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ABSTRACT 
 

The growth of tumours within a whole organism depends on the tumour 

microenvironment. This involves both resident stromal cells, such as endothelial cells 

and fibroblasts, and also bone marrow derived stromal cells. Integrins and growth 

factor receptors are known regulators of the tumour stroma. Since focal adhesion 

kinase (FAK) is a downstream effector of both integrins and growth factor receptors it 

likely also plays an important role in the regulation of the tumour microenvironment.  

 

 

Using adult mice where FAK is deleted ubiquitously after treatment with tamoxifen 

my data demonstrate that loss of stromal FAK inhibits tumour growth and 

angiogenesis but increases metastasis burden in experimental metastasis assays even 

when the tumour cells themselves still express FAK. Moreover, my data indicate loss 

of FAK in the bone marrow (BM) compartment and specifically in myeloid cells is 

sufficient to enhance tumour metastasis in experimental metastasis assays and in a 

spontaneous tumour model. In contrast loss of bone marrow FAK was not sufficient 

to affect primary tumour growth or angiogenesis. Taken together these data 

demonstrate that bone marrow derived FAK plays a significant but differential role in 

primary tumour growth and metastasis.  
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In a parallel study, I have developed a novel set of transgenic mice to enable us to 

dissect the mechanism of FAK function in primary tumour growth, metastasis and 

angiogenesis. I have generated point-mutant FAK knockin-knockout mice where 

mutant FAK is inducibly expressed (knockin) and endogenous FAK deleted 

(knockout) in specific cell types in adult mice. Here I show efficient deletion of 

mouse FAK and expression of FAK 861F mutant in tamoxifen-treated endothelial 

cells isolated from mice. Importantly the FAK 861F mutation in endothelial cells was 

sufficient to decrease tumour growth and angiogenesis in vivo suggesting that the 

FAK-P-Y861 phosphorylation site plays an important role in tumour growth and 

angiogenesis. 
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1. INTRODUCTION 
 

1.1. Tumourigenesis 

Tumourigenesis defines a multistep process that drives the progressive transformation 

of normal cells into highly proliferative derivatives. The most important characteristic 

of a cancer cell is the defect in regulation of normal cell proliferation and 

homeostasis. Hanahan and Weinberg (Hanahan and Weinberg, 2000; Hanahan and 

Weinberg, 2011) originally described at least six hallmarks of cancer: self-sufficiency 

in growth signals; insensitivity to growth inhibitory signals (evading growth 

suppressors); evasion of programmed cell death (apoptosis); limitless replicative 

potential; sustained angiogenesis (see 1.3) and tissue invasion and metastasis (see 

1.2).  

 

Although tumour cells proliferate under inappropriate conditions they do not 

necessarily proliferate faster than normal cells, rather their growth is not restrained to 

appropriate time and conditions. Genetic alterations in human cancers generally 

comprise activation of proto-oncogenes (into oncogenes) and inactivation of tumour 

suppressor genes. Oncogenes can induce expression of growth factors, growth factor 

receptors, signal transducers and transcription factors that allow the liberation of 

cancer cells from dependence of external growth signals. Tumour suppressors, on the 

other hand, limit cell growth and proliferation by activation of senescence or 

apoptosis programmes (Hanahan and Weinberg, 2000).  
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Normal epithelial cells cultured in vitro show contact inhibition through cell-to-cell 

and cell-to-substrata interactions that restrain their proliferation.  Cancer cells lose this 

contact inhibition and are able to proliferate irrespective of interactions with other 

cells or substrata. In vivo extracellular matrix components (ECM) that form the cell 

basement membrane generate physical barriers that restrain and control proliferation 

(see 1.4) (Eagle and Levine, 1967) . Cancer cells are capable of changing their 

extracellular matrix receptor profiles, i.e., integrins, thus controlling interactions with 

the ECM and switching cell behaviour from quiescent to motile and proliferative 

(Desgrosellier and Cheresh, 2010; Kren et al., 2007).  

 

Finally it is accepted that to generate solid tumours cancer cells have to acquire 

unlimited replicative potential. Telomere shortening has been shown to induce 

replication-induced senescence and limit replicative potential. Perhaps for this reason 

telomerase (the enzyme responsible for telomere elongation) was shown to be 

expressed in 85% of tumours and appointed as a possible cancer therapy target 

(Martinez and Blasco, 2011). 
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1.2. Tumour metastasis 

Metastasis is defined as the development of secondary tumours at a site that is distant 

from the location of the primary cancer (Coghlin and Murray, 2010).  Traditionally 

this process has been viewed as a final step in tumour progression. The conventional 

description of the metastatic steps include: (1) extracellular matrix degradation and 

local invasion of host stroma by tumour cells; (2) intravasation into lymphatic or 

vascular vessels; (3) survival in the circulation; (4) extravasation into target tissues; 

(5) survival and colonisation of these tissues by metastatic tumour cells to form 

micrometastases and (6) proliferation and angiogenesis activation to form clinically 

detectable metastasis (Talmadge and Fidler, 2010).  

 

Metastatic cell behaviour has been studied for decades and is still not fully 

understood. In order for cancer cells to invade the surrounding stroma they have to 

overcome cell-to-cell adhesion. Therefore one of the common concepts associated 

with metastasis is epithelial-to-mesenchymal transition (EMT) which is the process by 

which cells lose their epithelial characteristics, such as cell-to-cell adhesion and 

planar and apical polarity, to acquire mesenchymal features such as motility and 

invasiveness (Polyak and Weinberg, 2009).  E-cadherin is a major mediator of cell-to-

cell adhesion between normal epithelial cells (Aberle et al., 1996) and its expression 

has been shown to be lost during tumour metastasis in several human epithelial 

cancers (Birchmeier and Behrens, 1994).  In mouse models, loss of E-cadherin 

expression was also shown to be coincident with the transition to invasive carcinoma 

and associated with early invasion and metastasis (Perl et al., 1998). β-catenin 

interacts with the cytoplasmatic tail of E-cadherin at the plasma membrane and by 
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linking it to the cytoskeleton is essential for E-cadherin function (Aberle et al., 1996; 

Stappert and Kemler, 1994). Translocation of β-catenin from the adherens junction to 

the nucleus has been associated with the loss of membrane E-cadherin that, through 

activation of target genes, such as the E-cadherin gene repressor SLUG, and triggers 

EMT (Conacci-Sorrell et al., 2003).  Loss of E-cadherin was analysed in human tissue 

samples of one of the most well studied epithelial tumours, colorectal cancer, that has 

a very defined histological progression from adenoma to carcinoma. These tumours 

have an epithelial growth pattern and only at the invasive front they resemble EMT. 

Together with plasma membrane loss of E-cadherin the authors have observed an 

increased nuclear localisation of β-catenin at the invasive front of the tumour, features 

that are absent in the central mass of the tumour. Interestingly growing metastases 

again showed membrane localisation of E-cadherin and β-catenin (Brabletz et al., 

2001). This study suggests that the defects in cell-to-cell adhesion, observed in 

invasion, might be reversed in order to re-establish a metastatic growing tumour.  

Some authors had already suggested that tumour cells have to reverse EMT through a 

mesenchymal-epithelial transition (MET) after dissemination to be able to form a 

metastasis phenotypically similar to the primary tumour (Brabletz et al., 2005).  These 

studies suggest cancer cells change their adhesion profiles thoughout the metastatic 

process.  

 

Invasion of tumour cells into surrounding stroma is also accompanied by defects in 

the extracellular basement membrane. Tumour cells at the invasive front are capable 

of producing proteases that degrade ECM and facilitate invasion and dissemination 

into the circulation (Liotta, 1986).  Tumour blood vessels, because of their leaky and 

haemorrhagic features (see 1.3), can provide an escape route for cancer cells into the 
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blood system (Bergers and Benjamin, 2003). This step is called intravasation. An 

elegant study by Wickoff et al using in vivo confocal microscopy to track tumour cells 

showed that metastatic cancer cells have enhanced orientation towards blood vessels. 

This blood vessel intravasation is a critical step for metastasis (Wyckoff et al., 2000). 

Alternatively tumour cells can also enter lymphatic capillaries due to their 

discontinuous junctions that make them highly permeable. The lymphatic system is 

used to filter excess extravascular fluid before it returns into the venous blood system.  

Once tumour cells enter the lymphatic vessels they can be drained into lymph nodes 

where they can form metastasis. Tumour cells can re-enter the blood circulation 

through the venous system or through the lymph node blood vessels.  For that reason 

lymphatic spread can also constitute an indirect route for blood tumour cell 

dissemination (Chambers et al., 2002; Tammela and Alitalo, 2010). Lymph node 

metastasis is considered a negative prognostic factor in many cancer types (Pai et al., 

2011; Tammela and Alitalo, 2010). 

 

As stated above cancer cell dissemination can occur after local invasion, but, it has 

also been suggested to occur even before the tumours invade the surrounding stroma. 

Using two mouse models of invasive mammary carcinomas (BALB-NeuT and 

MMTV-PyMT) Husemann et al, have observed dissemination of tumour cells even 

before disruption of basement membrane in the primary hyperplastic lesions. 

Moreover analysis of 607 breast cancer patient samples found no correlation between 

number of disseminated tumour cells in the bone marrow, where metastasis are 

usually found, and primary tumour size (Husemann et al., 2008). In the same line 

using a mouse model of PDAC to study the various stages of pancreatic cancer 

progression Rhim et al have shown, more recently, that EMT, migration, bloodstream 
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entry and seeding of the liver by tumour cells can occur in parallel or even before 

detectable tumour formation at the primary site (Rhim et al., 2012). These studies 

suggest cancer cell dissemination and metastasis might also be an early event in 

tumour progression and can perhaps explain two main clinical observations: (1) The 

appearance of metastatic lesions years after resection of small tumours without any 

detectable metastasis at the time of diagnosis (Pantel et al., 2008); (2) Patients who 

present with neoplasms at metastatic sites but with no detectable primary tumour. 

This accounts for 4 to 5 % of invasive cancers (Greco and Hainsworth, 2009). It has 

been shown in breast cancer that even patients with early stage tumours can relapse 

after surgery suggesting dissemination at early stages of tumour progression 

(Schmidt-Kittler et al., 2003).  

 

In order for disseminated cancer cells to form distant metastasis they have not only to 

acquire abnormal migration features but also stem cell like properties, i.e., the ability 

to self-renewal and initiate new tumours at distant sites. For this reason disseminated-

cancer cells with self-renew capabilities have also been named cancer stem cells 

(CSCs) and were first identified in haematological malignancies such as acute 

myeloid leukaemia (AML). Bonnet and Dick have identified CD34+CD38- 

subpopulations that could differentiate in vivo to reacquire the same leukaemic 

properties in mice as seen in patients (Bonnet and Dick, 1997). Several studies in 

breast, brain and colorectal cancer identified CSC populations that are able to initiate 

tumours in vivo (Al-Hajj et al., 2003; O'Brien et al., 2007; Shipitsin et al., 2007; 

Singh et al., 2004).  
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Importantly, because disseminated cancer cells have to be able to survive in the 

ciculation, extravasate into target organs and have self-renewal capabilities that allow 

them to initiate tumours, metastasis is an inefficient process.  From the tumour cells 

that are able to disseminate into the circulation only a small percentage will develop 

metastases (Weiss, 1990). Using in vivo video microscopy to follow B16F1 tumour 

cells after tail vein injection Luzzi et al have demonstrated that even though about 

80% of the cells are able to survive in the circulation and extravasate, only 1 in 40 can 

actually form micrometastases in the liver by day 3. More importantly only 0.01% of 

the injected cells can  form macroscopic tumours by day 13 and about 36% remain as 

solitary cancer cells, majority of which were in a dormant state (Luzzi et al., 1998).  

These dormant cells remain in a state of low proliferation in micrometastasis or as 

solitary cells in a quiescence state until they are stimulated to proliferate again (Eyles 

et al., 2010; Suzuki et al., 2006). This is one of the major clinical challenges as 

tumour recurrence can occur several years after treatment of a primary tumour and 

these cells were shown to be resistant to chemotherapy  (Meng et al., 2004; Naumov 

et al., 2003). The factors responsible for dormancy and reactivation of dormant cells 

are still under investigation but the microenvironment plays a crucial role. When 

Suzuki et al isolated disseminated tumour cells that were in a dormant state in 

metastasis free organs and implanted them into organs that are preferred sites of 

metastasis these cells reactivated their tumourigenicity (Suzuki et al., 2006). This 

study brings us back to Stephen Paget’s ‘seed and soil’ hypothesis; that metastasis to 

a certain organ is not random but depends on the interactions with its 

microenvirnoment (Paget, 1889).  
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1.3. The stromal contribution to tumour progression 

 

 

Tumours are complex masses of transformed and untransformed cells (stromal cells) 

that interact to facilitate tumour growth, invasion and dissemination of tumour cells. 

The stromal contribution in tumour progression was recently reviewed by Hanahan 

and Coussens as exemplified in Fig. 1 (Hanahan and Coussens, 2012) and will be the 

main focus of my PhD thesis. I will concentrate on two main compartments within the 

stroma: the vascular compartment; and the bone marrow compartment from which 

infiltrating immune cells, cancer associated fibroblasts, vascular endothelial cells and 

blood vessel supporting cell progenitors can be derived (Fig. 1). In this chapter I will 

give a brief description of vascular and haematopoietic embryonic development and 

the main characteristics and functions of these two compartments in the maintenance 

of organism homeostasis. Then I will focus on the different modulation and role of 

vascular and haematopoietic compartments in the support of tumour angiogenesis, 

tumour growth and metastasis.  
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Figure 1: The stromal contribution in tumour progression.  

Tumour stroma plays an essential role in all the steps during tumour progression. Hanahan 
and Coussens divided stromal cells into 3 main classes: infiltrating immune cells, cancer 
associated fibroblastic cells and angiogenic vascular cells.  My PhD thesis will focus on the 
role of angiogenic vascular cells in tumour growth and angiogenesis and the function of bone 
marrow derived infiltrating immune cells in tumour growth and metastasis (Adapted from 
(Hanahan and Coussens, 2012)).  
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1.3.1. Vascular compartment 

 

An Anatomical Study of the Motion of the Heart and of the Blood in Animals 

published by William Harvey in 1628 was the first description of the cardiovascular 

system. This is the first organ system that becomes functional in the vertebrate 

embryo. The two most basic components of the vascular system are endothelial and 

blood cells (Risau, 1997). Small blood vessels are composed mostly of endothelial 

cells (ECs) with few associated pericytes, medium size vessels are surrounded by 

pericytes and larger vessels are supported additionally by smooth muscle cells 

(SMCs) (Carmeliet, 2003).  

 
 
 

A. Embryonic blood vessel development 
 

 
Blood vessel development involves 2 processes: vasculogenesis and angiogenesis. 

Vasculogenesis occurs mainly during development and consists of the formation of 

blood vessels from undifferentiated ECs precursors, the angioblasts. After the 

primitive vascular network is established, sprouting of new capillaries from pre-

existing ones can form blood vessels, a process known as angiogenesis. (Carmeliet, 

2000; Risau, 1997). 
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I. Vasculogenesis 
 

 

Vasculogenesis and haemangiogenesis are thought to begin in the yolk sac with the 

haemangioblast, a common precursor of both endothelial and haematopoietic stem 

cells (HSCs). In mice, the first mature embryonic blood cells are detected in blood 

islands of the yolk sac at embryonic stage E7.5 in which the central cells will give rise 

to embryonic haematopoietic cells whilst peripheral cells differentiate into endothelial 

cells that eventually determine the primitive vascular plexus (Carmeliet, 2000; Choi, 

1998). Given their common origin, endothelial and embryonic haematopoietic stem 

cells express several common markers such as Tie-2 (Hamaguchi et al., 1999), CD-31 

(Platelet endothelial cell adhesion molecule-1, (PECAM-1) (Baumann et al., 2004), 

CD144 (VE-cadherin) (Kim et al., 2005) and vascular endothelial growth factor 

receptor 2 (VEGFR-2/flk-1) (Shalaby et al., 1995). Angioblast differentiation is 

dependent on vascular endothelial growth factor (VEGF), VEGFR-2 and basic 

fibroblast growth factor (bFGF) (Carmeliet, 2000). 
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II. Angiogenesis 
 

 

Angiogenesis occurs during development and in the adult organism and it can 

contribute to the pathogenesis of many disorders such as cancer, psoriasis and arthritis 

(Beck and D'Amore, 1997; Carmeliet, 2003). During development angiogenesis starts 

taking place from embryonic stage E8.5 onwards. Growth of new blood vessels from 

existing ones comprises 2 main steps: sprouting and intussusception. Sprouting 

angiogenesis involves migration and proliferation of endothelial cells in order to 

extend the new capillaries. Intussusception angiogenesis is the process by which 

existing blood vessels are split in order to generate new ones (Conway et al., 2001; 

Djonov et al., 2000).  

 

Sprouting angiogenesis is divided into several steps that involve interactions between 

endothelial cells and mural cells and ECM components: (1) endothelial cell 

activation; (2) basement membrane degradation; (3) endothelial cell proliferation and 

migration; (4) tube cell formation, elongation and remodelling; (5) and maturation of 

blood vessels (Fig.2).  

 

During endothelial cell activation existing vessels are dilated, a process that involves 

nitric oxide; vascular permeability promoted by VEGF (also named vascular 

permeability factor) is increased allowing the extravasation of plasma proteins that 

will form the scaffolding matrix necessary for the migration of endothelial cells; and 

angiopoietin-1 (Ang-1) interaction with the endothelial Tie-2 receptor inhibits 

excessive vascular permeability that would lead to vessel leakage and circulatory 
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collapse (Thurston et al., 2000).  Basement membrane degradation is regulated by 

angiopoietin-2, an inhibitor of Tie-2 signalling. At this stage vessels become 

destabilised by losing interendothelial cell contacts and detachment of endothelial 

cells from the supporting muscle smooth cells (Gale and Yancopoulos, 1999). Matrix 

metalloproteinases (MMPs) degrade the extracellular matrix releasing growth factors 

sequestered within the matrix such as VEGF, bFGF and platelet derived growth factor 

(PDGF) that are important for endothelial cell proliferation and migration (Nelson et 

al., 2000). Once the basement membrane has been dissolved endothelial cells are free 

to proliferate, migrate and assemble into new vessels stimulated by the numerous pro-

angiogenic factors such as VEGF, bFGF and Ang1 (Carmeliet, 2000). Cell adhesion 

molecules such as integrins, that will be described further, have an important role in 

endothelial cell migration and tube formation (Eliceiri and Cheresh, 1999).   The 

maturation of vessels is initiated by the recruitment of pericytes and deposition of new 

basement membrane (Carmeliet, 2000; Kalluri, 2003). Signalling via transforming 

growth factor beta-1 (TGF-β1), Ang-1 and Tie-2 stabilises endothelial cell-pericyte 

interactions (Carmeliet, 2003). 

 

Endothelial sprouts contain two populations of cells: tip cells and stalk cells. Tip cells 

are located at the tip whilst stalk cells are found along the vascular body. Sprouting 

angiogenesis is guided by the coordination between tip cell migration and stalk cell 

proliferation in response to VEGF (Fig.2).  
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Figure 2: Sprouting angiogenesis  

Sprouting angiogenesis involves: 1) endothelial cell activation, mainly dependent on VEGF; 
2) basement membrane degradation by matrix metalloproteinases (MMPs) that releases 
growth factors such as VEGF and bFGF; 3) endothelial cell proliferation migration governed 
by specialised tip cells in response to pro-angiogenic factors such as VEGF; 4) tube cell 
formation, elongation and remodelling mediated by cell adhesion molecules such as integrins; 
5) maturation of blood vessels by recruitment of pericytes and vascular smooth cells (vSMCs) 
and deposition of new basement membrane and stabilisation of endothelial-pericyte 
interactions by Ang-1 and TGF-β1.  
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B. Growth factor pathways in angiogenesis 
 

Angiogenesis is dependent on the balance between pro- and anti-angiogenenic factors. 

Pro-angiogenic factors include vascular endothelial growth factor vascular endothelial 

growth factor (VEGF), platelet-derived growth factor (PDGF), fibroblast growth 

factor (FGF), angiopoietins and transforming growth factor β (TGF-β) (Adams and 

Alitalo, 2007; Carlson et al., 2001; Karsan et al., 1997; ten Dijke and Arthur, 2007). 

On the other hand, angiostatin that results from degradation of plasminogen; 

endostatin that is derived from collagen XVIII; and thrombospondin-1 are considered 

endogenous anti-angiogenic inhibitors (Folkman, 2006; Lawler, 2002). VEGF is 

considered the major regulator of blood vessel formation and for this reason its 

function and signalling in angiogenesis will be described separately (Leung et al., 

1989; Yancopoulos et al., 2000). 

 

I. Vascular endothelial growth factor and its receptors in 

angiogenesis 

 

VEGF was initially designated vascular permeability factor due to its ability for 

increasing blood vessel permeability (Keck et al., 1989). VEGF knockout mice show 

defects in vasculogenesis with delayed, but not abortive, differentiation of endothelial 

and blood cells (Carmeliet et al., 1996). The VEGF protein family comprises seven 

members: VEGFs A-E and placenta growth factor (PIGF) (Robinson and Stringer, 

2001). VEGF-A is the most studied isoform and has a pivotal role in angiogenesis by 

controlling endothelial cell proliferation, survival, migration, differentiation, tube 

formation, permeability and vessel maintenance (Carmeliet, 2005; Gerber et al., 1998; 
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Gupta et al., 1999).  VEGF-A has five splicing variants: 121, 165, 183, 189 and 206. 

VEGF165 and VEGF121 are the most predominant forms produced by the majority of 

cell types.  However VEGF165, which ortholog in the mouse is VEGF164, is considered 

pivotal since VEGF164-transgenic mouse is the only one from all the splice variant-

expressing transgenic mice that develops normally (Neufeld et al., 1999; Robinson 

and Stringer, 2001).  

 

Three main VEGF receptors (VEGFRs) were identified: two receptor tyrosine 

kinases, VEGFR-1 or flt-1 and VEGFR-2 or flk-1, and a fms-like tyrosine kinase 

VEGFR-3 or flt-4 (Ferrara et al., 2003).  VEGFR-1 is expressed in endothelial cells 

(Fong et al., 1995), haematopoietic progenitors (Hattori et al., 2002) and mature bone 

marrow derived cells such as myeloid cells (Clauss et al., 1996) and in smooth muscle 

cells (Wang and Keiser, 1998); VEGFR-2 is mainly expressed in endothelial cells 

(Ortega et al., 1997) but also in primitive and more mature haematopoietic cells 

(Matthews et al., 1991); and VEGFR-3 expression is restricted to lymphatic 

endothelial cells (Kaipainen et al., 1995). VEGF-A-C, E and PIGF act on blood 

vessels via VEGFR-1 and/or VEGFR-2, whereas VEGF-C-D are the main 

lymphangiogenesis drivers through VEGF receptor 3 (VEGFR-3)(Roy et al., 2006).  

 

VEGFR-2 deficient mice fail to develop endothelial and haematopoietic cells whereas 

VEGFR-1 knockout mice form endothelial cells in embryonic and extra-embryonic 

tissues but fail to assemble them into normal vascular channels (Fong et al., 1995; 

Shalaby et al., 1995). Moreover VEGFR-2 has been shown to be important for 

endothelial cell proliferation differentiation and migration (Ortega et al., 1997). These 

studies suggest VEGFR-2 has a crucial role in endothelial cell development and 
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behaviour whereas VEGFR-1 seems to be more important in vascular remodelling. 

Interestingly, a soluble form of VEGFR-1 was shown to negatively regulate 

angiogenesis (Ambati et al., 2006; Ambati et al., 2007). The role of VEGFR-1 in 

haematopoietic cells will be described in 1.3.2D-I.  

 

VEGFR-2 signalling is considered the main driver of angiogenesis. Upon VEGF 

binding VEGFR-2 undergoes dimerisation and ligand-depend tyrosine 

phosphorylation results in activation of several mitogenic, chemotatic and pro-

survival proteins such as phosphatidylinositol-3 kinase (PI3K), phospholipase C-γ 

(PLCγ), protein kinase C (PKC), focal adhesion kinase (FAK), Ras proteins and 

mitogen-activated protein kinase (MAPK) among others (Ferrara et al., 2003; Zachary 

and Gliki, 2001). Many of these pathways are common to integrin signalling (see Fig. 

5). A co-receptor for VEGFR-2 was also shown to have a role in blood vessel 

formation. It was named neuropilin-1 and was first identified in neurons as a 

semaphorin receptor and implicated in neuronal guidance. Neuropilin-1 was shown to 

increase binding of VEGF to VEGFR-2 that resulted in increased VEGF-mediated 

chemotaxis (Soker et al., 1998).  
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C. Tumour Angiogenesis 
 

 

I. Angiogenic switch 
 

In normal tissues angiogenesis is normally repressed and only occurs in processes 

such as wound healing. On the other hand for a tumour to grow, it needs oxygen and 

nutrient supply as well as an efficient way of removing toxic metabolic products. As a 

consequence tumours develop their own vasculature by activating the so called 

“angiogenic switch”. Tumour angiogenesis results mainly from an imbalance of 

angiogenic signals in favour of pro-angiogenic signals (Bergers and Benjamin, 2003; 

Fidler and Ellis, 1994; Naumov et al., 2006). Hypoxia is the first physiological 

regulator of the angiogenesis switch. As the tumour mass grows, some of the cells 

(usually the ones in the centre of the tumour) will start to be deprived of oxygen due 

to the increased distance of diffusion from the existing vessels, becoming hypoxic 

(Bertout et al., 2008; Thomlinson, 1977). This will lead to activation of Hypoxia 

Inducible Factor 1 (HIF-1) in the tumour and tumour-associated cells that in turn will 

result in up-regulation of the pro-angiogenic factors such as VEGF, iNOS (inducible 

nitric oxide synthase), bFGF, PDGF and epithelial growth factor (EGF) that will 

activate quiescent endothelial cells to form new blood vessels (Fig.3) (Calvani et al., 

2006; Jensen et al., 2006; Liao and Johnson, 2007; Yoshida et al., 2006).  
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Figure 3: The angiogenic switch 

In normal tissues angiogenesis is regulated by a balanced production of pro- and anti-
angiogenic factors and it is normally repressed. Tumour angiogenesis results mainly from an 
imbalance in the angiogenic signals in favour of pro-angiogenic factors such as vascular 
endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) (Adapted from 
Weinberg, 2007). 
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II. Tumour vasculature features 
 

 

In contrast to normal vasculature, tumour blood vessels are irregularly shaped, dilated 

and tortuous presenting a chaotic organisation and forming a vascular plexus that is 

more leaky and haemorrhagic in part due to the elevated production of VEGF 

(Bergers and Benjamin, 2003). These features contribute to poor blood flow into the 

tumour and subsequent low drug delivery rates. The increased leakiness also allows 

easier escape of tumour cells into the circulation (De Bock et al., 2011). One of the 

emerging cell types involved in the leaky phenotype of tumour blood vessels has been 

the pericyte or mural cell. In general these cells are less abundant and more loosely 

attached to the tumour vasculature (Bergers and Song, 2005). Pericyte proliferation 

and recruitment to blood vessels is not only dependent on the PDGFB-PDGFRβ axis 

but also on the endothelial localisation of PDGFB. Disruption of this axis by genetic 

ablation of PDGFB in mice results in haemorrhagic tumour blood vessels that are 

hyperdilated and show low pericyte coverage (Abramsson et al., 2003).  
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D. Anti-angiogenic therapy and vessel normalisation 
 

Given the crucial role of blood vessels in tumour growth and cancer cell 

dissemination anti-angiogenic therapy approaches have been developed for many 

types of cancer. The main principle of anti-angiogenic therapy is that destruction of 

tumour blood vessels in combination with chemotherapy would destroy both the 

blood vessels feeding the tumour and the cancer cells themselves thereby inhibiting 

cancer growth and spread.  

 

The known role of VEGF in endothelial cell migration, survival, proliferation and 

permeability made it the prime target for anti-angiogenic therapy (De Bock et al., 

2011). Bevacizumab, a humanised monoclonal anti-VEGF antibody, was the first 

Food and Drug Administration-approved anti-angiogenic drug in monotherapy or in 

combination with chemotherapy. This was based on the efficacies shown in metastatic 

renal cancer and in combination with standard chemotherapy for the treatment of 

metastatic colorectal cancer (Hurwitz et al., 2004; Yang et al., 2003).  It likely seems 

contradictory that a drug that destroys tumour vasculature can have efficacy with 

chemotherapeutic drugs that need access into the tumour. However anti-VEGF 

therapy was shown in animal studies to decrease tumour interstitial fluid pressure that 

in turn increased drug perfusion into the tumour (Dickson et al., 2007; Tong et al., 

2004). In fact tumour blood vessels showed increased pericyte and basement 

membrane coverage after anti-VEGF therapy (Tong et al., 2004).  These observations 

have led to the concept of ‘vessel normalisation’ whereby reduction, but not total loss 

of tumour blood vessels in combination with reduced tortuosity and increased vessel 

stability may be beneficial for chemotherapy delivery. Since tumour vasculature is 
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abnormal it is suggested that anti-angiogenic therapy should be used in a therapeutic 

‘window’ where the structure and function of blood vessels are improved and the 

balance between pro-angiogenic and anti-angiogenic molecules is restored resembling 

‘normal’ angiogenesis. The main problem with vessel normalisation is that the 

maintenance of a balance between pro- and anti-angiogenic mediators is not easy to 

sustain (Jain, 2005).  

 

E. Resistance to anti-angiogenic therapy and metastasis 
 

 

Despite the promise of anti-angiogenic therapy, resistance has become a major issue 

and survival benefits are still modest (Broxterman et al., 2003). Using a mouse model 

of pancreatic cancer Casanovas et al have shown that although treatment with anti-

VEGFR2 antibody induces an initial stasis in tumour growth, restoration of blood 

vessel density is observed possibly due to hypoxia-dependent up-regulation of other 

pro-angiogenic factors such as bFGF (Casanovas et al., 2005). Another study has 

highlighted the importance of hypoxia in the recruitment of bone marrow derived 

cells to promote neovascularisation and invasion and a role for VEGF in the inhibition 

of this perivascular tumour invasion. These data suggest blocking the VEGF pathway 

could enhance metastasis (Du et al., 2008). Moreover an increase in tumour hypoxia 

appears to be associated with increased invasion and metastasis following anti-

angiogenic therapy (Ebos et al., 2009; Narayana et al., 2009; Paez-Ribes et al., 2009). 

Together these lines of data suggest that a better understanding of the molecular basis 

of angiogenesis and the consequences of anti-angiogenic therapy are required. 
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1.3.2. Bone marrow compartment 

 
A. Embryonic haematopoiesis 

 

Haematopoietic stem cells (HSCs) are the basis of the entire adult blood system. In 

1957 E. Donnan Thomas performed the first stem cell transplant in human twins and 

validated intravenous injection of bone marrow cells as a strategy for long-term 

repopulation of blood cells (Thomas et al., 1957). The multipotency property of HSCs 

was first shown in the early 1960s with the origin of myeloid multilineage colonies in 

the spleen after bone marrow transplant into irradiated mice (Till and McCulloch, 

1961; Becker et al., 1963).  

In humans and mice blood cells emerge primarily in the extraembryonic yolk sac until 

the onset of the systemic blood flow. Initially haematopoietic progenitor cells migrate 

to the embryonic liver and this becomes the central organ for blood cell production 

during most of in utero development. At later embryonic stages liver-derived cells 

seed in the bone marrow and spleen.  In humans bone marrow sustains 

haematopoiesis throughout life whereas in mice this function is performed by both the 

bone marrow and spleen (Yoder, 2002). As described previously (see 1.3.1A), in mice 

the mesodermal precursor, the haemangioblast, develops into both haematopoietic and 

endothelial cells (Choi, 1998). Embryonic haematopoiesis starts in the yolk sac at 

embryonic stage E.7-7.5 with large nucleated erythrocytes (erythroblasts), some 

macrophage progenitors and megakaryocytes surrounded by a layer of endothelial 

cells forming the so-called blood islands. At the beginning of embryonic stage E7.5-

E8 erythroid and myeloid (granulocytic and monocytic) progenitors appear whereas 

only at embryonic stage E8.5 erythroid-myeloid-lymphoid progenitors are found in 
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the yolk sack. HSCs are detected in the intra-embryonic aorta-gonado-mesonephros 

(AGM) at embryonic stage E10.5 and slightly later (E11-E11.5) in the yolk sac, 

placenta and foetal liver. The liver becomes the main reservoir of HSCs until mid 

gestation (E17), after which time these cells colonise the bone marrow, the main 

reservoir in adults (Boisset and Robin, 2012; Yoder, 2002).  

 

Cellular niches that regulate cell self-renewal, differentiation and quiescence compose 

adult bone marrow. These cellular niches are basically functional compartments that 

support the function of cells within bone marrow through several different signals 

such as growth factors, cytokines and also cell-to-cell and cell-to-ECM contacts. Two 

main cellular niches have been identified: The haematopoietic stem cell niche and the 

immune cell niche (Mercier et al., 2012). Regulation of these two niches is one of the 

focuses of my PhD data.   

 

B. Haematopoietic stem cell niche 
 

As described before HSCs are pluripotent cells that have the capacity to undergo self-

renewal and can differentiate into specific lineages. They can be isolated from the 

bone marrow based on cell surface markers, the most commonly used being the 

lineage-marker negative SCA+KIT+CD31-CD48-CD150+. The hallmark of this long 

self-renewal capacity is the maintenance of HSCs in a quiescent/slow cycling state 

Here the bone marrow microenvironment plays an essential role and disrupting 

interactions between HSCs and bone marrow stroma leads to HSC activation and 

mobilisation from bone marrow. Two main compartments, vascular and 
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mesenchymal, that contribute to this HSC homeostasis will be described briefly 

(Cheshier et al., 1999; Mercier et al., 2012; Wilson et al., 2008).  

 

I. Vascular contribution to the HSC niche 
 

Given the common origin of endothelial cells and HSCs it is not surprising that a 

large proportion of CD150+ HSCs are found attached to the fenestrated endothelium 

of bone marrow sinusoids (Del Fattore et al., 2010; Mazo et al., 1998). Bone marrow 

endothelial cells express factors that stimulate haematopoiesis such as granulocyte 

colony-stimulating factor (G-CSF); macrophage colony-stimulating factor (M-CSF); 

granulocyte-macrophage colony stimulating factor (GM-CSF); stem-cell factor and 

interleukin-6 (IL-6). In addition they also express adhesion molecules such as E-

selectin; P-selectin; VCAM-1; ICAM-1 and also molecules that facilitate cell homing 

such as E-selectin and CXC-chemokine ligand 12 (CXC12) (Mazo et al., 1998; 

Mercier et al., 2012). Bone marrow endothelial cells are necessary for self-renewal 

and repopulation of HSCs after irradiation (Butler et al., 2010). In fact, cell lines and 

primary endothelial cells isolated from yolk sac or AGM, as opposed to endothelial 

cells from non-haematopoietic organs, have the ability to maintain HSCs in vitro (Li 

et al., 2004). This suggests endothelial cells isolated from haematopoietic organs 

present particular features that are essential for HSC maintenance.  
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II. Mesenchymal contribution to the HSC niche 
 

Mesenchymal stem cells also reside in the bone cavity and can give rise to bone 

marrow mesenchymal stromal cell (MSCs) lineages such as chondrocytes, 

osteoblasts, fibroblasts, adipocytes, endothelial cells and myocytes (Del Fattore et al., 

2010). Endothelial cells are surrounded by perivascular MSCs that support 

haematopoiesis and interact directly with HSCs (Le Blanc and Mougiakakos, 2012). 

Long-term HSCs are found attached to N-cadherin expressing osteoblasts. Increasing 

N-cadherin expressing osteoblasts results in increased bone marrow HSCs suggesting 

these cells are important for the regulation of HSC niche size (Zhang et al., 2003). A 

specific population of MSCs that express the marker nestin was identified around 

bone marrow blood vessels and adrenergic nerve fibres and found to be important for 

HSC maintenance. Depletion of nestin-positive cells resulted in decreased HSC 

homing and increased release of HSCs from bone marrow (Mendez-Ferrer et al., 

2010). It is still not clear if these nestin expressing cells are a subtype of CXCL12- 

abundant reticular (CAR) cells that surround bone marrow sinusoids or are located 

near endosteum and were found to associate with HSCs. Disruption of interactions 

between HSCs and CAR cells reduces bone marrow HSC numbers (Sugiyama et al., 

2006).  

 

 

 

 

 

 



 

 38 

C. Immune cell niche 
 

Besides the role in immune cell development, bone marrow can also host mature 

immune cell types.    

 

I. Lymphocytes 
 

Lymphocytes constitute 3 main lineages: Natural Killer (NK) cells, T cells and B 

cells. NK cells are short-lived cells and are classified as innate immune cells due to 

their ability to respond quickly to injury without prior sensitisation, whereas T and B 

cells were classified in the adaptive immune response because of their memory 

capacity, i.e., ability to generate long-lived progeny after first stimulation with an 

antigen (Sun and Lanier, 2011). T and B cells use recombination activation gene 

(RAG) enzymes for rearrangement of their receptor genes. This feature is commonly 

exploited in murine studies. Mice deficient in RAG1 or RAG2 are generally used to 

distinguish T and B cells from other immune cell functions. These mice lack mature T 

and B cells, however they present normal numbers of NK and myeloid cells 

(Mombaerts et al., 1992; Shinkai et al., 1992).  

 

Lymphopoiesis is compartmentalised, with B and NK cells development occurring 

mainly in the BM whereas the majority of the T cells develop in the thymus (see 

Fig.4). However all cell types originate from a common precursor identified in the 

BM, clonogenic lymphocyte restricted progenitor cell (CLP), that is characterised by 

the expression of interleukin 7 receptor (IL-7R). T cells are subject to a final lineage 

decision in the thymus to form mature CD4 (helper) and CD8 (cytotoxic) T cells.   

Cell surface markers can define these cells: CD3 for the T cells; B220 for the B cells; 
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NK1.1 and NG2D for the NK cells (Pear and Radtke, 2003; Rosmarin et al., 2005; 

Sun and Lanier, 2011).  

 

NK and CD8 T cells can rapidly degranulate and secrete IFN-γ, following antigen 

receptor triggering, which is particularly important in viral infections but also in 

responses against tumours (Sun and Lanier, 2011).  

 

II. Myeloid cells 
 

The term myeloid comes from the Greek word marrow and indeed myeloid cells 

represent the main cell type in the bone marrow compartment and one of the most 

studied during my PhD. This cell population comprises polymorphonuclear cells 

(PMN) or granulocytes, monocytes (Mon), macrophages (extravasated blood 

monocytes) and dendritic cells (DCs). These cells are characterised by rapid turnover 

and phagocytic activity.  Granulocytes, or PMNs, are the most abundant myeloid cell 

type in the blood and their names come from the multilobulated shape of the nucleus 

(PMN) and storage of granules in the cytoplasm (granulocytes) that can be released 

upon inflammation. Together with monocytes the main function of PMNs is to 

eliminate pathogens and components of damaged tissue using phagocytosis (Fiedler 

and Brunner, 2012; Rosmarin et al., 2005).  Both cell types also play an important 

role in adaptive immune responses by suppressing T cell responses. This has 

generated the concept of myeloid-derived suppressor cells (MDSCs). On the other 

hand DCs have the ability to activate specific T cells during inflammatory responses. 

