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Abstract 
 
Globally, heart valve dysfunction constitutes a large portion of the cardiovascular 

disease load, causing high rates of mortality in European and industrialized countries. 
This is reflected in the database of the American Heart Association and the UK Valve 
Registry, showing a progressive increase in the number and age of patients in need of 
surgical interventions. Aortic valve (AV) dysfunction is significantly more prevalent 
than pathologies associated with other heart valves, accounting for approximately 
43% of all patients having valvular disease. These statistics highlight the essential 
need for efficient and long term substitutes. However, the two types of replacement 
valves currently available in practice, i.e. mechanical and bioprosthetic valves, have 
only an estimated lifetime of around 10 years, after which the associated problems 
necessitate re-operation in at least 50-60% of the patients. Moreover, for patients 
under 35, the failure rate is nearly 100% within 5 years of the valve replacement 
surgery. The significant numbers of patients suffering from AV dysfunction, 
shortcomings to currently available valve substitutes, and the market demands for 
replacement valves has prompted increasing interest in the study of AV biomechanics.  

 
A fundamental study of the AV structure-function biomechanics is presented in this 

thesis. The mechanical behaviour of the AV is characterised at the tissue level, and 
the associated microstructural mechanisms established. In addition to the experiments, 
in depth mathematical models are developed and presented, to explain the observed 
experimental data and elucidate the micromechanics of the AV constituents and their 
contribution to the tissue behaviour. Tissue-level results indicate that the AV shows 
‘shear-thinning’ behaviour, as well as anisotropic time-dependent characteristics. The 
microstructural experimental data indicates that there is no direct translation of tissue 
level mechanical stimuli to the ECM, implying that strain transfer is non-affine. 
Modelling micro-structural mechanics has confirmed that collagen fibres do not need 
to become fully straight before they contribute to load bearing, while the elastin 
network has been shown to contribute to load bearing even at high strains, further 
exacerbating the non-linear stress-strain relationship of the valve. The structural 
mechanisms underlying time-dependent behaviour of the tissue can be explained at 
the fibre level, stemming from fibre sliding and the dissipative effects arising due to 
fibre-fibre and fibre-matrix frictional interactions, suggesting a unified structural 
mechanism for both the stress-relaxation and creep phenomena. These outcomes 
contribute to an improved understanding of the physiological biomechanics of the 
native AV, and may therefore assist in optimising the design processes for substitute 
valves and selecting appropriate materials to effectively mimic the native valve 
function. Understanding AV micromechanics also helps quantify the mechanical 
environment perceived by the residing cells, which can have significant implications 
for cell-mediated tissue engineering strategies. 
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1.1. Aortic valve physiology and function 

 

Located between the left ventricle and aorta, the aortic valve (AV) is a cardiac tissue 

serving essentially as a check valve to prevent retrograde blood flow from the aorta to 

the left ventricle, in each cardiac cycle [1]. The anatomical position of the AV within 

the heart is shown in Figure 1.1, along with the other three heart valves: the 

pulmonary, mitral and tricuspid valves. 

 

    
 
Figure 1.1 (a) Schematic of the anatomy of the heart valves. (b) All four valves lie in the same plane 
(adapted from [2], with permission). 
 

Similar to the pulmonary valve (PV), the AV is also comprised of three separate 

leaflets. However, unlike the PV, the AV has coronary ostia1 behind two of the 

leaflets in the aortic wall, giving rise to the nomenclature of the three leaflets [2]: 

right-, left- and non-coronary. The three leaflets are shown in Figure 1.2. 

 

                                                                     

 

 

 

 

 

 

 

                                                 
1 The left and right coronary arteries originate at the base of the aorta from openings called the coronary ostia. 

(a) 

Figure 1.2 (a) AV attached to the aorta at the aortic root, (b) a view of the three leaflets of the AV in a longitudinal cut from the 
aortic root, (c) definition of the different regions of an AV leaflet, and the loading directions (adapted from [3] , with permission).  

(a) 

Left-Coronary 
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The AV is a passive cardiac structure, i.e. its opening and closure is controlled by 

the surrounding haemodynamic environment, driven by the change in cardiac pressure 

during each cycle [3]. The patterns of cardiac pressure waves within a cycle are 

shown in Figure 1.3.  

 

 
Figure 1.3 Cardiac pressure waves in each cycle. Each cycle is 0.8 s (adapted from [4]). 

 

 

The AV opens in the systolic phase1 of a cardiac cycle (Figure 1.4a), when the left 

ventricle contracts and ejects blood to the aorta. In healthy individuals, the blood 

flowing through the AV accelerates to a peak value of 1.35 ± 0.35 ms-1 [3]. The 

normal physiological transvalvular pressure on the AV is 80 mmHg at rest, 8-times 

higher than the other tri-leaflet valve, the PV [4]. Closure of the AV starts at the end-

systolic phase, as the ventricle relaxes (Figure 1.4a). When closed, the free edges of 

the three leaflets coapt to prohibit back flow of blood to the ventricle. The leaflets are 

attached to the aortic wall at the ‘basal attachment’ (Figure 1.2). In such 

haemodynamic conditions, the opening and closure of the AV takes place over a time 

period of around 50 ms [3,5,6], during which the leaflets experience flexural bending 

that results in axial in vivo strains of approximately 10.1% and 30.8%, in the 

                                                 
1 Systole is the phase of the cardiac cycle during which the left ventricle contracts. Conversely, diastole referred to 
the cardiac phase when the ventricle is relaxing and is filling with blood.   
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circumferential and radial directions, respectively [7,8]. A typical strain waveform 

experienced by the valve in vivo is presented in Figure 1.4b. The in vivo strain rates 

have been reported to be 440% ± 80% s-1 in the circumferential, and 1240% ± 160% 

s-1 in the radial direction [7,8], generating overall typical stresses in the range of 250-

400 kPa in vivo [1,9]. The typical definitions for loading directions of leaflets are 

depicted in Figure 1.2 c. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

 

 
 
 
 

(a) 

(b) 
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Ventricular pressure wave 
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AV fully closed 
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Stretch 
Plateau 

Time (ms)

1.1 
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Figure 1.4 Functional and biomechanical characteristics of the AV: (a) opening and closure of the AV 
in relation to the ventricular pressure wave (adapted from [10], with permission), (b) a typical strain 
waveform of AV leaflet in a cardiac cycle in the circumferential direction (adapted from [11], with 
permission). 
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A normal functioning AV in a healthy human heart experiences around 40 million 

cardiac cycles per year, resulting to a total of 3×109 cycles in a lifetime [1]. 

Functioning under such repetitive and challenging haemodynamic loading conditions 

requires unique tissue properties and mechanical characteristics. To effectively meet 

its physiological and functional requirements, the AV has evolved into a complex and 

highly specialized tri-layered structure, able to accommodate repetitive and large 

strains throughout the cardiac cycle, and provide effective stress endurance within the 

tissue. The three morphologically distinct layers within the valve are termed the 

fibrosa, spongiosa and ventricularis [12]. 

 

The fibrosa is the thickest of the three layers, at approximately 317.1 µm [1], and 

faces the aorta. It is predominantly composed of circumferentially aligned, 

macroscopically crimped and densely packed type I collagen fibres [13], 

schematically shown in Figure 1.5. Owing to its high collagen fibre content, it is also 

the strongest and stiffest layer of the valve, functioning to endure high stresses and 

prevent excessive stretching of the valve in the systolic phase [14,15].  

                                                                                                                                                                        

                                                                   
 
Figure 1.5 (a) intact AV leaflet, (b) schematic diagram of the layers of the AV leaflet (redrawn from 
[16]). 
 

The centrally located spongiosa layer primarily contains glycosaminoglycans 

(GAGs), with a loosely arranged collagen fibre structure coupling it to the two outer 

layers of the valve [1,15]. The spongiosa layer is known to act as a damper, to reduce 

the impact created by sudden changes in pressure gradient in the transition from the 

end of the diastolic phase into the systole phase. It allows for relative movement 

between the other two valve layers as the valve opens and closes by enabling internal 

shearing [13,17,18].   

(a) (b) 

Spongiosa 
(GAGs) 

Ventricularis 
(Elastin Network) 

Fibrosa 
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As the name implies, the ventricularis layer faces the left ventricle chamber, and has 

a mean thickness of 158.2 µm [1]. It is mainly composed of elastin, present in the 

layer as a network of elastic fibres which are radially aligned [13]. The elastin 

network in this layer is thought to function as a ‘return-spring mechanism’, to restore 

the contracted configuration of the valve leaflet after the stretch induced in the 

diastolic phase of the cardiac cycle [19,20]. The ventricularis also contains some 

collagen fibres, but these are more sparse than in the fibrosa. However, the fibrous 

components of this layer enable the ventricularis to contribute to load bearing in the 

valve at low tissue strains and stresses.  

 

Throughout the three layers of the valve extracellular matrix (ECM), there resides a 

heterogeneous population of cells known as the aortic valve interstitial cells (AVICs) 

[21-24]. The AVIC population consists of at least two distinct, but dynamic and 

interchangeable, phenotypes of cells: myofibroblasts and smooth muscle cells [15,22]. 

The distribution of the different phenotypes within the three layers remains unclear, 

with some studies indicating a random organisation of AVICs throughout the matrix 

[3]; whilst others suggest that myofibroblasts are predominantly located within the 

fibrosa [15]. However, it is believed that the phenotypic state of the AVICs at any 

time is likely related to the remodelling demands of the tissue, with studies showing 

that when the phenotype of the resident AVICs is ‘myo-like’, the cells are actively 

remodelling the ECM [25]. Figure 1.6 shows a confocal microscopy image of the 

cells. 
 

 
 

 

 

Also found within the AV are the valvular endothelial cells (VECs), which are 

morphologically different from the arterial endothelial cells [26,27]. They sheath the 

Figure 1.6 A confocal microscopy image of porcine AVICs stained with calcein AM (adapted from [24], 
with permission). 
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surface of the AV leaflets, to create a non-thrombogenic interfacing surface between 

the cusp and the blood, allowing for transport of nutrients [22,27]. VECs are 

circumferentially aligned on the leaflet surface, perpendicular to the direction of blood 

flow [28]. Dysfunction of these cells has been linked to a number of disorders such as 

thrombosis and inflammation [29].  

 

 

1.2. Aortic valve dysfunction and aetiology 

 

Globally, heart valve dysfunction constitutes a large portion of the cardiovascular 

disease load, causing a high incidence of mortality in European and industrialized 

countries. This is reflected in the database of the American Heart Association and the 

UK Valve Registry, showing a progressive increase in the number and age of patients 

in need of surgical interventions [30,31]. AV dysfunction is significantly more 

prevalent than pathologies associated with other heart valves, accounting for 

approximately 43% of all patients with valvular disease, and resulting in higher 

mortality rates [30].  

 

In a broad classification, there are two types of AV disease: congenital or acquired 

[32]. Congenital disease is an abnormality that develops before birth, and may result 

in improper valve size, malformed leaflets, or an irregularity in the way that the 

leaflets are attached [32]. The most common congenital defect is ‘bicuspid’ AV 

disease, where instead of the normal three leaflets, the bicuspid AV has only two. 

This defect is common worldwide, with a reported occurrence rate of 13.7 per 1000 

people in industrialized countries such as the US [30]. It may not require immediate 

treatment in the infancy, but causes complications in the haemodynamics conditions 

later in the adulthood, requiring surgical intervention and valve replacements [30].  

 

Acquired diseases are the AV pathologies that develop within the valve over time. 

These are typically referred to as age-related degenerative valve diseases. These AV 

diseases develop in an escalating fashion after the age of 65, with approximately 50% 

of the population having some form of acquired AV disease by the age of 85 [33]. 

The main acquired pathologies are valve calcification, stenosis and regurgitation 

[3,33]. It has been hypothesised that the main cause of these diseases is increasing 
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stiffness of the AV, which occurs as the AVIC-mediated tissue remodelling becomes 

disordered with age [33]. 

 

Aortic calcification, also known as aortic sclerosis, is a build-up of calcium deposits 

on the AV leaflets. It is thought to occur as a result of AV stiffening with age, which 

will result in the VECs on the surface of the leaflets being exposed to higher loading 

levels in each cardiac cycle, causing damage to the cell’s membrane, and eventually 

haemolysis. Calcium is generally present in the solution surrounding the cells, since 

the membrane of healthy cells pump calcium ions out. However when cells become 

damaged, the phosphorus which is highly concentrated in the cell membrane will 

react with those calcium ions, forming calcium phosphate crystals that can deposit on 

the leaflets [34]. Over time, the calcium deposits thicken and cause narrowing at the 

opening of the aortic valve. This narrowing is referred to as aortic stenosis. This 

impairs blood flow through the valve, causing chest pain or a heart attack. Figure 1.7 

shows a severely calcified AV. 

 
 

 
 

Figure 1.7 Calcified AV leaflets. 

 

Aortic valve regurgitation, also known as aortic insufficiency or aortic 

incompetence, is a condition that occurs owing to malcoaptation of the AV leaflets 

during valve closure, meaning that the AV does not close tightly, as shown in Figure 

1.8. In this condition, some of the blood that was pumped out of the heart leaks back 

into the left ventricle. The malcoaptation of the valve occurs because the elastin 

network responsible for the elastic recoil of the normal valve, is no longer able to 

fully return the leaflets to their closed position because of the increase in the tissue 

stiffness with age. 
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Figure 1.8 Schematic of diseased aortic valve with regurgitation. 

 

The most common treatment for end stage valvular pathologies described above is 

surgical replacement of the native valve with a substitute. It is estimated that over 

300,000 valves are replaced worldwide per year, creating a market turnover of $1 

billion [16]. In practice, there are two types of replacement valves available to the 

patients: (1) mechanical valves; and (2) bioprosthetic valves.  

 

The mechanical valves are available in different designs, however the ‘ball and 

cage’, the ‘tilting disc’ and the ‘occluder leaflets’ are the most commonly used [35]. 

An example of each of these replacements is shown in Figure 1.9. Mechanical valves 

are characterized by their good durability. However, they are associated with 

substantial risk of systemic thromboemboli and thrombotic occlusion, largely owing 

to their non-physiologic surfaces or the haemodynamic abnormalities created by their 

function as rigid occluders [13]. To minimise this risk, chronic anticoagulation 

therapy is required in all mechanical valve recipients. However, systemic 

anticoagulation renders patients vulnerable to potentially serious hemorrhagic 

complications. Thus, the combined risk of thromboembolic complications and 

hemorrhage remains the main disadvantages of mechanical prosthetic valves [13]. 

 

Bioprosthetic valves are made of chemically treated animal or human valvular 

tissue. There are three common types of bioprosthetic valves commercially available: 

(1) porcine xenograft valves, (2) bovine pericardial valves, and (3) allograft or 

homograft valves. 
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Figure 1.9 Mechanical valves: (a) ball and cage, (b) tilting disc, and (c) occluder leaflets.  

 

The porcine xenograft valve consists of an intact pig aortic valve that is preserved in 

low-concentration glutaraldehyde solution [16]. The bovine pericardial valve is 

fabricated from three separate pieces of glutaraldehyde-treated calf pericardium, 

affixed to a supporting stent and sewing cuff, in a configuration similar to that of the 

porcine xenograft. Both the porcine and bovine valve tissues are cross-linked in low 

concentrations of glutaraldehyde to reduce their antigenicity and to stabilize the tissue 

against the proteolytic degradation that would otherwise occur following implantation 

into the recipient. Both types of valves are also treated with various other chemical 

agents to minimize their propensity to calcify over the duration of implantation and 

hence improve their longevity [34]. The homograft valves are intact human valves 

obtained from organ and tissue donors, usually stored cryopreserved as entire aortic 

root, and trimmed to size and shape before implantation in the recipient [16]. Figure 

1.10 shows the three types of bioprosthetic valve. 
 

 

 
 

Figure 1.10 Images of a porcine bioprosthetic valve: (a) porcine xenograft, (b) bovine pericardial 
valve, and (c) a human aortic valve allograft, also known as a homograft (adapted from [16], with 
permission). 

 

(a) (b) (c) 

(a) (b) (c) 
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It is estimated that 50% to 55% of the replacement valves in recipients are 

mechanical and the rest are bioprosthetic [35]. In all cases, the estimated lifetime of a 

valve replacement is around 10 years, after which the associated problems necessitate 

re-operation in at least 50-60% of patients [13]. Moreover, for patients under 35, the 

failure rate is nearly 100% within 5 years of valve replacement surgery [35]. The rates 

of failure associated with the mechanical and bioprostheses valves are similar overall. 

Four categories of complications are commonly evident: (a) thromboembolism, 

thrombosis, and anticoagulation-related hemorrhage; (b) prosthetic valve endocarditis 

(infection); (c) structural dysfunction, i.e. failure or degeneration of the prosthesis 

biomaterials; and (d) non-structural dysfunction, i.e. a diverse array of complications 

which includes tissue overgrowth, paravalvular leak, hemolysis, and other extrinsic 

interactions of host tissues with a valve [36,37].     

 

As a living alternative to the current substitutes, tissue-engineered heart valves 

attempt to overcome the limitations of the mechanical and bioprosthetic valves. The 

patient’s own cells, isolated and expanded using standard cell culture techniques are 

seeded onto an appropriate carrier, termed the scaffold, manufactured in the shape of 

a heart valve. Subsequent stimulation, transmitted via the culture medium (biological 

stimuli) or via physiological loading (mechanical stimuli), promotes tissue 

development. In addition to biocompatibility, biodegradability and reproducibility, the 

scaffolds ideally possess appropriate cell adhesion and mechanical properties, 

matched to the native tissue [16]. The key vision of tissue-engineered valves is to 

develop a living implant, with the potential to grow and last a lifetime, rather than 

using external devices implanted inside the heart with numerous associated 

complications. However, to date it seems that “tissue engineering has promised much 

more than it has delivered” [16], and there has yet to be a successful clinical 

implantation of a tissue engineered valve. 

 

The significant numbers of patients suffering from AV dysfunctions, shortcomings 

to all currently available valve substitutes [33,38], and the market demands for 

replacement valves [16] makes this a financially beneficial area of research, and has 

prompted increasing interest in the study of AV biomechanics. By studying the 

material properties and mechanical behaviour of the native AV, researchers have tried 

to create a platform to better understand the function of the valve under physiological 
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conditions, the causes associated with its pathology, and to design more successful 

tissue-engineering strategies. The literature related to AV biomechanics will be 

reviewed in the following section. 

 

  

1.3. Aortic valve biomechanics 

 

The biomechanics of the AV has been typically studied in three different capacities, 

with studies focused on [3,32]: (i) the valve-blood dynamic interactions, to understand 

the local haemodynamic environment and the loads exerted on the AV cusps by the 

blood flow at the organ level, (ii) the mechanical behaviour of the AV tissue, to 

understand its characteristic and properties at a tissue level, and (iii) the 

characterisation of the AVICs mechanical behaviour and properties, to understand 

their response to the applied loads and its relevance to their function, at a cellular 

level. 

  

 

1.3.1. AV-Blood dynamic interactions 

 

As discussed earlier, the mechanical function of the native AV is dictated by the 

surrounding haemodynamic environment, which controls the opening and closure of 

the valve. Mechanical loads arising from the haemodynamics at the organ level are 

transferred to the tissue and its cellular components. Thus understanding the 

interactions between the AV and the exerted haemodynamic forces is a key step 

towards characterising the mechanical environment of the AV under physiological 

conditions.  

 

Different approaches have been adopted to investigate valve-blood dynamic 

interactions. The initial pioneering attempts employed fluoroscopy imaging 

techniques to monitor the dynamic AV function in vivo [7,8,39]. These experiments 

involved lead radiopaque markers sutured directly onto the valve leaflets. Using the 

mid-diastole configuration of the markers as the reference, the displacement of the 

circumferentially and radially oriented markers was measured.  The results showed in 

vivo strains of 10.1% and 30.8% in the circumferential and radial directions, 
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respectively. The corresponding strain rates were also calculated to be 440%±80% s-1 

circumferentially, and 1240%±160% radailly. More recent studies have used a more 

advanced biplane X-ray imaging technique to monitor AV movement in vivo [40]. 

Similar strain data was calculated, but images also revealed complex motion patterns 

of the valve in each cardiac cycle suggesting non-uniform valvular surface strains in 

vivo [40]. However, due to the insufficient imaging resolution and limitations in the 

number of the surface markers used, more detailed areal strain distribution 

measurements within the AV leaflets in vivo has not been possible [3].   

 

Another approach to investigate the valve-blood dynamic interactions has been to 

use in vitro flow visualisation techniques [3]. Employing this technique, investigators 

have carried out flow measurements under different degrees of aortic valve stenosis in 

vitro [41]. Under physiological conditions of 70 heart beats per minute, systolic phase 

duration of 300 ms and mean aortic pressure of 90-100 mmHg, the results have shown 

that the blood ejects from the valve as a stream jet, in which the diameter of the jet 

decreases as the degree of stenosis increases. Moreover, using laser Doppler 

anemometry measurements, the jet flow velocity in the stenotic valve was measured 

to be 7.0 ms-1 at peak systolic phase, compared to 1.2 ms-1 for a normal valve [41]. 

The higher levels of jet velocity would elevate the turbulence and levels of shear 

stress downstream of the stenotic valve, potentially leading to damage to the cellular 

components of both the blood and the AV. 

 

The highly dynamic motion of the AV leaflets, complex patterns of the 

haemodynamic forces, and the problems associated with the number of surface 

markers and resolution of the imaging techniques make the in vivo imaging of the AV 

leaflets very challenging and limits the capacity for more detailed analysis [32]. 

Computational models using finite element and fluid-solid interaction (FSI) analysis 

have been the popular alternative to investigate the heart valve-blood dynamic 

interactions, employed to calculate the stress distribution on the leaflets of native and 

bioprosthetic valves [42-45]. In such analysis, the fluid domain is described using an 

Eulerian reference frame, i.e. the fluid moves through a fixed mesh network, and the 

leaflet as the solid domain is described by Lagrangian formulation, i.e. the mesh 

moves together with the leaflet. For the complete simulation of AV function, the 

effects of blood flow are coupled to the deforming status of the AV leaflet. That is, at 
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every time step, the current location of the valve leaflet is described on the Cartesian 

grid. Based on the current conditions, the flow field is computed, incorporating the 

leaflet velocity at the previous time step as a boundary condition. The pressure and 

stress in the fluid are computed at the leaflet interface and are used as boundary 

conditions on the leaflet FE mesh. The leaflet deforms accordingly, and this 

deformation is fed to the fluid and the computation continues. 

 

Different studies have developed and used different numerical techniques to couple 

the fluid and solid fields. Summarizing their findings, it has been established that:  
 

- The stress, and accordingly the strain, distribution in AV leaflets upon opening and 

closure in each cardiac cycle is non-homogenous, with the belly region possessing 

higher values, reducing towards the commissure [46-49]. 
 

- Leaflets cycle between the fully unloaded to fully loaded state in every cardiac 

cycle, unlike some connective tissues that remain preloaded [50,51]. 
 

- Leaflets experience large, anisotropic strains in response to the transvalvular 

pressure gradient [46,50]. 
 

- Corresponding tension levels have been calculated to be in the range of 50-100 N/m 

at peak loading, with strain rates reaching 1000% s-1 [46-50]. 
 

- The collagen fibre architecture within the AV remodels according to the stress map 

of the leaflets [47-49].  
 

- The mechanical properties of the aortic root at the annular ring highly influence the 

deformation of the AV leaflets [46,51]. 

 

 

1.3.2. Mechanical behaviour of the AV tissue 

 

To achieve reliable modelling results, it is imperative to incorporate accurate 

material properties and mechanical characteristics of the modelled tissue into the 

computational models. As such, characterising the mechanical properties of the native 

AV is the necessary first step for both modelling the AV’s haemodynamic 

environment, and the successful design of replacement valves that would closely 
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mimic the native valve’s characteristics. This has been another area of interest 

concerning biomechanics of the AV. Studies in this area have been mainly performed 

using quasi-static uniaxial and biaxial loading protocols, as well as time-dependant 

loading regimes manifested by creep and stress-relaxation phenomena.  

 

Quasi-static uniaxial tests 

 

The initial attempts to characterise AV leaflet mechanics were carried out in the 

early 70’s, utilizing quasi-static uniaxial tensile tests performed on fresh and frozen 

human AVs, and reporting a marked anisotropy in the mechanical behaviour of the 

tissue [52]. The samples withstood large deformations in the radial direction, whilst 

showing less extensibility and higher stiffness circumferentially [52]. Missirlis and 

Chong (1978) looked further at variations in strain across porcine AV samples, 

imaging the movement of ink marks along circumferential and radial strips of porcine 

AV leaflets under uniaxial strain, schematically shown in Figure 1.11 [53]. Their 

results confirmed the anisotropy of the tissue properties reported in [52], but also 

demonstrated that the middle section was the stiffest, particularly in the radial 

direction [53]. The samples were stretched at 2mm/min, which corresponded to strain 

rates of 20-45%/min for the radial strips and 14-21%/min for the circumferential 

strips. Although a clear failure point was not shown in their study, they reported that 

the radial samples sustained strains of 60% to 100%, compared to strains of 30% to 

36% for circumferential samples. 
 

 
 
 
Figure 1.11 Schematic presentation of the AV leaflet, and the strips cut radially and circumferentially. 
The dots represent the ink-marks put on each strip. Strip 3 in each direction was reported to be stiffer 
than the other strips (redrawn from [53]). 

 

Strips cut from radial direction Strips cut from circumferential direction 
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 In a follow on study, Chong and Missirlis (1978) presented a model of stress 

analysis in the AV tissue under deformation, where they incorporated a modified form 

of the thin membrane stress theory for a homogeneous linearly elastic and orthotropic 

lamina, based on Hooke’s law [54]. This was the first attempt to propose a 

mathematical model to characterise the stress-strain behaviour of the AV tissue. 

 

Further studies of these types have been carried out thereafter, employing uniaxial 

stretch tests to characterise the stress-strain relationship in the AV tissue, in both 

circumferential and radial loading directions. Studies performed by Sauren et al 

(1983) [5], Rousseau et al (1983) [55] and Mavrilas and Missirlis (1991) [6] are 

amongst the pioneering and most cited of such studies. The stress-strain curves in 

these studies have often been divided into three regions, namely pre-transition, 

transition and post-transition regions [5]. The definition of each region in a typical 

AV stress-strain curve is shown in Figure 1.12, adapted from [6].  
 

 

 
 

Figure 1.12 The three defined regions in the stress-strain curve of the AV leaflets (adapted from [6], 
with permission). 

 

The observed non-linear stress-strain curve, manifested in the three defined regions, 

has been attributed to the structural re-organization of the ECM. The key ECM 

component is thought to be the collagen fibres, and their reorientation and 

reorganisation has been studied using light microscopy [56] and Scanning Electron 

Microscopy [57-59]. In the pre-transition phase, the collagen fibres are thought to be 

mainly crimped with negligible contribution to the load bearing mechanism of the 
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tissue [5,56]. The transmission of tensile force is thus provided mainly by the elastin 

component [5], hence the tissue behaviour is compliant in this phase. In the following 

transition phase, more collagen fibres gradually become recruited with the increasing 

applied load. As they are recruited, they become oriented in the loading direction and 

gradually become straight; increasingly contributing to stress transmission and the 

stiffening of the tissue. By the post transition phase, the collagen fibres have become 

predominantly aligned and uncrimped, acting as the main load bearing element of the 

tissue, and resulting in this phase to posses the highest stiffness [5]. 

 

The post transitional phase has generally been assumed to be linear and elastic. As 

such, the gradient of the line in this region has been typically used to calculate the 

elastic modulus. Table 1.1 summarizes the mechanical characteristics of the AV 

reported in the four above mentioned studies.  

 

Under uniaxial loading conditions, there are also a few studies that have specifically 

investigated the effects of strain rate on the behaviour and the mechanical properties 

of the AV leaflet. Sauren et al (1983) is an example of one such study. The reported 

data are given in Table 1.1. The strain rate dependency of the mechanical properties 

of AV does not appear to follow a clear trend, as comparing the values in the table 

hardly concludes any consistant trends for the effect of strain rate on the reported 

values of maximum stress and strain, and E . The variation in the data provided in 

Table 1.1 further indicates that test conditions may drastically influence the observed 

mechanical behaviour of the AV and its reported properties. Factors such as loading 

protocols, gripping methods, sample geometry and pre-conditioning of the samples 

may all contribute to the variation of the results, as they are generally lab-specific.  
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As described in section 1.2, bioprosthetic valves obtained from porcine or bovine 

AV leaflets are often fixed in low-concentration glutaraldehyde solution to reduce 

their antigenicity [34,37]. Establishing the influence of fixation on the mechanical 

behaviour of the valves has also been the subject of a number of studies. Some of the 

most cited contributions include Broom and Thompson (1979) [60] and Rousseau et 

al (1983) [55], comparing the behaviour of fresh and fixed AV tissues. Results 

showed that the preserved tissues were stiffer (Figure 1.13), and withstood higher 

stresses but only extended to low strains [55,60].  
 

Authors Orientation Strain 
Rate Sample Size E Max. Reported 

Strain 
Max. Reported 

Stress 

Circumferential 10 x 2 mm 3.35 MPa ~ 30-36% ~ 0.15 MPa Missirlis and 
Chong, 1978 

[53] Radial 

 
2 

mm/min 
 6 x 2.4 mm 1.09 MPa ~ 70-100% ~ 0.12 MPa 

0.069 s-1 ~ 7% ~ 0.8 MPa 

0.8 s-1 ~ 10% ~ 0.6 MPa Circumferential 

0.08 s-1 

~28 MPa 

~ 10% ~ 0.5 MPa 

0.008 s-1 --- ~ 10% ~ 0.4 MPa 

Sauren et al 

1983 
[5] 

Radial 
3.2 s-1 

10 to 20 x 3 mm 

1.33 MPa ~ 12% ~ 0.07 MPa 

Rousseau   
et al 1983 

[55] 
Circumferential 10 mms-1 3 mm Wide 6.60 MPa ~ 10% ~ 0.3 MPa 

Circumferential 7.78 MPa ~ 25% ~ 1.5 MPa Mavrilas 
and Missirlis  

1991 
[6] Radial 

2-3 s-1 3 mm Wide 

1.28 MPa ~ 22% ~ 0.2 MPa 

Table 1.1 Reported mechanical properties of the AV samples, obtained from uniaxial loading tests, for different 
sample sizes and various loading rates. The values show a wide variation of data available concerning the mechanical 
properties of the AV tissue, specifically the elastic modulus. 
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Figure 1.13 Stress-strain curves obtained by (a): Broom and Thompson (1979) [60], and (b) Rousseau 
et al (1983) [55].  The graphs show the results for circumferentially loaded samples (adapted from the 
indicated references with permission). 

 

The increase in stiffness in preserved AV tissues has been attributed to the structural 

changes that occur due to the fixation, specifically the increased number of stable 

crosslinks between collagen fibrils. These are thought to decrease the compliance of 

the tissue structure by preventing relative movement between collagen fibres [55,60]. 

The effects of fixation pressure were also investigated in these studies, by applying a 

hydrostatic pressure of glutaraldehyde solution on the samples during fixation. 

Results showed that the stiffness of the samples was further increased by an increase 

in fixation pressure (Figure 1.13). Both studies have used circumferentially cut 

samples and have suggested the increasing alignment of collagen fibres with 

increasing fixation pressure as the cause for the stiffer behaviour of the samples at 

higher fixation pressures. 

 

In another study of this type, Mavrilas and Missirlis 1991 performed the fixation 

process on radially cut strips from AV leaflets [6]. Interestingly, they reported an 

inverse influence of fixation, as their results showed that the radially fixed samples 

were more compliant, undergoing larger strains for lower stresses [6]. The reported 

graph is shown in Figure 1.14. 
 

(b) (a) 
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Figure 1.14 Representative stress-strain diagrams of radially cut strips from fresh and fixed porcine 
AV leaflets in different fixation pressures, as reported in [6] (adapted with permission). 

 

More recent uniaxial studies regarding the mechanical behaviour of the AV tissue 

have attempted to investigate the structural reorganisation of the ECM under tensile 

deformation. Scott and Vesely (1995) focused on the reorganization of collagen fibres 

in the AV, performing a histological analysis of samples fixed under varying degrees 

of uniaxial tension [19]. They observed that the waviness of the collagen fibres 

allowed the structure to strain to approximately 17%, before the fibres become 

straightened and loaded. In addition, macroscopic crimping of collagen fibre bundles 

visible in the fibrosa layer allowed additional strains of up to approximately 23%, and 

the collagen fibre reorientation facilitated even larger deformations. Based on their 

study, they proposed that the collageneous structure of the AV leaflet tissue could 

undergo strains of nearly 40% without permanent deformation. They also proposed 

that the mechanism that returned the collagen fibre structure to its rest geometry when 

unloaded was the surrounding elastin matrix, which interconnects the collagen fibres 

and provides them with a return spring mechanism. A schematic of their model is 

presented in Figure 1.15.  
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Figure 1.15 Collagen and elastin linkage model proposed in [19] (adapted with permission). Elastin 
may act as a return spring through one or both of the possible mechanisms shown. lntrafibre elastin 
would help return collagen fibres to their natural wavy state during unloading. Interfibre connections 
may act to return the collagen bundles to their crimped state when relaxed. 
 

In this model, elastic springs run from one collagen crimp to the next. As the tissue 

is initially stretched, the elastin undergoes tension while the collagen develops small 

bending forces as the bundles straighten. Once straight, the stiff collagen fibres take 

up a larger proportion of the load in tension. When the load is released, the elastin acts 

to return the collagen to its undeformed geometry [19]. 

 

Vesely (1998) was the first to quantify the role of elastin in AV mechanics, by 

attempting to digest all ECM components except elastin, and assessing the subsequent 

changes in AV mechanical behaviour [20]. The tissue samples were digested in 0.1 N 

NaOH at 75 °C, after which loading tests were performed in both the circumferential 

and radial directions. In addition to whole valve tests, tensile tests on the individual 

layers of fibrosa and vetricularis were also carried out. The overall results are shown 

in the graphs of Figure 1.16. These data indicate that elastin is the main load bearing 

element in the ventricularis when stretched in the radial direction. By contrast, elastin 

plays a minor role in the fibrosa, under both radial and circumferential load. It was 

concluded that the aortic valve elastin: (i) has a minimal contribution to mechanics in 

the fibrosa layer; (ii) participates equally with collagen during the initial (pre-

transition phase) stretching of the ventricularis circumferentially; and (iii) can totally 

dominate the mechanics in the radial ventricularis. Hence, whilst elastin is a relatively 

small structural component of the AV (the valve cusps contain about 50% collagen 

and only 13% elastin by dry weight), it could have a notable contribution to the 

mechanical behaviour of the whole leaflet. 
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Figure 1.16 Plots of the uniaxial stress-strain curves describing the behaviour of fresh and digested 
tissues, reported in [20] (adapted with permission). These plots represent the relative contribution of 
elastin to the behaviour of the fibrosa and the ventricularis, as well as the whole tissue. 
 

In a similar study, Lee et al (2001) performed tests to evaluate the effect of elastin 

damage on overall AV mechanics. For this purpose, they performed uniaxial tensile 

tests on AV leaflets, with and without elastin (digested with 10 ml of elastase solution 

for 36 h at 37˚C) [61]. Consistent with the previous studies [19,20], they showed that 

damage to elastin in aortic valves leads to a reduction in extensibility and an increase 

in the stiffness of the tissue. 
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Quasi-static biaxial tests 

 

Although uniaxial experiments have provided the basis for the study and 

understanding of the mechanical behaviour and material properties of the AV leaflets, 

such tests do not reflect the multi-axial physiological loading conditions of the native 

functioning AV [3]. In order to address this, quasi-static biaxial mechanical testing 

has been adopted, to further contribute to the understanding of AV mechanical 

behaviour under more complex loading regimes. Biaxial studies of the AV are notably 

less prevalent than uniaxial studies, as they need more complicated experimental 

setups and techniques. The well accepted protocol for biaxial experiments has been to 

dissect a square sample from the belly region of the AV leaflets, and to transfer 

uniformly distributed loading to each of its four sides via surgical sutures [3], as 

shown in Figure 1.17. The sample is then subjected to either equi-biaxial (i.e. equal 

levels of tensile load applied to each loading axis) or non-equibiaxial loading regimes.        

 
 

Figure 1.17 Schematic of the AV test specimen configuration in biaxial mechanical tests (adapted from 
[3], with permission). 
 

