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Abstract

This thesis investigates the use of latent semantic models for annotation and

retrieval from collections of musical audio tracks. In particular latent seman-

tic analysis (LSA) and aspect models (or probabilistic latent semantic analysis,

pLSA) are used to index words in descriptions of music drawn from hundreds

of thousands of social tags. A new discrete audio feature representation is in-

troduced to encode musical characteristics of automatically-identified regions

of interest within each track, using a vocabulary of audio muswords. Finally a

joint aspect model is developed that can learn from both tagged and untagged

tracks by indexing both conventional words and muswords. This model is

used as the basis of a music search system that supports query by example and

by keyword, and of a simple probabilistic machine annotation system. The

models are evaluated by their performance in a variety of realistic retrieval

and annotation tasks, motivated by applications including playlist generation,

internet radio streaming, music recommendation and catalogue search.

4



Contents

1 Introduction 14

1.1 Music and conventional semantics . . . . . . . . . . . . . . . . . 14

1.2 An emergent semantics of music . . . . . . . . . . . . . . . . . . 16

1.3 Aims and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 A note on evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.1 Simple classification systems . . . . . . . . . . . . . . . . 19

1.5.2 Whitman’s bank of classifiers approach . . . . . . . . . . 21

1.5.3 Eck et al.’s boosted classifiers . . . . . . . . . . . . . . . . 22

1.5.4 Turnbull & Barrington’s bank of Mixture Models . . . . 23

1.5.5 Mandel et al’s Restricted Boltzmann Machines . . . . . . 25

1.5.6 The MIREX tag classification contest . . . . . . . . . . . . 27

1.6 Modelling semantic relevance . . . . . . . . . . . . . . . . . . . . 28

1.7 Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . 29

1.7.1 Major contributions . . . . . . . . . . . . . . . . . . . . . 33

1.8 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Learning semantic models for music from social tags 36

2.1 Social tags for music . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 The nature of tags for music . . . . . . . . . . . . . . . . . . . . . 40

2.3 Tags vs web-mined text . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Vector space model . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5



2.5 Latent semantic analysis . . . . . . . . . . . . . . . . . . . . . . . 50

2.6 Aspect model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.7 Evaluating the models . . . . . . . . . . . . . . . . . . . . . . . . 57

2.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.8.1 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . 59

2.8.2 Vector space model . . . . . . . . . . . . . . . . . . . . . . 61

2.8.3 LSA models . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.8.4 Aspect models . . . . . . . . . . . . . . . . . . . . . . . . 64

2.9 Emergent semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 A discrete representation for musical audio features 71

3.1 Finding regions of interest . . . . . . . . . . . . . . . . . . . . . . 76

3.2 A vocabulary of audio muswords . . . . . . . . . . . . . . . . . . 79

3.2.1 Creating timbre muswords . . . . . . . . . . . . . . . . . 79

3.2.2 Creating rhythm muswords . . . . . . . . . . . . . . . . . 82

3.3 Evaluating the bag-of-muswords . . . . . . . . . . . . . . . . . . 82

3.3.1 Sparsifying the distance method timbre muswords . . . 83

3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Learning semantic models for music from social tags and audio 86

4.1 Scaling word counts . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 An evaluation framework for joint models . . . . . . . . . . . . 91

4.3 The effect of tag sparsity . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Training an aspect model on words and muswords . . . . . . . 95

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6



5 Retrieval and annotation using semantic models 101

5.1 Automatic annotation using aspect models . . . . . . . . . . . . 103

5.2 Semantic retrieval using aspect models . . . . . . . . . . . . . . . 105

5.2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.1 Dataset and model training . . . . . . . . . . . . . . . . . 107

5.3.2 Automatic Annotation . . . . . . . . . . . . . . . . . . . . 110

5.3.3 Semantic Retrieval . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4.1 Automatic annotation . . . . . . . . . . . . . . . . . . . . 114

5.4.2 Semantic retrieval . . . . . . . . . . . . . . . . . . . . . . . 114

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Emotion aspects of the semantic space of music 121

