides, and secured with fluorescent mounting 

media (Dako). Slides were visualised, and images taken using the Zeiss LSM510 

inverted laser scanning confocal microscope with 63x objective, and the ZEN 2008 

Light edition software. 

Table 2.13.1 – Antibodies used for immunofluorescence 

Ab Antigen/Fluorophore Species Company Dilution 

1° Shh Goat polyclonal Santa Cruz Shh (N-19): sc-1194 1 in 200 

2° CY3-Red Donkey anti-goat  Jackson Immunoresearch  
705-165-003 

1 in 1000 

1° Pericentrin Rabbit polyclonal Abcam ab4448-100 1 in 1000 

2° AF568-Red Goat anti-rabbit Invitrogen A11011 1 in 1000 

1° Acetylated α-tubulin Mouse monoclonal Sigma Aldrich T6793 1 in 1000 

2° AF488-Green Goat anti-mouse Invitrogen A11029 1 in 1000 

 

2.13.3 Counting and measuring cilia 

Cilia were visualised by immunofluorescence, and z-stacks taken using the Zeiss 

LSM510 laser scanning confocal microscope with 63x objective, and the ZEN 2008 Light 

edition software. Z-stacks involve the acquisition of multiple images through the visual 
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field, which are then combined in the processing tools of the Zen program to form a 

maximum intensity projection. Cilia were counted blind, from equally sized areas in 

each z-stack. The length of cilia was determined using the Zen program processing 

tools. Cells requiring serum starvation were grown in 100% optimum I (Gibco) for 24-

60 hours prior to fixation. 

2.13.4 3βHSD Assay 

Cells grown on cover slips were washed in DPBS, and the media changed to that 

without phenol red. Solutions one and two (see below, made fresh each time) were 

added to a final concentration of 1x, along with 1% DMSO. The plate was gently 

rocked, and left for 30-90 minutes, until some of the cells turned blue/purple. They 

were then washed twice in ice cold PBS, and fixed in 4% PFA for 15 minutes on ice. The 

cover slips were mounted on slides using glycerol, and visualised and imaged using the 

Leica DMR light microscope with 20x objective, Leica DC200 digital camera, and Leica 

DCViewer software. 

A 50x stock of solution one contains 12.5mg/ml NBT (nitroblue tetrazolium) and 

2.5mg/ml DHEA (Dehydroepiandrosterone) in 70% Dimethylformamide (BDH 

Chemicals), while a 50x stock of solution two contains 14mg/ml nicotinamide and 

30mg/ml βNAD (β nicotinamide adenine dinucleotide hydrate) in H2O (Chiappe et al, 

2002; Marrone & Sebring, 1989). 

2.14 Histology 

2.14.1 Paraffin embedding 

After harvesting, adrenals from mice, age 16-20 weeks, were fixed in 4% PFA overnight 

at 4°C. They were then washed in H2O, 50%, 70%, 90% and 100% ethanol for 1 hour 

each, and left overnight in 100% ethanol at 4°C. The adrenals were washed twice in 

xylene for 1-2 minutes, and soaked in liquid paraffin for 24 hours at 56°C. The paraffin 

containing the specimens was then poured into plastic block-moulds and left at room 

temperature to set. 
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2.14.2 Sectioning and Mounting 

7-10µm thick sections were cut from adrenals embedded in paraffin blocks using the 

Leitz 1512 microtome, and mounted on TESPA treated slides (3-

triethoxysilylpropylamine; VWR) by the floating-out technique (Sack, 1963). Briefly, a 

small amount of water was placed on the slides, and ribbons of serial sections laid flat 

on the water. They were heated to approximately 8°C, and the water removed by 

pipetting from a corner or edge, leaving the sections to bond with the adhesive coating 

(TESPA). The slides were then dried overnight at 37°C to increase the adhesion, and 

ensure the sections would not dissociate during further treatments.  

2.14.3 Deparaffinisation 

As paraffin is insoluble in water, most staining techniques require it to be removed. To 

deparaffinise, sections were washed three times in xylene, twice in 100% ethanol, 

once in 90%, 70% and 50% ethanol, and then rehydrated by washing twice in H2O. 

Each wash lasted 10 minutes.  

2.14.4 Haematoxylin & Eosin staining 

Slides were placed in haematoxylin for 2 minutes (Lamb Laboratories), followed by 2 

minutes in running H2O. They were then dipped in acidic alcohol (75% ethanol, 0.04% 

HCl) for 1 minute, and placed under running H2O for a further 2 minutes. After dipping 

the slides in ammonia solution (0.084% ammonium hydroxide) for 1 minute, they were 

subject to 5 minutes under running H2O, 1 minute in 80% ethanol, 15 seconds in Eosin 

(Lamb Laboratories), two 1 minute washes in 95% ethanol, two 1 minute washes in 

100% ethanol, and three 10 minute washes in xylene. Excess xylene was wiped from 

the back and edges of the slides, and they were covered with glass slips using DPX 

mounting media (Lamb Laboratories) to preserve the staining. They were visualised 

and imaged using the Leica DMR Light microscope with 10x and 40x objectives, Leica 

DC200 digital camera, and Leica DCViewer software.  
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2.14.5 DAPI staining to quantify capsule density 

Adrenal sections were cut at equal thickness, and mounted on TESPA treated slides. 

They were deparaffinised and washed in PBS-triton (0.1%) for 10 minutes. One drop of 

DAPI (4’,6-diamidino-2-phenylindole, 1 in 5000) was then added to each section for 1 

minute, and the slides washed again in PBS-triton. Fluorescent mounting media (Dako) 

was used to preserve the staining under glass slips. Sections were visualised, and z-

stacks taken using the Zeiss LSM510 laser scanning confocal microscope with 63x 

objective, and the ZEN 2008 Light edition software. Capsule density was quantified by 

blind counting the number of capsular nuclei within equally sized areas of each z-stack.  

2.14.6 Immunoperoxidase staining 

Sections were deparaffinised with three washes in xylene and one in 100% ethanol, 

then washed for 1 hour with agitation in 3% hydrogen peroxide in methanol (Fisher 

Scientific) to block endogenous peroxidase activity. Ethanol washes were continued 

using 100%, 90%, 70% and 50% solutions, followed by two washes with H2O to 

rehydrate. The slides were then boiled for 15 minutes in 10mM sodium citrate buffer - 

pH6 (BDH Chemicals) to break cross-links formed between proteins during paraffin 

embedding, and unmask antigens and epitopes. After a 5 minute wash in PBS-triton, 

the slides were blocked for 30 minutes with 10% normal goat serum, followed by 15 

minutes with Avidin D, and 15 minutes with Biotin from the Vector Laboratories 

Avidin/Biotin blocking kit, to prevent non-specific secondary antibody and tertiary 

reagent binding. The primary antibody was applied overnight at room temperature 

(Table 2.14.1), then any unbound antibody was removed by washing three times in 

PBS-triton. This was followed by 2 hours incubation with a biotinylated secondary 

antibody, three washes in PBS-triton, 1 hour treatment with the Vectastain ABC 

tertiary reagent containing a preformed Avidin and Biotinylated horseradish 

peroxidase (HRP) macromolecular Complex (Vector Laboratories), another three 

washes in PBS-triton, and finally addition of the DAB (3, 3'-diaminobenzidine) 

peroxidase substrate containing hydrogen peroxide and nickel (DAB peroxidase 

substrate kit; Vector laboratories) for 5 minutes. Once a grey/black colour had 

developed, the sections were dehydrated by washing in 50%, 70%, 90%, and two lots 
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of 100% ethanol, followed by three 10 minute washes in xylene. DPX mounting media 

was used to preserve the sections under glass slips, and they were visualised and 

imaged using the Leica DMR Light microscope with 10x objective, Leica DC200 digital 

camera, and Leica DCViewer software. 

Table 2.14.1 – Antibodies used in immunoperoxidase staining 

Ab Antigen/Detector Species Company Dilution 

1° CYP11A1 (SCC) Rabbit polyclonal Millipore AB1244 1 in 1000 

2° Biotinylated Goat anti-rabbit  Vector Laboratories BA-1000 1 in 500 

1° CYP11B1 Mouse monoclonal  Dr Gomez-Sanchez, University of 
Mississippi 

1 in 20 

2° Biotinylated Goat anti-mouse Vector Laboratories BA-9200 1 in 500 

 

2.15 Zebrafish 

Embryos were obtained from single pairs of the Queen Mary University strain of 

zebrafish. 

2.15.1 Microinjection 

Morpholino Oligomers (Table 2.15.1; Gene Tools, LLC) were re-suspended in Danieau 

buffer containing 58mM sodium chloride, 0.7mM potassium chloride, 0.4mM 

magnesium sulphate, 0.6mM calcium nitrate and 5mM HEPES in H2O. Embryos were 

then lined up in a petri dish along the edge of a microscope slide, and visualised using 

the Leica MXFL III stereo dissecting microscope. 5ng of each morpholino was injected 

into the embryos at the 1-2 cell stage using the Parker Instrumentation Picospritzer III. 

Embryos were then incubated at 28.5°C in embryo media pH7.2 containing 13.7mM 

sodium chloride, 0.54mM potassium chloride, 25.2µM disodium hydrogen phosphate, 

44.1µM potassium dihydrogen phosphate, 1.3mM calcium chloride, 1mM magnesium 

sulphate and 10mM HEPES in H2O, with methyl blue. 

24 hours post fertilisation (hpf) PTU (Propylthiouracil) was added to the media at a 

concentration of 0.003%, to prevent the development of pigmentation and maintain 

transparency of the embryos. At 24, 27 or 30 hpf the embryos were dechorionated and 
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staged by counting the number of somites and assessing the head-trunk position. 

Embryos were visualised, phenotypes recorded and images taken on a Leica MXFL III 

stereo dissecting microscope fitted with a Leica DC300 camera, using the Leica IM50 

software. 

Table 2.15.1 – Morpholino sequences 

Morpholino Sequence    5’ – 3’  

Control  CCTCTTACCTCAGTTACAATTTATA Gene Tools, LLC 

p53 GCGCCATTGCTTTGCAAGAATTG 
Gene Tools, LLC 

Target sequence CAATTCTTGCAAAGCAATGGCGC 

BBS4 TGTTTAACTGGTGCTTACAGCGATC 
(Yen et al, 2006) 

Target sequence GATCGCTGTAAGCACCAGTTAAACA 

BBS6 GCTTCTTCTTACTAATGCGAGACAT 
(Badano et al, 2006; Yen et al, 2006) 

Target sequence ATGTCTCGCATTAGTAAGAAGAAGC 

 

2.15.2 Immunofluorescence  

After dechorionation and staging, embryos were fixed in 4% PFA with 0.15mM calcium 

chloride and 4% sucrose overnight at 4°C. They were then washed three times in PBS 

for 10 minutes each, and permeabilised in 100% acetone for 5 minutes at -20°C. After 

a further three washes in PBS, the embryos were blocked for 1 hour in 10% goat serum 

in PBS with 0.8% triton (PBS-triton), and incubated overnight at 4°C with the primary 

antibodies (Table 2.15.2). After five 30 minute washes in PBS-triton, incubation with 

secondary antibodies in PBS-triton containing 1% goat serum was carried out 

overnight, again at 4°C. The embryos were washed three times in PBS-triton for 10 

minutes each, and then incubated in DAPI for 1-2 minutes. This was followed by two 

washes in PBS-triton and storage at 4°C in 70% glycerol. The embryos were visualised 

and images taken using the Zeiss LSM510 laser scanning confocal microscope and the 

ZEN 2008 Light edition software. 

  



CHAPTER 2: MATERIALS AND METHODS 

86 

Table 2.15.2 – Antibodies used for zebrafish immunofluorescence 

Ab Antigen/Fluorophore Species Company Dilution 

1° Acetylated α-tubulin Mouse monoclonal Sigma Aldrich T6793 1 in 500 

2° AF488-Green Goat anti-mouse Invitrogen A11029 1 in 500 

 

2.15.3 Counting and measuring cilia 

Cilia were visualised by immunofluorescence, and z-stacks taken using the Zeiss 

LSM510 laser scanning confocal microscope with 63x objective and the ZEN 2008 Light 

edition software. Cilia were counted blind, from equally sized areas, in similar positions 

within the tail region of each embryo. The length of cilia was determined using the Zen 

program processing tools. 

2.15.4 Whole mount ISH 

After dechorionation and staging, embryos were fixed in 4% PFA (BDH Chemicals) 

overnight at 4°C. They were then washed in PBS with 0.1% Tween20 (PBS-tween), and 

dehydrated in 100% methanol for 30 minutes. They were stored overnight in 100% 

methanol at -20°C.  

Rehydration of the embryos was achieved by washing in 75%, 50% and 25% methanol 

in PBS for 5 minutes each, followed by four washes in PBS-tween. They were then 

treated with 10µg/ml proteinase K in PBS-tween for 20 minutes at room temperature 

to permeabilise the cell membranes. The embryos were fixed again in 4% PFA for 20 

minutes, and washed four times in PBS-tween. Prior to incubation with the zebrafish in 

situ ff1b probe (Dr Bon-chu Chung, Academia Sinica, Taiwan), the embryos were placed 

in a hybridisation buffer for 2-5 hours at 65°C. The hybridisation buffer contained 50% 

formamide, 25% 5x SSC (sodium saline citrate), 50µg/ml yeast tRNA, 50µg/ml heparin 

and 0.1% tween in sterile water, buffered to pH6.5 with 1M citric acid. The ff1b probe 

was then added to the buffer at a concentration of 0.4µg/ml and left overnight at 65°C. 

Embryos were washed three times in 25% formamide/75% 2x SSC with tween, and 

twice in 100% 2x SSC with tween, all at 65°C, 10 minutes per wash. They were then 

washed three times for 20 minutes each in 0.2x SSC with tween, also at 65°C. This was 

followed by four 5 minute washes in PBS-tween at room temperature. The embryos 
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were blocked in a solution containing 5% sheep serum and 2mg/ml BSA in PBS-tween 

for 2 hours, followed by incubation with an anti-DIG (Digoxigenin) alkaline 

phosphatase conjugated antibody (1 in 5000) at 4°C overnight. 

After eight 15 minute washes in PBS-tween, and three 5 minute washes in BCL buffer 

containing 100mM Tris HCL pH9.5, 50mM magnesium chloride, 100mM sodium 

chloride and 0.1% tween in H2O, the embryos were incubated for 24-30 hours in Roche 

BM Purple; AP substrate precipitating solution, protected from light. Once the staining 

had developed they were washed for 10 minutes in PBS-tween, and fixed at room 

temperature in 4% PFA for 20 minutes. They were then stored in 70% glycerol at 4°C. 

Staining was visualised and images taken on a Leica MZFL III stereo dissecting 

microscope fitted with a Leica DC300 camera, using the Leica IM50 software. 

2.16 Data Analysis 

All data were analysed using Microsoft Office Excel 2010 and SPSS version 12. One-way 

ANOVAs (Analysis of variance) were implemented, with the appropriate pre-planned 

and post-hoc comparisons including the Bonferroni correction for multiple 

comparisons (Brace et al, 2006). Pre-planned tests are those between factors that are 

expected to differ, and are already decided upon before carrying out an experiment. 

Post-hoc tests are comparisons not foreseen, that may reveal interesting connections 

between data sets. Graphs were producing using SPSS version 12, paint.NETv3.36 and 

Inkscape version 0.48. 
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3.1 Aims 

The main aim of this chapter is to show that the human adrenal carcinoma cell line 

H295R can be used as a model cell line in which to study the role of hedgehog 

signalling and primary cilia in adrenal differentiation and function in vitro. The 

expression of Hh pathway components, presence of primary cilia, and responses to 

agonists and antagonists of the Hh pathway are investigated, along with the capacity 

of these cells to differentiate. 