For this reasons the myeloid cell population plays a pivotal role in the regulation of 

immune cell responses (Auffray et al., 2009; Ueha et al., 2011).  
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As for lymphopoiesis, myelopoiesis starts in haematopoietic stem cells and it is 

viewed as an hierarchical process by which these HSCs give rise to several committed 

progenitor cells (see Fig. 4). A common myeloid progenitor (CMP) will give rise to 

the committed progenitors granulocyte-monocyte progenitor (GMP) or to a 

megakaryocyte-erythroid progenitor (MEP). GMP develop into progenitors 

committed to the 4 main types of granulocytes:  eosinophil lineage-commited 

progenitors (EoP) that will develop into eosinophils; basophil/mast cell progenitors 

(BMCP) that will give rise to mast cell (MCP) progenitors that differentiate into mast 

cells and basophil progenitors (BaP) that will develop into basophils; and finally a 

still unknown progenitor that differentiates into neutrophils (Fiedler and Brunner, 

2012). In the case of monocytes/macrophages and DCs a macrophage DC progenitor 

(MDP) that shares markers of CMP and GMP will differentiate into monocytes and 

common DC precursors (CDP) that will give rise to different types of DCs (Ueha et 

al., 2011).  
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Figure 4: Lymphocyte and myeloid cell development  

The common progenitor of lymphopoiesis and myelopoiesis is HSCs that give rise to several 
committed progenitor cells such as the common lymphocyte (CLP) and the common myeloid 
(CMP) progenitors. CLP differentiates into NK, B and T cells. The latter are subject to a final 
lineage decision in the thymus to form mature CD4 (helper) and CD8 (cytotoxic) T cells. 
CMP give rise to megakaryocyte-erythroid (MEP) and granulocyte-monocyte (GMP) 
progenitors. MEP develops into megakaryocytes and erythrocytes whereas GMP 
differentiates into an eosinophil lineage-commited progenitor (EoP) that gives rise to 
eosinophils; basophil/mast cell progenitor (BMCP) that differentiates into mast cell 
progenitor (MCP) that develops into mast cells and basophil progenitor (BaP) that gives rise 
to basophils; and a still unknown progenitor (NP) that differentiates into neutrophils. On the 
other hand an intermediate macrophage DC progenitor (MDP) that shares markers of CMP 
and GMP differentiates into monocytes and common DC precursors (CDP) that in turn give 
rise to different types of DCs.  
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 Granulocytes 
 

The most abundant type of granulocytes and 50-70% of total blood leucocytes are 

neutrophils. For that reason most studies of granulocyte function are based mainly on 

neutrophils. Neutrophils are constantly produced in the bone marrow and circulate in 

the bloodstream until they are required for an immune response. Macrophage stimuli 

activate endothelial cells to facilitate the passage and guidance of neutrophils to sites 

of infection. The main function of neutrophils is phagocytosis and destruction of 

pathogens mainly by release of cytotoxic granules. These cells produce cytokines 

such as tumour necrosis factor α (TNF-α), interleukin 1 (IL-1), interferons (IFNs), 

toxic substances and reactive oxygen species. They also have the capacity to regulate 

the activation of macrophages, T cells and more neutrophils. Their main expression 

markers, in mouse, are CD11b and Ly6G (Fiedler and Brunner, 2012).  

Granulocyte-monocyte colony stimulating factor (GM-CSF) is the main 

chemoattractant for neutrophils in vivo and has been shown to have an anti-apoptotic 

effect in these cells causing neutrophilia (Khajah et al., 2011; Wengner et al., 2008).  

 

Recently neutrophils were classified into 2 categories: N1 and N2; mainly due to the 

plasticity of these cell-types in tumours. N1 neutrophils have an anti-tumoural activity 

and are characterised by low levels of arginase; their ability to activate cytotoxic T 

cells (CTL) and their ability to kill tumour cells. On the other hand N2 neutrophils 

that are mainly differentiated in response to the immunossupressive cytokine TGF-β, 

have a pro-tumoural effect and are characterised by high expression of arginase, 

VEGF, MMP-9 and other pro-tumourigenic molecules (Fiedler and Brunner, 2012; 

Piccard et al., 2012).  
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Eosinophils are usually resident in organs such as the gastrointestinal tract, mammary 

glands and bone marrow where they contribute to tissue and immune homeostasis. 

Basophils and mast cells are less abundant in the circulation and are mainly 

responsible for allergic reactions due to their production of histamine (Fiedler and 

Brunner, 2012). 

 

 Monocytes/macrophages and dendritic cells  
 

Monocytes and dendritic cells are also known as the mononuclear phagocyte system 

(MPS). DCs represent 5%, whereas bona fide monocytes represent 95% of MPS. In 

mouse these cells are identified by their expression of cell surface markers such as 

CD115 or CD11b and according to the variable expression of Ly6C marker can be 

subdivided into different subsets: CD115+; Ly6C+ and CD115+Ly6C-. CD115+; 

Ly6C+ cells are called inflammatory monocytes, represent 80-90% of blood 

monocytes and are also characterised by their expression of the chemokine receptor 

CCR2, adhesion molecule L-selectin and low expression of chemokine receptor 

CX3CR1. These cells are recruited to inflamed tissues and produce high levels of 

TNF-α and IL1. CD115+Ly6C- cells are also termed patrolling monocytes and are 

characterised by lack of expression of CCR2 or L-selectin but high expression of 

CX3CR1 and lymphocyte-function associated antigen 1 (LFA-1). The name of these 

cells comes from their ability to crawl along the luminal face of the endothelium and 

extravasate rapidly in response to tissue damage (Auffray et al., 2009; Geissmann et 

al., 2010).  

The development of blood monocytes is dependent on monocyte colony stimulating 

factor (M-CSF or CSF-1). One important feature of these cells is that, whereas 
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myeloid progenitor cells proliferate in response to CSF-1, terminally differentiated 

macrophages become refractory to these proliferative signals (Auffray et al., 2009). 

Macrophages (extravasated monocytes) were classified into two main statuses of 

activation: M1 ‘classically’ activated; and M2 ‘alternatively’ activated macrophages. 

M1 macrophages are involved in responses of type I helper T cells (Th1) when 

stimulated with IFN-γ and are characterised by elevated expression of the major 

histocompatibility complex (MHC) class II, release of pro-inflammatory cytokines 

such as IL-12, IL-23 and TNF-α, generation of ROS and nitric oxide (NO), and a 

capacity for killing cells and pathogens. In contrast M2 macrophages differentiate in 

response to IL4 and IL13 and are involved in the responses of type II helper T cells 

(Th2). Their main features are low expression of MHC class II and elevated 

expression of arginase and release of anti-inflammatory cytokines such as IL-10. 

These cells are involved in immune suppression and tissue-remodelling processes 

such as wound healing (Chioda et al., 2011; Qian and Pollard, 2010).  

DCs can be subdivided into classical dendritic cells (cDCs) and plasmocytoid 

dendritic cells (PDC). cDC although present in human circulation, are rare in mouse 

blood. They are specialised antigen processing and presenting cells, and when 

immature, have a high phagocytic capacity. Mature cDCs, in contrast, are high 

cytokine producers. On the other hand PDCs are long-lived cells that are present in 

the bone marrow and all peripheral organs. PDCs are specialised in viral infection 

responses due to their ability to produce IFNs but can also present antigens and 

control T-cell responses (Geissmann et al., 2010).   
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 Myeloid-derived suppressor cells 
 

Myeloid-derived suppressor cells (MDSC) are an heterogeneous population of cells 

that comprise myeloid progenitor cells and immature myeloid cells. These cells are a 

major focus of my PhD thesis. They are expanded in pathological conditions such as 

infection, inflammation and cancer and their main function is suppression of T cell 

responses. These cells represent 20-30% of mouse bone marrow and 2-3% of spleen.  

They are a mixture of myeloid cells with characteristics of monocytes and 

granulocytes and are generally described by the co-expression of mouse markers 

detected by antibodies against CD11b and Gr1 (CD11b+Gr1+). Gr1 recognises 

monocyte/macrophage and neutrophil markers Ly6C and Ly6G respectively, whereas 

CD11b is mainly a monocyte/macrophage marker.   MDSCs are usually subdivided 

into monocytic-like, when they present a mononuclear morphology, and are 

CD11b+Ly6G+/-Ly6C+, or granulocytic/neurophil-like when they present with 

multilobulated nuclei and are CD11b+Ly6G+Ly6Clo. These cells can produce 

immunossupressive substances such as arginase, inducible nitric oxide synthase 

(iNOS) and/or reactive oxygen species (ROS) (Gabrilovich and Nagaraj, 2009; 

Ostrand-Rosenberg and Sinha, 2009). MDSC were shown to block in vitro 

proliferation of T cells (Bronte et al., 2000; Mazzoni et al., 2002). Moreover in vivo 

depletion of MDSCs restored T cell proliferation and responses (Bronte et al., 2000). 

Other authors have demonstrated that these cells are capable of repressing NK cell 

cytotoxicity in vitro and in vivo in tumour bearing hosts (Li et al., 2009; Liu et al., 

2007). The main activators of MDSC expansion are cyclooxygenase 2, stem-cell 

factor (SCF), IL-6, M-CSF, GM-CSF and VEGF. Janus kinase protein (JAK) and 

signal transduction and activator of transcription 3 (STAT-3) are the main regulators 
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of MDSC expansion (Gabrilovich and Nagaraj, 2009). JAK2/STAT-3 activity in 

myeloid cells was shown to prevent their differentiation into mature cells in vitro 

(Nefedova et al., 2004). Importantly Kortylewiski and colleagues have demonstrated 

that genetic or pharmacological inhibition of STAT-3 in mice enhances the anti-

tumoural function of dendritc cells, T cells, NK cells and neutrophils (Kortylewski et 

al., 2005).  

 
 
 

D. Growth factor and chemokine signalling in BMDCs 
 

Bone marrow derived cell homing and mobilisation into distant tissues via the 

circulation is regulated by several cytokines, chemokines and growth factor signalling 

pathways. It is dependent on interactions with cells and extracellular matrix that 

comprise the surrounding stroma. The complex integration between extracellular and 

intracellular signals from different cell types is important to maintain the 

haematopoietic homeostasis and to allow efficient responses in conditions of stress 

such as infection. Survival and proliferation of HSCs is dependent on lineage-specific 

cytokines. Good examples are colony-stimulating factors (CSFs) such as monocyte-

granulocyte (GM-CSF), monocyte (M-CSF) and granulocyte (G-CSF); these are 

CSFs that can stimulate proliferation of myeloid cells (Hercus et al., 2009).  

Given the complexity of the cytokine, chemokine and growth factor signalling in 

haematopoiesis I will focus on three signalling pathways that have also been widely 

associated with bone marrow derived cell activity, especially myeloid cell recruitment 

in cancer: VEGF/PIGF-VEGFR-1, CXCL12-CXCR4/7, CCL2-CCR2 (Barreda et al., 

2004; Duda and Jain, 2010; Duda et al., 2011; Zhang et al., 2010b).  
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I. VEGF/PIGF-VEGFR1 
 

The role of VEGF and its receptors in angiogenesis has already been described in this 

thesis (see 1.3.1B-I). VEGFR- 2 deficient mice fail to develop haematopoietic cells 

and Flk-1 expression was shown in haematopoietic stem cells (Shalaby et al., 1995; 

Ziegler et al., 1999). However Flk-1 positive haematopoietic stem cells failed to 

reconstitute lethally irradiated adult mice. This suggests VEGFR-2 is important for 

embryonic haematopoiesis but not for the function of hematopoietic stem cells in the 

adult mouse bone marrow (Haruta et al., 2001). Inhibition of VEGFR-1 but not 

VEGFR-2 decreased haematopoietic recovery in mice after 5-fluorouracil-induced 

depletion of cycling haematopoietic cells. Moreover PIGF was shown to restore 

haematopoiesis after myelossupression. PIGF that signals through VEGFR-1 

increased VEGFR-1+ HSCs differentiation, mobilisation and reconstitution of 

haematopoiesis (Hattori et al., 2002). Migration of monocytes in response to VEGF-A 

and PIGF had already been shown to be dependent upon VEGFR-1 activation in these 

cells (Barleon et al., 1996).  

 

The requirement of VEGFR-1 for the recruitment of bone marrow derived cells for 

growing tumours and metastases is not fully understood. Some studies indicate that 

blocking VEGFR-1 does not affect infiltration of BMDCs in tumours or spontaneous 

metastases (Dawson et al., 2009), whereas others show that VEGFR-1 is important in 

the formation of pre-metastatic niches by BMDCs (Kaplan et al., 2005).  

 

VEGFR-1 is considered to be a kinase impaired receptor tryrosine kinase, i.e., it is 

poorly phosphorylated upon ligand binding and its ability to phosphorylate other 
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substrates is also low. As a consequence VEGFR-1 activation and homodimerisation 

results in activation of a limited number of signalling pathways such as p44/42 MAP 

kinase (Rahimi, 2006). However most of signalling studies were performed in 

endothelial cells and it is not clear whether this phenomenon is common to all cell 

lineages. 

 
II. Chemokine and chemokine receptors 

 
 

Chemokines are a family of small cytokines that have leukocyte chemoattracting 

properties. Based on the position of four conserved cysteine residues they are divided 

into 4 main families: CXC, CXC3, CC and C. There are more than 50 known 

chemokines. Chemokines interact with more than twenty C-C and CXC seven-trans-

membrane receptors coupled to G-proteins. They are composed of three extracellular 

and three intracellular loops surrounded by an N-terminus outside the cell surface and 

a C-terminus in the cytoplasm. The heterotrimeric G-proteins are coupled to one of 

the intracellular loops of the receptor and that mediates ligand binding and activation 

of signalling transduction pathways. Most chemokine receptors can bind with high 

affinity to more than one chemokine ligand and CCs are considered more 

promiscuous than CXCs in this context. On the other hand, many chemokines can 

also bind other receptors (Choi et al., 2012; Duda et al., 2011; Sun et al., 2010).  
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 CXCL12-CXCR4/7 
 
 
CXCL12, also named stromal-derived growth factor-1 (SDF-1), is expressed in 

several tissue types and has two major isoforms, α and β, even though other isoforms 

have been identified. CXCL12-α is found in the majority of organs, undergoes rapid 

proteolysis in blood and is the predominant isoform secreted by bone marrow stromal 

cells and endothelial cells. CXCL12-β is expressed in highly vascularised organs such 

as kidneys, liver and spleen due to its ability to promote angiogenesis and is more 

resistant to proteolysis in blood (Sun et al., 2010).  

CXCL12, mainly CXCL12-α, binds to two main receptors: CXCR4 and CXCR7. 

CXCR4 is highly expressed in haematopoietic stem cells in bone marrow, in 

monocytes, B cells and T cells in peripheral blood and it was also found to be 

expressed in cancer cells where its expression levels correlate with occurrence and 

extent of metastasis (Choi et al., 2012; Hinton et al., 2010; Muller et al., 2001; Sun et 

al., 2010). CXCR7 is mainly expressed in T cells and B cells but was also found in 

tumour cell lines and endothelial cells associated with tumours (Burns et al., 2006; 

Miao et al., 2007; Sun et al., 2010).  

Upon CXCL12 binding CXCR4 forms homodimers and activation of signalling 

pathways such as phosphoinositide 3-kinase (PI3K)/Akt, focal adhesion kinase 

(FAK), nuclear factor kappa B (NF-κB) and mitogen activated protein kinase 

(MAPK) amongst others that regulate cell survival, proliferation and chemotaxis 

(Choi et al., 2012; Duda et al., 2011). Many of these pathways are common to 

receptor tyrosine kinase and integrin signalling (Fig.5). CXCR7 signalling, upon 

CXCL12 binding, is less well understood. It is thought CXCR7 can form 

heterodimers with CXCR4 that change the conformation of the latter and abrogate its 
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signalling. On the other hand CXCR7 can signal though PLC/MAP kinase pathway to 

increase cell survival (Choi et al., 2012; Duda et al., 2011; Sun et al., 2010).  

CXCL12-CXCR4 axis is crucial for haematopoietic homeostasis. CXCL12-abundant 

reticular (CAR) cells in bone marrow stroma were found to associate with CXCR4-

HSCs.  CXCL12-CXCR4 signalling plays a pivotal role in maintenance of the 

quiescent HSC pool.  Disruption of this signalling pathway resulted in reduced bone 

marrow HSC numbers (Sugiyama et al., 2006). Expression of CXCL12 by bone 

marrow stroma and interaction with CXCR4 receptor in neutrophils provides also a 

key bone marrow retention signal. Attenuation of CXCR4 leads to increase 

mobilisation of neutrophils into the circulation (Eash et al., 2010). G-CSF-mediated 

mobilisation of haematopoietic progenitor cells (HPCs) into the circulation coincided 

with N-terminal cleavage of CXCR4 in bone marrow HPCs, increase in SDF-1 

degradation proteases and decreased accumulation of SDF-1 in bone marrow 

(Levesque et al., 2003).  In other studies G-CSF was shown to decrease CXCL12 

expression in bone marrow stromal cells such as osteblasts and decrease their activity 

resulting in HPC mobilisation into the circulation (Semerad et al., 2005). Moreover 

treatment of mice with G-CSF resulted in down-regulation of CXCR4 specifically in 

Gr1+ cells that consequently increased their mobilisation to peripheral blood (Kim et 

al., 2006). Increases in SDF-1 production in tumours were shown to increase 

recruitment of bone marrow derived cells (Du et al., 2008; Jin et al., 2006a).  
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 CCL2-CCR2 
 
 
CCL2, also called monocyte chemoattractant protein (MCP-1) due to its ability to 

attract monocytes in vitro, can also be a chemoattractant for T cells, NK cells and 

dendritic cells. CCL2 is expressed in a wide range of cell types such as fibroblasts, 

macrophages, lymphocytes, astrocytes, mast cells, endothelial cells and osteoblasts. 

Importantly it is also expressed in many cancer cell types such as prostate, lung, 

breast, melanoma, ovary and colorectal amongst others (Zhang et al., 2010a; Zhang et 

al., 2010b).  

CCL2 binds with high affinity to the seven-trans-membrane G-protein coupled 

receptor CCR2. This receptor is mainly expressed in haematopoietic cells such as 

macrophages, non-haematopoietic cells such as fibroblasts, endothelial cells and 

mesenchymal stem cells and also in some cancer cells (Zhang et al., 2010b). CCR2 

expression has been found to correlate with prostate cancer progression and 

metastasis (Lu et al., 2007). The signalling pathways activated upon CCL2 binding to 

CCR2 are very similar to the ones described for CXCL12-CXCR4 (Zhang et al., 

2010a; Zhang et al., 2010b).  

 

Mobilisation of monocytes from the bone marrow compartment is dependent on 

CCR2 activation by its ligands CCL7 and CCL2. CCR2 is highly expressed in Ly6C+ 

monocytes and mice deficient in this chemokine receptor show decreased Ly6C+ 

monocyte blood numbers and increased retention of these cells in the bone marrow 

compartment.  Activation of CCR2 is also important for the mobilisation of Ly6C+ 

monocytes from blood to inflamed tissues. (Tsou et al., 2007). GM-CSF can also 

activate the CXCL2-CCR2 axis to increase neutrophil mobilisation. (Eash et al., 
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2010). CCR2 expression in Gr1+ monocytes is important for their recruitment to 

metastatic sites by tumour or stromal-derived CCL2 and will be described further in 

1.3.2F (Qian et al., 2011).  

 

E. Role of BMDCs in tumour growth and angiogenesis 
 

Tumour progression is accompanied by enhanced haematopoiesis. Tumour-stromal 

interactions are not static; in fact many stromal cells are recruited from the bone 

marrow compartment. BMDCs are constantly recruited to tumours to differentiate 

into endothelial cells, pericytes, cancer-associated fibroblasts (CAFs) and various 

immune infiltrating cells during tumour development (Joyce and Pollard, 2009).  

Tumour angiogenesis, as described before, is one of the hallmarks of cancer and 

depends on the proliferation and migration of endothelial cells. Growing evidence 

points to the importance of circulating endothelial progenitor cells (CEPs), highly 

proliferative cells derived from the bone marrow that have the ability to differentiate 

into mature endothelial cells when recruited to angiogenic sites, in angiogenesis and 

in the growth of certain tumours. The extent to which CEPs are incorporated in the 

tumour vasculature especially in humans is still controversial (Ahn and Brown, 2009; 

Rafii et al., 2002). Nevertheless, in animal studies, Lyden and colleagues (Lyden et 

al., 2001) have shown contribution of both VEGFR-2+ CEPs and VEGFR-1+ 

myeloid cells in xenograft tumour growth and angiogenesis. Other studies have 

suggested a minimal or absent contribution of BM-derived cells to tumour 

endothelium (Gothert et al., 2004; Larrivee et al., 2005). In human samples BM stem 

cells were shown to contribute to the tumour endothelium but at extremely low levels 

(Peters et al., 2005). 
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Recent studies have also highlighted the role of bone marrow derived mesenchymal 

cells that have the capacity of differentiating into mesenchymal tissues such as bone, 

cartilage and fat in supporting tumour angiogenesis. These cells have been shown to 

be possible precursors of pericytes expressing markers such as: α-smooth muscle 

actin (α-SMA), neuron-glia 2 (NG-2), platelet-derived growth factor receptor β 

(PDGFR-β) and tie-2, (Bexell et al., 2009; De Palma et al., 2005; Rajantie et al., 

2004), or cancer-associated fibroblasts (CAFs) exhibiting sustained expression of 

stromal-derived growth factor 1 (SDF-1) (Mishra et al., 2008). These bone marrow 

derived mesenchymal cells seem to act as paracrine inducers of angiogenesis 

secreting VEGF (Beckermann et al., 2008), MMP-9 (Bergers and Song, 2005) or 

SDF-1 (Mishra et al., 2008). These cells are recruited to the tumours by growth 

factors such as VEGF, PDGF, EGF (Beckermann et al., 2008) and HIF-1 (Du et al., 

2008). 

 

In the past the increased infiltration of tumours by immune cells was thought to be a 

consequence of failed attempts of cancer cell destruction. More recently, several lines 

of evidence have shown that, in fact, many of these cells have tumour-promoting 

functions (Joyce and Pollard, 2009). De Palma and colleagues described a specific 

type of monocyte that expresses Tie-2 and has a pro-angiogenic function. In mouse 

models pharmacological or genetic disruption of the Ang2-Tie2 axis in Tie-2 

expressing monocytes impaired the association of these cells with tumour 

endothelium and decreased tumour growth and angiogenesis (De Palma et al., 2005; 

De Palma et al., 2003; Mazzieri et al., 2011). Pro-angiogenic functions were also 

attributed to granulocytes such as neutrophils, due to their ability to produce MMP-9 

(Nozawa et al., 2006), and mast cells (Soucek et al., 2007).  
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Macrophages are the most studied BMDC type that has been associated with cancer 

progression. Tumour associated macrophages (TAMs) have been associated with 

decreased survival and poor prognosis in some cancers such as lung (Chen et al., 

2005), thyroid (Ryder et al., 2008) and hepatocellular carcinoma (Zhu et al., 2008). 

TAMs generally resemble M2 type macrophages and can express VEGF, EGF, FGF, 

MMPs and other molecules that can affect tumour cell proliferation, angiogenesis and 

extracellular matrix degradation (Sica et al., 2008).  In fact some studies have shown 

that skewing TAM polarisation from M2 to M1 type can lead to vessel normalisation 

and decreased tumour growth and metastasis (Rolny et al., 2011). More recently 

Friedlender et al have also defined tumour-associated neutrophils (TANs) as N2 type 

neutrophils with a pro-tumoural function that is controlled by TGF-β. Blocking this 

cytokine resulted in infiltration of TANs with an anti-tumour function (Fridlender et 

al., 2009).  

 

Another BMDC type that has been associated with poor prognosis in cancer patients 

is a population of CD4+CD25hiFOXP3+ regulatory T cells (Tregs). These cells have 

been observed in blood, primary tumour microenvironment and lymph nodes and 

have a role in immune suppression in tumours (Curiel et al., 2004).  

 

Finally, MDSCs were first described as a population of immature myeloid cells that 

increased in the blood of cancer patients and their circulation levels correlated with 

clinical stage and metastasis burden (Almand et al., 2001; Diaz-Montero et al., 2009). 

Their role in immune suppression has been demonstrated to contribute to increased 

tumour growth in several in vivo models (Bronte et al., 2000; Li et al., 2009; Mazzoni 

et al., 2002). Moreover Shojae et al have shown that granulocytic MDSC, through 
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expression of a mitogen for endothelial cells (Bv8), also have a pro-angiogenic 

function in tumours and are responsible for refractoriness to anti-VEGF therapy 

(Shojaei and Ferrara, 2008; Shojaei et al., 2007).  

 

F. Role of BMDCs in tumour metastasis 
 

In line with Paget’s ‘seed and soil’ hypothesis (Paget, 1889) is the concept of a ‘pre-

metastatic niche’. Kaplan and colleagues suggest that VEGFR-1+ haematopoietic-

derived progenitor cells form clusters that home to tumour specific pre-metastatic 

sites and that preventing the formation of these clusters, by removing VEGFR-1+ cells 

from the BM or using anti-VEGFR-1 antibodies, prevents tumour metastasis. These 

cells facilitate cancer cell invasion in the new microenvironment by their enhanced 

MMP-9 expression that is important for extracellular matrix remodelling. Bone 

marrow VEGFR-1+ cell alpha4beta1 (α4β1 or VLA-4) integrin binding by fibronectin 

is responsible for integrin activation and MMP-9 expression (Kaplan et al., 2005). 

Another study has also shown that MMP9 production from VEGFR-1+ endothelial 

cells and macrophages in the lung is stimulated by tumour cells, and that this 

determined metastasis formation (Hiratsuka et al., 2002). More recently colonisation 

of lung by cancer stem cells was demonstrated to be dependent on periostin (an ECM 

component) production by stromal fibroblasts (Malanchi et al., 2012). These studies 

give examples of BMDC functions such as ECM remodelling that are involved in 

tumour metastasis.  

 

 As for primary tumours the role of myeloid cells in tumour metastasis has been 

extensively demonstrated. Primary tumours produce VEGF-A, TNF-α and TGF-β 
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that induce expression of chemoattractants such as S100A8 and S100A9 in metastatic 

sites that, in turn, attract myeloid cells. Once at metastatic sites myeloid cells secrete 

migration-stimulating factors such as TNF-α and chemokine macrophage 

inflammatory protein-2 (MIP-2) (Hiratsuka et al., 2006). Chen and colleagues have 

recently demonstrated that recruitment of macrophages and their interaction with 

tumour cells triggers anti-apoptotic signals in cancer cells and thus facilitates their 

seeding and metastasis (Chen et al., 2011). Another study had already linked BMDCs 

interaction with tumour cells as a determinant to overcome dormancy in a model of 

bone metastasis. BMDC-tumour cell interaction increased recruitment of monocytic 

osteoclast progenitors that elevated osteoclast activity and bone reabsortion to 

facilitate metastasis (Lu et al., 2011).  

 

Increased numbers of MDSCs have also been clinically correlated with metastasis 

burden (Diaz-Montero et al., 2009). One of the main features in the contribution of 

these cells to tumour metastasis, as described before for the primary tumours, is the 

ability to suppress cytotoxic T and NK responses. Their expansion in metastatic sites 

decreases T cell activation, proliferation and cytotoxicity as it was shown in liver 

metastasis from mouse models of pre-invasive pancreatic and advanced colorectal 

cancer. Moreover MDSC expansion can also increase the development of regulatory 

T cells that further increase the immune suppressive microenvironment and facilitate 

metastasis (Connolly et al., 2010).  Increased hypoxia within the primary tumour has 

also been shown to increase recruitment of MDSCs to metastatic sites generating an 

immuno-suppressive niche that comprised defective NK cell populations and 

favoured metastasis (Sceneay et al., 2012).  
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MDSCs can also have other functions that directly contribute to tumour metastasis 

besides their immune suppression effects. Yang et al have demonstrated CD11b+Gr1+ 

cell recruitment at the invasion front of tumours using a mouse model of mammary 

carcinoma that forms metastases in the lung (MMTV-PyMT). These cells were shown 

to produce of MMPs, such as MMP2, 13 and 14, that might be responsible for the 

increased metastasis observed. Interestingly the MMTV-PyMT mouse model used 

had a specific type II TGF-β deletion in mammary epithelial cells that makes it more 

aggressive and metastatic showing the tumour suppressor activity of this cytokine. 

However, in this study CD11b+Gr1+ cells were shown to produce high levels of TGF-

β that was found at the invasive front of both mouse and human mammary tumours 

suggesting TGF-β has both tumour suppressor and tumour promotion functions 

depending on the cell type where it is expressed (Yang et al., 2008). Qian et al have 

shown, also using the MMTV-PyMT model, that Gr1+ monocytes are recruited to 

pulmonary metastases, but not to primary tumours through the interaction of Gr1+ 

monocyte chemokine receptor, CCR2, with tumour or stromal-derived CCL2. 

Pharmacological disruption of this interaction decreased metastasis. Importantly 

tumour cell extravasation and pulmonary seeding were dependent on production of 

VEGF by these Gr1+CCR2+ monocytes (Qian et al., 2011). MMP-9 production by 

CD11b+Gr1+ cells has also been described as a main determinant for vascular 

remodelling in pre-metastatic lung and increased metastasis in the 4T1 breast tumour 

model (Yan et al., 2010). Granulocytic CD11b+Gr1+ cells (neutrophils) in two 

different studies were associated with increased colonisation of metastatic sites by 

disseminated tumour cells. It was suggested that neutrophils interact with tumour cells 

and form bridges that facilitate cancer cell interaction with target metastatic tissue 

(Huh et al., 2010; Spicer et al., 2012). Gao et al have demonstrated that monocytic 
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CD11b+Gr1+ cells recruited to pre-metastatic lungs, in the MMTV-PyMT mouse 

model, expressed an ECM proteoglycan named versican. This ECM proteoglycan was 

responsible for decreasing tumour cell phospho-Smad2 levels and this in turn induced 

a mesenchymal-to-epithelial transition important for cell proliferation and 

colonisation of metastatic cells. Importantly, versican knockdown in the bone marrow 

was sufficient to decrease lung metastasis (Gao et al., 2012). 
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1.4. Cell adhesion in tumour progression 

 

Many of the processes in tumour progression involve changes in ECM-to-cell and 

cell-to-cell interactions that provide not only physical support, but also activate 

complex signalling cascades that regulate tumour development and metastasis. As 

cancer progresses cells acquire pro-invasive and migratory capabilities. Degradation 

of extracellular matrix is a crucial step in invasion. In this context cell adhesion 

proteins play a pivotal role. Proteins involved in the pro-invasive behaviour include 

epithelial cadherins, matrix metalloproteinases and include also a family of cell 

surface receptors named integrins (Ramsay et al., 2007) that will be the main focus of 

this section. Importantly I will describe the most relevant studies implying that 

endothelial and BMDC integrins play major roles in tumour progression.   

 

1.4.1. Integrins 

Integrins are a family of heterodimeric, transmembrane proteins that mediate both 

ECM-to-cell and cell-to-cell interactions. In mammals there are 24 known integrins 

that result from the non-covalent association of 18 different types of α-subunits with 8 

different types of β-subunits. Some integrins recognise the tripeptide sequence RGD 

present in ECM proteins such as fibronectin and vitronectin, or are cell adhesion 

receptors for laminins or collagen. There are also some that are leukocyte-specific 

receptors that bind to counter receptors of the Ig superfamily like intercellular cell 

adhesion molecule (ICAM) and vascular cell adhesion molecule 1 (VCAM-1). These 

interactions occur via the extracellular domains of integrins (Hynes, 1999; Hynes, 
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2002). The cytoplasmatic tails of integrins are associated with several adaptor proteins 

such as talin, vinculin and paxillin. These proteins are responsible for mediating the 

interaction with the actin cytoskeleton and with signalling molecules such as focal 

adhesion kinase (FAK). All of these interactions are responsible for the formation of 

focal adhesions, the molecular bridges that connect the intracellular and extracellular 

environments. In culture, most integrins will assemble into clusters known as focal 

contact sites (Romer et al., 2006).  

 

1.4.2. Integrin signalling 

Integrins are responsible for the modulation of many aspects of cell behaviour such as 

proliferation, survival/apoptosis, shape, polarity, motility, gene expression and 

differentiation. Importantly, many of the integrin-signalling molecules, such as FAK, 

are common to the signalling pathways triggered by both growth factors and 

cytokines through receptor tyrosine kinases (RTK) (Fig.5). In fact, many of the 

cellular responses to growth factors (such as EGF or PDGF) are dependent on cell 

adhesion to the substrata via integrins (Hynes, 2002; Ramjaun and Hodivala-Dilke, 

2009; Sieg et al., 2000). 

 

Integrins can transmit signals in two directions, inside-out and outside-in. Inside-out 

integrin signalling occurs when the intracellular signals influence the binding of an 

extracellular ligand to the integrin. These inside-out signals can lead to integrin 

conformational changes that, in turn, increase integrin intrinsic affinity for a specific 

ligand. Ligand binding induces integrin clustering that recruits cytoplasmatic 

signalling molecules to focal contacts triggering outside-in signals (Ginsberg et al., 
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2005). Development of focal contacts requires the association of integrins with 

adaptor proteins such as vinculin, talin and paxillin that mediate the interaction with 

several protein kinases. Some of the protein kinases required for integrin-mediated 

cellular response are Src family protein kinases (SFK) such as Src, FAK, 

phosphatidylinositol 3-kinase (PI3K) and integrin-linked kinase (ILK) (Geiger et al., 

2001).  

 

Integrin and receptor tyrosine kinase signalling is transduced into 3 main pathways (as 

represented in Fig.5): (1) signalling via FAK and SFKs; (2) signalling via 

ERK/mitogen activated protein kinase (MAPK); (3) signalling via nuclear factor 

kappa B (NF-κB). One of the major events in integrin signalling is the recruitment of 

FAK and SFKs and activation of PI3K by FAK. Signalling downstream of PI3K can 

in turn activate Akt and small GTPases like Rac that induce changes in the 

cytoskeleton, cell contractility, cell migration, invasion and gene expression. FAK can 

also activate ERK signalling and this, together with signalling downstream of Rac, 

regulates cell proliferation, migration and survival. The third pathway that can be 

activated through integrin signalling downstream of Rac is the NF-κB pathway that 

can lead to cell migration and protection from apoptosis (Larsen et al., 2006; Ramjaun 

and Hodivala-Dilke, 2009). 
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Figure 5: Integrin and receptor tyrosine kinase signalling pathways 

Many signalling molecules downstream of integrins are common to the downstream 
signalling of receptor tyrosine kinases  (RTK). The 3 main signalling pathways are: 1) 
signalling via FAK and SFKs; 2) signalling via ERK/MAPK; 3) signalling via NF-κB. 
Activation of integrin and receptor tyrosine kinase signalling can induce changes in cell 
proliferation, cell survival and also cell migration and invasion (adapted from (Ramjaun and 
Hodivala-Dilke, 2009). 
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1.4.3. Integrins in tumour progression 

The role of integrins in tumour cell invasion and migration has been extensively 

studied.  The most well studied integrins in cancer are αvβ3, αvβ5, α5β1, α6β4, 

α4β1 and αvβ6 because of their expression in cancer cells. Many epithelial integrins 

have been associated with solid tumour progression because of their retention in the 

tumour tissue (α6β4, α6β1, αvβ5, α2β1 and α3β1). Importantly integrins such as 

αvβ3, α5β1 and αvβ6 are usually expressed at low levels in the epithelia but are up-

regulated in tumours. On the other hand, expression of integrin α2β1 decreases in 

tumours (Desgrosellier and Cheresh, 2010). Specific ablation of β1 integrin in 

pancreatic β cells in the RIP-Tag2 mouse model of pancreatic β-cell carcinogenesis 

resulted in impaired tumour growth due to reduced proliferation and increased 

senescence in tumour cells. On the other hand, disseminating tumour cells were 

increased even though they were not shown to elicit metastasis (Kren et al., 2007). 

However antibodies against α5β1 integrin have been shown to decrease tumour 

growth in xenograft mouse models (Bhaskar et al., 2007).  Another study using a 

small peptide for inhibition of α5β1 together with a chemotherapeutic agent (5-

fluorouracil) in a colon cancer mouse model has shown a benefit in tumour growth, 

metastasis and survival of the animals (Stoeltzing et al., 2003).  

 

Integrin αvβ6 expression has been associated with epithelial-to-mesenchymal 

transition and autocrine TGF-β signalling in colon cancer cell lines. It was also shown 

to increase migration of these cells on fibronectin. More importantly high αvβ6 

expression was associated with a reduction in median survival of patients with 

colorectal carcinoma (Bates et al., 2005). αvβ6 inhibitors were shown to decrease 
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xenograft tumour size in vivo, but did not affect tumour cell proliferation in vitro 

suggesting a positive role for stromal αvβ6 in tumourigenesis (Van Aarsen et al., 

2008).  

 

Integrin αvβ3 has been shown to correlate with patient outcome in cervical cancer 

(Gruber et al., 2005), lymph node metastasis in pancreatic cancer (Hosotani et al., 

2002) and to control metastasis in human breast cancer (Felding-Habermann et al., 

2001). More recently Desgrosellier et al, by injecting human pancreatic cancer cell 

lines with different αvβ3 expression levels in mice, have shown that expression of 

this integrin increases lymph node metastasis in vivo and anchorage-independent 

survival and growth of these cell lines in vitro. This study has suggested a role for 

αvβ3 in cell adhesion independent tumour cell survival (Desgrosellier et al., 2009).  

Based on these studies inhibitors have been developed against αvβ3 and αvβ5 

integrins and some of them are already in clinical trials: cilengitide is an inhibitor of 

both αvβ3 and αvβ5 that has shown modest anti-tumour activity in phase II clinical 

trials when used as a monotherapy for treatment of recurrent glioblastoma multiforme 

(Reardon et al., 2008). When added to standard chemoradiotherapy in patients with 

newly diagnosed glioblastoma the results met the endpoints for progression free 

survival and overall survival (Stupp et al., 2010).  However in a small phase II clinical 

trial (16 patients) in patients with non-metastatic castration resistant prostate cancer 

cilengitide had no clinical activity (Alva et al., 2012). Our laboratory has 

demonstrated that low doses of αvβ3- and αvβ5-inhibitors can promote tumour 

growth in xenograft mouse models (Reynolds et al., 2009). The real clinical benefit of 

integrin inhibitors is still under investigation.  
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1.4.4. Role of endothelial integrins in tumour 

angiogenesis 

Eight heterodimeric integrins have been found in endothelial cells. The α5β1 and αv-

integrins (αvβ3 and αvβ5) recognise RGD-containing ligands such as vitronectin, 

fibronectin or von Willebrand factor, while α1β1 and α2β1 are predominantly 

collagen receptors but can also bind to laminin and α3β1, α6β1 and α6β4 are 

primarily laminin receptors (Hodivala-Dilke et al., 2003). Both genetic ablation and 

antagonist studies of α5β1, showed a vital role for this integrin in supporting 

angiogenesis (Kim et al., 2000; Yang et al., 1993). Antibodies and small peptides 

against α5β1 integrin have been shown to decrease angiogenesis in vitro and in 

mouse models in vivo (Bhaskar et al., 2007; Stoeltzing et al., 2003). The α1β1 and 

α2β1 antagonist studies also showed an important role for these integrins in 

angiogenesis (Funahashi et al., 2002; Senger et al., 1997). Our lab has recently shown 

that endothelial genetic ablation of either α6 (Germain et al., 2009) or α3 (da Silva et 

al., 2010) increases tumour angiogenesis pointing to an anti-angiogenic role for these 

two integrins.  

 

The αv-integrins historically have been associated with endothelial sprouts (Eliceiri 

and Cheresh, 1999). Integrin αvβ3 is increased on tumour-associated vessels of 

human carcinomas (Max et al., 1997). However, our laboratory has demonstrated that 

mice lacking either β3, or β3 and β5, are not only viable and fertile having no defects 

in developmental angiogenesis but also present enhanced tumour growth and 

angiogenesis when these integrins are absent in the stromal compartment (Reynolds et 

al., 2002). Moreover we have also shown that low doses of αvβ3 and αvβ5 inhibitors 
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can actually promote tumour growth and VEGF-mediated angiogenesis. The pro-

angiogenic effects of these inhibitors at low doses were attributed to changes in 

VEGFR-2 trafficking that in turn increase endothelial cell migration to VEGF 

(Reynolds et al., 2009). 

 

1.4.5. BMDC integrins in tumour progression 

BMDC integrins can regulate the release of these cells from the bone marrow and 

interactions with tumour cells, both of which play important roles in tumour 

progression. (Hiratsuka et al., 2006; Kaplan et al., 2005; Lu et al., 2011; Petty et al., 

2009). Three main types of integrins are expressed in bone marrow derived cells: 

β1and β3 integrins whose expression is also found in other non-haematopoietic cell 

types; and β2 integrins whose expression is restricted to haematopoietic cells (Soligo 

et al., 1990). Although β2 expression has no apparent function in bone marrow 

homing, α4β1 integrin has been implicated in this process (Papayannopoulou et al., 

2001). α4-integrin deficient haematopoietic progenitor cells accumulate in blood soon 

after deletion and accumulate progressively in the spleen as well. After bone marrow 

transplant, homing of α4-null cells to the bone marrow, but not spleen, is impaired 

(Scott et al., 2003). This is in contrast with results from β1 integrin conditional 

knockout in the haematopoietic system where no effect in bone marrow homing, 

haematopoiesis or lymphocyte trafficking was observed (Brakebusch et al., 2002). By 

transplanting RAG2 knockout mice with α4 integrin deficient bone marrow Banerjee 

et al have shown that thymic and gut lymphoid repopulation was impaired possibly 

due to a defect in BM-derived progenitor homing after transplantation. In addition, the 
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authors have demonstrated a defect in B-cell responses such as impaired 

immunoglobulin (Ig) M and IgE (Banerjee et al., 2008).  