The first attempts to carry out biaxial loading experiments on AV leaflets were 

completed by Christie and Barratt-Boyes (1995), in which they applied equi-biaxial 

loading to valve leaflets [62]. The mechanical behaviour of the pulmonary and aortic 

valves for both the fresh and fixed porcine tissues was compared in that study. The 

resulting data showed that the aortic valve is stiffer than the pulmonary valve, and that 
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fixed samples of both valves behaved in a less compliant manner than fresh samples, 

in a good agreement with the previously reported uniaxial results [6,55,57]. They also 

reported smaller strains and larger stresses in both circumferential and radial 

directions for AV test specimens, in comparison with the previously reported stress-

strain levels for uniaxial loading tests, suggesting a less extensible mechanical 

behaviour of the AV leaflet when exposed to the biaxial deformation condition [62]. 

The obtained stress-strain plots are shown in Figure 1.18.  
 

 

                  
 

Figure 1.18 Stress-strain curves in biaxial loading test: (a) fresh and fixed porcine aortic leaflets. (b) 
fresh and fixed porcine pulmonary leaflets. The curves with symbols are the mean results for the 24 
fresh samples (closed symbols = radial direction; open symbols = circumferential direction). The 
curves with no symbols are the corresponding curves for the fixed samples. The error bars show the 
standard deviation (adapted from [62], with permission). 

 

In follow on studies from the same group, the age-related changes in deformation 

behaviour of the AV leaflets [63] and mechanical properties of explanted aortic 

allograft leaflets [64] under biaxial loading conditions were investigated. Consistent 

with their previous study, they reported lower strain and higher stress in AV tissue 

under biaxial loading tests, compared to uniaxial loading.  They also determined that 

the AV tissue stiffens with increasing age, observing a nearly 50% decrease in 

extensibility for the subjects aged 60 compared with those aged 20 [63,64]. 

 

Perhaps the most comprehensive study of the mechanical behaviour of the AV 

under quasi-static biaxial testing has been carried out by Billiar and Sacks (2000), in 

which equibiaxial and non-equibiaxial loading experiments were performed on fresh 

(a) (b) 
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and glutaraldehyde fixed AV samples [65]. Using small angle light scattering (SALS), 

they also monitored the change in collagen fibre architecture of the test specimens at 

different levels of loading [65]. The obtained stress-strain curves under equi-biaxial 

loading are shown in Figure 1.19, in a good agreement with the results reported in 

[62]. The fixed samples appeared to be stiffer, with a smaller toe-in region [65].  

 

 
 

Figure 1.19 Mean stress–strain data for both fresh and glutaraldehyde treated AV test specimens 
(adapted from [65], with permission). 
 

Although full details of the stress-strain curves under non-equibiaxial loads were not 

reported, the study did report a surprising response of the tissue when subjected to 

non-equibiaxial loads [65]. Interestingly, negative strains were seen in the 

circumferential direction with increase in loading in radial direction. Representative 

curves are shown in Figure 1.20. 
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Figure 1.20 Stress–strain data for the AV test specimens under non-equibiaxial loading: (a) 
circumferential; and (b) radial directions (adapted from [65], with permission). 

 

This complex behaviour of the tissue under biaxial loading was reported to be due 

to the tight angular distribution of collagen fibres [65]. As the radial axis is loaded, 

the forces cause the fibres to rotate, which in turn cause a contraction along the 

circumferential axis. This effect will become more pronounced as the radial loads 

become larger with respect to the circumferential loads. Figure 1.21 shows the process 

schematically. This effect illustrates that negative strains can be generated even 

though the stress magnitude is the same along both axes and no buckling of the tissue 

is observed. Thus, radial loads are ultimately resisted by the highly circumferentially 

aligned collagen fibres mainly present in the fibrosa layer, whose rotation into the 

loading direction facilitates very large strains prior to providing structural resistance 

[65].  

 

 

 

(a) (b) 
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Figure 1.21 (a) A schematic of the biaxial test specimen, with the fibrous structure of the cusp 
depicting as the large collagen cords, which undergo large rotations with loading, (b-d) as the radial 
loads become larger with respect to the circumferential loads, the collagen fibres undergo large 
rotations. This causes contraction along the circumferential axis without buckling and allows for large 
strains (adapted from [65], with permission). 

 

Similar to previous studies [19,20,61], Billiar and Sacks also favoured the 

hypothesis that the highly extensible elastin in the ventricularis allows the large radial 

compliance without yielding. In addition, they concluded that the strong axial 

mechanical coupling found between circumferential and radial loading of the AV is 

attributed to the alignment of the collagen fibres. Specifically, they described a 

scissor-like action of the fibres under load, which was responsible for the contraction 

along the aligned axis when its load magnitude is comparable or less than that of the 

perpendicular axis [65]. 

 

In a follow on study from the same group, a constitutive model based on the 

architecture and properties of the collagen fibre content of the AV ECM was 

developed, to describe the observed biaxial mechanical behaviour of the specimens 

[66]. They assumed a non-linear stress-strain relationship in a single collagen fibre, 

with stress exponentially related to strain. Furthermore, they assumed a normal 

angular distribution of collagen fibre orientation in the unloaded state, which remains 

unchanged during the loading [66]. This study was the first to attempt to formulate a 

constitutive equation for the biaxial mechanical behaviour of the AV, based on its 

microstructure. 
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More recently the mechanical behaviour of the separate valve layers has been 

investigated under equi-biaxial loading, and the behaviour of the isolated ventricularis 

and fibrosa layers compared with the intact tissue [1]. The study demonstrated that 

each AV leaflet exhibits a preloaded status: the fibrosa was observed to elongate 

while the ventricularis contracted after separation. This was in agreement with the 

findings of other studies [67], where the same phenomenon was observed upon 

dissection of the three layers of the AV leaflet. The stress-strain curves for the 

individual layers and the intact valve are shown in Figure 1.22. Several interesting 

results were observed:  (i) the separated layers were very compliant at low strains; (ii) 

each of the separated layers exhibited significant anisotropic responses; (iii) the 

fibrosa in isolation behaved in a similar manner to the intact valve, with the exception 

that it was slightly less extensible in the radial direction; (iv) by contrast, the 

ventricularis exhibited extremely compliant equi-biaxial behaviour, with a very large 

toe region in the radial direction.  
 

 
 

Figure 1.22 Mean equi-biaxial tissue responses of the intact, isolated fibrosa and ventricularis layers: I 
= intact, F = fibrosa, V = ventricularis (adapted from [1], with permission). 
 

 

Time-dependent behaviour  

 

 Similar to other collagenous connective tissues such as the tendons and ligaments 

[68], the AV also exhibits time-dependent behaviour when subjected to specific 

loading conditions. Such behaviour can be realised through either stress-relaxation or 

creep tests. The former reflects a decrease in load (stress) which occurs when the 

tissues are subjected to a constant elongation, while creep describes the increasing 

elongation of the tissue under constant load (stress) [69,70]. In contrast to other soft 
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tissues such as skin and tendon, investigation of the time-dependent behaviour of AV 

has been the subject of a very few studies. The early contributions include the study of 

stress-relaxation in fresh AV tissue [5] and the comparison of stress-relaxation in 

fresh and glutaraldehyde fixed AV samples [55], employing the quasi-linear 

viscoelasticity (QLV) theory developed by Fung for soft tissues [71] to analyse the 

experimental data and quantify the relevant material parameters. Sauren et al. (1983) 

performed relaxation tests on circumferentially cut samples [5]. By fitting their 

experimental data to the QLV model, they reported that most of the relaxation occurs 

within the first 120s of the experiment, and the amount of relaxation is not significant 

thereafter [5]. 25% relaxation at an initial stress level of 0.8 MPa was reported in that 

study [5]. However they also argued that the QLV model was not able to accurately 

describe the experimental data. In a later study, Sauren and Rousseau (1983) 

performed a sensitivity analysis of the QLV model, and showed that there are some 

stress (strain) levels in which the QLV model will produce erroneous results. 

Furthermore, they showed that as the tissue tends to a more viscous-like behaviour, 

the resulting errors of the model would increase, until a limit was reached, at which 

point QLV could not determine the relaxation times [72]. 

      

Rousseau et al. (1983) compared the stress-relaxation behaviour of fresh and fixed 

AV tissue samples, and reported less relaxation in fixed tissue [55]. Fixation under 

pre-loading also affected the relaxation behaviour, as the samples fixed under 0.3 N 

preload were reported to have an approximately 60% decrease in total relaxation. The 

inaccuracy of using QLV to model stress-relaxation of the AV was again underlined 

in this study, reflected in the high standard deviations in the parameters calculated by 

the QLV model. 

 

Other studies regarding stress-relaxation of the AV have investigated the effects of 

pre-conditioning and strain rates on the relaxation behaviour [73,74]. It was shown 

that preconditioning AV samples results in more identical stress-relaxation curves and 

less variation in the parameters, irrespective of the applied strain rate [73]. The 

proposed optimal protocol was at least 5 loading cycles up to loading level of 600g. 

However, this study highlighted that the lack of standard preconditioning protocol for 

stress-relaxation tests means that a direct comparison between different test data may 

prove problematic. In another study, it was suggested that the strain rate does not have 
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significant effects on the AV relaxation, as the QLV parameters were only 

‘moderately’ affected by strain-rate [74]. Figure 1.23 shows the trend of the fast and 

slow relaxation times (Tau-1 and Tau-2 respectively) with increasing strain rates. 
 

 
 

Figure 1.23 Mean and deviation of the fast and slow relaxation times at different strain rates, 
calculated by the QLV (adapted from [74], with permission). 

    

 

Studies regarding the biaxial time-dependant behaviour of heart valves are very rare 

in the literature. Liao et al. (2007) looked at biaxial stress-relaxation of the mitral 

valve [75]. The specimens were loaded to 90 N/m equibiaxial tension and held at the 

fixed strain level, and the normalized stress-relaxation curves determined over a time 

course of 90 minutes (Figure 1.24). The overall relaxation values in the radial and 

circumferential directions were similar, with a reported 27.67% and 32.09% of 

relaxation in radial and circumferential directions, respectively [75].  
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Figure 1.24 Normalized biaxial stress relaxation, )(tG , of mitral valve (adapted from [75], with 
permission). 

 

Stella et al. (2007) performed a similar biaxial stress-relaxation study on AV 

samples, loading the specimens up to 60 N/m under equibiaxial tension and 

monitoring relaxation over 3 hours (Figure 1.25) [69]. These data indicate a more 

apparent difference in circumferential and radial relaxation, reporting 26.51% and 

33.28% relaxation in the circumferential and radial directions, respectively [69]. 
 

 
Figure 1.25 Representative biaxial stress-relaxation curves of the AV (adapted from [69], with 
permission). 

 

Recently, Robinson and Tranquillo (2009) performed biaxial stress-relaxation tests, 

comparing equi- and non-equibiaxial loading regimes [76]. Their results indicated that 

as the ratio of radial load to circumferential load increased, the amount of relaxation 

decreased in both directions [76]. Interestingly, they did not find a significant 
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difference between the relaxation values in each direction, even under equibiaxial 

loading, in contrast to the previous study [69]. The reported relaxation values for 

different loading ratios are summarized in Figure 1.26. Possible reasons for this 

difference might be the geometry of the specimens and the gripping method, as they 

used cruciform test specimens and clamps for grips, compared to the square-shaped 

samples and the suture load-transfer mechanism employed by Stella et al. (2007) [69].    
 

 

 
Figure 1.26 The percentage of relaxation in AV specimens at different loading ratios, in each direction 
(adapted from [76], with permission). 
 

 

Most of the studies cited above, have used QLV theory to characterize the 

relaxation parameters. Within the QLV criteria, the creep function can be derived 

from stress-relaxation by a convolution using the Laplace transform [70,71]. On this 

basis, the time-dependent behaviour of the AV has been mostly characterised through 

stress relaxation experiments, and creep behaviour has rarely been investigated or 

characterised. Studies regarding uniaxial creep behaviour in the AV are not available 

in the literature to the knowledge of the author. However, there is one study 

investigating biaxial creep behaviour of the AV [69]. Noticeably, under equibiaxial 

loading, no measurable creep was reported over the time course of the experiment, as 

evident in Figure 1.27. 
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Figure 1.27 Representative AV planar biaxial creep behaviour for the circumferential and radial 
directions over the 3 h test (adapted from [69], with permission). 

 

The authors suggested a possible structural mechanism for the observed lack of 

creep behaviour, which they termed the “fibril-level locking” mechanism [69,75]. 

This mechanism allows for stress to relax under constant strain, but does not allow for 

creep under constant stress, when subjected to equi-biaxial loading condition [69,75]. 

It describes the fact that the collagen fibril D-period decreases during stress-

relaxation, while it remains approximately constant during creep, as observed through 

small angle X-ray scattering (SAXS) beamline patterns during the tissue relaxation 

and creep [69,75]. The biaxial time-dependent behaviour of the AV tissue further 

highlights that AV relaxation and creep may not be predicted from each other using 

the QLV theoey, and separate experiments are required to characterise each 

behaviour. 

 

Flexural deformation 

 

While uniaxial and biaxial quasi-static and time-dependent tests have elucidated 

valuable data on the in-plane mechanical behaviour of the AV tissue, the natural 

deformation mode of the valve in vivo is flexion, occurring as the leaflets open and 

close in each cardiac cycle. To quantify the flexural properties, Thubrikar et al. (1980) 

performed in vivo experiments on canine aortic valves [7]. Radiopaque markers were 

placed on the left coronary leaflet in the circumferential direction, and then tracked to 

determine the changes in leaflet length occurring during each cardiac cycle. The 

pressure changes were also measured and recorded using catheter pressure 

transducers. They reported the changes in the pressure and the length of the leaflet 

during the systolic and diastolic phase, and calculated the elastic modulus based on 
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the linear elasticity theory of thin cylindrical shells (Laplace law). The bending 

modulus was calculated to be 0.24 MPa at systole [7]. In another study by these 

authors, an analytical model was also proposed to correlate the radius of curvature of 

the leaflet to the applied stresses [77]. The calculated elastic moduli were in the range 

of those reported in [7]. 

 

More recently, 3-point bending tests have been performed on rectangular strips cut 

circumferentially from AV leaflets [78]. In their physiological unloaded position, the 

AV leaflets have a natural curvature (Figure 1.28a). During the tests, the specimens 

were bent either with the natural curvature or against it, by holding specimens 

stationary with two supporting posts, while a bending bar was applied to the centre of 

the tissue (Figure 1.28b). The relationship between the applied moment (M) and the 

change in the curvature of the specimens (Δκ) was obtained using the Bernoulli-Euler 

moment-curvature equation:   M = Eeff I Δκ [78], where Eeff is the instantaneous 

bending stiffness, and I is the second moment of inertia.  

 

 

 

 

      

 

 

 

 

 

 
Figure 1.28 (a) Bending directions of AV leaflet. (V = Ventricularis layer, F = Fibrosa); (b) Schematic 
of leaflet specimen in the 3-point bending test configuration. P = applied load (adapted from [78], with 
permission). 
 

The study concluded that when bent in the direction of the curvature, the effective 

stiffness of the specimens is dominated by the tension in the ventricularis layer, with 

little contribution from the fibrosa which is not designed to support compressive loads 

[78]. The reported value for the Eeff in this bending mode was 0.70±0.13 MPa. 

Conversely, when the specimens are bent against the natural curvature of the valve, 
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the fibrosa withstands tension while the ventricularis undergoes compression, with the 

reported value for Eeff = 0.49±0.13 MPa [78].  

 

In a similar study, the flexural properties of the commissural region (where the 

upper portion of the leaflet joins the aortic root) were investigated, using the 

Bernoulli-Euler criterion [79]. The relationship between flexure angle (φ) and 

bending stiffness (E) was determined for angles up to   φ = 40°, and reported to be 

linear in both the curvature and against-the-curvature directions. The slope of the φ-E 

line was shown to be negative, indicating that the bending stiffness decreased as the 

flexure angle increased. The value of E at a flexure angle of φ = 30° was taken as the 

‘representative’ value, reporting E = 42.63±4.44 kPa in the curvature direction and E 

= 75.01±14.53 kPa in the direction against the curvature [79]. Their results showed 

that the commissural region is approximately 50% stiffer when bending against the 

natural curvature direction, suggesting the commissural region is functionally adapted 

for uni-directional physiological flexion. 

 

 

1.3.3. Aortic Valve Interstitial Cells (AVICs) mechanical properties and function 

 

In addition to AV mechanics at tissue level, there is a significant interest in the 

mechanical properties of the AVICs, the effects of applied loading on their function, 

and how they may influence the mechanical behaviour of the tissue itself. This has 

been another ground in studying the biomechanics of the AV [3]. Initial publications 

in this area have focused on characterising the deformation behaviour of the AVICs, 

quantifying their stiffness using micropipette aspiration or atomic force microscopy 

techniques [80,81].  

 

The micropipette aspiration test is a well-established experimental technique for 

determining the properties of a variety of cell types [82,83]. Briefly, a defined level of 

hydrostatic pressure is applied to the surface of an isolated cell through a 

micropipette, and the aspirated length of the cell is then measured at that pressure. 

Merrymen et al (2006) employed this technique to determine the elastic modulus of 

porcine AVICs [80]. An initial tare pressure of 50 Pa was applied to ensure a seal 
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between the cell and the tip of the micropipette, and then a pressure step up to 500 Pa 

[80]. Under the assumption that AVIC is a homogeneous, isotropic, elastic and 

incompressible material, they calculated the elastic modulus of the cell to be 0.44 ± 

0.02 kPa, using the relationship: E = φ(η) [3r/2π] (ΔP/L) [80]. E is the elastic 

modulus; r is the micropipette inner radius; P is the applied pressure; L is the 

aspirated length; and φ(η) is called the wall function, a dimensionless coefficient 

calculated from the ratio of the pipette inner radius to the wall thickness, which in that 

study was 2.1 [80].  

 

In another study, atomic force microscopy (AFM) was used to calculate the 

mechanical properties of AVICs seeded in monolayer [81]. In this technique, micro 

cantilever beams are utilized, which deflect through contact with the cells. By 

knowing the beam deflection and the applied force, the elastic modulus E can be 

determined. The cantilever probes used in that study had a spring constant values 

between 65.23 pN/nm and 72.93 pN/nm [81]. Following a series of assumptions, E 

was calculated by: E = F/(0.594 2δ⋅ ), where F is the applied load and δ  is the 

amount of the cantilever beam deflection. The values for E were determined to be E = 

55.06 ± 4.17 kPa, approximately 100 times more than that obtained via micropipette 

aspiration technique [81]. This variation is believed to result from the difference in the 

loading mechanisms. In the AFM technique, a localized force is applied to a focal 

point on the cell membrane, which is supported by the nearby structural components 

(microfilaments, nucleus, etc.). The resulting response is modelled from this small, 

highly localized deformation state. However, micropipette aspiration primarily 

examines the membrane of an isolated cell and unanchored cytoskeleton [81]. It has 

been argued that that the stiffness as measured with AFM allows for a more accurate 

representation of the cellular properties and architecture of the cell than micropipette 

aspiration. This is a result of the fact that the cells are seeded and attached to a 

substrate so that the cytoskeleton is extended and rigid as it is anchored at focal 

adhesions. This configuration is in contrast to testing with micropipette aspiration, 

where the cytoskeleton is freed and not in a physiologic state as the cells float in a 

solution [81]. 
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In a more recent study, the viscoelastic behaviour of the AVICs was investigated 

using micropipette aspiration [9]. To model the viscoelastic behaviour, the Boltzmann 

superposition was incorporated into the standard linear solid model, to account for the 

stress-relaxation and creep during loading [9]. Creep and relaxation over a typical 

diastolic time period of 0.3 s were simulated [9], reporting average creep during 

diastole of 4.65±1.34%, and average stress-relaxation of 4.39±1.12% [9]. These 

results may imply that under physiological conditions, the loading time for the AVICs 

is sufficiently fast such that viscoelastic effects are negligible. However, these effects 

could become more significant in studies examining the mechanobiology of the 

AVICs in bioreactors in vitro, where the cyclic loads are applied at 1 Hz or less.   

 

Another aspect of examining the AVICs function in the literature has been to 

investigate their mechanobiology, the relation between the biological responses of the 

cells to the change in their mechanical environment. One study has looked at this 

correlation by assessing the cellular stiffness and collagen biosynthesis through 

quantifying the smooth muscle α-actin (SMA) and heat shock protein 47 (HSP47) 

content, respectively, of the AVICs and pulmonary valve interstitial cells (PVICs) 

[80]. The results showed that the AVICs were significantly stiffer than the PVICs, and 

their cytoskeleton contained higher levels of SMA (616.77 ± 2.26 pg/ml) compared to 

PVICs (495.63 ± 2.37 pg/ml). Furthermore, the levels of HSP47 protein levels were 

higher in the AVIC cytoskeleton (411.57 ± 2.35 pg/ml) than the PVICs (317.63 ± 4.86 

pg/ml) [80]. They concluded that the stiffer heart valve cells are likely to contribute 

more to ECM remodelling of the valves through collagen biosynthesis [80]. In 

another study from the same group, it was shown that the AVICs residing in the 

fibrosa layer are stiffer than those in the ventricularis layer, when the fibrosa was 

withstanding higher stresses than the ventricularis in a 3-point bending test [78]. The 

results of these two studies may be linked to conclude that the higher levels of 

collagen in the fibrosa could be due to the residence of stiffer AVICs in that layer, as 

an adaptive biological response to the higher stresses transferred to the fibrosa layer 

[80]. It is believed that when the phenotype of the AVICs is myo-like, they participate 

actively in ECM remodelling [32]. Thus, it can further be concluded that the 

phenotypical status of the AVICs may also be determined by their mechanical 

properties, i.e. their stiffness, which itself is determined by their loading environment 

[84].  
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At the tissue level, the contractile properties of the AVIC population has been 

shown to have an effect on the leaflets, generating modest contractile forces within 

the mN range, from 0.31 to 0.66 mN in the circumferential direction and 0.11 to 0.23 

mN in the radial direction [85]. In another study it was determined that AVICs were 

able to generate larger contractile forces on the seeded substrate than PVICs [81]. 

While these forces may have a subtle effect on the deformation of the valves in vivo, 

their contribution to the mechanical behaviour of the AV is considered to be 

negligible, as these forces are orders of magnitude lower than the physiological loads 

on the valve [23].     

 

The deformation of the AVICs in situ upon application of quasi-static physiological 

levels of transvalvular pressure has been the subject of some other studies [23]. In 

order to provide physiological loading to the aortic valve, tissue samples were fixed at 

pressures of 0 mmHg, i.e. free floating, 1 mm Hg, 2 mm Hg, 4 mm Hg, 60 mm Hg, 

and 90 mm Hg. As a measure of AVIC deformation, the nuclei of the cells were 

monitored, and the aspect ratio of the nuclei calculated at each pressure level from the 

photomicrographs along the transmural plane [23]. An image of the cell nuclei is 

shown in Figure 1.29a.  

 

 

     
 
 
Figure 1.29 (a) A representative image of the AVIC nuclei (identified by arrows). The major- and 
minor-axis lengths used in calculating the aspect ratio are identified, (b) The change in nucleus aspect 
ratio with increase in pressure (adapted from [23], with permission). 
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The results of change in the nucleus aspect ratio against transvalvular pressure are 

given by the graph in Figure 1.29b, highlighting that nucleus aspect ratio generally 

increased with increasing applied pressure. Using small angle light scattering (SALS), 

the collagen architecture of each AV leaflet was also studied. It was concluded that 

once the collagen fibres straighten the AVICs begin to deform, and continued 

deformation of the AVIC nucleus was likely due to fibre-compaction effects that 

occur only when the collagen fibres are fully straightened and the valve leaflets are 

coapted [23]. 

 

 

1.4. Aims and scope of this study 

 

 As reviewed in §1.3, the analysis of AV biomechanics has mainly centred around 

three areas: the haemodynamic environment of the valve and the valve-blood 

interactions, its mechanical characteristics and behaviour, and the properties of its 

cellular constituents. A breakdown of these research areas is shown schematically in 

Figure 1.30. Data from these studies have led to an improved understanding of the 

complex functional aspects of the AV in vivo, and clarified some of the underlying 

mechanisms contributing to maintaining normal physiological function. However, a 

complete understanding of valve structure-function mechanics is currently lacking 

from the literature [23,32].  
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Knowledge of the structural mechanisms contributing to the observed mechanical 

behaviour at the tissue level would significantly improve our understanding of the 

physiological function of the native AV, and further improve the design of substitute 

valves and material selection processes, to effectively mimic the native valve 

function. Understanding the microstructural response of the valve ECM to applied 

loads would also help to quantify the micromechanical environment perceived by the 

residing AVICs. This is particularly important since the AVIC cellular function is 

known to be influenced and regulated by their local mechanical environment through 

mechanotransduction pathways. These include the regulation of cell-mediated ECM 

metabolism and remodelling [80,81], which is vital for maintaining homeostasis in the 

 
AV-Blood dynamic interaction: 

 
- Haemodynamic environment of the AV 

- Blood flow rates in normal and diseased valves 
- Induced strains and stresses 

- Strain rates upon valve opening and closure 

 
Mechanical behaviour and properties of the AV: 

 
- Quasi-static properties 

- Layer-specific properties 
- Time dependant behaviour 

- Flexural characteristics 

 
Properties of the AVICs: 

 
- Mechanical properties 

-  Response to the loading environment 

 
Structure-Function relationship 

of the AV: 
 

- Response of the microstructure 
- Contribution to tissue behaviour 
- Micromechanical environment 

The biomechanics of the AV in the literature 

The scope of this study 

Figure 1.30 A schematic showing the approach in study of the biomechanics of the AV. The diagram on the left shows the 
available data on the literature, the box on the right represents the contribution of this thesis.  
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native valve [80,81]. Furthermore, there is some evidence that inappropriate cell 

strains may contribute to the pathology of the valve by triggering responses which 

lead to valve degeneration and calcification [22,24,86]. 

 

It is therefore of critical importance to understand and characterise how the AV 

microstructure responds to the applied mechanical stimuli and how these 

microstructural responses would lead to the observed tissue behaviour. This thesis 

aims to investigate the mechanical behaviour of the AV at both tissue and 

microstructural levels, in order to establish structure-function relationships in the AV. 

The objectives of this study are to: 

 

- Characterise the mechanical behaviour of the AV tissue. 
 

- Investigate the response of the tissue microstructure to the applied loads, monitoring 

ECM reorganization. 
 

- Quantify the contribution of the microstructural components to mechanical 

behaviour at the tissue level. 
 

- Characterise the micro-mechanical environment within the valve matrix. 

 

The mechanical behaviour is investigated under quasi-static and time-dependent 

loading modes, and the microstructure is studied using confocal laser microscopy 

imaging, with cell nuclei as micro-markers to monitor the ECM reorganisation. To 

formulate aspects of the structure-function relationships within the AV, mathematical 

models are also developed to explain the results analytically, and to quantify the 

associated mechanical and material parameters. The anticipated outcome of this study 

will be to provide more comprehensive and in depth quantitative data on the 

mechanical characteristics and material properties of the native valve, as well as the 

micro-structural mechanisms contributing to AV function.  These data will help to 

design more efficient prosthetic and bioprosthetic substitutes. Additionally, the 

analytical information on the microstructural mechanisms will lead to a more detailed 

understanding of the micromechanical environment surrounding the AVICs, 

improving the understanding of mechanobiology in the native valve.  
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The research is presented in this thesis in the following format. Chapter 2 describes 

sample preparation techniques and general methodologies of the experiments used in 

this study. The mechanical testing and imaging setups, loading rig, and the ECM 

monitoring techniques are described and discussed in this chapter. Mechanical 

behaviour of the AV at tissue level is investigated and the results are presented in 

Chapters 3 and 4, under quasi-static and time-dependent loading modes, respectively. 

Chapter 5 addresses strain transfer from the tissue level to the microstructure, and 

how microstrain is distributed along the AV test specimens, as the first step to 

investigate the micromechanics of the AV. The role of collagen fibres in quasi-static 

behaviour of the valve is modelled and quantified in Chapter 6, followed by the 

analysis and characterisation of the role of the elastin network in Chapter 7. Chapter 8 

discusses why QLV theory is insufficient in describing the time-dependent behaviour 

of the AV based on its microstructure. Accordingly, the response of the AV 

microstructure, alongside analytical explanations and new modelling criteria are 

presented in Chapters 9 and 10, to describe the micromechanics of AV stress-

relaxation and creep behaviours, respectively. The overall conclusions and 

recommendations for future work are discussed in Chapter 11.       



   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 2 
 

General methodology: 
 Sample preparation, experimental equipment and techniques 
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In order to establish the objectives outlined in chapter 1, AV samples from porcine 

heart were utilised. To investigate different aspects of structure-function 

biomechanics within the samples, specific experimental equipment and protocols 

were employed in each set of experiments. The general methodologies for sample 

preparation are outlined in this chapter, alongside any repetitively adopted 

experimental equipment or techniques used in this study. 

 

 

2.1. Sample preparation 

 

Porcine hearts were obtained from animals ranging from 18 to 24 months, from a 

local abattoir within two hours of slaughter. The three AV leaflets were dissected 

from the aortic root and maintained in Dulbecco’s Modified Eagle’s Medium 

(DMEM, Sigma, Poole, UK) at room temperature (25° C). From each leaflet a 5 mm 

wide circumferential or radial strip was excised from the central (belly) region, as 

shown in Figure 2.1. For excision of the strips, each leaflet was placed and secured on 

a cutting board, and strips were cut out around a 5 mm wide solid block, placed 

tightly against the surface of the leaflet. Cutting through collagen fibres is known to 

inevitably reduce the structural integrity and strength of the sample [87]. In order to 

keep these cutting effects to a minimum, full sample length strips were cut along both 

the circumferential and radial directions (Figure 2.1b). 

 

 

 

 

 

 

 

 

 

 

 

 

5 mm 

5 mm 

Belly 

(a) (b) 

Figure 2.1 (a) Porcine heart obtained from an animal between 18 to 24 months; (b) 5 mm wide strips were cut from 
the belly region, in either the circumferential or radial direction. 
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The thickness of each strip was measured by moving it through the beam of a non-

contact laser micrometer (LSM-501, Mitotuyo, Japan; resolution = 0.5 µm) and 

recording values at 1 mm increments. Mean thickness was used to determine the cross 

sectional area of each sample. The samples were then returned to DMEM before 

proceeding with the experiments. 

 

 

2.2. Macro-mechanical tests  

 

All mechanical tests (quasi-static and time-dependent) carried out at the macro 

(tissue) level, were performed on the strip specimens using the same material testing 

machine (Bionix 100, MTS, Cirencester, UK), fitted with custom designed pneumatic 

grips each with a corrugated surface (Figure 2.2). The pneumatic pressure was set to 

constantly grip samples with a pressure of 4 bar, preventing sample slippage during 

the experiments [88]. The corrugated surface increases the contact area between the 

sample and the grips, and together with the applied pressure, generates sufficient 

frictional force to hold the sample. The configuration of the gripping mechanism, 

holding a sample, is shown in Figure 2.2.                                   
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Figure 2.2 (a,b) The rectangular AV specimen strip mounted in the test machine and the gripping 
mechanism; (c) schematic and the dimensions of the grip. 
 

 

The initial grip to grip distance was set to 10 mm, prior to start of the experiments, 

maintaining an initial sample length consistent with that adopted by previous research 

groups [5,19,20]. The machine allowed for strain rates of up to 1000%/min, and data 

acquisition frequencies of up to 20 Hz. A tare load of 0.01 N was applied to all test 

specimens, to maintain a consistent zero position. The adjusted distance between the 

grips was then used as the initial length to calculate the stretch ratios and resulting 

strains. The machine was programmed to apply the desired loading protocol, in quasi-

static or time-dependant modes, according to the relevant experiments. Hydration of 

the samples was maintained by spraying Dulbecco’s Modified Eagle’s Medium 

(DMEM, Sigma, Poole, UK) over the samples during the experiments.  

18 mm
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2.3. Micro-mechanical tests 

 

Micro-structural mechanics within the AV extracellular matrix was investigated by 

adopting a previously established protocol from the host lab [87-89]. The technique 

uses the cell nuclei as micro-markers of the local microstructural changes, as the cells 

are known to be bonded to the surrounding ECM. Tissue samples are mounted within 

a custom made loading rig which is placed on the stage of a confocal scanning 

microscope. Under the application of mechanical stimuli, either quasi-static or time-

dependent, the samples are imaged and the kinematics of the nuclei is recorded. The 

movement of each nucleus is tracked using particle tracking software. The relevant 

data regarding the movement of the cells are then extracted, and the reorganisation of 

the ECM is perceived accordingly. The imaging technique, the loading rig and the 

staining protocols to image cells are described in detail in the following sections of 

this chapter. 

 

 

2.3.1. Confocal laser scanning microscopy 

 

Confocal laser scanning microscopy is a type of fluorescence microscopy that 

facilitates the generation of high-resolution 3D images from viable tissue samples, 

enabling in situ characterisation of the microstructural architecture of the samples 

[90].  

 

The majority of previous studies investigating the microstructure of the AV have 

used small angle light scattering (SALS) [1,63], or polarized light microscopy  

[54,57], imaging techniques. However, these imaging techniques require thin sections 

of the sample. Therefore the AV samples were fixed, generally using glutaraldehyde 

as the fixative agent, and thin sections were cut from the fixed samples to be 

investigated. However, fixation of the tissue is a destructive method, as it alters the 

number of cross-links within the ECM of the tissue resulting in changes in the 

mechanical behaviour of the tissue and the ECM, and the residing cells will no longer 

be viable [53,58]. Thus such techniques prevent the true examination of the tissue in 

its unaltered state, thereby limiting in situ observations of the response of the 

microstructure to the external mechanical stimuli. Confocal laser scanning 



Chapter 2                                                                                                                   General methodology                                     

 48

microscopy overcomes these limitations, making it a suitable imaging technique for 

investigating structure-function relationships in the AV for the purpose of this study. 

 

A confocal laser scanning microscope uses a laser light source to excite a 

fluorescing contrasting agent within an imaged sample. The fluorescing contrasting 

agent is chosen for its ability to specifically bind to the structural component of 

interest within the tissue microstructure. An illumination light is launched from a gas 

or solid-state laser of a specific wavelength or several wavelengths and then filtered to 

produce the specific wavelengths required [92]. The operational principle of a 

confocal laser scanning microscope is shown schematically in Figure 2.3.  
 

 

 
Figure 2.3 Schematic of a confocal microscope setup (redrawn from [92]). 

 
 

The beam expander unit increases the diameter of the laser beam, to increase the 

resolution of the final image [92]. It also filters noise out of the beam, by passing the 

laser through a pinhole at the point within the expander where the light is focused into 

a neck. This focusing transfers the noise within the beam profile to the outside of the 

profile, thus causing the light to be truncated by the pinhole before the beam is fully 

expanded again. The light then enters the rear of the objective lens where it is focused 

into an area whose size is a function of the numerical aperture (NA)1 of the lens [92]. 

That area is imaged using a specific excitation wavelength that is close to the 

contrasting agent’s peak excitation wavelength. The contrasting agent, when excited 

by a light source, emits a longer wavelength that is then directed back along the same 

optical path as the illumination beam. A beam splitter or dichroic mirror, only 

                                                 
1 NA is a measure of light focusing ability of a lens. It is a function of aperture diameter and focal 
length. It should be noted that objective lenses with higher NA have shorter working distances. 
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reflecting light below or above a certain wavelength, is then used to divert the 

florescent emission towards a photodetector. Before the light hits the photodetector, it 

passes through set of filters (low pass and high pass) allowing only a narrow 

bandwidth of light to pass constituting the wavelength range of the peak of the 

emission wavelength curve. The light is then focused though a detection aperture 

(confocal pinhole), enabling out of focus light to be eliminated before it is registered 

by the photodetector [92]. 

 

The confocal laser scanning microscope used in this study (UltraView; Perkin 

Elmer, Cambridge, UK) employs an argon laser as the illumination beam. 

Observations of the microstructure were made using a ×20 objective lens (Plan Apo; 

Nikon, Kingston-Upon-Thames, UK), with NA = 0.75. The excitation wave length of 

the argon laser beam was 488 nm, set up to approximately 60% of full laser power, 

and florescent images were recorded using a 586 nm emission band pass filter.   

