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Abstract 

γδ cells are conserved across ~450 million years of evolution, from which they share the 

distinction, alongside αβ T cells and B cells, of forming antigen receptors by somatic gene 

recombination. However, much about these cells remains unclear. Indeed, although γδ cells 

display “innate-like” characteristics exemplified by rapid tissue-localised responses to stress-

associated stimuli, their huge potential for T cell receptor (TCR)γδ diversity also suggests 

“adaptive-like” potential. Clarity requires a better understanding of TCRγδ itself, not only 

through identification of TCR-ligands, but also by correlating thymic TCRγδ signalling with 

commitment to γδ effector fates. Here, we propose that thymic TCRγδ-ligand engagement 

versus ligand-independent signalling differentially imprints innate-like versus adaptive-like 

characteristics on developing γδ cells, which fundamentally dictate their peripheral effector 

properties.  
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Unresolved role for TCRγδ in γδ cell development 

γδ T cells are predominantly tissue-resident lymphocytes that display diverse responses 

against pathogens and tumours [1]. Indeed, novel immunotherapies that target γδ cells are now 

being explored to combat chronic viral infections, atopic and autoimmune pathologies, and 

various cancers [2,3]. Stimulation through TCRγδ is critical for γδ cell function [4]. However, by 

contrast to TCRαβ, signalling through which is absolutely required for thymic αβ T cell 

development, the role of TCRγδ in γδ cell development remains controversial. TCRγδ signalling 

is clearly necessary for commitment to the γδ lineage, but the initiation, regulation and 

molecular nature of this commitment signal are still uncertain. Moreover, ligand-mediated 

positive and negative selection through TCRγδ remain poorly understood, as too is the 

correlation between thymic TCRγδ signalling and subsequent γδ effector fates. Here, we build 

on recent studies that assess the initiation and consequences of TCRγδ signalling in immature 

thymocytes [5-7], to propose that thymic TCRγδ-ligand engagement versus ligand-independent 

TCRγδ signalling may differentially impose innate-like versus adaptive-like features on 

developing γδ cells. 

 

Heterogeneity of peripheral γδ subsets 

Discussion of the role of TCRγδ in γδ cell development first requires appreciation of the 

heterogeneous nature of peripheral and thymic γδ subsets. Functionally distinct γδ subsets 

have been extensively characterised by surface phenotype. For example, dendritic epidermal 

T cells (DETC), that reside in murine epidermis and predominantly express a TCRγδ that uses 
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TCRγ variable-region-5 (Vγ5) and TCRδ variable-region-1 (Vδ1) (nomenclature from [8]), are 

CD44+CD62L-, express CD103 (αE integrin), and are CD122+ consistent with their dependence 

on IL-15 (Figure 1 and Table 1) [9,10]. DETC also readily secrete IFN-γ when activated. This 

CD44+CD62L-CD122+ IFN-γ-secreting phenotype is also shared by a minor population of 

lymphoid γδ cells (~0.5%) whose TCR binds to MHC class IB molecules T10b and T22b, but 

only in mouse strains expressing T10b and T22b [7]. Moreover, it also characterises a 

CD90dullCD27+ “NKT-like” γδ subset that uses a restricted Vγ1+Vδ6.3+ (or Vδ6.4+) TCR and is 

known to secrete both IFNγ and IL-4 [11]. 

By contrast to DETC, Vγ4-biased γδ cells (i.e. a γδ subset with over-representation of Vγ4-

containing TCRγ chains) of the murine dermis secrete IL-17A, are CD44+CD122-, and express 

CCR6 and the scavenger receptor SCART2 [9,12,13] (Figure 1 and Table 1). These cells are 

likely CD27-, as they closely resemble IL-17A-secreting Vγ6-biased γδ cells from the peritoneal 

cavity and female reproductive tract that are CD27-CD44+CD122- and CD25+ [14,15]. A CD27-

CD44+CD62L-CD122- phenotype accompanied by CCR6 and SCART2 expression is also 

shared by a minor population of IL-17A-producing γδ cells from the secondary lymphoid organs 

[13,16,17]. Nonetheless, the majority of lymphoid γδ cells from naive mice secrete large 

amounts of IFN-γ when activated, but no IL-17A [16]. These cells are CD27+, with a contrasting 