 

α4β1 integrin interaction with its ligand VCAM-1 has been extensively studied in 

myeloid populations (Hiratsuka et al., 2006; Kaplan et al., 2005; Lu et al., 2011; Petty 

et al., 2009). For example, neutrophil α4β1 is responsible for the adhesion to VCAM-

1 in the bone marrow stroma and endothelium. Inhibition of either α4β1 or VCAM-1 

leads to the release of neutrophils from bone marrow. Signalling of SDF-1 (CXCL12) 

through CXCR4 in neutrophils also increases α4β1-VCAM-1 adhesion and blocking 

both CXCR4 and α4 has synergistic effects on bone marrow neutrophil release (Petty 

et al., 2009). 

α4β1-VCAM-1 interactions have also been associated in several processes in tumour 

progression. Jin et al have shown that α4β1 expression in circulating progenitor cells 

mediates the homing of these cells through interaction with VCAM-1 and fibronectin 

expressed in tumour active remodelling neovasculature (Jin et al., 2006b).  The same 

group suggested that monocyte α4β1 is also important for their adhesion to tumour 

endothelium and extravasation into tumours to promote angiogenesis. Antagonists of 

α4β1 prevented adhesion of monocytes to endothelium and their subsequent 

colonisation of tumours in vivo that, in turn, resulted in decreased tumour 

angiogenesis (Jin et al., 2006c). Chen and colleagues have demonstrated macrophage 

α4β1 triggers anti-apoptotic signals in cancer cells through binding to tumour 

VCAM-1 and thus facilitates cancer cell seeding and metastasis (Chen et al., 2011). 

Another study showed that VCAM-1 expression in tumour cells and interactions with 

α4β1 integrin in BMDCs increased recruitment of monocytic osteoclast progenitors 
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that elevated osteoclast activity and bone reabsortion to facilitate metastasis (Lu et al., 

2011). 

 

BMDC β3 integrin has also been linked to cancer. Platelet αIIbβ3 has been shown to 

be associated with bone metastasis in a mouse model of injected melanoma cells. In 

this study B16 melanoma cells were injected via the intra-cardiac route into β3-null 

and WT mice. β3-null mice displayed reduced metastasis to the bone. In addition, 

mice transplanted with β3-null bone marrow showed a similar protection to metastasis 

implying a BMDC involvement in the phenotype. Inhibition of platelet αIIbβ3 also 

prevented B16 bone metastases (Bakewell et al., 2003).   Feng and colleagues have 

described a requirement for αvβ3 expression on bone marrow derived cells for wound 

healing and tumour-associated angiogenesis (Feng et al., 2008). However, work from 

our laboratory has shown that VEGF-induced angiogenesis is increased in mice after 

β3-null BM transplantation and that vessels derived from β3-deficient BM are more 

likely to be non-functional (Watson et al., 2009). 
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1.5. Focal adhesion kinase 

 

One of the central players in integrin and growth factor receptor signalling is FAK 

(see Fig.5), also known as protein-tyrosine kinase (PTK-2) (Sieg et al., 2000). It was 

originally identified by Kanner and colleagues (Kanner et al., 1990) as pp125, one of 

several proteins that were highly phosphorylated in Src-transformed cells. After being 

characterised in chicken as a cytoplasmatic protein-tyrosine kinase it was named focal 

adhesion kinase due to localisation at focal adhesions (Schaller et al., 1992). 

Increased FAK expression has been associated, at least in some cases, with enhanced 

tumour malignancy and poor prognosis (Aronsohn et al., 2003; de Vicente et al., 

2012; Park et al., 2010).  

 

1.5.1. Focal adhesion kinase structure and signalling 

 

FAK is ubiquitously expressed and has several binding partners. Interactions with 

other proteins can trigger phosphorylation cascades but can also result in alterations at 

the transcription level (Frame et al., 2010; Golubovskaya and Cance, 2011; Mitra and 

Schlaepfer, 2006). On the other hand FAK fragments and related proteins have also 

been identified (Avraham et al., 1995; Lim et al., 2012; Schaller et al., 1993). This 

suggests FAK structure regulation has an essential role in the signalling cascades 

activated.  
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A. FAK domains and signalling 
 

FAK is a 125-kDa protein with a central tyrosine kinase domain flanked by N-

terminal and C-terminal domains (Fig.6) (Mitra et al., 2005). 

 

I. FAK promoter 
 

FAK promoter contains p53 and nuclear factor kappa B (NF-κB) binding sites. The 

p53 binding to FAK promoter was shown to repress FAK activity whereas NF-κB 

binding induced FAK expression in vitro (Golubovskaya et al., 2004).  Analysis of 

human breast and colon primary tumours showed a correlation between increased 

FAK expression and p53 mutations. Isolated tumour-derived p53 mutants were unable 

to inhibit FAK expression in vitro as opposed to wild type p53. This study highlights a 

new role for p53 in tumourigenesis by regulating FAK expression (Golubovskaya et 

al., 2008). A recent study has demonstrated that proteosome inhibitor bortezomib can 

downregulate FAK promoter activity and thereby reduce cancer cell migration and 

increase apoptosis. The authors have shown that this repression of FAK transcription 

was independent of p53. Instead reduction of NF-κB binding to the FAK promoter 

seemed to be the main mechanism responsible for bortezomib-dependent FAK 

downregulation (Ko et al., 2010). 

 

II. N-terminal or FERM domain 
 

The N-terminal domain is also termed FERM (protein 4.1, ezrin, radixin and moesin 

homology) and has been associated with signalling from receptor tyrosine kinases 

such as PDGFR and EGFR (Sieg et al., 2000). This domain binds directly to the 
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cytoplasmatic tail of β1 integrin and is thought important for β1 integrin signalling 

(Schaller et al., 1995). The FERM domain also has a negative regulatory role in FAK 

activation. The N-terminus of FAK has been shown to bind directly to the FAK 

catalytic domain and to have an autoinhibitory effect on FAK catalytic activity and 

phosphorylation (Cooper et al., 2003; Dunty and Schaller, 2002). Importantly a 

crystal structure study has suggested that the FERM domain sequesters the Tyr397 

autophosphorylation and Src recruitment site blocking FAK activation (Lietha et al., 

2007).  

Crystal structure analysis has subdivided FERM into three subdomains F1, F2 and F3 

(Ceccarelli et al., 2006). Lim et al have identified p53 binding in the F1 subdomain, 

nuclear localisation signals (NLS) in the F2 subdomain and connections to Mdm2 and 

proteosomal degradation in the F3 subdomain. Moreover the authors have shown all 

the three sub-domains contribute to the regulation of p53 degradation and cell 

survival. FAK FERM nuclear localisation is important for Mdm2 binding and 

functions as a scaffold between p53 and Mdm2 to increase p53 ubiquitination (Lim et 

al., 2008a). Other studies have shown that FAK inactivation triggers p53 and p21 

growth arrest and that the FERM domain is required for p53 enhanced degradation 

(Golubovskaya et al., 2005; Graham et al., 2011). Ossovskaya et al have identified 

nuclear exporting sequences (NES) in the F1 subdomain and then in the catalytic 

domain (Ossovskaya et al., 2008).  This suggested that the FERM domain might be 

involved in transferring signals from the nucleus to the cytoskeleton and membrane-

bound proteins.  
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III. FAK major autophosphorylation site 
 

Located at the juncture of the N-terminal and catalytic domains is the major site for 

FAK autophosphorylation, Tyr-397 (Y397). This phosphorylation is a critical 

regulatory event that modulates the catalytic activity of FAK and triggers the physical 

association of FAK with SFKs such as Src and Fyn, via their SH2 domains (Cobb et 

al., 1994; Schaller et al., 1994; Xing et al., 1994) or alternatively other signalling 

proteins such as PI3K, Shc adaptor protein, phospholipase-Cγ, growth-factor-

receptor-bound protein-7 (Grb7) and p120 RasGAP (Mitra et al., 2005). FAK-P-Y397 

phosphorylation is required for both integrin- and growth factor-stimulated cell 

migration (Sieg et al., 2000; Sieg et al., 1999).   

 

IV. FAK catalytic domain 
 

FAK-P-Y397 autophosphorylation and Src binding are the major events in FAK 

activation. The FAK Src complex can then trans-phosphorylate tyrosines 576 and 577 

(Y576 and Y577) that are located within the putative activation loop of the kinase 

domain (Fig.6). Src phosphorylation of these 2 tyrosines promotes maximal FAK 

catalytic activation. Both FAK-P-Y397 autophosphorylation and the activation loop 

sites (Y576 and Y577) were found to be crucial for adhesion-induced FAK activation 

and FAK enhanced cell spreading and migration (Calalb et al., 1995; Owen et al., 

1999). 
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V. FAK C-terminal or FAT domain 
 

The C-terminus of FAK is also termed focal adhesion targeting (FAT) domain, as the 

159 amino acids within this region were found to be essential for focal adhesion 

localisation of FAK (Hildebrand et al., 1993). The binding site for paxillin is located 

within the C-terminus of FAK and overlaps the FAT region (Hildebrand et al., 1995). 

Paxillin was shown to bind to the same region of β-integrins (Schaller et al., 1995) as 

FAK and also to vinculin (Turner et al., 1990). Given the co-localisation of these 

proteins at focal adhesions, and the overlap between the paxilllin binding site and 

FAT domain, paxillin was proposed as a mediator of FAK localisation to focal 

adhesions. However, replacement of the terminal 13 residues of FAK disrupts paxillin 

binding but not localisation to focal adhesions suggesting the existence of other 

mediators for focal adhesion targeting of FAK (Hildebrand et al., 1993; Hildebrand et 

al., 1995). Talin binds the C-terminus of FAK and was proposed as an upstream 

mediator of FAK activation by integrins (Fig.6) (Chen et al., 1995).  

 

The C-terminus of FAK also contains 2 proline rich motifs, which are thought to 

interact with SH3 domains in target proteins such as p130Cas (Cas) (Polte and Hanks, 

1997).  It has been proposed that FAK and Src can synergistically phosphorylate the 

substrate domain of Cas in response to integrin ligation, creating binding sites for the 

SH2 domain of the Crk adaptor protein. Cas/Crk downstream signalling can lead to 

Rac-mediated cell migration (Chodniewicz and Klemke, 2004; Mitra and Schlaepfer, 

2006). 

 

 



 

 74 

Paxillin (Y30 and Y118) and Cas are two of the main phosphorylation targets of the 

FAK Src complex. Their phosphorylation results, ultimately, in the activation of Rho-

dependent GTPases such as Rac and increase in cell motility (Roy et al., 2002; Ruest 

et al., 2001; Schaller et al., 1999).  

 

Src can also phosphorylate tyrosines 861 (Y861) and 925(Y925) that lie in the C-

terminal domain of FAK (Fig.6). FAK-P-Y861 phosphorylation is associated with an 

increase in SH3-domain-mediated binding of Cas to the proline regions within the 

FAK C-terminus that is thought to be crucial for H-Ras mediated transformation (Lim 

et al., 2004). Importantly, FAK-P-Y861 phosphorylation has been implicated in 

VEGF signalling (Abu-Ghazaleh et al., 2001; Eliceiri et al., 2002). FAK-P-Y925 

phosphorylation creates an SH2-binding site for the GRB2 adaptor protein. GRB2 

binding to FAK can lead to the activation of ERK/MAPK cascade (Mitra et al., 2005; 

Mitra et al., 2006b). 
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Figure 6: FAK structure and signalling 

FAK is composed of a kinase domain, 3 proline rich regions (P) flanked by N-terminal and C-
terminal domains. The N-terminal domain is termed FERM and directs interactions with 
growth factor receptor tyrosine kinase (RTK) and integrins. The C-terminus contains FAT 
that is required for focal adhesion targeting and 2 proline rich domains that interact with SH3 
domains in target proteins such as Cas. FAK is recruited to sites of integrin clustering through 
interactions between its C-terminal and integrin-associated proteins such as talin and paxillin. 
This results in rapid FAK-P-Y397 autophosphorylation and Src binding. Within the complex, 
Src can then transphosphorylate FAK in other residues within the kinase (Y576 and Y577) 
and the C-terminal (Y861 and Y925) domains of FAK. FAK Src complex is responsible for 
the phosphorylation of other proteins and activation of signalling cascades that control 
survival/growth, focal adhesion turnover, motility and invasion. 
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B. FAK related non-kinase 
 

Schaller and colleagues identified a non-catalytic isoform of FAK termed FAK 

related nonkinase (FRNK) that is identical in sequence to the C-terminal of FAK at 

both the nucleotide and amino acid levels (Schaller et al., 1993).  An alternative 

promoter that resides in an intron of FAK positioned between the 3’ exon coding 

sequences for the catalytic domain and 5’ exon coding sequences for the C-terminal 

domain of FAK controls expression of FRNK (Nolan et al., 1999). In contrast to 

FAK, FRNK is expressed selectively in SMCs and appears to be up-regulated 

following vascular injury (Nolan et al., 1999). FRNK seems to act as an endogenous 

inhibitor of FAK and its overexpression inhibits cell spreading, migration and growth 

factor signalling (Hauck et al., 2001; Richardson and Parsons, 1996; Taylor et al., 

2001).  

 

C. FAK proteolysis 
 

Some studies have shown that FAK and other focal adhesion proteins such as paxillin 

and talin can be cleaved by proteases such as calpain. The FAK calpain cleavage site 

lies between the two C-terminal proline-rich regions and results in an N-terminal 

fragment between 80-90 KDa and a C-terminal fragment of around 35 KDa. 

Importantly calpain proteolysis is required to regulate adhesion dynamics in motile 

cells (Carragher et al., 1999; Chan et al., 2010; Franco et al., 2004). More recently 

Lim et al have shown that inhibition of calpain resulted in decreased survival signals 

after oxidative stress such as Akt phosphorylation and Bcl2/Bax ratio. Survival was 

rescued by transfection of the N-terminal fragment in myofibroblasts in vitro. This 
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suggests the N-terminal fragment that results from calpain cleavage might have a 

pivotal role in cell survival in stress conditions (Lim et al., 2012).  

 

D. Related adhesion focal adhesion kinase, Pyk2 
 

Avraham and colleagues have identified another member of the focal adhesion protein 

kinase family, Pyk2, also termed related adhesion focal tyrosine kinase (RAFTK) that 

has close homology with FAK and shares a similar domain structure (FERM, kinase, 

proline rich and FAT domains) as well as common phosphorylation sites. Pyk2 can be 

activated through stimuli that increase intracellular calcium levels (the reason why it 

was also termed calcium-dependent protein tyrosine kinase (CADTK)). Unlike the 

ubiquitous expression of FAK, Pyk2 is mainly expressed in cells of the endothelium, 

central nervous system and haematopoietic lineages. FAK is localised at focal 

adhesions through its FAT domain in adherent cells whereas Pyk2 exhibits a 

perinuclear localisation (Avraham et al., 2000; Avraham et al., 1995). This difference 

in localisation of both proteins is thought to be responsible for the weak α5β1-

mediated activation of Pyk2 in response to fibronectin binding, when compared with 

FAK (Klingbeil et al., 2001). Pyk2 deficient mice are viable and fertile however this 

protein was found to be essential for macrophage migration and function (Okigaki et 

al., 2003). Pyk2 was implicated in the reduction of the vascular endothelial cell-cell 

adhesion mediated by VE-cadherin. Upon loss of VE-cadherin, the reduced cell-cell 

adhesion is accompanied by an increase in β-catenin phosphorylation that is 

dependent on the activation of Pyk2. This signalling is important for endothelial cell 

integrity modulation (van Buul et al., 2005).  
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1.5.2. Focal adhesion kinase in mouse development 

 

FAK expression is detected in early mouse embryos and is distributed throughout all 

cell types at the time of neurulation. Following neural tube closure, FAK expression 

becomes particularly abundant in the developing vasculature (Polte et al., 1994).  

FAK deficiency in mice is embryonic lethal at embryonic day E8.5 due to defects in 

late gastrulation related to an impaired mesoderm migration. This phenotype was 

similar to fibronectin-deficient mice suggesting an important role for FAK in 

mediating integrin-fibronectin interactions at this stage of development. Interestingly 

FAK deficient cells displayed an increased number of focal adhesions suggesting that 

FAK may be involved in focal adhesion turnover during cell migration (Furuta et al., 

1995; Ilic et al., 1995).  

 

1.5.3. FAK as a positive regulator in tumour progression 

 

FAK is located at human chromosome 8q24term (Agochiya et al., 1999) and is 

overexpressed in many epithelial human cancers such as breast (Cance et al., 2000), 

colorectal (de Heer et al., 2008), thyroid (Owens et al., 1996), prostate (Tremblay et 

al., 1996), oral cavity (de Vicente et al., 2012), liver (Cai et al., 2009), stomach (Park 

et al., 2010) and ovary (Judson et al., 1999) and also in tumours of mesenchymal 

origin such as glial cells (Jones et al., 2001; Wang et al., 2000).  

 

FAK signalling can promote changes in cell shape and the formation of invadopodia 

that promote an invasive cell phenotype (Hauck et al., 2002) and was shown to be up-
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regulated in pre-invasive or invasive breast and colon cancer patient tissue samples 

(Cance et al., 2000). Analysis of FAK, paxillin and Src expression in colorectal 

cancer samples showed equivalent levels of the three proteins in liver metastases 

when compared with the primary tumours. Moreover high levels of both FAK and Src 

within tumour cells were indicative of poor prognosis and tumour recurrence (de Heer 

et al., 2008).  

 

In mouse studies, specific deletion of FAK in keratinocytes suppressed chemically-

induced skin tumour formation associated with increased keratinocyte cell death 

(McLean et al., 2004). Several mouse studies have shown that FAK is important for 

breast cancer tumourigenesis, progression and metastasis (Luo et al., 2009; Mitra et 

al., 2006a; Provenzano et al., 2008).  Specific deletion of FAK in the mammary 

epithelium retarded tumour formation, growth and metastasis to the lung in the 

Polyoma middle T (MMTV-PyMT) tumour mouse model. Furthermore loss of FAK 

in these mice resulted in reduced Cas, Src and ERK1/2 phosphorylation (Provenzano 

et al., 2008). 
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1.5.4. FAK inhibitors 

 

The positive role of FAK in tumour progression led to the development of small 

molecule inhibitors of FAK catalytic activity as anti-tumour agents. Novartis 

developed 2 ATP-competitive agents that decrease FAK-P-Y397 phosphorylation: 

TAC-544 and TAE-226. Both exhibit nanomolar inhibitory activity against FAK. 

However, TAE-226 can also inhibit Pyk2 and other receptor tyrosine kinases such as 

insulin-like growth factor 1. The anti-tumour activity of TAE-226 was shown in ovary 

and cancer models (Lim et al., 2008b). More recently Kurio et al, using human breast 

cancer xenograft mouse models that metastasise to the bone, have shown that TAE-

226 not only decreased tumour growth but also bone metastasis increasing survival. 

The authors have also shown an effect of this compound in inhibiting osteoclasts in 

vitro and in vivo that is one of the mechanisms involved in bone metastasis (Kurio et 

al., 2011).  

 

Pfizer developed another ATP-competitive agent, PF-228 that seems to be more 

selective in the inhibition of FAK-P-Y397 phosphorylation. Given the hypothesis of 

Pyk2 compensation for the loss of FAK, Pfizer developed PF562, 271 which has been 

shown to have inhibitory activity against both FAK and Pyk2. The anti-tumour 

activity of PF562, 271 was demonstrated in prostate, pancreatic, glioblastoma and 

lung xenotropic tumour models (Lim et al., 2008b). More recently Stokes et al have 

tested the efficacy of PF562, 271 in metastasis using an orthotopic mouse model of 

pancreatic carcinoma. First of all the authors have shown that the compound has an 

effect in decreasing proliferation not only of tumour cells but also stromal cells such 
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as cancer associated fibroblasts and macrophages in vitro. PF562, 271 decreased 

tumour growth, invasion and metastasis and also the numbers of tumour associated 

macrophages and fibroblasts in vivo (Stokes et al., 2011). A new small reversible 

small oral inhibitor was developed, PND-1186. Studies have demonstrated that the 

compound inhibits FAK-P-Y397 phosphorylation and downstream substrate p130Cas 

in orthotopic breast tumours, however the study does not mention any analysis of 

Pyk2 or other tyrosine kinases. They show efficacy in primary tumour and metastasis 

in the same model and also a decrease in inflammatory cell infiltration (Walsh et al., 

2010). Most inhibitors are still on phase I clinical trials and there is no information on 

their clinical efficacy yet.  

 

1.5.5. FAK as a negative regulator in tumour progression 

 

Even though most of the evidence points towards a positive role for FAK in tumour 

progression, it has been over a decade since the first studies indicating a negative role 

for FAK in tumour progression appeared. A small study from Ayaki and colleagues 

analysed 10 matched samples of human normal colorectal mucosa, primary colorectal 

carcinoma and liver metastases. Even though tumours showed higher FAK levels than 

the normal colorectal mucosa the matched liver metastasis had significantly lower 

FAK levels than the tumours. Paxillin on the other hand was significantly up-

regulated in tumours and metastasis when compared with normal colorectal mucosa 

(Ayaki et al., 2001). The same theory had been presented in another study using in 

vitro and in vivo mouse models. The authors demonstrated that downregulation or 

dephosphorylation of FAK was required and sufficient for EGF-induced detachment 
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of extracellular matrix and increased cell motility and invasion in vitro. Moreover 

when tumour cells expressing FRNK were injected in mice genomic PCR from 

several tissues suggested an increased dissemination of these cells (Lu et al., 2001). 

Other studies have also proposed weakening adhesion strength of integrins as an 

important factor for induction of cell motility (Lynch et al., 2005).  

 

A more robust analysis on the prognostic value of FAK levels was performed in 162 

resected cervical cancer specimens. Even though FAK expression was found up-

regulated in tumour cells when compared with normal cervical epithelium, weak FAK 

expression was significantly correlated with poor overall survival. Importantly this 

weak expression was also significantly associated with pelvic lymph node metastasis 

and recurrent disease (Gabriel et al., 2006).  

  

More recently Zheng et al have highlighted FAK dephosphorylation at FAK-P-Y397 

and FAK inhibition by activated Ras as important events in promoting Ras-induced 

cell migration, invasion and metastasis. The authors claim ERK-dependent FAK 

phosphorylation at serine 910 primes FAK for dephosphorylation at FAK-P-Y397 by 

molecules downstream of Ras signalling.  Tail vein injection of tumour cells with 

mutated FAK-P-Y397 or FRNK in mice resulted in increased numbers of Ras-

mediated metastases in vivo (Zheng et al., 2009).  
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1.5.6. Endothelial FAK in angiogenesis 

 

The high levels of FAK in the developing vasculature and the vascular defects 

observed in FAK deficient mice point to a possible role for FAK in angiogenesis 

(Furuta et al., 1995; Ilic et al., 1995) but the exact role of FAK in pathological 

angiogenic processes, such as tumour angiogenesis, is still not well understood. 

 

FAK was found to be up-regulated in microvascular endothelial cells in malignant 

astrocytoma tumour biopsy samples. Using an endogenous inhibitor of FAK (FRNK), 

endothelial cell migration and tube formation of brain microvascular endothelial cells 

was inhibited suggesting a role for FAK in tumour angiogenesis (Haskell et al., 

2003).  

 

An in vitro study demonstrated that VEGF-A-induced migration of porcine aortic 

endothelial cells expressing VEGFR-2 requires the activation of PI3K, which depends 

on FAK activation by VEGF-A (Qi and Claesson-Welsh, 2001). Eliceri and 

colleagues have shown that VEGF-A-induced FAK-P-Y861 phosphorylation 

promotes the formation of a FAK/αvβ5 complex in endothelial cells, which is 

inhibited in Src-deficient mice (Eliceiri et al., 2002).  

 

Transgenic mice that constitutively overexpress chicken FAK in vascular endothelial 

cells under the control of the Tie2 promoter (an enhancer that drives gene expression 

throughout embryogenesis and adulthood in endothelial cells) showed enhanced 

angiogenesis during skin wound healing and in response to ischaemia (Peng et al., 
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2004).  Moreover endothelial-specific FAK deletion using Cre-loxP technology with 

Cre expression driven by the Tie2 promoter does not affect early embryogenesis but 

leads to late embryonic lethality at embryonic stage E13.5 due to defects in vascular 

development that are responsible for haemorrhage and oedema (Shen et al., 2005).  

 

Weiss and colleagues have crossed the FAK floxed mice with a tamoxifen-inducible 

Cre under the control of the 5’endothelial enhancer of the stem cell leukaemia locus 

(End-SCL-Cre-ER(T)) to induce specific FAK deletion in endothelial cells in adult 

mice. Surprisingly in this mouse model, endothelial-specific FAK deletion shows no 

vascular phenotype and no changes in angiogenic responses. The authors attribute this 

to a compensatory effect of Pyk2 for the loss of FAK (Weis et al., 2008). However 

our laboratory has demonstrated that by crossing FAK floxed mice with a different 

tamoxifen inducible Cre line, where Cre expression is driven by the endothelial-

specific Pdgfb promoter (Claxton et al., 2008), endothelial FAK deletion in the 

absence of Pyk2 compensation decreased tumour growth and angiogenesis (Tavora et 

al., 2010). Dual inhibition of FAK and Pyk2 using the TAE226 inhibitor have shown 

an effect in repressing neoangiogenesis in vitro and in a mouse model in vivo 

(Schultze et al., 2010).  

 

More recently Chen et al have also highlighted a role for endothelial FAK in VEGF-

induced vascular permeability. Using genetic mouse strategies and pharmacological 

inhibition with PF562, 271 (FAK-P-Y397 and Pyk2 inhibitor) the authors claim FAK 

FERM domain association with VE-Cadherin leads to FAK activation and FAK 

kinase-dependent phosphorylation of β-catenin. This results in VE-cadherin/β-catenin 

dissociation and endothelial junction breakdown required for VEGF-induced 
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permeability. They also show that the effects of FAK inhibition in VEGF-induced 

permeability are independent of Src (Chen et al., 2012).  In line with this another 

study has revealed a role for endothelial FAK in cancer cell homing and metastasis. 

The authors induced hyperpermeability in mice lungs in vivo by injecting Lewis Lung 

Cell (LLC) carcinoma cells, VEGF or tumour cell conditioning medium.   They have 

shown increased levels of FAK phosphorylation and E-selectin in these areas of 

hyperpermeability. Moreover E-selectin was shown to be necessary for metastatic 

cancer cell homing and metastasis in vivo and inhibition of FAK by using a mouse 

model with FRNK overexpression in endothelial cells decreased E-selectin 

expression, cancer cell homing and metastasis (Hiratsuka et al., 2011).  

 

1.5.7. Bone marrow derived FAK 

 

The role of FAK in bone marrow is less understood even though FAK identification 

and most of the signalling and functional studies were performed in fibroblasts that 

can also be derived from the bone marrow compartment (Hsia et al., 2003).  

 

A recent study has demonstrated FAK levels are increased in HSCs when compared 

with lineage progenitors and mature blood cells. HSC numbers were found increased 

when FAK was deleted in the bone marrow compartment in a Cre inducible 

conditional knockout under the expression of an interferon- inducible promoter (Mx1-

Cre). These mice showed more dividing and fewer quiescent HSCs. By using 

competitive transplant assays where FAK depleted bone marrow cells were 

transplanted with competitor WT bone marrow cells into lethally irradiated WT mice 
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the authors showed FAK depleted bone marrow cells have long-term engraftment 

capacity. Importantly this study also suggests FAK levels in both HSCs and bone 

marrow stroma are necessary to regulate the HSC pool and long-term engraftment (Lu 

et al., 2011). On the other hand, using the same mouse model (MxCre) Vemula et al 

have shown that loss of FAK results in impaired erythropoiesis and myelopoiesis in 

vivo. They have also demonstrated that FAK depletion in erythroid and myeloid 

populations in vitro impaired cytokine induced growth and survival. FAK deficient 

myeloid cells also showed reduced migration and adhesion in extracellular matrix 

proteins such as fibronectin and SDF-1. Recruitment of myeloid cells to sites of 

inflammation in vivo was also deficient in a model of acute peritonitis (Vemula et al., 

2010).  

 

Glodek et al have highlighted a role for FAK in CXCL12-induced chemotatic and 

pro-adhesive responses in haematopoietic precursor cells. FAK knockdown in human 

pro-B acute lymphoblastic leukaemia (proB-ALL) cells resulted in decreased 

CXCL12-induced adhesion to VCAM-1 without impairing VLA-4 function and 

consequently reduced chemotaxis to this cytokine (Glodek et al., 2007).  

 

When bone marrow cells are incubated with GM-CSF there is an up-regulation of 

FAK in vitro that might contribute toward maturation of monocytes/macrophages and 

granulocytes (Kume et al., 1997). Indeed FAK deletion in the myeloid population 

resulted in decreased monocyte recruitment to sites of inflammation in vivo. Primary 

bone marrow macrophages isolated from these mice showed adhesion and motility 

defects. Interestingly combined loss of FAK and Pyk2 resulted in more severe defects 

in invasion than either molecule alone (Owen et al., 2007). Another study has shown 
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that FAK, downstream of α5β1 integrin, promotes haptotaxis towards fibronectin and 

chemotaxis towards M-CSF in macrophages.  In contrast, paxillin is important for 

chemotaxis downstream of α4β1 integrin and independent of FAK in macrophages 

(Abshire et al., 2011).  Using a similar mouse model Kasorn et al have shown that 

FAK null neutrophils have defects in complement-mediated phagocytosis and 

pathogen killing capacity in vitro and in vivo. FAK deficiency also reduced adhesion 

to fibronectin and ICAM-1 but not to VCAM-1 and did not affect neutrophil 

transendothelial migration (Kasorn et al., 2009). Other studies suggested endothelial 

FAK is important for neutrophil transendothelial migration (Parsons et al., 2012).  
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1.6. Introduction summary 

Tumour microenvironment has been recognised as being pivotal in regulation of 

cancer progression. Stromal-cancer cell interactions are dependent on integrin and 

growth factor receptor signalling activation. Focal adhesion kinase, being downstream 

of both growth factor receptors and integrins and for the recognised overexpression in 

many human cancers, has emerged as a promising anti-cancer target. However recent 

data have suggested FAK can also act as a negative regulator in tumour progression 

and raised concerns about the use of FAK inhibitors. These drugs are likely to affect 

both cancer and stromal compartments. The role of stromal FAK in tumour 

progression is less understood.  

 

Bone marrow derived cell recruitment has been recognised as important not only in 

primary tumours but also in the formation of pre-metastatic niches. This recruitment 

is also dependent on integrin and cytokine signalling. FAK has shown to be important 

in inflammatory responses from myeloid cells but the role of FAK in cancer bone 

marrow derived cell recruitment has not been studied.  

 

The complexity of the molecular basis of FAK function is likely important in the 

control of different signalling pathways. Exploring the role different phosphorylation 

sites of FAK play in tumour progression in vivo might give insights into the 

mechanism of FAK regulation of stromal-cancer cell interactions. 
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1.7. Research aims 

 

1) Study the effect of stromal FAK deletion in adult mice during tumour growth, 

tumour angiogenesis and metastasis. 

 

2) Investigate the effect of FAK deletion in the bone marrow compartment in tumour 

growth, tumour angiogenesis and metastasis. 

 

3) Elucidate the importance of different FAK phosphorylation sites in the regulation 

of tumour angiogenesis, progression and spread. 
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2. MATERIALS AND METHODS 

2.1. Antibodies 

Rat anti-mouse CD31 (BD Biosciences, Oxford, UK), rat anti-endomucin antibody 

(clone V.7C7, Santa Cruz Biotechnology, CA, USA), mouse monoclonal anti-FAK 

(clone 77/FAK – BD Biosciences, Oxford, UK), rat anti-Gr1 (clone RB68C5 - BD 

pharmigen, Oxford, UK), rat anti-mouse Gr1 antibody functional grade purified 

(eBiosciences, Hatfield, UK), rat anti-mouse IgG2b κ isotype control antibody 

functional grade purified (eBiosciences, Hatfield, UK), Myc-Tag (9B11) mouse 

monoclonal antibody (Cell Signaling Technology, Boston, USA), rabbit anti-mouse 

large T-cell antigen (Santa Cruz Santa Cruz Biotechnology, CA, USA) anti-chicken 

FAK antibody (provided by Jun-Lin Guan, University Michigan, USA), mouse anti-

HSC70 (Santa Cruz Biotechnology, CA, USA), anti-FcγRII/III (ABD Serotec, 

Kidlington, UK), anti-CD102 (ABD Serotec, Kidlington, UK), Rat IgG2a isotype 

control (Santa Cruz Biotechnology, CA, USA), mouse IgG2a isotype control (Dako, 

Cambridgeshire, UK), Alexa Fluor 546 goat anti-rat IgG (Invitrogen, Paisley, UK), 

anti-rat Alexa-Fluor-488 (Invitrogen, Paisley, UK), Polyclonal rabbit anti-mouse-

HRP (Dako, Cambridgeshire, UK), Magnetic beads coated with sheep anti-rat (Dynal-

Invitrogen Bead Separation, Oslo, Norway). Anti-mouse CD16-32 (Fc block), anti-

mouse CD45-efluor450, anti-mouse Ly6G-FITC, anti-mouse Ly6C-APC, anti-mouse 

CD11b-PE, anti-mouse CD3-PECy5, anti-mouse CD4-FITC, anti-mouse CD8-APC, 

mouse haematopoietic lineage-efluor450, anti-mouse CD117 (cKit)-APC, anti-mouse 

Ly6-A/E (Sca-1)-PerCP-Cy5.5, anti-mouse CD34-efluor700, anti-mouse CD135 

(Flt3)-PE and anti-mouse CD16-32-FITC were all purchased from eBiosciences 

(Hatfield, UK). 
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2.2. Extracellular matrix reagents 

Fibronectin and Collagen type I were purchased from Millipore, Watford, UK. 

 

2.3. Mice 

2.3.1. Generation of RERTnERT/ERTCre; FAKfl/fl mice 

 

In order to study the effect of stromal FAK deletion in adult mice and to overcome the 

early embryonic lethality of the constitutive deletion of FAK (Ilic et al, 1995) we 

have generated global inducible-FAK knockout mice. 

 

Previously characterised RERTnERT/+Cre mice (Barriere et al., 2007; Guerra et al., 

2003) were obtained from Mariano Barbacid Laboratory (Centro de Investigaciones 

Oncologicas, Madrid, Spain) and bred in order to generate RERnERT/ERTCre 

homozygous mice. In these mice Cre is expressed under the promoter of the large unit 

of RNA polymerase II being generated in the majority of the cells and thus we used 

them as a tool to delete target genes inducibly in adult mice.  

 

FAK flox/flox (FAKfl/fl) mice were obtained from Jane Robinson (Sanger Institute, 

Cambridge, UK). FAKfl/fl allele was generated by gene targeting mouse embryonic 

stem (ES) cells that resulted in the insertion of loxP sites flanking the exon that 

encodes the FAK amino acids 413/444 (McLean et al., 2004). These mice were 

crossed with the RERTnERT/ERTCre mice in order to generate 

RERTnERT/ERTCre;FAKfl/fl on a mixed C57BL6/129 background (Fig.7). 
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Figure 7: Generation of ubiquitous inducible-FAK deficient mice 

Upon tamoxifen treatment, Cre recombinase under the expression of the large subunit of 
RNA polymerase II promoter RERT allows the recombination of the LoxP sites. This will 
allow for the excision of mouse FAK in all RERT positive cells.  
 

 

 

2.3.2. RIP-Tag2 mice 

RIP-Tag2 mice are transgenic for the rat insulin promoter II gene linked to the large-T 

antigen of SV40 (RIP-Tag) (Hanahan, 1985). RIP-Tag2 mice develop pancreatic β-

cell hyperplasia by 9 weeks of age and by 16 weeks of age develop highly 

vascularised solid pancreatic insulinomas accompanied by lymph node and liver 

micrometastasis (Lopez and Hanahan, 2002). 
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2.3.3. Generation of Pdgfb-iCreER;FAKfl/fl;R26FAKKI/KI 

mice 

 

In order to study the effect of the different FAK phosphorylation sites on tumour 

growth and angiogenesis we are generating point-mutant FAK knockin mice in the 

mouse Rosa26 locus (R26FAKKI/KI mice). 

 

For that purpose we have used different chicken FAK constructs provided initially 

from Margaret Frame’s laboratory (Beatson Institute for Cancer Research, Glasgow, 

UK) described in Table 1.   

 

Table 1: Point-mutant chicken FAK constructs 

Construct name WT aminoacid Construct aminoacid 

WT (control) 

Tyrosine (Y) 397 

Lysine 454 

Tyrosine (Y) 861 

Tyrosine (Y) 397 

Lysine 454 

Tyrosine (Y) 861 

397F Tyrosine (Y) 397 Phenylalanine (F) 397 

397E  
Tyrosine (Y) 397 

Glutamic acid  (F) 397 

KD Lysine 454 Arginine 454 

397E/KD 
Tyrosine (Y) 397 

Lysine 454 

Phenylalanine (E) 397 

Arginine 454 

861F Tyrosine (Y) 861 Phenylalanine (F) 861 
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A. Targeting embryonic stem cells 
 

Chicken FAK constructs were cloned into the pRosa26-1 vector by Dr. Bernardo 

Távora generating the genetic targeting construct shown in Fig.8. This targeting 

vector consists of a neomycin-resistant cassette adjacent to a STOP codon both of 

which are flanked by loxP sites. Downstream of this lies the WT or mutant chicken 

FAK followed by an IRES-GFP insert (Fig.8). Theoretically the c-myc tag and GFP 

should act as reporters of WT or mutant chicken FAK. 

 

 

 

Figure 8: Chicken FAK targeting construct into mouse Rosa26 locus 

A neomycin-resistant cassette adjacent to a STOP codon (NeoR STOP) both of which flanked 
by loxP sites precedes the chicken FAK construct that is tagged with c-myc on the C-terminus 
and is followed by IRES-GFP insert. Two homologous regions to the mouse Rosa26 locus to 
allow homologous recombination into mouse embryonic stem cells flank this entire sequence.  
 
 

I. Expansion and linearisation of the targeting vectors 
 
 

Targeting vectors were expanded by transformation of Stbl3 chemically competent 

bacteria (Invitrogen, Paisley, UK). 0.2 µl of plasmid DNA was added to 100 µl of 

Stbl3 chemically competent bacteria and incubated on ice for 30 min.  The cells were 

then subjected to a heatshock at 42ºC followed by 2 min recovery on ice. Finally the 

cells were shaken for 1h at 37ºC at 225 rpm in a shacking stage incubator and plated 

in Luria-Bertani (LB) broth (1% (w/v) tryptone, 0.5% (w/v) yeast extract and 1% 

(w/v) sodium chloride) with 1.5% (w/v) agar plates supplemented with 100 µg/ml of 
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ampicilin (Sigma, Dorset, UK) in distilled water (filter sterile) at the dilutions of 1:10 

-1:100. 

Ampicilin resistant colonies were grown in 250 ml of LB supplemented with 100 

µg/ml of ampicilin and DNA isolated using the EndoFree Maxi Kit (Qiagen, West 

Sussex, UK). Isolated DNA was then analysed with different restriction enzymes 

(SacII, PacI/AscI, EcoRV, BamHI, Hind III and Pac/EcoRV) to rule out any 

recombination event. 

 

Each targeting construct (220µg) was then digested overnight at 37ºC with 20  µl of 

SacII enzyme (New England Biolabs Hertfordshire, UK), 25 µl of buffer 4 (New 

England Biolabs Hertfordshire, UK) and distilled water up to a volume of 250 µl. 

Running 20 µl of reaction in a 0.8% agarose gel assessed the efficiency of digestion. 

In the case of an efficient digestion, without any undigested DNA bands, the 

linearised DNA was purified by phenol/chlorophorm extraction. Equal volumes of 

saturated phenol (Sigma, Dorset, UK) were added to the DNA samples before 

vortexing and centrifugation at maximum speed (12000 g) for 3 min at 4ºC. The 

supernatant was carefully transferred to a clean tube making sure that no interphase or 

phenol got into the new tube and an equal volume of 1:1 

phenol:chlorophorm:isoamylic alcohol (Sigma, Dorset, UK) was added. Samples 

were vortexed and centrifuged for 3 min at maximum speed at 4ºC. The upper 

aqueous phase was transferred to a new tube and equal volume of chlorophorm (BDH 

laboratory Supplies, Poole, UK) was added previous to the vortexing and 

centrifugation at maximum speed for 3 min. This procedure was repeated once.  DNA 

on the upper aqueous phase was precipitated with 0.1 volume of 3M sodium acetate 

(BDH laboratory Supplies, Poole, UK) pH 5.2 and 2 volumes of of 100% ethanol 
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(Fisher Scientific, Leicestershire, UK) at -80 ºC overnight or at least for a few hours. 