3.2 H295R cells express components of the Hh pathway and 
have primary cilia 

The cell fate regulator Sonic hedgehog (Shh) plays a key role in adrenal development 

(Ching & Vilain, 2009; Huang et al, 2010; King et al, 2009). To further study its role in an 

in vitro system it was necessary to determine whether the H295R cell line expresses 

components of the Hh pathway and can respond to its agonists and antagonists. Figure 

3.2.1A shows by PCR, that H295R cells express the key components of the Shh 

pathway, namely Shh itself, two receptor isoforms Ptch1 and 2, Smo and the Hh 

pathway transcription factors Gli1, 2 and 3. The identity of the PCR products was 

verified by sequencing, carried out by the Queen Mary Genome Centre. 

Immunofluorescence with an anti-Shh antibody also shows that these cells are capable 

of producing the Shh ligand (Figure 3.2.1C). One cell in this field of view is Shh-positive, 

while the total number of Shh-expressing cells is approximately 5%. By combining 

these two techniques, showing both RNA and protein expression, it can be concluded 

that Hh pathway components are present in H295R cells. 

cDNA derived from human adrenal cortex RNA (Clontech) was also tested for the 

expression of Hh pathway components by PCR. As in H295R cells, expression of Shh, 

Ptch1, Smo and Gli1, 2 and 3 were observed, although the Ptch2 receptor isoform was 

undetected (Figure 3.2.1B). This shows that Hh pathway components are expressed in 

human adrenocortical cells, and that work done in vitro may have transferrable 

implications for the in vivo system. 
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It is now generally accepted that proper functioning of the Hh signalling pathway 

requires primary cilia, with many reports of its pathway components localised there 

(Corbit et al, 2005; Haycraft et al, 2005; Rohatgi et al, 2007; Satir & Christensen, 2007). 

To visualise cilia in H295Rs, cells were serum starved prior to fixation, and incubated 

with antibodies for acetylated α-tubulin and pericentrin (Figure 3.2.2A). Serum 

starvation helps cells to form cilia by promoting cell cycle arrest (Schneider et al, 2005), 

as primary cilia form during interphase. Acetylated α-tubulin is a protein that forms the 

subunits of microtubules, and can be used to visualise primary cilia as their axoneme 

has a 9+0 microtubule structure. Antibodies for acetylated α-tubulin will also identify 

other microtubule based structures such as the mitotic spindle during cell division, 

therefore a second ciliary marker was used to increase accuracy. Pericentrin is a basal 

body protein that forms a complex with components of the intraflagellar transport 

system, and is frequently used as a marker of cilium formation (Jurczyk et al, 2004). 

The proportion of ciliated cells was estimated by counting cilia from maximum 

intensity projections (MIPs) of z-stacks, generated by the Zen confocal microscopy 

program. Using z-stacks, rather than single images, gives a more accurate estimation of 

the number of cilia in any random field, as it takes into account the third dimension 

and thus can help visualise cilia oriented perpendicularly to the plane of the image. 

Figure 3.2.1 – H295R cells express components of the Hh 
pathway 
(A-B) Expression of components of the Hh pathway by 
PCR in H295R cells (A), and the human adrenal cortex (B). 
1µl cDNA was used in each reaction lasting 35 cycles, 
with an annealing temperature of 58°C. 
(C) Representative confocal image showing a Shh-
expressing H295R cell. Cells were grown on cover slips 
and after fixation were incubated with an anti-Shh 

(C) Representative confocal image showing a Shh-
expressing H295R cell. Cells were grown on cover slips 
and after fixation were incubated with an anti-Shh 
antibody (red). DAPI was used to stain the nuclei (blue). 
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Figure 3.2.2B shows the difference between a single image and a MIP of a z-stack taken 

in the same visual field. Four cilia are clearly identifiable in the MIP, whereas only one 

can be seen in the single image view. 

After 24-60 hours serum starvation, approximately 34-41% of H295R cells were 

ciliated, with no significant difference in the number of cilia between samples receiving 

different lengths of serum starvation (Figure 3.2.2C-D). However, increasing serum 

starvation from 24 to 60 hours did cause a significant increase in cilium length, which 

was determined using the Zen program processing tools. After 24 hours serum 

starvation the average cilium length was 1.7µm, with a maximum reading of 4.5µm. In 

comparison, the average length of cilia measured after 60 hours serum starvation was 

3.25µm, with a maximum reading of 8.8µm. 
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Figure 3.2.2 – H295R cells can form primary cilia  
Cells were grown on cover slips and serum starved for 24 or 60 hrs prior to fixing. They were then 
incubated with an anti-pericentrin antibody marking the basal body (red), and an anti-acetylated α-
tubulin antibody marking the ciliary axoneme (green). DAPI was used to stain the nuclei (blue). Cilia 
were visualised (A) and their number (C) and length (D) determined using the Zeiss LSM510 inverted 
laser scanning confocal microscope with 63x objective, and ZEN 2008 Light edition software. Scale bar 
represents 10µm. For each serum starvation, cilia were blindly counted from 3 slides, using 5 
maximum intensity projections of z-stacks per slide (N=3). The length of 20 cilia was measured across 
the 3 slides (N=20). The data were analysed using a one-way ANOVA with post-hoc comparisons. Data 
collated, error bars indicate SEM. *** p<0.001 compared to 24hrs. 
(B) Comparison between taking a single image (i) and a maximum intensity projection of a z-stack (ii). 
Cilia are indicated by the arrows, scale bar represents 10µm. 
 

3.3 Hh pathway agonists and antagonists 

As H295R cells express Hh pathway components and have cilia, an essential structural 

component for signalling, it was of interest to investigate their responsiveness to Hh 

pathway agonists and antagonists. Initially, using Shh Light II cells, a number of 

compounds were assessed for their ability to cause changes in Hh pathway activation 

via a functional assay. This cell line stably expresses the GLI-responsive firefly luciferase 

reporter which contains eight Gli1 binding sites upstream of the firefly luciferase gene 
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(Sasaki et al, 1997), and the constitutively active pRL-TK Renilla luciferase expression 

vector (Promega). As a result of changing Gli1 levels caused by the activation or 

inhibition of the Hh pathway by agonists or antagonists, transcription from the Gli1 

responsive promoter will vary with resultant changes in expression of firefly luciferase. 

Gli1 levels are frequently used as a marker for Hh pathway activity (Dai et al, 1999). 

Shh Light II cells were either untreated, or incubated with a vehicle control, or Hh 

pathway agonists or antagonists, either individually or in combination, and a dual-

luciferase assay conducted. 

Purmorphamine, ShhN and SAG are all Hh pathway agonists. Purmorphamine and SAG 

target Smo, and bind within its heptahelical bundle to cause changes in its 

conformation, and effect Smo activation (Chen et al, 2002b; Sinha & Chen, 2006). This 

also causes translocation of Smo to the primary cilium, and therefore downstream 

signalling in the absence of Shh (Rohatgi et al, 2007; Wang et al, 2009). ShhN acts at 

Ptch1, binding and preventing it from inhibiting Smo thereby allowing downstream Hh 

signalling. Upon binding, the Shh-Ptch1 complex is internalised and translocates out of 

the cilium (Rohatgi et al, 2007). Figure 3.3.1 shows that all three agonists cause a 

significant two-fold increase in the firefly luciferase activity of Shh Light II cells 

compared to their respective controls. 

Cyclopamine, vismodegib (GDC-0449) and Sant1 are Hh pathway antagonists that 

target Smo. They also bind within its heptahelical domain, but in different locations 

both to the agonists, and to each other (Chen et al, 2002a; Chen et al, 2002b; Yauch et 

al, 2009). They cause changes in Smo conformation resulting in its inactivation, and 

loss of downstream signalling. Tomatidine is a structural analogue of cyclopamine that 

does not inhibit Hh signalling (Mukherjee et al, 2006). It is used as a control for 

cyclopamine toxicity. Of the three antagonists, Sant1 was the only one when used 

individually to cause a significant decrease in the luciferase activity of Shh Light II cells 

compared to the controls (Figure 3.3.1). However, when combined with 

purmorphamine, cyclopamine and vismodegib also caused a significant decrease in 

luciferase activity when compared to purmorphamine treatment alone. This result was 

reproduced when cells were treated with tomatidine in combination with 
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purmorphamine, a finding that was unexpected given that tomatidine should not 

inhibit Hh signalling. 

Another compound; forskolin (Fsk), stimulates activation of adenylate cyclase and PKA. 

This leads to Gli phosphorylation and proteolytic processing to form transcriptional 

repressors (Pan & Wang, 2007). Although Fsk is reported in the literature to be a non-

selective Hh pathway antagonist (Hyman et al, 2009; Taipale et al, 2000), in this case a 

significant 5.7-fold increase in luciferase activity was observed, suggesting agonist 

actions (Figure 3.3.1).  

Lastly, cycloheximide inhibits protein biosynthesis by blocking translation (Baliga et al, 

1969; Chow et al, 1995) and was used as a negative control. It prevents de novo 

luciferase production, resulting in low luciferase activity. It also triggers apoptosis in 

some cell lines (Lu & Mellgren, 1996). Luciferase activity was significantly reduced in 

Shh Light II cells treated with cycloheximide (Figure 3.3.1). 

 

 

Figure 3.3.1 – Shh Light II luciferase assay 
Graph showing relative luciferase activities normalised to renilla. Shh Light II cells were either 
untreated (UT) or treated with 8µl/ml DMSO, 2µM purmorphamine, 0.35µg/ml ShhN, 200nM SAG, 
2µM cyclopamine, 2µM tomatidine, 20nM vismodegib, 2µM Sant1, 10µM forskolin (Fsk), 80µg/ml 
cycloheximide, 2µM purmorphamine plus 2µM cyclopamine (P+C), 2µM purmorphamine plus 2µM 
tomatidine (P+T), or 2µM purmorphamine plus 20nM vismodegib (P+V) for 48 hrs. A dual-luciferase 
reporter assay was then conducted, and the data analysed using a one-way ANOVA with pre-planned 
and post-hoc comparisons of treatments. N=3, data collated, error bars indicate SEM. ** p<0.01, *** 
p<0.001 compared to UT or DMSO, unless otherwise indicated. 
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These results show that the Hh pathway agonists purmorphamine, ShhN and SAG act 

to increase Gli1 transcription, while the antagonists Sant1, cyclopamine and 

vismodegib inhibit it, although the effect of cyclopamine may be non-specific given 

that tomatidine also inhibits. It can therefore be assumed that canonical signalling is 

occurring in Shh Light II cells in this instance. To investigate the responsiveness of 

H295Rs to Hh pathway effectors, a transient Gli-luciferase reporter system was 

implemented. Cells were transfected with either the pGL3-6xGBS firefly luciferase 

plasmid (Dr Graham Neill, Queen Mary University of London), or the pGL3-empty 

vector (Promega), and the pRL-CMV renilla plasmid at a ratio of 30:1. The pGL3-6xGBS 

luciferase plasmid has a synthetic promoter composed of six multimeric Gli1 binding 

sites upstream of the luciferase gene, while the pGL3-empty vector contains the 

luciferase gene but no promoter. Similar treatments to those described above were 

employed, but no significant differences in luciferase activities were found. Real-time 

qPCR examining Gli1 expression was therefore used as an alternative method for 

analysing the ability of purmorphamine or cyclopamine to cause changes in Hh 

pathway activity. Purmorphamine treatment caused an increase, albeit not significant, 

in Gli1 expression of approximately ten-fold compared to untreated cells (Figure 3.3.2), 

whereas cyclopamine treatment did not have any effect. These results fit with the 

documented actions of purmorphamine, as a Hh pathway agonist (Wu et al, 2002).  

 

 

Figure 3.3.2 – Gli1 mRNA expression 
Graph showing the relative quantities of Gli1 mRNA in H295R cells. Cells were treated for 24hrs with 
either 2µM purmorphamine (Pur) or 2µM cyclopamine (Cyc), compared to untreated cells (UT). 
Quantitative real-time qPCR was carried out measuring Gli1 expression. 18S rRNA expression was 
used as the loading control. A one-way ANOVA with pre-planned and post-hoc comparisons of the 
treatments was used to interpret the results. N=3, data collated, error bars indicate SEM. 
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Before continued use of these compounds in H295R cells, assessment of their cytotoxic 

status was carried out using both a lactate dehydrogenase (LDH) assay, and 

fluorescence-activated cell sorting (FACS). H295R cells were either untreated, or 

incubated with Hh pathway agonists or antagonists, either individually or in 

combination. The percentage of cytotoxic cells was established by measuring LDH 

levels, or flow cytometry analysis of propidium iodide incorporation. 

LDH is normally present in the cytoplasm of healthy cells, but is released upon the loss 

of membrane integrity during lysis, necrosis or apoptosis. It converts a tetrazolium salt 

within the substrate mixture of the Promega cytotoxicity assay kit, into a soluble red 

formazan product, which can be measured by spectrophotometry (Promega Technical 

Bulletin TB163). Propidium iodide (PI) is a fluorescent molecule that binds 

stoichiometrically to double stranded DNA. PI incorporation increases as the cell cycle 

progresses, and chromosome replication occurs (Abcam Resources; Propidium iodide 

staining of cells to assess DNA cell cycle). For example; cells in the G2 phase contain 

twice as much DNA as those in G1, and will therefore have a higher level of PI 

incorporation. Apoptotic cells have a low rate of PI incorporation, as their DNA content 

is reduced. Hence, flow cytometry analysis of PI incorporation can be used to 

determine the number of cells within each stage of the cell cycle, and distinguish them 

from those that are undergoing cell death, possibly as a result of cytotoxicity. 

Figure 3.3.3A shows that the percentage of cytotoxic cells, calculated from LDH levels, 

is significantly increased only in those treated with cycloheximide, an activator of 

apoptosis. All other samples remain unchanged. This result was replicated by the FACS 

analysis.  

Figure 3.3.3C and D show the flow cytometry plots generated by treatment of cells with 

either DMSO or cycloheximide respectively. All other treatments resulted in plots 

identical to those obtained for DMSO. The first plots in the left panel (i) show forward 

and side scatter, which are representative of cell volume and morphological 

complexity. The middle panel (ii) shows pulse width plotted against pulse area, to 

distinguish between single cells and those that are doublets or clumped together. The 

gating implemented in this plot, labelled as P2, determines which cells are further 



CHAPTER 3: ESTABLISHING AN IN VITRO SYSTEM 

97 

analysed, shown in green. All red cells have been excluded. The third panel on the right 

(iii) then shows the DNA cell cycle histogram, labelled with propidium iodide. The 

amount of PI increases as the cell cycle progresses, and so P4, P5 and P6 show the 

number of cells in G1, S phase and G2 respectively. P7 contains polyploidy cells that 

have escaped G2 and cell division. Cells undergoing apoptosis will be present in P3, 

with the lowest PI levels. Figure 3.3.3B shows the percentage of cells recorded in P3 for 

each treatment. 

These plots show that the majority of the cells counted, after all treatments excluding 

cycloheximide, were in the G1 phase (Figure 3.3.3C (iii)). After cycloheximide 

treatment, the total number of cells sorted was reduced (fewer events recorded in 

Figure 3.3.3D (i) and (ii)), and the majority of those were undergoing apoptosis in P3 

(Figure 3.3.3D (iii)). Also, when compared to the other treatments, the percentage of 

cells in P3 was significantly greater (Figure 3.3.3B). Together, these results delineate 

cycloheximide as the only substance tested with any cytotoxic effect on H295R cells, at 

the concentrations used. 