(for example, to DETC) CD44-CD62L+CD122- phenotype (Figure 1 and Table 1). Finally, Vγ7-

biased γδ intraepithelial lymphocytes (IELs) of the gut are CD27+ and express IFN-γ on 

activation [18]. These cells are often described as “partially activated”, and may be under 

constant stimulation from gut-associated antigens [19,20]. 
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Thymic γδ subsets 

TCRγδ+ thymocytes are first evident from embryonic day-14 (E14), being initially dominated by 

a population of Vγ5+Vδ1+ DETC progenitors [21]. Shortly after a population of Vγ6+Vδ1+ 

progenitors emerge that are destined for the female reproductive tract, peritoneal cavity and 

tongue. Thymic terminal transferase (TdT) is not expressed during these prenatal stages, 

resulting in simple V-D-J joins that characterize the canonical TCRs of fetal-derived γδ cells 

[21]. By contrast, postnatal thymic precursors of gut and lymphoid γδ cells possess diverse V-

D-J joins in their Vγ1, 2, 4 and 7-containing TCRs. This sequential progression of γδ cell output 

is partly due to ordered Vγ-region transcription and rearrangement. Nonetheless, other intrinsic 

differences between fetal/adult thymic progenitors [22,23], and requirement for age-specific 

thymic stromal factors [24], are also thought to influence subsequent γδ cell fate. 

In the adult murine thymus, CD27, CD25, CD24 and CD44 identify five distinct γδ cell 

populations [16,25] (Figure 1 and Table 1). The most immature TCRγδ+ cells are 

CD27+CD25+CD24+CD44-, express low TCR levels but are highly proliferative [16,25]. These 

progenitors down-regulate CD25 to become CD27+CD25-CD24+CD44- cells, that can possibly 

already colonise the periphery [26]. They also likely represent precursors for three “mature” γδ 

thymocyte populations that lack surface expression of CD24. This includes a CD27- subset 

that is CD44+CD62L-, largely CCR6+ [17], and is already committed to IL-17A secretion [16]. 

By contrast, mature CD27+CD24- γδ thymocytes, that have potential to secrete IFN-γ, can be 

further sub-divided into CD44+CD62L-CD122+ and CD44-CD62L+CD122- subsets. The former 

lack CCR9 and are largely NK1.1+ [17,20], being enriched for precursors of NKT-like γδ cells 

[11]. Conversely, CD27+CD24-CD44-CD62L+CD122- γδ thymocytes are likely progenitors to 
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those of similar phenotype in peripheral lymphoid organs (see previous section). Thus, the 

thymus generates distinct γδ populations with clear phenotypic links to peripheral γδ subsets.  

 

Thymic commitment to a γδ cell fate 

γδ and αβ T cells share a common CD4-CD8- double negative (DN) thymic progenitor in which 

TCRγ, TCRδ, and TCRβ rearrangements initiate [21]. DN cells that express a preTCR (TCRβ 

paired with invariant preTCRα chain), traverse a “β-selection” checkpoint to a CD4+CD8+ 

double positive (DP) stage that marks commitment to the αβ lineage [27]. By contrast, TCRγδ 

expression appears to commit DN cells to a γδ fate. These observations initially suggested a 

qualitatively instructional role for preTCR and TCRγδ in αβ versus γδ fate determination [28]. 

However, this model failed to explain development of TCRγδ-dependent DP cells in preTCR-

deficient mice [29,30], or that precocious expression of transgenic-TCRαβ induced appearance 

of “γδ-like” cells [31].  

A competing “pre-commitment” model for αβ versus γδ lineage choice alternatively proposed 

that fate determination occurred prior to TCR expression. This initially correlated to 

heterogeneity in CD127 expression in CD44+CD25+ DN (DN2) cells; CD127hi cells being 

biased toward the γδ lineage [32]. More recently, expression status of Sox-13 has been 

similarly implicated [33], while commitment potential to the γδ lineage clearly varies with both 

ontogeny [22], and with the developmental stage at which TCRγδ is initially expressed [34]. 

Nonetheless, the extent to which subsequent TCRγδ signalling can override these pre-

committed states remains unclear [35]. 
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“Strong” TCR signalling promotes a γδ cell fate  

Available data now best fit a model in which quantitative differences in TCR signal strength, 

irrespective of TCR identity, dictate αβ versus γδ fate determination; “strong” signalling 

promotes a γδ fate, and “weaker” signalling generates αβ-committed DP cells [36,37]. 