6.1 A vocabulary of emotion words in tags . . . . . . . . . . . . . . 124

6.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Emotion tags and the Circumplex . . . . . . . . . . . . . . . . . . 130

6.2.1 The circumplex . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2.2 Modelling emotion words in tags . . . . . . . . . . . . . . 133

6.2.3 Circumplex 2.0 . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3 Emotion words and genre . . . . . . . . . . . . . . . . . . . . . . 140

6.3.1 Do emotion words characterize genre? . . . . . . . . . . 144

6.3.2 Which words are characteristic? . . . . . . . . . . . . . . 146

6.4 Browsing the semantic space of musical emotion . . . . . . . . . 148

6.4.1 Correspondence Analysis . . . . . . . . . . . . . . . . . . 150

6.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7 Conclusions 155

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.1.1 The semantics of social tags for music . . . . . . . . . . . 156

7



7.1.2 A discrete representation for musical audio . . . . . . . . 156

7.1.3 Semantic models for music annotation and retrieval . . . 157

7.1.4 Emotion words in social tags for music . . . . . . . . . . 157

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.2.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2.2 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2.3 Applications and evaluation . . . . . . . . . . . . . . . . 160

7.3 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Bibliography 162

8



List of Figures

1.1 Mandel’s restricted Boltzmann machines . . . . . . . . . . . . . 26

2.1 Tag lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Tag vocabulary growth obeys Heap’s law . . . . . . . . . . . . . 43

2.3 Aspect model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 LSA genre mean AP . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5 LSA artist mean AP . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.6 Aspect model genre mean AP . . . . . . . . . . . . . . . . . . . . 65

2.7 Aspect model artist mean AP . . . . . . . . . . . . . . . . . . . . 65

3.1 Artist tag distribution . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Locating regions of interest . . . . . . . . . . . . . . . . . . . . . 77

(a) Flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

(b) Audio signal . . . . . . . . . . . . . . . . . . . . . . . . . . 77

(c) Perceptual features . . . . . . . . . . . . . . . . . . . . . . . 77

(d) Boundary function . . . . . . . . . . . . . . . . . . . . . . . 77

(e) Event locations . . . . . . . . . . . . . . . . . . . . . . . . . 77

(f) Regions of interest . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Retrieval performance vs data density . . . . . . . . . . . . . . . 84

4.1 BOW+M retrieval performance . . . . . . . . . . . . . . . . . . . 88

4.2 BOW+M genre retrieval performance with sparse tags . . . . . . 93

4.3 BOW+M artist retrieval performance with sparse tags . . . . . . 93

9



4.4 BOW+M integration with sparse tags . . . . . . . . . . . . . . . 94

4.5 Aspect model genre retrieval performance with sparse tags . . . 98

4.6 Aspect model artist retrieval performance with sparse tags . . . 98

4.7 Aspect model integration with sparse tags: well-tagged queries 99

4.8 Aspect model integration with sparse tags: sparsely-tagged queries 99

5.1 Masked tag distribution . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Groundtruth tag distribution . . . . . . . . . . . . . . . . . . . . 111

5.3 Semantic retrieval performance . . . . . . . . . . . . . . . . . . . 117

6.1 Hevner’s checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Circumplex model of affect . . . . . . . . . . . . . . . . . . . . . 131

6.3 MDS of emotion words, dimensions 1 and 2 . . . . . . . . . . . . 141

6.4 MDS of emotion words, dimensions 1 and 3 . . . . . . . . . . . . 142

6.5 MDS of emotion words, variance explained . . . . . . . . . . . . 143

6.6 Genre retrieval using emotion words . . . . . . . . . . . . . . . . 145

6.7 Track-in-a-box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.8 CA joint plot of mood words and tracks . . . . . . . . . . . . . . 153

10



List of Tables

2.1 Symbols used in this thesis . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Some tags containing the term 80s . . . . . . . . . . . . . . . . . 44