The above data indicate that purmorphamine, ShhN and SAG work via up-regulation of 

Gli1 expression in Shh Light II cells, and this is most likely the case in H295R cells as 

well. They also do not have any cytotoxic effects at the concentrations used here, and 

thus are suitable for use in further experimentation. Results obtained from Hh 

pathway antagonists seem to show they are capable of inhibiting Gli1 up-regulation, 

and like the agonists; they do not appear to stimulate apoptosis. 
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Figure 3.3.3 – Cytotoxicity of Hh pathway agonists and antagonists (this page and following page) 
H295R cells were either untreated (UT) or treated with 8µl/ml DMSO, 2µM purmorphamine, 
0.35µg/ml ShhN, 200nM SAG, 2µM cyclopamine, 2µM tomatidine, 20nM vismodegib, 2µM Sant1, 
10µM forskolin (Fsk), or 80µg/ml cycloheximide for 72hrs. They were then assayed for LDH levels and 
the percentage of cytotoxic cells calculated (A), or sorted by FACS on the basis of propidium iodide 
incorporation and the percentage of apoptotic cells in P3 recorded (B). The data were analysed using a 
one-way ANOVA with pre-planned and post-hoc comparisons of treatments. N=3, data collated, error 
bars indicate SEM. *** p<0.001 compared to UT.  
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3.4 Differentiation of H295R cells 

The data shown above demonstrate that H295R cells express Hh pathway components 

and form primary cilia. This cell line has been widely used as a model adrenal cell line, 

not only because of its ability to express all human adrenal steroids but also because it 

can differentiate into cells whose gene expression and steroidogenic output resembles 

the three human adrenal zones; zG, zF and zR. As part of the renin-angiotensin-

aldosterone pathway, angiotensin II stimulates aldosterone production via AT1 

receptors in the zG of the adrenal cortex (LeHoux et al, 1997). It also stimulates the 

differentiation of H295R cells towards a zG-like fate, characterized by increased 

production of CYP11B2 (aldosterone synthase) and aldosterone (Bird et al, 1993). 

In contrast, ACTH, released from the anterior pituitary as part of the HPA axis, 

stimulates glucocorticoid production. It does this via its receptor, MC2R, which is 

present on the surface of zF/zR cells, and activates adenylate cyclase to promote the 

conversion of ATP to cAMP (Aumo et al, 2010; Rainey et al, 2004). Stimulating the 

cAMP pathway in H295Rs leads to their differentiation towards a zF-like fate, 

characterised by increased production of CYP11B1 (11β-hydroxylase) (Cobb et al, 

1996). Due to the tendency of these cells to lack ACTH-responsiveness, forskolin (Fsk) 

is used to directly activate adenylate cyclase in this pathway (Denner et al, 1996; Janes 

et al, 2008). However, chronic Fsk treatment also results in up-regulation of 

cytochrome b5, which enhances the 17,20 lyase activity of CYP17 and stimulates the 

production of androstenedione (Auchus et al, 1998; Pandey & Miller, 2005), a 

functional characteristic of the zR. 

Real-time qPCR examining CYP11B1 and CYP11B2 expression in H295R cells treated 

with AngII or Fsk was carried out. Figure 3.4.1A shows there is an increase in both 

CYP11B1 and CYP11B2 mRNA levels in samples treated with AngII or Fsk, compared to 

untreated cells. However, as Fsk stimulates zF-like differentiation, these cells have 

significantly higher CYP11B1 levels than those treated with AngII or untreated cells 

(Figure 3.4.1A (i)), indicating that these cells resemble more closely the zF than the 

others. AngII treatment also produced significantly higher CYP11B2 levels than Fsk 
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treatment or no treatment at all (Figure 3.4.1A (ii)), indicating that these cells resemble 

the zG more closely than the others.  

Real-time qPCR reports only on the quantity of mRNA within cells, so staining cells to 

determine the levels of the steroidogenic protein 3βHSD was also conducted. 3βHSD 

(3-beta-hydroxysteroid dehydrogenase) is required in the first steps of steroidogenesis 

(Figure 1.1.2) and is therefore needed for the production of glucocorticoids, 

mineralocorticoids and androgens. Its expression reflects steroid production, and so 

cells with increased cortisol or aldosterone levels, as in those differentiating, will have 

more 3βHSD. Figure 3.4.1B shows images of cells stained in purple for the oxidation of 

DHEA to androstenedione, in the presence of 3βHSD and the coenzyme NAD+. AngII or 

Fsk treated samples have more stained cells than the untreated sample, and the colour 

is more intense. The staining appears in patches of cells, indicating that these are 

steroidogenic, and therefore likely to produce more aldosterone or cortisol than 

unstained cells.  

As a final method for determining the steroidogenic characteristics of differentiating 

H295R cells, cortisol and aldosterone levels in the media were assessed by using 

enzyme-linked immunosorbent assays (ELISA). Cells treated with AngII produced 

significantly higher levels of aldosterone than the untreated cells (Figure 3.4.1C (i)), 

while those treated with Fsk produced significantly more cortisol (Figure 3.4.1C (ii)). 

This indicates that steroid production by H295R cells can be altered in accordance with 

the literature (Bird et al, 1993; Denner et al, 1996), by treating them with AngII or Fsk. 

Together, these data indicate that H295R cells can differentiate towards either a zG or 

zF-like phenotype under the experimental conditions, measurable by their 

steroidogenic enzyme expression levels and steroidogenic output. These results 

recapitulate the findings of others, and ensure that these cells have retained their 

responsiveness to the differentiation compounds. They also serve to establish that 

qPCR analysis of CYP11B1 and CYP11B2 expression is a quantifiable functional reporter 

system for the differentiated state of H295Rs. 
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Figure 3.4.1 – Differentiation of H295R cells 
(A) Graphs showing the relative quantities of CYP11B1 (i) and CYP11B2 (ii) mRNA in H295R cells. Cells 
were either untreated (UT), or differentiated over a 72-96hr period with 10µM angiotensin II (AngII) 
or 10µM forskolin (Fsk). Quantitative real-time qPCR was carried out measuring CYP11B1 or CYP11B2 
expression. GAPDH expression was used as the loading control. For each gene, a one-way ANOVA 
with pre-planned and post-hoc comparisons of treatments was used to interpret the data. N=6, data 
collated, error bars indicate SEM. *** p<0.001 compared to UT. 
(B) Representative light microscopy images of H295R cells with staining for the oxidation of DHEA to 
androstenedione, in the presence of 3βHSD and the coenzyme NAD

+
. Cells were differentiated for 

72hrs as in (A), and a 3βHSD assay performed. Images were taken using the Leica DMR light 
microscope with 20x objective. Scale bar represents 10µm. 
(C) Graphs showing relative aldosterone (i) and cortisol (ii) levels in H295R cells. Cells were 
differentiated for 96hrs as in (A), and aldosterone and cortisol production determined by an ELISA. A 
one-way ANOVA for each steroid was used to interpret the data. N=3, data collated, error bars 
indicate SEM. * p<0.05, ** p<0.01 compared to UT.  
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3.5 Discussion 

Evidence has been provided to show that H295R cells and the human adrenal cortex 

express components of the Hh signalling pathway, including the ligand Shh (Figure 

3.2.1A). Immunofluorescence analysis revealed that the Shh protein is also present in 

some H295Rs (Figure 3.2.1C). As not all H295R cells express Shh, but both the ligand 

and downstream signalling components are present, we hypothesise that within the 

population of cells some are Hh-producing cells, while the others are capable of 

responding to the signal, as occurs in vivo. Immunofluorescence staining for Shh with 

Gli1 or Ptch1 would help to determine if this is the case. It would also show the 

localisation of Hh pathway components, in and around the cilium, as has previously 

been reported (Corbit et al, 2005; Haycraft et al, 2005; Rohatgi et al, 2007; Satir & 

Christensen, 2007). A lack of suitable antibodies has not made this feasible. 

Within this mixed population of cells, those that express Shh might have stem cell 

capabilities. King et al. showed using lineage studies, that Shh-positive cells in the 

subcapsular region of the developing mouse adrenal can give rise to all steroidogenic 

cells types of the cortex in vivo. They have steroidogenic capacity (SF-1-positive), but 

are CYP11B1- and CYP11B2-negative, so are considered to be a separate group of cells 

from the zG or zF (King et al, 2009). They are relatively undifferentiated, and if truly 

stem cells, will have the capacity to replicate indefinitely, qualities that make them 

ideal candidates for transformation. They may also be the location of the originating 

cells, or cancer stem cells (CSCs), of the adrenocortical tumour from which H295Rs 

were derived.  

Hh signalling has been identified as a key player in the maintenance of CSCs in a wide 

number of haematological and solid malignancies including multiple myeloma 

(Peacock et al, 2007), myeloid leukaemia (Zhao et al, 2009) and colorectal cancer 

(Varnat et al, 2009). It is thought to regulate their renewal capabilities (Zhao et al, 

2009), and resistance to chemotherapy (Lin & Matsui, 2012), and may also be involved 

in dictating their cell fate decisions (Merchant & Matsui, 2010; Peacock et al, 2007). Hh 

pathway components have therefore become a target for the development of novel 

anticancer drugs. Gli inhibitors are currently in development (Mas & Ruiz i Altaba, 
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2010), and phase I and II clinical trials are underway for the Smo antagonist 

Vismodegib (GDC-0449) (Lin & Matsui, 2012). Targeting CSCs in combination with 

current treatments will likely be the most effective method for eradicating tumours 

(Naka et al, 2010). 

H295R cells mainly produce DHEA and DHEAS, with low cortisol and aldosterone 

synthesis (Gazdar et al, 1990), characteristics resembling the steroidogenic profile of 

the foetal adrenal. Therefore some zG/zF cells may also have been incorporated into 

the carcinoma, accounting for these low cortisol/aldosterone levels. However, the 

possibility that other zG/zF cells were transformed to an undifferentiated state, losing 

their zG/zF identity, cannot be excluded. 

Further evidence to suggest that the Shh-expressing H295R cells may be cancer stem 

cells, comes from the fact that ligand dependent cancers such as gastrointestinal 

tumours, pancreatic cancer and prostate cancer, have been associated with the Hh 

pathway (Beachy et al, 2004; Lindemann, 2008). For example, in prostate cancer, the 

Hh ligands Shh and Ihh are expressed in normal prostate tissue, but Ptch1, Smo and 

Gli1 expression is gained in cancerous cells (Karhadkar et al, 2004). Hh-responsiveness 

dependent upon ligand expression is acquired, allowing pathway activation and 

oncogenic transformation. In the mammalian adrenal cortex, Shh is expressed in the 

subcapsular/zU region, while Gli1 expression, and therefore the correct components 

for Hh signalling, are limited to the capsule. If the H295R adrenocortical tumour 

originated in the zU, then Hh pathway activation and Ptch1, Ptch2, Smo and Gli1-3 

expression could have been acquired by the progenitor cells for the growth and 

survival of the tumour, or for maintenance of its microenvironment and its cells in an 

undifferentiated and proliferative state (Jiang & Hui, 2008). Any capsular cells 

incorporated into the tumour would have avoided the need for acquisition of Hh 

responsiveness in those cells. 

The above data shows that primary cilia are present on just over one third of H295R 

cells after serum starvation (Figure 3.2.2), however, cilium formation is a dynamic 

process, and under the correct conditions every cell should have the capacity to 

become ciliated. Serum starvation is used to try to make cells quiescent and arrest in 
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interphase, when cilia formation occurs. Using the mouse fibroblast cell line NIH3T3, 

Schneider et al. report that after 24 hours serum starvation, over 90% of these cells are 

ciliated (Schneider et al, 2005). NIH3T3s have a population doubling time of 

approximately 20 hours (http://bioinformatics.istge.it/cldb/cl3711.html), while H295Rs 

divide more slowly (doubling time of 2 days), and this may account for the observed 

differences in cilia number reported. H295Rs are also cancer cells, and malignant 

transformation involves, in-part, the sequential loss of cell cycle check points. As 

primary cilia form during interphase, they are likely to be required as part of the G1 

and G2 check points, allowing DNA replication, and subsequent cell division. Without 

check points, it might be more difficult to force H295Rs to leave the cell cycle, and they 

may not need to form cilia when they are dividing. 

The average length of cilia present on H295R cells after 24 hours serum starvation was 

1.7µm. However, the range of lengths varied quite considerably, with the longest 

cilium measuring approximately 4.5µm, and was also influenced by the amount of 

serum starvation the cells received. Cilium length is dependent upon cell type and 

function, and NIH3T3s have an average cilium length of 6µm after 24 hours serum 

starvation (Schneider et al, 2005). Fixation and mounting of cultured cells results in 

their cilia lying at a point somewhere between the horizontal and vertical planes. The 

measured length will therefore vary with the cosine of the angle from which the cilium 

protrudes from the focal plane, and this is likely to be responsible, in part, for the wide 

array in lengths observed. The variation may also be attributed to slow cilium 

formation, if this is in any way linked to cell cycling speed, and thus more cilia would be 

measurable at intermediary stages of construction than in faster cycling cells such as 

NIH3T3s. 

Luciferase assays, using Shh Light II cells, yielded results that indicate the agonists used 

did indeed stimulate Hh pathway activation (Figure 3.3.1). Purmorphamine and SAG 

act at Smo, while ShhN targets Ptch, showing that activation of the pathway at either 

of these sites leads to a similar output in Gli activity. Although the ShhN protein used 

here is derived from recombinant mouse DNA, it is 99% identical to human Shh (R&D 
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systems data sheet 464-SH), and therefore should also inhibit Ptch in human cell lines, 

allowing downstream signalling. 

When treating Shh Light II cells with the antagonists alone, it was not known if they 

would be able to inhibit basal Gli promoter activity to a level measurable by the 

luciferase reporter system. No reduction in luciferase output was recorded after 

cyclopamine or vismodegib treatment, although a significant decrease was observed in 

cells exposed to Sant1. All these antagonists target Smo, but are thought to have 

different binding sites and cause different conformational changes (Chen et al, 2002b; 

Wang et al, 2009; Wilson et al, 2009). Alternative Smo conformations probably result 

in different levels of Smo activation or inhibition, to give varying degrees of Hh 

signalling. Cyclopamine has also been shown to cause Smo ciliary translocation in both 

NIH3T3s and mouse embryonic fibroblasts, while Sant1 does not (Wang et al, 2009; 

Wilson et al, 2009). Various studies using Sant1 suggest that it is a more potent 

inhibitor of agonist stimulated activation of the Hh pathway than the other antagonists 

(Chen et al, 2002b; Wang et al, 2009; Wilson et al, 2009), and hence this is likely to be 

the reason why this was the only one to have measurable effects when given alone.  

LDH and FACS experiments confirm that there was no significant cytotoxicity after 

treatment with any of the Hh pathway effectors (Figure 3.3.3). Therefore, the 

reduction in luciferase activity recorded in response to Sant1 treatment (Figure 3.3.1) 

was not due to an increase in cell death, and rather an inhibition of signalling.  

The antagonists cyclopamine and vismodegib were further tested in combination with 

purmorphamine treatment. In this situation they produced a significant decrease in 

luciferase activity when compared to purmorphamine treatment alone (Figure 3.3.1). 

However, tomatidine also showed this effect, despite being reported to not cause 

inhibition of Hh signalling in chick neural ectoderm cells (Cooper et al, 1998). The 

relationship between purmorphamine and tomatidine has not been thoroughly 

investigated, and so an interaction disrupting the agonist effects of purmorphamine or 

its target Smo cannot be ruled out as an explanation for these results. 

Another compound tested was Forskolin, reported to be a Hh pathway antagonist 

through its activation of adenylate cyclase, and stimulation of protein kinase A (PKA) 

production (Hyman et al, 2009; Taipale et al, 2000). However, PKA has been implicated 



CHAPTER 3: ESTABLISHING AN IN VITRO SYSTEM 

107 

in both positive and negative regulation of Hh signalling. Formation of Gli 

transcriptional repressors (GliRs) involves their phosphorylation by PKA, CK1 (Casein 

Kinase 1) and GSK3β (glycogen synthase kinase 3β) at conserved serine residues in the 

C-terminus, to allow binding of βTrCP, an E3 ubiquitin ligase, part of the ubiquitin 

ligase complex (Pan & Wang, 2007; Tempe et al, 2006; Wang & Li, 2006). This results in 

ubiquitination, and targets the protein for proteasomal processing. In the majority of 

cases, proteasomal processing (ubiquitin-proteasome proteolytic system) leads to 

complete degradation of the ubiquitinated target protein. However, in a few cases 

such as this, processing only leads to partial degradation, and therefore GliR formation 

(Pan & Wang, 2007). The proteolysis removes the carboxyl-terminal activation domain, 

so truncated products act as repressors (King et al, 2008). SuFu is a nuclear trafficking 

protein that forms part of a complex with PKA, CK1 and GSK3β, and may act as a 

scaffold, permitting Gli phosphorylation. (Jia et al, 2009; Yue et al, 2008). 