 

The nominal in-plane ),( yx  resolution of a confocal laser scanning microscope is 

calculated by [93]: 
 

                                                        Res
NA

λ61.0
=                                                       (2.1) 

 

where λ  is the wavelength of the excitation beam. The microscopy setup described 

above enabled imaging resolution of Res 39.0= mμ . The employed setup would thus 

provide detailed imaging of the micro-markers (AVIC nuclei) kinematics, as they are 

approximately 7 mμ  in length, ~20 times above the theoretical resolution. 
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2.3.2. Fluorescing labelling agent and protocol 

 

With confocal scanning microscopy enabling the analysis of viable tissue samples, 

the development of fluorescing agents for labelling specific matrix and cell 

components has become desirable. Amongst the most frequently used dyes are calcein 

acetyl methyl (AM) and acridine orange, for marking the viable cell cytoplasm and 

nucleus respectively. For the purpose of employing AVIC nuclei as micro-markers in 

this study, acridine orange was used as the fluorescing labelling agent.  

 

Acridine orange is a cell-permanent dye that provides a high contrast image of the 

cell nucleus when excited, by specifically binding to nucleic acids. It has been used in 

studies assessing the morphology of the AVICs [24], and also to label tenocyte nuclei 

to track micro strains within tendon [89-91]. In order to label AVIC nuclei within 

specimens in the current study, the excised AV strips were incubated in a 5 mM 

solution of acridine orange (Invitrogen, Oregon, USA) in DMEM for 1 hour at 25˚ C 

[89-91], prior to imaging. 

   

 

2.3.3. Loading rig 

 

The loading rig employed in this study was a custom made unaxial loading rig 

designed and developed in the host lab [94]. It can be placed on the stage of the 

confocal microscope, allowing samples to be imaged whilst subjected to controlled 

levels of the applied deformation (Figure 2.4). 
 

 

 

 

 

 

 

   

 

 

Figure 2.4 (a) Loading rig on the stage of the confocal microscope; (b) schematic of the rig and its components. 
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Samples are fixed between the grips and immersed in DMEM, to maintain hydration 

during imaging. Under displacement-control, the rig enables application of strains in 

both quasi-static and time-dependant modes, with user-defined strain magnitude, 

strain rate, holding times, etc [89-91]. Strains are applied to the tissue samples via a 

pair of in-line linear actuators (stepper motors, step resolution: ± 10%) located on 

both sides of the rig (Figure 2.4 b), transferring rotation of the spindle to linear 

movement of the grips. The force is measured by a 5N load cell (accuracy: ± 0.15%) 

attached to a grip at one side of the rig (Figure 2.4 b), with its upper limit set to 3.5N 

to prevent potential unwanted damage during the experiments. The initial grip to grip 

distance was set at 10 mm, for all samples. In order to ensure repeatability between 

experiments, the sample length was increased until the specimens straightened and 

were observed to subtly lift off the cover slip. This provided a consistent zero-strain 

starting position for the tests. 

 

The schematic of the integrated set-up enabling microstructural analysis of the AV 

in this study is shown in Figure 2.5. The details of loading conditions used in each set 

of specific experiments are presented in the relevant following chapters. 

  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.5 Schematic of the integrated setup used to image and study the AV microstructure. 
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Chapter 3 
 

Aortic valve viscoelasticity in tensile deformation 
 
 
 

The contents of this chapter have been published in: 
 
Anssari-Benam, A., Bader, D. L., Screen, H. R. C. (2011) A combined experimental and 
modelling approach to aortic valve viscoelasticity in tensile deformation, J. Mater. Sci.: 
Mater. Med., 22, 253-262. 
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3.1. Synopsis 

 

The quasi-static mechanical behaviour of the AV under tensile deformation is 

highly non-linear and anisotropic in nature, reflecting the complex collagen fibre 

kinematics in response to applied loading [5,52,62,65]. The mechanical behaviour and 

associated material properties under such loading conditions have mainly been 

characterised and quantified based on assumptions of elasticity, using thin membrane 

stress theory [54] or hyperelasticity [66]. However, as with many collagenous 

connective tissues, the AV is known to also exhibit viscoelastic behaviour and 

characteristics [5,69]. This has often been attributed to the glycosaminoglycan (GAG) 

component of the AV, mainly present in the spongiosa layer [1,17]. However, the 

viscoelastic behaviour of the AV in tensile deformation is generally less well 

characterised [32,95]. Important viscoelastic characteristics such as rate dependency 

in tissue stress-strain curves, hysteresis and resilience in loading cycles have not been 

fully evaluated, and the viscous effects of the AV structural constituents on its 

mechanical behaviour remain largely unknown. Furthermore, the majority of AV 

mechanical tests are performed on experimental equipments limited to loading rates 

considerably lower than those experienced during physiological function 

(15000%/min) [95]. As physiological loading rates are difficult to implement 

experimentally, it is important to develop a suitable viscoelastic model to 

accommodate the nature of rate dependency in AV tissue, and enable prediction of 

tissue response at high strain rates.  

 

The viscoelastic behaviour of AV specimens subjected to uniaxial tensile 

deformation is investigated in this chapter, comparing the circumferential and radial 

loading directions, over a 100-fold range of strain rates. Hysteresis and resilience of 

the tissue are also examined in separate experiments. A constitutive viscoelastic 

model was then developed, based on the tri-layered structure of the AV using a 

Kelvin-Voigt solid, to predict the mechanical properties of the valve with varying 

strain rates.  
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3.2. Materials and methods 

 

16 porcine hearts were used for the purpose of this study. Specimens were prepared 

according to the protocol described in §2.1, excised either circumferentially or 

radially from AV leaflets. This yielded a total of 24 pairs of samples. Measurements 

of sample thickness were made as described in §2.1. Samples were then mounted 

within the ‘Bionix’ material testing machine. The pre-experiment adjustments were 

performed according to §2.2.  

 

3.2.1. Tensile tests 

   

Tensile tests were carried out at 6%/min, 60%/min, and 600%/min, straining 

samples to failure. 12 samples were tested at each rate, 6 loaded circumferentially and 

6 radially, and stress-strain curves obtained for each test. 

 

3.2.2. Incremental one-cycle loading 

 

In order to investigate hysteresis and resilience at different load levels, single cycle 

tests were performed on both circumferential and radial specimens ( 6=n  for each 

group), at a constant strain rate of 60%/min. Each sample was subjected to a 

successive series of single cycle load tests at gradually increasing increments of load, 

returning to zero at the end of each cycle, and continuing until failure. Samples were 

loaded to nine different increments, between 5% and 80% of the previously 

established load at failure )( failureF , in the corresponding circumferential and radial 

directions.  

 

 

3.3. Viscoelastic model 

 

To model the viscoelastic behaviour of the AV, a constitutive equation of the tri-

layered structure was developed using a spring and dashpot configuration, based on a 

Kelvin-Voigt model (Figure 3.1). Here, the two springs represent the elasticity of the 

ventricularis and fibrosa layers 1(E  and 3E ), which are known to be the main load 
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bearing layers within the AV structure [1,20], while the dashpot represents the 

spongiosa layer.  
 

 

 

 

 

 

 

 

 

 

 
Figure 3.1 (a) schematic diagram of the structural configuration of the AV; and (b) viscoelastic 
representation of the AV leaflet with a Kelvin-Voigt model: the ventricularis and fibrosa are modelled 
with springs with elasticity of 1E  and 3E  respectively, and the spongiosa with a viscous damper with 
the coefficient of η .  

 

For a Kelvin-Voigt model, the change in the viscoelastic stress tensor from time 1t   

to 2t  during deformation can be characterized by superposition of the change in 

elastic and viscous shear resultants at each time point [96,97]: 
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where the indices (i,j) represent the in-plane coordinates, either 1 or 2.  

 

For an arbitrary time of deformation, substitution of the equivalent expressions for 
e

ijT  and v
ijT  in (3.1) yields: 

                                         ijijijhij VEPT ηεδ 2++−=                                              (3.2) 
 

where ijT is the Cauchy measure of stress [71], hP  is the hydrostatic pressure that 

represents the indeterminate part of the stress arising due to the constraint of 

incompressibility [98], E is the elastic modulus, η  is the viscous dissipation 

coefficient, and ijε  and ijV  are the deformation tand the rate of deformation tensors, 
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respectively. This equation assumes incompressibility, as is generally considered 

acceptable for biological soft tissues [71]. E is the equivalent elastic element, 

representing the sum of  1E  and 3E . 

 

Cauchy stress ijT is an objective measure and as such must be coupled with 

objective measures of strain and strain rate tensors in equation (3.2)1. Therefore, 

invariant measures of starin such as the Green starin tensor, and the corresponding 

invariant strain rate tensors can not be adopted in formulating a model by equation 

3.2. To address this, we utilise objective measures of strain and rate of deformation 

tensors in equation 3.2, for a consistent parameterisation of the model from a 

continuum mechanics point of view.  

 

The rate of deformation tensor, V , is an objective measure when defined as1: 
 

                                                       eVe vv&
⋅⋅=

λ
λ                                                         (3.3) 

 

where λ  is the stretch ratio, ev  is the direction of deformation, and operator (  ) 

represents the time derivative. Assuming a uniaxial stretch, the rate deformation in the 

loading direction would simply become: 

                                                         
λ
λ&

=V                                                               (3.4) 

 

An objective measure of strain for large deformations, coupled with the resulting 

objective Cauchy stress and the above definition of strain rate tensore is the Almansi 

strain defined as1: 

                                               ⎟
⎠
⎞

⎜
⎝
⎛ −= 2

11
2
1

λ
ε                                                         (3.5) 

 

After definig the objective parameters as above (equations 3.2 to 3.5), we now aim 

to formulate the model based on the equation 3.2. 

 

 

                                                 
1 Baaijens, F. P. T.  “Biomechanics: Concepts and Computation”, pp. 200-207, internal 
communication, June 2012. 
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The stress tensor for directions 1 and 2 in (3.2) in component form can be written 

as: 
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Subscripts 1 and 2 denote the loading directions, i.e. circumferential and radial 

respectively. Substituting for 11ε  and 22ε  from equation (3.5) and for 11V  and 22V  

from equation (3.4) yields: 
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The incompressibility constraint implies that 121 =⋅λλ , thus 22T  can be re-written as: 
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If the continuum experiences a uniaxial tension in direction 1 alone, 22T  would be 

zero and thus: 
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Substituting the above equation for 11T  one gets: 
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The change in stress tensor in (3.1) can thus be rewritten using (3.10) as: 
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Setting the initial point of the deformation at 01 =t , where 11 =λ , the change in stress 

at time t will thus become: 

                                 ( ) 1
1

12
1

2
111 44

2
λη

λ
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ηλλ &
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⎠
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Equation (3.12) expresses the final form of the viscoelastic model, in the uniaxial 

tensile deformation. Since the principal directions for the AV leaflet are defined as 

circumferential and radial, equation (3.12) can be re-written for the two directions as: 
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and 
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The inhomogeneous and anisotropic nature of the AV necessitates the use of 

different elastic and damping coefficients in the two orthogonal directions [5,6,99], as 

reflected in the above two equations (3.13a, 3.13b). 

 

Equations (3.13a) and (3.13b) were fitted to the experimental stress-strain data sets 

at each strain rate, for each direction, using the Levenberg-Marquardt algorithm by 

Origin 8.0 software (MicrocalTM Software Inc. USA), for respective parameter 

estimations. 

 

 

3.4 Results 

 

Figure 3.2 represents typical stress-strain curves for both circumferential and radial 

tests to failure, at the three strain rates. It is evident that increasing strain rate leads to 

an associated increase in failure stress and decrease in failure strain in both the radial 

and circumferential directions. The mean failure data with standard deviations are 

compared at each strain rate for both loading directions in Table 3.1. 
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Only one example curve is shown at each strain rate in the graphs in Figure 3.2. 

However, very small variations were seen between the 6 samples tested at each rate 

[88], as reflected in the standard deviations presented in Table 3.1. A sudden transient 

decrease in stress was observed in the circumferentially loaded specimens at each 

rate, designated by circles in Figure. This will be further discussed later in this 

section. 
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Sample Strain Rate 
(%/min) 

UTS 
(MPa) 

Failure Strain 
(%) 

Circumferential 6 3.44± 0.57 45.07± 1.25 

 60 3.68± 0.12 31.54± 1.69 

 600 4.45± 0.13 27.56± 1.96 

Radial 6 0.34± 0.03 87.6± 1.78 

 60 0.50± 0.03 77.15± 0.03 

 600 0.84± 0.05 61.11± 0.63 
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Figure 3.2 Typical εσ −  curves for the AV strips loaded at 6%/min, 60%/min and 600%/min, showing: (a) circumferential 
specimens, and (b) radial specimens. Circles indicate the highly repeatable stress drop in the circumferential direction at all 
the tested strain rates. Note that due to the highly anisotropic behaviour of the AV, the scale of the axis in the graphs are not 
the same. 

Table 3.1 Values (mean ± SD) of the ultimate tensile stress (UTS) and failure strains in both directions 
 and at different rates. 
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In order to investigate the extent of non-linearity in the material response under 

tensile deformation, the tangent modulus E  (also referred to as the instantaneous 

elastic modulus), was numerically estimated from the first derivative of the εσ −  

curve at each data point, following a strategy adopted in a previous study [90]. 

Typical curves of ε−E , for circumferential and radial samples, at each of the three 

strain rates are shown in Figure 3.3. In each modulus curve, three distinct regions 

were identified (indicated by the dotted lines in the Figure 3.3) in which the pattern of 

E  values changed notably. In order to analytically define these regions, the gradient 

of each successive point established from the ε−E  graphs. If the gradient for 5 

successive points identified an increasing trend in E values, the first point was 

considered the starting point of the second region. All the previous points were 

considered to be in the first region. Conversely, if the gradient remained zero in all of 

the 5 successive points, or alternated in sign in four points, the first point was 

considered the starting point of the third region. This resulted in: 

 

(1) an initial region in which the modulus is constant (the modulus in this region 

will be referred to as 1E ), implying that the respective εσ −  curve is linear up 

to a strain of 1ε ;  

(2) a region in which the value of E  increases with the increase in strain, up to a 

strain of 2ε , resulting in nonlinear behaviour in the respective εσ −  curve; 

and  

(3) a region of constant modulus (referred to as 3E ), which results in a second 

linear section of the εσ −  curve, up to the strain 3ε .  

 

Beyond 3ε , there was a decrease in modulus (Figure 3.3), suggesting the initiation of 

microstructure failure which will subsequently lead to gross specimen failure. The 

values for 1ε , 2ε  and 3ε  at each strain rate are summarized in Table 3.2.  

 

Recalling the typical stress-strain curves at different strain rates shown in Figure 

3.2, a sudden transient decrease in stress was seen in the circumferentially loaded 

specimens at all strain rates. This can be seen to consistently occur in the second 

linear region of the εσ −  curves, between 2ε  and 3ε . Further inspection highlighted 
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that the decrease occurred between 6.045.0 <<
f

d

σ
σ

, where dσ  is the stress at which 

the decrease occurs and fσ  is the failure stress. No corresponding decrease was 

observed in the radially oriented specimens. 
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Figure 3.3 Typical ε−E  diagrams for the AV strips comparing: (a) circumferential specimens; and (b) radial specimens. The 
top, middle and bottom panels show the results at 6%/min, 60%/min and 600%/min strain rates respectively. 
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With increasing strain rate, larger values of E  were evident in all regions, while the 

strain range for the initial linear region of the graphs decreased, quantitatively 

showing that the material becomes stiffer, in both directions (Figure 3.3, Table 3.2).  

 

Stress-elongation )( λσ −  data were fitted to the model in equations (3.13a) and 

(3.13b), for circumferential and radial specimens, respectively. cirE  and radE  were 

determined by ( )31 EE + , obtained for each loading direction and strain rate (Table 

3.2).  The corresponding values for cirη  and radη  were then estimated by the model. 

The model provided a good fit, as illustrated in Figure 3.4, with the 2R  values in 

excess of 0.98 for all of the experimental data sets. The values for the two parameters 

in each direction ( E  and η ) are indicated in Table 3.3. The model clearly predicts a 

decrease in damping coefficient with an increase in strain rate for both circumferential 

and radial directions, indicating a ‘shear-thinning’ behaviour of the tissue.  

 

 

 

 

 

Sample Strain Rate 
(%/min) 1E  (MPa) 1ε  (%) 2ε  (%) 3E  (MPa) 3ε  (%) 

Circumferential 6 0.42±  0.16  8.05± 1.63 28.01± 2.61 20.4± 0.86 41.25± 2.06 

 60 1.63± 0.14 4.28± 0.88 19.68± 2.22 34.07± 1.98 28.59± 1.77 

 600 4.01± 0.42 1.91± 0.49 18.69± 2.37 37.54± 1.45 24.32± 1.36 

Radial 6 0.085± 0.021 30.8± 2.95 64± 1.97 0.71± 0.8 80.5± 2.41 

 60 0.088± 0.015 7.73± 0.16 44.62± 3.2 1.21± 0.09 69.11± 1.38 

 600 0.15± 0.01 6.83± 0.04 35.58± 1.65 3.36± 0.10 58.52± 1.24 

Table 3.2 Values (mean ± SD) of the mechanical parameters for each of the three regions of the stress-
strain curves, evaluated experimentally in both directions and at different rates. The indices 1, 2, 3 
indicate the first, second and third regions of the stress-strain curves, respectively. 
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Figure 3.4 Typical experimental  λσ −  curves plotted alongside the model (equation (3.13)): (a) circumferential specimens; 
and (b) radial specimens. The top, middle and bottom panels show the curves at 6%/min, 60%/min and 600%/min strain rates 
respectively. 
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Table 3.3 The E  and η  values (mean ± SD) in both directions, at the different strain rates. 

 

 

In order to investigate the hysteresis effects and associated irreversibility, AV 

specimens were subjected to single cycle loading and unloading tests, applying 

incrementally increasing loads until failure (§3.2.2).  Figures 3.5a and 3.5b illustrate 

the typical resulting force-elongation )( λ−F  curves, where force is described as a 

percentage of the failure load ( failureF ). The sudden transient decrease in force in the 

circumferentially loaded samples was again evident, within the same range as 

reported in quasi-static tensile tests (Figure 3.5a). The ratio of the unloading to 

loading area was calculated for each cycle, in both loading directions, as shown in 

Figure 3.5c.  This ratio, which reflects the degree of specimen resilience, was 

consistently smaller in the circumferential direction, suggesting less circumferential 

resilience. In addition, the cycle associated with the sudden decrease in force 

consistently reported the minimum ratio, suggesting that this phenomenon is 

contributing to a further reduction in resilience within circumferentially loaded 

specimens.   

 

It has been previously shown that the dissipation of deformation energy will lead to 

irreversible elongation of the continuum [100]. This could be examined in the present 

study by relating the percentage of change in sample length estimated from the 

difference between the length at the end of the cycle from that at the beginning 

(Figure 3.5d). These data demonstrate that the irreversibility of sample length is 

present in both loading directions even at small applied loads. However, the 

corresponding values are generally higher under circumferential loading.  

 

 

Strain Rate 
(%/min) cirE  (MPa) cirη (MPa s) radE  (MPa) radη  (MPa s) 

6 20.55± 2.45 675.06± 82.15 0.75± 0.28 49.12± 3.47 

60 35.62± 0.97 152.50± 6.57 1.26± 0.08 6.17± 0.37 

600 40.84± 2.05 18.48± 0.99 3.39± 0.53 4.59± 0.66 
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3.5. Discussion 

 

The viscoelastic response of the AV under tensile deformation was investigated and 

quantified in this chapter, using quasi-static mechanical tests, performed at different 

strain rates and under hysteresis loading. These tests have confirmed the previously 

reported nonlinear and anisotropic behaviour of the AV, with a stiffer response in the 

circumferential direction [5,65]. However, the present data have additionally 

demonstrated viscous damping effects, strain rate sensitivity and evidence of 

hysteresis and irreversibility during loading/unloading cycles, all of which also show 

dependence on the loading direction. 
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Figure 3.5 Hysteresis and recoverability of the AV strips. Typical force - extension curves for the incremental one-
cycle loading-unloading tests for: (a) the circumferential; and (b) the radial specimens. (c) recoverability of the 
specimens (defined as the area underneath each loading curve divided by its unloading curve) in both directions. (d) 
irreversible elongation at the loading cycles for both directions. 
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To maintain a definable and repeatable reference position for stress-strain curves, a 

tare load of 0.01 N was applied to all test specimens prior to start of the tests and 

recording the data, as described in §2.2. Application of a tare load will inevitably 

affect the extent of the observed pre-transition and transition phases of the stress-

strain curves (defined in §1.3.2, Figure 1.12), also known as the toe-in region. 

However, the adopted tare load was two orders of magnitude smaller than the ultimate 

failure load of the samples (Table 3.1). Furthermore, comparisons with other uniaxial 

stress-strain curves reported in the literature, e.g. Sauren et al, 1983 [5], indicate 

similar trends and values. For a comparison within the toe-in region, Sauren et al 

report a stress value of ~ 300 kPa, at a strain level of 10%, in the circumferential 

direction under a uniaxial strain rate of 48%/min [5], which is closely matched with 

the 330 kPa value of stress in the current study at a strain rate of 60%/min (Figure 

3.2).  It is therefore reasonable to suggest that, while application of a tare load could 

influence the extent of the natural toe-in region of the tissue, the adopted level in this 

study did not have significant effects on the overall stress-strain behaviour and the 

failure properties of the samples.    

 

A repeatable transient decrease in stress was observed in the εσ −  response of the 

samples loaded circumferentially (Figure 3.2), not reported before in studies 

examining the AV mechanics. To establish whether this transient decrease was an 

intrinsic tissue property, or an artefact arising due to the sample slippage, two 

additional sets of tests were carried out. In the first set, ink markers were placed on 

the samples, adjacent to the grips, and filmed during the tests to failure (n = 6). 

Analysis of these videos, using image processing software (ImageJ, NIH), revealed no 

detectable change of relative marker positions during the tests. In the second series of 

tests, the corrugated surface of the grips were altered to reduce the surface friction 

coefficient, and establish if this led to change in the point at which the transient 

decrease occurred. The test was repeated on 6 samples, and the decrease consistently 

occurred within the same range. Taken together, the data indicate that it was an 

intrinsic aspect of the AV material behaviour in the circumferential direction. Indeed, 

a similar phenomenon has been reported when testing some other multi-layered 

collagenous tissues, such as carotid arteries [101], in which the sudden decrease in 

stress has been attributed to failure of the media layer, prior to the adventitia [101]. 

Analogous to the arteries, the AV also has two main load bearing layers, the 
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ventricularis and the fibrosa. The ventricularis contains less collagen and more elastin 

compared to the fibrosa, and is thus likely to fail first at lower stresses, prior to the 

ultimate failure point of the specimen. The repeated occurrence of this transient 

decrease in the specific stress range of 6.045.0 <<
f

d

σ
σ

 further suggests this 

hypothesis, as it implies that it represents an intrinsic failure parameter of the tissue.  

Such a decrease was not observed in the radial direction. It is likely that since the 

collagen fibres are aligned circumferentially, the stiffness of the two layers is more 

uniform in the radial direction and, as a result, the failure strength of the layers is 

more closely matched.  

 

A Kelvin-Voigt element-based model was introduced to describe AV viscoelasticity 

based on the three morphological layers of the valve (equations 3.13a and 3.13b). 

Incorporating the rate effects, the model revealed that the tissue shows ‘shear-

thinning’ behaviour, with reduced effective viscosity at higher strain rates (Table 3.3). 

Such a behaviour can not be investigated and characterised under elastic deformation 

assumptions, and has not previously been reported for AV tissue. Nonetheless, a 

similar trend of behaviour has been observed and reported for concentrated 

proteoglycan solutions [101]. It seems reasonable to suggest that this behaviour in AV 

tissue could be attributed to the GAGs associated with the proteoglycans, mainly 

present within the spongiosa layer [17].  

 

Extrapolating the value of η  to a physiological strain rate of 15000%/min would 

predict values of 3.8≅cirη  MPa s and  9.3≅radη  MPa s in the circumferential and 

radial loading directions, respectively. This would imply that the native AV tissue 

offers minimal resistance to internal shear forces induced by blood flow. It seems 

highly likely that such a property constitutes a fundamental requirement for any valve 

replacement. Indeed a material that does not exhibit sufficient shear thinning at 

physiological loads would perceive markedly increased shear stresses acting on the 

leaflet surface. This would inevitably reduce the effective lifetime of the substitute 

structure and further contribute to complications associated with haemolysis and 

blood coagulation.  
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With respect to the rate dependency, the stress-strain response indicate a 

pronounced rate sensitivity in both directions, with a 100-fold increase in strain rate 

leading to a 23% increase in mean UTS in the circumferential direction, compared to 

a 60%  increase under radial loading (Table 3.1). This contrasts with previous studies 

which have reported negligible rate effects on the mechanical behaviour of the AV 

tissue [55,74]. However, this discrepancy may be a result of previous testing protocols 

employing a smaller range of strain rates, and may further be exacerbated by the 

modelling criteria. Indeed some of the well established viscoelastic models, such as 

quasi-linear viscoelasticity theory (QLV), would only accurately incorporate rate 

effects if an ideal step or ramp displacement is applied, which is impossible to achieve 

in experimental protocols [74]. 

 

The hysteresis experiments demonstrated greater resilience in samples loaded in the 

radial than circumferential direction (Figure 3.5c), suggesting lower radial dissipative 

damping effects. These data positively reinforce the modelling calculations, which 

predicted much lower damping coefficients for radially strained samples (Table 3.3). 

Furthermore, it was notable that samples did not show full reversibility in either 

loading direction at any of the prescribed strain rates. However, the continual loss of 

resilience in each cycle might not necessarily imply plastic deformation; it could be 

attributed to the reorganisation of the AV microstructure during loading/unloading 

cycles. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 
 
 
 
 
 
 
 
 
 

Chapter 4 
 

Time-dependent behaviour of the aortic valve 

 
 
 

The contents of this chapter have been published in: 
 
Anssari-Benam, A., Bader, D. L., Screen, H. R. C. (2011) Anisotropic time-dependant 
behaviour of the aortic valve, J. Mech. Behav. Biomed. Mat., 4, 1603-1610. 
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4.1. Synopsis 

 

The mechanical behaviour and material properties of the native AV were 

characterised under quasi-static loading conditions in chapter 3. However, similar to 

other collagenous connective tissues, the AV also exhibits time-dependent behaviour 

when subjected to specific loading conditions [5,55,69]. Time-dependent behaviour 

can be realised through either stress-relaxation or creep tests. The former reflects a 

decrease in load (stress) which occurs when the tissues are subjected to a constant 

elongation (strain), while creep describes the increasing elongation (strain) of the 

tissue under constant load (stress). These processes will also occur when samples are 

subjected to continuous cyclic perturbations, under either load or strain control [70].   

 

Time-dependent spectra cannot be measured directly in experiments [103] and thus 

experimental data must generally be fitted to viscoelastic models, to estimate the 

associated moduli and characteristic times [69,74,103]. As reviewed in §1.3.2, studies 

investigating stress-relaxation of the AV under uniaxial strain, have generally adopted 

the QLV criterion to estimate the associated parameters. However, these studies have 

also indicated that stress-relaxation of AV cannot be fully described by the QLV 

model [5,69,72]. Indeed, QLV assumes that stress relaxation is independent of applied 

strain [104], an assumption which has not been confirmed in the relevant experiments.  

 

The few studies examining biaxial time-dependent behaviour of heart valves have 

mainly employed equi-biaxial loading protocols, indicating that the valves may not 

exhibit a complete range of time-dependant phenomena under a equi-biaxial loading 

mode [69,75]. No measurable creep has been reported to occur within the time course 

of those experiments [69,75], suggesting that such loading boundary condition may 

not facilitate experimental observations of the complete range of time-dependent 

behaviour of the valves. 

 

In light of these data, adoption of a uniaxial loading mode and alternative modelling 

criteria may be beneficial in assessing the time-dependent behaviour of the AV. 

Accordingly, this chapter investigates stress-relaxation and creep behaviour of the AV 

under uniaxial load, within the generalised Maxwell model criteria. Different strain 

and load increments are employed to assess how stress-relaxation and creep 
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parameters, respectively, depend on the level of applied stimuli. The experimental 

data are modelled with a generalised Maxwell model to determine the associated 

parameters, and gain insights into the underlying microstructural mechanisms. 

 

 

4.2. Materials and methods 

 

12 porcine hearts were used for this study. Test specimens were prepared according 

to the protocol described in §2.1, excised either circumferentially or radially from AV 

leaflets. This yielded a total 18 pairs of samples. 

 

Sample thickness was measured as described in §2.1, and samples were then 

mounted and prepared for testing in the ‘Bionix’ material testing machine, to perform 

the stress-relaxation or the creep tests. The failure data obtained from tensile 

deformation tests at the strain rate of 60%/min  (Table 3.1) were used to identify the 

range of load or strain increments for stress-relaxation and creep tests, each given as a 

percentage of the ultimate failure parameters. The pre-experiment adjustments were 

performed according to §2.2.  

 

4.2.1. Incremental Stress-Relaxation Protocol 

 

9 pairs of samples were subjected to incremental tensile stress-relaxation tests.  

Each sample was strained to eight increasing increments of strain, between 3% and 

90% of the strain at failure ( failureε ), in both the circumferential and radial directions. 

The straining pattern is shown schematically in Figure 4.1, while details of the 

adopted strain increments are summarized in Table 4.1. A constant strain rate of 

60%/min was used, and samples were held at each strain increment for 300 seconds.  
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Figure 4.1 Schematic of the incremental stress-relaxation tests: uniaxial strain )(ε  is applied to the 
tissue sample as a ramp up to a specific percentage of failure strain and then is kept constant for 300 
seconds; the stress )(σ  relaxes over the holding time in each increment. 
 

 
Table 4.1 Details of strain increments for stress-relaxation tests. 

 

 Circumferential Direction Radial Direction 

)(% failureε
 

Corresponding Strain (%) Corresponding Strain (%) 

3 1 2 

5 2 4 

10 3 --- 

15 5 10 

20 7 15 

30 10 25 

40 --- 30 

50 15 40 

60 20 --- 

80 25 60 

90 --- 70 

ε  

σ  

Time (t) 

Time (t)

1ε  

2ε  

jε  

t = 300 s 

1σ  
2σ  
jσ  
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4.2.2. Incremental Creep Protocol 

 

9 pairs of samples were subjected to incremental tensile creep tests. Each sample 

was loaded to ten increasing increments of load, between 1% and 80% of the tensile 

load at failure ( failureL ), in both directions. The loading pattern is shown schematically 

in Figure 4.2, and details of the adopted load increments are summarized in Table 4.2. 

A constant strain rate of 60%/min was used, and samples held at each loading 

increment for 300 seconds.  

 

 
 

Figure 4.2 Schematic of the incremental creep test: uniaxial load )(F  is applied to the tissue sample 
up to a specific value and then is kept constant for 300 seconds; the strain )(ε  increases over the 
holding time in each increment. 
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Table 4.2 Details of load increments for creep tests. 
 

 Circumferential Direction Radial Direction 

Load Increment 
)(% failureL  

Corresponding Load (N) Corresponding Load (N) 

1 0.1 --- 

5 0.5 0.05 

10 1.0 0.1 

20 2.0 0.25 

30 --- 0.4 

40 4.0 0.5 

45 4.5 0.6 

50 5.0 0.7 

60 --- 0.8 

70 7.0 0.9 

80 8.0 --- 

 

 

 

4.2.3. Model and Analysis 

 

In order to estimate a series of time-dependant parameters, a generalized Maxwell 

model was employed, to analyse data from both stress-relaxation and creep 

experiments. For a generalized solid, composed of n Maxwell elements in parallel 

(Figure 4.3a), the relaxation spectrum is expressed by [103,105]: 

                                        ∑
=

∞ −+=
n

i
ii tt

0

)/exp()( τσσσ                                        (4.1) 

 

where ∞σ  is the value of stress at equilibrium, iσ  is the initial value of  stress in ith 

element, and iτ  is the respective relaxation time of the ith element. 
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Figure 4.3 (a) schematic of a generalized Maxwell solid with n parallel Maxwell elements; (b) a 
typical single mode Maxwell relaxation curve; (c) a typical Maxwell creep curve. 

 

The “normalized” stress relaxation function, )(tG , is found by dividing both sides 

of equation (4.1) by the initial value of stress in the relaxation process )( 0σ , which 

yields: 

                                      ∑
=

∞ −+=
n

i
ii tGGtG

0
)/exp()( τ                                          (4.2) 

 

where ∞G  represents the normalized stress value at equilibrium and iG  is the 

amplitude of the relaxation mode of the ith element. iτ  indicates the time at which 

approximately 63.2% of the relaxation of the ith element has taken place, while 99% 

of the relaxation occurs within iτ5  [75], as indicated with a typical Maxwell-mode 

exponential decay curve in Figure 4.3b.  
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The generalised Maxwell model can be adapted to describe a creep response as 

[106,107]: 
 

                                   ∑
=

∞ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

m

i i
iprimary

tt
1

exp)(
τ

εεε                                          (4.3) 

 

where ∞ε  is the asymptotic value of creep strain for the primary stage, iε  is the 

amplitude of the creep strain of the ith element, and iτ  is the time for approximately 

63.2% retardation of the ith element, as indicated with a typical Maxwell creep curve 

in Figure 4.3c.  

 

However, this equation will only describe primary creep. In order to accommodate 

secondary creep, equation (4.3) must be adapted. It has previously been demonstrated 

that primary creep followed by a linear secondary creep, can be characterized in the 

form [108]: 
 

                                           ttt sprimaryc εεε &+= )()(                                                    (4.4) 
                                                                                           

where sε&  is the creep rate during the secondary creep stage [108]. The creep model 

describing primary and secondary creep regimes can therefore take the form: 

                                       ttt s

m

i i
ic ε

τ
εεε &+⎟⎟

⎠

⎞
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⎝

⎛ −
−= ∑

=
∞

1
exp)(                                       (4.5) 

 

For the calculation of stress relaxation and creep parameters, equations (4.2) and 

(4.5) were curve fitted to the experimental data for each increment in the test 

protocols, using the Levenberg-Marquardt algorithm by Origin 8.0 software 

(MicrocalTM Software Inc. USA).  The number of time-dependant terms required to fit 

the data was determined based on the change in the chi-squared ( 2χ ) values of the fit. 

Starting from 1=i  in equations (4.2) and (4.5), the fitting process was iterated by the 

addition of a time-dependant term, and the corresponding 2χ  value was calculated at 

each i . The iteration was stopped when the reduction in the 2χ  value was less than 

an order of magnitude compared to the previous step, hence producing no significant 

further improvement in the fit [109]. 
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4.3. Results 

 

4.3.1. Stress-Relaxation  

 
Typical normalized relaxation curves for samples loaded in both directions at 

different increments of failure strain ( failureε ) are shown as open circles in Figures 4.4a 

and 4.4b. All curves show a rapid initial relaxation, for each of the strain increments. 
In addition, samples show greater levels of relaxation in the initial low strains in both 
radial and circumferential directions. The variations between the 6 samples tested at 
each strain were small; all relaxation curves at failureεε %5=   for each direction are 

shown in Figure 4.4c, as an example, but this is also reflected in the small standard 
deviations presented in Table 4.3, for all other strain increments. 
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Figure 4.4 Typical normalized stress-relaxation curves for circumferential and radial samples. 
Experimental data are shown with circles (  ), and the model with a continuous line (  ). Graphs show:
(a) relaxation in circumferential direction; (b) relaxation in radial direction; (c) stress-relaxation curves 
for the 6 repeats at failureε%5  in both directions, to show the typical variation between the repeats. 

Circumferential relaxation at 5%

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Time (s)

Radial relaxation at 5% 

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300
Time (s)

failureε

failureε

G(t) 

G(t) 

(c) 



Chapter 4                                                                             Time-dependent behaviour of the aortic valve 
                                                                                                                                                           

 78

The experimental data sets for both directions were fitted to the Maxwell model and 

plotted as continuous lines on Figures 4.4a and 4.4b. The model provided a good fit 

with the experimental data, with 2R  values in excess of 0.98 for all strain increments. 

However, modelling the data highlighted differences in the relaxation modes required 

to appropriately model the data, as summarized in Table 4.3. While a single mode 

describes the stress relaxation spectrum for strains below 5% of failureε  in the 

circumferential direction, a double mode is required for higher increments. By 

contrast, in the radial direction, a single mode was adequate to describe relaxation at 

all strain levels. 

 
Table 4.3 Details of the test increments for stress-relaxation experiments: the resulting relaxation 
modes, and total amount (mean ± SD) of relaxation each increment. 
 