2.3 Top terms describing Portishead . . . . . . . . . . . . . . . . . . 48

2.4 Test and training sets . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.6 Vector space retrieval compared to classification baselines . . . 61

2.7 Best retrieval results with all models . . . . . . . . . . . . . . . . 64

2.8 Learned semantic aspects . . . . . . . . . . . . . . . . . . . . . . 68

2.9 Learned semantic aspects (cont.) . . . . . . . . . . . . . . . . . . 69

2.10 Learned semantic aspects (cont.) . . . . . . . . . . . . . . . . . . 70

3.1 BOM retrieval performance . . . . . . . . . . . . . . . . . . . . . 85

4.1 Example search results . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Semantic Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Auto-annotation performance . . . . . . . . . . . . . . . . . . . . 115

5.3 Machine annotation vocabulary for 20-aspect model . . . . . . . 115

5.4 Some machine annotations . . . . . . . . . . . . . . . . . . . . . . 116

5.5 Semantic retrieval performance . . . . . . . . . . . . . . . . . . . 116

5.6 Top hits for gothic rock . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.7 Semantic retrieval performance, thresholded groundtruth . . . . 119

6.1 Schubert’s updated version of Hevner’s checklist . . . . . . . . . 129

11



6.2 Emotion words mapped onto a SOM . . . . . . . . . . . . . . . . 136

6.3 Emotion words mapped onto a SOM . . . . . . . . . . . . . . . . 137

6.4 Top emotion words by genre . . . . . . . . . . . . . . . . . . . . . 147

6.5 Mean Average Precision for mood words . . . . . . . . . . . . . 153

12



List of Algorithms

2.1 Basic vector space retrieval algorithm . . . . . . . . . . . . . . . . 50

2.2 LSA retrieval algorithm . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Training an aspect model . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 Folding-in tracks into an aspect model . . . . . . . . . . . . . . . . 56

4.1 Second stage training for a joint aspect model . . . . . . . . . . . 96

13



Chapter 1

Introduction

Writing about music is like dancing about architecture

- it’s a really stupid thing to want to do

attributed variously to Elvis Costello, Frank Zappa and others1

1.1 Music and conventional semantics

The well-known aphorism at the top of this page expresses an intense suspi-

cion, widely held by practising musicians, of the use of words as a way to

capture anything much of value about the essential nature of a piece of music.

It also echoes the formal philosophical argument that music in itself has no se-

mantics: music is, strictly speaking, not capable of representing anything. Few

of us would claim propositional semantics for music (“this piece of music is

true, therefore three plus five equals seven”) and amongst serious philosophers

even referential semantics (“this song expresses sadness”) are widely disputed

[Kivy, 1997; Bicknell, 2002]. But, however much musicians and philosophers

may disapprove of the practice, people do obstinately continue to write about

1see http://www.pacifier.com/˜ascott/they/tamildaa.htm for a list of 17 candi-
date authors

14



CHAPTER 1. INTRODUCTION 15

music, frequently attributing it semantic properties in the process.

The research undertaken here harnesses one of the newest sources of writ-

ing about music, social tags supplied by millions of internet-savvy music lovers,

in the service of an approach to automatic annotation and query-by-description

inspired in part by roughly parallel work in relation to images, and often de-

scribed as ‘semantic’.

Although similar philosophical reservations can also apply to descriptions

of images, the appeal of building systems to label photographs automatically

with the names of the kinds of object that have been photographed (cat, dog,

tiger, apple, river, sky, etc.) is obvious, and several models have been proposed

in recent years [Mori et al., 1999; Barnard & Forsyth, 2001; Jeon et al., 2003;

Blei & Jordan, 2003; Oliva & Torralba, 2001; Yavlinksy et al., 2005]. The main

hurdle to be overcome by such a system is the need to generalize not only to

many different representations of a particular object, but also to a potentially

unlimited number of kinds of object, which poses seemingly insurmountable

issues of scalability for any deployable implementation.