Conversely, PKA in combination with CK1 in drosophila, or GSK3β in mice, 

phosphorylates Arginine clusters in the Smo intracellular carboxy-terminal tail. This is 

thought to allow an activating conformational change (Chen et al, 2004; Wilson et al, 

2009; Zhao et al, 2007) and redistribution of Smo from cytoplasmic pools to the cell or 

ciliary membrane (Jia et al, 2004; Wang et al, 2009). Fsk has also been shown to cause 

translocation of Smo to a proximal region in primary cilia, although this did not 

correspond with increased Gli-luciferase reporter activity in MEFs (Wilson et al, 2009). 

It is therefore a rather complicated system, and the increase in luciferase activity 

found here after Fsk treatment cannot easily be explained.  

While both Ptch1 and Gli1 are factors up-regulated by Hh signalling, Ptch1 expression 

is also controlled by other factors (Goodrich et al, 1996). Hence, Gli1 expression is a 

better readout for Hh pathway activity. Using real-time qPCR it was possible to show 

increased Gli1 mRNA levels in H295R cells treated with purmorphamine (Figure 3.3.2), 

although it was not significant. This was primarily due to large variability in the 

strength of the increase, with the range of values spread between two- and twenty 

five-fold. Repeating this study several more times could result in a significant increase.  
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The Gli-luciferase reporter system was unsuccessful in H295R cells, possibly due to the 

inefficiency of transfecting this cell line. Even under optimal conditions of transient 

transfection only about 30% of cells are transfected (Julia Kowalczyk, personal 

communication), and thus luciferase activity would generally be below the detectable 

limit of the luminometer, given that the response of an optimised system, Shh Light II 

cells, to the agonists is only two-fold. H295R cells also form fewer cilia than NIH3T3s 

(Schneider et al, 2005), from which the Shh Light II cell line was derived, which may 

limit the capacity of these cells to respond to the Hh pathway agonists. 

A thirty-fold increase in Gli1 expression by qPCR was reported by Kim et al. after 

stimulation of murine bone marrow stromal cells with 1µM purmorphamine for 48 

hours (Kim et al, 2009). This is three times as great as the average ten-fold increase 

recorded here, and cell type may be an influencing factor. As described above, H295R 

cells are capable of forming primary cilia, an essential component for Hh signalling, but 

do so at a slower rate than other cell lines. Therefore, this could impact on the cells 

ability to respond to purmorphamine, resulting in saturation of Smo at a much lower 

concentration.  

Gli1 mRNA expression after treatment with the Hh pathway antagonist cyclopamine 

was also tested by real-time qPCR, with no significant deviation in levels from the 

untreated cells. As with the luciferase assay, it was unclear if treatment alone would 

cause a measurable decrease in basal Gli1 levels, at the concentration used. More 

information about the actions of cyclopamine may be gained from testing its ability to 

inhibit elevated Gli1 activity after agonist stimulation.  

While PCR is a quick, easy and reasonably reliable method for determining gene 

expression, and generally mRNA abundance corresponds moderately with protein 

abundance, there can be discrepancies between the two types of data. Post-

transcriptional and post-translational modifications, RNA and protein stability, and 

experimental error can all contribute to the variability, as well as gene/protein length, 

which may be minimally responsible (Nie et al, 2006; Pascal et al, 2008). mRNAs whose 

levels change with the different stages of the cell cycle, correspond more closely to 

final protein content, because there is tight control at the transcriptional level. 
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Whereas those that have a more consistent expression throughout, tend to be more 

independent of final protein levels, as regulation is governed at the translation or post-

translational stages (Greenbaum et al, 2003). Therefore, wherever possible, both RNA 

and protein expression should be examined, but either alone can also provide some 

significant information regarding biological systems.  

The lack of availability of specific and reliable Gli1 antibodies has prevented the 

attainment of western blotting data that corresponds with these qPCR results. 

Therefore, it cannot be conclusively reported that purmorphamine is activating the 

canonical Hh pathway in H295R cells. However, it is most likely that this is the case, as 

all literature, and data obtained thus far, support this hypothesis. 

The ability to differentiate H295R cells towards either a zG- or zF-like phenotype, by 

treatment with angiotensin II or forskolin respectively, has been shown by the qPCR 

assessment of CYP11B1 and CYP11B2 mRNA levels (Figure 3.4.1A). Increased staining 

for the oxidation of DHEA to androstenedione, which requires 3βHSD activity, also 

indicates an increase in steroidogenesis in these cells (Figure 3.4.1B), as well as 

measuring the final steroidal output by ELISA (Figure 3.4.1C). Reports suggest that 

anything between 6 and 96 hours treatment with these compounds will cause 

CYP11B1 and CYP11B2 levels to rise (Cobb et al, 1996; Denner et al, 1996), with 

subsequently increased cortisol and aldosterone production, a characteristic that 

defines the differentiated cell type. Further treatment with Fsk will also result in an 

increase in DHEA and DHEAS levels, indicative of a shift in the steroidogenic pathway 

towards androgen production like that of the zR (Cobb et al, 1996). 

With reference to the initial aims of this chapter, the adrenal carcinoma cell line H295R 

has been shown to express components of the Hh pathway, have the capacity to form 

primary cilia, and can be differentiated towards the zonal phenotypes of the 

mammalian adrenal cortex. They also appear to respond to Hh pathway agonists in a 

canonical signalling manner. Therefore, this cell line meets the criteria required of a 

suitable in vitro system in which to study the role of hedgehog signalling and primary 

cilia in adrenal differentiation and function. 
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4.1 Aims 

The previous chapter investigated the adrenocortical H295R cell line and 

demonstrated that these cells have primary cilia, and can be induced to differentiate 

under defined conditions into cells characteristic of the different zones of the adrenal 

cortex. The main aim of this chapter is to investigate whether primary cilia are involved 

in the differentiation of H295R cells. siRNAs are used to disrupt cilium formation and 

function, and the resulting effect on differentiation is established by measuring 

steroidogenic enzyme expression. The roles of the Hh and Wnt signalling pathways in 

this process are also addressed. 

4.2  The effects of siRNA on ciliation 

Inhibiting the formation of primary cilia can be used to investigate the role they play in 

H295R cell differentiation. This can be performed using synthetic siRNAs (short 

interfering RNAs) of approximately 20-25 nucleotides in length, that bind to a specific 

mRNA sequence, targeting it for degradation and therefore silencing the 

corresponding gene. mRNA sequences for genes encoding components of the 

intraflagellar transport system, or other proteins involved in ciliogenesis, are ideal 

targets.  

Genetic mutations in the intraflagellar transport machinery component IFT88 are 

proven to hinder the formation of cilia in Chlamydomonas (green algae) and mice, 

resulting in their stunted growth (Pazour et al, 2000). This has also been achieved using 

siRNA in the mouse stem cell line P19.CL6 (Clement et al, 2009). Bardet-Biedl 

Syndrome, a known ciliopathy, has been linked to mutations in a number of proteins, 

including BBS4 and BBS6. These are involved in protein folding and targeting 

components to the cilium, and while they may not be essential for cilium formation in 

all cell types, they are required for its function (Kim et al, 2005; Mykytyn et al, 2004). 

Therefore, IFT88, BBS4 and BBS6 were targeted for knockdown using siRNAs. 
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In an initial experiment, knockdown of the cilia components was attempted in 

normally growing H295R cells. After transfection with siIFT88, siBBS4, siBBS6 or an 

siRNA negative control (ctrl), IFT88, BBS4 or BBS6 mRNA expression was measured by 

qPCR. As primary cilia form a key structural component of Hh (and other) signalling 

pathways, the expression of Hh pathway genes was also examined. 

Each siRNA was capable of significantly reducing the mRNA levels of its target gene 

(Figure 4.2.1A-C), with IFT88, BBS4 and BBS6 expression decreased to 48%, 26% and 

46% respectively. Cells transfected with siIFT88 also showed a significant reduction in 

the expression of Hh pathway genes (Figure 4.2.1A), but there was no significant 

change in their levels after siBBS4 or siBBS6 transfection (Figure 4.2.1B-C). FoxD1 and 

NR4A1 are Shh targets (Ingram et al, 2002). FoxD1 is a transcription factor, and like 

Gli1, is expressed in the capsule and a few subcapsular cells of the adrenal cortex (Dr 

Peter King, unpublished data), while NR4A1 is a nuclear receptor expressed in both the 

zG and zF (Bassett et al, 2004a). PPIA (peptidylprolyl isomerase A) is a housekeeping 

gene that should not be regulated by ciliary proteins, nor is it a target of Hh signalling. 

It is included as a negative control. 

To complement the mRNA data, relative protein abundance was also measured by 

western blotting. Figure 4.2.1D shows that IFT88 and BBS4 protein levels were reduced 

to 72% and 63% respectively, after transfection with their corresponding siRNAs.  
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Figure 4.2.1 – Knockdown of ciliary components in H295R cells 
(A-C) Graphs showing the mRNA expression of different genes in H295R cells. Cells were harvested 
48hrs after transfection with 100nM siIFT88 (A), siBBS4 (B), or siBBS6 (C), and mRNA expression was 
compared to that of cells transfected with a negative control (ctrl). Quantitative real-time qPCR was 
carried out measuring IFT88, BBS4 or BBS6 expression, and Shh, Ptch1, Gli1, FoxD1, NR4A1 or PPIA 
expression. 18S rRNA expression was used as the loading control. The data were analysed using a one-
way ANOVA with pre-planned and post-hoc comparisons for each gene. N=6, data collated, error bars 
indicate SEM. ** p<0.01, *** p<0.001 compared to ctrl. 
(D) Images and graph showing protein expression in H295R cells. Cells were harvested 48hrs after 
transfection with 100nM siIFT88, siBBS4 or a negative control (ctrl), and protein extracts were 
analysed by western blotting. Anti-IFT88 and anti-BBS4 antibodies were used to detect the targeted 
proteins. An anti-β-tubulin antibody was used as a loading control. Images of the blots were scanned 
using the Licor Odyssey infrared scanner (i), and quantified using the Licor Odyssey imaging systems 
software (ii). The data were analysed using a one-way ANOVA for each gene. N=3, data collated, error 
bars indicate SEM. * p<0.05, ** p<0.01 compared to ctrl.  

Knocking down genes encoding ciliary network proteins can be detrimental to cilium 

formation, as previously mentioned. Therefore the effect of the knockdowns on the 

frequency and gross morphology of cilia in H295R cells was examined. After 

transfection with the siRNAs or negative control, cells were fixed and markers of the 

ciliary axoneme and basal body were analysed by confocal microscopy. While there 

was no apparent change in the number of ciliated cells, there was a significant 
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decrease in the length of cilia after transfection with any of the siRNAs (Figure 4.2.2). It 

can therefore be said that IFT88, BBS4 and BBS6 are required for normal cilium 

formation in H295R cells. 

 

 

Figure 4.2.2 – The effects of siRNA on ciliation 
48hrs after transfection with 100nM ciliary targeting siRNAs or a negative control (ctrl), H295R cells 
were fixed and stained with antibodies against acetylated α-tubulin (green), and pericentrin (red). 
DAPI was used to stain the nuclei (blue). Cilia were visualised (A - representative images, cilia are 
indicated by the arrows) and their number (B) and length (C) determined using the Zeiss LSM510 
inverted laser scanning confocal microscope with 63x objective, and the ZEN 2008 Light edition 
software. Scale bar represents 10µm. For each siRNA, cilia were blindly counted from 3 slides, using 5 
maximum intensity projections of z-stacks per slide (N=3). The length of 15 cilia was measured across 
the 3 slides (N=15). The data were analysed using a one-way ANOVA with post-hoc comparisons. Data 
collated, error bars indicate SEM. *** p<0.001 compared to ctrl. 
 

4.3 Cilia are required for zG-like differentiation 

Having established that IFT88, BBS4 and BBS6 mRNAs were successfully knocked down, 

with a corresponding reduction in protein abundance for IFT88 and BBS4, as well as a 
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reduction of cilium length in H295R cells, the effects of these knockdowns on the 

ability of these cells to differentiate was investigated. H295R cells were transfected 

with siRNA targeting IFT88, BBS4 and BBS6 or a negative control and treated with 

angiotensin II (AngII) or forskolin (Fsk). Quantitative real-time qPCR was then carried 

out measuring IFT88, BBS4 and BBS6 expression to assess the effectiveness of the 

knockdown, and CYP11B1 and CYP11B2 expression to determine differentiation of the 

cells by the different agonists.  

Figure 4.3.1A shows that successful knockdown of IFT88, BBS4 and BBS6 were again 

achieved in this experiment, regardless of the inclusion of the differentiation agents in 

the media. In cells transfected with the negative control and treated with AngII or Fsk, 

up-regulation of CYP11B1 and CYP11B2 expression, respectively, was observed (Figure 

4.3.1B-C), similar to the results shown in chapter 3 (Figure 3.4.1). This demonstrates 

that the siRNA transfection protocol itself does not affect differentiation.  

Analysing expression of the zF marker CYP11B1, demonstrated that cells transfected 

with the siRNAs show a similar pattern of its mRNA expression to the negative control, 

with Fsk treated samples having the highest values, and no significant difference 

between them (Figure 4.3.1). AngII treatment also increased CYP11B1 expression, 

which is perhaps reduced by transfection of the specific siRNAs. Untreated, siRNA 

transfected cells show no change in CYP11B1 expression compared with the untreated, 

siRNA negative control. These results suggest that there is no change in the 

differentiation of cells towards a zF-like phenotype when transfected with the ciliary 

gene targeting siRNAs. CYP11B1 expression may, however, be slightly reduced in cells 

differentiating towards a zG-like phenotype after AngII treatment, in combination with 

the siRNA transfections. 

CYP11B2 expression, a marker of the zG, was greatly increased by AngII treatment in 

cells transfected with the control siRNA (Figure 4.3.1C). Treatment with all the gene 

specific siRNAs reduced the level of this increase to approximately half that of the 

control, although this only reached significance when knocking down IFT88. All cells 

treated with Fsk showed a marginal increase in CYP11B2 expression compared with 

untreated cells, regardless of the siRNA transfected, and there was no difference 
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between CYP11B2 mRNA levels in all untreated samples. These data indicate that AngII 

treatment does not increase CYP11B2 expression to the same extent in cells 

transfected with the ciliary gene targeting siRNAs compared to those transfected with 

the control. Therefore it is likely that differentiation towards a zG-like phenotype is 

reduced when IFT88, BBS4 or BBS6 are knocked down in the H295R cell line. 

The above data indicate that when combining transient transfections with AngII or Fsk 

treatment, the expected siRNA target genes are successfully down-regulated, and 

differentiation occurs normally in the negative controls, measured by CYP11B1 and 

CYP11B2 expression. Therefore, this protocol is appropriate for studying the effects of 

siRNA targeted knockdown of ciliary network components, causing reduced cilium 

length and, presumably, function, on H295R cell differentiation. An apparent decrease 

in CYP11B2 expression in cells transfected with the siRNAs in combination with AngII 

treatment was found. As each siRNA targets a different ciliary component, together 

these results imply that there is a role for primary cilia at least as far as AngII signalling 

is concerned, and potentially in the differentiation of H295R cells towards a zG-like 

phenotype.  
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Figure 4.3.1 – The effects of siRNA on differentiation 
Graphs showing the relative quantities of IFT88, BBS4 and BBS6 (A), CYP11B1 (B) and CYP11B2 (C) 
mRNA in H295R cells. Cells were transfected with 100nM siRNA or a negative control (ctrl), and 
differentiated over a 40hr period. Cells were either untreated (UT), or given 10µM Angiotensin II 
(AngII) or Forskolin (Fsk). Quantitative real-time qPCR was carried out measuring IFT88, BBS4, BBS6, 
CYP11B1 or CYP11B2 expression. 18S rRNA expression was used as the loading control. For each gene, 
a one-way ANOVA with pre-planned and post-hoc comparisons of treatments was used to interpret 
the data. N=10 for ctrl, N=7 for siIFT88, N=3 for siBBS4 & siBBS6, data collated, error bars indicate 
SEM. * p<0.05, ** p<0.01, *** p<0.001 compared to UT ctrl, unless otherwise indicated.  
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4.4 The effects of ShhN on differentiation 

The above data indicate that primary cilia may play a key role in the process of 

differentiating H295R cells towards a zG-like phenotype, possibly via the signalling 

pathways to which they play host. Hh signalling is a key pathway involved in adrenal 

development that is also highly reliant upon primary cilia for its correct function. In the 

mammalian adrenal cortex, Hh-expressing cells lie in the subcapsular region, while Hh 

responsive (Gli1-positive) cells are present in the overlying capsule, the predicted 

source of adrenocortical stem cells (Huang et al, 2010; King et al, 2009; Salmon & 

Zwemer, 1941). It is therefore possible that the differentiation of these stem cells into 

zG and zF cells may involve the Hh signalling pathway. Gli1 mRNA expression was 

subsequently measured as a marker of Hh signalling in H295R cells transfected with 

the ciliary targeting siRNAs, and treated with AngII or Fsk, however its expression was 

not significantly altered after any of the transfections or treatments (Figure 4.4.1).  