Stress-relaxation 

Specimen 
 

Circumferential Radial 

Strain Increments 
)(% failureε  

Relaxation 
Modes* Relaxation at 300s (%) Relaxation Modes* Relaxation at 300s 

(%) 

3 S 95.80 ± 2.91 S 85.09 ± 3.45 

5 S 41.25 ± 3.56 S 76.96 ± 2.13 

10 D 34.75 ± 2.04 --- --- 

15 D 29.72 ± 1.40 S 41.20 ± 1.44 

20 D 26.35 ± 1.78 S 38.49 ± 2.13 

30 D 22.80 ± 2.86 S 34.08 ± 2.22 

40 --- --- S 30.01 ± 2.01 

50 D 19.81 ± 1.28 S 26.59 ± 1.82 

60 D 18.22 ± 1.71 --- --- 

80 D 16.38 ± 1.82 S 21.48 ± 2.80 

90 --- --- S 18.85 ± 2.27 

 
* S: Single, D: Double 
--- : Not measured 
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The total percentage of relaxation at 300s for each strain increment is also given in 
Table 4.3.  It is evident that the high relaxation values were associated with the 
smaller initial strains, with relaxation reducing with increasing strain increments, to 
values of 16.38% and 18.85 % in the circumferential and the radial directions, 
respectively. The relaxation times calculated by the model for circumferential and 
radial directions are illustrated in Figures 4.5a and 4.5b, respectively. Two relaxation 
times are indicated for strains above 5% of failureε  in the circumferential direction, 

referred to as ‘fast’ and ‘slow’ relaxation times, as the specimens showed a double 
relaxation mode (Figure 4.5a), while a single value is indicated for the  radial 
direction (Figure 4.5b). As the applied strain increases, the amount of relaxation 
decreases, while the relaxation times increase, indicating a clear retardation in the 
relaxation process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Stress-relaxation 
parameters as determined by the 
model for: (a) the circumferential 
direction; and (b) the radial 
direction. Two relaxation times (fast 
and slow) are given for the 
circumferential samples. All data 
points are presented as mean ± SD. 
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4.3.2. Creep 

 

Typical creep curves for circumferential and radial samples at different increments 

of the tensile load at failure ( failureL ) are illustrated in Figures 4.6a and 4.6b. The 

variations between the 6 samples tested at each load were small, as represented for the 

creep at failureLF %5=  in Figure 4.6c as an example, but also reflected in the small 

standard deviations presented in Table 4.4, for all other loading increments. 
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Figure 4.6 Typical creep curves from circumferential and radial samples. Experimental data are shown 
with circles (  ), and the model with a continuous line (  ). Graphs show (a) creep strain in 
circumferential direction; and (b) creep strain in radial direction; (c) creep curves for the 6 repeats at 

failureL%5  in both directions, to show the typical variation between the repeats. 

 

Circumfernetial creep at 5%

6

6.5

7

7.5

8

8.5

9

0 50 100 150 200 250 300
Time (s)

C
re

ep
 s

tr
ai

n 
(%

)

Radial creep at 5%

14
14.5

15
15.5

16
16.5

17
17.5

18
18.5

0 50 100 150 200 250 300
Time (s)

C
re

ep
 s

tr
ai

n 
(%

)

(c) 

failureL

failureL



Chapter 4                                                                             Time-dependent behaviour of the aortic valve 
                                                                                                                                                           

 81

Samples show typical creep behaviour for soft tissues, with primary creep 
dominating the 300 seconds duration of every load increment, in both loading 

directions. The fitting of experimental data to the model (equation 4.5) yielded 2R  
values greater than 0.98 for all load increments (Figures 4.6a and 4.6b). However, in 
the process of fitting, it became evident that a secondary creep mode was necessary to 
describe creep in all samples, with the exception of the data at low values of 

circumferential load ( %5<F failureL , Table 4.4). 

 
The total amount of creep strain at 300s for each load increment is summarized in 

Table 4.4. There is a small increase in creep amplitude with increasing load 
increments for both directions. However, the radial direction showed consistently 
higher levels of creep compared to the circumferential direction, with values 3-4 fold 
higher at each corresponding load level (Table 4.4).  
 
Table 4.4 Details of the test increments for creep experiments: the resulting creep behaviour, and total 
amount (mean ± SD) of creep strain each increment.   

 

Creep 

Specimen 
 

Circumferential Radial 

Load Increment 
)(% failureL

 
Creep behaviour** Creep at 300s (%) Creep behaviour ** Creep at 300s (%) 

1 P 1.05 ± 0.18 --- --- 

5 P 1.09 ± 0.18 P + S 3.06 ± 0.48 

10 P + S 1.08 ± 0.16 P + S 3.18 ± 0.26 

20 P + S 1.13 ± 0.16 P + S 3.36 ± 0.25 

30 --- --- P + S 3.52 ± 0.26 

40 P + S 1.23 ± 0.16 P + S 3.86 ± 0.32 

45 P + S --- P + S 4.06 ± 0.28 

50 P + S 1.33 ± 0.17 P + S 4.35 ± 0.23 

60 --- --- P + S 4.41 ± 0.34 

70 P + S 1.52 ± 0.17 P + S 4.62 ± 21 

80 P + S 1.85  ± 0.18 --- --- 

 
** P: Primary, S: Secondary 
--- : Not measured
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The creep retardation times )(τ , as calculated by the model, are shown for each 

loading increment in Figure 4.7a. It is evident that retardation times generally 

decrease with the magnitude of the load increment in both loading directions. 

However, the nature of the decrease varies such that circumferential samples 

demonstrate a rapid decrease in retardation time, reaching a steady state value of 

approximately 11 s. By contrast, there is a monotonic decrease in retardation time of 

radial specimens, with a value of approximately 25 s at 70% of the failureL  (Figure 

4.7a). 

 

The relationship between the secondary creep rate, sε& , and the load levels is 

illustrated in Figure 4.7b. While the secondary creep rate in the circumferential 

direction increases with increase in applied load, the values in the radial direction are 

notably higher at all corresponding load levels (Figure 4.7b). 
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Figure 4.7 Creep parameters as 
determined by the model for different 
applied loads (% failureL ), comparing both 
loading directions: (a) the calculated 
retardation times; and (b) secondary 
creep rates. All data points are presented 
as mean ± SD. 
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4.4. Discussion 

 

This chapter has considered the time-dependent behaviour of the AV in response to 

incremental tensile stimuli in both circumferential and radial loading directions. Both 

experimental and modelling data highlight that the time-dependent parameters show 

directional dependency. In addition, the data also indicates that stress-relaxation and 

creep behaviours both vary with the magnitude of applied strain or load, respectively. 

 

In vitro biaxial loading protocols may more closely represent the complex 

physiological loading environment of the native valve. However, it has been 

previously shown that heart valve tissues may not exhibit creep behaviour under 

biaxial loading mode [32,69,75], and subsequently the underlying mechanisms of 

time-dependant behaviour may not be completely elucidated from biaxial test data. 

An assessment of uniaxial properties provides insights into both stress-relaxation and 

creep behaviours of the AV, and the underpinning knowledge necessary to analyse the 

mechanical behaviour of the native valve under more complex loading regimes. 

 

As incremental strain and load protocols were employed in the current analysis, it is 

likely that the observed time-dependent behaviour is influenced by the history of the 

previous applied increments. However, previous studies of stress-relaxation behaviour 

in the AV have reported circumferential relaxation of approximately 25% under a 

direct strain of 30% of failureε  [5], which corresponds well with the value of the 

present study (Figure 4.4a, Table 4.3). Notably, the data is also in agreement with that 

reported for other collagenous tissues, such as tendons and ligaments, subjected to 

direct relaxation testing. Relaxations of about 40% have been reported within 300s at 

a strain level of approximately 2.5% [110], while 30% relaxation was reported at a 

strain level of approximately 5% [70]. In a supplementary test in the present work, 

two sets of samples were strained directly to a single increment of 60% or 80% of 

failureε , in the circumferential or radial direction respectively. The corresponding 

modes and values of relaxation were similar to those seen in the equivalent 

incremental tests, with total mean relaxation values of 21.6% and 26.2% respectively. 

Previous studies have also demonstrated that the estimated values of the time-

dependent parameters will be influenced by the preconditioning protocols applied to 
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specimens of AV tissue [73,111]. Whilst no preconditioning was employed in this 

study, the relaxation tests at lower strain increments may arguably act as 

preconditioning load at higher strains. A recent study has indicated that if a sample 

does not fully relax prior to commencing another increment in a stress-relaxation test, 

the resulting relaxation curve will not reach equilibrium within the estimated 

relaxation time [111]. However the present data indicates that specimens consistently 

attained an equilibrium state within the estimated relaxation times (Figure 4.4), 

suggesting that the previous load history did not impose a pronounced 

preconditioning effect on specimen relaxation. 

 

Considering the stress-relaxation data, the relaxation modes differed with respect to 

sample orientation, and also with strain increment in the circumferential direction 

(Figure 4.4, Table 4.3). It is well established that different viscoelastic modes 

represent different structural mechanisms involved in time-dependent spectra 

[110,112,113]. The current data would indicate that two structural mechanisms are 

activated during relaxation in the circumferential direction for strain levels above 5% 

of failureε , while a single mechanism is appropriate in describing relaxation for lower 

strains and when valve tissue is tested in the radial direction. Structurally, collagen 

fibres in the AV are predominantly aligned in the circumferential direction, and are 

primarily crimped in the unloaded state [5]. Hence, the single relaxation mode 

observed in the radial direction and for low strains in the circumferential direction 

might be attributed to the structural influence of GAG within the tissue, as it was 

established in chapter 3 that the viscous shear-thinning behaviour of GAG also 

influences the quasi-static behaviour of the AV samples. The uptake of a secondary 

relaxation mode occurs at increasing circumferential strains, where the structural 

crimp of the collagen fibres within the tissue is eliminated, and fibres become more 

straight and stretched [5].  Indeed, it has previously been shown that sliding between 

the stretched collagen fibres may represent a mechanism for stress relaxation in some 

connective tissues [113].  

 

The experimental creep data showed that higher creep values, and subsequently 

higher creep compliance (defined as )(tε  divided by σ  [114]) were consistently 

observed in the radial direction (Table 4.4). When loaded circumferentially, samples 
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only exhibited primary creep over the 300s period for loading levels below 5% 

failureL , implying that the primary creep rates are noticeably lower at those loading 

levels in the circumferential direction, and it takes more time to enter into the 

secondary creep stage. Additionally, the secondary creep rates in the radial direction 

were also higher than those seen circumferentially. These data further highlight a 

directional dependency to the time-dependent behaviour of the AV, with a greater 

probability of creep accumulation in the radial direction. 

 

There is currently very limited literature regarding the creep phenomena in heart 

valves. Whilst no measurable levels of creep response are observed to occur under 

equi-biaxial loading conditions [32,69,75], the aortic valve is known to be strained 

non-equibiaxially in vivo [115,116], under which conditions some creep may well 

occur. The creep behaviour seen in the current uniaxial study indicates that the creep 

is an intrinsic time-dependent property of the aortic valve tissue. However, direct 

comparison between biaxial loading results and the results of the present study is 

problematic, as fibre kinematics under biaxial loading regimes are distinctly different 

to those under uniaxial load [1,65], and do not enable circumferential and radial strain 

responses to be independently established. 

 

The primary and secondary creep behaviour observed in the present work is similar 

to that reported for other collagenous tissues under uniaxial loading [117-119]. 

Indeed, the present values for secondary creep rates of AV tissue in the 

circumferential direction were comparable to those reported for tendons [118]. As 

tendon is composed predominantly of collagen, the current data may indicate that it is 

the collagen fibre content of the valve which dominates the circumferential creep 

phenomena.  

 

Recent studies investigating the structural origins of time-dependant behaviour 

within heart valves have reported that the collagen fibril D-period decreases during 

stress-relaxation, but remains approximately constant during creep [69,75]. This has 

been referred to as the ‘fibre-level locking’ mechanism, and has been suggested to be 

a possible structural mechanism responsible for the observed time-dependent 

behaviour of the valves at the tissue level [69,75]. However, it is currently not clearly 
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understood how, and if, this phenomenon is related to the time-dependent modes 

observed at the tissue level. The microstructural mechanisms involved in the time-

dependent behaviour of the AV will be studied experimentally in more detail and 

analytically modelled in chapters 10 and 11. 

 



 

 
 
 
 
 
 
 
 
 
 
 

Chapter 5 
 

Strain transfer through the aortic valve:       
from tissue to the fibrous network 
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5.1. Synopsis 

 

The quasi-static and time-dependent behaviours of the AV at the tissue level were 

investigated in chapters 3 and 4. In the following chapters, AV micromechanics will 

be investigated, and the response of the valve microstructure and how it contributes to 

the observed tissue level behaviour will be established and discussed. 

 

In the first step, the strain transfer from the tissue level to the fibrous network (FN) 

within the AV will be investigated. Collagen and elastic fibres (elastin) [13] provide 

the main structural elements of the AV matrix, and their combined network, referred 

to as the fibrous network (FN) here, provides the main load bearing element of the 

valve ECM. However, it is currently unclear how the externally applied deformations 

at the tissue level are transmitted through the layers of the valve microstructure [120], 

with little data on strain mapping within the FN to correlate the tissue-level 

deformations to the local structural deformations [23,80].  

 

Investigating this correlation can prove significant as it further clarifies two 

important aspects of structure-function relationships within the AV tissue:  
 

(i) from the tissue mechanics point of view, it addresses the mode of strain transfer, 

i.e. affine or non-affine, from the tissue level to the microstructure. The mode of strain 

transfer is a key feature of microstructural based models, and is important for a more 

accurate characterisation of the role of the FN in the mechanical behaviour of the 

tissue. Furthermore, quantifying the strain distribution across the FN will establish the 

extent of strain inhomogeneity throughout the AV matrix; and  
 

(ii) from a cell mechanobiology perspective, it is a key step towards quantifying the 

local mechanical environment surrounding the valve cells. Cells are known to be 

attached to the FN [23,85,121], thus deformation within the FN may induce 

deformation in the residing cells [23,85]. This is of particular interest, as aortic valve 

interstitial cells (AVICs) have been documented to perceive and react to their local 

mechanical environment, altering ECM metabolism and remodelling [80,81], cell 

phenotype [24,84,86] and cell stiffness [80,85].  This range of cellular functions plays 

an important role in maintaining homeostasis in the native valve [80,81], and affect 

the mechanical behaviour of the AV leaflet in vivo [80,82]. AVICs are also likely to 
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play a role in pathology of the AV, possibly triggering responses which lead to valve 

degeneration and calcification, if exposed to inappropriate deformations [22,24,86]. 

These data suggest that quantifying the local mechanical environment perceived by 

the AVICs in situ is key in understanding and interpreting their mechanotransductive 

behaviour in the native AV. It will also provide primary knowledge for a successful 

cell-mediated tissue engineering strategy [120].  

 

Studies employing microstructural based models for characterising mechanical 

behaviour of AV tissue, as well as those examining mechanobiology in valve cells, 

have generally utilised the assumption of a direct transformation of mechanical 

stimuli from the tissue to the collagen fibres [66,122], and to the cells [80,123], 

respectively. However, the complex structural organization of the ECM within the 

AV may not facilitate a model of direct transformation or translation of tissue level 

mechanical stimuli through the AV matrix. This is due to the non-uniformity of the 

fibre kinematics in the ventricularis and fibrosa [1,32,124], and the relative movement 

of the two layers provided by the spongiosa layer, resulting in internal shearing 

[13,18]. 

 

To address this, the present chapter investigates the correlation between applied 

strains at the tissue level, macrostrains across the AV tissue surface, and FN 

deformations. The distribution of strain fields throughout the FN is characterised, to 

establish the inhomogeniety and non-uniformity of FN strains, comparing the 

behaviour of the ventricularis and fibrosa layers. 

 

 

5.2. Materials and methods 

 

32 porcine hearts were used for this study. Specimens were prepared according to 

the protocol described in §2.1, excised either circumferentially or radially from AV 

leaflets. This yielded a total of 48 radial and 48 circumferential samples.  
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5.2.1. Fibrous network strain mapping 

 

The technique for mapping strains within the tissue matrix followed that discussed 

in §2.3. A total of 36 pairs of circumferential and radial cut strip samples were used 

for mapping the strains within the FN, with each set divided in two further analysis 

groups in order to investigate strain across the FN in either the ventricularis or fibrosa 

layer of the valve. The resulting 4 test groups, each containing 18 samples, were: (i) 

circumferentially cut samples viewed from the ventricularis side, (ii) circumferentially 

cut samples viewed from the fibrosa side, (iii) radially cut samples viewed from the 

ventricularis side; and (iv) radially cut samples viewed from the fibrosa side. Imaging 

was carried out at a depth of 50 to 80 µm into the designated valve layer. A typical 

image of the cell nuclei captured using the described set up is presented in Figure 5.1.  

 

In order to investigate the distribution of local strains across the FN of each 

specimen strip, samples were divided into 5 hypothetical equidistance regions as 

shown in Figure 1b: C denotes the central region, and RI, RII, LI and LII, the two 

regions to the right and left to the central region, respectively. The boundary regions 

between each of these areas were then selected for imaging, giving 6 imaging 

locations along the sample length (Figures 5.1).  Samples were incrementally strained 

in 2% increments from 0% to 20% in the circumferential direction, and from 0% to 

40% radially, at a rate of 60%/min consistent with the previous macro-mechanical 

experiments discussed in chapters 3 and 4. Cells within the selected sample regions 

were imaged at each increment. Any individual test looked at a sample cut either 

circumferentially or radially, viewed from either the fibrosa or ventricularis side at 

one of the 6 locations. 3 repeat samples were tested for each imaging location. 
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Figure 5.1 (a) An AV leaflet: 5 mm wide strips are cut from the belly region, in either the 
circumferential or radial direction; (b) Schematic of a strip specimen showing the 5 defined 
equidistance regions. Blue circles represent the boundary regions that were tracked by the confocal 
microscope; (c) For macro analysis, the specimen strips were ink marked every 2 mm over a 10 mm 
length, resulting in 5 equidistance regions designated by C, RI, RII, LI and LII, similar to the defined 
regions for analysis of FN strains; (d) A typical confocal microscopy image of cell nuclei within a 
boundary region. 
 
 

 

From each resulting set of images, the movement of all the cells within the field of 

view (670 mμ  ×  500 mμ ) was tracked with increasing strain increment, using 

particle tracking software (IMARIS®, Bitplane AG) to determine the ),( yx  

coordinates of the centroid of each nucleus at every strain increment. Using these 

positions, the displacement of each nucleus at each strain increment was calculated in 

the loading direction, resulting in a frequency distribution of nuclei displacements at 

each increment (Figure 5.2). To determine the mean nuclei displacement at each 

increment, the weighted average of each distribution was calculated as: 

Circumferential  

Radial 5 mm 

5 mm 

Belly C RI RIILII LI C RI RIILII LI

(b) (a) 

10 mm 
2 mm 2 mm 2 mm 2 mm 2 mm 

LI C RI RII LII 
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where n  is the binning (i.e. number of groups of the nuclei having the same range of 

displacement), i  indicates each group, ix  and id  are the number of cell nuclei and the 

displacement of the i th group, respectively. The accumulative displacement of nuclei 

with increasing strain increment was then calculated by summing the mean nuclei 

displacement at each increment d . As the cells are bonded to the fibres, the 

displacement of cells indicates the elongation of the FN as the tissue is strained, 

shown schematically in Figure 5.3 for one local region. To finally achieve the strains 

within the FN of each sample region, the mean relative displacement of cells at each 

end of that region were subtracted to establish the mean elongation, and strains 

calculated accordingly. 
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each strain increment for the same group of cells. The strain increment is shown next to each distribution. 
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Figure 5.3 Schematic depicting the fibrous network within one of the defined regions of the specimen, 
under tissue level deformation. Upon the application of strain to the sample (3a), fibres rotate and 
displace, resulting in elongation of the entire network (3b). The movement of the fibres can be inferred 
through monitoring the movement of the cell nuclei, as the cells (hollow circles) are attached to the 
fibres. Dashed boxes highlight the size of the field of view at either end of a specimen region. 
 

 

5.2.2. Macrostrain mapping 

 

In order to assist in the interpretation of the FN strain data, macrostrains across the 

sample surface were correlated with the applied grip to grip strains, by tracking 

surface makers. 12 circumferential and 12 radial strips were ink marked every 2 mm 

over a 10 mm length (Figure 5.1c); 6 on the fibrosa surface and 6 on the ventricularis 

surface. The 5 resulting equidistance regions across the strip matched the regions used 

for the FN strain mapping (Figure 5.1). Following the protocol outlined for the FN 

strain analysis, samples were secured in the rig, strained in 2% increments at 

60%/min, and imaged at each increment. The images were analyzed using image 

analysis software (ImageJ, NIH, USA), and the relative displacements of the adjacent 

markers used to calculate macrostrains in each region.  
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5.2.3. Statistical analysis  

 

Statistical comparisons between the FN strain values in each region were performed 

using paired t-tests. The statistical significance was set at 05.0<p . Data in the 

figures are presented as the mean and standard error of the mean )3( =n .  

 

 

5.3. Results 

 

5.3.1. Fibrous network strain mapping  

  

A typical series of images tracking nuclei displacement with increasing strain 

increment are shown in Figure 5.2, taken from the central region of a 

circumferentially loaded sample. The frequency distribution plot showing nuclei 

displacement at each strain increment for this typical sample is shown in Figure 5.2g. 

Each distribution shows only the displacement occurring during that increment, and is 

not cumulative.  

 

Frequency distributions of nuclei displacement were drawn for each applied strain 

increment in every test, from which the mean accumulative FN strain in each of the 5 

test regions was calculated. Graphs comparing these FN strains in circumferentially 

and radially cut samples from both the ventricularis and fibrosa sides of the valve are 

shown in Figure 5.4. It is immediately evident that the relationships between applied 

strain and FN strains are non-linear, particularly in the circumferential direction, in 

which there are very low initial network strains. Comparing strains across the length 

of the samples, the FN strain in the central region was greatest in all cases, decreasing 

nearer to the gripping points (RII and LII regions). Under circumferential loading, for 

applied strains in excess of 8% and 10% in the ventricularis and fibrosa layers 

respectively, the network in the central region strains significantly more than in the 

other four regions (Figures 5.4a and 5.4b). However, the central region strains only 

became significantly larger at strain levels above 18% and 24% for the ventricularis 

and fibrosa layers, respectively, under radial direction loading (Figures 5.4c and 5.4d). 

It is notable that no significant differences were seen when comparing the FN strain 



Chapter 5                                                                                        Strain transfer through the aortic valve 
                                                                                                                                                           

 96

Circumferential Direction -  Ventricularis Layer

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20

Applied Strain (%)

FN
 S

tra
in

 (%
)

LII Region
LI Region
C Region
RI Region
RII Region
1:1 Correlation

Circumferential Direction -  Fibrosa Layer

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20

Applied Strain (%)

FN
 S

tra
in

 (%
)

LII Region
LI Region
C Region
RI Region
RII Region
1:1 Correlation

Radial Direction - Ventricularis Layer

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Applied Strain (%)

FN
 S

tra
in

 (%
)

LII Region
LI Region
C Region
RI Region
RII Region
1:1 Correlation

Radial Direction - Fibrosa Layer

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Applied Strain (%)

FN
 S

tra
in

 (%
)

LII Region
LI Region
C Region
RI Region
RII Region
1:1 Correlation

values between the symmetrically opposing regions, i.e. between RI and LI and 

between RII and LII, in the two layers in either loading direction. 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.4 FN strains at different applied strains for specimens viewed from: (a) the ventricularis layer; 
and (b) the fibrosa layer, loaded in the circumferential direction. The network strains in the central 
region are significantly higher compared to those in other regions at applied strain levels above 8% and 
10%, in the ventricularis and fibrosa layers, respectively. FN strains for samples viewed from (c) the 
ventricularis layer; and (d) the fibrosa layer, loaded in the radial direction. FN strains in central region 
become significantly higher than the other regions at strain levels above 18% and 24% for the 
ventricularis and fibrosa layers respectively. No significant differences between microstrains in the 
symmetrical regions (RI-LI and RII-LII) were seen. Dashed lines indicate the 1:1 linear correlation 
between the applied strain and FN strain. The asterisks indicate statistical significance ( 05.0<p ) 
between the central region and all other regions. 
 
 

 

* 
* 

*
* 

* 
*

*

* 
* 

*
*

*
*

(a) 
 

(b) 

(c) (d) 

* * 
* * * 

* *
* *

*

* 
* 

* * * * *
* *

*
*



Chapter 5                                                                                        Strain transfer through the aortic valve 
                                                                                                                                                           

 97

5.3.2. Macrostrain mapping 

 

In order to establish if the distribution of strain within the FN is also reflected at the 

macro level, the macrostrains in each sample region were also calculated with 

increasing applied strain (Figure 5.5), comparing circumferential and radial loading 

directions from both the ventricularis and fibrosa sides. The 1:1 correlation is shown 

as a dotted line in the graphs. It is notable that macro strains across the samples were 

smaller than the overall applied strains. However, strains in the central region more 

closely matched the applied strains (Figure 5.5).   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.5 Macrostrains across each sample region measured from: (a) the ventricularis side, and (b) 
the fibrosa side, loaded in the circumferential direction, and (c) the ventricularis side, and (d) the 
fibrosa side, loaded in the radial direction. Dashed lines indicate the 1:1 linear correlation between 
macrostrains and applied strains. 
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Macrostrains are evidently more uniform across the sample length than the FN 

strains. However, emulating the FN strains, the central region of the samples 

possessed slightly higher strains than the regions nearer the grips, more closely 

correlating with applied strains. While this difference is more pronounced in the radial 

direction (Figure 5.5), it was not significant in any samples. Comparing the two 

loading directions, macrostrains are more uniform in the circumferential direction 

(Figure 5.5), with a higher correlation factor, r , between the macrostrains and the 

applied strains. Indeed, the mean difference between the macrostrains and the applied 

strains in the radial direction was observed to be an order of magnitude higher than 

that in the circumferential direction.  

 

 

5.4. Discussion 

 

Applied strains were compared with macrostrains across the AV sample surface, 

and FN strains established from cell nuclei movement. While the central region 

reported slightly higher macrostrains than the regions near the grips, the distribution 

of macrostrains was generally homogenous, correlating strongly with the applied 

strains in both loading directions, in both layers (Figure 5.5). The correlation factor r  

was in excess of 0.96 for all the cases, except in the fibrosa layer under the 

circumferential loading, in which a weaker correlation with the applied strain was 

evident ( 93.0=r ). This is likely to be a result of the significantly higher collagen 

fibre content of the fibrosa, which will give rise to a more non-uniform behaviour as a 

result of more pronounced effects of fibre recruitment and reorientation.  

 

By contrast, the FN strain field was inhomogeneous both along the length of each 

layer, and between the layers, under both circumferential and radial loading.  

Furthermore, the FN strains in both loading directions reported a pronounced non-

linear correlation with the applied strains, particularly in the circumferential direction, 

in both layers.  

 

Cells are known to bond to fibrous proteins, particularly collagen, through a number 

of different integrins [23,85,121]. By monitoring the movement of the cells at each 

applied increment of strain, the movement of the FN and subsequently the FN 



Chapter 5                                                                                        Strain transfer through the aortic valve 
                                                                                                                                                           

 99

elongation was established (Figure 5.3). The nominal in-plane ),( yx  resolution of the 

confocal images in the current study was determined to be Res 39.0= mμ  (§2.3.1), 

whilst the smallest detected movement of the cell nuclei was observed to be 1.16 mμ . 

With movements at least three times the image resolution, the microscopy technique 

provides sufficient imaging resolution for tracking the cell nuclei movement, even at 

lower strain increments.  

 

In both loading directions, from both the ventricularis and fibrosa sides of the valve, 

the FN in the central region strained the most, reducing towards the gripping points. 

The observed distribution of strains within the FN is likely to be strongly influenced 

by the end effects concept, addressed by the Saint-Venant’s principle. This principal 

demonstrates that the strain field at sites closer to the gripping points may be confined 

due to the gripping effects, only becoming uniform at distances away from the points 

of gripping [125]. For any given sample, gripping effects have been shown to decay at 

a certain length along the test specimen, known as the characteristic decay length 

[126]. The characteristic decay length defines how rapidly end effects decay in a 

sample, from which point the strain across the sample is considered uniform. While 

this length is of comparable length to the width of the test specimen for most 

engineering materials such as steel and some polymers [127], it can be more 

significant in soft biological tissues, specifically in samples for which dimensions are 

confined, due to the limitations in the size of the subject tissue.  

 

The mathematical criteria for calculating the characteristic decay length based on 

the Saint-Venant’s principal have been established through the works of Knowles 

[128] and Horgan [129]. Based on these criteria, and to address this effect 

analytically, it is shown in Appendix A that the following relationship can be used to 

determine this distance for a planar fibrous connective tissue sample: 
 

                                                ( )bGEOl 5.0)/(=                                                    (5.2) 
 

where l  is the characteristic decay length, E  and G  are the elastic and shear modulus 

of the tissue respectively, b  is the width of the specimen, and  the operator ( )O  is 

the ‘order of’ the value in the brackets. 
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The instantaneous elastic modulus E  and the viscous damping coefficient η  of the 

porcine AV samples were quantified in chapter 3, demonstrating that the AV shows a 

shear-thinning behaviour. The shear modulus G  for a shear-thinning material can be 

calculated by [130]: 

                                                        
τ
η0=G                                                              (5.3) 

 

where τ  and 0η  are the characteristic relaxation time and viscosity at very low shear 

rates, respectively [130]. By extrapolating the results obtained in chapter 3 for η  at 

low strain rates of 1%/min, and using the relaxation times characterised previously in 

chapter 4 as 3.120.5 ±=circτ  s in circumferential and 2.1088.34 ±=radτ  s in radial 

direction, the shear moduli were determined to be approximately 598 MPa and 119 

MPa in the circumferential and radial directions, respectively. Substituting these, 

alongside the values of 20 MPa (circumferential) and 0.75 MPa (radial) for 

instantaneous elastic modulus ( E ) at low strain rates from chapter 3, the 

characteristic decay lengths from each grip are determined to be in order of 0.9 mm in 

the circumferential direction, and 2 mm in the radial direction.  

 

Subsequently, the strain fields can be considered to be independent of gripping 

effects within the middle 8 mm of circumferential specimens, and the middle 4 mm 

for radial samples. These data correlate positively with macrostrain findings, in which 

circumferentially loaded samples reported more uniform distributions than radial 

samples, while the central region of all samples reported macrostrains more closely 

matched to the applied strains. Indeed, the confinement of strain fields at regions 

closer to the grips, due to gripping effects, has also been reported in other studies 

investigating the in vitro mechanical behaviour of soft tissues [131-134]. Using strain 

gauges [134], and markers and video imaging techniques together with finite element 

method [131-133,135], studies have confirmed that tissue specimens generally appear 

less extensible towards the clamping sites, with concentration of stress at the gripping 

points [131-1333,135].  

 

Neither the macro nor the FN strains across the sample regions add up to the applied 

strain at each increment, potentially stemming from the confining effects of the grips 

on the local strains. Data suggest that longer specimens would be more appropriate to 
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achieve a more extensive sample region unaffected by gripping, and more uniformity 

between the local and applied strains. However, the physical dimensions of the AV 

impose a limit on the length of test specimens, especially in radial direction. The 

strain distribution in the radial direction should be treated with caution, and correction 

factors may be required for a more realistic interpretation of the FN strain results in 

this direction. 

 

However, the data indicates that the inhomogeneous and non-uniform distribution of 

FN strains across each layer may not stem solely from end effects. Comparing the FN 

strains of LI, RI and the central regions (C) in Figure 5.4 indicates a clear 

inhomogeneity, where the gripping effects are theoretically minimal. This additional 

effect may be due to the AV collagen fibre architecture, as suggested in some finite 

element modelling studies of AV micromechanics [47,48]. In the regions close to the 

commissures, the preferred direction of fibres is more uniformly oriented towards the 

circumferential principal axes, while the fibres in the belly region are more randomly 

oriented [47-49]. The belly region of the AV leaflet forms the central region of the 

strip specimens used in this study (Figure 5.1), hence the reorientation of the fibres in 

this region would allow more displacement of the cells and larger FN strains. 

Conversely, in regions away from the centre near the commissures, where the fibres 

are already more uniformly aligned, less reorientation would occur. 

 

The difference in the FN elongation between the two layers can be calculated from 

the strain data presented in the graphs in Figure 5.4, for both the loading directions. 

However, owing to the extreme end effects in the radial direction (60% of the length 

of the sample), only the circumferential direction is considered for additional analysis. 

Considering the FN strains across the middle 8 mm of the circumferential samples 

(thus excluding LII and RII regions which are within the characteristic decay length), 

the elongation of the FN within the ventricularis layer was consistently larger than the 

fibrosa, across each equivalent specimen region (Figure 5.6). The summed difference 

in elongation of the two layers over the three regions is shown in Figure 5.6b.  

 

In each sample region, the difference in FN elongation is largest in the initial 

applied strain increments, reducing as the applied strain increases (Figure 5.6a). Such 

a response seems reasonable, considering the macroscopic crimp which is localised to 
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the fibrosa [1,13]. At initial strains, the ventricularis has less macro crimp and is less 

stiff, hence the FN in this layer would displace more than in the fibrosa, resulting in 

larger FN elongations of the ventricularis relative to the fibrosa. As the applied strain 

increases, the macro crimp in the fibrosa straightens out, and the displacement of the 

FN in the two layers becomes steadily more uniform. 
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Figure 5.6 Difference in the FN elongation between the ventricularis and fibrosa layers in the 
circumferential direction: (a) the difference in each region that is unaffected by end effects (RI, C, LI), 
and (b) the summative difference in matrix elongation between the two layers, from these 3 regions. 
The asterisks indicate a statistically significant difference ( 05.0<p ) between the central region and 
RI or LI. 
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A key aspect of the non-uniform elongation of the FN within the ventricularis and 

fibrosa, shown schematically in Figure 5.7, is that it will result in internal shearing 

induced in the 1-3 plane within the network. Using the mean difference in total FN 

elongation between the layers, the internal shear strain (γ ) was calculated at each 

strain increment. Previous studies of collagen shearing have assumed the modulus for 

the network internal shear, iG , to be 50 KPa [136]. Using these values, the resulting 

internal shear stresses, γτ ii G= , are shown in Figure 5.8, for each strain increment. 

These calculations are based on the assumption that the orders of the characteristic 

decay lengths of the ventricularis and the fibrosa layers are similar, and equal to the 

calculated 0.9 mm from each gripping point by equation (5.2). This assumption may 

be considered reasonable, as the elastic moduli of the two layers have been reported to 

be in the same order of magnitude within the strain range used in this study [1,124]. 

 

 

 
 
Figure 5.7 Schematic showing the effect of the difference in elongation of the FN within the AV 
layers: the network (a) before; and (b) after deformation. The FN is elongated more in ventricularis 
layer (V) compared to the fibrosa (F). This will lead to internal shearing in the 1-3 plane. 
 

 

To establish how the experimentally derived internal shear stress values correlate 

with well-established viscoelastic criteria, the data are compared with theoretical 

(a) 

(b) 
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values calculated using a Kelvin-Voigt model (Appendix B).  Chapter 3 showed that 

the deformation behaviour of AV specimens under uniaxial tensile loading can be 

described by a Kelvin-Voigt model.  For a 3D Kelvin-Voigt viscoelastic solid under 

uniaxial stress, it can be shown that the shear strain in the 1-3 plane is related to the 

tensile deformation in direction 1 as (Appendix B): 
 

                                                        1
1

1
13 ε

η
γ &

E
=                                                         (5.4) 

 

where 13γ  is the shear strain in 1-3 plane, 1E  and 1η  are the elastic modulus and the 

viscous damping coefficients in the loading direction 1, respectively, and 1ε&  is the 

strain rate in that direction. 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.8 Internal shearing in the specimens at each applied strain increment: experimental data are 
compared to theoretical values. 

 

 

Taking the values of 1E  and 1η  at each strain level from chapter 3, the calculated 

shear stress at each strain increment is compared to the experimental values in Figure 

5.8. A good agreement is observed between the theoretical and experimental values, 

especially at increasing strains. The differences at low strain levels could be due to the 

fact that, similar to the instantaneous elastic modulus E , iG  is also likely to be strain 

dependent, and its value should vary at different strain levels. The single value used 

for these calculations may well be more appropriate for the higher strains. 

Nevertheless, the experimental internal shear stress values obtained in this study are 
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within the range of those previously reported for porcine AV specimens, with a 

maximum value of approximately 5 KPa [18,137]. 