Research into generating verbal descriptions of music automatically from

audio recordings has been relatively limited, perhaps reflecting some caution

over music’s uncertain semantics. Most work in this field has cast description

as a simple classification problem, either for genre, where we hope to describe

music as being in one of a small number of particular widely-accepted styles,

or for mood, where we want to label it as expressing a particular emotion. The

main issues here are the strikingly diverse representations encountered in real

music for many classes, and the inherent subjectivity of the classes themselves.

These issues make it very difficult to prove convincingly that a system is per-

forming well, and will generalize robustly. It is increasingly recognised, for

example, that the timbral similarity at the heart of most state-of-the-art mu-

sic classification systems captures the sound of individual artists well, but at

the expense of generalizing poorly to music by artists not present in the set

of tracks used to train the system [Aucouturier & Pachet, 2004; Aucouturier,
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2006].

1.2 An emergent semantics of music

The social tags used as training data in this study (described in more detail in

Section ?? below) provide large numbers of descriptions of individual tracks

from which we can reasonably attempt to learn an emergent semantics of music,

i.e. a set of relevant concepts which are established by a mechanism of local

interaction, as individual users adopt tags which they see others are already

using, rather than by global prior agreement [Aberer et al., 2004]. The approach

pursued here to uncover these semantics is to build models which allow us to

quantify the relevance of a set of basic concepts to any given piece of music,

where the set of concepts itself is learned from the data rather than imposed in

advance. Using these models we can represent each track in a collection by a

vector containing a relevance score for each learned concept. A particular aim

in the work reported here is to build models that can learn both from tags and

from low-level features extracted from the audio itself.

1.3 Aims and motivation

The primary aim pursued in this thesis is to create a semantic representation

for music that can be used to generate rich descriptions of un- or sparsely-

annotated tracks, and which can serve as the basis for systems for browsing

and searching large music collections.

The use of a semantic representation for recordings, and of a query-by-

description paradigm, is an attractive approach to searching collections of mu-

sic for the following reasons:

1. query by keyword is a familiar paradigm from successful text search ap-

plications;
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2. a semantic representation is well-suited to the needs of film or TV pro-

ducers, etc., seeking appropriate music to match a particular mood or

scenario: this is a major and growing source of revenues to the music

recording industry2;

3. a semantic representation is similarly well-suited to matching adverts to

recordings, which may prove valuable as advertising-funded business

models for music distribution gain in importance;

4. a (human-generated) semantic representation is already used in what is

widely considered the best existing music discovery service3.

A number of attractive internet games4 have recently been deployed to cap-

ture human annotations for images. Their basic mechanism is to give a pair

of players a short period of time in which to generate candidate labels for an

image, retaining labels produced by both players. These games have proved

phenomenally popular, successfully capturing annotations in vast quantities.

While the underlying theoretical question (“how can we teach a machine to

recognise a picture of a tiger?”), with its implications for our understanding

of human vision and cognition, remains interesting in its own right, machine

annotation of images for the sake of practical search applications may soon be-

come simply unnecessary, as these games can apparently capture human an-

notations at a rate sufficient to support real-world applications such as Google

Image Search [von Ahn & Dabbish, 2004]. Might the same be true for mu-

sic? Might the growing volume of social tags equally make machine input to

semantic representations of music redundant?

Although ESP-style games will no doubt become widely deployed for mu-

sic, and social tagging will continue to flourish, in all likelihood their impact

will be different, given the loose semantics and intrinsic subjectivity of music:

2see for example the June 2008 British Recorded Music Industry figures available from http:
//www.bpi.co.uk

3http://www.pandora.com
4The ESP Game http://www.espgame.org, Google Image Labeler http://images.

google.com/imagelabeler
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a reasonable expectation is that the weak semantics of music will leave a role

for machine systems. In any event, the aim here is to explore the possibility

of learning semantics from both words and audio. At the very least this offers

a solution to the cold start problem, providing machine-generated descriptions

for new tracks that have not yet been tagged, and which can consequently re-

main invisible to practical search and recommendation systems. More impor-

tantly, a primary inspiration for the research presented here was specifically the

challenge of building a system that can search collections of tracks according

to their sound as well as their descriptions.