 

 

Figure 4.4.1 – Gli1 mRNA expression in differentiating H295R cells 
Graph showing the relative quantities of Gli1 mRNA in H295R cells. Cells were transfected with 100nM 
siRNA or a negative control (ctrl), and differentiated over a 40hr period. Cells were either untreated 
(UT), or given 10µM Angiotensin II (AngII) or Forskolin (Fsk). Quantitative real-time qPCR was carried 
out measuring Gli1 expression. 18S rRNA expression was used as the loading control. The data were 
analysed using a one-way ANOVA with pre-planned and post-hoc comparisons of treatments. N=10 
for ctrl, N=7 for siIFT88, N=3 for siBBS4 & siBBS6, data collated error bars indicate SEM.  

Although no clear conclusions could be drawn from the Gli1 qPCR results, Shh-positive 

cells have been shown to give rise to all steroidogenic cell types during development of 

the mouse adrenal, Shh null adrenals exhibit impaired steroidogenic differentiation 

(King et al, 2009), and Shh expression is altered during adrenal remodelling (Guasti et 

al, manuscript in preparation), hence it is possible that Shh regulates adrenal 
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differentiation, and further studies were conducted to help elucidate its role in this 

process. H295R cells were either untreated, or given AngII or Fsk, in the presence or 

absence of ShhN. Quantitative real-time qPCR was then carried out measuring 

CYP11B1 and CYP11B2 expression to determine differentiation of the cells, and Shh or 

Gli1 expression to identify changes in Hh pathway activation.  

With the addition of ShhN, the small increase in CYP11B1 expression produced by 

AngII treatment alone was abrogated, as was the significant increase AngII caused in 

CYP11B2 mRNA levels (Figure 4.4.2A-B). ShhN treatment did not alter the expression of 

either steroidogenic enzyme when combined with Fsk treatment, or used on its own. 

These data suggest that the presence of ShhN inhibits differentiation of H295R cells 

towards a zG-like phenotype, but has no effect on zF differentiation. 

All treatment conditions resulted in similar levels of Shh expression, although they 

were marginally higher in those treated with ShhN (Figure 4.4.2C). Shh is not known to 

positively regulate its own expression and so activation of this pathway with the 

addition of ShhN would not be expected to cause a significant increase in Shh 

expression. It would however be expected to increase the mRNA levels of Gli1. Whilst 

mRNA levels were slightly increased above background in each condition when ShhN 

was used, these increases were not significant (Figure 4.4.2D).  
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Figure 4.4.2 – The effects of ShhN on differentiation 
Graphs showing the relative quantities of CYP11B1 (A), CYP11B2 (B), ShhN (C) and Gli1 (D) mRNA in 
H295R cells. Cells were treated with 0.35µg/ml ShhN in combination with 10µM Angiotensin II (AngII) 
or 10µM Forskolin (Fsk) every 24hrs over a 96hr time period. Quantitative real time qPCR was carried 
out measuring CYP11B1, CYP11B2, ShhN or Gli1 expression. 18S rRNA expression was used as the 
loading control. A one-way ANOVA with pre-planned and post-hoc comparisons of treatments was 
implemented for each gene to interpret the data. N=3, data collated, error bars indicate SEM. * 
p<0.05 compared to UT, unless otherwise indicated. 

Angiotensin II acts via the AT1 receptor in humans, and AT1a and AT1b receptors in 

rodents, to increase CYP11B2 synthesis (Bogdarina et al, 2009; Rainey et al, 2004). If 

Hh signalling via cilia directly influences zG-like differentiation, it may be hypothesised 

that AT1 is a Shh target gene, and Gli1 could alter AT1 production either directly, by 

binding the AT1 promoter, or via up-regulation of other transcription factors. To 

investigate this, H295R cells were co-transfected with a rat AT1b promoter-luciferase 

reporter plasmid (pGL3-AT1b; Dr Irina Bogdarina, Queen Mary University of London) 

and a Gli1 expression plasmid (pEGFP-Gli1; Dr Graham Neill, Queen Mary University of 

London), and stimulated with AngII. A dual-luciferase assay was then performed.  
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Modulation of the AT1b promoter activity will result in changes in luciferase 

expression which can be assessed using a luciferase assay. Overexpression of Gli1 

caused a small decrease in the AT1b promoter activity in these studies, as did 

treatment with AngII, both in the presence or absence of over-expressed Gli1 (Figure 

4.4.3A), although these reductions were not statistically significant. As these results 

suggest that Hh signalling, via Gli1, potentially inhibits the transcriptional activity of the 

AT1b promoter, human AT1 mRNA expression was examined in H295R cells in which 

cilia had been knocked down. 

Cells were transfected with siIFT88 or a negative control, and stimulated to 

differentiate by adding AngII or Fsk. Quantitative real-time qPCR was then carried out 

measuring AT1 expression. Figure 4.4.3B shows that treatment with Fsk, with or 

without siIFT88 transfection, significantly reduced AT1 mRNA expression, as did AngII 

treatment when combined with siIFT88. However, there was no change in AT1 

expression in untreated, siIFT88 transfected cells compared to the untreated control 

cells, suggesting that reducing Hh signalling by impairing cilium formation and function 

with siRNAs, has little impact on AT1 expression. 
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Figure 4.4.3 – AT1 promoter activity and mRNA expression 
(A) Graph showing relative luciferase activities normalised to renilla. H295R cells were co-transfected 
with a rat AT1b promoter-luciferase reporter plasmid (pGL3-AT1b) and a Gli1 expression plasmid 
(pEGFP-Gli1), or their equivalent empty vector controls (pGL3 & pEGFP-N1), and either untreated, or 
stimulated with 10µM Angiotensin II (AngII) for the last 16 hours of the transfection. All cells were 
also transfected with the pRL-CMV renilla control plasmid. After 48hrs a dual-luciferase reporter assay 
was conducted and the data analysed using a one-way ANOVA with post-hoc comparisons of the 
transfections. N=3, data collated, error bars indicate SEM. ** p<0.01, *** p<0.001 compared to pGL3, 
pEGFP-N1 transfected cells without AngII treatment. 
(B) Graph showing the relative quantities of AT1 mRNA in H295R cells. Cells were transfected with 
100nM siRNA or a negative control (ctrl), and differentiated over a 40hr period. Cells were either 
untreated (UT), or given 10µM Angiotensin II (AngII) or Forskolin (Fsk). Quantitative real-time qPCR 
was carried out measuring AT1 expression. 18S rRNA expression was used as the loading control. A 
one-way ANOVA with pre-planned and post-hoc comparisons of treatments was used to interpret the 
data. N=3, data collated, error bars indicate SEM. * p<0.05, ** p<0.01 compared to UT ctrl. 

Although Hh signalling may not regulate AT1 expression, a significant decrease in 

CYP11B2 mRNA expression in H295R cells was seen when ShhN treatment was 

combined with AngII (Figure 4.4.2B). Therefore the ability of ShhN to regulate the 

activity of the CYP11B2 promoter was investigated. Cells were transfected with a rat 

CYP11B2 promoter-luciferase reporter plasmid (pGL3-CYP11B2; Dr Artem Bakmanidis, 

Queen Mary University of London) and treated with AngII and/or ShhN. A dual-

luciferase reporter assay was then carried out. AngII treatment significantly increased 

CYP11B2 luciferase activity, as expected, while ShhN treatment did not (Figure 4.4.4). 

Combining ShhN with AngII treatment also resulted in an increase in CYP11B2 

luciferase activity, but to a lesser extent than AngII treatment alone, suggesting that 

ShhN may be inhibiting the activity of the CYP11B2 promoter. 
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The above data suggest that ShhN, at the concentration used, acts to prevent the 

differentiation of AngII treated H295R cells towards a zG-like phenotype, measurable 

by reduced steroidogenic enzyme expression. However, it is not clear if it exerts this 

effect through activation of the canonical Hh signalling pathway, which requires 

functional primary cilia. It may regulate responsiveness to AngII, and therefore 

CYP11B2 and aldosterone production. 

 

 

Figure 4.4.4 – CYP11B2 luciferase assay 
Graph showing relative luciferase activities normalised to renilla. H295R cells were transfected with a 
rat CYP11B2 promoter-luciferase reporter plasmid (pGL3-CYP11B2) or the equivalent empty vector 
control (pGL3), and either untreated (UT), or stimulated with 10µM AngII, 0.35μg/ml ShhN, or both 
for 32hrs. All cells were also transfected with the pRL-CMV renilla control plasmid. 48hrs after the 
initial transfection a dual-luciferase reporter assay was conducted and the data analysed using a one-
way ANOVA with pre-planned and post-hoc comparisons of the transfections. N=3, data collated, 
error bars indicate SEM. * p<0.05, ** p<0.01, *** p<0.001 compared to pGL3 transfected, untreated 
cells, unless otherwise indicated. 
 

4.5 Wnt signalling 

It has been shown that primary cilia appear to be required for H295R cells to acquire 

zG-like phenotypes, but that ShhN is inhibitory to AngII stimulated differentiation. 

Therefore, other signalling pathways that utilise the cilium may be involved in the 

mechanism by which primary cilia are involved in this process. Components of the 

canonical Wnt signalling pathway have been shown to localise to the cilium (Corbit et 

al, 2005; Satir & Christensen, 2007; Simons et al, 2005), and in some cases, such as in 
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renal cells, correct regulation of its signalling is dependent upon primary cilia 

(Eggenschwiler & Anderson, 2007). Wnt signalling is also required during adrenal 

development. β-catenin is expressed throughout the developing adrenal cortex in 

mice, which then becomes restricted to the subcapsular cells in the adult, and mice 

with conditionally inactivated β-catenin have adrenal aplasia by E18.5 (Kim et al, 

2008a). Furthermore, constitutive activation of β-catenin in the adrenal can lead to 

ectopic expression of CYP11B2 near the medulla (Berthon et al, 2010), and deletion of 

Wnt4 causes loss of the zG (Heikkila et al, 2002). Hence, the relationship between 

primary cilia and canonical Wnt signalling in H295R cells was investigated.  

H295R cells were transfected with a canonical Wnt responsive luciferase reporter 

plasmid (TOPFlash), or control plasmid (FOPFlash), in combination with one of the 

siRNAs targeting components involved in cilium formation and function. A dual-

luciferase assay was then conducted. The M50 Super 8x TOPFlash luciferase plasmid 

has a synthetic promoter composed of seven multimeric TCF/LEF binding sites 

upstream of the luciferase gene, while the promoter of the M51 Super 8x FOPFlash 

luciferase vector contains six mutated TCF/LEF binding sites (Figure 4.5.1A; Prof Randall 

Moon, University of Washington). Disruption of the canonical Wnt signalling pathway 

should result in changes in the amount of β-catenin that translocates to the nucleus 

and interacts with TCF/LEF (T-cell factor/lymphoid enhancer-binding factor) to activate 

transcription of the luciferase reporter. 

Compared to the FOPFlash negative control, the TOPFlash promoter construct was 

highly active in H295R cells, indicating significant canonical Wnt signalling in this cell 

line (Figure 4.5.1B). However, the siRNAs had no effect on the activity of the TOPFlash 

promoter. It is therefore unlikely that canonical Wnt signalling requires, or is inhibited 

by, primary cilia in H295R cells, and thus it may not be involved in the effects observed 

in Figure 4.3.1B above. 
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Figure 4.5.1 – Wnt signalling in H295R cells 
(A) Schematic diagram depicting the M50 Super 8x TOPFlash (i) and M51 Super 8x FOPFlash (ii) 
luciferase plasmids. 
(B) Graph showing relative luciferase activities normalised to renilla. H295R cells were transfected 
with a canonical Wnt responsive luciferase reporter plasmid (TOPFlash), or mutated control 
(FOPFlash) and the pRL-CMV renilla plasmid, either on their own (ctrl) or in combination with 100nM 
siRNA targeting components involved in cilium formation and function (siIFT88, siBBS4, siBBS6). After 
48hrs the cells were harvested and a dual-luciferase assay was conducted. The results were analysed 
using a one-way ANOVA with pre-planned and post-hoc comparisons. N=3, data collated, error bars 
indicate SEM. *** p<0.001 compared to ctrl, TOPFlash transfected cells. 
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4.6 Discussion 

Using siRNAs targeting components required for cilium formation and function, it has 

been possible to knockdown IFT88, BBS4 and BBS6 mRNA expression levels to below 

fifty per cent in H295R cells (Figure 4.2.1A-C). Although not to a similar degree, a 

corresponding reduction in protein abundance was also determined using antibodies 

for IFT88 and BBS4 (Figure 4.2.1D). BBS6 protein levels were not examined due to a 

lack of suitable antibodies. 

Reduced mRNA expression of Hh pathway genes after transfection with siIFT88 shows 

that Hh signalling is impaired, implying the likely reduction of cilium function (Figure 

4.2.1A). Canonical Hh signalling is known to be strictly dependent on the ability of cells 

to form functional cilia in all systems studied, as many components of the pathway are 

localised therein (Haycraft et al, 2005). Hh reporter expression was unchanged in BBS4 

siRNA transfected cells, and perhaps only slightly disrupted in cells that received BBS6 

siRNA (Figure 4.2.1B-C). This most likely reflects the different cellular functions of each 

of these proteins.  

IFT88 is an intraflagellar transport protein that is part of protein complex B within the 

IFT particles (Tobin & Beales, 2009). Not only is it essential for cilium formation, it is 

required for localisation of the Gli transcription factors to the tip of the cilium, 

processing of Gli3 to a transcriptional repressor, and is involved in Gli2 functions 

(Haycraft et al, 2005). Therefore, IFT88 plays a direct role in transmitting the Hh signal. 

In contrast, BBS4 and BBS6 have not been directly implicated in Hh pathway 

transduction. BBS4 is part of the BBSome complex of proteins, which are involved in 

ciliary membrane biogenesis through mediation of vesicular transport (Nachury et al, 

2007), while BBS6 shares structural homology with the group II chaperonins required 

for folding newly synthesised proteins. A reduction in Hh signalling after knockdown of 

BBS4 or BBS6 may only occur as a secondary characteristic of impaired cilium 

formation or function, and hence may not produce as great an effect on the expression 

of Hh reporters. 
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Although disruptions in Hh signalling were not clearly apparent with all the siRNAs, this 

does not mean that other ciliary functions were not disrupted. The percentage of 

ciliated cells remained unchanged, but the length of cilia was severely reduced after 

transfection with any of the siRNAs compared to the negative control (Figure 4.2.2C). A 

reduction in cilium length is highly likely to impact on its function. 