DNA was pelleted with centrifugation at maximum speed for 30 min at 4ºC and 

washed once with 70% ethanol. After centrifugation for 15 min at maximum speed at 

4ºC pelleted DNA was air dried and ressuspended in Tris-EDTA (TE) to a 

concentration of 1 mg/ml.  

 

II. Electroporation of mouse ES cells 
 
 

Four to five 25µl aliquots of each linearised targeting vector were frozen, labelled and 

sent to Ian Roswell in the Transgenic Unit in Claire Hall Laboratories where these 

targeting vectors were used to electroporate mouse ES cells. The mouse ES cells used 

were from hybrid 129S6.C57BL6J mice (Transgenic facility CRUK) and were 

maintained on primary embryonic fibroblast cells with the addition to the media of 

Leukaemia Inhibitory Factor (LIF), at 1000 units/ml, to prevent differentiation and 

maintain pluripotence. 

Constructs were electroporated into 5 x 106 - 107 ES cells. Selection was applied 24 

hours after electroporation with the addition of 200µg/ml G418 in ES cell medium. 

After 8-10 days colonies were clearly visible. Colonies were picked from the plates 

into wells of a 96-well microtitre plate, cultured and, when they reached confluence, 

half of the cells were frozen and half were transferred to the corresponding well of a 

further 96-well plate to extract DNA for the screening of homologous recombinants 

by Southern blot analysis. Screening by Southern blotting is important to confirm the 

homologous recombination of constructs within the Rosa 26 locus and determine if 

any random integrations have occurred. Any clones with random integrations should 

not be used further.  
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B. Screening and confirmation of homologous recombinants by 

Southern Blot analysis 

 
 

I. Southern blot reagents 

 
Cell lysis buffer (Clare Hall Laboratories) - 10 mM Trizma base/Trizma 

hydrochloride (pH 7.5), 10 mM EDTA, 10 mM NaCl, 0.5% Sarcosyl and 2 mg/ml 

proteinase K (add fresh). 

 

TE buffer  - TE buffer is composed by 10 mM Trizma base/Trizma hydrochloride (pH 

7.5) (Sigma, Dorset, UK) and 1mM EDTA (BDH laboratory Supplies, Poole, UK). 

 

DNA loading buffer - The 10X loading buffer was prepared by mixing 20X 

SSC:glycerol 1:1, 0.3% bromophenol blue (Sigma, Dorset, UK)  and 0.3% xylene 

cyanide (Sigma, Dorset, UK). 

 

TBE - The 10X TBE solution used is composed by 108 g/l Trizma base, 55g/l 

orthoboric acid (Sigma, Dorset, UK) and 20 mM EDTA. 

 

10X Nick translation buffer - 0.5M Tris-HCl (pH 7.4), 50 mM MgCl2 (Sigma, Dorset, 

UK), 0.1 M βME (Sigma, Dorset, UK). Stored at -20°C. 

 

Phosphate buffer – 316 ml of 0.5M Na2H2PO4.H2O (Fisher Scientific, Leicestershire, 

UK) added to 684ml of 0.5M Na2HPO4.7H2O (Fisher Scientific, Leicestershire, UK) 

to make 1L of 0.5M sodium phosphate pH 7.2. 
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Church & Gilbert Solution - 0.25M phosphate buffer, 7% SDS (Sigma, Dorset, UK), 

1mM EDTA. 

 

II. DNA preparation and digestion for Southern blot analysis 
 
 
 
Cells from an ES cell colony transferred to a well of a 96-well plate (see 2.3.3A-II) 

were grown to confluence (3-4 days). Media was removed from each well and cells 

were washed twice with PBS (200µl/well). 50µl of cell lysis buffer was added to each 

well, the plate sealed and incubated overnight at 60ºC in a humid atmosphere. After 

the lysis plate was frozen at -80ºC and sent in dry ice to our laboratory. After thawing 

the plate 50µl of isopropanol (BDH Laboratory supplies, Poole, UK) was added to 

each well and DNA precipitated by a short gentle vortex. The plate was then 

centrifuged at 1200g for 30 mins and the wells emptied by inverting the plate onto 

tissue paper. The pellet was washed once with 70% ethanol and re-centrifuged at 

1200g for 15 min. The DNA pellet was then air dried, ressupended in the following 

restriction enzyme mix and left overnight at 37ºC: 

 

Enzyme (EcoRV)    2 µl (40 units) 

10X buffer    3 µl 

RNase    0.2 µl (50 µg/ml final) 

Spermidine   0.75 µl (1mM final) 

100X BSA    0.3 µl 

dH2O    23.75 µl 

Total    30 µl 
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The enzyme and buffers were purchased from New England Biolabs, Hertfordshire, 

UK, RNase was purchased from Sigma, Dorset, UK.  Spermidine was purchased from 

Sigma, Dorset, UK and diluted in distilled water to 4 mM. 

The initial screen was performed using EcoRV digested DNA. On the following day 

an additional 1 µl of EcoRV was added to each well and the samples were left 3-4h at 

37ºC. 

For the confirmation screen of expanded clones 10 µg of DNA were digested with 

EcoRV and AvrII separately using the same restriction mixed described. 

 

III. Electrophoresis 
 

Digested DNA samples were mixed 1:10 with 10 X DNA loading in preparation for 

electrophoresis on 0.8% agarose gels. Agarose gels were prepared by microwaving 

agarose (Gibco BRL, Paisley, UK) with a volume of 1X TBE (10X TBE diluted in 

distilled water) adequate to the size of the tray used. All gels were supplemented with 

ethidium bromide (0.2 µg/ml) (Sigma, Dorset, UK) before polymerising in a sealed 

tray with 1 or more combs at room temperature (RT). Gels were placed in a gel tank 

(Scotlab-Anachem, Luton, UK) flooded with TBE 1X and samples loaded using 

yellow tips. Gels were run at 25 volts overnight. Five µl of Hyperladder I (Bioline, 

London, UK) was used to determine the Kb size of DNA fragments. Bands were 

visualised under UV light and photographed using an EagleEye Still Video System 

(Stratagene, Cedar Creek, TX, USA). 
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IV. Transfer DNA from agarose gels to nylon membranes 
 
 

After electrophoresis agarose gels were photographed alongside a ruler, in order to 

measure the distance from the wells to the DNA ladder fragments. Efficient digestion 

can be seen by observing long even streaks of DNA with a distinct band at around 2 

Kb. Gels were immersed in 2 volumes (1000 ml) of HCl 0.1N (BDH Laboratory 

supplies, Poole, UK) with gentle shaking during 15 minutes in order to depurinate the 

DNA. The step of depurination (random Creation of apurinic sites in the double-

strand DNA) is important to fragment the DNA and allow for efficient transfer. Gels 

were then transferred to 2 volumes (1000 ml) of NaOH 0.4N (Fisher Scientific, 

Leicestershire, UK) and shaken for 15 minutes in order to denature the DNA into 

single strands and allow efficient probe hybridization after transfer. Gels were then 

ready to be assembled into a transfer stack to allow for DNA to be transferred to 

nylon membranes by capillary action (Fig.9). 

 

Southern blot transfer was set up as follows: a platform was placed in a tray with 500 

ml of 0.4N NaOH. A layer of Whatman paper was used as a wick for the 0.4N NaOH 

that was placed in the bottom tray.  The gel was then placed on top of the Whatman 

paper and the Zeta probe membrane (previously immersed in 0.4N NaOH) (Bio-Rad 

Laboratories, Hertfordshire, UK) on top of the gel. The edges of the gel were sealed 

with Parafilm in order to prevent a short-circuit of the transfer (i.e. so that the 0,4N 

NaOH transfer buffer passes directly through the gel carrying the transfer of the DNA 

present in the gel onto the Zeta-probe membrane). Three layers of Whatman paper 

were laid on the membrane, followed by a stack of paper towels to create a gradient 
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that facilitates the transfer. A weight was placed in the top of the paper towels to 

maintain firm contact and reassure an homogeneous transfer. The DNA was 

transferred overnight. Finally nylon membrane was removed from the stack, UV-

crosslinked (12000 µJ) and then neutralised with 2X SSC, 0.2M Tris-HCl, pH 7.5. 

Membranes were air dried and stored at RT until required.   

 

 

 

 

 
 
 
 
 
 
 
 
Figure 9: Diagram of Southern blot transfer set up. 

A Whatman paper is placed on the top of a platform in contact with 500 ml of 0.4N NaOH 
inside a tray. The gel and membrane are then placed on top of the Whatman paper in this 
order. Three layers of Whatman paper are laid on the membrane plus a stack of paper towels 
creating a gradient that facilitates the transfer of DNA from the gel to the membrane by 
capillarity.  A weight is place on the top of the transfer setting in order to maintain firm 
contact, stabilise it and guarantee an homogeneous transfer.  
 

 

V. Isolation and preparation of DNA probes 
 
 
 
DNA was analysed using three different probes: Probe A, Probe B and Probe C. This 

section will describe sequence and hybridisation sites of each probe, probe isolation 

and labelling. 
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 Probe A – 5’R26 external probe 

Probe A is a 369 bp fragment, which was isolated from the pTopoRosa26pr2+ 

(provided by David Stevenson, Beatson Institute, Glasgow, UK), contains an 

ampicillin resistant cassette and is generated by EcoRI digestion (highlighted in red). 

The sequence is: 

GAATTCGCCCTTGAGATAGGAACTGGAAAACCAGAGGAGAGGCGTTCAGGAAGATT
ATGGAGGGGAGGACTGGGCCCCCACGAGCGACCAGAGTTGTCACAAGGCCGCAAGA
ACAGGGGAGGTGGGGGGCTCAGGGACAGAAAAAAAAGTATGTGTATTTTGAGAGCA
GGGTTGGGAGGCCTCTCCTGAAAAGGGTATAAACGTGGAGTAGGCAATACCCAGGC
AAAAAGGGGAGACCAGAGTAGGGGGAGGGGAAGAGTCCTGACCCAGGGAAGACATT
AAAAAGGTAGTGGGGTCGACTAGATGAAGGAGAGCCTTTCTCTCTGGGCAAGAGCG
GTGCAATGGTGTGTAAAGGTAGCTGAGAAGGGCGAATTC 
 

Probe A hybridises in the Rosa 26 locus outside the homologous recombination 

region of the targeting vector (Fig. 10). It was used in the first screen and 

confirmation of the targeted ES cells.  

 

 

 

 

 
 

 
 
Figure 10: Schematic of Probe A hybridisation and predicted EcoRV and AvrII 

fragment sizes.  

EcoRV predicted fragments after hybridisation with probe A are 9 Kb for the WT allele and 4 
Kb for the targeted allele. AvrII predicted fragments are instead 5.5Kb for the WT allele and 
8.4 Kb for the targeted allele.  
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 Probe B – GFP internal probe 

Probe B is a 752 bp fragment isolated from the pEGFP-N2 vector, contains a 

kanamycin resistant cassette and is generated by double digestion with BamHI and 

NotI (highlighted in red). The sequence is: 

GGATCCACCGGCCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGG
GTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGT
GTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAACTGACCCTGAAGTTCATCTG
CACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACG
GCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGT
CCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGC
AACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCAT
CGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGG
AGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCA
TCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCC
GACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAA
CCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATC
ACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAG
CTGTACAAGTAAAGCGGCCGC 
 

Probe B hybridises only in the targeting vector in the GFP insert and was used to 

confirm that this region is present in the targeted clones (Fig. 11). 

 

 

 

 
 
 
 
Figure 11: Schematic of Probe B hybridisation and predicted EcoRV and AvrII 

fragment sizes.  

EcoRV and AvrII predicted fragments after hybridisation with probe B are 9 Kb and 4 Kb 
respectively for the targeted allele. Probe B does not hybridise in the WT allele. 
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 Probe C – Neo internal probe 

Probe C is a 483 bp fragment isolated from the pTopoNeo vector, contains an 

ampicillin resistant cassette and was generated by digestion with EcoRI (highlighted 

in red). The sequence is: 

 

GAATTCGCCCTTATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACG
ACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTG
GCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGC
CGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGC
TACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGAT
GGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGC
CAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGATGATCTCGTC
GTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCT
GGATTCATCGACTGTGGCAAGGGCGAATTC 
 

Probe C hybridises only in the targeting vector in the neomycin resistant cassette and 

was used to confirm that this region is present in the targeted clones (Fig. 12). 

 

 

 

 

Figure 12: Schematic of Probe C hybridisation and predicted EcoRV and AvrII 

fragment sizes.  

EcoRV and AvrII predicted fragments after hybridisation with probe C are 4 Kb and 8.4 Kb 
respectively for the targeted allele. Probe C does not hybridise in the WT allele. 
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 Probe isolation 
 
The probes were prepared by digesting the 10 µg of the plasmid vector with the 

respective restriction enzymes at 37ºC overnight: 

 

Table 2: Digestion recipes for Probes A, B and C. 

Probe A Probe B Probe C 

pTopoRosa26pr2+ 10 µg pEGFP-N 10 µg pTopoNeo 10 µg 

EcoRI 2.5 µl BamHI 2.5 µl EcoRI 2.5 µl 

EcoRI buffer 2.5 µl NotI 2.5 µl EcoRI buffer 2.5 µl 

H2O to a total 25 µl Buffer 3 2.5 µl H2O to a total 25 µl 

  BSA 0.25 µl   

  H2O to a total 25 µl   

 

All enzymes and buffers were from New England Biolabs, Hertfordshire, UK. 

On the following day the digested DNA was run on a 0.8% agarose gel  (see 2.3.3B-

III) and the band that corresponded to the probe expected size was cut from the gel 

under the wavelength UV light and purified using the DNA gel extraction kit (Qiagen, 

West Sussex, UK) and eluted in 30 µl. The probe concentration was measured on the 

Nanodrop. 

 

 Probe labelling 

Probes isolated were radioactively labeled using the Random primer labeling of DNA 

probes protocol: 10-500 ng of DNA (isolated as described previously), 2 µl of 3 

mg/ml random hexamer primers (Invitrogen, Paisley, UK), 1 µl of 1N NaOH and 

water to 9 µl final volume were mixed and left at RT for 5 min. Then 2 µl of 1M Tris-

HCl (pH 7.5), 1.5 µl of 10X nick translation buffer, 5 µl of 300 µm each of dATP, 

dGTP, and dTTP (Roche, Welwyn Garden City, UK), 6.5 µl of α-32P dCTP and 1 µl 
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of Klenow (5 units) (New England Biolabs, Hertfordshire, UK) were added to a final 

volume of 25 µl. This mixture was incubated at RT for 2 hours (for optimum 

incorporation of label) or 37°C for 30 minutes. The unincorporated nucleotides were 

removed by running a spin column (Qiagen nucleotide extraction kit, Qiagen, West 

Sussex, UK) and the probe was eluted in 100 µl of TE. The probe was boiled 10 mins 

at 100°C and snap cooled for 3 mins on ice. 

 

VI. Hybridisation, exposure and developing 

Membranes from step IV were pre-hybridised in Church & Gilbert solution (Church 

and Gilbert, 1984) at 65°C with rotation over 3 hours with DNA face in contact with 

the solution. The 100 µl of probe labeled in V were added to Church & Gilbert 

solution and membranes hybridised overnight with rotation at 65°C. On the following 

day membranes were washed 3 times 1 hour each in 20 mM phosphate buffer, 1% 

SDS and 1 mM EDTA. Membranes were then exposed in phospho imager cassettes 

for at least 24h, and phospho imager plates developed in Tryphoon 8610 Variable 

Imager (GE Healthcare, Amersham, UK). 

VII. Striping and re-probing membranes 

After initial hybridisation with Probe A membranes were striped and re-probed with 

the Probes B and C. The membranes were striped by washing in NaOH 0.4N for 5 

min and the reactions stopped by immersing membranes in 2X SSC.  This procedure 

was repeated 3 times. To check that the stripping had worked membranes were 

exposed to phospho imager plates for a minimum of 24 hours and only used for 

subsequent hybridisation when the plates showed that no probe remained on the 

membranes.  
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C. Blastocyst injection and generation of chimeras 
 

All clones that showed homologous recombination and no random inserts were 

prepared for karyotyping (Clare Hall Transgenic Department). Clones with normal 

karyotypes have a better chance of yielding viable chimeras and subsequent germline 

transmission after blastocyst injection. 15-20 targeted ES cells with normal 

chromosome counts (>70%) were microinjected into day 4 fertilised mouse embryos 

(blastocysts). Following injection, embryos were transferred into day 3 plugged 

pseudopregnant foster mice, which gave birth 18 days later. Coat colour could be 

determined one week after birth. Given that the ES clones were from male 

129S6.C57BL6J (agouti/black) mice and the recipient blastocysts were C57 black 

chimerism can be predicted in male with agouti/black coat colour.  

 

D. Breeding chimeras for germline transmission 
 

High percentage agouti chimeras were bred to C57BL/6 mice. Because hybrid 

129S6.C57BL6J ES cells (agouti/black) were used to generate the chimeras, germline 

tranmission can occur in either agouti or black mice in colour. However an agouti 

progeny is likely to have germline transmission given that only the ES cells had the 

agouti colour. The progeny were tail snipped and screened by Southern blotting for 

germline transmission. DNA was extracted from the tail snips as detailed in 2.4.2B 

and Southern blots performed as described before. Sequencing of the mutation site 

was also performed according with point 2.4.3G and 2.4.5 to confirm that chicken 

FAK mutation from the original constructs persisted in vivo.  
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E. Generation of Pdgfb-iCreER;FAKfl/fl;R26FAKKI/KI mice 

 

Any mice that displayed germline transmission were heterozygous for the targeted 

allele (R26FAKKI/+). Thus R26FAKKI/+ mice were intercrossed to generate homozygous 

knockin mice (R26FAKKI/KI). 

Pdgfb (Platelet-derived growth factor b) is highly expressed in endothelial cells 

(Hellstrom et al., 1999). To begin to generate inducible endothelial-specific point-

mutant FAK knockin-knockout mice we utilised the Pdgfb-iCreER mice provided by 

Marcus Fruttiguer (Institute of Ophthalmology, UCL, London, UK). In these mice 

CreERT2 results from the fusion of Cre recombinase with a triple mutant estrogen 

receptor, allowing the production of an inactive form of Cre recombinase that 

becomes active only in the presence of tamoxifen. Downstream of the CreERT2 

sequence was cloned an internal ribosomal entry site (IRES) followed by the coding 

sequence of enhanced green fluorescent protein (EGFP). The previous construct was 

recombined in the open-reading frame of the Pdgfb gene in a phage artificial 

chromosome (PAC), which was subsequently used to generate transgenic mice by 

pronuclear injection (Claxton et al., 2008). Pdgfb-iCreER mice were bred with 

FAKfl/fl mice to generate FAKfl/fl and Pdgfb-iCreER+;FAKfl/fl mice. These mice were 

and are now being bred with the R26FAKKI/KI mice to generate Pdgfb-

iCreER+;FAKfl/fl;R26FAKKI/KI mice and control FAKfl/fl; R26FAKKI/KI mice. This 

produces an inducible knockin/knockout system that allows the mutant chicken FAK 

expression and simultaneously endogenous mouse FAK deletion in endothelial cells, 

after tamoxifen treatment in adult mice.  
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2.4. Genotyping, PCR and DNA electrophoresis 

2.4.1. Reagents  

A. Tail lysis buffer 

Tail lysis buffer is composed by 50 mM of Trizma base/Trizma hidrochloride (pH 

8.5) (Sigma, Dorset, UK), 10 mM of EDTA (pH 8.0), 100 mM NaCl (BDH 

Laboratory Supplies, Poole, UK) and 0.2% SDS. 0.1 mg/ml of proteinase K (Roche, 

Welwyn Garden City, UK) were added fresh before lysis. 

 

B. TBE, TE buffer and DNA loading buffer 
 
 
Please see section 2.3.3B-I. 
 
 

2.4.2. DNA extraction from ear/tail snips 

Mice were ear or tail sniped for genotyping by PCR or tail snipped for Southern blot 

analysis. 

 

A. Ear/tail snips for PCR genotyping 
 

Ear and tail snips were also used for genotyping by PCR. Tissue samples were 

digested overnight in a 96-well plate at 56°C in 100µl (0.1 mg/ml PK) of tail lysis 

buffer. The DNA was precipitated by adding an equal volume of isopropanol and 

centrifuging the plate at 2600 rpm for 20-30 min. The supernatant was removed by 

carefully inverting the plate and the DNA pellet was dried at 56-70°C for a 2-4h. The 

DNA was then ressuspended in 200 µl of TE. 
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B. Tail snips for Southern blot analysis 
 

Tail snips used for Southern blot analysis were digested overnight at 56°C in at least 

500 µl (0.1 mg/ml PK) of tail buffer. On the following day NaCl was added to a final 

concentration of 1.65M. Samples were then centrifuged at maximum speed for 5-10 

min, supernatant decanted and tissue debris discarded. An equal volume of 

isopropanol was then added and the solution inverted to precipitate the DNA. The 

DNA precipitates were then pelleted out by centrifuging at maximum speed for 20-30 

min. DNA pellets were then washed once in 70% ethanol. After a further 10-15 min 

centrifugation at top speed the ethanol was removed and DNA pellets were air dried 

and ressuspended in 20-30 µl of TE buffer each. The concentration of each DNA 

sample was measured in the nanodrop. 

 

C. Quick DNA extraction from tissue 
 

This was performed according to the manufacture instructions using the DNA 

extraction kit (Sigma, Dorset, UK). 

 

2.4.3. Polymerase chain reaction (PCR) 

PCR was used to genotype all the mice.  

 

A. Primer concentration 
 
 

All PCR primers (Invitrogen, Paisley, UK) were stored as a stock solution of 100 µM 

in TE buffer at -20°C. Working dilution used for all reactions was 10 µM. 
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B. RERTnERT/ERTCre PCR 
 

PCR analysis for RERTnERT/ERT Cre genotyping was carried out using the following 

oligonucleotide primers: 

 

Polr2aF_14B5: 5’ – CCAGATGACAGCGATGAGGA – 3’ 

Polr2aR_10B6: 5’ – CCTCTCTGAGCCTCAATTAAGCAG – 3’ 

ESR1f_10B7: 5’ – TGAGTAACAAAGGCATGGAGCA – 3’ 

 

For each reaction 1µl of DNA was added to 21 µl of Megamix (Cambio, Cambridge, 

UK) and 1 µl of each primer (10 µM). 

The PCR conditions were the following: 5 min at 94°C; 35 cycles of 1 min  at 94 °C, 1 

min at 60°C and 30 sec at 72°C; 7 min at 72°C and finally rest at 4°C. 

 

 

  

 
 

 
 
 
 
 Figure 13: Diagram of primer localisation in the large subunit of RNA 

polymerase II & expected band sizes for RERTnERT/ERTCre PCR 

Polr2af and Polr2ar primers generate a wild type band (+) of 480 bp. ESR1f and Polr2ar 
primers generate a ERT band of 390 bp. 
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C. FAKfl/fl (LP2) PCR 
 

PCR analysis for LP2 genotyping was carried out using the following oligonucleotide 

primers: 

 

LP2as: 5’ – TTAATAAGACCAGAGGACTCAGC – 3’ 

LP2h: 5’ – GGAAGAAGCTTGTATACTGTATG – 3’ 

LP2s: 5’ – ATTGTGCTATACTCACATTTGGA – 3’ 

 

For each reaction 1µl of DNA was added to 21 µl of Megamix and 1 µl of each 

primer (10 µM). 

The PCR conditions were the following: 5 min at 94°C; 35 cycles of 1 min  at 94 °C, 1 

min at 56°C and 1 min at 72°C; 7 min at 72°C and finally rest at 4°C. 

 

 

  

 
 
 
 
 
 
Figure 14: Diagram of primer localisation & expected band sizes for FAKfl/fl 

(LP2) PCR 

The product is a doublet for LP2/+, being the upper band (697 bp) of the doublet for the LP2 
and the lower band of the doublet (429 bp) for the wild type (+). 
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D. RIP-Tag2 PCR 
 

PCR analysis for RIP-Tag2 genotyping was carried out using the following 

oligonucleotide primers: 

 

Tag P1: 5’ –GGACAAACCACAACTAGAATGCAGTG– 3’ 

Tag P2: 5’ – CAGAGCAGAATTGTGGAGTGG– 3’ 

β2-microglobulin P1: 5’ – CACCGGAGAATGGGAAGCCGAA– 3’ 

β2-microglobulin P2: 5’ –TCCACACAGATGGAGCGTCCAG– 3’ 

 

For each reaction 1µl of DNA was added to 21.5 µl of Megamix (Cambio, 

Cambridge, UK) and 0.75 µl of each Tag P1 and Tag P2 primers (10 µM) and 0.5 µl 

of each β2-microglobulin and β2-microglobulin P2 primers (10 µM). 

 

The PCR conditions were the following: 5 min at 94°C; 35 cycles of 1 min  at 95 °C, 

30 sec at 60°C and 2 min at 72°C; 7 min at 72°C and finally rest at 4°C. 

 

Tag P1 and Tag P2 will generate a band of 449 bp of length whilst β2-microglobulin 

P1 and β2-microglobulin P2 will generate a band of 295 bp that will be used as a 

DNA positive control.  
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E. Pdgfb-iCreER PCR 

PCR analysis for Pdgfb-iCreER genotyping was carried out using the following 

oligonucleotide primers: 

 

PdgfbCre F: 5’ – GCCGCCGGGATCACTCTC – 3’ 

PdgfbCre R: 5’ – CCAGCCGCCGTCGCAACT – 3’ 

 

For each reaction 1µl of DNA was added to 22 µl of Megamix and 1 µl of each 

primer (10 µM). 

The PCR conditions were the following: 5 min at 94°C; 35 cycles of 30 sec at 94 °C, 

1 min at 57.5°C and 1 min at 72°C; 10 min at 72°C and finally rest at 4°C. 

 

 

 

 
 
 
 
 
 
 
Figure 15: Diagram of primer localisation & expected band sizes for Pdgfb-

iCreER 

The 2 primers generate a product (443 bp) only for Pdgfb-iCreER+. 
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F. R26FAKKI/KI genotyping PCR 

After the Southern blot screen confirmed correct targeting in the Rosa 26 locus (see 

2.3.3D), PCR was used routinely to genotype R26FAKKI/KI mice and was carried out 

using the following oligonucleotide primers: 

 

Rosa 1 (Forward WT): 5’ – GTTATCAGTAAGGGAGCTGCAGTGG – 3’ 

Rosa 2 (Reverse WT): 5’ – GGCGGATCACAAGCAATAATAACC – 3’ 

Rosa 3 (Reverse Targeted): 5’ – AAGACCGCGAAGAGTTTGTCCTC – 3’ 

 

For each reaction 1µl of DNA was added to 21 µl of Megamix and 1 µl of each 

primer (10 µM). 

The PCR conditions were the following: 5 min at 94°C; 35 cycles of 30 sec at 94 °C, 

1 min at 59.5°C and 30 sec at 72°C; 10 min at 72°C and finally rest at 4°C. 

 

  

 
 
 
 
 

 
 
 
 
Figure 16: Diagram of primer localisation & expected band sizes for R26FAKKI/KI 

PCR 

Rosa1 and Rosa 2 generate a wild type band (+) for Rosa 26 targeting of 415 bp. Rosa 1 and 
Rosa 3 generate a 302 bp band for targeted Rosa 26 locus. 
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G. R26FAKKI/KI sequencing PCR 

After the Southern blot analysis a sequencing of the mutation sites was performed. 

For the 397 and 454 sites the PCR was carried out using the following oligonucleotide 

primers: 

 

397mut fw2: 5’ – CCTTGAAATCAGGAGATCCTACG – 3’ 

397mut rev: 5’ – GCCGCTCACCGTTCTCAATC – 3’ 

 

For each reaction 1µl of DNA was added to 22 µl of Accuprime Mix (Invitrogen, 

Paisley, UK) and 1 µl of each primer (10 µM). 

 

The PCR conditions were the following: 5 min at 94°C; 35 cycles of 30 sec at 94 °C, 

30 sec at 60°C and 2 min at 68°C; 7 min at 68°C and finally rest at 4°C. 

 

 

 

 

 
 
 
  
Figure 17: Diagram of primers localisation and expected band sizes for 

R26FAKKI/KI sequencing PCR 

The reaction generates a 1.5 Kb band for the chicken FAK knockin and no band for the 
mouse FAK. 
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2.4.4. Electrophoresis 

All PCR products were separated in a 2% agarose gel at 100 volts (see 2.3.3B-III).  

 

2.4.5. Sequencing 

Five µl of sequencing PCR products (from 2.4.3G) were run in 1 % agarose gels (see 

2.3.3B-III) at 120 volts. PCR products were purified using the PCR purification kit 

(Qiagen, West Sussex, UK). DNA was eluted in 30 µl of TE and sent for sequencing 

at the Queen Mary University sequencing service. For sequencing the Tyr397 and 

Lys454 sites 397mut fw2 and 397mut rev primers were used (see 2.4.3G). 
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2.5. Flow cytometry 

2.5.1. Cell isolation for flow cytometry 

A. Blood cell isolation for flow cytometry 

Mice were anaesthetised by inhalation with isoflurane (Abbot, Maidenhead, UK) and 

blood collected in 1/10 of 0.5M EDTA by heart puncture, centrifuged at 1600 rpm for 

5 min at RT, washed in PBS and cells passed through a 70 µm cell strainer.  After 

another centrifugation supernatant was discarded and 1 ml of Red Blood Cell Lysis 

Buffer (Sigma-Aldrich, Dorset, UK) was added to the cell pellet, incubated for at least 

5 min to lyse the red blood cells before being diluted with 10 ml of FACS buffer (PBS 

+ 0.1% FCS) and passed through another 70 µm cell strainer in order to remove the 

lysed cloths. Cells were washed twice in 10 ml of FACS buffer and counted.  

 

B. Spleen cell isolation for flow cytometry 

Mice were sacrificed by cervical dislocation and their coats sprayed with 70% 

ethanol. Mice were then transferred into sterile conditions, sprayed again with 70% 

ethanol and skin opened in the left of the peritoneal cavity with mice facing up to 

reveal the spleen. Spleen was forced through a 70 µm cell strainer, centrifuged at 

1600 rpm for 5 min at RT and cells washed with PBS. After another centrifugation 

supernatant was discarded and 1 ml of Red Blood Cell Lysis Buffer was added to the 

cell pellet, incubated for at least 5 min to lyse the red blood cells before being diluted 

with 10 ml of FACS buffer (PBS + 0.1% FCS) and passed through another 70 µm cell 

strainer in order to remove the lysed cloths. Cells were washed twice in 10 ml of 

FACS buffer and counted. Cell surface phenotypes were determined by direct 
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immunofluorescence staining with conjugated anti-mouse antibody (Ab) and analysed 

using the BD LSRII software. 

 

C. Lung cell isolation for flow cytometry 

Mice were sacrificed by cervical dislocation and their coats sprayed with 70% 

ethanol. Mice were then transferred into sterile conditions, sprayed again with 70% 

ethanol and chest cavity opened to reveal heart and lungs. The later were mashed and 

digested in 2mg/ml of collagenase I (Gibco BRL, Paisley, UK) for 20min at 37°C. 

Digested lungs were forced through a 70 µm cell strainer, centrifuged at 1600 rpm for 

5 min at RT and cells washed with PBS. After another centrifugation supernatant was 

discarded and 1 ml of Red Blood Cell Lysis Buffer was added to the cell pellet, 

incubated for at least 5 min to lyse the red blood cells before being diluted with 10 ml 

of FACS buffer (PBS + 0.1% FCS) and passed through another 70 µm cell strainer in 

order to remove the lysed cloths. Cells were washed twice in 10 ml of FACS buffer 

and counted. Cell surface phenotypes were determined by direct immunofluorescence 

staining with conjugated anti-mouse Ab and analysed using the BD LSRII software. 

 

D. Bone marrow cell isolation for flow cytometry 

Mice were sacrificed by cervical dislocation and their coats sprayed with 70% 

ethanol. Under sterile conditions, the skin of the lower limbs was removed, femurs 

removed and muscle trimmed away. One femur per mouse was used for flow 

cytometry analysis. Femur heads were removed with sharp scissors and the bone 

marrow of each femur was gently flushed out in 10 ml PBS into a 15 ml falcon using 

a 10 ml syringe and a 25 gauge needle. The bone marrow suspension was passed 
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through a 70 µm cell strainer centrifuged at 1600 rpm for 5 min at RT and cells 

washed with PBS. After another centrifugation supernatant was discarded and 1 ml of 

Red Blood Cell Lysis Buffer was added to the cell pellet, incubated for at least 5 min 

to lyse the red blood cells before being diluted with 10 ml of FACS buffer (PBS + 

0.1% FCS) and passed through another 70 µm cell strainer in order to remove the 

lysed cloths. Cells were washed twice in 10 ml of FACS buffer and counted. Cell 

surface phenotypes were determined by direct immunofluorescence staining with 

conjugated anti-mouse Ab and analysed using the BD LSRII software. 

 

2.5.2. Cell staining for flow cytometry 

A. Blood, spleen and lung cell staining  

Cells from blood, spleen and lung were aliquoted in a 96-well plate (5x105 cells per 

well in max 150 µl medium), centrifuged at 1600rpm for 5 min at 4ºC, supernatant 

discarded, pellet resuspended in 150 µl FACS buffer/well, cells centrifuged 1600rpm 

for 5 min at 4ºC, supernatant discarded and pellet resuspended pellet in 50ul/well anti-

mouse CD16-32 (Fc block) (eBiosciences, Hatfield, UK) diluted 1:200 in FACS 

Buffer. Cells were incubated for 15min at 4ºC and 50ul/well antibody mixes of the 

following antibody mixes (1:200 final dilution) were added: 

Stain A    Stain B 

CD45-efluor450   CD45-efluor450 

Gr1-FITC     CD4-FITC 

Ly6C APC     CD8-APC 

CD11b-PE    CD3-PECy5 

     NK1.1-PE 
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A tube with each single colour antibody was prepared for compensation. Cells were 

incubated 30 min at 4ºC in the dark, centrifuged at 1600 rpm 5 min at 4ºC, 

supernatant discarded and washed twice in FACS buffer. Cell pellet was ressuspended 

in 2% formaldehyde in PBS (100ul/well), stored at 40C in the dark and samples 

analysed using the BD LSRII software until 48h after staining.  

 

B. Bone marrow cell staining  
 
Cells from bone marrow were stained separately for analysis of bone marrow cell 

progenitors. Cells were aliquoted in a 96-well plate (1x106 cells per well in max 150 

µl medium), centrifuged at 1600rpm for 5 min at 4ºC, supernatant discarded. For stain 

A, pellet resuspended in 150 µl FACS buffer/well, cells centrifuged 1600rpm for 5 

min at 4ºC, supernatant discarded and pellet resuspended pellet in 50ul/well Fc block 

(diluted 1:100 in FACS Buffer). Cells were incubated for 15min at 4ºC and 50ul/well 

of antibody mixes antibody mixes (1:100 final dilution) were added. For stain B pellet 

was ressuspended directly in 50ul/well of antibody mixes (1:100 final dilution). 

 

Stain A    Stain B 

CD45-efluor450   Lineage mix-e450 

Gr1-FITC    c-kit-APC 

Ly6C APC    Sca1-PercpCy5.5 

CD11b-PE    CD34-Alexa 700 

     Flt3-PE 

     CD16/32-FITC 
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A tube with each single colour antibody was prepared for compensation. Cells were 

incubated 30 min at 4ºC in the dark, centrifuged at 1600 rpm 5 min at 4ºC, 

supernatant discarded and washed twice in FACS buffer. Cell pellet was ressuspended 

in 2% formaldehyde in PBS (100ul/well), store at 40C in the dark and samples 

analysed using the BD LSRII software until 48h after staining.  

 

2.5.3. Gating and flow cytometry analysis 

Single colours were run first to compensate for leaking fluorescence from one colour 

to another. Samples were acquired from live, excluding the duplets and 30,000-50,000 

events were collected within the CD45+ population for Stain A, B of blood, spleen 

and lung and stain A of bone marrow. For bone marrow progenitor analysis samples 

were acquired from live, excluding the duplets and 30,000 events were collected 

within the lineage negative population. Each cell type was identified based on surface 

expression of different markers as represented in Table 3 and Table 4.  
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Table 3: Flow cytometry analysis of mature immune cells 

Cell type Markers 

Granulocytic CD11b+Gr1+ CD45+CD11bhiGr1hiLy6Clo 

Monocytic CD11b+Gr1+ CD45+CD11bhiGr1lo+intLy6Chi 

CD8 T cell CD45+CD3+CD8+ 

CD4 T Cell CD45+CD3+CD8+ 

NK cell CD45+NK1.1+ 

NK T cells CD45+CD3+NK1.1+ 

+positive, hihigh, lolow 

 

 

Table 4: Flow cytometry analysis of haematopoietic progenitors 

Cell type Markers 

HSC Lin- ckit+ Sca1+ 

CMP Lin- ckit+ Sca1- CD16/32- CD34+ 

GMP Lin- ckit-/lo Sca1- CD16/32+CD34+ 

CDP/MDP Lin- ckit int/lo Sca1- CD16/32+ Flt3+ 

HSC (Haematopoietic stem cells), CMP (common myeloid progenitor), GMP (granulocyte/monocyte 
progenitor) CDP (common dendritic progenitor)/MDP (monocyte/dendritic cell progenitor). 
+positive, intintermediate, -negative, lolow. 
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2.6. Cell Culture 

All procedures were carried out under sterile conditions in a tissue culture hood. 

 

2.6.1. Cell culture media and other cell culture reagents 

 
A. B16 tumour cells growth media  

B16F0 (melanoma, derived from C57black6) and B16F10 (melanoma, derived from 

C57black6) tumour cells were grown in Dulbecco’s Modified Medium (DMEM) 

(Invitrogen, Paisley, UK) supplemented with 10% foetal calf serum (FCS) 

(Biosource, Bethesda, UK). 

 

B. Endothelial cell medium (MLEC medium)  

The endothelial cells were cultured routinely in MLEC medium which is composed 

of: 50:50 mix of Dulbecco’s Modified Medium low glucose with Hams-F12 medium 

(PAA, Somerset, UK), supplemented with 0.1 mg/ml of heparin (Sigma, Dorset, UK), 

100U/ml penicillin/streptomycin 100X (pen/strep) (Invitrogen, Paisley, UK), 2 mM 

glutamine (Invitrogen, Paisley, UK) and 20% FCS. This solution was filter sterilised 

using a 0.2 mm disposable bottle top filter and the sterile media supplemented with 50 

µg/ml of endothelial mitogen (ABD Serotec, Kidlington, UK). Media were stored at 

4°C. 

 

C. Aortic ring medium  

Aortic rings were grown in DMEM supplemented with 2.5% FCS with or without 

growth factors. 
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D. Flask coating solution  

For endothelial cell culture tissue culture plastic was pre-coated using the following 

components: 

0.1% gelatin:  0.1 % (w/v) porcine skin 300 bloom gelatin (Sigma, Dorset, UK) in 

distilled water and autoclaved 30 min at 65°C. Stored at 4°C. 

Human Plasma Fibronectin : 1 mg/ml human plasma fibronectin in sterile PBS-A 

dissolved at room temperature. Stored at -80°C. The aliquots are thawed at 37°C 

before use and stored at 4°C for up to 3 weeks. 

Pure ColTM 3 mg/ml (Nutacon, Leimuiden , Netherlands). 

 

E. Collagenase solution 

0.1% (w/v) collagenase solution was prepared by dissolving 0.2g of type I 

collagenase (Gibco Invitrogen, Paisley, UK) in 50 ml of PBS-ABC (plus calcium and 

magnesium) at 37°C for 1 hour. After adding equal volume of PBS-ABC, the solution 

was filtered using a 0.2 mm filter (BD Falcon, Bedford, MA, USA). 

 

F. Antibody and magnetic beads solution for cell sorting 

Anti-FcγRII/III antibody solution for negative sort: 1:1000 in PBS. Used 5 ml per T75 

flask. Left at 4°C until used (approx. 20 min). 

Anti-CD102  (ICAM-2) antibody solution for positive sort: 1µg/ml in PBS. Used 5 ml 

per T75 flask. Left at 4°C until used (approx. 20 min). 