Operationally, this equates to an instructional model, as TCRγδ largely provides strong signals 

while preTCR signalling is weaker. Although stronger signalling from TCRγδ appeared to 

correlate with increased ERK1/2 phosphorylation, induction of Egr family transcription factors, 

and up-regulation of Id3 [36], the molecular pathways that define γδ commitment are only now 

being defined (as discussed later). Recent investigations using Delta-like-1-expressing OP9 

(OP9-DL1) stromal cell co-culture of TCRγδ(+) DN3 thymocytes supported a “signal-strength” 

model [35]. Thus, strong TCRγδ signalling combined with age and/or stage-specific pre-

commitment factors promote a γδ fate (Figure 2). 

 

Generating strong TCR signals; engaging thymic TCRγδ ligands 

The paucity of known murine TCRγδ ligands has made investigation of ligand engagement 

during thymic γδ cell development problematic. Nonetheless, at least three γδ subsets are 

implicated in thymic ligand binding; thymus leukemia (TL)-specific γδ cells, NKT-like γδ cells, 

and DETC. 

Interaction of TL-specific γδ cells (in either KN6 or G8 TCRγδ-transgenic mice) with cognate 

T10b or T22b ligand (from the MHC TL region) during thymic development was variously 

reported to cause tolerance, deletion, or trafficking of cells to the gut epithelium [38-40]. 
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However, recent experiments with a T22-tetrameric FACS-staining reagent have instead 

suggested that thymic ligand-engaging TL-specific γδ cells develop to secrete IFN-γ, whereas 

thymic ligand-naive TL-specific γδ cells secrete IL-17A [7]. This study further reported that T22-

tetramer-negative γδ cells, which constitute ~99% of those observed in wild-type mice, share 

phenotypic features of ligand-naive (i.e. IL-17A-secreting) TL-specific γδ cells, somewhat 

contradicting the perceived view of γδ cells as predominantly IFN-γ-secreting. Importantly, the 

development of ligand-naive γδ cells was suggested to result from TCR-oligomerization-

mediated ligand-independent TCRγδ signalling (see below) [7]. A subsequent report 

additionally suggested that TL-specific TCRγδ(+) IELs also lack evidence of thymic ligand 

engagement [20]. 

TCR-ligand-mediated selection is also assumed for thymic development of NKT-like γδ cells, 

as their characteristic Vγ1+Vδ6.3+ (or Vδ6.4+) TCR displays restricted Vδ-CDR3 length and 

amino acid composition [11,41]. Like TCRαβ+ NKT cells, NKT-like γδ cells are dependent on 

SAP signalling [42] and the transcription factors ThPOK [43] and PLZF [44], the latter being 

necessary for IL-4 and IFN-γ secretion [44]. However, although PLZF is induced by TCRγδ 

cross-linking [44], disruption of the LAT−Itk−Id3 signalling pathway, that functions downstream 

of TCRγδ, paradoxically promotes expansion of Vγ1+Vδ6.3+ cells [42,45-47]. Consistent with 

this, attenuation of TCR signalling appeared to expand the Vγ1+Vδ6.3+ subset, and elevated 

PLZF levels in those expanded cells [42]. Thus, very strong ligand-dependent TCRγδ signalling 

may not favour development of NKT-like γδ cells. 

Finally, selection through TCRγδ is also implicated in DETC development, which correlates 

with thymic stromal expression of immunoglobulin superfamily gene Skint1 [48,49]. Although 
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not necessarily a direct ligand for the TCR, Vγ5+Vδ1+ fetal thymic progenitors that engage 

Skint1+ stromal cells upregulate Egr3 that, together with NFAT and NFκB signalling, promote 

the DETC phenotype that involves up-regulation of Tbx21 and IFN-γ-secreting potential [5]. By 

contrast, Vγ5+Vδ1+ progenitors that develop in the absence of Skint1 fail to induce Egr3 and 

Tbx21, but express both Sox13 and Rorc that jointly promote what can be called a “non-

selected” phenotype that includes IL-17A-producing potential. Importantly, the reciprocal 

regulation of Egr3 versus Sox13/Rorc could be demonstrated in adult γδ thymocytes by cross-

linking with agonist anti-TCRδ antibody. Thus, this study begins to provide critical insight into 

the molecular mechanisms that relate γδ cell functional specification to thymic ligand 

engagement. 