 

In vitro biaxial or flexural loading modes may represent the physiological loading 

conditions of the AV more closely. However, the mode of strain transfer within the 

tissue is primarily influenced and determined by the ECM organization and the 

associated structural responses, and not the loading boundary conditions. This study 

aimed to provide a fundamental understanding of the distribution of local FN strains 

across and between each of the main load-bearing layers within the AV. It constructs 

the first 3D map of the local strains to the knowledge of the author and experimentally 

elucidates the internal shearing occurring as a result of tensile deformation at the 

macro level. The results of this study may therefore assist the interpretation of data 

obtained through more relaxed or constrained loading boundary conditions.  

Quantification of internal shear stress within the layers of the AV could also have 

implications for understanding AVIC mechanobiology, providing a better 

understanding of the local mechanical environment perceived by the cells.  

 

It was established in this chapter that the distribution of strain within the FN across 

the AV is inhomogeneous, as well as anisotropic. The FN within the central region 

appears to possess the maximum values of strain, decreasing towards the 

commissures. Strain transfer from the macro level to the FN is not direct, with results 

indicating a non-linear correlation between the macro- and micro-strains (Figure 5.4). 

Additionally, shear strains and stresses are induced within the FN between the layers, 

upon the application of tensile strains at macro level.  These results suggest that the 

strain transfer from the tissue to the microstructure is non-affine. Furthermore, they 

indicate that the AVICs are possibly exposed to additional stress modes beyond those 

applied at the tissue level. These findings provide a better understanding of stress 

transfer from the tissue level to the microstructure. 
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6.1. Synopsis 

  

Strain transfer from the tissue to the fibrous network (FN) within the AV was 

investigated in chapter 5. FN strains were characterised, with results suggesting that 

the strain transfer is non-affine. In this chapter, this information is incorporated into 

the development of a micro-structural based model, to address the non-linearity of the 

quasi-static stress-strain behaviour of the valve, observed in chapter 3. Constitutive 

modelling of the mechanical behaviour of soft tissues based on their microstructure 

provides a powerful tool for predicting how microstructure influences tissue 

behaviour, particularly when in situ investigation of the microstructural properties is 

experimentally challenging. 

 

Due to their complex structural organization, planar soft tissues generally exhibit 

highly non-linear and anisotropic mechanical behaviour, and often require derivation 

of new mathematical relationships to describe their behaviour. This, in turn, 

necessitates the development of specific constitutive models to effectively describe 

how the gross-level macromechanics is related to the behaviour of the material 

constituents within the tissue. In chapter 3, a phenomenological model was developed 

(equations 3.13a and 3.13b) to describe the behaviour of the AV based on its three 

morphological layers. Despite the good fit to experimental data and ability to 

characterise some of the material parameters of the tissue, no information and 

interpretation of the underlying structural mechanisms could be elucidated from the 

model.  

 

In the structural-based modelling approach, as its name implies, the structural 

components of the tissue are incorporated in modelling its behaviour [143]. A 

structural model addresses the relationships between tissue structure and function, 

explaining the mechanical properties of the tissue based on the microstructure, such as 

the anisotropy and non-linearity [144,145]. Thus, structural models are advantageous 

in that they elucidate the contribution of microstructural components to the overall 

tissue mechanical behaviour, and provide physically meaningful material parameters 

based on the actual composition of the tissue [143-145]. The emerging role of tissue 

engineering in providing living replacement implants for AV tissue further 

strengthens the importance and application of structural models, as they can assist



Chapter 6                                                The role of collagen fibres in the structure-function relationship  
                                                                                                                                                           

 

108

estimations of the mechanical environment of the living cells residing within and 

bonded to the micro-structure of native tissue. With cells controlling matrix 

metabolism in response to their mechanical environment [80,81], understanding the 

localized strain environment surrounding the cells becomes critical. Such localized 

structural information can also provide design features for cell seeded scaffolds, to 

help reproduce physiological loading environments [146].  

 

The main theoretical criterion for the structural modelling approach in soft tissues 

has been established through the pioneering work of Lanir [143,147], based on the 

assumption that the mechanical behaviour of soft tissues can be characterised through  

the summation of the response of its individual constituent collagen fibres under 

deformation. The deformation and stress of each fibre is determined during the tissue 

deformation, and the overall tissue stress can be determined by integrating the effect 

of all fibres [111,121]. An important aspect when incorporating such structural theory 

is thus the consideration of fibre stress-strain law, i.e. how the individual fibres 

deform under the applied tissue level strain/stress, and subsequently how they would 

contribute to the load bearing characteristics of the tissue.  

 

In the currently available structural models, the laws governing fibre stress-strain 

behaviour have mainly employed one of two different assumptions:  
 

1- Collagen fibres have been assumed to be linear elastic; however only 

contributing to load bearing in the tissue when fully uncrimped. The initially 

wavy fibres will elongate homogenously until they are fully straight, and will 

then strain linearly with respect to the induced stress on the fibre. This 

assumption has been widely used in Lanir’s work, with the different straight 

length of the fibres presented by a distribution function [111,143,147]. As the 

applied strain on the tissue increases, more fibres would progressively become 

straight, giving rise to the non-linear stress-strain relationship observed in soft 

tissues (Figure 6.1a). 
 

Or;  
 

2- The stress-strain relationship in a fibre is intrinsically non-linear, mainly 

assumed to be of exponential form [66,122]. This assumption is prevalent for 

micro-structural based models describing the behaviour of the AV.
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However, difficulties can be identified with both of these assumptions. It is has been 

well established that individual fibres within soft tissues do not have a uniform crimp 

wavelength and amplitude [149,150]. This has also been established for samples in 

the current study, with histological sections showing a range of crimp characteristics 

for individual fibres (Figure 6.2).  This non-uniform organisation means that the 

initially wavy fibres will elongate in a non-uniform fashion, i.e. fractions of a fibre 

may become straight while the fibre is not yet fully uncrimped [149,150]. These 

straight fractions of the fibres will then be able to strain and subsequently contribute 

to the load bearing features of the tissue; a factor not considered under assumption (1) 

described above.  

F 

F 

x 

F 

x 

a) b)

F 

F 

F 

F 

F 

F 

Figure 6.1 Schematic representation of the structural mechanism causing non-linear behaviour of fibrous soft tissues: (a) 
a model of nonlinear elasticity demonstrating the progressive recruitment of individual collagen fibres acting as linear 
components (redrawn from [148]). (b) Continuous gradual straightening, giving a gradually increasing stiffness. When 
fully straight, the fibres behaves linearly and possess the highest stiffness (dashed lines).   
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Figure 6.2 A histological image of wavy collagen fibres in unloaded AV tissue, stained using Picro 
Sirius Red and imaged by a x10 magnification objective. Fibres do not have a uniform crimp 
wavelength. Arrows show some of the fibres that have straight fractions even in an unloaded state. 

 
 

With respect to assumption (2), an exponential relationship between stress and 

strain in a single collagen fibre is not in accordance with the experimental 

observations, where linear elastic features have been reported for straight collagen 

fibres [151,152].  

 

Thus, even though the models developed based on the above two assumptions have 

widely been successful in characterising the mechanical behaviour of a variety of soft 

tissues, neither of the two assumptions seem to fully comply with the experimentally 

observed behaviour of the fibres under deformation.  

 

In order to address this, an alternative approach is presented and formulated in this 

chapter, which considers each individual collagen fibre becoming straight in stages, 

and thus straight sections strain and contribute to load bearing in the tissue, even 

though the whole fibre may still not be fully uncrimped. The elastic modulus of fibres 

is derived based on their straightened length, and the fibre strain is calculated with 

respect to the applied tissue strain. The angular distribution of collagen fibres in 

planar tissue is derived and incorporated into the model. The experimental stress-
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strain data of porcine aortic valve tissue, characterised in chapter 3, is used to verify 

the outcomes of the developed model. 

 

 

6.2. Formulation of the model 

 

Following the pioneering work of Lanir [143,147], the 2nd Piola-Kirchhoff stress of 

a fibrous soft tissue can be expressed as (Appendix C): 
 

                                       ∫
−

⊗=
2

2

][)(

π

π

θθ dNNSRS fibre

vv
                                              (6.1) 

 

where )(θR  is the statistical distribution function of the angular distribution of the 

collagen fibres, in which the θ  is the Eulerian angle describing the direction of 

oriented fibres, fibreS  is the 2nd Piola-Kirchhoff stress of the population of fibres in 

tissue, and N
v

 is  the unit vector representing the direction of the fibre. Derivation of 

the mathematical relationship for fibreS  is described in the following section. 

 

6.2.1. The stress-strain relationship for a fibre 

 

When crimped, collagen fibres adopt a helical form, as shown schematically in 

Figure 6.3, which can only bear tension along the axis of the helix. The internal forces 

induced within the fibre upon the application of external tensile force are shear and 

torsion (Figure 6.3b). Thus, the total displacement energy of the fibre under tensile 

deformation would be obtained by the superposition of the strain energy functions due 

to each individual stress [141]: 
 

                                                TorsionShear UUU +=                                                    (6.2) 
 

with: 

                         ∫= dl
AG
FU

fibre
Shear 2

2

 , ∫= dl
JG

MU
fibre

Torsion 2

2

                                (6.3) 
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In the above equations, F  is the tensile force on the fibre, M  is the torsion, fibreG  is 

the shear modulus of the fibre, A  is the fibre cross-sectional area, and J is the second 

polar moment of area. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 6.3 Schematic of a crimped fibre: (a) the fibre possesses a helical form that can be 
approximated by a sinusoidal function. (b) The internal loads induced within a fibre upon the 
application of an external load F on the fibre.   
 

 

The wavy shape of the crimped fibre can be approximated by a sinusoidal function 

in the form bxay sin= , where a  is the amplitude and b  is the frequency, calculated 

as Wavelength/2π  [153,154]. Assuming that the cross-section of the fibre is circular 

with radius r  which remains uniform along the fibre, it follows: 
 

                                      FaM =  , 2rA π=  , 
2

4rJ π
=                                             (6.4) 

 

substituting (6.4) into (6.3): 
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                                                                and 
 

                                            ∫=
0

0
4

22 x

fibre
Torsion dl

Gr
aFU

π
                                               (6.5b) 

 

where 0x  is the crimped length of fibre (Figure 6.4), and ∫
0

0

x

dl  is the straight length of 

the fibre, L , which would be: 
 

                      ∫ ′+=
0

0

21
x

dxyL  ⇒  ∫ +=
0

0

222 cos1
x

bxbaL dx                               (6.6) 

 

substituting equations (6.5a), (6.5b) and (6.6) into (6.2) gives the total strain energy 

function in terms of the properties of the fibre as: 
 

                              4

222

2
)2(

rG
arFU

fibreπ
+

= ∫ +
0

0

222 cos1
x

bxba dx                                 (6.7) 

The relationship between displacement and force in the fibre can now be determined 

using Castigliano’s theorem, as [141]: 
 

                                                        
dF
dU

=δ                                                             (6.8) 

 

where δ  is the displacement. Using equation (6.7) one would get: 
 

                                  4

22 )2(
rG

Far

fibreπ
δ +
= ∫ +

0

0

222 cos1
x

bxba dx                                (6.9) 

 

Collagen fibres are known to be linearly elastic [151,152,155]. In a linear elastic 

solid, the relationship between force and displacement is characterised by the well 

known equation δKF = , where  K  is the stiffness constant. Thus, using equation 

(6.9): 
 

                             

∫ +
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Accordingly, the elastic modulus of fibre fibreE  will be determined from its stiffness 

constant ( fibreAEK = ) [23] as: 
 

                         

∫ +

⋅
+

=
0

0

222
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4

cos1

1
)2( x

fibre
fibre

dxbxba
arA

rG
E

π
                             (6.11) 

 

There exists experimental evidence suggesting that wavy fibres do not necessarily 

have to become fully straight in order to to contribute to the load bearing status of the 

tissue. Instead, even if a fraction of a fibre straightens upon the application of 

mechanical stimuli, this straight part of the fibre will be strained, even when the rest 

of the fibre is not yet fully uncrimped [149,150]. Thus, it is possible to consider that a 

fraction of a fibre would contribute to load bearing of the overall tissue, with this 

fractional contribution increasing as more of the fibre becomes straight. To model this 

effect, the concept of gradual straightening of a fibre must be incorporated into the 

equations describing the stress of fibre, fibreS , and subsequently the overall stress of 

the tissue, S , in equation (6.1). The next step is thus to derive the mathematical 

relationships for fibre stiffness and strain with respect to the straight length of the 

fibre.  

 

Consider the arbitrary wavy fibre at the zero stress state shown in Figure 6.4. The 

crimped length of the fibre is 0x . Upon the application of some force, the fibre’s new 

length becomes X . In the most general status, a portion of the fibre becomes straight 

and strains, while the wavy length of the fibre also changes to a new coordinate 1x  

(Figure 6.4). It is easily perceived that as larger portions of a fibre become straight, 

the overall change in fibre length X  reduces. This is due to the fact that the straight 

part would deform much less than the wavy portion. Thus, considering the whole 

fibre as a mechanical element, it becomes stiffer as it straightens. Equivalently, its 

instantaneous elastic modulus will depend on how much of the fibre has become 

straight, with the fibre becoming increasingly stiffer with increase in the straight 

portion. It reaches its highest stiffness when fully straight, and remains constant from 

this point forward, and the element acts linearly (Figure 6.1b).  
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Figure 6.4 Coordination of a fibre under deformation. The total length of a wavy fibre before 
deformation (continuous line) is 0x . After deformation (dotted line), the length of the wavy part of the 

fibre becomes 1x , and its overall length, including the straight part and the strained part, is X . 
 

 

Let )( pe fibre  be the instantaneous elastic modulus of the fibre, where p  is the 

portion of fibre which is straight, with respect to its current wavy length x . Thus: 
 

                                              qxp =  , 10 ≤≤ q                                                     (6.12) 
 

Equation (6.11) gives the elastic modulus of a fibre when it is fully straight, i.e. where 

the fibre has its maximum stiffness and acts linearly, as explained earlier above. The 

relationship between the instantaneous modulus of the fibre )( pe fibre  and fibreE  may 

thus be written as: 
 

                                      ∫ = fibre
fibre Edp

L
pe )(

 , qxp =                                          (6.13) 

 

It is evident from equation (6.13) that when the fibre is fully straight ( 1=q ), 

fibrefibre Epe =)( . Thus, the instantaneous elastic modulus of the fibre )( pe fibre  can be 

determined by differentiating both sides of the above equation with respect to variable 

x , upon substituting for fibreE  from equation (6.11):     

0x 1x X  x  

y  

straightx  
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The denominator in the brackets of the right hand side of the above equation is equal 

to L , as given by equation (6.6). Thus equation (6.14) can be re-written as: 
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)( 22222
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4
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π

                     (6.15) 

 

Equation (6.15) characterises the instantaneous elastic modulus of a fibre based on the 

proportion of its length that is straight.   

 

As shown in Figure 6.4, upon application of an arbitrary load, a fibre of initial 

length 0x  will elongate to a new length X . This additional length, i.e. 0xX − , can be 

broken down into: (i) new additional wavy length ( 01 xx −  as shown in Figure 6.4), 

(ii) the portion that has become straight straightx , and (iii) the straight portion that 

becomes strained, which is the true fibre strain  fibreε . The portion of a fibre that 

becomes straight would thus depend on the magnitude of the global finite Lagrangian 

strain .Lagε . In general, stochastic approaches have been proposed to model the 

gradual recruitment of wavy fibres. Following the previous studies [111,122,147,156], 

the same approach was employed, incorporating a gamma function in describing the 

distribution of the gradual straightened portion of the fibre at different applied global 

strains .Lagε ,  denoted by )( .LagD ε , with respect to the initial length of the fibre 0x . 

This approach is also supported by the experimental results obtained in chapter 5, as 

the strain transfer from gross tissue level to the microstructure was shown to be non-

affine, and therefore a direct deterministic relationship may not represent the 

correlation realistically.   

 

Thus the straight length of the fibre at each .Lagε  would be: 
 

                                             )( .0 Lagstraight Dxx ε⋅=                                                  (6.16) 
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where: 

                               ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Γ
= −

β
ε

ε
αβ

ε α
α

.1
.. exp

)(
1)( Lag

LagLagD                                      (6.17) 

 

The parameters α  and β  are positive constants determining the shape of the 

distribution. 

 

By definition, the fibre true strain, fibreε , is the change in the length of the straight 

portion of the fibre lΔ  divided by the initial straight length straightx : 

                                                  
straight

fibre x
lΔ

=ε                                                       (6.18) 

 

For calculating the change in the wavy length of the fibre, let us define wavyε  as the 

change in the wavy length of the fibre divided by the initial wavy length, at each 

global Lagrangian strain: 

                                          Δ
=wavyε                                       (6.19) 

For simplicity in notation, Δ                            will be shown by Δ . However, the 

initial wavy length of the fibre at every .Lagε  can be calculated by: 
 

          initial wavy length of the fibre = )())(1( .0. LagLag DLxD εε ×+−                  (6.20) 
 

where, by the definition of the parameters, the first term represents the length of the 

remainder of the wavy fibre, and the second term accounts for the part of the fibre that 

elongates to become straight. One should notice that at zero deformation state, where 

0)( . =LagD ε , equation (6.20) returns 0x , which is the initial wavy length of fibre. 

When all the fibre is straight, 1)( . =LagD ε , and the equation (6.20) calculates L . 

Substituting into (6.19): 

                             
)())(1( .0. LagLag

wavy DLxD εε
ε

×+−
Δ

=                                       (6.21) 

 

From geometrical point of view, the values of wavyε  and fibreε  should be related at 

each .Lagε , since the length that becomes straight to account for fibreε , comes from the 

wavy length of the fibre 

initial wavy length 

wavy length of the fibre
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initially wavy length of the fibre in wavyε . However, it is not a linear relationship, and 

the proportionality varies at each  .Lagε . Hence, mathematically: 
 

                                          fibreLagwavy c εεε ⋅= )( .                                                     (6.22)        
 

where )( .Lagc ε  is a proportionality coefficient. It is evident that 1)( . ≥Lagc ε  at each 

.Lagε .  

 

By its definition: 

                                                   
0

0
. x

xX
Lag

−
=ε                                                      (6.23) 

0xX −  can now be calculated from the equations (6.16), (6.18), (6.21) and (6.22), 

hence: 
 

 
 

 

and by re-arranging the above: 
 

       
[ ])())(1()()(

)(

.0...0

.0.0

LagLagLagLag

LagLag
fibre

DLxDcDx

Dxx

εεεε
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ε

×+−+

−
=                         (6.25) 

 

Thus, stress in a single fibre at each global Lagrangian strain .Lagε , fibres , can be 

calculated by incorporating the definition of )( .LagD ε  into equations (6.15), and 

equation (6.25) as: 
 

fibrefibrefibre es ε⋅=  ⇒   
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= ))((cos11
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−
 

 

 

 

(6.24) 

(6.26)

[ ])())(1()()()( .0...0.0.0 LagLagLagfibreLagfibreLagLag DLxDcDxDxx εεεεεεεε ×+−⋅⋅++=
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6.2.2. Stress-strain relationship for the population of fibres in tissue 

 

Physically, it is evident that not all fibres in a tissue will start to contribute to load 

bearing at a same .Lagε , since the initial length and the waviness of fibres varies in 

tissue. Hence [122,156]: 
 

                                     ∫=
fibre

Lagfibre PS
ε

ε
0

. )( fibres .Lagdε                                             (6.27) 

 

where  )( .LagP ε  is a statistical distribution function representing the fibres that are 

active in load bearing within the tissue at .Lagε , and .. )( LagLag dP εε  by definition is the 

total fraction of the fibres that are contributing to the load bearing status of the  tissue  

[111,122]. Assuming that )( .LagP ε  can be approximated by a Weibull distribution, 

following previous studies [157]: 
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. exp)( LagLag
LagP                                         (6.28) 

 

where κ  and ψ  are shape and scale parameters [157].  

 

Thus, the complete form of fibreS  is: 
 

     ∫=
fibre

Lagfibre PS
ε

ε
0

. )( fibres .Lagdε  

     ( )⋅+−+
+

= ))((cos11
)()2( .

22222

.
22

4

xbDbaba
DarAL

rG
s Lag

Lag

fibre
fibre ε

ε
π

 

 

                
[ ])())(1()()(

)(

.0...0

.0.0

LagLagLagLag

LagLag

DLxDcDx

Dxx

εεεε

εε

×+−+

−
                                                                   

 

    
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

− κκ

ψ
ε

ψ
ε

ψ
κε .

1
.

. exp)( LagLag
LagP  

 

(6.29) 
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Substituting equation (6.29) into (6.1) gives the 2nd Piola-Kirchhoff stress of the 

whole fibrous soft tissue: 
 

∫
−
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][)(
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θθ dNNSRS fibre

vv
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6.2.3. Angular distribution of fibres 

 

Nearly all of  the  currently available structural models for  soft  tissues  have  

considered  the  angular  distribution  of  fibres  to  be a ‘normal’ distribution 

[122,144,145,156]. Despite the good fit of these structural models to the experimental 

stress-strain data, it will be shown in this section that a normal distribution may not be 

consistent with the physical fibre kinetmatics in situ. Alternatively, a new angular 

distribution function is derived for fibres based on the physical conditions and 

kinematics of the fibres within the tissue, for a more accurate description. 

 

Consider that the vectors 1V
v

 and 2V
v

 in Figure 6.5 represent the position vector of a 

fibre before and after the application of an increment of external load to the tissue, 

and θ  and α  are the vector’s angle with the x  axis before and after strain, 

respectively. The fibre has been fixed from one end and rotates around this point. Let 

us assume that the applied strain increment has been small (any given increment of 

strain can be applied as a series of infinitely small strain increments). Under such a 

(6.30) 
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condition, one can consider that the projection of the two vectors on the x  axis 

remains unchanged; whilst the position along the y  direction changes (Figure 6.5). 
 

 
 

   

 

 

 

 

 

 

 
 
Figure 6.5 Position vector of a fibre before (continuous blue arrow) and after (dotted red arrow) the 
application of external load on the tissue. The fibre is shown to be rotating around its end at origin. 
 
 

 

Thus: 

                                ⎟
⎠
⎞

⎜
⎝
⎛=⇒=

d
y

d
y arctantan θθ                                                   (6.31) 

 

and: 

                               dy
yd

dd 22 +
=θ                                                      (6.32) 

 

Dividing both sides of above equation by π : 
 

                            dy
yd

dd
22

1
+

=
ππ

θ                                                    (6.33) 

 

Satisfying the condition in equation C2 (Appendix C), interestingly 
π
θd  in equation 

(6.33) has the form of a Lorentzian distribution function. Its physical meaning is that 

the angular orientation of a fibre with respect to the coordinate axis, in small 

deformations resulting to small rotations around a fixed point at one of its ends, 

would change in a way that the coordinate variables, x  and y , will have a Lorentzian 

distribution. Since the sum of Lorentzian variables would also have a Lorentzian 

α

x  

y  

d

1y  
2y  

θ
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distribution [158], the θ  itself would follow a Lorentzian distribution pattern. Thus, 

the angular distribution of the fibres in a planar tissue at each increment of small 

deformation would follow a Lorentzian distribution pattern as: 
 

                                 
( ) 22

0

1)(
γθθ

γ
π

θ
+−

=R                                                     (6.34) 

 

where 0θ  specifies  the  location of  the  peak of  the  distribution, and γ   specifies 

the  half-width at half-maximum. 

 

Substituting equation (6.34) into (6.30), the final form of the 2nd Piola-Kirchhoff  

stress of the whole fibrous soft tissue would be: 
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 6.2.4. Stress-strain equation in fibrous soft tissues 

 

For   parameter   estimation,  the  model  in  equation  (6.35)  should   be  fitted  to  

the experimental  stress-strain   data  of  the  tissue.  Generally, in mechanical uniaxial 

(6.35) 
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or biaxial deformation tests, the data set is presented either in engineering stress or 

true stress, versus strain. Thus, the 2nd Piola-Kirchhof stress of the continuum in 

equation (6.35) needs to be converted accordingly to describe the data set: 

 

a) if the engineering stress is used in presenting the experimental stress data, the  

model should express the 1st Piola-Kirchhoff stress, where [138]: 
 

                                                     f=σ S                                                              (6.36) 
 

σ  and f  are the 1st Piola-Kirchhoff stress and deformation gradient tensors 

respectively. Thus: 

                                  ∫
−

⊗=
2

2

][)(

π

π

θθσ dNNSRf fibre

vv
                                           (6.37) 

or equivalently in component format, using the equation (C8, Appendix C): 
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                θθθ
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π

π

sincos)(1 2

2
21

2112 ∫
−

== fibreSR θd  

 

where λ  is the stretch ratio. 

 

 

b) if the true stress is the measure of stress used in experimental data, the model 

should express the Cauchy stress, where [138]: 
 

                                                   fT = S Tf                                                          (6.39) 
 

T  and f  are the Cauchy stress and deformation gradient tensors, respectively. Thus: 
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                                    ∫
−
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or equivalently in component format, using the equation (C8, Appendix C): 
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−
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where λ  is the stretch ratio. 

 

 

6.3. Results and analysis 

 

The first step in determining the resultant stresses by either equations (6.38) or 

(6.41) is to calculate the fibree  and fibres  (equations 6.15 and 6.26), which requires the 

geometrical and mechanical properties of the collagen fibre as inputs. However, the 

literature is diverse concerning the values reported for a single fibre, leading to 

uncertainty in choosing a single suitable value for calculations [155]. In addition, the 

properties of fibres seem to show subject dependence (i.e. species, age, etc) [151], and 

no data specific to 18 to 24 months old porcine valves is available. Thus, and in order 

to develop an understanding of the capabilities of the model for different fibre 

properties reflected in different AV samples, the minimum and maximum reported 

values for the mechanical properties ( fibreE  and fibreG ) of a single fibre are 

incorporated into model calculations, and the results presented for the two cases.  

 

The shear modulus of collagen fibre fibreG  has been reported to be of the order of 

magnitude of 108 Pa [155], with the elastic modulus fibreE  in order of magnitude 
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between 100 MPa to 1 GPa [153,155,159]. As for the geometrical properties, the 

amplitude of the fibre waviness ( a ) ranges between 1 µm to 10 µm, the frequency 

values (b ) range approximately from 698131 to 69813, and radius ( r ) between 50 

nm to 500 nm [153]. However, histological analysis of the AV samples enabled 

quantification of a , b  and the crimped length ( 0x ) of the collagen fibres in samples 

used in this study, with the average values of  3=a  µm, 1000 =x µm and 

628318=b . For the purpose of modelling, these values were utilised, which fall well 

within the reported range in the literature. In addition, two values for fibreG   were 

selected, equating to the minimum and maximum values of fibreE  in the literature. 

Table 6.1 summarizes the reported values for the mechanical and geometrical 

properties of a fibre, and the values selected in this study.    

 
Table 6.1 Geometrical and mechanical properties of a single fibre: reported data and values used in the 
model. 
 
 

 a  (µm) b  r  (nm) 0x  (µm) fibreG  (Pa) 

Reported Values 1 - 10  698131 - 69813 50 - 500 --- O* (108) 

1.3 × 108 
Used Values 3 628318.4 100 100.6 

3.7 × 108 

 

* Order of magnitude. 

 

Figure 6.6 shows how the elastic modulus of a fibre changes as it becomes 

straighter, calculated from equation (6.15) with the values given in Table 6.1. When it 

becomes fully straight, the modulus reaches its maximum, and remains constant 

thereafter (straight line in the Figure 6.6). For shear modulus values of 
8103.1 ×=fibreG  Pa and 8107.3 ×=fibreG  Pa, the values for fibreE  correspond to  

81041.3 ×  Pa and 91004.1 ×  Pa respectively according to the equation, which are the 

minimum and maximum values reported in the literature for the elastic modulus of a 

fibre [153,155]. 
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The engineering stress-strain curve for a circumferentially loaded sample at 

60%/min (Chapter 3) was fitted to the model in equation (6.38) for 11σ , since the tests 

were performed uniaxially and thus  01222 == σσ . The estimation of parameters was 

optimised using a code in MATLABTM, employing a genetic algorithm application. 

The optimised parameters were obtained by the best fit to experimental data, through 

minimisation of an objective function defined as the normalized sum of the squared 

errors between each experimental data point and the model estimate. The sudden 

transient reduction in stress, due to the partial failure of ventricularis layer of the 

valve tissue (§3.5) could not be followed by the model, as layer dependant properties 

have not been incorporated.  

 

The straight portion of the fibre at each applied tissue strain )( .Lagε , given by 

equation (6.17), is shown in Figure 6.7a for both fibre properties considered. As 

expected, the stiffer fibre becomes straighter at higher strains compared to the softer 

fibre. While the model predicts that the softer fibre becomes fully straight at 

approximately 26.0. =Lagε , it predicts that only approximately 60% of the stiffer fibre 

is straight at the same strain (Figure 6.7a). The fibre strain fibreε  against the applied 

8103.1 ×=fibreG Pa

8107.3 ×=fibreG Pa

Figure 6.6 Elastic modulus of a fibre as it becomes straight, calculated by equation (6.15).  
 

Fully Straight 
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strain .Lagε  is shown in Figure 6.7b, determined by equation (6.25). It is evident that 

the stiffer fibre undergoes lower strains at each .Lagε . This was also reflected in the 

values for the proportionality coefficient )( .Lagc ε , as the values calculated by the 

model were 1.86 ± 0.33 and 1.31 ± 0.12 for the stiffer and softer fibre, respectively. 

This, in the light of equation (6.22), physically means that shorter lengths of the stiffer 

fibre become straight at each applied strain increment .Lagε , compared to the softer 

fibre. The current literature suggests that the failure strain for a fibre is around 10% 

[155]. As shown in Figure 6.7b, the model calculates that the fibres will reach their 

failure strain at an applied strain .Lagε  of approximately 0.26 or 0.34, for softer or 

stiffer fibres respectively. However, the failure strain for the tissue was observed to be 

around 0.31 (Chapter 3, Table 3.1), which would perhaps imply that the fibres in the 

tested AV samples possess an elastic modulus lower than 109 Pa, the upper limit 

reported in the literature.   
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Figure 6.7 (a) The straight portion of a fibre at each applied strain. The dashed line indicates the tissue failure 
strain at 0.31. Only approximately 60% of the stiffer fibre is straight at the same tissue strain .Lagε  where the 

softer fibre is fully straight. (b) Fibre strain fibreε  against .Lagε . The dashed line indicates the 1 to 1 linear 

relationship. The failure strain of fibre is 10% [155], which occurs at approximately .Lagε = 0.26 or .Lagε  = 0.34.
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The stress-strain curves for a single fibre fibres  at the two boundary stiffness 

conditions are shown in Figure 6.8, calculated by equation (6.26). The elastic modulus 

of the two fibres has approximately a 3 fold difference, when fibres are fully straight, 

as presented in Figure 6.6. This difference can also be observed in the values for fibres  

(Figure 6.8).  
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Figure 6.8 Stress-strain curve in a single fibre calculated by the model in equation (6.26). 

 

With the stress-strain relationship for a single fibre now quantified, the stress in a 

group of fibres in the tissue, fibreS , was calculated using equation (6.29). The 

corresponding stress-strain curves at the two boundary stiffness conditions are shown 

in Figure 6.9a. However, the model calculated that the total fraction of fibres that are 

active in these two boundry conditions are significantly different. By definition, the 

total fraction of fibres can be calculated from the )( .LagP ε  defined in equation (6.28), 

by ∫ .. )( LagLag dP εε  [111,156]. The total fraction of active fibres for each case is 

shown in Figure 6.9b. The results indicate that at the point of gross sample failure, 

while approximately 80% of the total fraction of fibres in the tissue are active for the 

soft fibre case,  only  approximately  30%  of  the fibres are  contributing  to  the  load 

.Lagε

fibres  

8103.1 ×=fibreG  Pa 

8107.3 ×=fibreG Pa
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Figure 6.9 (a) Stress-strain curves calculated using the two boundary stiffness conditions for the active 
fibres in load bearing of the tissue, (b) The total fraction of fibres which are active within the tissue at 
each strain level. 
 

bearing in the tissue with the stiffer fibre characteristics (Figure 6.9b). 
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To calculate the 1st Piola-Kirchhoff stress of the tissue 11σ  in equation (6.38), the 

angular distribution of fibres should be incorporated into the equation. All the 

previous studies regarding the microarchitecture of AV tissue have assumed a normal 

distribution [66,122], hence the previously available data cannot be used directly in 

the model, as the current study has shown that the angular distribution of fibres should 

follow a Lorentzian pattern. However, using the experimental data given in [122], the 

angular distribution of fibres within porcine AV tissue is symmetrical around the peak 

at zero degree, which translates to 00 =θ  and 
4
πγ =  for a Lorentzian distribution. By 

incorporating these values into equation (6.34) and subsequently (6.38), the modelling 

results for the stress-strain curve of the whole tissue in the circumferential direction 

are presented in Figure 6.10, compred with the experimental data from chapter 3. The 
2R  values were 0.97 and 0.98 for the case of soft and stiff fibres, respectively. The 

values adopted for each model parameter are summarized in Table 6.2, for the case of 

the two fibres.  

 
 
 
 

Table 6.2 The model parameters for the two types of fibres considered. 

 

 α  β  )( .Lagc ε  κ  ψ  0θ  γ  2R  

For 8103.1 ×=fibreG  9.38 ± 0.43 0.03 ± 0.01 1.31 ± 0.12 5.56 ±  0.38 0.28 ± 0.02 0 
4
π

 0.97 ± 0.017 

For 8107.3 ×=fibreG  11.72 ± 0.58 0.04 ± 0.01 1.86 ± 0.33 2.36 ± 0.27 0.55 ± 0.05 0 
4
π

 0.98 ± 0.004 
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Figure 6.10 Experimental stress-strain curves and the modelling results for: (a) softer fibre; (b) stiffer 
fibre. The experimental data are shown with circles, and the modelling results by a continuous line. The 
curves represent the stress-strain data in the circumferential direction. 
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6.4. Discussion 

 

A new modelling criterion was developed and presented in this chapter which 

considers the contribution of wavy fibres in the overall mechanical behaviour of 

fibrous tissues. As the fibres become straighter, their effective stiffness and 

contribution to the load bearing status of the tissue increases, reaching a maximum 

when they become fully straight. Previous structure-function modelling approaches 

have considered the gradual recruitment of the fibres, with fibres only contributing to 

the tissue mechanics once straight. However, the modelling approach presented in the 

current chapter has considered the gradual straightening of individual fibres, steadily 

increasing their contribution to the mechanical behaviour of the tissue as they become 

straighter. The model successfully fitted the experimental data, and quantified 

physically meaningful parameters, which provide more insights into the response of 

microstructure of the AV under deformation. These include properties of a single 

fibre as it becomes increasingly straight, stress-strain parameters in a single fibre, and 

the fraction of the fibre population that contributes to the tissue mechanics at each 

strain/stress level. 

 

A specific angular distribution function was presented as a part of the model, 

derived from the possible changes in coordinates of a fibre during rotation, for a 

planar tissue such as AV. Analysis showed that the angular distribution function of 

fibres should follow a Lorentzian distribution pattern, and can not therefore be chosen 

arbitrarily. A new relationship between fibre strain and applied strain at the tissue 

level was also introduced, based on the findings presented in chapter 5, which 

demonstrated that strain transfer is non-affine. This adds to the accuracy in 

quantifying fibre strains even at low tissue-level applied loads.   

 

To assess the capability of the model in providing meaningful results for different 

fibre properties, reflecting different types of tissue characteristics, the upper and lower 

limits of the mechanical properties of a single fibre reported in the literature were 

incorporated into the equations, to compare the extreme cases of modelling 

parameters. The model provided a good fit with the experimental data in both cases, 

and quantified how the response of the microstructure would differ with different 

fibre properties. 
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One of the ultimate goals of modelling the microstructural mechanics of tissues is to 

be able to quantify the loading environment encountered by the cells residing within 

the microstructure. Such information would have valuable implications in cell-

mediated tissue engineering applications, and can not be measured by 

experimentation alone. The correlation between the tissue level strain and the fibre 

strain is presented in the graph in Figure 6.7b. Since it is well accepted that the AVICs 

are tightly bonded to the fibres [22,23], it is reasonable to suggest that the maximum 

tensile strain levels transferred to the attached cells may be closer to those seen at 

fibre level. However, cells are likely to withstand additional compressive and shear 

strains, as the whole ECM reorganizes during tissue deformation. 