1.4 A note on evaluation

How can we tell if a semantic search or annotation system for music is working

well? There are some issues that we have to confront when evaluating perfor-

mance on these tasks, particularly in a domain with weak semantics, and which

should be borne in mind from the outset:

• basic metadata offers some sets of descriptive labels that are reasonably

objective, most obviously artist identity. These categories are limited,

however, and pose unrealistic classification or retrieval tasks: we are

likely to represent artist identity directly in any real-world system.

• tags can serve to provide evaluation groundtruth as well as training data.

This is theoretically unsound from a machine learning perspective, and

in practice it also requires us to apply arbitrary thresholds to extract sets

of “trustworthy” labels from tags which frequently express fallible and

inconsistent opinions. Our confidence in such groundtruth will always

be limited, although tags at least have the advantage of being available

in high volume, reducing the impact of inconsistency in the data in com-

parison to the small datasets used in most previous work.

• comparative human assessment of search results and machine annota-
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tions can provide a convincing gold standard for evalution, providing

we have enough evaluators to reduce the effects of subjectivity. There

are practical limits, however, on the amount of such evaluation which is

possible in the research environment, and there is no pre-existing expert-

annotated test corpus to use as a surrogate.

The approach followed in this study is to try to draw reasonable conclusions

by carrying out several kinds of evaluation in parallel.

1.5 Previous work

The formal latent semantic models described in subsequent chapters have not

previously been applied to music for annotation or searching, and rarely even

for other purposes (exceptions are the analysis of song lyrics in [Logan et al.,

2004] and the collaborative filtering system described in [Yoshii et al., Feb.

2008]). Two previous systems for annotation and semantic search of music

have been developed, both creating informal semantic representations from

the outputs of one or more classifiers applied to audio features [Whitman, 2005;

Turnbull et al., 2008]. More recently an autotagging system, also based on a bank

of classifiers, has been used to generate a wide range of artist-level annotations

for use in music recommendation systems [Eck et al., 2008], and similar systems

for autotagging at track level are the subject of current research, notably [Man-

del et al., 2011a,b]. These contributions are described in detail in the following

subsections, beginning with a very brief outline of the extensive literature on

simple classification systems for musical audio which inspired them. Finally

the following section outlines the major contributions of this thesis.

1.5.1 Simple classification systems

Research into single-label genre classification has proliferated since the sem-

inal work of Tzanetakis and Cook in [Tzanetakis & Cook, 2002], encouraged

in particular by the annual MIREX contest organised by ISMIR [Cano et al.,
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2006; Downie et al., 2005]: for recent reviews see [Scaringella et al., 2006; Fu

et al., 2011]. Similar work has been undertaken for artist identification, and, to

a much smaller extent, for mood classification [Li & Ogihara, 2003; Liu et al.,

2003; Wieczorkowska et al., 2005]. Although reported classification accuracies

for unseen test tracks are modest, unless tracks by the same artist happen to

have been seen in the training set, this work has led to an extensive study of

possible audio feature representations. This has included a systematic compar-

ison of various statistics of a large number of known timbral features [Mörchen

et al., 2006], and even a guided brute-force method which explores a space of

literally billions of features to learn the best for any particular individual clas-

sification task over a given training set [Pachet & Roy, 2007].

The main drawback of simple classification systems - even if we imagine

them working perfectly - is that the output of a single label chosen from a small

set of alternatives is not a very interesting description of a piece of music. This

is particularly true when the music in question comes from a commercially-

released recording, and when the description sought is simple categorical data

such as artist or genre. In this case, the desired label is often already embedded

in the audio file itself, or else can easily be looked up via a music fingerprint-

ing service. Genre labels in particular are also frequently frustrating to music

lovers, as their application can be both subjective and commercially-motivated,

despite the fact that they carry high semantic significance relating to tribal no-

tions of personal identity (Mods v. Rockers, Goths v. Punks, etc.).