 

Ligand-independent TCRγδ signalling 

Despite the acknowledged presence of certain thymic TCRγδ-ligands, and that TCRγδ 

signalling is considered ligand-driven in peripheral immune responses, ligand engagement 

may not mediate all instances of TCRγδ signal initiation in DN thymocytes. Ligand-independent 

signal initiation has long been demonstrated for preTCR [50], being variously ascribed to pTα-

mediated lipid-raft association [51], preTCR oligomerization mediated by the extracellular Ig-

loop of pTα [52,53], or to an intrinsically low signalling threshold in DN thymocytes [54]. Thymic 

ligand-independent signalling was similarly proposed for TCRγδ, possibly mediated by 

oligomerization of the variable region of TCRδ [7]. In addition, a recent study suggested that 

“TCRγδ” complexes that lack variable domains, or that lack both variable and constant Ig-like 

domains, can still initiate signals that drive RAG-2-deficient thymocytes toward a “γδ-like” fate 
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[6]. This implies that appropriate surface pairings of TCRγ and TCRδ chains that possibly bring 

CD3ε-containing signalling modules into close proximity of available Lck is sufficient for TCRγδ 

signal initiation in DN thymocytes. Thus, strong TCRγδ signalling may not only be a 

consequence of ligand engagement; additionally, efficiently paired TCRγ/TCRδ chains that are 

expressed at the cell surface above a certain critical threshold will also commit DN progenitors 

to a γδ cell fate [6].  

 

Mapping thymic TCRγδ signalling to peripheral γδ effector fate 

Studies on DETC, NKT-like, and antigen-experienced TL-specific γδ cells clearly associate 

thymic ligand binding with a CD44+CD62L-CD122+ phenotype and IFN-γ-secreting potential 

[5,7,44]. Nonetheless, the majority of CD27+ lymphoid γδ cells also produce abundant IFN-γ 

when activated [16], despite displaying a contrasting CD44-CD62L+CD122- phenotype that 

implies an absence of thymic TCR-ligand engagement. Thus, we suggest that thymic ligand-

independent TCRγδ signalling may be sufficient to promote γδ cell commitment to subsequent 

IFN-γ production (and not to IL-17A production as suggested in previous reports [7]). 

Moreover, we also propose that a significant component of thymic TCR-ligand engagement 

may actually be interaction with ligand-presenting cells that provide critical additional signals 

for subsequent γδ cell effector function; this may include provision of SAP-dependent signalling 

for NKT-like γδ cells, or access to Skint1 for developing DETC.  

By contrast to IFN-γ secretion, IL-17A production by γδ cells has been proposed as a default 

pathway in which TCRγδ+ thymocytes do not encounter agonist TCR-ligand [7]. However, IL-

17A-secreting CD27- γδ thymocytes display a uniformly “activated” CD44+CD62L- thymic 
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phenotype similar to ligand-experienced γδ cells (although without CD122 or NK1.1 

expression) [17,25]. Indeed, early studies suggested that Vγ6+Vδ1+ thymic progenitors (that 

mature to secrete IL-17A) undergo ligand-driven TCR selection for canonical CDR3 sequences 

to a similar degree as Vγ5+Vδ1+ DETC progenitors [55]. This notwithstanding, it is unlikely that 

any such IL-17A-inducing thymic TCR-ligand would behave as a full TCRγδ agonist [5,7].   

Whatever the nature of the inductive event for IL-17A-secreting potential, the thymic 

progenitors of IL-17A-secreting γδ cells appear to enter a complex program of development [5] 

that results from some significant degree of fetal thymus-associated pre-commitment [14]. It 

also appears to require signalling pathways that involve B lymphoid kinase [56], TGFβ1 [57], 

and Hes-1 [15]. Thus, it presently remains unclear whether an IL-17A-secreting γδ fate truly 

represents a ligand-independent γδ cell developmental pathway, or whether fetal/neonatal γδ 

progenitors of IL-17A-secreting γδ cells must also interact with thymic ligands that results in 

distinct but overlapping phenotypic changes to those observed for DETC and NKT-like γδ cells.   