Anti-Rat Dynabeads solution: 1:500 in MLEC medium. Used 5 ml per T75 flask. Left 

at 4°C until used (approx. 1hour). 
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G. 4-Hydroxytamoxifen solution 

4-hydroxytamoxifen (OHT) (Sigma, Dorset, UK) was diluted to 1 mM in 95% 

ethanol. 

 

2.6.2. Mouse melanoma cell lines 

A. B16F0 and B16F10 tumour cell growth 

The B16F0 and B16F10 melanoma cells (C57/BL6) were used in the mouse tumour 

experiments. These cells were cultured in uncoated T175 flasks in DMEM 10% FCS 

at 37°C, 10% CO2 and split 1:10-1:12. There were approximately 7.5x106 cells/T175 

flask at 80% confluency.  

 

2.6.3. Primary endothelial cell culture 

Primary endothelial cell culture was performed as described previously (Reynolds and 

Hodivala-Dilke, 2006). 

 

A. Coating tissue culture flasks 

Tissue culture flasks for endothelial cell culture were pre-coated prior to cell seeding. 

The coating solution was prepared by mixing 0.1% (w/v) gelatin with 30 µg/ml of 

PureCol and 10 µg/ml human plasma fibronectin. The coating solution was added to 

the flasks according with the size (10 ml/T125, 5 ml/T75, 3 ml/T25, 2 ml/6-well, 1 

ml/24-well) and flasks incubated for at least 30 min at 37°C up to 16h at 4°C. The 

excess coating solution was aspirated off immediately before seeding the cells and 

washed briefly with a small volume of medium to neutralise acidity. 
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B. Collagenase treatment of lungs 

Mice were sacrificed by cervical dislocation and their coats sprayed with 70% 

ethanol. Mice were then transferred into sterile conditions, sprayed again with 70% 

ethanol and chest cavity opened to reveal heart and lungs. Lung-derived cells were 

prepared as follows: lungs were transferred to a 10 cm dish and immersed in Hams-

F12 supplemented with pen/strep placed on ice; fat removed with forceps; washed 

briefly in 70% ethanol; transferred to a new plate containing MLEC medium; minced 

with scalpels to produce a “pate”; “pate” were collagenase treated in 10 ml of freshly 

prepared 0.1% (w/v) collagenase in a 50 ml falcon tubes at 37°C for 2 hours. The 

digested lungs were then transferred to a petri dish and homogenised by syringing up 

and down 4-5 times, using a 20 ml syringe with a 19.5 gauge needle. The solution was 

passed through a cell 70 µm strainer (BD Falcon, Bedford, MA, USA) into a 50 ml 

falcon tube and 20 ml of MLEC medium added trough the strainer. The solution was 

centrifuged for 5 min at 1200 rpm and the supernatant removed leaving 

approximately 5 ml of liquid and the cell pellet in the tube. The pellet was carefully 

ressuspended and the cell suspension plated into a coated T75 tissue culture flask 

containing 10 ml of MLEC medium. The cells were cultured at 37°C, 10% CO2 for 

24h. On the following day cells were washed in PBS 3 times to remove residual red 

blood cells and the medium replaced. 3-5 sets of lungs from identical genotypes were 

used per preparation. 
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C. Negative sort 
 

The lung-derived cells include many cells types such as endothelial cells, 

macrophages and fibroblasts. To remove macrophages “negative sorts” were 

performed. This involved: incubating the adherent cells in MLEC medium at 4°C for 

20 min to chill the cells in order to avoid endocytosis and maintain the receptors at the 

surface of the cells; incubating the cells in a fresh change of MLEC medium with 

anti-FcγRII/III antibody solution to bind macrophages at 4°C for 30 min; one wash in 

PBS; incubating cells in anti-rat Dynabeads solution at 4°C for 30 min; and 3 washes 

in PBS. The attachment of beads to macrophages (small round cells) was confirmed 

using an inverted phase contrast microscope. Cells were then trypsinised with 2.5 ml 

of trypsin stock (25% Trypsin-EDTA from Gibco, Invitrogen, Paisley, UK), for 

approximately 2 min or until all cells have detached; trypsin inactivated with the 

addition of 9.5 ml of MLEC medium; cells were transferred to a 15 ml falcon tube 

and placed in a magnetic sorter. Bead-bound macrophages attached to the side of the 

tube over a period of 5 min were discarded and the non-bead bound cells were 

transferred to a new tube; centrifuged at 1200 rpm for 5 min; ressuspended in 12-15 

ml of MLEC medium and plated in a pre-coated T75 flask. 

The medium was changed every 2 days and once colonies of approximately 20 cells 

appeared, the positive sort to enrich for endothelial cells was carried out. 
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D. Positive sort 

This step separates the endothelial cells from the remaining mixed cell population 

(specially fibroblasts), using an antibody against an endothelial cell marker ICAM-2, 

anti-CD102.  

Positive sort involved: incubating the adherent cells in MLEC medium at 4°C for 20 

min to chill the cells in order to avoid endocytosis and maintain the receptors at the 

surface of the cells; incubating the cells in a fresh change of MELC medium with 

anti-CD102 solution to bind endothelial cells at 4°C for 30 min; one wash in PBS; 

incubating cells in anti-rat Dynabeads solution at 4°C for 30 min; and 3 washes in 

PBS. The attachment of beads to endothelial cells was confirmed using an inverted 

phase contrast microscope. Cells were then trypsinised with 2.5 ml of trypsin stock, 

for approximately 2 min or until all cells have detached; trypsin inactivated with the 

addition of 9.5 ml of MLEC medium; cells were transferred to a 15 ml falcon tube 

and placed in a magnetic sorter. Non-bead bound cells were discarded and bead-

bound endothelial cells attached to the side of the tube over a period of 5 min were 

ressuspended in 5ml of MLEC medium and plated in a pre-coated T25 flask. 

MLEC medium was changed every 2 days and a second positive sort was performed 

once the T25 flasks were confluent. If most of the cells had beads attached, these were 

plated in T75 flasks after the second positive sort. 

 

E. Splitting endothelial cells 
 

Once endothelial cells reached 80-90% of confluence they were split 1:2. A maximum 

of 4-5 passages were done before endothelial cells began to differentiate.  
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2.6.4. Ex vivo aortic ring assay 

Ex vivo aortic ring assays were performed as described previously (Masson et al., 

2002; Reynolds et al, 2004). Briefly, the Pdgfb-iCreER+;FAKfl/fl;R26FAK861F/861F and 

control FAKfl/fl;R26FAK861F/861F mice were killed by cervical dislocation and the chest 

cavity opened. Lungs and heart were removed to reveal the thoracic aortae. Thoracic 

aortae were removed by grasping it at the end nearest the heart and separating aortae 

from spine using fine optical scissors. Aortae were placed in a petri dish with 

Optimen and transferred to a dissected microscope (housed in a sterile air-flow hood). 

Four aortae per genotype were usually taken per experiment. Aortae were prepared as 

follows: periaortic tissue (fat, blood and connective tissue) or damaged parts of the 

aortae were removed carefully using fine forceps and surgical blades; cleaned aortae 

were placed in a drop of Optimem medium (Invitrogen, Paisley, UK) supplemented 

with 100 U/ml of pen/strep to prevent drying out and cut into 20-30 rings of 0.5 mm 

per aorta using surgical blades; incubated in Optimem overnight at 37°C, 10% CO2; 

after 16 hours rings were embedded in 50µl of a matrix composed of 1.2 mg/ml 

Collagen type I, 1.1 ml of 10X DMEM and sterile distilled water to a total volume of 

10 ml; matrix allowed to polymerise; 150µl of DMEM 2.5% FCS added to each well 

supplemented with 30 ng/ml of VEGF and 1µM of hydroxytamoxifen, with the 

respective controls non-supplemented. Media was changed every 2 days and sprouts 

counted in the inverted microscope between 5-22 days post embedding. 
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2.7. Gene expression analysis 

2.7.1. Endothelial RNA cell isolation and reverse 

transcription of RNA to make complementary cDNA 

 

A. Endothelial cell RNA isolation and cDNA preparation 
 

Pdgfb-iCreER+;FAKfl/fl;R26FAK861F/861F and control FAKfl/fl;R26FAK861F/861F mice 

endothelial cells were seed into 6 cm petri dishes at approximately 50-60% of 

confluency and grown in MLEC medium with or without 500 nM of 4-

hydroxytamoxifen for 48h. The cells were then positive sorted (see 2.6.3D) 

ressuspended in PBS, centrifuged at 1200 rpm and washed again in PBS. The 

supernatant was removed and the lysis performed using lysis buffer provided in the 

microRNA kit (Qiagen, West Sussex, UK). After lysis, bead-bound cells were 

centrifuged at 1200 rpm for 5 min, pellet discarded and supernatant kept. Total RNA 

was extracted using miniRNA kit (Qiagen, West Sussex, UK) and subjected to 

reverse transcription using the High Capacity cDNA archive kit (Applied Biosystems) 

according to the manufacturer’s instructions. cDNA was synthesised from 0.1-1 mg 

purified RNA. As a control chicken RNA was also extracted from embryos using the 

same microRNA kit and cDNA was made using the same protocol. 
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B. Real time quantitative PCR (qPCR) for gene expression 

levels in endothelial cells 

 

Two sets of test primers were used, chicken FAK specific primers and mouse FAK 

specific primers, as well as one set of control primers (actin). 

 

Chicken FAK primers (Invitrogen, Paisley, UK): 

 

chFAKleft - 5’-ATTGCTGCTAGGAACGTGCT-3’ 

ChFAKright - 5’- GCCAAAGTCACCCAATTTCA-3’ 

 

Mouse FAK primers (Invitrogen, Paisley, UK): 

 

musFAKleft - 5’- AACAGCTATTTGATTTCTTCTCAAAGT-3’ 

musFAKright - 5’- TCTTTTGCTAGATGCTAGGTATCTGT-3’ 

 

Actin primers (Invitrogen, Paisley, UK): 

 

Actin F - 5’-AAGGCCAACCGTGAAAAGAT-3’ 

Actin R - 5’-GTGGTACGACCAGAGGCATAC-3’ 
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Real-time quantitative PCR (qPCR) reactions were performed in triplicate. Each 20 µl 

reaction contained 2-5 ng cDNA, 10 µl Platinum® SYBR Green® qPCR SuperMix-

UDG with Rox (Invitrogen, UK), 300 nM of test primers or 50 nM (Actin) forward 

and reverse primers and nuclease free H2O in an individual well of a 96-well plate. 

The following conditions were used to run the PCR amplification process: 50°C for 2 

mins, denaturation at 95°C for 10 mins followed by 40 cycles at 95°C for 15 secs and 

1 min annealing/extension at 60°C. Data analyses were accomplished using the 

StepOne Plus Real Time PCR machine (Applied Byosystems, Foster City, USA). 

Data was normalised to endogenous actin and fold changes in gene expression were 

calculated using the comparative CT method.  
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2.8. Protein analysis by Western Blotting 

2.8.1. Cell lysis 

A. Whole kidney cell lysis 

Mice were sacrificed by cervical dislocation and their coats sprayed with 70% 

ethanol.  One kidney from each animal was removed and immediately snap frozen 

directly in liquid nitrogen. Samples were stored at -80°C prior to processing. Tissue 

was placed in mortar containing liquid nitrogen and grinded to a fine powder with the 

pestle before 1ml lysis buffer (3% SDS, 60mM sucrose, 65mM Tris-HCl pH6.8) was 

added. DNA was sheared the by passing the homogenate through a 21 gauge needle 

attached to a syringe. Homogenate was transferred to an eppendorf tube, boiled for 10 

min at 95°C and centrifuged for 10 min at 12, 000rpm. If supernatant was not clear It 

it was removed to fresh eppendorf and centrifuged again. Only clear supernatants 

were transferred to a fresh eppendorf and stored in 25 µl aliquots at -80°C prior to 

use.  

B. Whole bone marrow cell lysis  

For whole bone marrow cell lysis cells were extracted from femurs of animals, as it is 

described in 2.5.1D, washed in PBS and lysed at RT with sample buffer: 10% (w/v) 

SDS, 20% glycerol (v/v), 312.5 mM Tris. Lysates were sonicated (3 times 5 sec) and 

prepared for protein quantification prior to storage in 25 µl aliquots at -20°C. 
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C. Endothelial cell lysis  

For most Western blotting procedures in endothelial cells, except for detection of c-

myc the following cell lysis protocol was used: endothelial cells were grown to 70-

80% confluency and lysed with RIPA buffer (Millipore, Watford, UK): 2%Triton 

X100, 25 sodium deoxycholate, 0.2%SDS, 316mM NACl, 20 mM Trizma 

base/Trizma hydrochloride (pH7.3), 2mM EGTA supplemented with 1:100 dilution of 

protease inhibitor cocktail set III (100 mM AEBSF hydrochloride, 80 µM Aprotinin, 

5 mM Bestatin, 1.5 MM E-64 protease inhibitor, 2 mM Leupeptin hemisulfate and 

1mM pepstatin A) (Calbiochem, Nottingham, UK) and phosphatase inhibitor cocktail 

set II (200 mM Imidazole, 100 mM Sodium Fluoride, 115 mM Sodium Molybdate, 

100 mM Sodium Orthovadate and 400 mM Sodium Tartrate dihydrate) (Calbiochem, 

Nottingham, UK), for 10 min on ice. After lysis cells were scrapped off the plate, 

transferred to a cold eppendorf and centrifuged at 10, 000 rpm for 10 min at 4°C. The 

supernatants were transferred to a new cold eppendorf, sonicated at 4°C (3 times 5 

sec) and prepared for protein quantification prior to storage in 50 µl aliquots at -20°C. 

 

D. Cell lysis for c-myc Western blot  
 

For c-myc detection endothelial cells were grown to 70-80% confluency and lysed 

with125 mM Tris-Cl (pH 6.8), 5 mM EDTA, 5 mM EGTA (Sigma, Dorset, UK) in 

distilled water, supplemented with 1:100 dilution of protease inhibitor cocktail set III, 

for 10 min on ice. After lysis cells were scrapped off the plate, transferred to a cold 

eppendorf and centrifuged at 10, 000 rpm for 10 min at 4°C. The supernatants were 

transferred to a new cold eppendorf, sonicated at 4°C (3 times 5 sec) and prepared for 

protein quantification prior to storage in 25 µl aliquots at -20°C. 
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2.8.2. Protein quantification 

Protein concentrations were quantified using the Bio-Rad DC Protein Assay kit (Bio-

Rad Laboratories, Hertfordshire, UK), a colorimetric assay based on Lowry assay 

(Lowry et al, 1951). Protein standards were prepared by diluting a 4 mg/ml BSA 

solution in the appropriate lysis buffer to obtain solutions with concentrations of 0, 

0.1, 0.2, 0.4, 0.8, 1.2, 1.6 and 2 mg/ml. Protein concentrations were determined as 

follows: 5 µl of each sample or standard was aliquoted in duplicate into a 

bacteriological 96-well plate (Nunc Inc., Naperville, IL) and mixed with 25 µl of Bio-

Rad reagent B and with 200 µl of active A solution, obtained by mixing 1ml of 

reagent A with 20 µl of reagent S. After 15 min of incubation, protein concentrations 

were read on an absorbance microplate reader (Labtech International Ltd., East 

Sussex, UK) set at 650 nm wavelength and the results analysed using Stringray 

software (Dazdaq Ltd., East Sussex, UK). When necessary high concentration lysates, 

especially whole kidney and bone marrow lysates were diluted 1 in 10 before used in 

protein assay. This was performed to avoid having concentrations too high that were 

no longer in the linearity range of the protein assay and though could not be 

calculated accurately.  
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2.8.3. Preparation of lysates for Western blot 

A. Whole kidney lysates  

Whole kidney lysates prepared in 2.8.1A were thawed at RT, added 1/10 of 

bromophenol blue and supplemented with 250 µl/ml β-mercaptoethanol. 

 

B. Whole bone marrow lysates 

Whole bone marrow lysates prepared in 2.8.1B were thawed at RT, added 1/10 of 

bromophenol blue and supplemented with 250 µl/ml β-mercaptoethanol. 

 

C. Chicken FAK immunoprecipitation (IP) 
  

Endothelial cells isolated from Pdgfb-iCreER+;FAKfl/fl;R26FAK861F/861F and control 

FAKfl/fl;R26FAK861F/861F mice were seeded in 15 cm petri dishes at approximately 50-

60% of confluency and grown in MLEC medium with or without 500 nM of 

hydroxitamoxifen for 48h. The cells were then positive sorted (see 2.6.3D) before 

being lysed with 1 ml of RIPA buffer. 0.8 – 1 mg of protein was immunoprecipitated 

with Rabbit anti-chicken FAK antibody using the Immunoprecipitation kit – 

Dynabeads Protein G (Invitrogen, Paisley, UK), according with the manufacturer’s 

instructions. Briefly 5 µl anti-chicken FAK antibody per lysate was bound to 50 µl of 

Dynabeads for 10 min at RT with rotation. 0.8 – 1 mg of protein lysate in 1 ml total 

volume were then incubated overnight at 4°C with the antibody-bound Dynabeads 

with rotation. Supernatant was removed from the Dynabeads using a magnetic holder 

and to test the non-immunoprecipitated (non-IP) samples, 24 µl of each supernatant 

were then added to 6µl of NUPAGE sample buffer (Invitrogen, Paisley, UK) and 3 µl 



 

 138 

of NUPAGE reducing agent (Invitrogen, Paisley, UK) to run in gel. The remaining 

supernatant was stored at -20°C. The Dynabeads were washed and chicken FAK 

imunoprecipitated (IP) protein eluted each in 5 µl sample buffer, 6 µl reducing agent, 

and distilled water to a total volume of 20 µl. The IP and non-IP (supernatants) 

samples were boiled at 100°C for 10 min and the Dynabeads were removed from the 

IP samples before running in a pre-cast gel.  

 

D. Lysate preparation for c-myc Western blotting 

Endothelial cells isolated from Pdgfb-iCreER+;FAKfl/fl;R26FAK861F/861F and control 

FAKfl/fl;R26FAK861F/861F mice were seeded into 6 cm petri dishes at approximately 50-

60% of confluency and grown in MLEC medium with or without 500 nM of 

hydroxitamoxifen for 48h. The cells were then positive sorted (see 2.6.3D) before 

being lysed with 50 µl of cell lysis buffer for c-myc western blotting. The protein 

concentration was measured and 50 µg of protein were run in non-precast 8% 

polycarylamide gels as described below (2.8.4). Lysates were diluted to the desired 

concentration in equal volume of lysis buffer and 1:5 of 5X sample buffer (10% (w/v) 

SDS, 20% glycerol (v/v), 312.5 mM Tris and a few crystals of bromophenol blue) 

supplemented with 250 µl/ml β-mercaptoethanol. 
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2.8.4. Gel electrophoresis 

A. SDS-polyacrylamide gel electrophoresis – non-precast gels 

8% polyacrylamide gels 1.0-1.5 mm thick were used for resolving protein lysates.  

 

8% Acrylamide Gel Recipe: 

30% Acrylamide (National Diagnostics, UK) 2.7 ml 

4X Resolving Buffer (National Diagnostics, UK) 2.5 ml 

Distilled Water 4.8 ml 

Ammonium persulphate (APS) 10% (w/v) (National Diagnostics, UK) 100 µl 

TEMED (National Diagnostics, UK) 6 µl 

 

This resolving gel was poured into pre-formed cassettes (Invitrogen, Paisley, UK) and 

overlaid with isopropanol, to prevent gel-air contact, which inhibits polymerisation. 

Gels were polymerised for 30 min at RT, the isopropanol was discarded, stacking gel 

was poured on top and a lane comb was introduced.  

 

Stacking Gel Recipe: 

30% Acrylamide (National Diagnostics, UK) 330 µl 

Stacking Buffer (National Diagnostics, UK) 0.5 ml 

Distilled Water 1.15 ml 

Ammonim persulphate (APS) 10% (w/v) (National Diagnostics, UK) 20 µl 

TEMED (National Diagnostics, UK) 2 µl 
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The well comb was inserted after pouring the stacking gel and the gel left to 

polymerise for further 30 min. The comb was then removed and the gel was placed in 

a gel tank (Invitrogen, Paisley, UK) and covered totally with 1X running buffer 

(0.025M Tris base, 0.192M glycine, 0.1% sodium dodecyl sulfate, Fisher Biotech, 

New Jersey, USA). Lysates prepared in 2.8.3 were boiled for 10 min at 100°C and 

loaded into the gel together with 10 µl of rainbow marker ladder (GE, Paisley, UK). 

The gel was run at 125 volts at RT until the desired separation was achieved. 

 

B. Precast gels 

Samples from chicken FAK imunoprecipitations (2.8.3C) were run in NUPAGE 1.5 

mm polyacrylamide precast (Invitrogen, Paisley, UK) 4-12% gradient gels run in 

NUPAGE running buffer (Invitrogen, Paisley, UK). NUPAGE running buffer in 

direct contact with the gels was supplemented with 2.5% of NUPAGE antioxidant 

(Invitrogen, Paisley, UK) in order to maintain proteins in a reduced form. 10 µl of the 

rainbow marker ladder were used and the gel was run at 120 volts in the cold room 

until the desired separation was achieved. 

 

2.8.5. Transfer 

Resolved proteins were then transferred from gels to Hybond nitrocellulose transfer 

membranes (GE, Paisley, UK) using the transfer set up as shown in Fig.18. All 

sponges, Whatman paper and membranes were cut to the size of the gels and prewet 

in transfer buffer before assembling the transfer “sandwich”. Air bubbles were 

removed by rolling a plastic pipette over the “sandwich” and the transfer “sandwich” 

placed in the transfer apparatus (Invitrogen, Paisley, UK). The transfer apparatus was 
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closed, placed in a transfer tank and immersed in transfer buffer. In the case of the 

precast gels the transfer buffer used was NUPAGE transfer buffer (Invitrogen, 

Paisley, UK) and the transfer was performed at 30 volts for 2h in the cold room (4°C) 

while in the case of non-precast gels the transfer buffer used was composed by 

0.025M Tris, 0.192M glycine (National Diagnostics, UK), 20% methanol (Fisher 

Scientific, Leicestershire, UK) and the transfer was performed at 30 volts for 1.5h at 

RT. These conditions were optimised for transferring proteins ranging from 100-250 

KDa. 

 

 

 

 

 

 

Figure 18: Diagram representing transfer set up of proteins from 

polyacrylamide gels to Hybond nitrocellulose membranes.  

The transfer ‘sandwich’ is built with all the components immersed in transfer buffer from the 
negative to positive pole of the transfer apparatus on the following order: two sponges, one 
Whatman paper, gel 1, membrane 1, one Whatman paper, two sponges, one Whatman paper, 
gel 2, membrane 2, one Whatman paper and two sponges. Transfer apparatus is closed, placed 
in a tank filled with transfer buffer and proteins transferred from the negative to positive 
electrode (gel to membrane) by electric field. 
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After the transfer the membranes were immersed in Ponceau S (Sigma, Dorset, UK) 

and washed briefly in distilled water to access the efficiency of the transfer and dried 

until performing the Western Blot. 

 

2.8.6. Western blot 

A. Western blotting to detect FAK 

Membranes were blocked in 5% BSA (w/v) in 0.1% Tween-20 (Sigma, Dorset, UK) 

in PBS (PBS-T) for 1 hour; incubated with mouse monoclonal anti-FAK diluted 

1:1000 in blocking solution overnight at 4°C; washed 3 times for 5 min each in PBS-

T; incubated for 1 hour at RT with horseradish peroxidase (HRP)- conjugated anti-

mouse IgG diluted 1:1000 in 5% milk (Marvel, UK) in PBS-T; washed 3 times for 5 

min each in PBS-T and bands detected by chemiluminescence as detailed below 

(2.8.7).  

 

B. Western blotting to detect c-myc 

Membranes were blocked in 5% milk in PBS-T for 1 hour at RT; incubated overnight 

4°C with mouse monoclonal anti-myc diluted 1:1000 in 5% milk in PBS-T; washed 3 

times for 5 min each in PBS-T; incubated for 1 hour at RT with HRP- conjugated 

anti-mouse IgG diluted 1:1000 in 5% milk in PBS-T; washed 3 times for 5 min each 

in PBS-T and bands detected by chemiluminescence as detailed below (2.8.7).  
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C. Western blotting to detect HSC70 

HSC70 protein detection was used as a loading control. After probing and stripping 

(see 2.8.8) membranes were blocked in 5% milk in PBS-T for 1h; incubated for 1hour 

in mouse monoclonal anti-HSC70 diluted 1:5000 in 5% milk in PBS-T for 1h; washed 

3 times for 5 min each in PBS-T; incubated in HRP- conjugated anti-mouse IgG 

diluted 1:1000 in 5% milk in PBS-T; washed 3 times for 5 min each in PBS-T and 

bands detected by chemiluminescence as detailed below (2.8.7). 

 

2.8.7. Enhanced chemiluminescence 

ECL is a light emitting non-radioactive method for detection of immobilised specific 

antigens conjugated with HRP labelled antibodies. HRP oxidises luminol present in 

the ECL reagents in the presence of enhancer such as phenol. Luminol becomes 

excited and decay to the normal state by chemiluminescence. Immunoreactive bands 

were visualised by incubating the membranes with ECL chemiluminescence reagents 

(GE, Paisley, UK) for 2 min and then exposing the membrane in an autoradiographic 

film (Fujifilm, PYSER-SGI Limited, UK) for several seconds to 20 minutes. After 

exposing, the films were developed with a Kodak X-OMAT 1000A film processor 

(East Kodak Company, New York, NY, USA). 
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2.8.8. Stripping Western blot membranes 

Membranes that had been previously probed and developed were incubated with Re-

Blot Plus Mild Solution 10x (Millipore, Watford, UK) diluted 1:10 in distilled water 

in a shaking tray for 5 minutes at room temperature. After stripping, the blot was 

treated with ECL to confirm that the antibodies had been removed. Finally, the 

membrane was washed in PBS-T and blocked again ready for re-probing with a new 

primary antibody. 

 

2.8.9. Storage of Western blot membranes 

 

For short-term storage (one week) membranes were kept in PBS at 4°C. For long-

term storage membranes were enveloped in plastic and kept at -20°C. 

 

2.8.10. Densitometry 

Densitometric analysis of Western blot bands was performed using Image J software. 
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2.9. Animal experiments 

2.9.1. Tamoxifen treatment 

A. Tamoxifen formulations 
 

I. Tamoxifen for gavage 
 

Tamoxifen for gavage is a 0.03 mg/µl tamoxifen solution in ethanol and corn oil. To 

prepare tamoxifen for gavage for approximately twenty mice 750 mg of tamoxifen 

free base (Sigma-Aldrich, Dorset, UK) were first suspended in 2 ml of 100% ethanol 

and 22 ml of corn oil (Sigma-Aldrich, Dorset, UK). This suspension was then 

dissolved in a water bath at 55°C with intermittent vortexing. Tamoxifen solution was 

then stored in 1.5-2 ml aliquots at -20°C. Due to possible tamoxifen precipitation 

tamoxifen solution was always heated at 37°C before administration.  

 

II. Tamoxifen and low oestrogen clearing diet 
 
Tamoxifen diet and low oestrogen clearing diet were purchased from Harlan 

Laboratories, Indianapolis, USA. Mice generally need a washout period of one week 

with low oestrogen clearing diet before starting the tamoxifen diet. The dosage of 

tamoxifen diet is around 400 mg/Kg animal.  

 

III. Tamoxifen pellets 

Slow release (25mg/pellet, 21-day release) tamoxifen pellets were purchased from 

Innovative Research America, Sarasota, Florida, USA. 
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B. Tamoxifen treatment in RERTnERT/ERTCre;FAKfl/fl and 

control FAKfl/fl or control RERTnERT/ERTCre mice 

Mice were given 100µl of tamoxifen solution prepared in 2.9.1A-I via gavage for 5 

consecutive days before the start of any tumour experiment. During the gavage period 

mice were given low oestrogen tamoxifen diet.  After gavage mice were switched 

onto daily tamoxifen diet until the animals were killed at the endpoint of the 

experiment.  

 

C. Tamoxifen treatment of bone marrow chimeras 
 

Since some bone marrow chimeras were found to die suddenly after gavage and 

subcutaneous pellets caused severe irritation to the irradiated mice a particular 

strategy with the diet was adopted for tamoxifen treatment. Mice were given low 

oestrogen clearing diet for one week and daily tamoxifen diet for 1-2 weeks before 

starting any tumour experiment. This was done 2-6 weeks after the initial bone 

marrow transplant (see 2.9.3.). Tamoxifen diet was maintained daily until the animals 

were killed at the endpoint of the experiment.  
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D. Pdgfb-iCreER+;FAKfl/fl;R26FAK861F/861F and control 

FAKfl/fl;R26FAK861F/861F mice tamoxifen treatment 

Mice were anaesthetised and slow release (25mg/pellet, 21-day release) tamoxifen 

pellets were implanted subcutaneously via trochar into the scruff of the neck. Previous 

experiments in our laboratory have shown efficient FAK knockout in Pdgfb-

iCreER+;FAKfl/fl mice after two days of tamoxifen pellet implantation (Tavora et al., 

2010). For this reason all the tumour injections were performed at least 2 days after 

tamoxifen pellet implantation.  

 

2.9.2. Subcutaneous tumour growth and experimental 

metastasis assays 

Syngeneic mouse tumour cell line B16F0 (melanoma, derived from C57black6) was 

used in subcutaneous tumour growth assays whilst both B16F0 and B16F10 cell lines 

were used in experimental metastasis assays. Tamoxifen-treated mice were given 

1x106 cells (B16F0), resuspended in 100µl of PBS, injected subcutaneously into the 

scruff of the neck or flank for the subcutaneous tumour growth or 0.5x106 cells 

(B16F0 or B16F10) resuspended in 100µl of PBS injected via the tail vein of the 

mouse for experimental metastasis assays. Subcutaneous tumour size was measured 

with digital callipers at 12 days post inoculation. For the experimental metastasis 

assays mice were culled by cervical dislocation at 15-19 days post tumour 

inoculation, organs removed and examined for macroscopic metastasis. Tissues were 

either fixed in 4% formaldehyde in PBS or snap-frozen in isopentane cooled in liquid 

nitrogen for subsequent immunohistochemical analysis (see 2.10).  
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2.9.3. Bone marrow transplant (BMT) experiments 

A. Irradiaton of recipient mice 

Since irradiation causes myelosupression making the mice prone to infection WT 

mice (recipients) were given 10% Baytril antibiotic in their drinking water before full 

body lethal irradiation. Irradiation consisted of 1000 rads of γ-radiation in 2 split 

doses of 500 rads each, 3-4 hours apart, in a gamma irradiator (IBL 437C gamma 

irradiator, Schering Health Care, Berkshire, UK). This dose ablates endogenous bone 

marrow. 

 

B. Donor bone marrow harvesting  

RERTnERT/ERTCre;FAKfl/fl or control RERTnERT/ERTCre donor mice were culled and 

rinsed in 70% ethanol. Under sterile conditions, the skin of the lower limbs was 

removed, femurs dissected and muscle trimmed away from the bone. Femur heads 

were removed with sharp scissors and the bone marrow was gently flushed out in 20 

ml of DMEM supplemented with 10% FCS into a 50 ml Falcon tube using a 20 ml 

syringe and a 25 gauge needle. The bone marrow suspension was passed through a 70 

µm cell strainer. Bone marrow from 3-4 donor mice was used for transplant into 10 

recipient mice; centrifuged at 1200 rpm for 3 min; mixed together in 50 ml of DMEM 

supplemented with 10% FCS; cells were counted by adding 1 ml of cell suspension to 

1 ml of methylene blue and using a counting chamber; centrifuged at 1200 rpm for 3 

min; washed twice in PBS and finally ressuspended in PBS to a final concentration of 

1x106 cells/100 µl PBS. 
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C. Bone marrow transplant (BMT)  

 

Lethally irradiated WT mice (recipient mice) were injected intravenously (tail vein) 

with approximately 1x106 donor bone marrow cells/ 100µl PBS. The mice were then 

maintained on antibiotic water until two weeks after transplant and allowed to recover 

for 2-6 weeks after transplant. 

 

D. Subcutaneous and experimental metastasis tumour 

experiments 

Four to six weeks post-transplant mice were treated with tamoxifen and tumour 

experiments were performed as described in 2.9.1C and 2.9.2 respectively.  

 

E. RIP-Tag2 model 

 

Lethally irradiated RIP-Tag2/+ mice were transplanted with bone marrow cells from 

male RERTnERT/ERTCre;FAKfl/fl or RERTnERT/ERTCre control mice at 6 weeks of age 

and started low estrogen clearing diet soon after transplant. Mice were given daily 

tamoxifen diet treatment from 8 weeks of age (2 weeks post-transplant) and were 

culled at 16 weeks of age. At necropsy pancreas, liver, lung, mesentery and spleen 

were fixed in 4% formaldehyde in PBS for subsequent immunohistochemical 

analysis.   
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2.9.4. Dextran/FITC perfusion 

Mice were anaesthetised by using 200 µl IP injection of 1.5% w/v sodium 

pentabarbiton in PBS. The thoracic cavity was opened and the auricle of the right 

atrium was cut to allow circulating blood to extravasate. The apex of the left ventricle 

was then cannulated using a 25 g needle and 1 ml of dextran/FITC (Sigma, Dorset, 

UK) was hand injected using a 1 ml syringe. 30 min following injection tumours were 

excised and snap frozen as described in 2.9.2.  

 

2.9.5. In vivo homing/colonisation assays 

Red cell tracker red CMPTX (Invitrogen, Paisley, UK – 50 µg ressuspend in 14.7 µl 

of DMSO) was used for B16F0 cell labelling for in vivo homing/colonisation assays. 

Cells were trypsinised and washed 2 times in Serum Free Media (SFM). A maximum 

of 2 x 106 cells/1ml SFM was ressuspended and 1µl CMPTX/1ml media (in 15 ml 

falcons) was used. Cells were incubated at 37 ºC for 10 min. Finally 10 ml of 

DMEM+10% FBS were added and cells washed 3 times in PBS. Cells were 

ressuspended at a concentration of 0.5 x 106 cells/100 µl of PBS and injected via the 

tail vein into mice (100 µl/mouse). This procedure was performed after tamoxifen 

treatment of RERTnERT/ERTCre;FAKfl/fl and control RERTERT/ERT mice or WT mice 

that had received bone marrow transplant (from RERTnERT/ERTCre;FAKfl/fl or control 

RERTnERT/ERTCre mice) as described in 2.9.1 and 2.9.3 At 2-5h or 48h post 

inoculation, mice were sacrificed and lungs fixed in 4% paraformaldehyde. Lungs 

were dissected, photographed using a Leica MZ16F fluorescence stereomicroscope, 

snap frozen in OCT (OCT Killik, Bio-Optica, IT) and 5 µm cryosections prepared for 

analysis. Total numbers of red fluorescent tumour cells were quantified and 
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normalised for the total number of DAPI positive nuclei for each section using a Zeiss 

Axioplan microscope (Zeiss). 

 

2.9.6. In vivo Gr1+ cell depletion 

RERTnERT/ERTCre;FAKfl/fl or control RERTnERT/ERTCre mice received tamoxifen 

treatment as described in 2.9.1B and were given 50µg of rat anti-mouse Gr1 antibody 

(eBiosciences, Hatfield, UK) or rat anti-mouse IgG2b κ isotype control antibody 

(eBiosciences, Hatfield, UK) in 100µl PBS one day before and in the day of tumour 

cell injection. Homing/colonisation assays were performed as described in 2.9.5 for 

both antibody groups.  

 

2.9.7. Home office regulations 

All animals were used in accord with United Kingdom Coordination Committee on 

Cancer Research guidelines and Home Office Regulations.  
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2.10. Tumour quantitation 

2.10.1. Subcutaneous tumour quantitation 

Subcutaneous tumour size was assessed after necropsy of animals by measuring 

length, width and depth of each tumour using digital callipers. 

2.10.2. Experimental metastasis assays 

The number of metastases per organ was counted by eye under a dissecting 

microscope (Zeiss Stemi SV11). 

2.10.3. RIP-Tag2 model 

Primary tumour, invasion grading and metastasis quantifications were all performed 

in large T antigen stained sections as described in 2.11.5 Six step wise sections, 

100µm apart were analysed per tissue for all mice in all analysis. 

Total primary tumour area was assessed by calculating the sum of all individual 

tumour areas per pancreas using the 5X objective of a Zeiss Axioplan microscope.  

To determine invasion grading pancreatic tumours in RIP-Tag2 mice were classified 

into three levels of progression: encapsulated, least aggressive; invasive type I, where 

the invasive front of the tumour is beginning to penetrate into the surrounding 

pancreas; and invasive type II, where the invasive front of the tumour engulfs islands 

of normal pancreas as described previously (Lopez and Hanahan, 2002; Paez-Ribes et 

al., 2009). The results were presented as % of tumours in each invasion grading out of 

total tumours per animal. The incidence of lymph node, liver and lung metastasis was 

determined by scoring for presence or absence in each animal.  
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2.11. Histological analysis 

2.11.1. Tissue sections preparation 

A. Frozen tissue sections 

Mouse tissue previously snap frozen in OCT was sectioned on a cryostat and 5 µm 

thick sections were mounted onto glass slides and frozen at - 80 °C. Frozen sections 

were only used up to 3 months after being cut.  

 

B. Paraffin-embedded tissue sections 

Tissues previously fixed in 4% formaldehyde for 24h at RT were transferred to 70% 

ethanol before being embedded in paraffin (procedures performed by Barts Cancer 

Institute Pathology Department). Paraffin blocks were sectioned on a microtome 

(Leica) and 5 µm thick sections were mounted onto glass slides and dried for 1-10h at 

37 °C. Slides were stored at room temperature until ready to use.  

 

2.11.2. Tumour blood vessel quantitation 

A. Blood vessel staining in frozen tumour sections 

Blood vessel quantitation in frozen tumours was performed by counting the number 

of PECAM positive vessels in 5 µm frozen tumour sections from age and size-

matched tumours grown in test and control mice. Sections were fixed in cold acetone 

for 10 minutes at 4 °C and blocked in 1% BSA (PAA, Somerset, UK), 3% normal 

goat serum (NGS) (Sigma, Dorset, UK) in PBS for 1 hour at room temperature (RT). 

The sections were incubated with anti-PECAM antibody (BD Biosciences, San Jose, 
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CA, USA) diluted 1:100 in 0.3% NGS and 0.1% BSA in PBS overnight at 4°C, 

washed 3 times in PBS 0.02% triton X-100 (Sigma, Dorset, UK), and incubated with 

the secondary antibody, Alexa fluor 546 goat anti-rat (Invitrogen, Paisley, UK) 

diluted 1:100 in 0.3% NGS and 0.1% BSA in PBS for 40 minutes at RT. Finally, 

sections were washed 3 times in PBS 0.02% triton X-100, 1 time in distilled water 

and mounted in Prolong Gold antifade reagent with DAPI (Invitrogen, Paisley, UK).  

 

B. Blood vessel staining in paraffin-embedded tumour sections 

Blood vessel quantification in paraffin embedded tumour sections was performed by 

counting the number of endomucin positive vessels in 5 µm tumour sections from age 

and size-matched tumours grown in test and control mice. Paraffin sections were de-

waxed in xylene (BDH Laboratory Supplies, Poole, UK) in 2 changes of 5 min each 

and rehydrated in graded ethanol (2 min in each 100%, 80%, 70% and 50%) before 

being blocked in 5% normal goat serum (NGS) in PBS for 1 hour at room temperature 

(RT). The sections were incubated with rat anti-mouse endomucin antibody (clone 

V.7C7, Santa Cruz Biotechnology, CA, USA) diluted 1:200 in 0.5% NGS in PBS 

overnight at 4°C, washed 3 times in PBS 0.02% triton X-100 and incubated with the 

secondary antibody, Alexa fluor 546 goat anti-rat diluted 1:200 in 0.5% NGS in PBS 

for 40 minutes at RT. Finally, sections were washed 3 times in PBS 0.02% triton X-

100, 1 time in distilled water and mounted in Prolong Gold antifade reagent with 

DAPI.  
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C. Blood vessel quantitation 

Tumour blood vessel density was calculated by counting the total number of blood 

vessels across midline tumour sections and dividing this by the area of the section. 

Volumes were given as number of blood vessels/mm2 of tumour section. 

Representative fields were photographed using a Hamamatsu Digital Camera 

(Improvision, London, UK) on a Zeiss Axioplan microscope (Zeiss, HERTS, UK). 

Identical settings were used for all the tissue samples.  