 

It must be noted that only the data related to the circumferential loading direction 

was considered for the modelling in this chapter, as the preferred principal direction 

of the collagen fibres within the AV is the circumferential direction. The 

micromechanics of the fibres and their contribution to the tissue behaviour are 

significantly more pronounced in this direction, and can therefore be better analysed 

by a fibre mechanics based model in more details. However, the stress/strain 

relationships have been derived for both loading directions, as presented in equations 

(6.38) and (6.41).  

 

The improvements introduced by the modelling criteria presented in this chapter 

will lead to a more accurate quantification of the microstructure response, especially 

at lower applied loads on the tissue, where the fibres would still be more wavy rather 

than straight. 

 

The modelling approach developed in this chapter was based on the hyperelasticity 

assumption introduced by Lanir (equation 6.1) [143,147]. While this is a well 

accepted criterion for the structural-based models of soft tissues, it does not take into 

account the shearing effects due to the non-fibrous components of the ECM (e.g. 

GAG). Indeed, the interactions between the fibres and the GAG content of the tissue 

matrix during deformation is known to induce shear on the fibres, which further 

contributes to their gradual straightening [155]. However, due to the random nature of 

the size, shape and content of the fibres in the tissue ECM, deterministic approaches 

in characterising such shearing effects may prove very challenging, and further 
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simplifying assumptions may be required [155]. Nevertheless, the stochastic 

formulations incorporated in microstructural based models to represent the gradual 

fibre straightening and recruitment, integrate the overall straightening effects 

irrespective of the underlying causes, e.g. the shearing between fibres and the GAG 

substance, the inter-connections of the fibres, or simply straightening of the fibres due 

to stretch of the whole tissue.  
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7.1. Synopsis 

 

The two main load-bearing constituents of the aortic valve (AV) are the collagen 

fibres and elastin, as reviewed in chapter 1. The role of collagen fibres in the 

mechanical behaviour of the AV was modelled and analysed in chapters 6 and 7. The 

role of elastin network will be considered in this chapter.  

 

The contribution of the elastin network to the mechanical behaviour of the AV has 

generally been described in a qualititative fashion in the literature, limited to two main 

descriptions: (i) it contributes to the load-bearing capacity of the tissue at small 

strains, where the collagen fibres are wavy and bear minimal loads and the tissue 

stress-strain relationship is quasi-linear [5]; and (ii) it restores the contracted 

configuration of the valve leaflet after the stretch induced during the diastolic phase of 

each cardiac cycle [19,20]. A more thorough characterisation of structure-function 

relationships in the AV requires the contribution of the elastin network to the 

mechanical behaviour of the AV to be quantified. Models regarding the elastin 

network deformation and its connection to the total deformation of the AV tissue are 

currently lacking in the literature. This chapter introduces and develops a theoretical 

criterion to understand and quantify the role of the elastin network in AV mechanical 

behaviour. A strain energy function is formulated for the elastin network, and the 

force-elongation relationship derived from the strain energy function accordingly.   

 

 

7.2. Theoretical criterion and formalism 

 

The modelling criteria used here are based on the principles of statistical mechanics 

of worm-like molecular chains theories originally developed for entropic rubber 

elasticity [161,162]. Concisely, the theory applies to flexible molecular chain network 

structures that are formed by occasional cross-links between the chains [163-165]. In 

their undeformed state, chains can have many arbitrary configurations of nearly equal 

entropy, typically represented by statistical distributions. Perturbing the chains away 

from their equilibrium conformations generates entropic forces that oppose these 

deformations, which forms the basis of their mechanical behaviour and stress-strain 

response [164,165]. The elastin network in soft tissues is thought to provide a close 
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analogy to the worm-like chain networks [163,165,166]. A typical histological image 

of the elastin network in the porcine AV samples used in the current study is shown in 

Figure 7.1, depicting the random and worm-like shape of the elastic fibres. The elastin 

network in the AV is known to be in the form of a flat network providing inter-fibre 

connections with collagen fibres [19,20]. A schematic of this configuration is shown 

in Figure 8.2a. Following this analogy, the principles of statistical mechanics of 

worm-like molecular chains are applied to the elastin network within the AV tissue.  

 

 
 
Figure 7.1 A histological image of the elastin network in an unloaded AV tissue sample, stained using 
Millers Elastic and imaged by a x20 magnification objective. Elastic fibres have a random shape, close 
to the worm-like chain configuration. 

 

 

The fundamental assumption of the chain network theory is that the free energy of a 

network of n  chains per unit volume is equal to the sum of the elastic free energy of 

the individual chains [161,164]. Thus the entire network may be replaced by a system 

of a single chain in the local Cartesian coordinate system [164]. For a planar tissue 

such as the AV, let us consider the system to be a square area element with sides of 

initial length 0a , oriented along the coordinate axes of x  and y , and having a single 

elastin chain along its diagonal as shown in Figure 7.2b. The two end points, A and B, 

are the fixed points of inter-fibre connection with the collagen fibres (Figure 7.2a), 

and the chain can assume any arbitrary configuration without changing the end points.  

 

 

 

 

100 µm 
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Figure 7.2 (a) Schematic of the elastin network structure within the AV (red lines), and its inter-fibre 
connections with the wavy collagen fibres (blue lines), as proposed in [19,20] (b) Geometry of a single 
chain in a 2D square element. 
 
 
 

In the statistical treatment of a single chain, its geometrical structure is idealized to 

be composed of N segments of equal length l , also known as the Kuhn segment 

length, as shown in Figure 7.2b. The contour length L  of the chain is then NlL = . 

(a) 
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Let r  depict the current end to end distance of the chain, and 0r  the unstrained free 

chain distance. The chain stretch is therefore: 

                                                             
0r
r

=λ                                                           (7.1) 

 

The next key step is to determine the entropy of the chain. As previously mentioned, 

the chain can assume any arbitrary configuration between the two end points A and B. 

Let us introduce the probability density )(λp , which essentially describes the 

probability that a chain of contour length L  takes a configuration characterised by the 

end to end distance r . Then the entropy of that chain is governed by the Boltzmann’s 

equation as: 
 

                                                    )(ln λpks =                                                          (7.2) 
 

where k  is the boltzmann constant. For a purely entropic response the free energy cψ  

of the chain is obtained by [100]: 
 

                                                           Tsc −=ψ                                                        (7.3) 
 

where T  is the absolute temperature. Inserting equation (7.2) into (7.3): 
 

                                                    )(ln λψ pkTc −=                                                   (7.4) 
 

cψ  is the free energy for the unconstrained deformation of the chain between the two 

cross-link points A and B, shown in Figure 7.2. 

 

By definition, the force of deformation for a chain can now be calculated by: 
 

                                                      
λ
ψ
d

d
F c

c =                                                            (7.5) 

 

A statistical treatment for the free energy function in equation (7.4) that is valid for 

large stretches is provided by the Langevin model [161]. The probability density 

function would be of the form: 
 

                             ⎥
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where )(1

N
λβ −= l , βββ /1coth)( −=l  is the well-known Langevin function and 

0p  is a constant. Inserting equation (7.6) into (7.4) gives the free energy of a single 

chain as: 

                    0
1

1

1

)(sinh

)(
ln)( ψ

λ

λ
λλψ +

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+=
−

−

−

N

N
NN

NkTc

l

l

l                              (7.7) 

 

where 0ψ  is a constant so that the free energy of the chain cψ  would be zero in the 

undeformed state. 

 

Substituting equation (7.7) into (7.5) gives the associated force acting on a chain as: 
 

                                             )(1

N
NkTFc

λ−= l                                                    (7.8) 

 

The Langevin function in the above equation can be approximated by [167]: 
 

                         ⎟⎟
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Thus, the force acting on a single chain takes the final form: 
 

                                        
)/(1
)/(3

2

2

N
NkTFc λ

λλ
−
−

⋅=                                                     (7.10) 

 

From this, a network model of aggregate chains can be developed, linked to the 

deformation at the tissue level, which directly exploits the energy function. As 

outlined earlier, the free energy of a network of n  chains per unit volume is equal to 

the sum of the elastic free energy of the individual chains [161,164]. Assuming the 

network consists of n  chains of equal Kuhn segment length l  per unit volume, the 

free energy of the network will then be: 
 

                                             c

n

i

i
cn nψψψ == ∑

=1
                                                     (7.11) 

 

However, to be able to define the macroscopic deformation energy of the network, 

i.e. the deformation of the network due to application of load at the tissue (macro) 
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level, it is necessary to link the deformation of the chain to the macroscopic 

deformation of the tissue continuum. In a broad classification, the macro-to-micro 

transition of the deformation assumes either an affine or non-affine transformation 

[168]. Under the affine assumption, the chain stretch λ  is a linear function of the 

macro stretch  λ , i.e.  ba += λλ , where a  and b  are constant coefficients [168]. 

The non-affine deformation assumes a non-linear transformation of strain map, which 

in the general case takes the relation )(λλ f= , where f  is a non-linear function that 

acts on the affine stretch [168]. The assumption of affine deformation may idealise the 

deformation of some polymeric chains [169,170]. However, it was shown in chapter 5 

that the strain transfer from tissue level to the micro-structure in AV tissue specimens 

under tensile deformation is non-affine. As such, it becomes necessary to derive a 

relationship between the macro (tissue level) stretch (λ ) and the induced micro 

stretch (λ ), based on the network geometry defined in Figure 7.2. 

 

Consider the single chain in the undeformed network shown in Figure 7.2b. The 

unstrained end to end distance of the chain, 0r , is then 200 ar = . After deformation, 

the end-to-end chain length vector will be given by )ˆˆ( 210 jiar λλ +=v , where 1λ  and 

2λ  are the principal macro stretches, and  i  and j  are the unit vectors, in x  and y  

directions respectively. Hence, the magnitude of rv  is: 
 

                                                 2
2

2
10 λλ += ar                                                     (7.12) 

 

Substituting this into equation (7.1): 

                                                       
2
1I

=λ                                                            (7.13) 

 

where  1I  is the first principal invariant of the Cauchy-Green deformation tensor in 

the macro level principal reference system, and is given by 2
2

2
11 λλ +=I .  Equation 

(7.13) represents the relationship between macro and micro stretches for the 

considered network. 

 

Now, with the relationships for network energy nψ  and the non-affine 

transformation of the macro to micro (equations (7.11) and (7.13) respectively) we 
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can derive the energy function for the elastin network with regards to the deformation 

at tissue level. This can be done through [168]: 
 

                                                 )
2

( 1I
nelast ψ=Ψ                                                    (7.14) 

 

By inserting equations (7.7) and (7.11) into (7.14): 
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and from equation (7.5), the forces can be calculated as:  
 

                                           
i

elast
iF

λ∂
Ψ∂

=  ,  2,1=i                                                   (7.16) 

where i  denotes the principal directions. 

 

 

7.3. Results and analysis 

 

Experimental studies regarding the mechanical behaviour of the AV elastin network 

in isolation are very rare in literature, mainly owing to the difficulties associated with 

isolating the intact elastin network from the other components of the AV matrix 

[20,171]. However, Vesely (1998) carried out a study attempting to look at the 

mechanical behaviour of the intact elastin network within the AV tissue by digesting 

other matrix components, and experimentally characterised the stress-strain 

relationship under uniaxial loading, in circumferential and radial loading directions 

[20]. To establish if the developed model is capable of characterising the behaviour of 

elastin network, the model is fitted to the data provided in the study.  However, the 

digestion procedure may alter the initial structural architecture of the elastin network 

within the tissue, especially at the inter-fibre connections with the surrounding 

collagen fibres, and subsequently the overall behaviour of the network. One should 

note that such effects can not be avoided in experimental investigations, and are 

inherent to the adopted protocols, and hence the resulting data.  
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Under uniaixal deformation, assuming that the principal direction is 1=i , then 

02 =λ . Thus elastΨ  in equation (7.15) simplifies to: 
 

                0
11

11

111

)
2

(sinh

)
2

(
ln)

2
(

2
ψ

λ

λ
λλ

+

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+=Ψ
−

−

−

N

N
NN

nkTNelast

l

l

l                     (7.17) 

 

and therefore the force will be: 
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( 11
1 N
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which can be expressed in light of equation (7.9) as: 
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Equation (7.19) was fitted to the experimental force-strain data provided in the work 

of Vesely [20]. The results for the circumferential and radial directions are shown in 

the graphs of Figures 7.3a and 7.3b, respectively. The model provides a good fit, with 
2R  values in excess of 0.98. Values for the constants and network parameters are 

summarized in Table 7.1. The network parameters are close to the values reported for 

other soft tissues such as arteries [166,172]. However, characterisation of these 

parameters within the AV is currently lacking in the literature for a direct comparison, 

to the knowledge of author. 

 
Table 7.1 Model parameters. 

 

Constants Network Parameters 

Circumferential Radial 
k  (JK-1) T  (K) 

n  (mm-3) N n  (mm-3) N 

1.38×10-23 300 9.58×1017 4.03 6.15×1017 2.43 
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Figure 7.3 Experimental force-strain data for the intact elastin network of the AV in isolation 
compared with modelling outputs for: (a) the circumferential direction; and (b) the radial direction.    
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7.4. Discussion 

 

A modelling criterion was introduced and developed in this chapter, to characterise 

the contribution of the elastin network to AV mechanical behaviour. The model 

demonstrates how a network of free elastin fibres can show non-linear mechanical 

behaviour, under tissue-level deformation.  

 

With regards to the choice of probability distribution function introduced in 

equation (7.6), an alternative to the considered Langevin function is the Gaussian 

probability, used in the classical statistical theories of single polymer and rubber 

chains [173]. It should be noted that the first term of the Taylor series expansion of 

the Langevin model reproduces the Gaussian model (Appendix E). However, as 

evident from equation (F5, Appendix E), the Gaussian model leads to a linear 

relationship between the force and elongation for the network, which is not supported 

by the experimental data. A comparison between the two models is shown graphically 

in Figure 7.4. It becomes evident from the process of deriving the Gaussian model 

that it implicitly assumes that the entire network undergoes only small deformations 

(equation (F7)), contrary to the experimental data. This is also reflected in the graphs 

shown in Figure 7.4, as the forces in Gaussian model and Langevin model are close 

only at small strains. Generally, the choice of a Gaussian probability distribution to 

describe the geometrical characteristics of the fibrous constituents of the AV does not 

seem likely to result to an accurate description. Indeed, it was demonstrated in chapter 

6 that the angular distribution of collagen fibres follows a Lorentzian pattern, rather 

than a Gaussian (normal).  

 

It must therefore be emphasised that descriptions which limit the contribution of the 

elastin network to only small strains in the AV mechanical behaviour do not 

analytically hold true, as this would lead to a Gaussian probability of the 

configuration of the network of elastin chains and a linear stress-strain relationship. 

However, the experimental and modelling results both indicate that the overall 

nonlinearity of AV stress-strain curves may not be entirely a result of the gradual 

recruitment of the initially wavy collagen fibres, but that the elastin network can 

further exacerbate the nonlinearity, especially at increasing strains. 
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Figure 7.4 Langevin versus Gaussian model in describing the mechanical behaviour of the intact 
elastin network in isolation: (a) the circumferential direction, (b) the radial direction. The Gaussian 
model produces forces similar to the Langevin model and the experimental data only at small strains. 
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The AV is considered a planar tissue when modelling and characterising its 

mechanical behaviour, a principal also assumed in this chapter, when describing the 

geometry of the elastic fibres and their network. However, a recent study has shown 

that the elastic fibres may form an interconnecting component between the layers, 

spanning through the thickness of the leaflet [171], effectively constructing a 3D 

network. The modelling criterion introduced in this study can easily be extended for a 

3D network, as the relationship between the λ  and  λ  given in equation (7.13) for 

the case of 3D network will take the form:  
 

                                                      
3
1I

=λ                                                             (7.20) 

 

as shown in Appendix F. This can be substituted into the equation for the elastic 

energy of the network (7.14), and the forces in each direction can then be derived 

accordingly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Chapter 8 
 

Can the quasi-linear viscoelasticity (QLV) 
theory explain the time-dependent behaviour of 
the aortic valve based on its microstructure? 
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8.1. Synopsis 

 

AV micromechanics under quasi-static loading was analysed in chapters 6 and 7, 

characterising the contribution of the load-bearing extracellular matrix constituents to 

the overall tissue mechanics. In the following chapters, the time-dependent behaviour 

of the AV will be investigated and analysed from a microstructural perspective. Time-

dependant matrix reorganisation will be experimentally examined, and its relationship 

with tissue level behaviour modelled and quantified.  

 

 As the first step in this chapter, it is investigated that if the QLV theory, as the well-

accepted modelling criteria for characterising the viscoelastic behaviour of 

collagenous soft tissues, can explain the time-dependant behaviour of the AV based 

on its microstructure, or if alternative explanations and models are required. 

 

Quasi-linear viscoelasticity (QLV) theory has been widely employed in studies 

concerning the viscoelastic behaviour of several soft tissues, from tendons and 

ligaments [148,174] to cardiac muscles [175] and heart valves [5]. It has enabled the 

mathematical principles applied to linear viscoelasticity to be employed in the 

analysis of time-dependent behaviour observed in biological tissues [176]. However, 

studies investigating stress-relaxation of the AV have reported discrepancies in the 

values of the relaxation parameters quantified through QLV, as a consequence of the 

relatively poor fit to the experimental data [5,55,72]. The question therefore arises as 

to whether quasi-linear viscoelasticity is an intrinsic behaviour of the AV tissue, or if 

QLV is essentially a phenomenological model that is not supported by the underlying 

micro-structural mechanisms inherent to time-dependent behaviour in the AV. This is 

of particular interest, as the answer would clarify if the quantified time-dependant 

parameters by the QLV are physically meaningful, or only a result of a numerical 

fitting procedure. 

 

 

8.2. The modelling criteria 

 

  The hereditary integral constitutive equation for viscoelastic response of a solid, 

under the assumption that the response of that solid to a multi-step strain history can 
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be approximated by a linear combination of responses to single strain histories 

]),([ ttR ε , has shown to be [176,177]: 
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where ],[ tRd εε  denotes a differential with respect to the first argument of ],[ tR ε . 

 

With a strain history such that: 
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the stress in equation (8.1) can be expressed as [176,177]: 
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The model proposed by Fung, known as quasi-linear viscoelasticity (QLV), assumes 

that ],[ tR ε  can be expressed by [71]: 
 

                                                )()(],[ tGtR e ⋅= εσε                                                 (8.4)  
 

where )(tG  is a stress-relaxation function and )(εσ e is the immediate elastic response 

[71]. By substituting (8.4) into (8.3): 
 

                  ∫ ⋅⋅−+⋅=
t e

e ds
ds

sd
sd

sdstGtGt
0

)(
)(

))(()()())0(()( ε
ε
εσεσσ                        (8.5)     

or equivalently: 
 

                   ∫ ⋅⋅−+⋅=
t e

e ds
ds
d

d
dstGtGt

0

)()()())0(()( ε
ε
εσεσσ                                (8.6) 

 

 

 

8.2.1. Stress-relaxation 

 

The elastic response function )(teσ  in collagenous soft tissues has been proposed 

by Lanir [143,147], as discussed in details in chapters 6. For simplicity of the 
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formulations, an alternative form of )(teσ  will be used, as introduced by Lanir (1986) 

[178], in which: 

                                  ss
s

se dDKV εε
ε
εε

εσ
ε

)(
21

)(
0 +

−
⋅⋅= ∫                                           (8.7) 

 

where K  is the elastic modulus of a single fibre (Chapter 7, equation 7.14) , )( sD ε is 

the distribution function representing the fraction of fibres that are straight at a strain 

of sε , and V  is the volume fraction of fibres within the tissue [178]. Using a gamma 

distribution function for )( sD ε , equation (8.7) can be rewritten as: 
 

                    s
s

s
s

se dVK ε
β
ε

ε
αβε

εε
εσ

ε
α

α∫ −
Γ

⋅
+
−

⋅= −

0

1 )exp(
)(

1
21

)(                            (8.8) 

 

Now, substituting (8.8) into (8.6), and assuming that both stress and strain at 0 are 

equal to zero, i.e. 0)0( =ε  and 0)0( =σ , and strain rate is constant upon applying the 

ramp, i.e. constC
ds
d

==
ε  , we will arrive at: 

 

                                     ∫ ⋅⋅−=
t e

dsC
d

dstGt
0

)()()(
ε
εσσ                                           (8.9) 

 

from equation (8.8): 
 

        )exp(
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1
21
1
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)( 1
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σ α

α

εε
s

s
ss

ss
e
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VK
d

d
−

Γ+
⋅=

+
⋅= −∫∫ sdε           (8.10) 

 

thus: 
 

         ∫ ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Γ+
−⋅⋅= −

t

s
s

s
s

dstGCVKt
0 0

1 )exp(
)(

1
21
1)()( ε

β
ε

ε
αβε

σ
ε

α
α ds              (8.11) 

 

Under the assumption of linear elasticity of the fibre, one can consider the 

straightening strain of the fibre, sε , is independent of time. The argument in the 

brackets in equation (8.11) will thus be a constant and comes out of the integral: 
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In a stress-relaxation test, the left side of the above equation is the stress history of 

the specimen during the course of relaxation. Thus, the right-hand side of the above 

equation can take the form of any function that would follow the same trend. This 

implies that the relaxation function )(tG  is not necessarily a specific type of function, 

but is essentially selected through fitting to the experimental data that appear on the 

left-hand side of the equation (8.12). Indeed, it was shown in chapter 4 that the 

relaxation of the AV typically follows a Maxwell-type exponential decay mode. Thus 

the above equation should have lead to a specific solution in the form an 

exponentially decaying function. This indicates that the QLV remains a 

phenomenological model in describing the stress-relaxation behaviour of the AV. 

 

 

8.2.2. Creep 

 

Corresponding to the stress-relaxation function )(tG  is a creep function )(tJ . In 

QLV theory these are related to each other by [176]: 
 

      ∫ −
−

+=
t

ds
std
stdJsGtGJ

0 )(
)()()()0(1 = ∫ −

−
+

t

ds
std
stdGsJtJG

0 )(
)()()()0(                  (8.13) 

 

where 1)0()0( == JG . 

 

Considering equation (8.13), and that 1)0()0( == JG , equation (8.6) describing 

creep behaviour will take the form [176]: 
 

                                  ∫ −+=
t e

ds
ds

dstJtJt
0

)()()0())(( σσεσ                                  (8.14) 

 

Equation (8.14) can be rearranged by the chain rule as: 
 

                          ∫ −+=
t

s

s

e

ds
ds
d

d
d

d
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)()()0())(( ε
ε
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The term 
s

e

d
d
ε
σ  is given in equation (8.10), and 

ε
ε

d
d s  will be a constant, shown 

hereafter as 1C . Additionally, similar to the relaxation case, strain rate is assumed 

constant upon applying the creep loading protocol, i.e. constC
ds
d

== 2
ε .  Equation 

(8.15) can now be re-written: 
 

         ∫ ⎟⎟
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Substituting for ε  in the above equation from equation (D6) in appendix D leads to: 
 

                ∫ ⎟⎟
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⎝
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Γ
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Under the assumption of linear elasticity of a fibre, one can consider tε  to be 

independent of time, and sε  to be an intrinsic property of the fibres within the tissue. 

Thus (8.17) can be rearranged as: 
 

                          ∫ −−
Γ

= −
t

s
s dsstJAt

0
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)(

1))((
β
ε

ε
αβ

εσ α
α                            (8.18) 

 

where A  is the multiplication of all the constants in (8.17). Substituting for sε  in 

equation (8.18) in the light of equation (D6, appendix D): 
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and thus: 
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Since stress ))(( tεσ  remains constant during creep, it becomes clear from equation 

(8.20) that the creep function )(tJ  will be of the general form: 
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                                      ⎟⎟
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where: 
12

)(
)(

+
−

=
t

tt
t

ε
εε

γ . 

 

It was shown in chapter 4 that primary creep strain in the AV follows a Maxwell-

type exponential mode. However equation (8.21) clearly indicates that the analytical 

form of the creep function resulting from QLV contains an additional power-term, 
1)( −αγ t .  This form of creep function provides a poor fit to the experimental data, and 

does not follow the linear secondary creep observed in the experiments (Figure 4.6, 

Chapter 4).  

 

 

8.3. Concluding remark 

 

The QLV model has been very successful in characterising the time-dependent 

behaviour of a wide range of soft tissues. However, it does not facilitate structural 

insights into the observed time-dependent behaviour in the AV tissue, and remains 

phenomenological when accounted for stress-relaxation phenomenon. When applied 

to creep, it was shown that QLV will lead to creep modes that are not experimentally 

observed (power term in equation (8.21)). Thus for an accurate characterisation of the 

structure-function relationship of the time-dependant behaviour in the AV, alternative 

modelling criteria should be developed based on the tissue microstructure and the 

experimentally observed underlying mechanisms. The reorganization of the AV 

microstructure during stress-relaxation and creep, and how it contributes to the tissue 

level behaviour, will be experimentally investigated and analytically modelled in the 

following chapters. 
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9.1. Synopsis 

 

Stress-relaxation is an important mechanical feature of the native AV, as its 

structural durability is generally thought to be linked with its ability to dampen (relax) 

the transient stresses created by the sudden change in pressure gradient at systole 

during each cardiac cycle [76,179]. Indeed, the structural failure of substitute valves 

may be a consequence of a lack of stress-relaxation compared to the native tissue 

[76,179]. Additionally, it has been hypothesised that valve calcification may be 

exacerbated by a reduction in the stress-relaxation ability of the AV. This reduction 

may result in damage to the AVICs membrane and haemolysis, as the cells will be 

exposed to excessive loading levels [34]. However, despite these potentially critical 

roles for stress-relaxation behaviour in the normal function of the AV, the micro-

structural mechanisms involved in AV stress-relaxation have received minimal 

attention, and are poorly understood [69].  

 

The mode of stress-relaxation in valvular tissues has shown to be a Maxwellian 

exponential type [69,75]. In chapter 4 it was further showed that AV stress-relaxation 

in the radial direction followed a single Maxwell mode, whereas circumferential 

relaxation followed a single mode only at low strain levels but switched to two 

Maxwell modes at higher strains (Chapter 4, Table 4.3). Each mode is an indicator of 

a structural mechanism contributing to the overall relaxation at the macro level 

[180,181]. Furthermore, the type of the relaxation mode also reflects the nature of the 

underlying mechanism causing the relaxation [170-182]. Indeed, many materials have 

been shown to undergo non-exponential relaxations [182], such as power-law modes 

[180,181,183], and even a specific logarithmic relaxation mode for lung tissue [180], 

stemming from different underlying mechanisms causing the relaxation. Of the very 

few studies examining the structural basis of time-dependent behaviour in valvular 

tissues, it has been reported that the collagen fibril D-period decreases during stress-

relaxation, while it remains approximately constant during creep, when the tissues are 

subjected to equi-biaxial loading [69,75]. This mechanism, termed as the “fibril-level 

locking” mechanism, has been hypothesised to allow the stress to relax, by dissipating 

the deformation energy to reduce the D-period spacing in collagen fibrils, but 

preventing this change under [69,75]. However, it does not provide a clear 
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explanation of the exponential stress-relaxation mode, nor the number of relaxation 

modes, observed at the tissue level.  

 

In this chapter, the structural origins of stress-relaxation in the AV at the micro level 

are investigated, using confocal microscopy to track the interstitial cell movements 

during relaxation. The interstitial cells are known to be bonded to the fibres 

[23,121,184], and thus by tracking the ICs movement, the fibre kinematics (i.e. 

rotation and movement) can be tracked and characterised. A mathematical description 

is also derived and developed to show how these structural reorganization 

mechanisms will lead to the exponential stress-relaxation modes observed at the tissue 

level.    

 

  

9.2. Materials and methods 

 

6 porcine hearts were used in this investigation. Tested specimens were prepared 

according to the protocol described in §2.1, excised circumferentially from AV 

leaflets. This yielded a total of 18 circumferential samples.  

 

9.2.1. Stress-relaxation tests 

 

Samples were divided in two analysis groups in order to investigate the ventricularis 

and fibrosa layers individually: 9 samples were viewed from the ventricularis side, 

and 9 from the fibrosa side, along the central region of the sample length. Imaging 

was carried out at a depth of 50 to 80 µm into the designated valve layer. 

 

Each sample was incrementally strained from 0% to 20% in 2% increments, at a rate 

of 60%/min, using the uniaxial rig described in §2.3.3, and held at each strain level 

for 300 s to be consistent with the experiments for the tissue-level relaxation, 

described in chapter 4. Stress-relaxation tests for each layer were repeated for nine 

samples ( 9=n ). 
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9.2.2. Cell tracking 

 

The technique for imaging and tracking the AVICs within the tissue matrix 

followed that discussed in §2.3. Images were recorded during the 300s relaxation 

period at a rate of 1 frame per second, and the movement of cells tracked using 

particle tracking software (IMARIS®, Bitplane AG) to determine the ),( yx  

coordinates of the centroid of the nuclei. From these data, the displacement and the 

velocity of each nucleus during the relaxation period was calculated and used to 

analyze the structural re-organization occurring during each relaxation increment 

within the AV.    

 

9.2.3. Statistical analysis  

 

Statistical comparisons between the values associated with fibre kinematics in the 

ventricularis and fibrosa layers were performed using paired t-tests. The statistical 

significance was set at 05.0<p .  Values plotted in the figures are presented as the 

mean and standard deviation. 

 

 

9.3. Results 

 

The microscopy images documented no detectable movement of the AVICs at strain 

levels %4≤ε , implying no microstructural re-organisation within the AV during 

stress-relaxation at those strain levels. However, the movement of the cell nuclei 

during the relaxation period became evident for strain levels of %6≥ε . Typical 

microscopic images highlighting the movement of the cell nuclei are shown in Figure 

9.1. While the movement of the nuclei was curvilinear at lower strains (Figure 9.1a), 

straight-line movement in the straining direction became dominant as the strain levels 

increased (Figure 9.1b). This can also be observed by reconstructing the trajectory of 

the nuclei, using their ),( yx  coordinates at each time-point in each frame during 

relaxation. Figure 9.2 shows a typical trajectory of a cell nucleus during the 300 s 

relaxation period, at a range of different strain increments. As can be seen, the 

movement becomes straighter as the strain increases.  
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Figure 9.1 Sequence of images documenting the movement of the cell nuclei during relaxation: (a) 
rotation of the nuclei through a curvilinear motion at low strain levels ( %6=ε ); (b) linear 
displacement of the nuclei at higher strain levels ( %18=ε ). The time sequence increases in each panel 
from top to bottom. The circles show the same location of the indicated nuclei at t = 0. The scale bar 
shows 100 µm. 
 

 

To calculate the angle of rotation (θ  in Figure 9.2), the ),( yx  coordinates of the 

nuclei from the start to the end of the 300 s relaxation period were curve fitted to a 

quadratic polynomial and the radius of curvature was calculated at both the start and 

at t = 0 

at t = 100 s 

at t = 300 s  

(b) (a) 

at t = 0 

at t = 100 s 

at t = 300 s  

%6=ε  %18=ε  
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end point of the curvature, i.e. ir  and fr  in Figure 9.2. The angle θ  was then 

calculated using the values of ir , fr  and the coordinates of the start and end point of 

the curvature. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.2 A typical trajectory of the movement of the nuclei during stress relaxation at different strain 
levels. At lower strains, curvilinear movement is prevalent. However, with increasing strain levels, the 
movement gradually transfers to straight line motion. 
 

 

The calculated mean values for the angle of rotation for both the ventricularis and 

fibrosa layers at each strain level are shown in Figure 9.3a. Results show that the 

rotation decreases as the strain increases in both layers, while the angle of rotation is 

significantly larger in the ventricularis layer at all strain levels. Additionally, rotation 

in the ventricularis layer occurred at strain levels up to 16%, while negligible rotation 

was observed in fibrosa layer at strains above 10% (Figure 9.3a). However, as the 

strain increased, the curvilinear motion gradually switched to a linear motion (Figure 

9.2). The average displacements of the nuclei were calculated using their ),( yx  co-

ordinations at the start and the end of the 300 s relaxation period. The values are 

shown in Figure 9.3b. In contrast to anglular rotation, linear displacement is more 

dominant in the fibrosa layer.   

 

 

 

θ  
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(b) 

Figure 9.3 The movement of cell nuclei during relaxation: (a) values for angular rotation; (b) values for 
linear displacement. There is a statistically significant difference between the two layers at all 
corresponding strain levels, shown by *. The values are presented as Mean ± SD. No detectable 
movement of the cell nuclei was observed at strain levels %4≤ε . 
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The velocity of the linear motion of the nuclei was also calculated by the distance 

they travelled, using their ),( yx  coordinates at each frame. The typical trends and 

values are shown in Figure 9.4a and 9.4b, for the ventricularis and the fibrosa layers 

respectively. The values show an exponential decrease over the time, at all the strain 

levels in both layers. Comparing equivalent strain levels, the values are higher in the 

fibrosa layer. The characteristic decay times for the velocity, calculated using a single 

exponential decay function, are summarized in Table 9.1 for each strain level for the 

both layers. For comparison, the slow relaxation times at the tissue level established 

in chapter 4, are provided for comparable strain levels.    

 

 
Table 9.1 Characteristic decay times for the linear motion of the cell nuclei in both the ventricularis 
and fibrosa layers of the AV, and the corresponding relaxation times at the tissue level. 
 

Characteristic decay time (s) ε  (%) 
Tissue level  

slow relaxation time (s) 
(from chapter 4) Ventricularis Fibrosa 

12 --- --- 87.33 ± 5.08 

14 --- --- 56.16 ± 8.73 

16 88.48 ± 6.21 --- 58.40 ± 10.26 

18 108.173 ± 8.75 41.52 ± 11.62 51.72 ± 10.44 

20 152.02 ± 14.70 64.13 ± 6.38 60.29 ± 9.15 
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Figure 9.4 Average velocity of the linear movement of the cell nuclei during relaxation in: (a) 
ventricularis layer; and (b) fibrosa layer, at a range of different applied strain levels. 
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9.4. Discussion 

 

Histological observations and biochemical analysis have indicated that cells are 

bonded to the fibres within the AV ECM [23,121,184]. Movement of the AVIC nuclei 

was therefore adopted as an indicator of fibre reorganization in this study. Assuming 

that the movement of the cells reflect a similar kinematics to that of the fibres, data 

indicate that during stress-relaxation fibres undergo reorientation at low strain levels, 

while at higher strains they displace linearly. In the following, it will be shown how 

such fibre kinematics during relaxation would lead to an exponential decay of stress at 

the tissue level.  

 

For simplicity of the kinematics, analysis starts with the linear motion mode 

occurring at higher strains, where a larger fraction of the fibres are straight. It is well 

established that, due to the fibre movement, there are frictional contacts between the 

fibres and the surrounding ECM elements [113]. A theoretical criterion is formulated 

in the following to describe the relaxation of stress, due to sliding of adjacent fibres 

against each other, and the surrounding ECM, upon their linear movement. This 

criterion is based on the principles primarily introduced in [113], adjusted and 

modified to be applicable for planar collagenous tissues such as the AV.  

 

Consider two straight adjacent collagen fibres in a tissue sample, as shown in Figure 

10.5, that interact with each other along their length through a contact force that has 

two components: (i) a normal component to the surface of each fibre denoted here as 

N; and (ii) a tangential component to the surface of each fibre denoted here as T. 

Physically, N may represent the transverse mechanical loads (e.g. Poisson ratio 

effects), as well as any other microenvironment originated loading, and T can be 

interpreted as the frictional force between the two fibres.  

 

When the fibres displace linearly and sliding between the two fibres occur, the 

tangential component T at any given point of x will depend on time (t), the relative 

velocity between the fibres at that point ),( txVrel , and the normal component acting 

on that point )(xN  [113]. Assuming that the two fibres are in some parts in direct 

sliding contact, whereas in other parts they are separated by a very thin layer of other 
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Highlight

Afshin
Note
Point No. 8




Chapter 9                                                                           Micromechanics of stress-relaxation in the AV 
                                                                                                                                                           

 166

ECM components, such as GAGs, the tangential traction T over the length of dx at 

time t and point x will be: 
 

 

                                       ),()(),( txVCxNtxT reld+±= μ                                           (9.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.5 Schematic of two adjacent fibres moving and sliding relative to each other during stress-
relaxation. 

 

 

Note that the first term in equation (9.1), )(xNμ , is the classic Coulomb friction 

law, and the second term, ),( txVC reld  is the Newtonian viscous force. Data in chapter 

3 highlighted that that the viscous damping coefficient in AV tissue appears to be rate 

dependant, and thus the viscous effects are non-Newtonian. However, in the current 

model, a Newtonian case is considered for simplicity.  