 

Implications for γδ cell function 

The common description of γδ cells as “innate-like” perhaps more accurately reflects tissue-

associated γδ subsets with highly focused TCR specificities that represent prototypic stress-

surveillance lymphocytes with rapid responses to autologous stress-antigens [1]. As discussed 

above, precursors of these populations are likely selected on thymic ligands that endow them 

with specific effector functions, or reinforce homing to certain body locations [11,23]. These 

cells respond en masse to local tissue insults and make critical contributions to both immune 

protection and tissue integrity [1]. IFN-γ-secreting DETC represent a well-studied example of 
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these stress-surveillance lymphocytes. However, it is tempting to also speculate whether IL-

17A-producing γδ subsets, such as Vγ6+Vδ1+ cells from the female reproductive tract and 

peritoneal cavity, or Vγ4-biased dermal γδ cells, might also contribute to stress-surveillance. 

These subsets are predominantly tissue-located, and share the “activated” CD44+CD62L- 

phenotype of DETC and NKT-like γδ cells that could suggest some degree of thymic TCRγδ 

ligand engagement [16,25]. Certainly their rapid responsiveness to cytokines such as IL-1 and 

IL-23 would be consistent with an “innate-like” existence [58,59]. Investigations that determine 

whether IL-17A-producing γδ progenitors require thymic TCR-ligand interaction for 

development should clarify this issue. Moreover, they should test the hypothesis that “innate-

like” γδ subsets require TCRγδ ligand engagement during their thymic development. 

Adaptive T cell responses are generally defined as clonal expansions of relatively few antigen-

specific lymphocytes. Interestingly, this feature may well be shared by CD27+CD44-

CD62L+CD122- γδ cells that comprise the majority of γδ cells in secondary lymphoid organs 

[16]. This subset rapidly and extensively expands to secrete abundant IFN-γ on activation 

through TCRγδ (and CD27), and was shown to include Murid herpesvirus-4 responsive cells 

[59]. Thus, γδ cells which lack evidence of thymic TCR-ligand engagement (i.e. with a 

CD27+CD44-CD62L+CD122- phenotype), that likely develop as a consequence of ligand-

independent TCRγδ signalling, appear to demonstrate peripheral “adaptive-like” responses, 

that includes abundant secretion of IFN-γ, on recognising non-thymic (possibly pathogen-

associated) antigens. Nonetheless, there is little evidence of γδ memory cell generation or 

“fixing” of TCR specificities in the TCRγδ repertoire as a consequence of these expansions 
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[7,26]; instead expanded γδ cell clones appear relatively short-lived, being replaced by “fresh” 

naive γδ cells that presumably maintain a diverse TCRγδ repertoire.   

 

Similarities with non-T lymphocyte development 

Despite persistent temptation to align γδ cells with their αβ T cell cousins, comparison with 

non-T lymphocytes may instead reveal much about γδ cell biology. For example, developing B 

cells whose B cell receptors (BCRs) engage self-antigen often develop as B-1 B cells, a subset 

with "innate-like" features that includes rapid functional responses and a restricted BCR 

repertoire [60]. Conversely, B cells expressing BCRs with no apparent self-reactivity primarily 

differentiate into "conventional" follicular B cells with classic “adaptive-like” qualities. 

Interestingly, BCR signalling of “intermediate” strength in response to limiting self-antigen 

drives marginal zone B cell generation in a BAFF-dependent manner [61]. Here, BCR 

signalling induces expression of non-canonical NFκB pathway substrate p100 which 

suppresses survival and differentiation unless converted to active p52 by BAFF signalling [62]. 

This demonstrates that different B cell fates are generated by different “qualities” of BCR 

signalling that may or may not require ligand engagement and/or input from additional 

signalling pathways [60]. Thus, an alternative developmental perspective from a distantly-

related lymphocyte relative may provide fresh insight on the generation of different γδ effector 

fates that possibly result from similar differences in TCRγδ signalling and co-stimulation. 
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Concluding remarks 

Recent studies have reinforced the importance of γδ cell responses in infections, cancer and 

autoimmunity [1]. Indeed, the administration of autologous activated human Vγ9+Vδ2+ γδ cells 

now represents a promising approach for immunotherapy in diverse disease scenarios [2,3]. 

Clearly, an improved knowledge of γδ cell biology is essential, and great strides have been 

taken to characterise γδ subset phenotypes and functions throughout the body. A thorough 

understanding of thymic γδ cell development is equally important, at the forefront of which is 

elucidation of TCRγδ-mediated selection events. Here, we propose that thymic engagement of 

TCRγδ ligands generates “innate-like” γδ subsets with rapid cytokine responses to stress-

associated stimuli. By contrast, γδ cells that do not recognise thymic ligands develop as 

“adaptive-like” γδ cells that expand clonally to secrete IFN-γ in response to non-thymic and 

potentially foreign TCRγδ-ligands. Thus, we contend that thymic TCR selection plays a critical 

role in ascribing appropriate functional responses to self/non-self TCRγδ specificities. 
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Box 1. Outstanding Questions 

• What are the cognate ligands for murine TCRγδ? Do these include self-ligands? Have 

canonical γδTCRs been preserved through evolution for self-ligand recognition? 