 

D. Quantitation of functional blood vessels in frozen tumour 

sections  

Tumour sections from 2.9.4 where mice had been injected with dextran FITC to 

identify blood vessels with flow were imunostained for PECAM as described in 

2.11.2A and total number PECAM positive blood vessels and number of PECAM 

blood vessels that were also FITC positive (fluorescence from dextran FITC dye) 

were counted across the entire section and normalised for the total area of the section. 

Results were presented as % of FITC positive vessels over total PECAM positive 

blood vessels per mm2 of tumour. Representative fields were photographed using a 

Hamamatsu Digital Camera on a Zeiss Axioplan microscope. Identical settings were 

used for all the tissue samples.  
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E. Quantitation of blood vessel laminin coverage in paraffin 

tumour sections  

Paraffin embedded tumour sections were stained double stained for endomucin and 

laminin. Briefly paraffin tumour sections were de-waxed and re-hydrated as described 

in 2.11.2B before being blocked in 5% normal goat serum (NGS) in PBS for 1 hour at 

room temperature (RT). The sections were incubated with rat anti-mouse endomucin 

antibody (clone V.7C7, Santa Cruz Biotechnology, CA, USA) and rabbit anti-mouse 

laminin diluted 1:200 in 0.5% NGS in PBS overnight at 4°C, washed 3 times in PBS 

0.02% triton X-100 and incubated with the secondary antibody, Alexa fluor 488 goat 

anti-rat and Alexa fluor 546 goat anti-rabbit diluted 1:200 in 0.5% NGS in PBS for 40 

minutes at RT. Finally, sections were washed 3 times in PBS 0.02% triton X-100, 1 

time in distilled water and mounted in Prolong Gold antifade reagent with DAPI.  

Total number endomucin positive blood vessels and number of endomucin blood 

vessels that had laminin coverage (basement membrane) were counted across the 

entire section and normalised for the total area of the section. Results were presented 

as % of laminin positive vessels over total endomucin positive blood vessels per mm2 

of tumour. Representative fields were photographed using a Hamamatsu Digital 

Camera on a Zeiss Axioplan microscope. Identical settings were used for all the tissue 

samples.  
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F. Quantitation of blood vessel supporting cell coverage in 

paraffin tumour sections  

Paraffin embedded tumour sections were stained double stained for endomucin and 

alpha-smooth actin (α-SMA). Briefly paraffin tumour sections were de-waxed and re-

hydrated as described in 2.11.2B before being blocked in 5% normal goat serum 

(NGS) in PBS for 1 hour at room temperature (RT). The sections were incubated with 

rat anti-mouse endomucin antibody (clone V.7C7, Santa Cruz Biotechnology, CA, 

USA) and rabbit anti-mouse α-SMA-cy3 (Sigma, Dorset, UK) conjugated diluted 

1:200 in 0.5% NGS in PBS overnight at 4°C, washed 3 times in PBS 0.02% triton X-

100 and incubated with the secondary antibody, Alexa fluor 488 goat anti-rat diluted 

1:200 in 0.5% NGS in PBS for 40 minutes at RT. Finally, sections were washed 3 

times in PBS 0.02% triton X-100, 1 time in distilled water and mounted in Prolong 

Gold antifade reagent with DAPI.  

Total number endomucin positive blood vessels and number of endomucin blood 

vessels that had supporting cell coverage (α-SMA positive) were counted across the 

entire section and normalised for the total area of the section. Results were presented 

as % of α-SMA positive vessels over total endomucin positive blood vessels per mm2 

of tumour. Representative fields were photographed using a Hamamatsu Digital 

Camera on a Zeiss Axioplan microscope. Identical settings were used for all the tissue 

samples.  

 

 

 

 



 

 158 

2.11.3. Haematoxylin and eosin (H&E) staining 

H&E staining was performed in Barts Cancer Institute Pathology Department using 

the Sakura RS-601 staining machine using Harris’s haematoxylin for 5 min and 1% 

eosin for 5 min followed by rinsing in tap water. Sections were rehydrated in 

increasing concentrations of ethanol (50%, 70%, 80%, 100%), 2 min in each before 

clearing in xylene and mounting in DPX (Sigma, Dorset, UK).  

 

2.11.4. Gr1+cell and tumour-Gr1+ cell interaction 

quantitation in frozen sections 

A. Gr1 staining in frozen lung sections 

For immunofluorescent staining for Gr1, 5 µm frozen lung sections were fixed in 

100% acetone for 10min, blocked in 5% normal goat serum for 1 h at RT, incubated 

with rat anti-mouse Gr1 (clone RB68C5 - BD pharmigen, Oxford, UK) primary 

antibody (1:50 dilution) overnight at 4°C and anti-rat Alexa-Fluor-488 (Invitrogen, 

Paisley, UK) secondary antibody (1:200 dilution) for 45 min at room temperature and 

finally mounted with Prolong anti-fade with DAPI. 

 

B. Gr1+ cell quantitation in frozen lung sections 

Number of Gr1 positive cells/mm2 lung was quantified using the 20X objective of a 

Zeiss Axioplan microscope (Zeiss) in at least five different fields per lung section for 

a minimum of 4 mice/group. The number of Gr1 positive cells was normalised for the 

DAPI area quantified on the same fields.  
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C. Tumour-Gr1+ cell interaction quantitation in frozen lung 

sections 

B16F0-Gr1+ cell interactions were quantified in the sections from the 2h time point of 

the homing/colonisation described in 2.9.5 using the 40X objective of a Zeiss 

Axioplan microscope. The percentage of B16F0 interacting with at least one Gr1+ cell 

was calculated for at least 4 different fields per section in a minimum of 4 

mice/group.  

 

2.11.5. Large T cell antigen staining 

Six step-wise paraffin embedded sections of pancreas, liver and lung 5 µm thick and 

100 µm apart per animal were de-waxed in xylene in 2 changes of 5 min each and 

after 2 min in 100% ethanol endogenous peroxidade activity was blocked by 

incubating the sections for 5 min at RT in 3% hydrogen peroxide (Sigma, Dorset, 

UK) in methanol (BDH Laboratory Supplies, Poole, UK).  Sections were then 

rehydrated in graded ethanol (2 min in each 100%, 80%, 70% and 50%) before being 

microwaved for 10 min in previously boiled 10 mM citrate buffer (Sigma, Dorset, 

UK) pH6 (antigen retrieval step). Endogenous biotin was blocked using avidin/biotin 

blocking kit (Vector Labs, Peterborough, UK), 15 min in avidin D, one PBS wash and 

15 min in biotin solution.  After being blocked in 5% normal goat serum (previously 

centrifuged to avoid non-specific crystals), incubated with rabbit anti-mouse large T-

cell antigen (Santa Cruz Santa Cruz Biotechnology, CA, USA) antibody (1:200 

dilution) overnight at 4°C sections were incubated with anti-rabbit biotynilated 

secondary antibody (Sigma, Dorset, UK) (1:200 dilution) for 45 min at RT. ABC 

reagents (Vector Labs, Peterborough, UK) were added for 30 min at RT and staining 
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developed with DAB (approximately 5 min) (Vector Labs, Peterborough, UK), 

sections washed for 1 min in running tap water and couterstained with haematoxylin 

(Sigma, Dorset, UK), approximately 2 min. Sections were washed for 1 min in 

running tap water, 1 min in PBS and another 1 min in running tap water. Sections 

were rehydrated in increasing concentrations of ethanol (50%, 70%, 80%, 100%), 2 

min in each before clearing in xylene and mounting in DPX.  

 

2.11.6. In situ hybridisation for Y chromosome 

Five µm paraffin sections of spleen were de-waxed in xylene in 2 changes of 5 min 

each and after 2 min in 100% ethanol endogenous peroxidade activity was blocked by 

incubating the sections for 5 min at RT in 3% hydrogen peroxide in methanol.  

Sections were then rehydrated in graded ethanol (2 min in each 100%, 80%, 70% and 

50%) before being permeabilised by incubating in 1M sodium thiocyanate (Sigma, 

Dorset, UK) for 10 min at 80°C and washed 3 times in PBS. Tissue was then digested 

for 7 min in 0.4% pepsin (Sigma, Dorset, UK) in 0.1M HCl at 37°C. Pepsin was then 

quenched by immersing slides in 0.2% glycine (Merck, Nottingham, UK) in PBS and 

slides washed twice in PBS. Slides were post-fixed in 4% paraformaldehyde for 2 min 

at RT and washed in 3 changes of PBS over 15 minutes. Slides were then dehydrated 

by immersion in successively increasing concentrations of ethanol (50%, 70%, 80%, 

100%) 2 min each before clearing in xylene and allowed to air dry. 9-15 µl of FITC-

labelled Y-chromosome paint (Cambio, Cambridge, UK) was applied to each slide 

and sealed by placing a coverslip on the section and using rubber solution glue to 

prevent evaporation. DNA was denatured using a hybridisation plate at 60°C for 10 

min after which probe was allowed to hybridise overnight at 37°C. On the following 
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day coverslips were gently removed and unbound probe removed by washing slides in 

2 changes of 0.5X Standard Sodium Citrate (SSC) solution. After one PBS wash 

sections were incubated with peroxidase-conjugated anti-fluorescein antibody 

(Boehringer, Mannheim, Germany) diluted 1:50 in PBS for 1 hour at RT. After 3 PBS 

and one water wash staining was developed with DAB (approximately 5 min), 

sections washed for 1 min in running tap water and couterstained with haematoxylin 

for approximately 2 min. Sections were washed for 1 min in running tap water, 1 min 

in PBS and another 1 min in running tap water. Sections were then rehydrated in 

increasing concentrations of ethanol (50%, 70%, 80%, 100%), 2 min in each before 

clearing in xylene and mounting in DPX.  

 

2.12. Analysis of statistical significance 

For RIP-Tag2 data and experimental metastasis set analysis, since the data were not 

normally distributed, nonparametric Mann-Whitney and chi-square tests were used to 

determine statistical significance. All other data sets were analysed for statistical 

significance using Student’s t test. For both tests P<0.05 was considered statistically 

significant. 
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3. RESULTS PART I – Stromal and bone marrow 

derived FAK in tumour growth, angiogenesis and 

metastasis 

 

This chapter of my PhD data describes the role of inducible FAK deficiency in the 

stromal compartment and specifically in the bone marrow compartment in tumour 

growth, angiogenesis and metastasis where I have demonstrated that loss of bone 

marrow focal adhesion kinase is sufficient to enhance tumour metastasis.  

 

 

The upregulation of FAK within tumour cells has directed studies to investigate the 

requirement for this molecule in cancer progression (Furuyama et al., 2006; Judson 

et al., 1999; Lark et al., 2005). Indeed investments have focused on the development 

of FAK inhibitors in the treatment of cancer and such inhibitors are in clinical trials 

for the treatment of this disease (Halder et al., 2007; Kurio et al., 2011; Stokes et al., 

2011). These agents are likely to affect both the tumour cell compartment and the 

stromal compartment, but the effect of the loss of FAK in the stromal compartment, 

especially in metastasis is poorly understood. 
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3.1. Stromal FAK deficiency decreases subcutaneous 

tumour growth and angiogenesis 

 

3.1.1. Generation of ubiquitous inducible FAK deficient 

mice 

 

Constitutive deletion of FAK results in a phenotype where the embryos die at E8.5 

due to severe defects in late gastrulation (Ilic et al, 1995). Therefore, to examine the 

effect of the stromal-deletion of FAK in mice I have used a tamoxifen inducible 

model for the ubiquitous deletion of FAK in adult mice. For that purpose I have 

crossed FAKfl/fl mice with RERTnERT/ERTCre mice where Cre-ERT2 is under the 

control of the large subunit of RNA polymerase II promoter (Barriere et al., 2007; 

Guerra et al., 2003) to first generate RERTnERT/+Cre;FAKfl/+ mice. These mice were 

intercrossed to generate RERTnERT/ERTCre;FAKfl/fl mice that allow FAK deletion in 

the majority of the cells after tamoxifen treatment in adult mice. Examples of 

RERTnCre and FAK floxed PCR performed using DNA extracted from ear snips are 

shown in Fig. 19. RERTnCre PCR (Fig. 19A) indentifies genotypes homozygous 

(RERTnERT/ERTCre) and heterozygous (RERTnERT/+Cre) for RERTnCre, and WT mice 

that do not express RERTnCre in either allele (RERTn+/+Cre). FAK floxed PCR (Fig. 

19B) identifies genotypes with one (FAKfl/+) or both (FAKfl/fl) FAK floxed alleles, 

and WT mice non-floxed (FAK+/+).   
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Figure 19: RERTn and FAK floxed PCR.  

PCR results from DNA extracted from mice ear snips. (A) PCR for RERTnCre shows mice 
homozygous (RERTnERT/ERTCre), WT (RERTn+/+Cre) and heterozygous (RERTnERT/+Cre) for 
RERTnCre. (B) FAK floxed PCR shows mice with both FAK floxed alleles (FAKfl/fl), WT 
mice non-floxed (FAK+/+), and mice heterozygous for the floxed allele (FAKfl/+).  
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RERTnERT/ERTCre;FAKfl/fl mice and respective controls appeared normal without any 

visible adverse effects after tamoxifen treatment. FAK deletion was observed by 

Western blotting in whole kidney and bone marrow lysates from 

RERTnERT/ERTCre;FAKfl/fl mice after tamoxifen treatment when compared with 

similarly treated non-floxed RERTnERT/ERTCre controls (Fig. 20). In some of the 

tumour experiments presented in my thesis I have injected mouse melanoma cells that 

express FAK into tamoxifen treated RERTnERT/ERTCre;FAKfl/fl mice. Thus for brevity 

RERTnERT/ERTCre;FAKfl/fl were called StrFAKKO (stromal FAK knockouts) and the 

control non-floxed RERTnERT/ERTCre or Cre- FAKfl/fl mice called StrFAKWT (stromal 

FAK wild type). 
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Figure 20: Evidence for FAK deficiency in StrFAKKO mice.  

StrFAKKO mice show efficient stromal FAK deficiency after tamoxifen treatment when 
compared with control StrFAKWT. Western blot analysis of kidney (A) and whole BM (B) 
isolated from StrFAKKO and StrFAKWT mice show depletion of FAK in StrFAKKO when 
compared with StrFAKWT mice. HSC70 was used as a loading control. Bar charts represent 
mean densitometric results of FAK levels relative to HSC70 + s.e.m.; n, 4-5 mice/genotype 
**P<0.01. 
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3.1.2. Stromal FAK deficiency in adult mice inhibits 

subcutaneous tumour growth and angiogenesis 

 

To study effect of stromal FAK deficiency on tumour growth and angiogenesis 

StrFAKKO and StrFAKWT mice were injected subcutaneously with B16F0 mouse 

melanoma cells. Ten days post-tumour cell injection StrFAKKO mice showed 

significantly decreased subcutaneous B16F0 tumour size when compared with control 

StrFAKWT (Fig. 21A). Age and size matched tumours were processed for histological 

analysis of PECAM-positive blood vessels of midline tumour sections. Tumour blood 

vessel density was decreased significantly in StrFAKKO mice when compared with 

similarly treated controls (Fig. 21B). These results suggest that stromal-deficiency of 

FAK in adult mice is sufficient to inhibit tumour growth and indicate that stromal 

FAK, likely including the endothelium is important for supporting tumour 

angiogenesis. This in line with our previously published work showing that 

endothelial FAK is important for tumour growth and angiogenesis (Tavora et al., 

2010). 
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Figure 21: Stromal FAK deficiency in mice decreases subcutaneous tumour 

growth and angiogenesis  

StrFAKWT and StrFAKKO mice were given subcutaneous injections of syngeneic tumour cell 
line B16F0 melanoma. 10 day old tumour size was decreased significantly in StrFAKKO mice 
when compared with StrFAKWT controls. (A) Pictures of representative tumours are given. 
Bar charts show mean tumour volume +s.e.m.; n, 10 mice/genotype; (B) Tumour blood vessel 
density is reduced in StrFAKKO mice. Representative immunofluorescence micrographs 
identifying PECAM-positive blood vessels in midline sections of tumours are shown. Blood 
vessel density was assessed by counting the total number of blood vessels per mm2 across 
entire midline sections of size-matched tumours. Bar charts represent mean tumour blood 
vessel density +s.e.m; n, 4 mice/genotype. A, 1cm; B, 200µm. **P<0.01; *P<0.05. 
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3.2. Deficiency of bone marrow FAK is not sufficient to 

affect subcutaneous tumour growth or angiogenesis 

 

Stromal cells can be derived from the organ in which the tumour has formed or from 

other compartments such as the bone marrow (BM). There are several reports 

describing BM contribution to tumour growth and angiogenesis. Some studies suggest 

that circulating endothelial progenitor cells (CEPs) that are derived from the BM are 

capable of differentiating into mature endothelial cells, recruit to angiogenic sites, and 

incorporate newly forming blood vessels (Lyden et al., 2001; Ruzinova et al., 2003). 

Recent evidence has highlighted a role of bone marrow derived mesenchymal cells in 

supporting tumour angiogenesis as they have been shown to be precursors of 

pericytes and cancer-associated fibroblasts (De Palma et al., 2005; Mishra et al., 

2008). These cells are recruited to sites of tumour growth and have been shown to 

enhance angiogenesis by secreting VEGF (Beckermann et al., 2008). 
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3.2.1. Generation of inducible bone marrow FAK 

deficient mice 

 

 

To dissect the requirement of FAK within the bone marrow compartment from FAK 

in non-bone marrow derived cells in tumour growth, angiogenesis and metastasis we 

carried out a series of BM transplant (BMT) experiments. Briefly, female wild type 

(WT) recipient mice were lethally irradiated, to ablate endogenous BM, and 

transplanted immediately with either RERTnERT/ERTCre;FAKfl/fl or control FAK non-

floxed RERTnERT/ERTCre male BM to generate bone marrow chimeras (Fig. 22A). 

Tamoxifen-treatment, four to six weeks post-transplant, induced efficient FAK 

deletion specifically in the bone marrow compartment of mice transplanted with 

RERTnERT/ERTCre;FAKfl/fl BM (BMFAKKO) and not in control transplanted animals 

(BMFAKWT). Given that spleen is a main reservoir for bone marrow derived cells I 

have accessed the efficiency of bone marrow repopulation after transplant in spleen. 

In situ hybridisation for the Y chromosome confirmed engraftment of bone marrow 

derived cells in both genotypes (Fig. 22B). In addition, Western blot analysis of 

whole bone marrow established the efficiency of FAK deletion in the bone marrow 

compartment in BMFAKKO mice, when compared with BMFAKWT controls (Fig. 

22C). 
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Figure 22: Generation of BMFAKWT and BMFAKKO mice 

Schematic of BMFAKWT and BMFAKKO generation. (A) Female WT recipient mice were 
lethally irradiated to ablate the endogenous BM and received a BM transplant (BMT) from 
BM derived from either RERTnERT/ERTCre;FAKfl/fl  or control RERTnERT/ERTCre male donor 
mice. 4-6 weeks post-transplant all mice received tamoxifen treatment to generate bone 
marrow FAK deficient mice (BMFAKKO) and bone marrow FAK wild type mice 
(BMFAKWT), respectively. (B) In situ hybridization for Y chromosome (black arrow) in 
spleens from BMFAKWT and BM FAKKO mice shows repopulation of the spleen by male 
donor BM cells. Non-engrafted transplant (Control) shows no Y-chromosome signal. (C) 
Western blot analysis of whole BM isolated from BMFAKKO mice show depletion of FAK 
when compared with BMFAKWT mice. Bar chart represents mean densitometric results of 
FAK levels relative to HSC70 + s.e.m. Scale bar, 50µm. ***P<0.001.  
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3.2.2. Bone marrow FAK deficiency does not affect 

subcutaneous tumour growth or angiogenesis 

 

To study effect of FAK deficiency specifically in the BM compartment in tumour 

growth and angiogenesis BMFAKKO and BMFAKWT mice were injected 

subcutaneously with B16F0 cells. Fourteen days post tumour cell injection 

BMFAKKO mice showed no significant difference in B16F0 tumour growth when 

compared with controls (Fig. 23A). Age and size matched tumours were processed 

for histological analysis of endomucin-positive blood vessels. Blood vessel density 

was not changed between BMFAKWT and BMFAKKO mice (Fig. 23B). These results 

suggest that FAK expression in bone marrow cells is not sufficient tumour growth or 

tumour angiogenesis.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 173 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23: Bone marrow FAK deficiency in mice does not affect subcutaneous 

tumour growth or angiogenesis 

BMFAKWT and BMFAKKO mice were given subcutaneous injections of syngeneic tumour 
cell line B16F0 melanoma. 14 day old tumour size was similar in BMFAKKO mice when 
compared with BMFAKWT controls. (A) Pictures of representative tumours are given. Bar 
charts show mean tumour volume +s.e.m.; n, 10 mice/genotype. (B) Tumour blood vessel 
density was similar for tumours grown in BMFAKWT and BMFAKKO mice. Representative 
immunofluorescence micrographs identifying endomucin (EM) positive blood vessels in 
midline sections of tumours are shown. Blood vessel density was assessed by counting the 
total number of blood vessels per mm2 across entire midline sections of size-matched 
tumours. Bar chart represents mean tumour blood vessel density +s.e.m; n, 4 mice/genotype. 
A, 1cm; B, 200µm. n.s.d. (no significant difference). 
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3.2.3. Bone marrow FAK deficiency does not affect blood 

vessel function 

 

Although tumour blood vessel density seemed unaffected in BMFAKKO mice 

evidence for bone marrow derived pericytes and blood vessel function have been 

described (De Palma et al., 2005; Mishra et al., 2008). To assess the effect of BM 

FAK deficiency in vessel function I have perfused a high molecular weight 

fluorescent dye (2 million KDa dextran-FITC) into tumour burdened mice. Thirty 

minutes post-perfusion mice were killed, tumours snap frozen and cryosections 

stained for the blood vessel marker PECAM. The percentage of dextran-FITC 

positive blood vessels was assessed histologically. BMFAKWT and BMFAKKO mice 

showed no change in the number of functional tumour blood vessels  (Fig. 24A).  

Similar tumour sections were also double-stained for laminin and endomucin and the 

percentage of laminin covered blood vessels calculated. No changes in laminin 

positive blood vessels were observed between genotypes (Fig. 24B). Furthermore 

tumour sections were double-stained for α-SMA and endomucin and the percentage 

of blood vessels with supporting cell association was not changed between 

BMFAKWT and BMFAKKO mice (Fig. 24C). These results suggest that FAK 

deficiency in the bone marrow compartment is not sufficient to affect B16F0 tumour 

blood vessel function or supporting cell coverage.  Together my results show that loss 

of bone marrow FAK is not sufficient to affect subcutaneous tumour growth and 

angiogenesis.  
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Figure 24: Bone marrow FAK deficiency in mice does not affect subcutaneous 

B16 vessel function 

(A) BMFAKWT and BMFAKKO mice were given subcutaneous injections of B16F0 melanoma 
cells. 14 days post-tumour cell inoculation mice were perfused with high molecular weight 
dextran-FITC. Representative immunofluorescence micrographs identifying PECAM positive 
blood vessels (red) and dextran-FITC perfused blood vessels (green) in midline sections of 
tumours are shown. Vessel function was assessed by counting and number of FITC-positive 
blood vessels over the total number of blood vessels across entire midline sections of size-
matched tumours. Bar charts represent mean % of FITC-positive blood vessels +s.e.m; n, 4 
mice/genotype. (B) Laminin deposition of tumour blood vessels is not affected by BM FAK 
deficiency. 14 day old tumours were immunostained for laminin and endomuncin. 
Representative immunofluorescence micrographs identifying endomucin (EM) positive blood 
vessels (green) and laminin (red) in midline sections of tumours are shown. Blood vessel 
laminin deposition was assessed by counting the number of laminin positive blood vessels 
over the total number of blood vessels across entire midline sections of size-matched tumours. 
Bar charts represent mean % of laminin positive blood vessels +s.e.m; n, 4 mice/genotype. 
(C) Supporting cell coverage of tumour blood vessels is not affected when BM is FAK 
deficient. 14 day old tumours were immunostained for α-SMA and endomuncin. 
Representative immunofluorescence micrographs identifying endomucin (EM) positive blood 
vessels (green) and α-SMA (red) in midline sections of tumours are shown. Supporting cell 
coverage of blood vessels was assessed by counting the number of α-SMA positive blood 
vessels over the total number of blood vessels across entire midline sections of size-matched 
tumours. Bar charts represent mean % of α-SMA positive blood vessels +s.e.m; n, 4 
mice/genotype. Scale bar, 200µm. n.s.d. (no significant difference). 
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3.3. Deficiency of bone marrow FAK enhances tumour 

metastasis 

Several lines of evidence have identified that stromal cells can affect metastasis. In 

this context bone marrow derived cells have also been identified as important in 

tumour invasiveness and implicated in organ-specific tumour metastasis (Du et al., 

2008; Kaplan et al., 2005). However role of FAK in this process is not clear.  

 

3.3.1. Stromal FAK deficiency in adult mice increases 

experimental B16F10 metastasis 

 

To study the effect of stromal FAK deletion in tumour metastasis StrFAKWT and 

StrFAKKO mice were injected, via the tail vein, B16F10 melanoma cells and 

examined metastasis. StrFAKKO mice showed a significant increase in tumour 

nodules 19 days post-tail vein injection when compared with StrFAKWT mice. Gross 

observations (Fig. 25A) of organs at necropsy revealed an elevated number of tumour 

nodules in the lungs, liver and bone of StrFAKKO mice when compared with controls. 

The presence of these increased numbers of metastases was confirmed in H&E 

stained sections of these tissues (Fig. 25B) and quantification of the numbers of 

B16F10 nodules per animal showed that this difference was statistically significant 

(Fig. 25C and D). These data suggest that stromal FAK deficiency leads to an 

increase number of metastases.  
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Figure 25: Stromal FAK deficiency in mice increases experimental B16F10 

metastasis 

StrFAKWT and StrFAKKO mice were injected via the tail vein with B16F10 melanoma cells. 
(A) Macroscopic images of metastases in lungs, liver and bones 19 days post-tumour 
inoculation and (B) representative images of H&E stained sections from lung, liver and bone 
metastases (Met) from StrFAKWT and StrFAKKO mice are given. (C) The total number of 
metastasis was increased significantly in StrFAKKO mice when compared with StrFAKWT 
controls. Bar chart represents mean number of metastases / mouse + s.e.m. (D) Bar charts 
show mean number of lung, liver or bone metastasis/mouse+ s.e.m., n,10-12 mice/genotype. 
White arrows, metastases; CB, calcified bone; BM, bone marrow. Scale bars: A ,1cm; B, 
200mm. *P<0.05, **P<0.01. 
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3.3.2. Bone marrow FAK deficiency is sufficient to 

increase B16F0 metastasis 

 

To dissect the requirement of FAK within the bone marrow compartment from FAK 

in non-bone marrow derived cells in tumour metastasis, BMFAKWT and BMFAKKO 

were injected via the tail vein with B16F0 tumour cells.  Results showed that 

deficiency of FAK in the bone marrow compartment alone was sufficient to increase 

significantly the total number of tumour nodules in BMFAKKO mice when compared 

with controls (Fig. 26A). The presence of this increased number of metastases was 

confirmed in histological analysis of the lungs, liver and bones from BMFAKKO mice 

and respective controls (Fig. 26B). Quantification revealed a significant in increase in 

the number of B16F0 nodules not only in BMFAKKO lungs, but also in the livers and 

bones of these mice when compared with controls (Figs. 26C and D). Together, these 

data indicate that the loss of stromal FAK, even within the bone marrow compartment 

alone is sufficient to control of tumour metastasis in experimental metastasis models. 
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Figure 26: Bone marrow FAK deficiency in mice increases experimental B16F10 

metastasis 

BMFAKWT and BMFAKKO mice were injected with B16F0 tumour cells via the tail vein in 
experimental metastasis assays. Increased numbers of metastases were observed in the lungs, 
liver and bones of BMFAKKO mice. (A) Macroscopic images of metastases in lungs, liver and 
bones 15-17 days post-tumour inoculation and (B) representative images of H&E stained 
sections of metastases (Met) in lung, liver and bone from BMFAKWT and BMFAKKO mice are 
shown. (C) Bar chart shows mean number of metastasis/ mouse + s.e.m. for all organs in 
BMFAKKO mice when compared with BMFAKWT controls. (D) Bar charts show mean 
numbers of lung, liver and bone metastasis/mouse+ s.e.m., n,9 mice/genotype. White arrows, 
metastasis CB, calcified bone; BM, bone marrow. Scale bars: A, 1cm; B 200mm. *P<0.05, 
**P<0.01.  
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3.3.3. Bone marrow FAK deficiency does not affect 

primary tumour growth or invasion in the RIP-Tag2 

model of cancer 

 

RIP-Tag2 mice are a well-studied, spontaneous model of pancreatic cancer that 

express the SV40 large T antigen (Tag) under the control of the rat insulin promoter 

(Hanahan, 1985). Expression of Tag in pancreatic islets β-cells leads to development 

of hyperplasic lesions at 6-8 weeks of age from which a fraction will progress into 

highly vascularised β-cell tumours in mice of 10-14 weeks of age. These tumours 

have been reported to invade and spread to lymph nodes and liver thereafter (Lopez 

and Hanahan, 2002). Insulin secretion by these highly metabolic tumour cells leads to 

death due to hypoglycemia between 12-16 weeks of age (Hanahan, 1985).  

To test the effect of bone marrow FAK–deficiency in a spontaneous model of 

metastatic cancer I have transplanted lethally irradiated 6-week-old female RIP-

Tag2/+ (Fig. 27A) mice with bone marrow from either male 

RERTnERT/ERTCre;FAKfl/fl (BMFAKKO) or control FAK non-floxed RERTnERT/ERTCre 

(BMFAKWT). Two weeks after bone marrow transplant mice were treated with 

tamoxifen, to induce FAK deletion in the bone marrow compartment, and at 16 weeks 

of age necropsy performed. BMFAKKO mice showed no significant difference burden 

of pancreatic tumours (Fig. 27B) corroborating the data obtained for subcutaneous 

B16F0 tumour growth (see Fig. 23A). It is noteworthy that the tumour burden in both 

genotypes was lower than predicted for this age of RIP-Tag2 mice most likely 

because the animals were irradiated. Previous work has shown that total body 

irradiation and BMT prolonged average mouse survival by 1 to 2 weeks without 
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affecting incidence or progression of adenomas to invasive tumours (De Palma et al., 

2005).  

The pancreatic tumours in RIP-Tag2 mice can be classified into three levels of 

progression: encapsulated, least aggressive; invasive type I, where the invasive front 

of the tumour is beginning to penetrate into the surrounding pancreas; and invasive 

type II, where the invasive front of the tumour engulfs islands of normal pancreas 

(Lopez and Hanahan, 2002; Paez-Ribes et al., 2009) (Fig.  27C). Quantification of 

large Tag immunostained pancreas sections revealed that BMFAKKO mice displayed 

no significant differences in tumour invasiveness (Fig. 27D). These results suggest 

that BM FAK is not sufficient to modulate primary tumour growth and invasion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 183 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 27: Bone marrow FAK deficiency in mice does not affect tumour burden 

or invasiveness in the RIP-Tag2 model of cancer 

RIP-Tag2/+ mice were transplanted at 6 weeks of age, tamoxifen treated at 8-9 weeks 
generating BMFAKWT and BMFAKKO chimeras and necropsied at 16 weeks of age. 
Histological analysis was performed in 6 different levels of the pancreas, liver and lungs after 
immunohistochemical staining for the tumour marker SV40 T antigen. (A) PCR performed in 
DNA extracted from mice ear snips. RIP-Tag2 PCR shows mice hemizygous (RIP-Tag2/+) 
and WT (+/+) for the SV40 T antigen (Tag). β2-microglobulin (β2-M) was used as a DNA-
loading control. (B) No difference in tumour burden was observed between BMFAKWT and 
BMFAKKO mice. Bar chart represent % tumour area normalised to total pancreas area per 
animal +s.e.m, n, 7-13 mice per genotype.  (C) Histological images of tumour sections 
stained for large T-antigen at different states of invasiveness are shown. (D) Quantification of 
tumour invasiveness represented as the percentage of encapsulated islet tumours 
(encapsulated), microinvasive carcinomas (Invasive type I), and fully invasive carcinomas 
(Invasive type II) + s.e.m. shows no difference between BMFAKWT and BMFAKKO mice. 
Scale bar, 200µm, n.s.d (no significant difference).  
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3.3.4. Bone marrow FAK deficiency in adult mice is 

sufficient to increase liver and lung metastasis in the 

RIP-Tag2 model of cancer 

 

I have also analysed metastasis in the RIP-Tag2 model. Dissemination of tumour cells 

can be through lymphatic or blood vessels. Histological analysis the 2 peri-pancreatic 

lymph nodes showed that metastasis to this site was low and not statistically different 

between both genotypes (Fig. 28A-C).  In contrast, the incidence of liver metastasis 

was significantly higher in BMFAKKO when compared with BMFAKWT mice (Fig. 

29A, B).  Unexpectedly BMFAKKO mice also presented an increased incidence of 

lung metastases, an organ that has previously never been reported to display RIP-

Tag2 metastasis (Fig. 29A,B). Total metastasis incidence was statistically increased in 

BMFAKKO mice when compared with BMFAKWT controls as assessed by the chi-

square test (Fig. 29B). These data identify, using a spontaneous models of cancer, that 

deficiency of BM-derived FAK is sufficient to enhance tumour metastasis and that the 

effect is probably blood dissemination of the tumour cells similarly to the 

experimental metastasis model.  
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Figure 28: Bone marrow FAK deficiency in mice does not affect lymph node 

metastasis in the RIP-Tag2 model of cancer 

RIP-Tag2/+ mice were transplanted at 6 weeks of age, tamoxifen treated at 8-9 weeks 
generating BMFAKWT and BMFAKKO chimeras and necropsied at 16 weeks of age. 
Histological analysis was performed in 6 different levels of pancreas with peri-pancreatic 
lymph nodes after immunohistochemical staining for the tumour marker SV40 T antigen. (A) 
Histological analysis of lymph node (LN) metastasis show tumour cells infiltrating (Met) into 
the LN adjacent to pancreatic acinar tissue (Ac). (B) Bar charts show no difference in the 
incidence of LN metastasis  or in % of LN with metastasis (C) +s.e.m. between BMFAKWT 
and BMFAKKO mice. Scale bar, 200µm. n.s.d (no significant difference).  
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Figure 29: Bone marrow FAK deficiency in mice is sufficient to increase liver 

and lung metastasis in the RIP-Tag2 model of cancer 

RIP-Tag2/+ mice were transplanted at 6 weeks of age, tamoxifen treated at 8-9 weeks 
generating BMFAKWT and BMFAKKO chimeras and necropsied at 16 weeks of age. 
Histological analysis was performed in 6 different levels of liver and lungs after 
immunohistochemical staining for the tumour marker SV40 T antigen. BMFAKKO mice have 
increased incidence of metastasis. (A) Representative images of liver and lung metastasis are 
shown. (B) Bar charts represent percentage of animals with liver, lung and total percentage of 
animals with metastasis. Scale bar, 50µm. †P<0.06, *P<0.05, **P<0.01.  
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3.4. Increased Gr1+ cell numbers increase tumour cell 

colonisation in StrFAKKO and BMFAKKO mice 

 

Survival in the circulation, seeding at distant sites, invasion and dissemination of 

tumour cells are all dependent on the stromal environment. Many of the cells 

recruited from the bone marrow compartment are known to contribute to tumour 

metastasis. Some studies have suggested that tumour cells can direct formation of 

bone marrow derived cell pre-metastatic niches that render selected target organ 

microenvironments permissive for the implantation and subsequent outgrowth of 

disseminating tumour cells (Hiratsuka et al., 2006; Kaplan et al., 2005). 
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3.4.1. StrFAKKO mice show increased peripheral blood 

and spleen numbers of myeloid cells 

 

To dissect whether stromal FAK deficiency induced an immune phenotype that could 

contribute for the increased metastasis burden I have first analysed the mobilisation of 

myeloid immune cells into circulation. I have analysed myeloid peripheral blood 

numbers in StrFAKKO and StrFAKWT unchallenged (non-metastasis burden animals), 

2-5h after tumour cell injection (to analyse tumour cell seeding), 24-48h after tumour 

cell injection (to analyse tumour cell colonisation) and at the endpoint of experiment. 

I observed significantly higher numbers of myeloid CD11b+Gr1+ cells especially of 

granulocytic-neutrophil like (PMN) origin (CD11b+Gr1hiLy6Clo) in blood of 

unchallenged StrFAKKO mice when compared with controls. The numbers of PMN 

cells were elevated at 2-5h and 24h post-tumour cell injection in the StrFAKKO mice 

with less increase in the controls. Furthermore, an increase in this peripheral blood 

PMN population was observed at the experimental endpoint of the experiment in 

StrFAKKO mice when metastases were established (Fig. 30A). The spleen is a main 

reservoir of these myeloid cells and I have observed a similar profile of increased 

PMN cells in the spleens of StrFAKKO mice when compared with controls (Fig. 30B). 

I have also observed a similar enhancement in the monocytic fraction (Mon) of 

CD11b+Gr1+ cells (CD11b+Gr1lo+intLy6Chi) in peripheral blood and spleen of 

StrFAKKO mice when compared with controls (Fig.  31A, B). 
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Figure 30: Stromal FAK deficiency enhances the numbers of peripheral blood 

and spleen CD11b+Gr1+ granulocytes 

Levels of CD11b+Gr1hiLy6Clo (PMN) cells were analysed by flow cytometry the in the blood 
(A) and spleen (B) blood and spleen of either unchallenged StrFAKWT and StrFAKKO mice, or 
2-5h, 24h and 15 days post-tumour cell injection into the tail vein. Representative dot blots 
24h post-tumour injection are shown. Bar charts represent live percentages 
CD11b+Gr1hiLy6Clo cells from CD45+ cells in all time points in blood and spleen + s.e.m., n, 
3-4 mice/genotype. n.s.d. (no significant difference)  *P<0.05, ***P<0.001. 
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Figure 31: Stromal FAK deficiency enhances the numbers of peripheral blood 

and spleen CD11b+Gr1+ monocytes  

Levels of CD11b+Gr1lo+intLy6Chi (Mon) cells were analysed by flow cytometry the in the 
blood (A) and spleen (B) blood and spleen of either unchallenged StrFAKWT and StrFAKKO 
mice, or 2-5h, 24h and 15 days post-tumour cell injection into the tail vein. Representative dot 
blots 24h post-tumour injection are shown. Bar charts represent live percentages 
CD11b+Gr1lo+intLy6Chi cells from CD45+ cells in all time points in blood and spleen + s.e.m., 
n, 3-4 mice/genotype. n.s.d. (no significant difference),  *P<0.05, **P<0.01. 
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3.4.2. Stromal FAK deficiency induces an increase in 

bone marrow haematopoietic stem cells  

 

Circulating myeloid cells, especially granulocytes are a good indicator of 

haematopoietic stem cell (HSC) numbers or function (Bhattacharya et al., 2006; 

Wright et al., 2001). Disrupting interactions between HSCs and bone marrow stroma 

leads to HSC activation and mobilisation from bone marrow (Cheshier et al., 1999; 

Mercier et al., 2012; Wilson et al., 2008). To analyse bone marrow progenitors I have 

used the strategy shown in Fig.32. Haematopoietic progenitors were identified within 

the lineage mix negative population, i.e., that do not express any markers for B-cells 

(CD45R or B220), granulocytes (Ly6G), myelomonocytic cells (CD11b), T 

lymphocytes (CD3) and erythroid cells (Ter119). HSCs are negative for the lineage 

markers, but express the growth factor receptor c-Kit and the cell surface antigen Sca 

(Lin-cKit+Sca+) (Ashman et al., 1991; Mercier et al., 2012; Spangrude et al., 1988). 