 

Consider that the application of uniaxial strain to the tissue corresponds to an 

external load Fexternal acting on the tissue sample (Figure 9.5), which is held constant 
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to allow for stress-relaxation to occur. In such a configuration, consider the applied 

force at the fibres ends to be )(tF  (Figure 9.5). Let’s assume that )(tF  loads the 

opposite end of the two adjacent fibres (Figure 9.5). This assumption assures that 

mechanically, only sliding between the two fibres would occur, without any slippage. 

The force in fibre 1 changes from 1F  to FF Δ+1 , and from 2F  to FF Δ+2  in fibre 2, 

over the total interface length, l, between the two fibres (Figure 9.5). FΔ is the total 

differential force exerted by one fibre on the other, due to the above described 

interactions between the two fibres.  Thus, at equilibrium,  FΔ  should be in balance 

with the total tangential traction T over the whole length l at any time: 
 

                                                 ∫=Δ
l

dxtxTF
0

),(                                                       (9.2) 

 

By the above definition, FΔ  is transferred entirely from fibre 1 to fibre 2, or vice 

versa, along the interface length l, due to the tangential traction T.  Since FΔ  is the 

only force acting upon the two fibres at equilibrium at any time point, it should be 

equal to the )(tF :  
 

                                             ∫=Δ=
l

dxtxTFtF
0

),()(                                                (9.3) 

 

As evident in Figure 9.5, the local equilibrium is obtained when: 
 

                                                     ),( txT
x
F
=

∂
∂                                                         (9.4) 

 

From the theory of linear elasticity: 
 

                                                      
x
uE

A
F

∂
∂

=                                                            (9.5) 

 

where u is the displacement, 
x
u
∂
∂  is the Cauchy strain [138], E is the elastic modulus, 

and A is the cross-sectional area. Combining equations (9.4) and (9.5), and assuming 

that linear elasticity theory applies for the stress-strain relationship of a collagen fibre 

[156] gives: 
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2

2
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x

txuAE =
∂

∂                                                  (9.6) 
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where ),( txu is the fibre displacement at position x and time t. 

 

Writing equation (9.6) for fibres 1 and 2: 
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                                         (9.7) 

 

where 1A  and 2A  are the cross-sectional areas, 1E  and 2E  are the elastic moduli, and 

1u  and 2u  are the fibre displacements for fibre 1 and fibre 2 respectively. Equation 

(9.7) describes the displacement fields for the two interfacing fibres. Summing the 

two field equations in (9.7) gives a second order partial differential equation: 
 

                                                0)(
2

21
2

=
∂
+∂

x
uu                                                         (9.8) 

 

Multiplying both sides of the equation (9.8) by AE, the first integration of the equation 

gives the equilibrium equation of the form in (9.4), where )(1 tAEC  is equal to the 

force F(t). )(1 tC  is an arbitrary function resulting from first integration. Thus the 

general solution of the field equations becomes: 
 

                                    )()(),(),( 221 tCx
AE

tFtxutxu +=+                                         (9.9) 

 

During stress-relaxation, the universal displacement of the continuum is kept 

constant, thus one may assume that the transverse mechanical loading effects are no 

longer present, and the normal component N may approach zero. Hence equation (9.1) 

can be approximated as: 

                                         )(),( 21 uu
t

CtxT d −
∂
∂

=                                                 (9.10) 

where 21 uu −  is the relative displacement of the two fibres, and )( 21 uu
t

−
∂
∂  is equal 

to relV . 

Combining the equations (9.10), (9.9) and (9.7) will result in the following 

differential equation: 
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where the boundary conditions would be: 
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where )(tU  is the elongation at time t.  

 

The partial differential equation in (9.11) with the above boundary conditions in 

(9.12) is of the same form as that which appears in diffusion problems, specific to the 

non-steady state diffusion in plane sheets [185]. Using this analogy, the solution for 

the displacement will be [185]: 
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where nγ  are positive roots of 1tan =nn γγ , and 0U  is the initial elongation of the 

fibres. 

 

Substituting equation (9.13) into (9.5), for the loaded end at 
2
lx = , gives the 

relaxation force as: 
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Equation (9.14) explicitly shows how the force, and hence the stress, decays 

exponentially with time when a collagenous tissue such as the AV is strained and the 

strain is kept constant over time, i.e. stress-relaxation loading conditions.  

 

Linear movement of the fibres is the dominant reorganization mode of the fibrous 

network architecture in the AV sample at strain levels %12≥ε  in fibrosa layer and 
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%18≥ε  in ventricularis layer (Figures 9.1b & 9.3b). This linear movement would 

inevitably provide sliding between the fibres and the surrounding matrix that would 

lead to an exponential decay in stress, described mathematically in equations (9.1) 

through (9.14). 

 

For the case of lower strains, i.e. %10%6 ≤≤ ε  in fibrosa layer and %16%6 ≤≤ ε  

in ventricularis layer, experimental data implies that rotational movement of fibres 

dominates during relaxation (Figures 9.1a & 9.3a). The following derivation 

demonstrates how this mode of fibre reorganization would also lead to the observed 

exponential stress-relaxation trends at the tissue level, at the corresponding strains, 

established in chapter 4.  

 

Consider two adjacent fibres which are wavy at lower applied strains, with an initial 

angle between their axes (Figure 9.6a). During relaxation, each fibre rotates by an 

arbitrary amount to give a final configuration, such as that shown in Figure 9.6b. For 

simplicity in the geometry, let us assume that the axis of one the fibres is parallel to 

the x  axis, e.g. fibre 1 in Figure 9.6b. 

 

For small rotational angles of less than 6°, the rotational movement may be 

linearized to a 2D movement in the x  and y  directions. From the theory of 2D 

elasticity [186]: 
 

                                      ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

−
=

y
u

x
uE

A
F υ

υ 21
                                                (9.15) 

 

where υ  is the Poisson’s ratio. 
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Figure 9.6 Configuration of two adjacent wavy fibres: (a) before rotation, (b) after rotation during 
stress-relaxation. 

 

 

From the geometry of the configuration of the fibres after relaxation in Figure 9.6: 
 

                                              180)(2 =++ θβα                                                    (9.16) 
 

and: 

                                        90=+αθ  →  θα −= 90                                              (9.17) 
   

Substituting for α  from (9.17) to (9.16): 
 

                                                       
2
θβ =                                                               (9.18) 

From Figure 9.6b: 
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and by substituting (9.18) into (9.19): 
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For small rotational angles, equation (9.20) can be re-written as: 
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Substituting for dy  from equation (9.21) into (9.15): 
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Taking the differential with respect to x  from both sides the above equation: 
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The rest of the analysis follows similar steps similar to those described for fibre 

sliding (equation (9.5) to (9.13)), which finally results in the following displacement 

field equation: 
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with the boundary conditions: 
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Substituting equation (9.24) into (9.22) gives the force during relaxation as: 
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The parameters have the same definition as detailed in equation (9.14).  

 

(9.24) 
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Equation (9.26) expresses that if the rotational movement of the two adjacent fibres 

during stress-relaxation is approximated by a 2D linear movement (i.e. the rotational 

angle is smaller than 6°), the sliding between that two fibres during this movement 

would again lead to an exponential decay of the stress. Thus, the sliding between the 

fibres, as a result of the structural reorganization of the fibres during relaxation, i.e. 

rotation at lower strains and linear movement at higher strains, will result in the 

exponential decay of stress observed at the tissue level during the stress-relaxation, as 

characterised by equations (9.14) and (9.26). 

 

The nγ  in equations (9.14) and (9.26) are the positive roots of 1tan =nn γγ , thus: 

86.01 =γ , 42.32 =γ , 43.63 =γ , ... [185]. Hence, the numerical values of the 

argument inside the operator Σ  would be negligible for 2≥n , since the values 

would be 10-6, 10-20, 10-42 … times smaller in 2=n , 3, 4 … respectively, compared to 

that for 1=n . Thus the relaxation due to the both rotation and linear movement of the 

fibres at lower and higher strains can be approximated as: 
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or in terms of stress: 
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                                          and 
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where )(tσ  is the stress at time t . 
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For strain levels %6<ε , no detectable movement of the ICs was observed, 

suggesting that no structural reorganization of fibrous architecture is occurring in 

those strain levels. Similarly, in separate experiments performed on 12 radially cut 

samples, 6 viewed from the fibrosa and 6 viewed from the ventricularis layer, no 

movement of the cell nuclei was detected at any strain level. Chapter 4 demonstrated 

that the relaxation mode in AV samples in circumferential direction at low strain 

levels, and in the radial direction at all strain levels, is single, with a fast decay of 

stress in a short relaxation time. Additionally, chapter 3 highlighted that the GAG 

constituent of the AV, mainly present in the spongiosa layer, can be modelled as a 

viscous fluid, with viscous damping effects in the tensile deformation of the AV. 

Separate experimental studies on concentrated proteoglycan solutions have also 

confirmed such viscous fluid like characteristics [102]. Hence, it seems reasonable to 

suggest that the fast relaxation in radial direction, and at strain levels below 6% in the 

circumferential direction, originates from the viscous behaviour of the fluid-like GAG 

constituent of the AV ECM, which leads to a single exponential relaxation mode. 

 

The secondary relaxation mode observed in the circumferential direction at higher 

strains appears to be the result of reorganization of the fibre architecture within AV; 

either rotation or linear movement. The modelling has demonstrated that this will lead 

to an exponential decay of stress in the form presented in equations (9.14) and (9.26), 

or equivalently equations (9.28a) and (9.28b). Furthermore, it is evident that the 

characteristic slow-relaxation times observed at the tissue level are close to the sum of 

the characteristic decay times of the linear motion of the fibres in the ventricularis and 

fibrosa layers, given in Table 9.1. Such a response further reinforces the argument that 

fibre kinematics is closely associated with the tissue relaxation process. 

 

These findings are in a strong analogy with polymeric gels, which also show two 

exponential relaxation modes [180,181]. By exertion of external forces, a velocity 

gradient is induced in the polymeric gel, which continuously alters the equilibrium 

distribution of the configurations of polymer molecules. These long molecules are in a 

coordinated thermal or Brownian motion, the driving force of which is the thermal 

energy. Because they are moving in a viscous fluid, this leads to dissipation of the 

deformation energy. This relaxation mechanism is known as the ‘Rouse’ mechanism 

in polymers [181]. Another ongoing process consists of the gradual disengagement of 
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one long flexible molecule chain from its environment by performing “worm-like” 

displacements inside the polymeric gel. The interactions between the chain and the 

neighbouring molecules results in the dissipation of energy. This relaxation 

mechanism is known as ‘reptation’ [181]. For short time scales the conformational 

changes of the chains are Rouse-like, whereas at longer times the important behaviour 

is that of reptation, leading to the two relaxations modes, i.e. fast and slow [180,181]. 

The ‘Rouse’ mechanism resembles the damping effects of a viscous fluid like GAG in 

the AV at lower strains, and the ‘reptation’ mechanism is similar to the dissipative 

effects of the sliding of the fibres against each other, due to either their rotational or 

linear movement. 

 

Due to the nature of the imaging technique employed in this study, the correlation 

between individual cells and fibres within the field of view could not have been 

explicitly elucidated. Therefore, the values associated with the rotation and the linear 

movement of the fibres at different strain levels (presented in Figures 9.2, 9.3 and 9.4) 

were calculated based on the assumption that the movement of each cell represented 

the mode of the movement of a fibre. However, it may well be the case that a group of 

cells in situ might be attached to a same fibre, or a cell might be attached to more than 

a single fibre. Subsequently, the recorded movement of some of the cells may 

represent the kinematics of a single fibre, while some others may indicate the resultant 

kinematics of a group of fibres attached to a same cell. However, the reported values 

in this chapter have been calculated by averaging over the entire group of cells within 

the field of view, which will reduce the overall influence of such effects. Furthermore, 

the nature of the mechanism and the theoretical criterion developed in this chapter 

will not be altered, as the movement of the cells is an indicator of the movement of 

the fibres which will inflict fibre-fibre and fibre-matrix sliding effects, irrespective of 

how many cells are attached to the same or different fibres.   

 

The nature of the mechanisms leading to the exponential decay of stress in 

equations (9.14) and (9.27) is independent of the loading mode, i.e. uniaxial or 

biaxial. Sliding between the fibres under rotation or linear movement is independent 

of the loading conditions, and will lead to an exponential decay regardless of the 

loading mode applied to the tissue, as the same mathematics would apply. Indeed, 

even though uniaxial loading was used in the current study, the analysis was extended 
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to 2D elasticity in equations (9.15) to (9.26). Additionally, the viscous behaviour of 

the GAG constituent in the AV extracellular matrix would occur under the both 

uniaxial and biaxial loading modes, and hence would not be changed by the loading 

boundary conditions. However, the amount of rotation or the linear movement of the 

fibres, and the strain levels at which each of the two would occur, would probably be 

different under biaxial loading, to the values observed in this study.  
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Micromechanics of creep in the aortic valve 
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10.1. Synopsis 

 

Another aspect of time-dependant behaviour is manifested in the creep 

phenomenon, which describes the elongation of a specimen upon the application of 

constant load. It is a common assumption that the structural mechanism(s) responsible 

for the stress-relaxation and creep phenomena in collagnenous soft tissues are 

uncoupled [69,70,75]. This chapter investigates structural reorganization within the 

AV ECM during creep, following a similar approach to that employed in chapter 9.  

 

 

10.2. Materials and methods 

 

6 porcine hearts were used in this investigation. Specimens were prepared according 

to the protocol described in §2.1, excised circumferentially from AV leaflets. This 

yielded a total of 18 circumferential samples.  

 

10.2.1. Creep tests 

 

Samples were divided in two analysis groups in order to investigate the ventricularis 

and fibrosa layers individually: 9 samples were viewed from ventricularis side, and 9 

samples from fibrosa side, along the central region of the sample length. Imaging was 

carried out at a depth of 50 to 80 µm into the designated valve layer. 

 

Samples were loaded from zero to seven predefined loads )( f , between =f 0.5 N 

and =f 3.5 N in 0.5 N increments using the uniaxial rig described in §2.3.3. A 

loading rate of 6%/min was used, and samples were kept at each loading level for 300 

s, to be consistent with the experiments for tissue-level creep discussed in chapter 4. 

The loading set-up followed that described in §2.3.3. Each sample was loaded through 

all the increments, and the incremental creep tests for each layer repeated for nine 

samples. 

 

 

 



Chapter 10                                                                                           Micromechanics of creep in the AV 
                                                                                                                                                            

 179

10.2.2. Cell tracking 

 

The technique for imaging and tracking the AVICs within the tissue matrix 

followed that discussed in §2.3. Images were recorded during the 300s creep period at 

a rate of 1 frame per second, and the movement of cells tracked using particle tracking 

software (IMARIS®, Bitplane AG) to determine the ),( yx  coordinates of centroid of 

the nuclei. From these data, the displacement and the velocity of each nucleus during 

the creep period was calculated and used to analyze the structural re-organization 

within the AV.    

   

10.2.3. Statistical analysis  

 

Statistical comparisons between the values associated with fibre kinematics in the 

ventricularis and fibrosa layers were performed using paired t-tests. The statistical 

significance was set at 05.0<p .  Values plotted in the figures are presented as the 

mean and standard deviation. 

 

 

10.3. Results 

 

Microscopy images documented movement of the cell nuclei, implying 

microstructural re-organization, during the creep period for all circumferential loading 

levels. Typical microscopy images, showing the movement of cell nuclei over time 

are shown in Figure 10.1. Similar to the observations for stress-relaxation, the 

movement of the cell nuclei during creep also followed curvilinear (Figure 10.1a) and 

straight-line (Figure 10.1b) movement patterns.    
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Figure 10.1 Sequence of images documenting the movement of the cell nuclei during creep: (a) 
rotation of the nuclei through a curvilinear motion in lower load levels ( 5.0=f N); (b) linear 
displacement of the nuclei at higher loading levels ( 5.3=f N). The time sequence increases in each 
panel from top to bottom. The circles show the original location of the indicated nuclei at t = 0. 

 

 

Using the same method as described in §9.3, the angle of rotation and the linear 

displacement of the nuclei at every increment were calculated and are shown in 

Figure 10.2. 
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Figure 10.2 The movement of cell nuclei during creep: (a) values for angular rotation; (b) values for 
linear displacement. There is a statistically significant difference (indicated by *) between the values of 
angular reorientation within the two layers at all corresponding load levels (panel a). The asterisk 
indicates a statistically significant difference between the displacement values within each layer in 
panel b. The values are presented as Mean ± SD. 
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At corresponding strain levels, the angles of reorientation and the levels of 

displacement are both higher during creep than stress-relaxation. Table 10.1 compares 

the loading levels used in the creep tests and the corresponding strain levels. 

Additionally, the rotational motion in the fibrosa layer persisted to higher equivalent 

strain levels than those observed in stress-relaxation tests. Similar to results in stress-

relaxation, the angular reorientation within the ventricularis layer is significantly 

higher than that within the fibrosa.    

 
Table 10.1 Loading levels used in the creep tests and their corresponding strain levels. 

 

Loading level used in creep tests (N) Corresponding strain levels (%) % of failure load 

( f ) (ε ) ( failureL% ) 

0.5 6.64 ± 0.73 ~5% 

1 9.41 ± 0.61 ~10% 

1.5 11.25 ± 1.08 ~14% 

2 12.83 ± 0.88 ~18% 

2.5 14.79 ± 1.52 ~22% 

3 15.17 ± 0.33 ~27% 

3.5 16.52 ± 0.51 ~30% 

 

 

 

10.4. Discussion 

 

From a structural perspective, the fibre reorganization mechanisms occurring during 

circumferential creep appear to be similar to those in stress relaxation, incorporating 

both fibre reorientation and linear movement. However, the values of reorientation 

and linear movement are noticeably higher in creep, compared to stress-relaxation. 

This may be due to the fact that samples are elongating with time during creep, so the 

physical dimensions of the samples are constantly changing. Owing to the Poisson’s 

ratio effects, while the length of the tissue is increasing, the lateral dimension (width) 

is decreasing and the samples become narrower with time (Figure 10.3). This constant 

change in sample dimensions will add to the detected movement of the cells in the 

images, and subsequently results in higher values compared to stress-relaxation. It is 



Chapter 10                                                                                           Micromechanics of creep in the AV 
                                                                                                                                                            

 183

important to note that the elongation is kept constant during stress-relaxation, thus no 

changes occur in the physical dimensions of the samples. 

 

 

                         
 

 
Figure 10.3 Change in the dimensions of the sample during creep, as it elongates within time. The 
sample length increases, while it becomes narrower in the lateral dimension. 

 

 

Since the fibre kinematics during creep was experimentally observed to be similar 

to that in stress-relaxation, it is reasonable to assume similar governing equations for 

the displacement of fibres. The displacement field equation for the case of linear 

movement of fibres was shown to be (equation 9.11, chapter 9): 
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All parameters have the same definition as in §9.4. 

 

However, the boundary conditions are different, as the loading conditions differ 

between creep and stress-relaxation. While the boundary conditions in stress-

relaxation are determined through the applied strain (equation 9.12), they should be 

converted to incorporate load in the case of creep. Such boundary condition would 

thus translate to: 
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The partial differential equation in (10.1) with the above boundary conditions is of 

the same form that appears in diffusion of a substance with a constant flux at a surface 

[185]. Using this analogy, the solution for the displacement will be [185]: 
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Substituting equation (10.3) into (9.5) gives the creep elongation as:  
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For the case reorientation, fibre kinematics is analogous to that described in §9.4, 

equation (9.15) through (9.23). Hence: 

 

 

 

 
 

And subsequently: 
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Equations (10.4) and (10.6) describe the creep based on fibre linear movement and 

fibre rotation, respectively. They can be rearranged in terms of creep strain as: 

 

 

 

 

 

 

 
 

Since the applied load is kept constant with time during creep, )(tF  has been 

replaced by a constant value F . The equations above are analogous to the creep 

(10.3) 
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relationship at the tissue level detailed in chapter 4, equation (4.5), used to describe 

the primary and secondary creeps occurred during the time course of the experiments.       

                        

It must be noted that the values of the exponential terms in the above equations for 

2≥n  are significantly smaller compared to 1=n , in order of 10-5, 10-9, 10-16, … for 

2=n , 3=n , 4=n , …, respectively. Thus the terms for 2≥n  can be neglected, and 

the final form of the equations (10.7a) and (10.7b) will be: 

 

 

 

 

 

 

 
 

 

Equations (10.8a) and (10.8b) are similar in form to the functions that were fitted to 

experimental tissue-level creep data to describe the behaviour in chapter 4: a constant 

term, a linear term with respect to time, and an exponentially decreasing term. At 

small times t , the value of the exponential term determines the creep behaviour. 

However, as the time increases, the value of the exponential term decreases, and 

becomes small compared to the value of the linear term. Hence the linear term 

becomes the dominant contributor to creep, giving rise to the secondary creep 

observed in the tissue behaviour at higher time points (Chapter 4). Indeed, the 

secondary creep in AV tissue was observed to have a linear relationship with time, 

similar to the linear term in the above equations. 

 

The assumptions regarding the correlation between the movement of the cells and 

the movement of the fibres during the creep are the same as those discussed in §9.4, 

for stress-relaxation. Similar to the stress relaxation analysis, cell movement is simply 

an indicator of the movement of the fibres, as analysed within the propsed mechanism 

and the developed theoretical criterion in this chapter.  

 

 Data regarding the time-dependant behaviour of the AV is scarce in the literature, 

particularly in addressing the creep phenomena. The general understanding in 
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valvular tissue is that the tissue doesn’t show creep, while stress-relaxation is 

observed to occur, when loading the samples equi-biaxially [69,75]. It has also been 

reported that the collagen fibril D-period decreases during stress-relaxation, while it 

remains approximately constant during creep [69,75]. These data suggest that creep 

may not be an intrinsic behaviour of valve tissue, and furthermore that the possible 

underlying mechanisms are also decoupled. However, these suggestions vary 

considerably with studies examining the changes in the collagen D-period for other 

collagenous soft tissues, which report a sustained increase in collagen D-period in 

creep tests [187,188]. Additionally, the data presented in this chapter shows that creep 

does occur in the AV, along with the associated structural reorganisation.    

 

In conclusion, the current data highlights that fibre sliding, occurring during either 

fibre reorientation or fibre linear displacement, is the mechanism responsible for the 

creep behaviour of the AV. This mechanism is similar in nature to that observed for 

stress-relaxation in chapter 10. However, since the boundary conditions (loading 

conditions) are different in the two phenomena, the outcomes reflect two different 

behaviours at the tissue level. Thus the structural mechanism governing the time-

dependant behaviour in the AV can be explained at fibre level, and by the kinematics 

associated with fibre sliding during reorientation and linear movement. 
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11.1. Final discussion 

 

AV biomechanics has received increasing attention over the past years, and remains 

an active research area in the field of medical engineering. Failure of current clinical 

substitutes, mortalities related to these failures, costs of the medical interventions 

arising from these shortcomings, and an annual financial turn over of nearly $1 billion 

pertaining to the substitute valve industry, have prompted multi-disciplinary research 

interests in this area.  

 

Despite the progress in understanding the native valve function and properties, an 

optimal clinical substitute has not yet been introduced. This, from the author’s point 

of view, may stem from the current paradigms and approaches adopted in studying 

AV biomechanics. As outlined in Chapter 1, the analysis of AV biomechanics has 

focused in three discrete areas [3,32]: dynamics of valve-blood interactions, tissue 

level mechanical behaviour and characteristics, and the properties and functions of 

valve cellular constituents. However, of equal importance, is the interrelationship 

between these approaches, which remains poorly understood. Key questions arise, 

such as [23,32]: how are the haemodynamics forces arising from the valve-blood 

interaction translated and transformed into the the structural components of the valve? 

How do structural responses influence the valve’s mechanical behaviour? How is the 

micromechanical environment surrounding the residing cells perceived by them, and 

how do they respond to this?  

 

To address some of these aspects of AV biomechanics, a fundamental study of AV 

structure-function relationships was carried out in this thesis, investigating the 

relationships between tissue-level behaviour and the structural mechanisms and 

responses contributing to that behaviour. Understanding these relationships provides a 

better platform for characterising valve function and properties, and will facilitate the 

design of more efficient substitutes, to mimic native valve behaviour more effectively. 

It will also help to quantify the micromechanical environment perceived by the 

residing cells, which can have significant implications for designing successful cell-

mediated valve tissue engineering strategies, as an alternative to the currently 

available valve replacements. 
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Under physiological function, the AV opens in the systolic phase, and closes at the 

end-systolic phase, in each cardiac cycle [4]. The principal mode of AV deformation 

in vivo is flexion [7,77-79]. This translates to multiaxial tension of the ventricularis, 

and multiaxial compression of the fibrosa when the valve opens, reversing as the 

valve closes [78]. However, due to the technical complications associated with 

experimentally recreating physiological flexion in vitro, particularly in experiments 

employing microscopy imaging that requires in-plane focusing, biaxial and uniaxial 

tensile loading modes have alternatively been employed in studies of AV mechanics. 

Biaxial loading may more closely mimic the loading boundary conditions of the AV 

compared to uniaxial loading; however neither fully represent the natural loading 

mode of the valve in vivo. Nevertheless, when investigating structure-function 

relationships, loading modes will have minimal effects on the nature of the underlying 

structural mechanisms, nor how they would contribute to the tissue level behaviour. 

For example, structural reorganisation mechanisms such as the fibre recruitment, 

reorientation and sliding, observed and analysed in chapters 5 to 10 will occur, and 

indeed have been reported, under both uniaxial and biaxial loading modes 

[5,19,65,113,161]. However it is likely that the amount of the structural 

reorganization, and the loading and strain levels at which different reorganisation 

would occur, may differ depending on the loading mode.  

 

The biomechanics of the AV at tissue level was characterised and presented in 

Chapters 3 and 4. While both chapters reflect aspects of the viscoelastic behaviour of 

the tissue, the nature of the viscoelastic behaviour addressed in each chapter is very 

different. Chapter 3 investigates the viscous effects of deformation of the tissue, while 

chapter 4 is addressing the time-dependent characteristics reflected in stress-

relaxation and creep phenomena. Based on the intrinsic differences in biomechanics 

associated with each of these behaviours (quasi-static versus time-dependent), 

different models were adopted to address each aspect, and to quanity the associated 

biomechanical parameters.  Such an approach followed that of traditionally adopted in 

the literature. A survey of the literature regarding the AV biomechanics indicates that 

no unified theories or models have been yet employed or proposed to characterise the 

entire range of the biomechanical characteristics of the AV, to the knowledge of the 

author. Indeed, models addressing the quasi-static behaviour of the AV have been 

mainly developed within the criterion of the hyperelasticity theory, while time-
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dependent studies have mainly employed viscoelastic models. Furthermore, 

employment of a single viscoelastic model, i.e. either a Kelvin element or a Maxwell 

element based model, cannot thoroughly characterise both the stress-relaxation and 

creep behaviours of the valve’s time-dependent spectra, as Kelvin model is known to 

be insufficient in characterising the stress-relaxation, and Maxwell model can only 

predict the primary creep behaviour of a subject tissue. The complex structural 

organisation of the AV ECM indeed facilitates stress-relaxation, and primary and 

secondary creep, as described in chapter 4, and possibly even tertiary creep if allowed 

the appropriate time-course. However, employing a unified model to characterise the 

different biomechanical parameters of the AV would be beneficial, as it enables 

comparing the obtained values in different studies in the literature, and it may further 

facilitate investigating the inter-relationships between the various associated 

parameters within the criterion of a unified theory. While this remains a challenging 

task in the literature, the author has attempted to formulate a unified theory for 

modelling stress-relaxation and creep in chapters 9 and 10, as a first step towards 

achieving this objective.  

 

The mechanical behaviour of the AV under quasi-static loading was investigated in 

Chapter 3. The stress-strain curves were obtained under three different strain rates, 

covering a 100-fold increase in the level of applied strain rates. The associated 

parameters were characterised using a Kelvin-Voigt element-based model, by fitting 

the model to the experimental data. The stress-strain curves showed marked rate-

dependency, i.e. the toe-in region and the ultimate failure strain decreased while the 

ultimate failure stress increased, with increasing strain rates (Figure 3.2). As discussed 

in §3.5, application of a tare load may influence the extent of the toe-in region and the 

estimation of failure stresses and strains. However, ensuring a consistent reference 

position in the curves necessitates employment of tare load protocols. Literature 

indicates that different protocols have been used in different studies, suggesting a 

level of arbitration in the choice of applied load, and subsequently the definition of 

the reference position. Nevertheless, a comparison of the data obtained in this study to 

the reported values in the literature reflected consistent values and trends, as discussed 

in §3.5.  
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The basis of the model developed in Chapter 3 originates from the assumption that 

total stress in the viscoelastic AV tissue could be considered as the sum of the stresses 

associated with the viscous fluid part (GAG) and the solid parts, i.e. two springs 

representing the contribution of elastin and collagen contents (equation 3.2). 

However, the mode and the extent of deformation in fluid and solid states could 

argueably be different, particularly at the large strains experienced by the samples in 

the performed tensile tests. This implies that the model may not be accurately 

applicable to the entire range of applied strains, particularly to the larger end of the 

deformation spectra. This could potentially result in errors in the estimation of model 

parameters, introducing uncertaintities to the calculated values. However, the model 

was seen to provide a good fit to the experimental data at all the employed strain rates 

(Figure 3.4), with small deviations from the experimental stress-strain curves even at 

larger strains.  

 

The stress-strain curves under quasi-static loading showed marked rate-dependency 

(Chapter 3). Additionally, modelling results revealed that the viscous damping 

coefficient η  values were also rate dependent, addressing a ‘shear-thinning’ 

behaviour, with reduced effective viscosity at higher strain rates (Table 3.3). The 

tangent modulus E , calculated numerically from the first derivative of the εσ −  

curve also reflected this rate dependency, as the values of E  increased with increase 

in strain rate (Figure 3.3). However, the relationship between stress and strain was 

characterised by the model in equation (3.13) as: 
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and thus the first derivative of stress with respect to stretch ratio would be: 
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assuming that the stretch rate λ&  is constant. 

 

In large deformations, where values of λ  are large, 034 ≅≈ −− λλ , and therefore eq. 

(11.2) can be re-written as: 
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                                                        E
d
dT

=
λ

                                                           (11.3) 

 

Therefore the first derivative of stress with respect to deformation leads to the 

tangent modulus E  only when the deformations are large. As such, the calculations of 

modulus may only be theoretically accurate for the third region of the stress-strain 

curves, defined in §3.4, where the values of strain are large compared to the other two 

regions. However, the in vivo strain values of the AV are approximately 10.1% and 

30.8% in the circumferential and radial directions, respectively [7,8], which are small 

compared to the ultimate tensile strains in the respective direction (Table 3.1).  

 

These data indicate that Eq. (11.2) would be a better representative of the first 

derivative of the stress, and hence the tangent modulus. As can be observed, the 

viscous damping coefficient also influences the tangent modulus, and therefore the 

measure of stiffness. Since the viscous effects are generally thought to be associated 

with the presence of the GAG constituent of the valve ECM [17,102], it is reasonable 

to conclude that the GAG component of the AV also contributes to the stiffness of the 

tissue. The change in tangent modulus with  η  at in vivo strain level is shown in 

Figure 11.1, for both loading directions, calculated by Eq. 11.2. The values of tangent 

modulus calculated numerically from the εσ −  curves (Figure 3.3) are also shown 

for comparison. The results suggest that the GAG contribution to the overall tangent 

modulus of the tissue at in vivo strain levels increases, as the damping coefficient 

decreases, with increasing strain rates. This effect is more pronounced in the 

circumferential direction. Therefore, although it is generally accepted that the 

numerical first derivative of the εσ −  curve can be used to determine the tangent 

modulus for an assessment of stiffness, it may underestimate the overall stiffness of 

the samples, particularly at small strains. It is therefore suggested that the constitutive 

equations describing sample stress-strain behaviour be used for establishing the 

modulus, by taking the mathematical derivate resulting to the tangent of the curve at 

each point.  
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In a simple form, collagen fibres can generally be considered to be elements that 

reinforce soft connective tissues, embedded in a gel-like GAG, sometimes referred to 

as ground substance [190]. Chapter 3 demonstrated that that the GAG within the AV 

can be modelled as a viscous fluid that tends to flow upon the application of load to 

the tissue, showing non-Newtonian viscous fluid properties. As a result, the interface 

between the collagen fibres and GAG will be under shear, which causes the fibres to 

η

(a) 

(b) 

λd
dT  by eq. 12.3 

by numerical derivation 
λd

dT

λd
dT

by eq. 12.3 
 

η

by numerical derivation 

Figure 11.1 The first derivative of stress with respect to strain, 
λd

dT , comparing the values calculated from Eq. 11.2

with ones numerically calculated from the stress-strain curves, at different strain rates. The value of the viscous 
damping coefficient η  at each strain rate is also presented, to highlight the influence of η  on 

λd
dT . 

 

λd
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stretch [190]. The condition for a fibre to be able to provide an effective 

reinforcement is that its length should be comparable to a critical length, cl , which in 

the theory of composite materials is defined by [190]: 
 

                                                          
τ
σ f

c

r
l =                                                        (11.4) 

where r  is the radius of the fibre, fσ  is the failure stress of the fibre, and τ  is the 

shear stress exerted on the fibre by the flow of GAG. Physically, the critical length is 

the minimum length that a fibre must have for the induced stresses in that fibre to 

reach fσ  in the centre of the fibre [190].  

 

In terms of fibre length l  and the critical length cl , three possibilities can exist in 

the AV matrix, shown schematically in Figure 11.2 [190]: (a) the fibre is longer than 

the critical length, in which case the maximum transferable stress to the fibre mσ  can 

be reached and therefore the fibre provides effective reinforcement; (b) the fibre 

length is equal to the critical length, only allowing for the centre of the fibre to reach 

the maximum stress; and (c) the length of the fibre is less than the critical length, 

where the maximum stress can never be transferred to the fibre, leading to ineffective 

reinforcement. 
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Figure 11.2 Fibre length and its relationship with stress bearing: (a) cll > , (b) cll = , and (c) cll < .  

mσ is the maximum stress which can be transferred to the fibre (redrawn from [190]). 

 

 

It was shown in Chapter 3 that there is a repeatable sudden transient decrease in 

stress, when samples were strained to failure in the circumferential direction (Figure 

3.2). It was discussed that this may be due to the failure of the collagen fibre network 

within the ventricularis layer. In light of equation (11.4), it can be further observed 

that this failure could also be a result of larger cl  values for fibres within the 

ventricularis layer, due to the geometrical differences of fibres distributed between the 

layers. Fibres in the ventricularis may possibly possess higher radii, compared to the 

fibres present in the fibrosa layer. A larger cl  in the ventricularis would increase the 

possibility of fibres having lengths shorter than or equal to cl . If cll = , and a group of 

fibres fail, other fibres will be overloaded and subsequently total failure will occur. If 
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cll < , then the fibres can not reach their potential maximum load bearing capacity, 

and  thus will not effectively reinforce the ventricularis layer. Both cases will result in 

faster failure of the ventricularis layer. It was additionally shown in Chapter 5 that the 

fibrous network in the ventricularis endures less shear stresses and strains, compared 

to the fibrosa (Figures 5.5, 5.7 and 5.8). This, in light of equation (11.4), will also 

increase the cl , which can be an additional factor contributing to the failure of the 

network in this layer prior to the fibrosa. 

 

The modelling results in Chapter 3 showed that the viscous damping coefficient of 

the AV tissue reduces with increase in strain rate, tested across strain rates of 6%/min, 

60%/min and 600%/min (Table 3.3). However, the in vivo strain rates correspond to 

15000%/min, for samples with similar dimensions to the ones used in this study [95]. 

Extrapolating the values of η  to the physiological rates implied that the AV tissue 

may offer minimal shearing resistance against blood flow in each cardiac cycle. This 

shear thinning behaviour, similar to the effects of the viscous damping coefficient on 

the tangent modulus and stiffness of the tissue (discussed in the beginning of this 

chapter and illustrated in Figure 11.1), can not be elucidated and formulated under 

elastic deformation assumptions and criteria. However, hyperelasticity theory has 

been the widely accepted criterion in formulating and developing microstructural 

based models for collagnenous soft tissues [144,145]. Within the hyperelasticity 

theory, only the contribution of the collagen fibres, as the main load bearing element 

of the tissue ECM, is considered [144,145], and the viscous effects are generally 

neglected under the quasi-static loading assumptions. 