• To what extent are thymic progenitors pre-committed to “innate-like” γδ effector fates? Do 

“innate-like” γδ and αβ T cells share a common thymic progenitor? 

• To what extent is thymic TCRγδ-agonist engagement required for γδ cell development? 

What contribution does thymic ligand-independent TCRγδ signalling make to the peripheral 

γδ pool? How does ligand-independent TCRγδ signalling initiate?  

• How is the IL-17A-secreting effector program initiated during thymic γδ cell development? 

And how do additional inputs, such as TGFβ or Notch signalling, affect this process? 

• What are the signalling pathways, molecular mechanisms, and transcription factors that 

regulate thymic commitment to diverse γδ cell effector fates? 
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Figure Legends 

Figure 1. Thymic and peripheral γδ subsets. Phenotypic characterisation of thymic and 

peripheral γδ subsets based on surface expression of CD25 (purple segments; “25”), CD24 

(green segments; “24”), CD27 (yellow segments; “27”), CD44 (blue segments; “44”) and 

CD122 (red segments; “122”). The predominant cytokines (IFN-γ, IL17A and IL-4) produced by 

a subset on activation ex vivo are illustrated. The term “Vγ4-biased” indicates a γδ subset that 

uses the Vγ4 region of TCRγ more frequently than expected. TCRγδ expression is first seen in 

the thymus on CD27+CD24+CD25+ progenitors (a) that do not express CD44 or CD122. This 

population rapidly down-regulates CD25 and increases TCRγδ surface expression to generate 

immature CD27+CD24+CD25-CD44-CD122- cells (b) that are likely precursors of at least three 

mature CD24- thymic subsets. TCR-agonist engagement preserves CD27 expression and up-

regulates CD44, CD122 (c). This population likely includes precursors of peripheral NKT-like 

γδ cells (d) that predominantly express a Vγ1+Vδ6.3+ (or Vδ6.4+) TCR; and possibly TL-specific 

γδ cells that develop in a T10b or T22b-expressing background (e). Interestingly, this thymic 

phenotype (c) is shared by thymic DETC progenitors (f) during early ontogeny that are also 

thought to be TCR-agonist selected. Mature DETC (g), NKT-like, and TL-specific γδ cells all 

secrete abundant IFN-γ. Progenitor (b) also likely generates CD27+CD44-CD122- cells (h) 

through prolonged ligand-independent signalling, that seed the peripheral lymphoid organs (i) 

(and possibly the gut; not shown), where they generate abundant IFN-γ on activation. 

Progenitor (b) also appears to generate thymic IL-17A-secreting cells that are CD27-

CD44+CD122- (j). It is presently unclear how this transition proceeds; we suggest that TCRγδ 

engagement may be required, although both ligand-independent TCRγδ signalling and some 

element of pre-commitment have also been proposed. These cells (j) are likely precursors of 
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IL-17A-producing γδ cells from the peritoneal cavity and female reproductive tract (k), dermis 

(l) and lymph nodes (m). Data is from references [7,9-17,20,25,47,48,63]. 

 

Figure 2. TCR signal strength and pre-commitment factors dictate γδ versus αβ lineage 

fate. Strength of TCR signalling rather than type of TCR complex (i.e. preTCR vs. TCRγδ) 

appears to dictate γδ versus αβ lineage fate; stronger TCR signals commit early thymocyte 

progenitors to a γδ fate, whereas weaker signals promote an αβ T cell fate. Operationally, this 

represents an instructional model of commitment, as TCRγδ is known to signal more strongly 

than preTCR (predicted ranges of signal strength for preTCR and TCRγδ are indicated). 

Nonetheless, factors unrelated to strength of TCR signalling, such as age (fetal vs. adult), 

developmental stage at which TCR signalling initiates (i.e. DN2 vs. DN3 vs. DN4), and 

expression of certain “pre-commitment” factors (e.g. CD127 or Sox-13), will impact on the 

likelihood that a particular signal strength will result in commitment to either lineage.   
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