Even in Tzanetakis and Cook’s original paper [Tzanetakis & Cook, 2002],

it was realised that the so-called GenreGram, a vector of classifier outputs for

each competing genre class, might be a more informative representation than

a single class label. As proposed, however, the GenreGram was computed

for each frame of incoming audio, and used simply to provide a novel visual

display to enhance music listening. A similar representation is computed in the

classification system described in [West & Lamere, 2007], although the system’s

output is once again limited to single genre labels.
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1.5.2 Whitman’s bank of classifiers approach

The problem of poverty of description is turned on its head in the work of

Whitman [2003; 2005], which learns a set of single-word classifiers for an au-

tomatically selected vocabulary drawn from a very large number of words

found in relevant web pages. In Whitman’s system, words describing artists

are mined from pages on the Web and associated with a set of training tracks.

Individual binary classifiers for, in principle, every single word found in the

total set of pages mined, are then trained on audio features from correspond-

ing tracks. In practice the vocabulary is thinned, for example by discarding all

words apart from adjectives, but this still leaves some thousands of words each

requiring their own classifier.

The apparently daunting problem of the training time required by the sys-

tem is solved by the use of Regularized Least Squares (RLS) Classifiers [Rifkin

et al., 2003]. The RLS classifier is closely related to the well-known Support

Vector Machine (SVM) [Vapnik, 1998] and uses a similar kernel matrix K: Kij =

Kf (xi, xj) where the kernel function Kf (xi, xj) is a generalized dot product

(in a Reproducing Kernel Hilbert Space) between training samples xi and xj .

While training an SVM requires solving a convex quadratic program, an RLS

classifier is trained simply by solving a single system of linear equations:

(K + λI)c = y (1.1)

where I is the identity matrix and y represents the relevance of some particular

word to each track in the training set. Once the inverse matrix (K + λI)−1

has been computed, training a classifier for a new word requires only a single

matrix multiplication. Once all the classifiers have been trained in this way,

all but the k best-performing ones are discarded, where k is some arbitrary

small number, and the output of the classifiers for the remaining few words

is normalised to a vector of scores representing the relevance of each word

given the audio features. The vector of scores can be used as a k-dimensional
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representation which Whitman shows to be a more effective input to an artist

classifier than that given by the k principal components of the audio features

themselves.

The weakness of the individual word classifiers, with a reported accuracy

of at best around 40%, suggests that this representation is, however, more

‘semantically-guided’ than strictly semantic, because any individual predicted

description is probably wrong. This may be an inevitable consequence of work-

ing with web-mined text, particularly when text and audio are only associated

at the artist level. Web-mined text is inherently noisy, with much or even all

of the text on any particular page retrieved being irrelevant to any given track

which it is supposed to describe. Another unfortunate consequence of the au-

tomatic retrieval of web pages in web-mining is that the overall vocabulary size

explodes, as pages from widely differing sources, each with their own charac-

teristic vocabulary, are added to the training text. This not only adds to the

issues of noise, polysemy and synonmy discussed in Section 2.5 below, but can

also tie the output of Whitman’s system to annotations from an idiosyncratic

vocabulary.

1.5.3 Eck et al.’s boosted classifiers

Recent work on so-called autotagging by Eck, Bertin-Mahieux, Lamere and Green

[Eck et al., 2008] falls somewhere between conventional genre classification and

Whitman’s approach, although Eck et al. draw text training data from a large

dataset of social tags for some 100,000 artists, and use more sophisticated audio

feature extraction and classification methods. Like Whitman they work at the

artist level, choosing to build classifiers for each of the 60 most popular artist

tags according to data supplied by the Last.fm web service5. Over 50 of their

selected tags are genre terms. They quantise the frequency with which each tag

has been applied to each artist into three classes, “a lot”, “some” and “none”,

such that equal numbers of artists fall within each class for each tag. They then

5http://ws.audioscrobbler.com
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use a boosting algorithm [Freund & Shapire, 1996] to train classifiers for each

tag on audio features from tracks by artists belonging to each class. Their au-

dio dataset is also large, containing around 90,000 tracks in all. The accuracy of

their individual classifiers ranges from 53% to 82% when their predictions are

aggregated on a per-song basis, and considering the quantised classes created

during the training process as a groundtruth.