 

Based on the hyperelasticity assumptions, and the theoretical criteria developed by 

Lanir [143,147], a microstructural based models was developed and introduced to 

address the observed non-linearity of the tissue stress-strain curves, incorporating the 

response of the collagen fibres (Chapters 6). The contribution of wavy fibres to the 

overall mechanical behaviour of the tissue was formulated and characterised by the 

model, describing their behaviour from the wavy to the straight and further strained 

configurations (Chapter 6). The modelling results indicated that straightening of the 

fibres allowed the AV tissue to undergo circumferential strains of up to 15% (Figure 

6.7), with failure strain of the fibres around 10% [155]. This is in a good agreement 
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with the experimental observations, reporting that collagen fibres straightened at 

tissue strains of approximately 17% [19]. Characterising the contribution of the wavy 

fibres to AV mechanical behaviour is important, since the in vivo circumferential 

strains are reported to be around 10% [7,8], at which point the fibres may not be fully 

straight. Thus, common assumptions that suggest only straight fibres can contribute to 

the mechanics of a tissue may not be applicable for the AV. The model introduced in 

Chapter 6 attempts to address this, by considering the contribution of the fibres in the 

general case of being wavy. Furthermore, as the AVICs are attached to the fibres, 

fibre elongation would also impose deformations to the cells, even when the fibres are 

wavy. Thus, characterisation of fibre strains before the fibres are fully straight would 

help to better understand and quantify the cell deformations, particularly at in vivo 

strain levels. 

 

A key feature of the model developed in Chapter 6 is the assumption of non-affine 

transformation of strain from the tissue to the microstructure. This was experimentally 

investigated and concluded in Chapter 5, where no direct translation between the 

applied strains at the tissue level and collagen fibre network deformations was 

observed (Figure 5.4 and 5.5). Additionally, it was observed that the applied loading 

modes were different to those induced in the microstructure, as tissue level tensile 

deformations resulted in additional internal shearing within the collagen fibre network 

(Figures 5.7 and 5.8). The general assumption in formulating the previous 

microstructural based models is that strain transfer is affine [66,122,147], an 

assumption which was not supported experimentally (Chapter 5). The model in 

chapter 6 addresses this, formulating the first AV microstructural based model with 

non-affine strain transfer, known to the author.  

 

Another aspect of fibre contribution to tissue behaviour may stem from fibre 

rotation, as the fibres have been reported to reorient towards the principle stretch axis 

under quasi-static loading [191]. Fibre rotation has previously been estimated to be 

approximately 10.5° under uniaxial loading in the circumferential direction [191]. The 

rotation of fibres was estimated also in Chapter 9, amounting to approximately 14° 

and 6° for the ventricularis and fibrosa layers respectively, during stress-relaxation 

(Figure 9.3). The average fibre rotation in the two layers is close to the reported value 

in [191]. However, to the knowledge of the author, there are no microstructural 
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models developed, to date, to characterise this behaviour in the AV tissue, and to 

enable the estimation of angular reorientation of the fibres directly ftom the quasi-

static stress-strain data.  

 

Another load bearing element within the valve ECM is the elastin, present as a 

network of elastic fibres [13]. To characterise the contribution of elastin to the overall 

mechanical behaviour of the AV, a model was developed in chapter 8 based on the 

principles of statistical mechanics for entropic elasticity, under the non-affine strain 

transfer assumption established in Chapter 5. The model explained how a network of 

elastin fibres can show non-linear mechanical behaviour, under tissue-level 

deformation. Modelling results indicated that the overall nonlinearity of AV stress-

strain curves observed in Chapter 3 (Figure 3.2) may not entirely be due to the gradual 

recruitment of the initially wavy collagen fibres, but that the elastin network can 

further exacerbate the nonlinearity, especially at increasing strains (Figure 7.3). 

Elastin has previously been reported to contribute to the load-bearing capacity of AV 

tissue at small strains, and to restore the contracted configuration of the valve leaflet 

after the stretch induced during the diastolic phase of each cardiac cycle [5,19,20]. 

However, it was analytically shown that descriptions which limit the contribution of 

elastin network to only small strains, would mathematically assume a Gaussian 

probability distribution for the configuration of the network of elastic chains, which 

leads to a linear stress-strain relationship (Figure 7.4, Appendix E). Such behaviour is 

not supported experimentally, and both the experimental and modelling data 

confirmed the nonlinear contribution of the elastin network to tissue behaviour 

continued up to large strain levels.  

 

Another aspect of the AV biomechanics is the time-dependent behaviour, 

manifested by stress-relaxation and creep phenomena [5,55,69]. It was established in 

Chapter 3 that the AV shows non-Newtonian viscous-fluid characteristics under 

quasi-static loading. In Chapter 4, stress-relaxation and creep characteristics of the 

tissue were investigated. The results indicate that the time-dependent behaviour of the 

AV is non-linear, i.e. the amount of stress-relaxation or tissue creep both change with 

the level of applied strain or load (Figures 4.4 and 4.6; Tables 4.3 and 4.4). The non-

linear nature of AV time-dependent behaviour does not agree with the quasi-linear 

assumptions incorporated in the QLV theory (eq. 8.4, Chapter 8) to describe the tissue 
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behaviour. Further, it was shown in Chapter 8 that the QLV model may not be 

supported microstructurally, and hence its associated parameters are not likely to 

interpret the time-dependent behaviour of the AV accurately. This is supported by the 

high standard deviations observed when characterising tissue relaxation times using 

the QLV model [5,55,72]. 

 

Using a generalised Maxwell model, it was shown that AV relaxation in the radial 

direction followed a single mode (Table 4.3). Circumferential relaxation also followed 

a single mode at low strains. However, it switched to a double relaxation mode at 

higher strains (Table 4.3). Each mode is an indicator of a structural mechanism 

contributing to the overall relaxation at the macro level [180,181]. Furthermore, the 

type of the relaxation mode also reflects the nature of the underlying mechanism 

causing the relaxation [180-182].  This information could not have been elucidated 

from the tissue level behaviour, if models that incorporate continuous relaxation 

spectra were used to characterise stress-relaxation of the AV samples, such as the 

QLV.   

 

The microstructural mechanisms associated with the time-dependent behaviour 

observed in Chapter 4 were studied in Chapters 9 and 10, for stress-relaxation and 

creep phenomena respectively. Reorganisation of the ECM was investigated by 

monitoring movement of the AVIC nuclei during stress-relaxation and creep. The 

AVICs are known to be bonded to the fibres [23,121,184], and therefore their 

movement may be an indicator of the movement of the fibres. These movements were 

imaged during the time course of the experiments, and from these images, fibre 

kinematic parameters were quantified. As discussed in §9.4 and §10.4, calculation of 

fibre kinematic parameters were made under the assumption that the movement of 

each cell represented the mode of the movement of a fibre. In practice, however, more 

than one cell might be attached to any one fibre, or a cell might be attached to more 

than a single fibre. While this will influence the values associated with rotation/linear 

movement of fibres reported in Chapters 9 and 10, the underlying mechanism and the 

theoretical analysis presented will still apply, as the movement of the cells is an 

indicator of the movement of the fibres which will inflict fibre-fibre and fibre-matrix 

sliding effects, irrespective of the number of cells attached to any particular fibre.   
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Based on these assumptions, results indicated that at lower load or strain levels, the 

fibres rotate during the creep or stress-relaxation (Figures 9.1, 9.3, 10.1 and 10.2). 

However, as the loading or strain levels increased, linear displacement became the 

dominant mode of movement (Figures 9.1, 9.3, 10.1 and 10.2). The values associated 

with fibre kinematics were also significantly different between the ventricularis and 

fibrosa layers (Figures 9.3 and 10.2). To explain how this fibre reorganisation 

contributes to tissue-level time-dependent behaviour, the mathematics of the observed 

kinematics was introduced and developed. In contrast to the microstructural based 

models developed in Chapters 6 and 7 to analyse the quasi-static behaviour of the AV, 

the viscous effects of the ECM due to the presence of GAG was also considered, as 

well as the fibre-fibre interactions (Chapter 9). The outcomes indicated that the 

frictional effect between two fibres, and between fibre and the viscous fluid-like 

GAG, is one mechanism for stress-relaxation, resulting in one of the observed 

relaxation modes at the tissue level. However, no detectable movement of the nuclei 

was apparent in the radial direction, nor at lower strains in the circumferential 

direction, indicating a different relaxation mode. The lack of fibre movements in these 

cases suggests that the relaxation mode may come from the flow of the GAG, which 

was shown to have non-Newtonian fluid characteristics in Chapter 3. These findings 

are in a good analogy with stress-relaxation behaviour observed in polymeric gels, in 

which two microstructural mechanisms, namely ‘Rouse’ and ‘reptation’, are 

responsible for the two relaxation modes observed at the macro-level [180,181]. 

 

The fibre kinematics observed during creep were similar to those during stress-

relaxation, with the same mathematical principles resulting in the same governing 

equations (Chapter 10). However, the loading boundary conditions are different in the 

two phenomena (equations 9.12 and 10.2), which leads to two kinds of behaviour. 

Contrary to studies suggesting that the structural mechanisms for the two phenomena 

in valvular tissues may be uncoupled [69,75], the current data and analysis show that 

the frictional effects between fibres, and between fibres and the surrounding GAG, 

provide the principal mechanism contributing to the time-dependent behaviour of the 

AV. In investigating the underlying mechanisms contributing to the time-dependant 

behaviour of soft tissues, there are studies that have tried to examine the roots of these 

mechanisms in length scales below the fibre level, such as the fibril level [69,75,192], 

or down to the molecular level [187,188]. However, the choice of length scale is 
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essentially a matter determined by how the resulting data are able to explain the 

macro-level behaviour. For AV tissue, based on the experimental data and 

mathematical analysis presented in this thesis, fibre-level mechanisms seem to explain 

both the type and number of modes, observed at the tissue level, during the time-

dependent behaviour.  

 

 

11.2. Conclusions 
 

11.2.1. At the tissue level  

 

 The quasi-static behaviour of the AV is strain rate-dependent, with the tissue 

becoming stiffer at higher strain rates. The UTS in the circumferential direction 

was determined to be 3.44± 0.57 MPa at 6%/min, while it was observed to be 

4.45± 0.13 MPa at 600%/min. However, the failure strain decreased from 

45.07%± 1.25 to 27.56%± 1.96%, between 6%/min and 600%/min. A similar 

trend was also observed in the radial direction, with the UTS increasing from 

0.34± 0.03 MPa to 0.84± 0.05 MPa, and the corresponding failure strain 

reducing from 87.6%± 1.78% to 61.11%± 0.63%, at strain rates of 6%/min and 

600%/min, respectively. 

 

 A mathematical model was developed based on the three morphological layers 

of the AV, to account for the rate effects. From the results of the model it 

became evident that rate dependency stems from the GAG constituent of the AV 

ECM, showing a shear-thinning behaviour. By extrapolating the results to 

physiological loading rates, the viscous damping coefficients were determined 

to be 3.8=cirη  MPa s and  9.3=radη  MPa s in the circumferential and radial 

loading directions, respectively. This non-Newtonian viscous property of the 

native valve is likely a critical aspect in optimising substitute valves, as it 

indicates that the native AV tissue offers minimal resistance to the shear stresses 

induced by blood flow. The thromboembolism and coagulation-related problems 

associated with the current substitute valve designs may be, in part, due to the 

mismatch in shear-thinning behaviour, as increasing shear stress in the valve-

blood interaction can damage the blood cells. 
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 The time-dependent behaviour of the AV is anisotropic, but is also non-linear, 

meaning the associated parameters change with the level of applied strain or 

load. The tissue exhibits both stress-relaxation and creep, implying that they are 

intrinsic characteristics of the tissue. The time-dependent behaviour is a 

particularly important mechanical feature of the native AV, as structural 

durability of AV is thought to be linked with its ability to relax the induced 

stresses. 

 

 The stress-relaxation modes are different depending on the level of applied 

strain, and the loading direction. While a single relaxation mode suffices to 

explain the relaxation behaviour of the AV in the radial direction and also at 

lower strain in the circumferential direction, it switches to two relaxation modes 

at higher circumferential strains. The number of modes is important since it 

indicates the number and the nature of the mechanisms involved in the 

phenomena. 

 

 Creep behaviour is also directional dependent, with creep strains consistently 

reporting higher values in the radial direction. Except for samples under lower 

applied circumferential load, the tissue exhibited both primary and secondary 

creep during the time course of the experiment.  

 

 

11.2.2. At the micro level  

 

 Strain transfer from tissue to ECM is likely to be non-affine, i.e. there was no 

direct nor linear translation and transformation of strains applied at tissue level 

to the micro level strains. The strain distribution within the fibrous network (FN) 

was also non-homogenous, possessing higher values in the central (belly) 

region, reducing towards the commissural region. The non-affinity of strain 

transfer is an important feature of the tissue when it comes to modelling its 

behaviour, based on the microstructure.   

 

 The end-effects were quantified both experimentally, and analytically. The 

characteristic decay length, the distance after which the gripping effects become 
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negligible, was quantified for both the circumferential and radial loading 

directions, and investigated experimentally at tissue and micro levels. The 

analysis indicated that the end effects influenced considerably longer sample 

length in the radial direction, compared to the circumferential loading direction.   

 

 A 3D map of strain distribution was constructed within the ECM, and internal 

shearing was quantified accordingly. The FN within the fibrosa layer elongates 

less than the ventricularis, and thus the network and residing cells bear more 

shear stress in that layer. The shear stress is also higher in the circumferential 

direction compared to the radial direction. The distribution profile of strain 

within the FN, together with the induced shear stresses, may be linked to the 

higher levels of collagen biosynthesis in the fibrosa layer, and the preferred 

orientation of collagen fibres in the circumferential direction. 

 

 Incorporating the assumption of non-affinity of strain transfer, two 

microstructural based models were developed to characterise the contribution of 

collagen fibres to the non-linear stress-strain relationship of the tissue. The first 

model included the gradual contribution of the fibres, from their wavy 

configuration to fully straight, and quantified single fibre strain during the tissue 

deformation. The second model incorporated fibre reorientation, quantifying the 

angle of reorientation of the population of the collagen fibres upon tissue-level 

deformations. Both models provided a good fit to the experimental tissue-level 

data, and indicated that contrary to the general assumption, the fibres should not 

necessarily be fully straight to contribute to load-bearing in the tissue, and that 

the angular distribution of the fibres may not be preserved during deformation. 

A new angular distribution function was also developed and introduced, based 

on the geometry of the fibres within the tissue, for a more accurate description 

of the fibre kinematics during tissue deformation. 

 

 A model was proposed based on the principles of statistical mechanics in 

entropic elasticity, to characterise the contribution of the elastin network to the 

mechanics of the AV. Results of modelling the experimental data showed that 

the overall nonlinearity of the stress-strain curves observed in AV tensile 

deformation tests may not entirely be due to the gradual recruitment of the 
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initially wavy collagen fibres, but that the elastin network can further exacerbate 

nonlinearity, especially at increasing strains. Previous descriptions of the 

function of the elastin constituent of the AV ECM have mainly remained 

descriptive, limited to ‘providing an elastic returning mechanism’ for the AV 

tissue after stretching [19,20]. The model developed in chapter 7 can be 

superimposed into that developed for collagen fibres in chapter 6, for a more 

accurate micro-mechanical based characterisation of the mechanical behaviour 

of the AV by a unified model.  

 

 With regard to time-dependent behaviour, it was shown mathematically that the 

QLV model is not structurally based, and remains phenomenological in 

describing stress-relaxation and creep behaviour of the AV. Thus, alternative 

modelling criteria were needed to describe the time-dependent behaviour of the 

AV based on its microstructure. 

 

 The ECM reorganizes during stress-relaxation, with two distinct fibre kinematic 

features observed experimentally: reorientation and linear movement. It was 

shown mathematically that the dissipative effects due to fibre-fibre and fibre-

matrix interactions during the reorientation and the linear sliding would result in 

Maxwell-type exponential stress-relaxation. One of the relaxation modes 

observed at tissue-level thus results from such fibre kinematics, and the other 

relaxation mode is most likely related to the viscous effects of GAGs. 

 

 Similar ECM reorganization was observed during the creep, i.e. fibre 

reorientation and movement. It was shown that the mathematics of fibre 

kinematics is similar in creep and stress-relaxation, and the observed creep 

behaviour at the tissue-level results from the same set of equations, with only 

the boundary conditions differing between creep and stress-relaxation. This 

structural mechanism results in both the primary and secondary creep 

behaviours, observed at the tissue-level.  

 

 Experimental observations and modelling results both confirmed that the same 

microstructural mechanism is responsible for stress-relaxation and creep 

phenomena in the AV at the fibre level. 
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11.3. Recommendations for future work 

 

The areas for future work associated with the current study may be divided into 

three separate categories, each pertaining different time scales: modelling criteria, 

experimental work, and tissue engineering perspective. 

 

11.3.1. Modelling criteria 

 

The microstructural based models developed in this work enable the quantification 

of strains, and accordingly stresses, of a single and a network of fibres within the AV 

during deformation, both under quasi-static and time-dependant loading modes. An 

exciting prospect for future developments to this work would be to introduce the 

derived equations to finite element codes and models that simulate the deformation of 

the AV cusp under physiological loading conditions. This could quantify the local 

micro strains and stresses within the ECM, within the native functioning valve.  

 

Another aspect providing further insights into the micromechanics of the AV is to 

investigate the mechanisms of AVIC adhesion to the fibres, which could result in 

clarification of how the strains and stresses are transferred to the cells, from the fibres. 

This is particularly a challenging task, and may therefore be persuaded in longer time 

scales, since in addition to the associated biological and biochemical complications, 

biologists and modellers need to arrive at a common understanding and consent for a 

representative model. Once this is achieved, the strains and stresses undergone by 

cells can also be quantified from the tissue-level deformation data. This would 

significantly contribute to our understanding of AVIC mechanobiology, and can lead 

to the design of optimised loading protocols which can be implemented in bioreactors 

for cell-mediated ECM biosynthesis, and eventually tissue-engineered valves. All this 

can be achieved by coupling finite element models investigating tissue deformation 

with the micromechanical based models developed in this study, and knowledge of 

how the cells are attached to the fibres. This is shown schematically in Figure 11.3. 
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11.3.2. Experimental work 

 

From an experimental point of view, further work should employ a biaxial loading 

protocol, as a means to create loading boundry conditions more closely matched with 

those in AV physiological loading. Of particular interest is the investigation of AVIC 

deformation in situ under biaxial deformation of the AV; information which is 

currently lacking from the literature. The outcomes of this study can be of significant 

benefit when linked with the data from mechanobiology studies of single-cell models 

investigating the influence of cell deformation on ECM biosynthesis, to draw more 
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Figure 11.3 Possible new developments to build into conventional finite element models, generating new 
outputs. 
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accurate conclusions about the rate of ECM metabolism and turnover in the native 

valve.  

 

When studying AV mechanics under biaxial loading, it would also be interesting to 

investigate the time-dependent behaviour of the tissue under non equi-biaxial loading 

regimes, to elucidate the extent of such effects on the native functioning AV. Current 

data fall short in describing creep behaviour of the AV under non equi-biaxial 

loading, which is the likely loading mode in the native valve. This information can 

prove crucial when designing substitute mechanical valves, for a more optimized 

material selection to mimic the behaviour of the native valve more closely.  

 

In prepration for these studies, a biaxial loading rig was designed and developed 

during the course of this work. A picture of the rig, together with a schematic showing 

the different components, is presented in Figure 11.4. The rig allows for the 

application of quasi-static and time-dependent loading modes on tissue samples, 

under both load and displacement control. It has been designed to fit on the stage of 

confocal microscope, facilitating imaging of the residing cells and ECM upon 

deformation of the sample in real time. The technical drawings of the rig are included 

in Appendix G. 
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11.3.3. A tissue engineering perspective 

 

My view is that, in a broader perspective, the ultimate goal of studies investigating 

structure-function relationships in biological tissues should be to implement the 

gained knowledge into strategies that would lead to tissue-engineered replicates of the 

subject tissue. This is further encouraged in the case of AV, as none of the current 
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Figure 11.4 (a) a picture of the biaxial rig; 
(b) schematics of the rig; showing its
different parts; (c) schematics of the rig on 
confocal microscope stage. 
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prosthetic or bioprosthetic valves are reliable long-term alternatives to the 

dysfunctional native valve.   

 

The current paradigms adopted in tissue engineering of the AV mainly include the 

use of decellularized allogeneic or xenogeneic valve matrices, followed by seeding 

and repopulating with endothelial and interstitial cells [193,194]. This would create a 

non-thrombogenic surface for the valve matrix, and enables the remodelling of the 

ECM during the valve’s function in vivo. However, a major drawback of this 

approach is the insufficient attachment of the cells to the matrix, particularly in the 

dynamic loading environment which the AV faces in vivo [193].  A better approach, 

in my view, is to seed the cells into a scaffold made of suitable biomaterials, and 

create the optimum biological and mechanical environment for the complex in a 

bioreactor, to stimulate ECM biosynthesis and a viable replacement valve. 

 

In this regard, I propose a cell-mediated tissue engineering strategy that includes 

three stages: (i) design of appropriate choice of scaffolds for the AVICs to be seeded 

on; (ii) in vitro tissue formation, by creating the native metabolic and mechanical 

environment for the seeded cells on the scaffold inside a bioreactor as a control; 

seeding endothelial cells to the construct to creat a non-thrombogenic sheath on the 

valve leaflets; and (iii) in vivo animal models to check the viability and functionality 

of the produced tissue. A breakdown of each stage, with details of the processes that 

may be included in each stage, is described in the diagram in the following page. It 

must also be acknowledged that this approach is a highly multi-disciplinary research 

area, requiring much broader time horizons to be implemented and achieving its 

objectives, compared to the other two recommended developments in this section. 

  

This strategy is in line with the principles of a paradigm known as ‘Functional 

Tissue Engineering’ (FTE), addressed by the United States National Committee on 

Biomechanics (USNCB). The general principles of FTE are [195,196]: 
 

1) Understanding the biomechanical properties of native tissues. 

2) Prioritisation of specific biomechanical properties of the native tissue. 

3) The use of physical factors to enhance tissue generation and regeneration. 

4) Investigation of the effects of mechanical factors on tissue repair. 

5) Measurement of in vivo stresses and strains in native valve. 
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The proposed strategy here encompasses the FTE specifications, incorporated in 

different stages of the strategy as illustrated in the graph; however it also provides 

more specific details for each stage of the strategy. The 1st, 2nd and 3rd principles are 

addressed in the in vitro tissue formation stage, while the 4th principle is incorporated 

into the in vivo stage. The 5th principle provides the data for benchmarking the 

properties of the obtained tissue with respect to the native tissue, as indicated in the 

blue box in the in vitro tissue formation stage. The blue boxes in the diagram indicate 

the data that can be elucidated from this study through the experimental and 

modelling results, or by incorporating the developed analytical models into the 

computational finite element models, as described in §11.3.1. The red boxes indicate 

the scope of the work needed to be done to achieve the goals of this strategy.  
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Appendix A 

 

Characteristic decay length based on Saint-Venant’s principle 

 

Amongst the different descriptions of the Saint-Venant’s principal, a well accepted 

representation is described by Love as [125]: “According to this principal, the strains 

that are produced in a body by the application, to a small part of its surface, of a 

system of forces statically equivalent to zero force and zero couple, are of negligible 

magnitude at distances which are large compared with the linear dimensions of the 

part”. This distance, known as the characteristic decay length, is the length along a 

test specimen at which gripping effects gradually decay and become negligible. 

 

For a general case of 2D elasticity, it has been shown that the exponential decay in 

strain energy is of the form [128]: 

                                          b
kx

eExE
2

)0(2)(
−

≤                                                       (A1)  
 

where )(xE  is the stored elastic strain energy beyond the distance x   from the loaded 

end, )0(E  is the total stored energy upon deformation, k  is the universal constant and 

is equal to 1.4, and b  is the maximum dimension of the cross-sectional area. 

Employing the mean value theorem for biharmonic functions, the stress will also 

decay exponentially in the form [128]: 
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σ                                                 (A2) 

 

where δ  is the distance between point ),( yx  from the loading boundary. 

 

Since biological soft tissues are generally anisotropic, the results obtained by 

Knowles (1966) [128] must be expanded for the case of anisotropic elasticity. The 

stress-strain relationships for an anisotropic solid with one plane of elastic symmetry 

(e.g. the 1,2 plane) are given as [138]: 
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where ijE , ijε  and ijσ  are the elastic moduli, strain and stress components 

respectively. In a plane deformation, the non-zero strain components of the equation 

(A3) will be: 
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where: 
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The Airy stress function, ϕ , is by definition related to the Cauchy stress and strain 

tensor as [138]: 

                                                 
ji

ijij xx ∂∂
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                                                       (A6)   

 

where  ijβ  is the two-dimensional alternator that: 02211 == ββ , 12112 =−= ββ . 

 

In the absence of body force: 
 

                               0)( 2211
2 =+∇ σσ  ∴ 04 =∇ ϕ                                              (A7) 

 

Therefore, using the equation (A4), the above equation leads to a fourth order 

differential equation of the form: 
 

         ( ) 0222 1112,261222,161122,66121111,222222,11 =−−+++ ϕαϕαϕααϕαϕα                (A8) 
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where the operator ( ,) denotes the partial differential operator.  

 

The total strain energy for a plane deformation in anisotropic materials is given by: 
 

                                                ∫∫= WdAEtotal                                                           (A9) 
 

where W  is the strain energy density function, and in an elastic deformation is given 

by [100]: 

                                                       2

2
1 εEW ≡                                                        (A10) 

 

which for an anisotropic elastic material, using equation (A4) will be of the form: 
 

 ( )122226121116221112
2
1266

2
2222

2
1111 222

2
1 σσασσασσασασασα +++++=W          (A11) 

or in a matrix format: 

                                                  BCCW T

2
1

=                                                         (A12) 

where: 

                                                  

⎥
⎥
⎥
⎥
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⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2
12

22

11

σ
σ
σ

C                                                              (A13) 

and: 

                                        

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

222

2

2

662616

26
2212

16
1211

ααα

α
αα

α
αα

B                                                    (A14) 

 

It has been shown that the strain energy described by equations (A10) and (A11), 

for the stress field characterised in equation (A8) will decay exponentially following 

the form [129]: 

                                                   kxeExE 2)0(2)( −≤                                                 (A15) 
 

and subsequently the stress decay would be [129]: 
 

                                                       kxKe−≤σ                                                          (A16)                      
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where K  is a constant proportional to )0(σ , and k/1  is the characteristic decay 

length. 

 

Now, k  must be calculated. The plane deformation of an anisotropic material is 

given by equation (A3) and (A4). However, by further assuming that the material is 

transversely isotropic about one axis, say axis 3, the deformation equations reduce to 

[138]: 
 

ijnnijij EEE
δσυσυσυε ⎟
⎠
⎞

⎜
⎝
⎛ +

′
′

−
′
′+

= 33
1  , =ji, 1, 2                                                             

                                                                                                                                (A17) 

                                  iiEE
συσε −= 3333

1  , ii G 33 2
1 σε =  

 

where ijδ  is the Kronecker delta. For a plane deformation using the Airy stress 

function: 

                                        03333,1133,1111, =++ ϕϕϕ RQP                                         (A18) 
 

where: 

                  ⎟
⎠
⎞

⎜
⎝
⎛ ′
−=

E
E

E
P 211 υ , ( )υυ ′+−= 121

EG
Q , ( )

E
R

′
′−

=
21 υ                        (A19) 

 

For a fibre-reinforced composite material, with the constraint of incompressibility in 

direction 3, it has been shown that the following assumptions are valid [139]: 
 

                                     1<<
E
G , 1<<

′
E
E , 11 <<′−υ                                              (A20) 

 

Thus the coefficients in equation (A19) will become: 
 

                                                    
E

P 1
≅ , 

G
Q 1
≅                                                    (A21)  

 

For a deformation described by equation (A18), with material coefficients defined 

in (A21) and (A19) (P, Q, and R), and boundary conditions given by (A17) which 

ensures the constraint of anisotropy with transversely isotropic axis, k  (the inverse of 

characteristics decay length) can be derived by [129]:  
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                                                    s
Rb

k λπ
⋅= 2

2
2

2
                                                    (A22) 

 

where λ  is the minimum eigenvalue of the equivalent matrix to B  in equation (A14) 

under the assumptions given in (A20) which would be: 
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and s  can be given by [129]: 
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From the definition of λ described earlier above: 
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Thus: 

                                        ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′−

′
= 2)(1( υ

λ
E

EO
R

                                                       (A26) 

 

Therefore, considering (A26), (A24) and (A22): 
 

                                          ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

b
EGOk

5.0)/(                                                          (A27) 

 

Thus, finally, the characteristic decay length would be: 
  

                                      ( )bGEOkl 5.0)/(/1 ==                                                     (A28) 
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Appendix B 

 

3D viscolasticity for a Kelvin-Voigt solid under uniaxial deformation 

 

  In a 3D Kelvin-Voigt viscoelastic solid under uniaxial stress [140]: 
 

                              
⎪
⎩

⎪
⎨

⎧

=+

=+

0ijiiji

iiiii

E

E

γηγ

σεηε

&

&

   ,  3,2,1, =ji                                              (B1) 

 

where E  and η  are the elastic and viscous damping moduli respectively, ε  and σ  

denote strain and stress, γ  is the shear strain, and ε&  and γ&  are the time derivatives of 

the normal and shear strains, respectively. 1, 2 and 3 are the principal directions 

(Figure 5.7). 

 

The amount of shear strain in the 1-3 plane due to elongation in direction 1 (the 

loading direction) can be determined by 0131131 =+ γηγ &E ; where 1E  and 1η  are the 

elastic modulus and the viscous damping coefficients in either the circumferential or 

radial direction, as relevant. The values for 1η  and 1E  at different strain levels, have 

been evaluated and calculated by incorporating experimental data and a Kelvin-Voigt 

model in Chapter 3. 

 

From Mohr’s circle [141]: 

                                                     313 2εγ =                                                           (B2) 
 

For the strain in direction 3, 3ε , due to the uniaxial engineering stress in direction 1, 

1σ , one can write [142]: 

                                                         13 υεε −=                                                          (B3) 
 

The time derivative of the above equation would be: 
 

                                                    13 ευε && −=                                                           (B4)  

and from equation (B2): 

                                                     313 2εγ && =                                                           (B5)     
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Substituting equation (B5) into (B4): 
 

                                                   113 2 ευγ && −=                                                         (B6) 

Considering the AV tissue as incompressible (Chapter 3), one may substitute 

5.0=υ  into equation (B6): 

                                                    113 εγ && −=                                                            (B7) 

Thus, from equation (B1): 

                                                    1
1

1
13 ε

η
γ &

E
=                                                         (B8)    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendices                                                                                                                               Appendix C                                     

 220

Appendix C 

 

The 2nd Piola-Kirchhoff stress in a fibrous soft tissue 

 

The strain energy density function for a fibrous tissue with a population of randomly 

distributed collagen fibres can be written as [156,160]: 
 

                                                ∫= θθ dwRW fibre)(                                                    (C1) 
 

where )(θR  is the statistical distribution function of the angular distribution of the 

collagen fibres, with θ  being the Eulerian angle describing the direction of the 

oriented fibres, and fibrew  the fibre strain energy function. For a planar 2 dimensional 

tissue continuum, )(θR  must be symmetric in the range of 
22
πθπ

≤≤− , subjected to 

the normalization constraint [156]:  

                                                    1)(
2

2

=∫
−

π

π

θR                                                              (C2) 

 

Thus equation (C1) becomes [156,160]: 
 

                                            ∫
−

=
2

2

)(

π

π

θθ dwRW fibre                                                   (C3) 

 

By definition, the 2nd Piola-Kirchhoff stress tensor, S , is [122]: 
 

                                                   
ε∂

∂
=

WS                                                                  (C4) 

 

where ε  is the Green strain tensor. Substituting equation (C3) in (C4) gives: 
 

                                        ∫
−

∂

∂
=

2

2

)(

π

π

θ
ε

θ d
w

RS fibre                                                       (C5) 
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Applying the chain rule in differentiation to equation (C5) leads to: 
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−

∂

∂
⋅

∂
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2

2

)(
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π

θ
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ε
ε

θ d
w
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where 
fibre

fibrew
ε∂
∂

 itself would be the 2nd Piola-Kirchhoff stress of the fibre, and 
ε

ε
∂

∂ fibre  

would be given by [ ]NN
vv

⊗ , where N
v

 is  the unit vector representing the direction of 

the fibre as: θcos=N
v

θsinˆ +i ĵ  [122]. 
 

                                     ∫
−

⊗=
2

2

][)(

π

π

θθ dNNSRS fibre

vv
                                                (C7) 

 

Note that ⊗  is the external multiplication operator such that [ ] jiij NNNN
vvvv

=⊗  [122]. 

Thus, in component format: 
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Appendix D 

 

True strain of a wavy fibre  

 

Fibre true strain, tε , is related to the stretch ratio tλ  by: 
 

                                                       
2

12 −
= t

t
λ

ε                                                          (D1) 

where: 

                                                         
s

t L
L

=λ                                                             (D2) 

 

L  is the current length of the fibre, and sL  is the straight length of the fibre. Equation 

(D2) can be re-arranged by the chain rule as: 
 

                                           
s

fibre

ss
t L

L
L
L

L
L

λ
λ

λ =⋅== 0

0

                                             (D3) 

 

Substituting (D3) into (D1): 

                                                   2

22

2 s

sfibre
t λ

λλ
ε

−
=                                                       (D4) 

and by definition: 

                                         
2

12 −
= fibre

fibre

λ
ε  , 

2
12 −

= s
s

λ
ε                                          (D5) 

 

Substituting fibreλ  and sλ  from (D5) into (D4) one gets: 
 

                                                      
s

sfibre
t ε

εε
ε

21+
−
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Appendix E 

 

Deriving the Gaussian model from the Taylor series expansion of the Langevin 

model  

 

The Gaussian probability density has the form [173]: 
 

                                               ⎟
⎠
⎞

⎜
⎝
⎛−= 2

0 2
3exp)( λλ pp                                              (E1) 

 

where 0p  is a constant. Inserting equation (E1) into equation (8.4): 
 

                                                  0
2

2
3 ψλψ += kTc                                                    (E2) 

 

The parameters in the above equation are the same as those defined in equation (8.7). 

The force acting on a single chain can be calculated in light of equation (8.5): 
 

                                                      λkTFc 3=                                                           (E3) 
 

Now, following the procedure described through equations (8.11) to (8.19): 
 

                                             0

2
1

22
3 ψ

λ
+=Ψ nkTelast                                                 (E4) 

and: 

                                                       11 2
3 λnkTF =                                                       (E5) 

 

which assumes a linear relationship between force and stretch. 

 

The Taylor series expansion of a function around an arbitrary point a  is: 
 

                                                 n

n

n

ax
n

af )(
!

)(
0

)(

−⋅∑
∞

=

                                                 (E6) 

 

Inserting the Langevin model given in equation (8.19) into (E6), its Taylor expansion 

around 0=a  would be: 

                                              ...
2
3 3

11 ++ λλ nkTnkT                                                   (E7) 
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For small deformations n
11 λλ >> , thus the power terms bear negligible values  

compared to the first term of the expansion in (E7), and can be eliminated. The first 

term of the above expansion is equal to the force in Gaussian model given in (E5).
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Appendix F 

 

Relationship between the deformation of an elastin chain and the macroscopic 

deformation of the tissue in 3D 

 

Consider a single chain in a 3D cube element, shown in Figure F1. The unstrained 

end to end distance of the chain, 0r , is then 300 ar = . After deformation, the end-to-

end chain length vector will be given by )ˆˆˆ( 3210 kjiar λλλ ++=v , where 1λ , 2λ  and  

3λ  are the principal macro stretches,  i , j  and k  are the unit vectors, in the x , y  

and z  directions respectively. Hence, the magnitude of rv  is: 
 

                                           2
3

2
2

2
10 λλλ ++= ar                                                     (F1) 

 

Substituting this into equation (8.1): 

                                                         
3
1I

=λ                                                            (F2) 

 

where  1I  is the first principal invariant of the Cauchy-Green deformation tensor in 

the macro level principal reference system and is given by 2
3

2
2

2
11 λλλ ++=I . 
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Figure F1 Geometry of a single chain in a 3D cube 

element. 
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Appendix G  

 

Technical drawings of the biaxial loading rig 
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