Stunted cilia, or their complete absence, are well documented in cells lacking IFT88, 

however the effect of knocking down BBS genes results in varied phenotypes. BBS1, 4 

or 6 null mice have anosmia, due to disrupted formation of sensory cilia in the 

olfactory epithelium, and develop retinal degeneration, corresponding with a role for 

these proteins in the maintenance of connecting cilia within the photoreceptor cells 

(Kulaga et al, 2004; Ross et al, 2005). BBS5, 7 and 8 have also been shown to be 

required for cilia/flagella assembly in the nematode worm (C. Elegans) and green algae 

(Chlamydomonas) (Blacque et al, 2004; Li et al, 2004). However, BBS4 does not appear 

to be required for cilium formation in the trachea and kidney of BBS4 null mice, but 

the males have aflagellate spermatozoa (Mykytyn et al, 2004), and knockdown of BBS6 

in NIH3T3 cells was reported to cause no change in cilia frequency or gross 

morphology (Kim et al, 2005). While requirement of the BBS proteins in ciliogenesis is 

perhaps dependent on cell type, there is a conserved biological requirement for these 

proteins in cilia maintenance, such as in the Kupffer’s vesicle of zebrafish. Yen et al. 

report progressive loss of these cilia after knockdown of BBS2, 4, 5, 6, 7 or 8 (Yen et al, 

2006). 

Knockdown of the ciliary network components was successful in combination with 

treatments to stimulate differentiation of H295Rs, and differentiation occurred 

normally in the negative controls (Figure 4.3.1). Together, data from CYP11B1 and 

CYP11B2 mRNA expression provides compelling evidence that cilia are required for the 

differentiation of H295R cells towards a zG-like phenotype, particularly as the results 

were reproduced with each siRNA transfection, and each protein knocked down has a 

different role in the ciliary network. On the contrary, it is unlikely that cilia play as vital 

a role in zF differentiation, which would therefore appear to be governed by 

extraciliary signalling pathways. There is currently some debate as to the process of 
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establishing zF cells during remodelling and maintenance of the adrenal gland. They 

may differentiate from stem cells directly, or they could arise from zG cells as they 

migrate centripetally.  

Cilia may mediate zG differentiation by allowing cells to respond to the AngII signal, 

which is transduced via the G-protein coupled receptors AT1 and AT2 on receiving 

cells. Both are expressed in human adrenal tissues (Tanabe et al, 1998), but AT1 

appears to predominate in the cortex, while AT2 has a greater presence in the medulla 

(Lu et al, 1995). AT1 is coupled to Gq which activates phosphoinositidase C (PI3C) 

resulting in increased intracellular calcium levels, and regulation of CYP11B2 

transcription (Bird et al, 1993). It is thought that AT2 has antagonistic functions to AT1 

(Inagami et al, 1999), and is coupled to Giα, which inhibits adenylate cyclase, reducing 

cAMP production (Zhang & Pratt, 1996). AT1 is expressed in H295R cells (Figure 4.4.3B) 

but it would be interesting to determine whether it is located within the ciliary 

membrane, thus this could be the mechanism through which cilia are involved in zG 

specification. This was not carried out due to a lack of suitable antibodies. 

While primary cilia seem to be required for zG differentiation, Hh signalling was found 

to inhibit it (Figure 4.4.2). CYP11B2 expression was abrogated in cells treated with 

AngII in conjunction with ShhN, but again, zF differentiation was unaffected. If ShhN is 

exerting its effect via canonical Hh signalling, it would be expected that Gli1 mRNA 

levels would be increased in all cells treated with ShhN. None of the ShhN treated cells 

showed a significant increase in Gli1 expression, although the AngII treated ones did 

have the greatest mRNA levels. Gli1 expression may have initially increased in 

response to ShhN, but already returned to basal levels at the time the cells were 

harvested. Ptch1 is also up-regulated by Hh signalling and acts as a suppressor, 

providing a means of limiting the extent of the signal (King et al, 2008). Its up-

regulation in cells exposed to prolonged ShhN treatment could restrict the Gli1 

response. 

Although up-regulation of Gli1, which only acts as a transcriptional activator, is 

frequently used as a marker of active Hh signalling (Vokes et al, 2007), the up-

regulation of Hh target genes is not only a consequence of binding transcriptional 
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activators. Hh target genes can also be activated by a reduction in their transcriptional 

repression by Gli3R or Gli2R. Different concentrations of Hh ligand cause alterations in 

the ratio between GliAs and GliRs, allowing different genes to be expressed, depending 

upon their differential responses to de-repression or transactivation, commonly 

referred to as the Gli code (Briscoe, 2009; Jacob & Briscoe, 2003; Ruiz i Altaba et al, 

2007). Therefore, canonical Hh signalling could still be active even in the absence of 

Gli1 up-regulation. 

Different levels of Hh pathway activity are known to influence neuronal cell type 

specification during development of the neural tube and central nervous system 

(Ericson et al, 1996; Ericson et al, 1995a; Ericson et al, 1995b), and so changes in 

expression of Shh could govern adrenal stem/progenitor cell fate. High expression of 

the ligand, as used here, could result in inhibition of differentiation, while lower level 

signalling may stimulate and direct it. Certainly Shh expression changes in adrenal 

remodelling experiments. Mice given the ACE (angiotensin-converting enzyme) 

inhibitor captopril cannot produce AngII, resulting in an extreme reduction in the size 

of the zG, with an increase in Shh expression. In contrast, those fed a low sodium diet, 

which activates the RAA system, have increased CYP11B2 expression, a larger zG than 

control animals, and there is a decrease in the number of cells expressing Shh (Guasti 

et al, manuscript in preparation). This may indicate that Shh is inhibitory to zG 

differentiation from the capsule and its down-regulation is a prerequisite for zG 

expansion, or it could indicate that the Shh-expressing cells themselves are 

differentiating into zG cells. 

At present it is unclear the exact role that Shh plays during development and in the 

adult adrenal. It may be involved in differentiation, and evaluating the response of 

H295R cells treated with AngII and different concentrations of ShhN would be a 

valuable experiment to carry out. However, it is unlikely to be required for zonation as 

although smaller in size, the adrenal glands still form with regular concentric 

steroidogenic enzyme expression in Shh null mice (Ching & Vilain, 2009; Huang et al, 

2010; King et al, 2009). In the adult, Shh may be involved in remodelling of the cortex. 

Lineage tracing studies show that Shh-positive cells are capable of becoming 
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steroidogenic both during development and in the adult mouse, however Gli1 cells 

mainly only contribute to the capsule in the adult (Dr Ed Laufer, personal 

communication), unlike during development when they can give rise to steroidogenic 

lineages (King et al, 2009). A combination of lineage tracing studies and remodelling 

experiments would help clarify the contribution of Shh-positive cells to the cortex in 

the adult. 

To help determine the mechanism by which Hh signalling may play a direct role in zG 

differentiation, the AT1b-luciferase reporter was used in conjunction with over-

expressing Gli1 in H295R cells. The rodent AT1a and AT1b receptors are highly 

homologous to each other, and to the human AT1 receptor. They have near identical 

signalling mechanisms (Inagami et al, 1999), but vary in their expression. AT1a is 

present throughout the adrenal cortex, while AT1b is exclusive to the zG (Naruse et al, 

1998).  

Although high levels of Gli1 appeared to lower AT1b luciferase activity, as did AngII 

treatment, and a further reduction was seen when the two were combined (Figure 

4.4.3A), these reductions were not significant. Bird et al. have previously shown that 

AngII treatment causes a decrease in AT1 mRNA levels in H295s, via PKC and other 

calcium sensitive protein kinases (Bird et al, 1994), even though CYP11B2 expression is 

up-regulated. However, in vivo, AngII causes selective down-regulation of the AT1 

receptor in vascular tissue, while increasing its expression within the adrenal (Clauser 

et al, 1996). Fsk and cortisol are also known to down-regulate AT1 (Bird et al, 1994; 

Dell et al, 1996).  

Further analysis of AT1 in H295R cells transfected with siIFT88 suggests that the ability 

of these cells to form functional cilia does not affect its mRNA expression (Figure 

4.4.3B). However, mRNA expression does not always correspond with protein levels, 

and AT1 could still utilise the primary cilium for signal transduction. At this point it is 

not possible to conclusively rule out the possibility that Hh signalling influences zG 

differentiation via AT1 regulation, although the evidence presented here would 

suggest it is unlikely. 
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An alternative to regulation at the level of the AngII receptor, is regulation of the 

transcription factors that transduce the AngII signal. CYP11B2 promoter activity was to 

some extent reduced in H295R cells treated with ShhN in combination with AngII 

(Figure 4.4.4; p=0.09). This could result from the direct binding of Gli transcription 

factors to the promoter, or via the up-regulation of other transcription factors.  

AngII has also been shown to increase mRNA and protein levels of the nuclear receptor 

NR4A1 in H295R cells, and overexpression of NR4A1 increases CYP11B2 transcription 

(Bassett et al, 2004b). It is therefore thought that NR4A1 is, in-part, responsible for 

regulation of CYP11B2 expression and aldosterone production in response to AngII or 

potassium treatment. Furthermore, NR4A1 has been identified as a target gene up-

regulated by the Hh signalling pathway in pluripotent mouse mesenchymal cells 

(Ingram et al, 2002), and thus may be involved in a system whereby Hh signalling 

positively regulates responsiveness to AngII, for example at lower concentrations of 

the ligand if there is a graded response. 

The data, thus far, indicate that Shh inhibits the differentiation of H295R cells towards 

a zG-like phenotype, but as primary cilia seem to be required for this differentiation 

process then this may be via a non-canonical signalling mechanism. There is a growing 

body of evidence to suggest that such pathways of Hh signalling exist, adding 

significant complexity to the system. This could involve signalling that does not require 

Smo or the Gli transcription factors, atypical interactions of Hh pathway components, 

or their direct interaction with other signalling pathways (Jenkins, 2009).  

In many cases, canonical and non-canonical Hh signalling appear to act in parallel or 

sequentially. For example; commissural axons, which originate in the dorsal neural 

tube, migrate ventrally towards the floor plate during development of the rudimentary 

spinal cord. This initial migration process involves canonical Hh signalling, with Shh 

acting as a chemoattractant (Charron et al, 2003). Shh is expressed in the notochord 

and ventral floor plate cells of the neural tube, and a decreasing gradient of Shh 

expression extends dorsally (Wolpert, 2007). A gradient of Shh expression is also 

present along the caudal-rostral axis of the spinal cord, from high to low (Bourikas et 

al, 2005). Once the commissural axons reach the floor plate they then turn and migrate 
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rostrally, with Shh now acting as a chemorepellant. Using chick embryos, Bourikas et 

al. have shown that Shh may be acting in a non-canonical manner to direct rostral 

turning of the commissural axons. They found that expression of both Ptch and Smo is 

not present in these neurons during this time point, and inhibition of Smo activity 

using cyclopamine or RNAi did not stall or reverse migration in a caudal direction, as 

was found when Shh was targeted with double stranded RNA, or Shh-blocking 

antibodies (Bourikas et al, 2005). 

Additionally, Ptch has been found to interact with cyclin B1, inhibiting its nuclear 

translocation and cell cycle progression (Barnes et al, 2001), as a separate function 

from its role within the Hh pathway, and TGFβ induces up-regulation of Gli1 and Gli2, 

which does not require upstream Hh signalling components (Dennler et al, 2007). 

These observations provide further evidence for non-canonical signalling, which most 

probably does not require functional primary cilia. Therefore, it is hard to say whether 

in this instance Hh is acting via cilia, and so further investigations would be required. 

Wnt signalling is another pathway that is known to rely, in certain tissues, on primary 

cilia for its function, and is required for development of the adrenal gland. It was 

therefore investigated as another means by which cilia may be involved in zG 

differentiation. Initial investigations indicated that it is unlikely that canonical Wnt 

signalling requires or is inhibited by primary cilia in H295R cells, as knockdown of ciliary 

network components did not alter the luciferase activity of the M50 Super 8x TOPFlash 

reporter (Figure 4.5.1B). However, non-canonical Wnt/PCP signalling has also been 

shown to utilise primary cilia (Ross et al, 2005), and so this could be involved in the 

mechanism through which cilia are involved in the differentiation of H295R cells 

towards a zG-like phenotype. 

Reflecting on the aims initially set out in this chapter, the evidence suggests that a full 

length functional primary cilium is required for initiating cell fate decisions in H295Rs 

that result in the zG phenotype. Shh also appears to be involved in this process, but 

may or may not require cilia for its actions in this system. Which other signalling 

pathways act through the cilium is a question that is under intense scrutiny at present, 
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and these pathways may well be involved in adrenal development in addition to or 

separate from Hh signalling. It is highly likely that different mechanisms are involved in 

the regulation of zG versus zF differentiation. 
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5.1 Aims 

Chapter 4 demonstrated that primary cilia are required for the differentiation of 

human adrenocortical carcinoma cells into cells characteristic of the zona glomerulosa 

of the adrenal cortex in vitro. The main aim of this chapter is to indicate the likely 

outcomes of cilia defects on adrenal function in vivo, using mouse and zebrafish 

models of ciliopathies. Adrenals from BBS knockout and wild-type mice are examined 

and compared to identify any differences in histology. The effects of knocking down 

BBS genes in zebrafish embryos, on the subsequent establishment of interrenal cells, 

are also examined. 

5.2 Part A - BBS Mice 

5.2.1 BBS adrenals have reduced capsule density 

Bardet-Biedl syndrome is a ciliopathic disorder characterised by obesity, retinopathy, 

polydactyly, mental retardation, hypogonadism and renal dysplasia (Tobin & Beales, 

2009). Along with other syndromes involving genetic mutations that affect cilium 

formation and function, it exhibits phenotypes similar to those observed in conditions 

arising from disrupted Hh signalling. While many features of BBS have been 

characterised, the variation in patient presentation, combined with a plethora of 

symptoms, may disguise an as yet un-described adrenal phenotype. Prototypical BBS 

phenotypes in mice include; obesity, retinal degeneration, aflagellate spermatozoa and 

olfactory dysfunction, but they do not display polydactyly, renal malformations or situs 

inversus (Kulaga et al, 2004; Mykytyn et al, 2004; Nishimura et al, 2004; Ross et al, 

2005; Zhang et al, 2012). 

Mice with homozygous null mutations in one of several BBS genes were used to 

compare phenotypes and identify common adrenal traits. BBS4 encodes a BBSome 

protein involved in organisation and trafficking at the basal body and within the cilium 

(Nachury et al, 2007), while BBS6 and BBS12 encode proteins that resemble group II 

chaperonins which are involved in folding proteins, possibly those required for 
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ciliogenesis (Tobin & Beales, 2007). Adrenals from mice, age 16-20 weeks, were 

obtained from Professor P. Beales (Institute of Child Health, UCL) and Dr V. Marion 

(Faculté de Médecine, Université de Strasbourg, France).  

Expression of steroidogenic enzymes marking the different cortical zones was 

examined by immunoperoxidase staining with antibodies for CYP11A1 (P450 side chain 

cleavage) and CYP11B1. Figure 5.2.1 shows that CYP11A1 is expressed throughout the 

cortex, but not the capsule, and CYP11B1 expression is restricted to zF cells in both 

wild-type and knockout animals. There is therefore no change in the expression of 

these steroidogenic enzymes in BBS null mice. 

 

 

Figure 5.2.1 – CYP11A1 and CYP11B1 expression in BBS adrenals 
Representative light microscopy images of paraffin embedded adrenal sections from wild-type (WT) 
and BBS null mice showing CYP11A1 (A) and CYP11B1 (B) expression by immunoperoxidase staining. 
Images were taken using the Leica DMR light microscope with 20x and 40x objectives. 
(A) Capsule is indicated by the dotted line, scale bar represents 5µm.  
(B) zG:zF boundary is indicated by the dotted line, zG; zona glomerulosa, zF; zona fasciculata, M; 
medulla. Scale bar represents 10µm. 

Further analysis using haematoxylin and eosin staining revealed that although 

steroidogenic enzyme expression may be normal, adrenals from BBS knockout mice 

have abnormal histology. Several were smaller than those of their wild-type litter 

mates, with very compact layers (Figure 5.2.2A), and one female BBS6 knockout mouse 
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had a rather unusual adrenal phenotype. Groups of spindle-shaped cells were 

identified in the subcapsule, projecting into the zG (Figure 5.2.2B (i) and (ii)). These 

cells were found to be non-steroidogenic nor zF-like, as shown by their lack of 

CYP11A1 and CYP11B1 staining respectively (Figure 5.2.2B (iii) and (iv)). This phenotype 

was limited to a particular area within the adrenal, and was not present in all sections. 