The stated aim in Eck et al.’s work is to supply machine-generated tags for

un- or under-tagged artists, to solve the cold start problem when adding new

artists to a music recommender system, and to improve recommendations for

existing artists by combining human and machine-generated tags. They give

results using a range of carefully constructed evaluation measures that target

these particular goals, suggesting that their machine-generated tags can indeed

improved artist recommendations.

1.5.4 Turnbull & Barrington’s bank of Mixture Models

Work by Turnbull and Barrington [Turnbull et al., 2007a; Barrington et al., 2007;

Turnbull et al., 2008] applies a recent image annotation system [Carneiro et al.,

2007] directly to music. Their initial approach to obtaining training annotations

followed Whitman in mining text from record reviews [Turnbull et al., 2006].

The results were poor, with at best 9% precision and 12% recall, averaged over

a vocabulary of 317 words hand-picked from the total vocabulary encountered

in the reviews. They attribute the weakness of these results to the difficulty of

mining individual words at the track level from journalistic text. They use re-

views from a single source, avoiding some of the problems of noise inherent in

web-mining, but leaving a problem of semantics: the occurrence of a particular

word in running text (“this track is far from beautiful...”) does not guarantee

that it names a concept relevant to the track under review.

They now deal with the issues of both noisy data and uncertain seman-

tics by paying university students to provide training descriptions in the form

of questionnaire answers. Each question addresses the relevance of one of a
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hand-picked set of 135 concepts to the track being assessed, and each track is

annotated by at least three students, who are required to supply answers about

all of the concepts for each track they annotate. The answers are used to esti-

mate the relevance of each concept to 500 training tracks, each by a different

artist. A Gaussian Mixture Model for each concept is then trained on features

for each track for which the concept was assessed as relevant, with some ty-

ing of parameters to reduce computational cost. A simple weighting scheme

is used during training to reflect the degree of relevance of the concept to each

training track. Relevance is based on the proportion of students who annotated

a particular track with the concept, penalised by the proportion who marked

it as irrelevant. When presented with a new track, the system labels it with

the k most likely concepts according to the GMMs, where k is some arbitrary

fixed small number. Although in absolute terms the results are modest, the

system does no worse than similar image annotation systems, with annotation

precision of 27% and recall of 16% averaged over the concepts, when k = 10

machine labels are output for each track. To create a groundtruth for this eva-

lution, Turnbull and Barrington apply a threshold to the relevance scores used

in training: concepts with relevance scores above this threshold are considered

“reliable” annotations.

Interestingly the performance of a human baseline, created by holding out a

single questionnaire answer for each concept, is poor, doing no better than the

system itself. This suggests that a large number of questionnaire respondents,

and a robust method to combine their often conflicting responses into a single

relevance score, would be required before evaluation against such data could

be considered reliable. No doubt aware of this issue, in ongoing work Turnbull

and Barrington are pursuing more scalable data collection through an ESP-

style game [Turnbull et al., 2007b].
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1.5.5 Mandel et al’s Restricted Boltzmann Machines

Recent efforts both to improve data collection for semantic annotation, and to

extend the artist autotagging approach of [Eck et al., 2008] to individual tracks

using a variety of different classifiers, are reported in a series of papers by Man-

del. Mandel’s own ESP-style MajorMiner online game, in which players score

points for tagging ten second clips, is described in [Mandel & Ellis, 2007]. Play-

ers can tag clips at any time, but points are assigned for a tag only when it is

validated by a second player. A second approach, using Amazon’s Mechan-

ical Turk system6 to employ unknown workers to provide tags, is explained

in [Mandel et al., 2010]. In this study multiple short clips from the same song

are offered for annotation, the aim being to collect data allowing investigation

of how descriptions might change over the course of a song. Although these

methods might be scalable in principle, the actual datasets collected in practice

appear to be rather modest: the two papers report tags for single clips from

2000 songs, and multiple clips from 185 songs, respectively. Mandel also re-

ports results on a larger collection of social tags for 9000 tracks drawn from a

dataset originally collected for a study on friendship in social networks [Schi-

fanella et al., 2010].