Within the Sca- population, expression of cell surface markers CD16/32 (also know as 

FCγIII/ FCγIII) and Flt3 and low or intermediate levels of cKit defined common 

dendritic progenitor and macrophage/dendritic progenitors (CDP/MDP) (Lin-

cKitlo+intSca- CD16/32+ Flt3+) (D'Amico and Wu, 2003). Unfortunately staining for 

cell surface marker CD34, which is important for characterisation of common 

myeloid progenitors (CMP) and granulocyte/monocyte progenitors (GMP) (Akashi et 

al., 2000), was too weak and analysis of this marker was not possible. Instead we 

have identified common myeloid progenitors (CMP) by Lin-cKit+Sca- CD16/32- and 

granulocyte/monocyte progenitors by expression of Lin-cKit-Sca- CD16/32+ within 

the population with lower expression of Flt3 (D'Amico and Wu, 2003).  
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Figure 32: Schematic of bone marrow progenitor analysis strategy by flow 

cytometry 

Bone marrow progenitors were analysed by flow cytometry. Representative dot blots are 
shown. A lineage mix of antibodies was used to distinguish progenitors (Lin-) from 
committed cells (Lin+) within bone marrow live cells. Haematopoietic stem cells (HSC) are 
characterised by Lin-cKit+Sca+. Within the Sca- population common dendritic progenitor and 
macrophage/dendritic progenitor (CDP/MDP) were identified by expression low or 
intermediate levels of cKit and expression of cell surface markers CD16/32 and Flt3 (Lin-

cKitlo+intSca- CD16/32+ Flt3+). Within the Lin-Sca-Flt3lo population common myeloid 
progenitors (CMP) were characterised by Lin-cKit+Sca- CD16/32- whereas 
granulocyte/monocyte progenitors were identified by expression of Lin-cKit-Sca- CD16/32+. 
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In order to test whether the increased peripheral blood CD11b+Gr1+ cell numbers 

could be a consequence of HSC changes I have analysed HSC numbers in bone 

marrow of unchallenged StrFAKWT and StrFAKKO mice. I have observed increased 

numbers of bone HSCs in StrFAKKO mice when compared with controls (Fig.33 A). 

These results suggest that stromal FAK deficiency might have an effect in 

haematopoiesis or HSC activation. Analysis of the frequency of bone marrow 

committed myeloid progenitors, such CMP, GMP and CDP/MDP and also 

CD11b+Gr1+ cells in the bone marrow of unchallenged StrFAKWT vs StrFAKKO mice 

showed no significant differences between genotypes (Fig.  33B-E). This suggests 

there might be an increased mobilisation of these myeloid populations from the bone 

marrow compartment. Interestingly unchallenged BMFAKKO animals also showed 

increased circulating and spleen expansion of myeloid granulocytic CD11b+Gr1+ cells 

when compared with controls suggesting bone marrow FAK might be important for 

haematopoietic homeostasis (Fig.34). 
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Figure 33: Stromal FAK deficiency induces an increase in bone marrow 

haematopoietic stem cells.  

Unchallenged StrFAKWT and StrFAKKO mice single cells suspensions of bone marrow were 
analysed by flow cytometry. (A) StrFAKKO mice showed increased numbers of bone marrow 
haematopoietic stem cells when compared with StrFAKKO mice. Bar chart shows live cell 
percentages + s.e.m. No differences in the numbers of bone marrow progenitors such as 
common myeloid progenitor (CMP), (B) granulocytic-monocytic progenitor (GMP), (C) 
common dendritic and macrophage-dendritic cell progenitors (CDP-MDP) (D) were observed 
between bone marrow isolated from unchallenged StrFAKWT and StrFAKKO mice. Bar charts 
show live cell percentages + s.e.m. (E) CD11b+Gr1+ bone marrow numbers were also similar 
between StrFAKWT and StrFAKKO mice. Bar chart represents live percentages CD11b+Gr1+ 

cells from CD45+ cells in bone marrow + s.e.m. n,5 mice/genotype. n.s.d. (no significant 
difference), *P<0.05. 
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Figure 34: Bone marrow FAK deficiency is sufficient to increase numbers of 

peripheral blood and spleen CD11b+Gr1+ granulocytes (PMN) 

Unchallenged BMFAKWT and BMFAKKO mice single cells suspensions of blood and spleen 
were analysed by flow cytometry. BMFAKKO mice show increased numbers of 
CD45+CD11b+Gr1+Ly6Clo (PMN) in blood and spleen. Bar charts show live percentages from 
CD45+ cells in blood and spleen +s.e.m., n, 3-4 mice/genotype. †P<0.051 *P<0.05. 
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3.4.3. Numbers of Gr1+-tumour cell interactions in 

StrFAKKO and BMFAKKO mice reflect the increase in 

Gr1+ cell numbers in the lung 

Given the increased mobilisation and expansion of the CD11b+Gr1+ cells in the 

spleen at early time points after tumour cell injection I next analysed whether an 

increase of these cells was observed at metastatic sites such as the lung. I stained 

lung sections for Gr1+ cells 2-5h after tumour cell injection and have observed a 

similar increase in the number of Gr1+ cells infiltrating lungs in StrFAKKO and 

BMFAKKO mice when compared with controls (Fig. 35A, B). Given that these cells 

are known to suppress immune response I went on to analyse lung lymphoid 

infiltration (Connolly et al., 2010; Sceneay et al., 2012). I observed a decrease in 

infiltration of CD4+ and CD8+ T cells (Fig. 36A, B) in the lungs at early time points 

after tumour cell injection but no differences in NK cell infiltrate in StrFAKKO mice 

when compared with controls at the same time points (Fig. 36C, D). Taken together, 

the enhanced Gr1+ cell numbers and decreased T-cell numbers correlate with the 

enhanced metastasis in StrFAKKO and BMFAKKO mice. Granulocytic cells have 

been shown interact with tumour cells and facilitate their entrapment and survival in 

the lung (Huh et al., 2010; Spicer et al., 2012). Given that the frequency of 

granulocytic cells in StrFAKKO and BMFAKKO mice was elevated I sought to 

examine if these cells were interacting with the tumour cells. I labelled the tumour 

cells with a red cell tracker and analysed whether at the same early time points these 

Gr1+ cells was in close association with tumour cells. An increased percentage of 

B16F0 cells were found to interact with Gr1+ cells in the lungs of StrFAKKO and 

BMFAKKO when compared with control mice (Fig. 37A, B).  
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Figure 35: StrFAKKO and BMFAKKO mice show increased Gr1+ cell infiltration 

in lung at early time points after tumour cell injection.  

B16F0 cells were injected via the tail vein into StrFAKWT, StrFAKKO, BMFAKWT and 
BMFAKKO mice. Gr1+ cell numbers were increased in the lungs of StrFAKKO and BMFAKKO 
mice 2h-5h after tumour cell injection when compared with similarly treated control mice. 
(A) Representative images of Gr1+ cells (green) in all genotypes 2-5 hrs after tumour cell 
injection. (B) Bar chart represents number of Gr1+ cell per mm2 of lung DAPI area +s.e.m. n, 
4-5 mice per genotype Scale bar, 50µm. **P<0.01. 
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Figure 36: Stromal FAK deficiency decreases numbers of CD4 and CD8 T cells 

infiltrating lung at early time points after tumour cell injection 

StrFAKWT and StrFAKKO mice single cells suspensions of lung were analysed by flow 
cytometry. StrFAKKO mice show decreased numbers of CD4 T cells (CD3+CD4+) (A) and 
CD8 T cells (CD3+CD8+) (B) cells infiltrating the lung at 2-5h post tumour injection. No 
significant differences were observed at 24h post tumour injection. Live percentages from 
CD45+ cells in all time points in are shown, n, 3-4 mice/genotype. No differences in the 
numbers NK (NK1.1+) (C) and NK T-cells (CD3+NK1.1+) (D) infiltrating the lung were 
observed StrFAKWT and StrFAKKO mice by flow cytometry. Bar charts show live cell 
percentages from CD45+ cells + s.e.m., n,3-4 mice/genotype. n.s.d. (no significant difference), 
*P<0.05, **P<0.01. 
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Figure 37: StrFAKKO and BMFAKKO mice show increased numbers of tumour 

cells associated with Gr1+ cells in the lung at early time points after tumour cell 

injection.  

B16F0 cells, previously labelled with red cell tracker CMTPX, were injected via the tail vein 
into StrFAKWT, StrFAKKO, BMFAKWT and BMFAKKO mice. (A) The percentage of B16F0 
cells associated with Gr1+ cell was increased in StrFAKKO and BMFAKKO mice 2-5h after 
tumour cell injection. Representative images of B16F0 (red) and Gr1+ cells (green) in 
StrFAKWT , StrFAKKO, BMFAKWT and BMFAKKO mice 2-5h after tumour cell injection. (B) 
Bar chart represents percentage of B16F0 cells associated with Gr1+ complexes +s.e.m. in all 
genotypes. n, 4-5 mice per genotype. Scale bar, 50µm. **P<0.01. 
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3.4.4. StrFAKKO and BMFAKKO mice show increased 

tumour cell colonisation 

 

Given that the changes in the immune phenotype were observed at early time points 

after tumour cell injection and that Gr1+ cells were in close association with tumour 

cells at the same time points I asked whether FAK deficiency in the stromal, and 

specifically, bone marrow compartment affects the initial steps of tumour metastasis, 

i.e., seeding and colonisation. Red cell tracker labelled tumour cells were injected 

into the tail vein of StrFAKWT and StrFAKKO, BMFAKWT and BMFAKKO mice and 

lungs harvested 2-5h and 48h thereafter. Although there were no differences in the 

numbers of tumour cells seeding in the lungs 2-5h post injection a significant 

increase in tumour cell colonisation was observed in StrFAKKO and BMFAKKO mice 

when compared with controls (Fig. 38A-C). 
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Figure 38: StrFAKKO and BMFAKKO mice show increased tumour cell 

colonisation in lungs. 

B16F0 cells, previously labelled with red cell tracker CMTPX, were injected via the tail vein 
into StrFAKWT, StrFAKKO, BMFAKWT and BMFAKKO mice. (A) Lungs were harvested 2-5h 
and 48h after tumour cell injection to measure the numbers of tumour cells homing and 
colonising respectively. Representative immunofluorescence stereomicroscope images of 
lung surfaces from StrFAKWT, StrFAKKO mice are given. (B) Tumour cell numbers in lung 
sections from StrFAKWT and StrFAKKO mice 2-5h and 48h after tumour cell injection were 
counted across entire sections and normalised to lung DAPI area. (C) Tumour cell numbers in 
lung sections from BMFAKWT and BMFAKKO mice 2-5h and 48h after tumour cell injection 
were counted across entire sections and normalised to lung DAPI area. Bar charts represent 
mean number of B16F0 cells/mm2 lung DAPI area +s.e.m. n, 5 mice per genotype. Scale bar, 
500mm. n.s.d. (no significant difference), *P<0.05.   



 

 202 

3.4.5. Gr1+ cell depletion is sufficient to rescue the 

increased tumour cell colonisation in StrFAKKO mice 

 
 
In order to test the requirement of Gr1+ cells in the enhanced tumour cell 

colonisation in StrFAKKO mice I depleted these cells before tumour cell injection.  

Briefly, StrFAKWT and StrFAKKO mice were given two doses of a Gr1-blocking 

antibody, to deplete Gr1+ cells one day before and on the day of B16F0 injection via 

the tail vein. An isotype-matched control antibody was used as a negative control. 

The seeding and colonisation of the lung by tumour cells was tested and the efficient 

depletion of Gr1+ cells was confirmed in both time points (Fig. 39A). As expected 

tumour cell lung colonisation was decreased in StrFAKWT after Gr1+ cell depletion 

(Huh et al., 2010; Spicer et al., 2012). Importantly, although the control antibody 

treatment had not effect in the increased colonisation observed previously in 

StrFAKKO mice, the number of B16F0 cells that colonised in the lungs after Gr1+ 

cell-depletion was decreased in StrFAKKO mice to levels similar to that found in 

StrFAKWT mice (Fig. 39B). These results indicate that the enhanced colonisation of 

tumour cells in the StrFAKKO mice was dependent of Gr1+ cell infiltration in the 

lung.  

 

Overall the results of this chapter demonstrated that loss stromal and specifically 

bone marrow derived FAK is sufficient to enhance metastasis. Furthermore this 

response was dependent on Gr1+ cells.  
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Figure 39: Depletion of Gr1+ cells in StrFAKKO mice is sufficient to inhibit 

tumour cell colonisation in lungs. 

Gr1+ cells were antibody depleted from StrFAKWT and StrFAKKO mice.  Non-specific IgG 
was used as a control. 1 day later mice were tail vein injected with red cell tracker CMTPX 
labelled B16F0 cells. (A) Loss of Gr1+ cells can be observed in lung sections from mice 
treated with Gr1-depleting antibody. Lung sections were stained for Gr1 to detect numbers of 
Gr1+ cells. Representative images of Gr1+ cells (green) 2-5 hrs and 48h after tumour cell 
injection are given. (B) Although the control antibody had no effect in the increased tumour 
cell colonisation in the StrFAKKO mice, Gr1-depletion reduced significantly numbers of 
B16F0 cells colonising the lungs. 48hrs post tumour cell injection B16F0 numbers in lung 
sections were counted. Bar chart shows mean number of B16F0 cells in lung sections of 
either control antibody or Gr1-depletion antibody treated StrFAKWT and StrFAKKO mice 
normalised to lung DAPI area.n, 4-5 mice/test. Scale bar, 50µm. n.s.d. (no significant 
difference), *P<0.05. 
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4. DISCUSSION PART I - Stromal and bone marrow 

derived FAK in tumour growth, angiogenesis and 

metastasis 

 

Results from this chapter imply a role for stromal FAK, but not bone marrow derived 

FAK, in primary tumour growth and angiogenesis. In contrast I was able to show, in 

two different mouse models of cancer metastasis, that stromal, and specifically bone 

marrow FAK deficiency is sufficient to increase tumour metastasis. Moreover I have 

demonstrated that increased numbers of CD11b+Gr1+ or myeloid derived suppressor 

cells (MDSC) were present in the circulation or at metastatic sites when FAK was 

absent in the stromal, and specifically the bone marrow, compartment. This increased 

MDSC release and recruitment to metastatic sites, at least in part, was responsible for 

increased lung tumour cell colonisation and likely explains the increased metastatic 

burden observed in StrFAKKO and BMFAKKO animals. 
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4.1. Stromal and bone marrow derived FAK in tumour 

growth and angiogenesis 

 

FAK is important in processes such as proliferation, survival, motility and invasion, 

all features of cancer cells (Hauck et al., 2002; Owen et al., 1999; Roy et al., 2002). 

FAK has been shown to be overexpressed in many human cancers and to contribute to 

tumour growth and metastasis in mouse models (Cance et al., 2000; de Heer et al., 

2008; McLean et al., 2004; Provenzano et al., 2008). Such data concentrate 

predominantly on FAK expression in the cancer cells themselves and detailed 

examination of the expression profile of FAK in the stromal compartment is lacking. 

These observations have spurred the development of FAK inhibitors for anti-cancer 

therapy. Studies testing these drugs in animal models provided encouraging results 

showing decrease in tumour growth and, in some, metastasis (Kurio et al., 2011; 

Stokes et al., 2011; Walsh et al., 2010). These drugs are still in early clinical trials and 

information on clinical efficacy is still lacking. Importantly many of these drugs are 

not specific for FAK alone and therefore prevent a real understanding of how FAK 

inhibition works specifically (Kurio et al., 2011; Stokes et al., 2011; Walsh et al., 

2010). What also is not clear is the relative requirement for FAK in cancer versus 

stromal compartments in tumourigenesis and metastasis.  

 

Since FAK is expressed ubiquitously in mammalian cells constitutive, global genetic 

ablation of FAK in mice results in embryonic lethality and thus investigation of total 

FAK absence in adult mice especially in the stromal compartment was not possible 

previously (Ilic et al., 1995). More recently inducible deletion of endothelial FAK 



 

 206 

using Pdgfb-iCreER;FAKfl/fl mice has indicated that loss of endothelial FAK can 

inhibit tumour angiogenesis (Tavora et al., 2010). In contrast using another Cre 

model, the tamoxifen-inducible Cre under the control of the 5’endothelial enhancer of 

the stem cell leukaemia locus (End-SCL-Cre-ER(T)), to induce specific FAK deletion 

in endothelial cells Weiss et al showed no significant defects in angiogenesis. 

However, in the latter study compensation by Pyk2 was reported and tumour 

angiogenesis per se was not examined (Weis et al., 2008), thus this work was not able 

to dissect the requirement of FAK alone in angiogenic processes. FAK null fibroblasts 

isolated from FAK null embryos showed defects in invasion that were not rescued by 

Src overexpression. In addition, Src expression in FAK null fibroblasts was sufficient 

to rescue motility defects presented by these cells (Hsia et al., 2003). This study 

suggests that FAK activates distinct signalling pathways to promote motility and 

invasion. In short, studies testing the requirement of FAK in the stromal compartment 

give varied results depending on the model utilised. 

 

Interestingly, our laboratory has shown that mice lacking β3-integrin in the stromal 

compartment have increased tumour growth and angiogenesis (Reynolds et al., 2002) 

but display lower levels of FAK than WT mice. In fact, FAK heterozygous mice also 

show enhanced xenograft tumour growth and angiogenesis (Kostourou and Lechertier 

et al, unpublished data). This suggests a more complex effect of FAK levels, and 

possible differential regulation in different cell types, that can affect tumour growth 

and angiogenesis. Taken together these data begin to describe the complex role of 

stromal FAK in tumour growth but they do not reveal the role of bone marrow 

derived or even general tumour stromal FAK in this process.  
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By crossing the FAK floxed mice with RERTnERT/ERTCre mice (tamoxifen-inducible 

Cre-ERT2 under the control of the promoter of the large subunit of RNA polymerase 

II) I was able to induce FAK deletion in the majority of cells in adult mice. Stromal 

FAK deletion in adult mice suppressed tumour growth and associated angiogenesis in 

agreement with the described positive role of FAK within the tumour cell 

compartment in tumourigenesis (McLean et al., 2004; Provenzano et al., 2008). Since 

in my experiments the tumour cells were not FAK deficient I asked the question: 

which cells in particular were contributing to the phenotype that I observed? 

 

Given that FAK deletion in endothelial cells is sufficient to decrease tumour growth 

and angiogenesis (Tavora et al., 2010) I speculate that lack of FAK in endothelial 

cells is likely to be contributing toward the phenotype observed when I induce stromal 

FAK deletion in mice.  At this stage I do not have direct proof for this hypothesis but 

the following bone marrow transplant experiments help to support this notion.  

 

Several reports have described the contribution of BM derived cells in tumour 

angiogenesis (Beckermann et al., 2008; De Palma et al., 2005; Du et al., 2008; 

Shojaei et al., 2007). Bone marrow derived cells have been shown to be recruited to 

sites of tumour growth and have a pro-angiogenic role through production of VEGF 

and various other factors (Beckermann et al., 2008; Bergers and Song, 2005; Shojaei 

et al., 2007). In order to investigate whether the lack of FAK in BM cells was also 

contributing to the decreased tumour growth and angiogenesis observed in our mouse 

model, I transplanted BM cells from the RERTnERT/ERT;FAKfl/fl mice and induced 

FAK deletion in BM cells in adult mice. Deficiency of FAK in BM cells showed no 

effect in subcutaneous tumour growth or angiogenesis. These results suggest that lack 
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of FAK in BM cells is not sufficient to control angiogenesis and perhaps as a 

consequence it does not have an effect upon tumour growth.  Given that the 

endothelial compartment in these experiments was likely to be FAK positive 

comparison of these BMT data with the stromal FAK deficiency data start to describe 

a different role for bone marrow FAK in tumourigenesis.  

 

Even though angiogenesis seemed unaffected when the BM was FAK deficient there 

is evidence showing the bone marrow contributes to blood vessel supporting cells 

such as pericytes and fibroblasts (De Palma et al., 2005; Mishra et al., 2008). Poor 

coverage of blood vessels by these supporting cells results in leaky, haemorrhagic 

tumour blood vessels that, in turn, affect tumour growth (Abramsson et al., 2003). For 

this reason I have analysed blood vessel functionality and coverage by these 

supporting cells but found no differences when the bone marrow was FAK deficient. 

My data suggest that mural cell attachment to blood vessels was not affected by loss 

of FAK.  

 

One of the major contributions of bone marrow derived cells to tumour growth and 

progression is the immune infiltrate. De Palma and colleagues described a specific 

type of monocyte that expresses Tie-2 and has a pro-angiogenic function (De Palma et 

al., 2003). Tumour associated macrophages (TAMs) have been associated with 

decreased survival and poor prognosis in some cancers (Ryder et al., 2008; Zhu et al., 

2008). These TAMs are known producers of VEGF, EGF, FGF, MMPs and other 

molecules that can affect tumour cell proliferation, angiogenesis and extracellular 

matrix degradation (Sica et al., 2008). Pro-angiogenic functions were also attributed 

to granulocytes, such as neutrophils, due to their ability to produce MMP-9 (Nozawa 
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et al., 2006) or through expression of a mitogenic molecule (Bv8) (Shojaei and 

Ferrara, 2008; Shojaei et al., 2007). Importantly FAK deletion was shown to decrease 

inflammatory responses involving macrophages (Owen et al., 2007) and neutrophils 

(Kasorn et al., 2009). In fact some pharmacological FAK inhibitors (that also inhibit 

other molecules like Pyk2 though) have been associated with a decrease in the 

immune infiltrate in tumours (Stokes et al., 2011; Walsh et al., 2010).  

 

When I analysed the immunophenotype of unstimulated mice I found increased 

numbers of CD11b+Gr1+ cells (MDSC), mainly of granulocytic-neutrophil like origin, 

in the blood of StrFAKKO and BMFAKKO mice when compared with controls. These 

results suggest that deficiency of FAK in the bone marrow compartment can regulate 

the generation or release of these cells into the circulation and that this might affect 

tumour growth.  However the lack of an effect in subcutaneous B16 tumour growth 

and angiogenesis suggested these increases in circulating myeloid cells do not affect 

tumour growth or angiogenesis at this site.  

 

Importantly, manipulation of macrophages has no effect in subcutaneous B16 tumours 

when compared with B16 tumours in the lungs after tail vein injection (van Deventer 

et al., 2002). On the other hand Muramatsu et al have shown that transplanting 

VEGFR1-null bone marrow decreased B16 subcutaneous tumour growth and 

angiogenesis and decreased also macrophage infiltrate (Muramatsu et al., 2010). Of 

note, however, in the same study, the numbers of macrophages in B16 tumours are 

much smaller than in similarly tested Lewis Lung Cell Carcinoma (LLC) xenografts.  

In fact, these cells localise more abundantly in the periphery than within the B16 

tumours and the staining is patchy and difficult to analyse. Staining of BMFAKWT and 



 

 210 

BMFAKKO for markers such as F4/80 or Gr1 was also very inconclusive and showed 

that these cells were almost absent within the tumours. For this reason quantification 

was not performed and it was not included in my PhD thesis results (data not shown). 

In fact, these results highlight a limitation of these types of subcutaneous tumour 

models when examining immune cell infiltration and thus we turned our attentions to 

a spontaneous model of cancer growth, namely the RIP-Tag2 model.  

 

I transplanted lethally irradiated 6-week-old RIP-Tag2 mice with bone marrow from 

RERTnERT/ERTCre;FAKfl/fl animals and respective controls and induced FAK deletion 

at 8-9 weeks, i.e., when the angiogenic switch has been reported to already occur in 

these mice (Hanahan, 1985).  Animals were sacrificed at 16 weeks of age when they 

were reported to have advanced disease (Hanahan, 1985). Similar to the subcutaneous 

tumour experiments just described, the lack of difference in pancreatic tumour sizes in 

the RIP-Tag2 model points towards no effect of bone marrow FAK levels in primary 

tumour growth. Noteworthy however is that in my RIP-Tag2 experiments the total 

tumour area was between 2-5 mm2 per animal and most individual tumours were less 

than 1 mm2. The reduced tumour growth correlated with previous reports of reduced 

tumour burden in pre-irradiated mice including the RIPTag-2 model when compared 

with non-irradiated mice (De Palma et al., 2005; Milas et al., 1987) and may reflect 

damage due to irradiation. In fact subcutaneous B16F0 tumour growth in BMFAKWT 

and BMFAKKO was also delayed in my experiments. This phenomenon, the tumour 

bed effect (TBE), is a result of radiation-induced damage of the tumour bed stroma 

(Hewitt and Blake, 1968). Irradiated tissue has been shown to have reduced ability to 

vascularise tumours and blood flow is also reduced in tumours grown in pre-irradiated 

animals (Jirtle et al., 1978).  
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Our studies are in line with those showing that inhibition of VEGFR-1, which targets 

most bone marrow derived cells, does not affect primary tumour growth or 

angiogenesis suggesting that bone marrow derived cells are not the main stromal 

drivers of primary tumour growth and angiogenesis in the RIP-Tag2 mouse model 

(Casanovas et al., 2005). In another study, also using RIP-Tag2 mice, increasing 

peripheral blood neutrophils, by administration of G-CSF, did not affect tumour 

angiogenesis, however depletion of the peripheral blood neutrophils prior to the 

angiogenic switch did decrease angiogenesis. Importantly when this depletion was 

done after the angiogenic switch, tumour angiogenesis was no longer affected 

(Nozawa et al., 2006). This study suggests peripheral blood neutrophils are important 

for the initial but not the later stages of angiogenesis. In addition, these data went on 

to describe that the mere presence, rather than the numbers, of neutrophils is 

important for the initial angiogenic switch since angiogenesis is not proportional to 

the numbers of circulating CD11b+Gr1+ cells. When comparing my data with this 

study one main conclusion can be drawn: the increase in circulating 

granulocytes/neutrophils in the bone marrow in FAK deficient mice is unlikely to 

affect angiogenesis. 

It is fair to say that since B16 subcutaneous tumours do not have a predominant 

immune phenotype it is difficult to state categorically that the lack of a phenotype in 

bone marrow FAK deficient mice reflects the general role for bone marrow FAK in 

tumour growth and angiogenesis. For this purpose use of a xenograft model, e.g. 

LLC, which has a reported immune phenotype, may be better. In addition since the 

primary tumours in RIP-Tag2 experiments were very small, and likely poorly 

vascularised, I cannot comment on the role of bone marrow derived FAK in primary 

tumour angiogenesis.  
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4.2. Stromal and bone marrow derived FAK in tumour 

metastasis  

 

Since FAK is important in processes such as migration and invasion it has been 

suggested to be a positive regulator of metastasis (de Heer et al., 2008; Hauck et al., 

2001; Mitra et al., 2006a). Indeed, in some types of cancer such as colorectal cancer, 

high levels of both FAK and Src are indicative of poor prognosis and tumour 

recurrence (de Heer et al., 2008).  However more recent evidence has pointed towards 

a negative role for FAK in tumour progression (Gabriel et al., 2006; Zheng et al., 

2009). Despite high levels of FAK levels in primary cervical cancer samples when 

compared with normal epithelium, weak FAK expression was correlated with lymph 

node metastasis and poor overall survival (Gabriel et al., 2006).  In addition, animal 

studies have shown inhibition of FAK by overexpression of FRNK results in 

increased numbers of Ras-mediated metastases. In the same article in vitro data 

suggested that ERK-dependent FAK phosphorylation at serine-910 primes FAK for 

dephosphorylation at FAK-P-Y397 by molecules downstream of Ras signalling 

(Zheng et al., 2009).  

In contrast, few studies have actually assessed the role of stromal FAK in tumour 

progression. A recent study has suggested a role for endothelial FAK in metastasis. 

The authors showed that inhibition of FAK in endothelial cells decreased E-selectin 

expression, cancer cell homing and metastasis (Hiratsuka et al., 2011).  More recently 

Chen et al have suggested that endothelial FAK is important for VEGF-induced 

permeability (Chen et al., 2012). These two studies suggest endothelial FAK might 

have a role in metastasis by controlling vascular permeability.  
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Given these observations I sought to test the role of stromal FAK in experimental 

tumour metastasis by injecting B16F10 cells into the tail vein of StrFAKKO mice and 

analysing metastasis. Since injection of B16F0 cells in the tail vein of animals 

resulted in fewer than five metastases per mouse (data not shown) I have used a more 

metastatic variant B16F10 in my experiments.  In contrast to my previously described 

anti-tumourigenic and anti-angiogenic role of FAK deficient stroma in subcutaneous 

B16 tumour growth, stromal FAK deficiency had a pro-metastatic effect even when 

the tumour cells themselves expressed normal levels of FAK. It has been shown 

previously that when tumour cells are injected into the circulation the first organ that 

will be colonised is the lung. I observed significantly increased lung metastasis in 

StrFAKKO mice but, in addition and more surprisingly, I also have seen a significant 

increase in the number of bone and liver metastases in these mice. StrFAKWT liver 

and bone were almost bereft of metastases suggesting that when the stroma is FAK 

deficient metastasis spreads to organs where it would otherwise be less frequent.  

 

Bone marrow derived cells have also been identified as important in the regulation of 

tumour invasiveness and implicated in organ-specific tumour metastasis (Du et al., 

2008; Kaplan et al., 2005). The plasticity of many bone marrow derived cells, such as 

macrophages and neutrophils, may make them capable of acquiring both pro- and 

anti-metastatic phenotypes (Fridlender and Albelda, 2012; Piccard et al., 2012; Qian 

and Pollard, 2010). I went on to test whether leukocyte FAK levels could also control 

metastasis.   
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My data have showed that the lack of FAK in the bone marrow compartment alone 

increased significantly the number of B16F0 metastases when compared with 

controls. Similar to the experiments in StrFAKKO mice, enhanced metastasis was 

observed in the lungs and also in bone and liver. It is noteworthy that the total 

numbers of metastases were much higher in the bone marrow transplanted mice than 

in the StrFAKKO mice even when I have used the less metastatic B16F0 line.  This 

most likely reflects tissue damage and changes in the tumour bed stroma induced by 

radiation. It has been reported that mice that had irradiation show increased number of 

metastasis when compared with non-irradiated animals (Hewitt and Blake, 1968; 

Milas et al., 1987).  

 

The experimental metastasis models that I have described only allow analyses of 

metastatic steps from when tumour cells are already in the circulation onwards. 

However this is only part of the metastatic process. To test the effect of bone marrow 

FAK deficiency in a model where primary tumours metastasise to other organs allows 

us to analyse steps such as primary tumour invasion. For this purpose I have used the 

RIP-Tag2 mouse model of spontaneous metastatic pancreatic cancer. I have observed 

that bone marrow FAK deficiency did not affect invasiveness of tumours suggesting 

that bone marrow derived FAK is not apparently involved in this initial step of 

metastasis.  

  

After tumour cells have invaded into the peri-tumoural stroma, their dissemination to 

distant organs can be via lymphatic and/or vascular vessels (Chambers et al., 2002; 

Tammela and Alitalo, 2010). I analysed the peri-pancreatic lymph nodes for the 

presence of metastasis in BMFAKKO;RIP-Tag2/+ animals and respective controls. I 
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observed that metastasis to lymph nodes was low in both genotypes suggesting 

dissemination though lymphatic vessels was low at the time when the mice were 

killed. This is perhaps related to the small primary tumour size observed.   

 

In stark contrast I have observed an increased incidence of liver micrometastases 

when the bone marrow was FAK deficient. Interestingly these BMFAKKO mice have 

also shown lung micrometastases, an organ not reported before to have observed 

metastatic spread in this model. These data suggest that loss of BM-derived FAK is 

sufficient to enhance tumour metastasis and that the effect probably is related to blood 

dissemination of the tumour cells similar to my experimental metastasis data. Indeed 

this early dissemination of tumour cells, even when the primary tumours and local 

lymph node dissemination is low, corroborates with the new view of the metastatic 

process that claims metastasis dissemination can occur even before tumours are 

clinically detectable. Using two mouse models of invasive mammary carcinomas 

(BALB-NeuT and MMTV-PyMT) Husemann et al, have observed dissemination of 

tumour cells even before disruption of basement membrane in the primary 

hyperplastic lesions (Husemann et al., 2008). Another study has shown that epithelial 

to mesenchymal transition, tumour cell migration, bloodstream entry and seeding in 

the liver can occur in parallel or even before tumour formation at the primary site in a 

mouse model of PDAC (Rhim et al., 2012). My data suggest that stromal, and 

specifically bone marrow derived FAK, might act as a negative regulator of metastatic 

dissemination and raise the question of which cells are being regulated by FAK and 

acting as pro-metastatic in its absence.  
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4.3. Bone marrow FAK in haematopoiesis homeostasis 

 

The role of myeloid cells in metastasis has been studied extensively.  For example, it 

has been described that tumour cell extravasation and pulmonary seeding by tumour 

cells are dependent on the production of VEGF by Gr1+CCR2+ monocytes in a mouse 

model of spontaneous breast cancer (Qian et al., 2011). Another study has highlighted 

that cancer cell survival is extended via tumour cell VCAM-1 macrophage α4β1 

interactions. Authors claim this interaction triggers anti-apoptotic signals in cancer 

cells and thus facilitates their seeding and metastasis (Chen et al., 2011). These are 

just a few examples of how myeloid cells can regulate tumour metastasis. Here I have 

shown that non-tumour burden StrFAKKO mice have an increase in circulating and 

splenic CD11b+Gr1+ cells from granulocytic/neutrophil-like and monocytic origins as 

described before. This result suggests at least two things: (1) FAK deficiency 

enhances haematopoiesis and myeloid lineage commitment and/or; (2) loss of FAK 

increases the release of these cells into circulation. Haematopoietic homeostasis is 

dependent on haematopoietic stem cells (HSCs) that have the ability to self renew and 

maintain lineage differentiation potential (Becker et al., 1963; Till and McCulloch, 

1961). Progenitor cells that retain lymphoid and myeloid differentiation potential but 

lack self renewal capacity can reconstitute lymphocytes but not granulocytes in 

immunodeficient mice (Bhattacharya et al., 2006). Peripheral blood granulocytes are 

considered a good indicator of HSC numbers or activation (Bhattacharya et al., 2006; 

Wright et al., 2001). I have observed an increase in bone marrow numbers of HSCs in 

StrFAKKO mice even in unstimulated animals which was consistent with peripheral 

and spleen numbers of granulocytes. However no significant differences in bone 
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marrow lineage progenitors, such as common myeloid progenitor (CMP), 

granulocytic-monocytic progenitor (GMP) and common dendritic cell and 

macrophage-dendritic cell progenitors (CDP-MDP) were observed. Interestingly 

numbers of CD11b+Gr1+ cells also did not change in the bone marrow compartment.  

This suggested haematopoiesis might be increased in StrFAKKO mice and that these 

cells were probably being constantly released into the circulation. It is noteworthy that   

the analysis of bone marrow committed progenitors, such as CMP and GMP, should 

be repeated since some of the markers such as CD34 were not included in the analysis 

for technical reasons. It will also be useful to add IL7-Rα to exclude lymphoid 

progenitors and provide a more accurate analysis.  Nevertheless one of the questions 

that has arisen from these data is: How are FAK levels regulating HSC and 

CD11b+Gr1+ cell numbers? 

 

A recent study by Lu et al has shown that FAK is preferentially expressed in HSCs 

when compared with more differentiated committed progenitors in the bone marrow. 

Importantly the authors also observed an increase in HSC numbers when FAK was 

deleted specifically in the bone marrow compartment by using a Cre inducible 

conditional knockout under the expression of an interferon- inducible promoter (Mx1-

Cre). These mice showed more dividing and fewer quiescent HSCs (Lu et al., 2012). 

Other studies have shown that HSCs can reversibly change from dormancy to a self-

renewal state. Dormancy is important to maintain HSC homeostasis and protect them 

from exhaustion (Takizawa et al., 2011; Wilson et al., 2008).  These data raise the 

question of whether FAK could regulate the dormancy self-renewal state? It would be 

interesting, in future studies, to examine HSC cycling and HSC exhaustion after 

transplant, i.e., their self-renewal capacity. This can be done by transplanting bone 
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marrow into a first recipient and from that transplanted animal re-transplant into 

another recipient and so on.  By analysing bone marrow reconstitution after serial 

bone marrow transplants I should be able to test whether FAK affects HSC self-

renewal ability.  

 

Lu et al have also observed that FAK depleted bone marrow cells showed increased 

long-term haematopoietic reconstitution when half of these cells were transplanted 

with competitor WT cells into lethally irradiated WT mice. However reverse 

transplant, using a similar assay of WT cells into lethally irradiated FAK deleted 

recipients did not show the same engraftment advantage or increase in HSC numbers 

suggesting that deficiency of FAK in the bone marrow stroma is not sufficient to 

affect the HSC homeostasis. In addition transplantation of FAK depleted HSCs into 

lethally irradiated WT recipients was not sufficient to affect the numbers of HSCs and 

in vitro proliferation of HSCs was not affected by FAK levels. These data suggest that 

FAK levels in both the HSCs and bone marrow stroma together are necessary to 

regulate the numbers of HSCs. The result of the increase in numbers of HSCs was 

increased peripheral blood granulocytes similar to what I observed in StrFAKKO and 

BMFAKKO mice (Lu et al., 2012).  

 

The fact that stromal FAK deficiency increased the numbers of HSCs in my studies 

might suggest that by altering adhesion to the bone marrow stroma the proportion of 

activated HSC cells have increased, resulting in increased peripheral blood and spleen 

granulocytes. The release of HSCs from the bone marrow compartment has been 

suggested to require c-Myc repression of N-cadherin and integrin adhesion (Wilson et 

al., 2004). Interestingly FAK had already been shown to be involved in adhesive 
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responses from haematopoietic precursor cells downstream of CXCR4 and integrins 

(Glodek et al., 2007). Thus in future studies it would be of interest to analyse the 

molecular profile of HSC and CD11b+Gr1+ cell adhesion receptors and also study the 

mobilisation of HSCs, lineage committed progenitors and CD11b+Gr1+ cells by 

analysing their numbers in bone marrow and peripheral blood.  

 

4.4. Identifying Gr1+ cells as drivers of metastasis in 

stromal and bone marrow FAK deficient mice 

 

CD11b+Gr1+ cells are also referred to as myeloid-derived suppressor cells (MDSCs) 

and increased numbers of blood MDSCs have been clinically correlated with 

metastasis burden (Diaz-Montero et al., 2009).  The increased numbers of 

CD11b+Gr1+ cells in blood and spleen of StrFAKKO mice were further enhanced at 

early time points after tumour cell injection. After circulating through the blood bone 

marrow derived cells will also home to sites of metastasis as described earlier (Huh et 

al., 2010; Qian et al., 2011; Spicer et al., 2012). Gr1+ cell numbers were also 

increased 2-5 hrs after tumour cell injection at sites of metastases, such as in the lung, 

when either the whole stroma or bone marrow were FAK deficient.    

 

The differences in the immune infiltrate at metastatic sites after tumour cell injection 

suggested these cells could play a role in the phenotype observed. Some studies 

suggest that MDSC can decrease CD8 and CD4 T cell proliferation and cytotoxicity 

(Connolly et al., 2010). On the other hand they were implicated in decreased NK cell 

cytotoxicity without changing their numbers (Sceneay et al., 2012).  In my study, 
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analysis of lung lymphoid numbers at early time points (2-5 hrs and 24 hrs) after 

tumour cell injection showed a decrease in CD8 and CD4 T cells with no alterations 

in NK or NKT cell numbers when the stroma was FAK deficient. Thus my work 

shows that loss of stromal FAK correlates with increased numbers of CD11b+Gr1+ 

cells and a partially immune suppressive phenotype.  

On the other hand I cannot exclude that FAK deficiency in CD8 and CD4 T cells and 

NK cells per se could affect their recruitment or anti-tumour capability and further 

analysis is necessary. Related to this issue, previously published work has shown that 

FAK deficiency alone does not affect CD4 and CD8 thymocyte development 

(Kanazawa et al., 1996). A recent study implied FAK plays a role in CXCL12-driven 

human thymocyte migration (Garcia et al., 2012). But to date the role of FAK in the 

activity and anti-tumour functions of these cells has not been reported.  

 

In addition to their immune suppressive functions CD11b+Gr1+ cells also have non-

immunosuppressive functions. For example it has been suggested that 

granulocytic/neutrophil-like Gr1+ cells could form complexes with tumour cells that 

facilitate cancer cell interaction with target metastatic tissue (Huh et al., 2010; Qian et 

al., 2011; Spicer et al., 2012). I tested whether Gr1+ cells indeed were interacting with 

tumour cells at metastatic sites. I observed increased numbers of tumour cells in close 

association with Gr1+ cells in StrFAKKO and BMFAKKO mice when compared with 

controls. The extent of the increase in interactions is similar to the increase in Gr1+ 

cell numbers in the same tissue suggesting FAK deficiency might not intrinsically be 

regulating Gr1+ interactions with tumour cells but rather might reflect a proportional 

increase in tumour cell-Gr1+ cell complexes. Despite this, my data show that the 

actual number of tumour cell-Gr1+ cell complexes is increased in the lungs of both 
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StrFAKKO and BMFAKKO mice when compared with controls and this may be 

contributing to the overall enhanced metastasis in these mice.  

Given that tumour cell-Gr1+ cell interaction could lead to changes in tumour cell 

seeding, colonisation and metastasis (Huh et al., 2010; Qian et al., 2011; Spicer et al., 

2012), I then went on to examine these events further. Tumour cell seeding in the lung 

did not seem to be regulated by increased numbers of Gr1+ cells associated with 

tumour cells. However, and in contrast, the colonisation of tumour cells was increased 

in StrFAKKO and BMFAKKO mice corroborating the studies from Huh et al, 2010 and 

Spicer et al, 2012.  