It was also not observed in the second adrenal from the same animal, or in any other 

BBS knockout adrenals.  
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While some BBS null adrenals varied in size compared to those obtained from the wild-

type mice, the most consistently apparent phenotype seen during histological 

examination was thinning of the capsule (Figure 5.2.3B). The knockout animals appear 

to have a capsule approximately 1-3 cells thick, whereas the capsule of the wild-type 

and heterozygous mice is 4-5 cells thick. The density of the capsular cells was 

quantified by staining sections with DAPI and counting the number of capsular nuclei 

within a predetermined area. Nuclei of capsule cells are easily distinguishable from the 

zG cells because they are thin and oriented in the plane of the capsule. A significant 

reduction in capsule density was recorded in all adrenals from null mice, compared to 

their wild-type litter mates (Figure 5.2.3A).  

 

 

Figure 5.2.3 – Capsule density of BBS adrenals (this page and following page) 
(A) Graph showing the relative capsule density of adrenals from BBS null mice compared to their wild-
type (WT) counterparts. The capsule was visualised by staining sections with DAPI to mark the nuclei. 
Images were taken using the Zeiss LSM510 inverted laser scanning confocal microscope with 63x 
objective, and for each genotype, capsular nuclei were blindly counted from 10 areas of a pre-
determined size across 3 sections per adrenal (2 adrenals/genotype) (N=10). Data collated, error bars 
indicate SEM. *** p<0.001 compared to WT. 
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5.2.2 BBS12 null mice have increased serum corticosterone following synacthen 
testing compared to wild-type mice 

Following the observation that there are histological differences between the adrenals 

of BBS null mice compared to the wild-type animals, it was hypothesised that the 

ability of the adrenal to alter its steroidogenic output in response to different stimuli 

could be affected. Corticosterone levels were therefore measured in serum obtained 

from mice after they were injected with synthetic ACTH (synacthen; injections 

performed by Dr V. Marion, Université de Strasbourg, France). High circulating ACTH 

levels should stimulate corticosterone production from the adrenal, to maximum 

levels. Figure 5.2.4 shows that compared to the wild-type mice, BBS12 null mice have 

significantly higher serum corticosterone levels after synacthen testing. 

The above data indicate that adrenals from BBS null mice have an abnormal 

histological appearance, namely a reduced capsule density. This may have possible 

implications on the remodelling capabilities of the cortex, as the capsule is a predicted 

source of adrenocortical stem cells (Huang et al, 2010; King et al, 2009; Salmon & 

Zwemer, 1941). In response to ACTH stimulation, serum corticosterone levels were 

greater in BBS12 null mice than in the wild-type animals, suggesting adrenal steroid 

production may be altered in BBS null mice. 

 

 

Figure 5.2.4 – Corticosterone ELISA 
Graph showing serum corticosterone levels in wild-type (WT) and BBS12 null mice. The concentration 
of corticosterone in serum obtained from mice one hour after injection with 10mg/kg synacthen was 
determined by an ELISA, and a one-way ANOVA was used to interpret the data. N=6, data collated, 
error bars indicate SEM. * p<0.05 compared to WT.  
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5.3 Part B - Zebrafish 

5.3.1 Survival and initial observations 

Zebrafish are an increasingly popular model organism for the study of endocrine 

development and disease. Their external fertilisation, rapid development, and optical 

clarity are extremely advantageous for developmental studies, and importantly for this 

thesis, being a vertebrate model they form primary cilia. Most major aspects of the 

endocrine system and glands are conserved between teleosts and mammals (Liu, 

2007), and the developmental processes governing organogenesis are similar (Hsu et 

al, 2009; McGonnell & Fowkes, 2006). The interrenal is the zebrafish counterpart of 

the mammalian adrenal cortex, and requires Hh signalling, at least in part, for its 

correct development (Bergeron et al, 2008). Zebrafish were therefore used to further 

study the effects of ciliopathies on interrenal development. 

The use of morpholinos (MOs) for targeted knockdown of specific genes in frog 

(Xenopus laevis) and zebrafish embryos has become a widely adopted antisense 

technique, particularly for studying early development. MOs are synthetic antisense 

oligonucleotides of approximately 25 bases in length that bind to a specific RNA 

sequence, blocking either a splice site, or initiation of translation. A control MO or 

ones targeting BBS4 and BBS6, which have previously been characterised (Badano et 

al, 2006; Yen et al, 2006), were injected into zebrafish embryos at the 1-2 cell stage. 

Embryos were then incubated at 28.5°C for 24, 27 or 30 hours. A translation blocking 

MO targeting p53 was included in all injections to reduce off-target neural death. p53 

regulates cell cycle and induces apoptosis, and knockdown of this gene has been 

shown to prevent massive apoptotic responses induced by embryonic microinjection, 

without affecting normal development (Berghmans et al, 2005). 

After dechorionation, initial observations focused on the survival rate of the injected 

as well as uninjected embryos. Figure 5.3.1 shows that the survival rate for uninjected 

embryos was approximately 95%. This dropped to around 65% in embryos subjected to 

injection, but was consistent between the different MOs. Other phenotypes observed 

in injected embryos include those which lacked either a head or tail, and those that 
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had clear developmental abnormalities that were not consistent with the phenotypes 

previously reported for these MOs (Badano et al, 2006). These phenotypes were found 

in all injected groups of embryos, however, the majority were considered ‘normal’. 

 

 

Figure 5.3.1 – Initial observations and survival rate 
Zebrafish embryos were injected with morpholinos at the 1-2 cell stage and incubated at 28.5°C for 
24, 27 or 30 hours. They were then dechorionated and sorted by phenotype. 
(A) Stereo microscopy images of zebrafish embryos showing examples of phenotypes observed and 
classification used during initial sorting. Images were taken using the Leica MXFL III stereo dissecting 
microscope. Scale bar represents 400µm. 
(B) Graph showing the percentage of each phenotype observed in uninjected embryos (uninj), and 
those injected with a control morpholino (MO-ctrl), or morpholinos targeting BBS4 (MO-BBS4) and 
BBS6 (MO-BBS6). For each morpholino and time point, phenotypes were examined in an average of 
135 embryos from 3 experimental sets. 
 

5.3.2 Specific morpholino phenotypes 

After initially sorting the embryos to remove those that were dead or considered 

‘abnormal’, the remaining ‘normal’ fish were further categorised according to the 

phenotypes previously reported for MOs targeting BBS4 and BBS6. Badano et al. 

characterize morphant embryos as those which have moderate or severe shortening of 

the body axis, a wavy, kinked or twisted notochord, and to a lesser extent, broadening 

of the notochord and somites, loss of somatic definition, and defects in tail extension 

(Badano et al, 2006). Figure 5.3.2A-B shows that all uninjected fish had a straight body 
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axis, which was also observed in the majority of embryos injected with the control 

(ctrl). On average, 53% of embryos injected with MO-BBS4 or MO-BBS6 showed severe 

ventral curvature and shortening of the body axis, which was the most common 

phenotype recorded. To a lesser extent, bending at the tip of the tail or a moderate 

curvature of the body length were also found in injected embryos. Kinking of the 

notochord was evident in MO-BBS4 and MO-BBS6 embryos (Figure 5.3.2C), but was not 

apparent in MO-ctrl or uninjected fish. Those embryos which displayed both a 

moderate to severe ventral curvature or shortening of the body axis, and kinking of the 

notochord were used for further experimentation. 

 

 

Figure 5.3.2 – Classification of morpholino phenotypes (this page and following page) 
Zebrafish embryos injected with morpholinos at the 1-2 cell stage were examined 24, 27 or 30 hours 
post fertilization (hpf). After initial sorting they were then classified in accordance with previously 
described phenotypes (Badano et al, 2006). 
(A) Graph showing the percentage of each phenotype observed in uninjected embryos (uninj), and 
those injected with a control morpholino (MO-ctrl), or morpholinos targeting BBS4 (MO-BBS4) and 
BBS6 (MO-BBS6) at the three time points. For each morpholino and time point, phenotypes were 
examined in an average of 75 embryos from 3 experimental sets.  
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Having established the previously characterised zebrafish phenotypes for knockdown 

of BBS genes using MOs, the resulting effects on ciliation were examined. Confocal 

microscopy using an antibody for acetylated α-tubulin was carried out to visualise cilia. 

Figure 5.3.3 shows that there was a small reduction in the number of cilia within a 

region in the tip of the tail of embryos injected with MO-BBS6, but a greater reduction 

in those injected with MO-BBS4. However, the length of cilia was significantly reduced 

in both groups of embryos compared to those injected with the control. A reduction in 

cilium length, similar to the observations in the previous chapter, suggests that cilium 

function is likely to be impaired. 
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Figure 5.3.3 – The effects of morpholinos on ciliation (continued) 
(B-C) Graphs showing the relative abundance of cilia (A), and their length (B), determined using the 
ZEN 2008 Light edition software. For each morpholino, cilia were blindly counted from 3 embryos, 
using 3 areas of a pre-determined size within the tail region per embryo (N=3). The length of cilia was 
measured in 10 areas of a pre-determined size across the 3 embryos (N=10). The data were analysed 
using a one-way ANOVA with post-hoc comparisons. Data collated, error bars indicate SEM. ** p<0.01 
compared to MO-ctrl. 
 

5.3.3 Ff1b expression 

MOs targeting BBS4 and BBS6 appear to impact on the ability of cells in the zebrafish 

embryo to form primary cilia, with a resulting disruption of some aspects of 

development; including that of the notochord and body axis. After injection at the 1-2 

cell stage, embryos were incubated at 28.5°C for 24, 27 or 30 hours, which cover the 

major time points of interrenal development. The effects of the MOs on the 

establishment of interrenal cells were investigated by using whole mount in situ 

hybridisation, with an ff1b mRNA targeting probe. Ff1b is the earliest molecular 

marker specifying interrenal cell lineages and is required for the development of 

steroidogenic interrenal tissue (Chai et al, 2003). 

Figure 5.3.4A-B shows that at 24hpf, ff1b is expressed as two spots in the majority of 

both uninjected embryos and those injected with the control. By contrast, all embryos 

injected with MO-BBS4 or MO-BBS6 had no ff1b-expressing cells at that time. As the 

time points progress, more uninjected and control fish show ff1b expression as a single 

spot as the two pools of cells merge, slightly to the right of the midline, at the level of 

the 3rd somite. At 27 and 30hpf some MO-BBS4 and MO-BBS6 injected embryos 

started to display ff1b expression; however the majority continued to lack its 
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expression all together. Of those that did express ff1b, the staining appeared to be less 

distinguished than in the control fish, and the area of staining was reduced in size 

(Figure 5.3.4C). Measurement of the width of all ff1b spots was carried out at the 

widest point of the staining, and in all cases the ‘spot diameter’ was found to increase 

slightly as the embryos aged. These data suggest that inhibiting cilium formation and, 

presumably, function, with the use of MOs, results in a delay and reduction in the 

development of interrenal cells during the development of the zebrafish embryo. 
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Figure 5.3.4 – The effects of morpholinos on ff1b expression (continued) 
(B) Graph showing the percentage of each ff1b expression phenotype observed in uninjected embryos 
(uninj), and those injected with a control morpholino (MO-ctrl), or morpholinos targeting BBS4 (MO-
BBS4) and BBS6 (MO-BBS6) at the three time points. For each morpholino and time point, ff1b 
expression was examined in 12 embryos from 3 different experimental sets. 
(C) Graph showing the diameter of the spots of ff1b expression in uninjected embryos (uninj), and 
those injected with a control morpholino (MO-ctrl), or morpholinos targeting BBS4 (MO-BBS4) and 
BBS6 (MO-BBS6) at the three time points. For uninj and MO-ctrl groups 8 spots were measured per 
time point. For MO-BBS4 and MO-BBS6 groups 4 spots were measured per time point. The data were 
analysed using a one-way ANOVA with post-hoc comparisons. Data collated, error bars indicate SEM. 
* p<0.05, ** p<0.01, *** p<0.001 compared to MO-ctrl at corresponding time points. 
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5.4 Discussion 

The above data show that BBS null mice have a reduced adrenal capsule density 

(Figure 5.2.3), and possibly altered adrenal steroid production (Figure 5.2.4). Some 

adrenals were also smaller than those from wild-type animals, and one BBS null mouse 

displayed non-steroidogenic, spindle-shaped cells in the subcapsule and zG (Figure 

5.2.2). Using zebrafish it has been shown that interrenal development is delayed and 

possibly reduced in embryos injected with BBS-targeted MOs. 

A key feature of mouse models of adrenal hyperplasia and adrenocortical tumours is 

the presence of spindle-shaped ‘A cells’ which project from the capsule/subcapsular 

region into the zG (Berthon et al, 2010; Bielinska et al, 2003; Hughes et al, 2012; Kim et 

al, 1997; Parviainen et al, 2007). These cells are non-steroidogenic and express the 

gonadal transcription factor GATA4, which is normally only present in foetal 

adrenocortical cells (Viger et al, 1998), where it may be involved in the regulation of 

SF1 (Tremblay & Viger, 2003). These ‘A cells’ are also Gli1-positive (Hughes et al, 2012) 

and it has been hypothesised that they are derived from subcapsular progenitor cells 

that deviate from their ‘normal’ differentiation pathway. The phenotype described in 

Figure 5.2.2B, resembles that of these previously described spindle-shaped ‘A cells’. 

They too are non-steroidogenic and likely to express GATA4.  

In mice with gonadectomy-induced adrenocortical tumours, serum luteinising 

hormone levels are elevated, and GATA4 and LHR (Leutinising Hormone Receptor) 

expression are increased within the ‘A cells’ of the adrenal cortex (Bielinska et al, 2006; 

Bielinska et al, 2003). Progression of tumour formation leads to the development of 

sex steroid producing ‘B cells’ within the clusters of ‘A cells’, and hence it is thought 

that the subcapsular adrenocortical cells have undergone metaplasia to form tissue 

resembling gonadal stroma (Bielinska et al, 2006; Bielinska et al, 2003). Hypogonadism 

is a feature of Bardet-Biedl syndrome and therefore it is possible that ovarian function 

in the BBS6 KO mouse examined in Figure 5.2.2B was disrupted by the ciliopathy, 

leading to reduced production of sex hormones, hypogonadism, and subsequent 

elevated LH levels leading to an adrenal tumour with gonadal features. This may be a 
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rare occurrence, depending on which organs or systems are affected by the ciliopathy 

in each individual case. However, it does appear to be a secondary characteristic, and 

while it is an interesting finding, it is unlikely to reveal a direct role for primary cilia in 

the adrenal but could indicate the possibility of increased incidence of adrenal 

hyperplasia in BBS patients. It may be also worth noting that GATA4 expression has 

been found in some human adrenocortical tumours (Kiiveri et al, 2004). 

Genetic ablation of Shh in mice results in small adrenals with thin capsules (Ching & 

Vilain, 2009; Huang et al, 2010; King et al, 2009). Cortical proliferation and apoptosis 

are normal, but proliferation in the capsule is reduced (Huang et al, 2010), and it is 

possible that impaired expansion and growth of the gland results from the decreased 

capsule density. In accordance with the dual lineage model of adrenocortical 

development proposed by King et al. (King et al, 2009), cells in these smaller adrenals 

would arise from an initial Shh-independent primary cell lineage. However, a 

secondary Shh-dependent cell lineage derived from the capsule, required for growth 

and expansion of the cortex during development (Huang et al, 2010; King et al, 2009), 

and possibly maturation and maintenance in the adult, fails to develop. Currently it is 

not known why the capsule is thin in these KO animals; Shh signals from the periphery 

of the cortex to the overlying capsular cells and could therefore be acting as a mitogen, 

as suggested by the reduction in the percentage of Ki67-positive cells in the capsule in 

Shh KO mice (Huang et al, 2010), could inhibit the differentiation of stem/progenitor 

cells within the capsule/subcapsule into cortical cells, or could act as a 

chemoattractant, helping to draw in cells from the surrounding mesenchyme to form 

the capsule. 

Although zonation and differentiation of cortical cells still occurs in conditional Shh KO 

mice, and are likely to be Shh-independent processes, steroid synthesis may be 

impaired due to a reduction in the size of the gland. Huang et al. report that plasma 

corticosterone levels, although normal at 18dpf and 5 days postpartum (P5) in these 

mice, become significantly reduced by P21 (Huang et al, 2010). Therefore, the ability of 

the cortex to regulate steroidogenic output by remodelling in response to stress or 

changes in salt/water balance, is likely to be compromised. 
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Adrenals examined from BBS KO mice also have a reduced capsule cell density 

compared to their wild-type littermates (Figure 5.2.3), and this is likely to result from 

reduced Hh signalling caused by the ciliopathy. Normal zonal steroidogenic enzyme 

expression was observed (Figure 5.2.1), but the majority were not significantly smaller 

in size. As a decrease in Hh pathway activity may be an indirect effect resulting from 

the knockdown of BBS genes, and it is unlikely all signalling is abrogated, it is not 

surprising that the adrenal phenotype observed is not as severe as that of the 

conditional Shh KO mice. Even so, as the capsule is thought to be a source of new 

adrenal cells, and is significantly reduced in size, these mice are likely to have impaired 

remodelling capabilities, and consequently impaired steroidogenic output, for example 

increasing aldosterone production in response to low sodium. 

Preliminary experiments looking at corticosterone production in response to ACTH 

stimulation have indicated that adrenal steroidogenic output may be altered in BBS12 

null mice (Figure 5.2.4). Synacthen testing resulted in higher serum corticosterone in 

BBS12 null mice than the wild-type animals, which could point toward greater activity 

of the zF. Certainly the concentration of corticosterone measured from wild-type mice 

after ACTH injection is comparable to levels seen previously using this technique 

(Meimaridou et al, 2012), however basal corticosterone levels were not recorded, and 

thus BBS null mice may have higher basal circulating corticosterone levels. If that is the 

case, synacthen testing could result in an equivalent increase in corticosterone 

compared to the wild-type mice, or if basal levels are dramatically increased, adrenal 

steroidogenic output may be unaltered after ACTH stimulation.  

A possible explanation for increased serum corticosterone in BBS null mice stems from 

their obese phenotype. These mice have more adipose tissue, thought to be a result of 

leptin resistance or insensitivity, combined with increased adipogenesis (Marion et al, 

2009), and it has been shown that 11β-HSD1 (11β-hydroxysteroid dehydrogenase type 

1) expression and activity can be increased in adipose tissue in both mouse models of 

obesity, and obese humans (Livingstone et al, 2009; Wake et al, 2007). 11β-HSD1 

enhances the bioavailability of corticosterone by reducing inert 11-

dehydrocorticosterone, thereby counteracting the effects of 11β-HSD2 (11β-
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hydroxysteroid dehydrogenase type 2) (Seckl & Walker, 2001). This could therefore 

cause the increased serum levels seen here, rather than an increase in adrenal 

corticosterone production. If adrenal corticosterone was increased it should be 

associated with zF hypertrophy or hyperplasia, which we did not find, as seen in mouse 

models and humans with Cushing’s disease (Helseth et al, 1992). Basal serum 

corticosterone and aldosterone levels should now be measured, as well as 11β-HSD1 

activity, and circulating levels of other components of the HPA axis and RAA system to 

identify any differences.  

Phenotypes for the targeted knockdown of BBS4 and BBS6 genes in zebrafish using 

MOs have previously been characterised (Badano et al, 2006; Tayeh et al, 2008; Yen et 

al, 2006). However, investigations looking at the inclusion of an interrenal phenotype 

have not been implemented. MO microinjections resulted in the generation of 

embryos with moderate or severe shortening of the body axis (Figure 5.3.2B), and a 

kinked notochord (Figure 5.3.2C), thus recapitulating the previous studies. Injected 

embryos had a reasonable survival rate, which did not vary between MOs (Figure 

5.3.1). A reduction in protein expression, either by whole mount 

immunohistochemistry or western blotting, was not carried out due to a lack of 

suitable antibodies. However, Badano et al. found that co-injection with BBS4 or BBS6 

RNA rescued these phenotypes, indicating that they are specific for the MOs (Badano 

et al, 2006).  

Knockdown of BBS4 and BBS6 also caused a reduction in the number and length of cilia 

in the zebrafish tail (Figure 5.3.3). This corresponds with the report by Yen et al. that 

there are fewer cilia in the Kupffer’s vesicle, and they are significantly shorter by the 

10-13 somites stage after injection with BBS targeting MOs (Yen et al, 2006). Kupffer’s 

vesicle is the zebrafish equivalent of the mammalian embryonic node, involved in the 

generation of left-right asymmetry during development (Essner et al, 2005). Therefore 

cilia formation and/or maintenance requires BBS proteins in zebrafish, and cilia 

function is expected to be disrupted in embryos injected with MO-BBS4 or MO-BBS6. 



CHAPTER 5: IN VIVO MODELS 

156 

During zebrafish development, ff1b expression is first detected around 20-22hpf, 

specifying two pools of interrenal cells which then migrate medially and fuse to form 

one group of cells by 28hpf (Liu, 2007). Ff1b expression was either absent or delayed in 

zebrafish injected with MOs targeting BBS4 or BBS6 (Figure 5.3.4). In the delayed 

phenotype, the area of expression was also considerably reduced, and the staining was 

not as defined, indicating that cilia are required for, or involved in, the establishment 

of ff1b-positive interrenal cells during embryogenesis. Just as SF-1 is essential for 

adrenal development in mammals (Luo et al, 1994), ff1b is thought to be absolutely 

required for the development of steroidogenic interrenal tissue in teleosts (Chai et al, 

2003), and therefore in the absence of functional cilia, this process is likely to be 

disrupted. 

In mammals, Hh signalling is closely regulated by cilia. Studies looking at zebrafish with 

non-functional cilia have revealed that they are required for maximal Hh pathway 

activation, but not low level signalling (Huang & Schier, 2009). Thus, the delayed or 

absent specification of interrenal cells in MO-BBS4 or MO-BBS6 injected embryos could 

be attributed to a reduction in high level Hh signalling, caused by disrupted cilium 

formation and function. Although murine SF-1 expression is not governed by Hh 

signalling (Huang et al, 2010), expression of both ff1b (in the interrenal gland) and WT1 

(in the pronephric primordium) were found to be reduced in smu (slow-muscle 

omitted) and dtr (detour) mutant zebrafish (Bergeron et al, 2008), in which Smo and 

Gli1 respectively are inactivated. WT1 is however a determining factor for ff1b 

expression (Hsu et al, 2003), so Hh signalling may either directly or indirectly 

determine its expression. It may also be worth mentioning that yot (you-too; C-

terminally truncated Gli2), smu, dtr and syu (sonic-you; deleted Shh) mutant zebrafish 

all have ventral spinal curvature (Brand et al, 1996), and some have neural tube 

defects, further suggesting that the phenotypes seen in MO-BBS fish could be a result 

of impaired Hh signalling.  

Given that some MO-BBS injected fish were still able to form interrenal tissue, albeit to 

a reduced extent, this could indicate that cilia, via Hh signalling, may only be partially 

required for interrenal gland development or there is a threshold. In mice, a primary 

adrenal cell lineage forms in the absence of Shh, but specification of a second cell 
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lineage, and growth, expansion and maintenance of the gland in the adult is Shh-

dependant (Huang et al, 2010; King et al, 2009). Hence, the requirement of cilia could 

correspond with a requirement for Hh signalling. 

Alternatively, PCP signalling is perturbed in both BBS null mice and zebrafish injected 

with BBS targeting MOs (Ross et al, 2005), and this non-canonical Wnt pathway could 

be involved in adrenal/interrenal development. Zebrafish lacking the non-canonical 

Wnt, Wnt5, have a shortened tail and body axis, with similarity to the observed BBS 

phenotypes (Ross et al, 2005; Westfall et al, 2003), and Wnt4 may play a role in the 

process of distinguishing adrenal from gonadal cells in the murine adrenogonadal 

primordium (Heikkila et al, 2002). Wnt4 mutant mice also have reduced expression of 

CYP11B2 in the cortex, with a corresponding decrease in serum aldosterone, indicating 

that Wnt4 is required for zG development (Heikkila et al, 2002). Although, Wnt4 can 

act via both the non-canonical and canonical Wnt pathways (Du et al, 1995; Lyons et 

al, 2004), so either could be the mechanism by which it is acting. In zebrafish, along 

with Wnt11, Wnt4 is required for the convergence of several organ precursors at the 

midline (Matsui et al, 2005), which could include interrenal cells, as midline migration 

is a key step in the development of this gland. 

Animal models provide us with the ability to study human diseases in vivo. The 

mammalian mouse model is genetically more similar to humans than zebrafish are, 

however this latter vertebrate model organism has the advantages of being cheaper, 

having easily accessible embryos, and a shorter generation time (Eisen & Smith, 2008). 

By combining the study of both models, the data shown in this chapter indicate that 

there is a conserved requirement of primary cilia for normal adrenal/interrenal gland 

development across vertebrate species. Addressing the initial aims of this chapter, 

these in vivo studies suggest that adrenal function could be impaired in patients with 

ciliopathic disorders.  
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H295Rs are the most useful adrenal cell line available at present. They express all 

enzymes required for steroidogenesis, produce cortisol, aldosterone and DHEA, the 

major steroidal outputs from the human adrenal, and are responsive to angiotensin II 

and forskolin. They express many components required for Hh signalling, including 

having the capacity to form primary cilia, and are likely to respond to Hh pathway 

agonists in a canonical signalling manner. Differentiation of these cells towards the 

zonal phenotypes of the mammalian adrenal cortex is measurable by real-time qPCR of 

their steroidogenic enzyme expression levels. They are therefore a valuable tool for in 

vitro experimentation.  

Using siRNA it was possible to knockdown IFT88, BBS4 or BBS6 in H295R cells, with 

accompanying reductions in cilium length. Knockdown of these ciliary network 

components preceding stimulation of differentiation indicate a requirement for 

primary cilia in the acquisition of zG-like phenotypes. On the contrary, differentiation 

in the presence of ShhN identified that high Hh pathway ligand concentrations, and 

presumed canonical signalling, inhibit zG-like phenotypes. Primary cilia are therefore 

feasibly required for initiating cell fate decisions in H295R cells that result in the zG 

phenotype, which may involve different levels of Hh pathway activation. Other 

pathways that utilise the cilium for signal transduction are also anticipated to be 

involved in this process, although canonical Wnt signalling is an unlikely candidate. 

Murine ciliopathy models of BBS have a thinner capsule, indicative of inadequate Hh 

signalling, which is required for normal growth of the capsule and adrenal cortex 

during development and in the adult. In zebrafish, knockdown of BBS genes using 

morpholinos resulted in a decrease in the number and length of cilia, and absence, or 

delayed and reduced specification, of interrenal cells. Together these in vivo studies 

imply there is a requirement for primary cilia in adrenal/interrenal gland development, 

which is conserved between vertebrate species. As we know from previous mouse 

studies (Ching & Vilain, 2009; Huang et al, 2010; King et al, 2009), Hh signalling is 

absolutely required during adrenal development, and as suggested in vitro, it may too 

be responsible in-part for the phenotypes seen here, and/or non-canonical Wnt/PCP 

signalling. One possibility that emerges from these zebrafish studies is that, following 

further analysis and comparison of pathways, this could become a model organism for 
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adrenal development and function, leading to the reduction in, and replacement of, 

genetic mouse models in future research. 

Acknowledging the main aims of this thesis, through in vitro and in vivo 

experimentation, it has been shown that primary cilia are very likely to be involved in 

adrenal development and function. The role of Sonic Hedgehog signalling in these 

processes has also been to some extent further characterised. These findings will help 

advance the current understanding of adrenocortical development, and may impact on 

patient care, as adrenal function could be compromised in patients with ciliopathic 

disorders. 

The next logical step in this investigation would be to measure basal circulating steroid 

levels in BBS mice, to identify if the increased serum corticosterone after synacthen 

administration compared to wild-type animals truly exists. Synacthen testing of BBS 

patients to screen for adrenal pathologies could also be conducted. BBS affects many 

organ systems and presents itself differently between patients; therefore diagnostic 

phenotypes of adrenal malfunction may be masked by a wide range of other 

symptoms. 

Further research in vitro could explore the effects of varying ShhN concentrations on 

zG differentiation, as well as the use of other Hh pathway agonists, or over expression 

of Gli1. siRNA targeting Hh pathway components would perhaps counteract these 

effects clearly implicating canonical Hh signalling as the mechanism involved in this 

process. Non-canonical Hh signalling could also be investigated in H295R cells. Using 

lentiviral technology; generation of an H295R knockdown or inducible knockdown cell 

line, for ciliary network components, would help facilitate research on the mechanisms 

through which primary cilia are involved in adrenal development and differentiation. 

Breeding BBS knockout mice with those containing a Gli1 binding site-GFP reporter, to 

allow easy visualisation of active Hh signalling, would provide a system in which to 

determine if primary cilia and Hh signalling are involved in remodelling of the adrenal 

in vivo. Mice would be provided with a sodium-restricted diet, or captopril via the 
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drinking water to inhibit ACE (angiotensin-converting enzyme), thus stimulating or 

repressing zG activity respectively. Plasma aldosterone and corticosterone content 

could be examined, as well as adrenal zonation by in situ hybridisation with 

steroidogenic markers.  

Morpholino studies in the zebrafish could be widened to investigate the expression 

patterns of steroidogenic enzymes and Hh pathway components. Photoactivatable 

MOs could also be used to control specific knockdown spatially and temporally, and 

determine if the interrenal phenotypes are a primary of secondary characteristic of 

globally impaired ciliogenesis. Alternatively, interrenal development could be analysed 

in zebrafish mutants such as ift172hi2211Tg/+, ift57hi3417Tg/+, ift81hi409Tg/+ and ift88tz288/+.  

Primary cilia are beginning to impact greatly on endocrine research, as well as within 

the cancer and developmental biology fields. The development and maintenance of 

the different adrenocortical zones and their correct steroidal output are extremely 

important for health, controlling the stress response and blood pressure, disorders of 

which are an increasingly important clinical problem. Adrenal hyperplastic disorders 

typically result from steroidogenic enzyme mutations, with the most common caused 

by 21-hydroxylase deficiency (CYP21, OMIM 20190), occurring in approximately 

1/15,000 live births. Adrenal hypoplasia (OMIM 300200) results from incorrect 

development of adrenocortical cells. Both of these conditions are lethal without 

lifelong hormone replacement therapy. 

Identifying the key pathways and mechanisms involved in adrenal ontogenesis will 

help to increase our current understanding of this process. This will hopefully enhance 

the progression towards gene therapy and regeneration technologies for patients with 

adrenal failure, congenital steroid deficiency, or in the post-operative management of 

patients with endocrine tumours. These would be a welcome alternative to lifelong 

therapeutic intervention by hormone replacement, which is still associated with 

reduced quality of life and significantly increased mortality, can have the side effects of 

psychological disturbances and does not address secondary issues present 

occasionally, such as infertility. 
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The data presented in this thesis not only confirm and extend our understanding of the 

role of Shh signalling in the adrenal, but also advocate that primary cilia are required 

for correct adrenal development, possibly via the Hh (and other) signalling pathways. 

Further elucidation of the signalling pathways that utilise primary cilia in the 

development of the adrenal gland, will progress our understanding of adrenocortical 

development and remodelling, and will hopefully lead to improved management of 

adrenal dysfunction. Determining a functional adrenal deficit caused by ciliopathies 

will stimulate clinical investigations into as yet unassigned cases of adrenal 

insufficiency, as well as prompt a review of the clinical management of patients 

affected by these conditions. Ultimately, identifying that adrenal defects are a 

characteristic of ciliopathies will have a huge impact on patient care. 
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