 

My results so far point towards a positive role for FAK deficient Gr1+ cells in the 

enhanced metastasis. To test directly the requirement of Gr1+ cells in this process I 

have depleted them in StrFAKWT and StrFAKKO mice before tumour cell injection 

and observed the effect in tumour cell colonisation in the lungs. Gr1+ cell depletion 

reduced tumour cell colonisation in StrFAKWT animals. Importantly Gr1+ cell 

depletion in StrFAKKO mice also resulted in a decreased tumour cell colonisation. 

These data suggest that the increase in Gr1+ cells that are recruited to metastatic sites 

in StrFAKKO mice is a major driver of the elevated tumour cell colonisation observed. 

I can also infer from this result that the intrinsic effect of FAK deficiency in CD4 and 

CD8 T cells and NK cells is not sufficient to affect lung tumour cell colonisation. 

 

It is tempting to speculate that the enhanced tumour cell colonisation that is observed 

in StrFAKKO and BMFAKKO mice is key to the increased metastatic burden observed 

in these animals. In order to clarify this in future experiments it will be important to 

repeat the same Gr1+ cell depletion in order to decrease tumour cell colonisation and 
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analyse the effect in the number of metastases when the stroma and specifically bone 

marrow are FAK deficient.   

 

In future studies I also intend to dissect the mechanism by which increased 

recruitment of Gr1+ cells affects colonisation and metastatic burden. To distinguish 

between immune suppression and other pro-metastatic functions of CD11b+Gr1+ cells 

in the metastatic burden it will be interesting to cross RERTnERT/ERTCre;FAKfl/fl mice 

with RAG1 or RAG2 KO animals. These animals lack mature B and T cells but show 

normal levels of myeloid cells (Mombaerts et al., 1992; Shinkai et al., 1992). This 

will allow analysis of the role of myeloid FAK in metastasis independently in T and B 

cells. One limitation of these experiments is that since RAG1 or RAG2 KO animals 

have NK cells I will not be able to analyse the role of myeloid FAK in metastasis 

independently of NK cells using this model. In vitro NK cytotoxicty assays and NK 

cell depletion might reveal the role of FAK in NK cell function and the role of NK 

cells in the metastatic burden observed in my experiments.  

 

When comparing my data with published work, FAK deletion in myeloid cells was 

reported to attenuate myeloid immune response in vivo due to decreased infiltration 

into sites of inflammation (Kasorn et al., 2009; Owen et al., 2007) however I found 

increased infiltration at metastatic sites.  In previous studies FAK was depleted 

specifically in the mature myeloid population and committed progenitors thereby not 

affecting the FAK levels in haematopoietic stem cells and bone marrow stroma. 

Importantly by depleting FAK in the whole bone marrow I have affected the 

interactions between haematopoietic cells and bone marrow stroma resulting, for 

example, in increased haematopoietic stem cell numbers in line with other studies (Lu 
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et al., 2012). Since blood granulocytes are the main indicator of the total HSC pool 

(Takizawa et al., 2011; Wilson et al., 2008) I hypothesise the increased Gr1+ cell 

numbers that I observed is a consequence of an alteration in HSC numbers.  

 

Another important point is that the role of FAK depletion in the recruitment of 

myeloid cells has only been tested in response to pathogens or inflammatory stimuli 

and never in the context of tumours (Kasorn et al., 2009; Owen et al., 2007; Vemula 

et al., 2010). Tumour cells themselves produce growth and migratory stimuli to 

increase the recruitment of immune cells to metastatic sites and elicit different cellular 

responses than the ones required during an infection (Hiratsuka et al., 2006). In fact 

myeloid cells recruited during tumour metastasis have general immune response 

defects (Connolly et al., 2010; Sceneay et al., 2012; Yan et al., 2010). For example 

skewing TAM polarisation from the M2, less inflammatory phenotype, to the M1, 

activated inflammatory phenotype, can increase macrophage anti-tumour effects and 

decrease tumour metastasis (Rolny et al., 2011). The increased recruitment of Gr1+ 

cells to metastatic sites in my studies, rather than being contradictory to other reports, 

perhaps just represents a complementary description of the phenotype adopted by a 

FAK deficient myeloid cell. I hypothesise FAK deficient CD11b+Gr1+ cells might 

have defects in inflammatory response and tumour killing capabilities themselves, 

acquiring instead a pro-metastatic phenotype that facilitates tumour cell colonisation. 

In addition increased numbers of FAK deficient CD11b+Gr1+ cells in the blood and 

metastatic sites might also suppress immune responses generating a pro-metastatic 

microenvironment. In order to clarify this, in future experiments, I will perform 

molecular analyses of FAK deficient CD11b+Gr1+ cells sorted from lung after tumour 

cell injection. It will be interesting to test whether FAK deficiency results in cytokine 
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profile or cell adhesion changes in CD11b+Gr1+ cells that are recruited to the lung 

after tumour cell injection. This will reveal whether FAK deficient CD11b+Gr1+ cells, 

in the context of tumours, can themselves produce pro-metastatic cytokines and 

whether there is any compensation in adhesion pathways that might regulate their 

recruitment to metastatic sites and interaction with tumour cells.  It will also be 

interesting to test whether bone marrow FAK deficiency, in my mouse model, also 

shows decreased infiltration to sites of inflammation in vivo. 

 

Importantly FAK inhibitors that are in early clinical trials will affect FAK levels in 

the stromal compartment as well. Some of these inhibitors have been shown to 

decrease inflammatory recruitment to primary tumours (Stokes et al., 2011; Walsh et 

al., 2010). However these drugs are not specific for FAK, they inhibit also Pyk2 and 

some growth factor receptors and analysis of myeloid infiltrate was not performed in 

these studies. It will be extremely interesting to analyse the immune phenotype, 

specifically Gr1+ cell infiltration, in primary tumour and metastasis of tumour 

burdened mice treated with FAK inhibitors in vivo. It will also be interesting to see 

whether the inhibitor studies result in any changes in metastatic burden.  
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In conclusion in this Chapter I have shown that by decreasing FAK levels in the 

stromal compartment I have generated a pro-metastatic microenvironment. Bone 

marrow FAK deficiency was sufficient to increase metastatic burden implying a bone 

marrow derived cell in the phenotype observed. I have demonstrated that colonisation 

might be the key metastatic step affected in the absence of stromal FAK. Stromal and 

bone marrow FAK deficiency resulted in increased Gr1+ cell numbers that had a 

major influence on the enhanced metastatic phenotype observed (Fig. 40).  

I hypothesise that FAK expression, by controlling HSC and myeloid cell numbers in 

the circulation, can control organ tumour cell colonisation at metastatic sites. I also 

hypothesise that FAK expression in myeloid cells might affect their pro or anti-

metastatic functions (Fig. 40). By altering stromal FAK levels we might affect 

intrinsic molecular functions but also cellular numbers by changing their interaction 

with their microenvironment. Further studies are necessary to clarify the mechanism 

by which bone marrow derived FAK can control tumour metastasis 
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Figure 40: Model for a role for bone marrow FAK in tumour metastasis 

 
Haematopoietic stem cells (HSCs) are usually in a dormant state through interactions with 
bone marrow stroma. (1) Bone marrow FAK deficiency might disrupt HSC-bone marrow 
stroma interactions resulting in activated and proliferative HSCs. (2) Increased HSC numbers 
give rise to increased granulocytic (PMN) and monocytic (Mon) CD11b+Gr1+ cell numbers in 
peripheral blood. (3) CD11b+Gr1+ cells induce an immune suppressive phenotype decreasing 
T cell numbers and possibly T and NK cell anti-tumor activity. (4) CD11b+Gr1+ cells also 
form complexes with tumour cells at metastatic sites facilitating their colonisation of organs. 
This ultimately results in increased formation of micrometastases that proliferate into 
detectable metastases.   
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5. RESULTS PART II – Point-mutant FAK 

knockin/knockout mice 

 

5.1. Generation of FAK knockin mice  

In the previous Chapter I tested the effect of FAK deficiency in metastasis. In future 

studies it will be necessary to develop point-mutant FAK knockin mice in order to 

dissect the molecular mechanisms that underlie FAK’s role in tumour progression. 

For this purpose our laboratory has generated point-mutant FAK knockin-knockout 

mice where mutant-FAK will be inducibly expressed (knockin) and endogenous-FAK 

deleted (knockout) in specific cell types. FAK has multiple phosphorylation sites and 

a kinase domain. We have been generating the following knockin mice: 

1. WT – Control; 

2. 397F – the major phosphorylation site required for FAK activity is the 

tyrosine 397 which was mutated to phenylalnine such that it cannot be 

phosphorylated; 

3. 397E – tyrosine 397 was replaced with glutamic acid creating a 

phosphorylated mimic site (constitutive phosphorylation); 

4. Kinase dead (KD) – lysine 454 in the ATP binding site was mutated to 

arginine disrupting the kinase activity necessary for Y397 

autophosphorylation and phosphorylation of other proteins; 

5. 397E/KD – double mutation where Y397 is constitutively phosphorylated but 

the catalytic activity of FAK is disrupted; 

6. 861F – tyrosine 861 that has been implicated in VEGF signalling (Eliceiri et 

al., 2002) was replaced by a phenylalanine that cannot be phosphorylated. 
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The generation of these FAK mutant mice comprised the following steps: cloning 

constructs into targeting vectors; electroporation of mouse embryonic stem (ES) cells 

with targeting constructs; screen for homologous recombinant ES cell clones; 

Generation and breeding of chimeric mice for germline transmission; 

knockin/knockout breeding strategy. 

 

I. Cloning constructs into targeting vectors 

 

My predecessor, Dr. Bernardo Távora, performed all the cloning of point-mutant 

FAK constructs into targeting vectors with homology for the mouse Rosa26 locus 

prior to my arrival. He has also generated the FAK 861F knockin-knockout mice.  

 

II. Electroporation of mouse embryonic stem (ES) cells with 

targeting constructs 

 

WT, 397F, 397E, KD and 397E/KD constructs were electroporated into hybrid 

129S6.C57BL6J ES cells (Transgenic facility CRUK). Around 100-500 neomycin-

resistant clones per mutation were selected for DNA extraction.  

 

III. Screening for homologous recombinant ES cell clones 

 

I have been responsible for screening the homologous recombinants and the further 

steps of developing the WT, 397F, 397E, KD and 397E/KD point-mutant FAK mice. 

Southern blot analysis was used to screen for homologous recombination of the 

targeting vector into ES cell clones. DNA was digested with restriction enzymes 
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(EcoRV or AvrII), run on agarose gels, transferred to Hybond-nylon membranes and 

hybridised with probes to confirm homologous recombination and remove any clones 

with random insertions (see Fig.9-12 of Materials and Methods).  

 

The first screen was performed on EcoRV digested DNA using the 5’R26 probe 

(probe A), an external probe to the targeting vector that lies 5’ of the Rosa26 locus 

(Soriano, 1999). Clones that displayed both WT and targeted band (indicative of 

homologous recombination in the Rosa 26 locus) (see Table 5 and Fig.41) as well as 

their immediate gel neighbours were expanded and DNA extracted for a confirmation 

screen.  

 

Table 5: Expected band sizes for Southern blot screen with 3 different probes for 
EcoRV and AvrII restrictions. 

 
EcoRV WT Rosa 26 locus Targeted Rosa 26 locus 

Probe A 11 Kb 4 Kb 

Probe B - 9 Kb 

Probe C - 4 Kb 

Avr II WT Rosa 26 locus Targeted Rosa 26 locus 

Probe A 5.5 Kb 8.4 Kb 

Probe B - 4.2 Kb 

Probe C - 8.4 Kb 

 

 

Confirmation screens were performed on EcoRV and AvrII digested DNA using the 

external probe A as well as internal probes for GFP (probe B) and neomycin (probe 

C) to exclude the possibility of random integrations in other parts of the genome. 

With the internal probes B and C only the homologous recombinants should display a 



 

 230 

band (Table 5). Appearance of other bands is indicative of random integrations and 

those clones cannot be used to produce chimeras (see examples in Fig.42) due to the 

possibility that the random integration has disrupted other essential genes that might 

account for any phenotype observed. Fig. 42 shows the different clones from each 

mutation selected for injection into the blastocyst according to the bands obtained in 

the Southern blot analysis with EcoRV and AvrII restrictions, respectively. The total 

number of clones screened for each mutation as well as the number of positive clones 

selected to inject into the blastocyst is represented in Table 6. 

 

 

Table 6: Number of neomycin resistant clones screened and positive clones for 
homologous recombination for each mutation selected to inject into the 
blastocyst of pseudo-pregnant female mice.  

Mutation Number clones screened Number positive clones 

WT - Control 288 2 

397F 384 1 

397E 96 2 

KD 480 1 

397E/KD 288 1 
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Figure 41: Southern blot analysis of external Probe A. 

Examples of Southern blot analysis on EcoRV digested DNA of ES clones from WT, 397F, 
397E, KD and 397E/KD. The first screen was performed using an external probe (probe A) 
that gives a 11Kb band for the WT allele and a 4 Kb band for the targeted allele. * identifies 
positive clones that screened positive for both the wild type and targeted allele. 
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Figure 42: Confirmation of Southern blot screen for homologous recombinants 
in targeted ES cells for the mouse Rosa 26 locus 

Confirmation Southern blot analysis of EcoRV  and AvrII digested DNA of ES clones 
selected to inject into blastocysts from WT, 397F, 397E, KD and 397E/KD using probes A, B 
and C. (A) EcoRV digested DNA Southern blot screen using Probe A shows the 11 Kb WT 
band in the control (Con) and both WT and targeted band (4 Kb) in the positive clones of 
WT, 397F, 397E, KD and 397E/KD targeted ES cells.  With internal probes B and C only the 
Rosa 26 homologous recombinants show the expected bands (9 Kb with probe B and 4 Kb 
with probe C) as opposed to control (Con) that display no bands. (B) AvrII digested DNA 
Southern blot screen using Probe A shows the 5.5 Kb WT band in the control (C) and both 
WT and targeted band (8.4 Kb) in the positive clones of WT, 397F, 397E, KD and 397E/KD 
targeted ES cells.  With internal probes B and C only the Rosa 26 homologous recombinants 
show the expected bands (4.2 Kb with probe B and 8.4 Kb with probe C) as opposite to 
control (Con) that display no bands. RI describes an example of random integrant clone. In 
(A) although homologous recombination has occurred in the Rosa26 locus (WT and targeted 
band with Probe A), a random integration has also occurred elsewhere in the genome. In (B) 
the targeted construct has only integrated in other parts of the genome that not the Rosa 26 
locus (only WT band with Probe A). This gives rise to unexpected bands with probes B or C 
(red arrows). These clones were discarded. 
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IV. Generation of chimeric mice for germline transmission 

 
The karyotype of individual clones is an important predictor of successful germline 

transmission. The confirmed positive ES clones were then karyotyped. Only those 

containing more than 70% of cells with normal chromosome counts were injected into 

blastocysts. 15 – 20 targeted ES cells were microinjected into day 4 fertilised mouse 

embryos (blastocysts). Following injection, embryos were transferred into plugged 

pseudopregnant foster mice, which gave birth 18 days later. Coat colour could be 

determined one week after birth. Given that the ES clones were from male 

129S6.C57BL6J (agouti/black) mice and the recipient blastocysts were C57 black 

chimerism can be predicted in male with agouti/black coat colour.  

 

High percentage chimeras (95-100%) were bred to C57/BL6 mice (black) to generate 

offspring. Because hybrid 129S6.C57BL6J ES cells (agouti/black) were used to 

generate the chimeras, germline transmission can occur in either agouti or black mice 

in colour. However an agouti progeny is likely to have germline transmission given 

that only the ES cells had the agouti colour. These mice were tail snipped and DNA 

genotyped by Southern blot analysis for homologous recombination using probes A, 

B and C. 50% of the mice screened are expected to be heterozygous for the targeted 

gene. Table 7 shows a summary of the progression in the generation of point-mutant 

FAK knockin mice. In Fig. 43 there are examples of the Southern blot screen and 

confirmation of the germline transmission in 2 males (1 agouti and 1 black in colour) 

for the R26FAKWT/+ (Fig. 43A), 2 males (both black) (Fig. 43B) for the R26FAK397F/+ 

and 2 males (1 black and 1 agouti in colour) for R26FAK397E/KD/+ (Fig.43C). In the case 

of R26FAK397F/+ and R26FAK397E/KD/+ confirmation Southern blot screens I found more 
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mice that presented the expected band sizes indicative of homologous recombination 

with one of the internal probes. However, most of them also displayed another non-

predicted bands with probes A, B and C (Fig.43B, C). These mice were not used due 

to the possibility of either random integrations in another parts of the genome or some 

extra recombinational events in the Rosa 26 locus. The 2 heterozygous mice for 

R26FAKWT/+, R26FAK397F/+ and R26FAK397E/KD/+ were considered the founders and were 

mated with C57/BL6 mice in order to expand the colony. As I have confirmed both 

germline transmission and the absence of random integrations, future progeny can 

now be screened for Rosa 26 targeting by PCR. Heterozygous progeny for Rosa 26 

targeting will then be mated in order to generate mice homozygous for the targeted 

gene. The ultimate goal is to generate an inducible knockin-knockout system. A post-

doc in our laboratory has continued the breeding and characterisation of colonies 

R26FAKKD/+; R26FAK397E/+ and R26FAK397E/KD/+ whereas I have continued with the 

generation of R26FAKWT/+ and R26FAK397F/+ mice.  

 

Table 7: Summary of the progression in the generation of point mutant FAK 
knockin mice 

Mutation ES clone injected 
Number of chimeric 

mice generated 
Germline transmission 

2A6 7 2 mice 
WT 

2C11 5 - 

397F 1H4 8 2 mice  

1A11 5 2 mice  (being bred) 
397E 

1C9 4 2 mice (being bred) 

KD 3G7 4 6 mice 

397E/KD 1H2 2 2 mice 
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V. Knockin/knockout strategy 

 

The ultimate goal of these experiments is to produce an inducible knockin/knockout 

system that allows the mutant FAK expression and simultaneously endogenous FAK 

deletion in endothelial cells, after tamoxifen treatment in adult mice so that I can test 

the effect of the different FAK phosphorylation sites on pathological angiogenesis, 

tumour progression and spread. For this purpose the different mutant point-mutant 

FAK knockin mice will be breed with inducible endothelial-specific FAK knockout 

mice. Pdgfb (platelet-derived growth factor b) is produced predominantly by 

endothelial cells (Hellstrom et al., 1999). The efficiency of tamoxifen induced Cre 

recombinase activity under the control of Pdgfb promoter (Pdgfb-iCreER) was tested 

in the ROSA26-lacZ reporter mice system and has been shown to be endothelial 

specific (Claxton 2008).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 237 

 

 

 

Figure 

43:  
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Southern blot analysis of germline transmission of R26FAKWT, R26FAK397F and 

R26FAK397E/KD mice. 

Southern blot on EcorV digested DNA extracted from tails of WT, 397F and 397E/KD 
chimeras progeny using probes A, B and C. (A) Southern blot screen for WT chimeras 
progeny using probes A, B and C. * identifies mice with the expected 11 Kb WT and 4 Kb 
targeted band with probe A, 9 Kb with probe B and 4 Kb with probe C. Mice c and d that 
only displayed the expected bands for Rosa 26 targeting with the 3 probes were considered 
the founder mice for R26FAKWT (red arrows) and selected for breeding. (B) Southern blot 
screen for 397F chimeras progeny using probes A, B and C. * identifies mice with the 
expected 11 Kb WT and 4 Kb targeted band with probe A, 9 Kb with probe B and 4 Kb with 
probe C. Black arrows identify bands of sizes different from expected that suggest integration 
in another parts of the genome or extra recombination events in the Rosa 26 locus as shown 
by the extra bands seen with internal probes B and C. Mice b and d that only displayed the 
expected bands for Rosa 26 targeting with the 3 probes were considered the founder mice for 
R26FAK397F (red arrows) and selected for breeding. (C) Southern blot screen for 397E/KD 
chimeras progeny using probes A, B and C. * identifies mice with the expected 11 Kb WT 
and 4 Kb targeted band with probe A, 9 Kb with probe B and 4 Kb with probe C. Black 
arrows identify bands of sizes different from expected that suggest integration in another parts 
of the genome or extra recombination events in the Rosa 26 locus as shown by the extra 
bands seen with internal probes B and C. Mice a and d that only displayed the expected bands 
for Rosa 26 targeting with the 3 probes were considered the founder mice for R26FAK397E/KD 
(red arrows) and selected for breeding. 
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5.2. Pdgfb-iCreER;FAKfl/fl;R26FAK861F/861F 

 
Before I started my PhD, Dr. Bernardo Távora had generated Pdgfb-

iCreER;FAKfl/fl;R26FAK861F/861F mice: briefly founder R26FAK861F/+ were bred with 

Pdgfb-iCreER;FAKfl/fl in order to generate mice with tamoxifen-inducible FAK 861F 

knockin and endogenous FAK knockout specifically in endothelial cells (Pdgfb-

iCreER;FAKfl/fl;R26FAK861F/+). These mice were mated in order to generate mice 

homozygous for the FAK 861F knockin (Pdgfb-iCreER;FAKfl/fl;R26FAK861F/861F) 

(Fig.44). I have used the same strategy for the breeding of R26FAKWT and R26FAK397F 

and more recently generated Pdgfb-iCreER;FAKfl/fl;R26FAKWT/WT and Pdgfb-

iCreER;FAKfl/fl;R26FAK397F/397F mice. 

 

Given the immediate availability of the Pdgfb-iCreER;FAKfl/fl;R26FAK861F/861F mice I 

have used this line for preliminary experiments. PCR examples for Pdgfb-iCreER, 

FAK floxed and Rosa 26 targeting are shown in Fig.45. Pdgfb-iCreER PCR 

(Fig.45A) shows mice positive (Pdgfb-iCreER+) or negative (Pdgfb-iCreER-) for 

CreER in the Pdgfb locus. FAK floxed PCR (Fig. 45B) shows mice with one 

(FAKfl/+) or both (FAKfl/fl) FAK floxed alleles and WT mice non-floxed (FAK+/+). 

Rosa 26 PCR (Fig.45C) shows mice homozygous (R26FAK861F/861F) and heterozygous 

(R26FAK861F/+) for Rosa 26 targeting and mice non-targeted in the Rosa 26 locus 

(R26FAK+/+). Pdgfb-iCreER+;FAKfl/fl;R26FAK861F/861F (EC861F/861F) and control 

FAKfl/fl;R26FAK861F/861F (ECCre-) were used for all the experiments shown. All the mice 

appeared normal without any visible adverse effects after the tamoxifen treatment.  
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Figure 44: Pdgfb-iCreER;FAKfl/fl;R26FAK861F/861F mice knockin/knockout 

approach. 

Upon tamoxifen treatment, Cre recombinase expression under the specific endothelial 
promoter Pdgfb allows the recombination of the LoxP sites. This allows for the simultaneous 
excision of endogenous mouse FAK (msFAK) and of the STOP codon that precedes both 
alleles of mutant chFAK 861F. The ultimate result is the simultaneous deletion of mouse 
endogenous FAK and induction of homozygous expression of the mutant chFAK-861F in 
endothelial cells. 
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Figure 45: Genotyping for Pdgfb-iCreER, FAKfloxed and Rosa 26 targeting. 

PCR performed using DNA extracted from ear snips. (A) Pdgfb-iCreER PCR shows mice 
positive (Pdgfb-iCreER+) or negative (Pdgfb-iCreER-) for CreER in the Pdgfb locus (B) 
FAK floxed PCR shows mice with both FAK floxed alleles (FAKfl/fl), WT mice non-floxed 
(FAK+/+) and mice heterozygous for the floxed allele (FAKfl/+) (C) Rosa 26 PCR shows mice 
with both (R26FAK861/861F) or just one (R26FAK861/+) of the alleles targeted in Rosa 26 locus with 
FAK 861F or WT mice non-targeted in the Rosa26 locus (R26FAK+/+). 
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5.2.1. Efficient deletion of mouse FAK and expression of 

chicken FAK in tamoxifen-treated endothelial cells 

isolated from Pdgfb-iCreER;FAKfl/fl;R26FAK861F/861F 

 
 

In order to characterise these mice we have isolated endothelial cells from Pdgfb-

iCreER+;FAKfl/fl;R26FAK861F/861F (EC861F/861F) and control FAKfl/fl;R26FAK861F/861F 

(ECCre-) mice, treated them with 4-hydroxitamoxifen (OHT) for 2 days and extracted 

RNA to perform a RT-PCR or protein for Western blotting analysis. I have shown 

that after OHT treatment in the EC861F/861F, the expression of endogenous mouse FAK 

decreased and the expression of the mutant chFAK-861F increased at the mRNA 

level (Fig.46A,B).   

 

I have also performed a chicken FAK imunoprecipitation with antibody attached to 

magnetic beads and a Western blot with an antibody that recognises both mouse and 

chicken FAK. Using this approach I was able to detect a band that corresponds to the 

expected size of FAK only in EC861F/861F after tamoxifen treatment (even though there 

seems to be an unspecific band in all extracts) (Fig.47A). Moreover when I took the 

supernatant, that contained the proteins not attached to the beads, and did not 

imunoprecipitated with chicken FAK antibody and performed a Western blot with the 

FAK antibody that recognises both chicken and mouse FAK it was possible to 

observe that FAK protein levels had decreased after tamoxifen treatment in EC861F/861F 

as opposed to control ECCre- (Fig.47A). In theory after chicken FAK 

imunoprecipitation the supernatant should only contain msFAK suggesting that the 
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system is efficiently working. Furthermore since chFAK-861F contains a myc-tag I 

have analysed the total myc tag protein by Western blot and found that it was only 

expressed in EC861F/861F after tamoxifen treatment (Fig.47B). This is another 

indication that chFAK-861F is being expressed. This preliminary data is encouraging, 

however these experiments require further optimisation and quantification of protein 

levels to be able to make a comparison between levels of msFAK protein normally 

produced and the levels of chFAK-861F achieved with this system.  
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Figure 46: Loss of mouse FAK and expression of mutant chicken FAK at mRNA 

level in endothelial cells isolated from Pdgfb-iCreER;FAKfl/fl;R26FAK861F/861F mice  

Real time PCR using mouse-specific (A) and chicken-specific  (B) primers in isolated 
endothelial cells from Pdgf-iCreER+;FAKfl/fl;R26FAK861F/861F (EC861F/861F) and control 
FAKfl/fl;R26FAK861F/861F (ECCre-) mice. Bar charts show that mRNA levels of endogenous 
mouse FAK (msFAK) are decreased and mutant chicken FAK increased in OHT-treated 
EC861F/861F. *P<0.05. 
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Figure 47: Loss of mouse FAK and expression of mutant chicken FAK in 

endothelial cells isolated from Pdgfb-iCreER;FAKfl/fl;R26FAK861F/861F mice.  

(A) Chicken FAK imunoprecipitation (IP) in endothelial cells isolated either from Pdgf-
iCreER+;FAKfl/fl;R26FAK861F/861F (EC861F/861F) or control FAKfl/fl;R26FAK861F/861F (ECCre-) mice 
treated (+) or not (-) with OHT and Western blot (WB) for total FAK levels using an antibody 
that recognises both chicken (chFAK) and mouse FAK (msFAK). Bead-bound fraction 
represents the protein that was imunoprecipitated with the anti-chFAK antibody. Total FAK 
WB in the bead fraction shows an increase in chFAK in EC861F/861F after tamoxifen treatment 
and when compared undetected levels of ECCre- controls as demonstrated by the band at 
around 125 Kd (expected size of FAK) (black arrow) in EC861F/861F after tamoxifen treatment. 
A non-specific band appears in all samples (open arrow). The supernatant fraction represents 
the proteins that were not imunoprecipitated with the anti-chFAK antibody. Total FAK WB in 
the supernatant fraction to detect msFAK shows a decrease in msFAK in EC861F/861F after 
tamoxifen treatment and when compared unchanged levels in ECCre-. (B) Total myc-tag 
Western blot in endothelial cells isolated either from Pdgf-iCreER;FAKfl/fl;R26FAK861F/861F 
(EC861F/861F) or control FAKfl/fl; R26FAK861F/861F (ECCre-) mice treated (+) or not (-) with OHT. 
Western blot shows an increase in the myc-tag of chFAK-861F in EC861F/861F after tamoxifen 
treatment and when compared with undetected levels in ECCre- controls. HSC70 levels were 
used as a loading control and were similar between all the samples compared. 
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5.2.2. chFAK861F mutation in endothelial cells was 

sufficient to decrease tumour growth and 

angiogenesis in vivo 

 
In order to determine the effect of FAK 861F mutation in tumour growth we injected 

B16F0 tumour cells subcutaneously into Pdgfb-iCreER+;FAKfl/fl;R26FAK861F/861F and 

FAKfl/fl; R26FAK861F/861F mice after tamoxifen treatment (21-days tamoxifen pellets). 

Tumour size was decreased significantly when mutant chFAK-861F was expressed in 

endothelial cells when compared with the ECCre- controls (P<0.05) (Fig. 48A). 

Moreover, tumours from these EC861F/861F mice were significantly less vascularised 

when compared with ECCre- controls (P < 0.05) as measured by the number of 

PECAM-1 positive vessels within the tumours (Fig. 48B). These preliminary data 

suggest that FAK-P-Y861 phosphorylation can support the growth of tumours and 

associated blood vessels. It will be important in the future to validate these 

preliminary results and to investigate further mechanism by which FAK-P-Y861 

phosphorylation controls tumour growth and angiogenesis. 
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Figure 48: Endothelial-specific FAK 861F mutation is sufficient to reduce 

tumour growth and angiogenesis in vivo.  

(A) Pdgfb-iCreER+;FAKfl/fl;R26FAK861F/861F and control FAKfl/fl;R26FAK861F/861F mice were all 
injected subcutaneously with B16F0 cells after tamoxifen treatment (21-days tamoxifen 
pellets). 10 day old tumour size was reduced significantly when mutant chFAK-861F was 
expressed in endothelial cells when compared with the ECCre- controls. Bar charts show mean 
tumour volume in cm3 +s.e.m; n=10 mice/genotype. (B) Blood vessel density in subcutaneous 
B16F0 tumours grown in EC861F/861F was also reduced significantly when compared with the 
ECCre- controls. Bar charts represent mean tumour blood vessel density/mm2 + s.e.m, n= 4 
tumours/genotype. *P<0.05. 
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5.2.3. chFAK861F mutation in endothelial cells was 

sufficient to decrease angiogenesis ex vivo 

 

Further analysis of VEGF-induced neovascularization responses was carried out using 

ex vivo aortic ring assays. Aortas from Pdgfb-iCreER+;FAKfl/fl;R26FAK861F/861F and 

control FAKfl/fl;R26FAK861F/861F mice were isolated and cut in rings. These aortic rings 

were embedded in collagen in the presence or absence of VEGF or serum and in the 

presence or absence of 4-hydroxitamoxifen. Numbers of vascular sprouts per aortic 

ring over a period of 18 days in culture were assessed. In the absence of VEGF, very 

little vessel outgrowth was detected in either EC861F/861F or ECCre- controls, whereas 

serum induced neovascularisation to a similar extent in both (data not shown). 

However, in the presence of VEGF, the total number of vessel sprouts was 

significantly reduced for EC861F/861F aortic rings when compared with ECCre- controls 

(P < 0.05) (Fig.49). These results give further evidence for the involvement of FAK-

P-Y861 phosphorylation in angiogenesis. 
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Figure 49: Endothelial-specific FAK 861F mutation  

Aortas were isolated from Pdgfb-iCreER+;FAKfl/fl;R26FAK861F/861F and control 
FAKfl/fl;R26FAK861F/861F mice and cut in rings. Aortic rings were grown in 3D collagen culture 
and microvessel outgrowth examined after stimulation with 30 ng/ml of VEGF and in the 
presence or absence of 1 µm OHT. Endothelial-specific chFAK-861F expression was 
sufficient to inhibit VEGF-induced microvessel sprouting when compared with no difference 
after tamoxifen treatment in ECCre- controls. Bar chart represents mean number of 
microvessels/aortic ring +s.e.m. n=14-22 aortic rings/genotype; *P<0.05, n.s.d. (no 
significant difference).  
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6. DISCUSSION PART II – FAK phosphorylation sites 

in tumour progression 
 

Understanding the role of FAK in tumour growth and metastasis in vivo is important 

because data from several laboratories, including ours, suggest that the pleotropic 

effects of this molecule are spatially and temporally regulated. The next generation of 

investigation requires understanding of how FAK regulates these processes in vivo.  

 

For this reason our laboratory has generated inducible point-mutant FAK knockin-

knockout mice. The point-mutation constructs are from chicken FAK in order to 

distinguish them from endogenous mouse FAK, and comprise: the FAK-P-Y397 site 

(397F that cannot be phosphorylated and 397E that mimics constitutive 

phosphorylation) at which autophosphorylation represents the major event in FAK 

activation and induces binding and activation of Src (Schaller et al., 1994); the kinase 

domain (KD that has a disruption in the ATP-binding site generating a kinase dead 

mutation) that is responsible for the catalytic activity of FAK important in processes 

such as cell migration (Owen et al., 1999); a double point mutant that mimics 

constitutive FAK-P-Y397 phosphorylation important for Src binding but in which 

catalytic activity of FAK is disrupted (397E/KD);  the FAK-P-Y861 (861F that 

cannot be phosphorylated) important for Cas binding and H-Ras-mediated 

transformation (Lim et al., 2004) and that has been implicated in VEGF signalling 

(Abu-Ghazaleh et al., 2001).   
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We decided to use the ubiquitously active Rosa 26 gene promoter to generate the 

point-mutant FAK knockin in the Rosa 26 locus (Soriano, 1999; Zambrowicz et al., 

1997).  This locus has been utilised for knockin expression reporters such as GFP and 

lacZ and has been shown to be effective in global or tissue-specific CreER or mycER 

mice (Jager et al., 2004; Soriano, 1999; Srinivas et al., 2001; Vooijs et al., 2001).   

 

All chimeras were generated successfully. Point mutant mice 397E are being crossed 

with FAK floxed mice and with specific Cre lines (such as the endothelial specific 

Pdgfb-iCreER) in order to generate tamoxifen-inducible point-mutant FAK 

knockin/knockout mice that will allow for simultaneous point-mutant FAK expression 

and endogenous FAK deletion in a specific cell type (such as endothelial cells) after 

tamoxifen treatment. All the other lines (WT, 397F, 397E/KD, KD and 861F) are 

already crossed into Pdgfb-iCreER;FAKfl/fl;R26FAKKI/KI. Other post-docs in our 

laboratory are also crossing these FAKfl/fl;R26FAKKI/KI to other Cre lines such as 

PDGFRβ, a pericyte marker to enquire about the role of FAK phosphorylation sites in 

these cells.  

 

I have also just crossed the R26FAKWT/WT knockin with RERTnERT/ERTCre to generate 

RERTnERT/ERTCre;R26FAKWT/+ and RERTnERT/ERTCre;R26FAKWT/WT mice. These 

mice have inducible chFAK knockin in the Rosa 26 promoter but still maintain 

msFAK in the endogenous promoter after tamoxifen treatment. Transplant of bone 

marrow cells from RERTnERT/ERTCre;R26FAKWT/+ and 

RERTnERT/ERTCre;R26FAKWT/WT mice into lethally irradiated WT mice and 

tamoxifen treatment will allow me to analyse the effect of overexpression with one or 

two extra copies of FAK respectively in the phenotypes observed in Results Part I.  
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This constitutes a powerful system that permits a temporal control of the 

knockin/knockout as well as tissue-specific activation by crossing with different Cre 

lines.  Temporal control of knockin/knockout will avoid any lethality during 

development; the knockin approach engineers single copy point-mutant FAK, 

reducing any overexpression artefacts; and by simultaneously knocking-out FAK and 

knocking-in point-mutant FAK we will avoid possible transphosphorylation between 

endogenous and mutant FAK.  

 

Noteworthy is that the mutant knockin expression is under the control of Rosa26 

rather than FAK promoter. This is of particular importance in cancer studies because 

FAK promoter contains p53 and nuclear factor kappa B (NF-κB) binding sites 

(Golubovskaya et al., 2004). The p53 binding to FAK promoter was shown to repress 

FAK activity both in vitro and in vivo (Golubovskaya et al., 2004; Golubovskaya et 

al., 2008). In contrast, NF-κB has been shown to induce FAK expression 

(Golubovskaya et al., 2004).  A recent study has demonstrated that proteosome 

inhibitor bortezomib can downregulate FAK promoter activity though a mechanism 

dependent on NF-κB inhibition and thereby affect cancer cell migration and apoptosis 

(Ko et al., 2010). In this context the control chFAK WT knockin/FAK knockout line 

plays a crucial role. It will be extremely important to always have this control in 

parallel in all the in vitro and in vivo analysis to take in account any effect of FAK 

promoter interactions in the phenotypes observed.   

 

 

 

 



 

 253 

Dr. Bernardo Távora from our laboratory has successfully finished generating the first 

point-mutant chFAK-861F knockin/FAK knockout line where Cre recombinase is 

under the expression of the endothelial-specific Pdgfb-iCreER promoter (Claxton et 

al., 2008). I was able to show preliminary evidence that the chFAK-861F mutant is 

expressed at the same time that msFAK is deleted in endothelial cells. More recently 

another post-doc in our laboratory has evidence that mutant ch-FAK861F is being 

expressed at levels that are comparable with endogenous msFAK levels, at least at the 

mRNA level. Thus we hope that this system will provide mutant FAK expression at 

physiological levels, an important feature when exploring their functions in vivo.   

 

Even though further characterisation is necessary I performed some preliminary 

experiments in order to investigate the effect of chFAK-861F mutation in endothelial 

cells in tumour growth and angiogenesis in vivo. 

PdgfbiCreER+;FAKfl/fl;R26FAK861F/861F mice and respective controls were injected 

with B16 tumour cells subcutaneously, and I found that both tumour growth and 

tumour angiogenesis were decreased when mutant FAK was expressed. These 

preliminary results suggest that FAK-P-Y861 phosphorylation site is important for 

both tumour growth and angiogenesis in vivo. I was also able to show that FAK-P-

861F mutation decreased VEGF-induced angiogenesis ex vivo. These results are in 

line with previous studies in which FAK-P-Y861 phosphorylation has been 

implicated in VEGF signalling (Abu-Ghazaleh et al., 2001; Eliceiri et al., 2002). An 

important point to take in account is that deletion of FAK in endothelial cells also 

decreases tumour growth and angiogenesis in vivo (Tavora et al., 2010). So until 

further characterisation of mutant FAK expression levels in vivo I cannot exclude the 

possibility that this phenotype might also be due to low levels of expression of 
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chFAK-861F mutant. However if we can confirm the role of FAK tyrosine 861 in 

tumour angiogenesis this can represent an interesting anti-angiogenic target.  

 

One of the explanations appointed as responsible for anti-angiogenic therapy 

resistance is hypoxia-dependent up-regulation of other pro-angiogenic factors such as 

bFGF (Casanovas et al., 2005). FAK has also been shown to be involved in 

bFGF/FGFR signalling dependent migration of endothelial cells (Shi et al., 2011). It 

would be of particular relevance to test the effect of chFAK-861F mutation in 

endothelial cells in bFGF-induced angiogenesis ex vivo. It will be interesting to 

investigate in the future if by manipulating FAK phosphorylation sites we can 

overcome antiangiogenic therapy resistance in vivo.  
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7. CONCLUDING REMARKS 
 

 

During my PhD I was able to show, for the first time, that stromal FAK even though 

important for tumour growth and angiogenesis seems to be a negative regulator of 

tumour metastasis. I have also demonstrated that although FAK levels can still have a 

positive role in some cells such as endothelial cells, at least in the context of tumour 

growth, bone marrow derived FAK plays an important negative role in tumour cell 

colonisation and metastasis. Even though many questions still need clarification I was 

also able to generate mouse model tools that will allow more directed studies on the 

mechanism of FAK regulation in different cell types and different processes of 

tumour progression. 

 

Cancer therapy often relies on combinations of more than one drug. If we can 

understand which pathways are being activated by FAK deficiency in myeloid cells 

that drive the metastatic process we can perhaps give valuable information on which 

drugs can be combined with FAK inhibitors to achieve the best treatment outcome. 

On the other hand by dissecting how different FAK phosphorylation sites affect its 

function in vivo we might find a common regulation in primary tumours and 

metastasis that can be used for the development of new and more efficient FAK 

inhibitors.  
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