These three datasets are used to evaluate a classification-based autotagging

system in experiments exploring various choices of classifier and low-level au-

dio feature representation [Bergstra et al., 2010; Mandel et al., 2010, 2011a,b].

A key feature of recent versions of Mandel’s system is the use of a restricted

Boltzmann machine (RBM) [Smolensky, 1986] in a preprocessing step designed

to improve the training data used for classification; an RBM is also evaluted as

a possible implementation of the classification layer itself.

An RBM is a generative probabilistic model implemented as a two-layer

stochastic neural network of binary units i.e. each unit can be on or off. One

layer contains visible units corresponding to observed values, while the other

contains hidden units. The network topology is restricted in an RBM in the sense

6https://www.mturk.com
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Figure 1.1: Mandel’s restricted Boltzmann machines

that units in each layer are connected to every unit in the other layer, but not to

one another. In practice the RBM is designed so that the layer of visible units

corresponds to a binary feature vector. Training then consists of optimizing

the parameters by gradient descent to minimise the log-likelihood of the data

i.e. of the states of the network where the visible units take values seen in

the training features. This can be accomplished efficiently by an approximate

sampling method known as Contrastive Divergence [Hinton, 2010].

The units in an RBM can also be conditioned on auxiliary variables. The

networks used in Mandel’s pre-processing step are illustrated in Figure 1.1,

reproduced from [Mandel et al., 2011b]. During training the visible units y are

set to the tags applied to a clip by a specific user, while the additional units in

layer a represent user and clip identity, and those in layer u the tags applied

to the same clip by other users. After training it is possible to “smooth” the

tags applied to a clip by replacing raw observations y with p(y|a) or p(y|a,u),

as estimated by the model. This smoothing corresponds to introducing unseen

tags that have been applied to other clips in the same track, or that have been

frequently applied together with the observed tags.

Smoothed tag associations output from this pre-processing step are then

used to train either a bank of binary classifiers, one per tag for a fixed vo-

cabulary of common tags, or a single further discriminative RBM [Larochelle

& Bengio, 2008] designed to function as a multi-label classifier. Performance

is reported on a per-tag basis, with evaluation done against the raw tag as-

sociations. Both the pre-processing step and the use of a single multi-label

classifier are shown to improve classification accuracies, although using both
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refinements together does not improve results further, presumably because

they learn the same dependencies between tags. The overall performance re-

mains fairly weak, however, with on average slightly more than two of the top

ten tracks predicted to have any particular tag actually having that tag in the

groundtruth [Mandel et al., 2011b].

1.5.6 The MIREX tag classification contest

Data collected by the online game described in [Mandel & Ellis, 2007] has also

been used as the basis of an Audio Tag Classification task in recent rounds

of the annual MIREX algorithm contest organised by ISMIR, devised to sup-

port research into autotagging unlabelled audio [Bertin-Mahieux et al., 2010].

The contest dataset has a vocabulary of 43 tags, and contains clips from 1400

tracks. Algorithms are required to perform a binary classification task for each

tag, where the test set contains equal numbers of clips that have and have not

been assigned the tag in question. They must also rank tracks for each tag,

and rank predicted tags for each track. The rankings are evaluated using a

binary relevance criterion, but with metrics that reward algorithms for predict-

ing correct associations ahead of incorrect ones. Groundtruth relevance itself

is established by simple “verification” i.e. a tag is regarded as correct if it has

been applied to a clip by more than one player of the game.

Some progress has been made against these metrics, with the current state

of the art reflected by [Hamel et al., 2011]. This uses a Multi-Layer Perceptron

[Rumelhart et al., 1986] as a multi-class classifier, trained on various simple

statistics of audio features. The MLP is a neural network with a single hidden

layer, making it similar to the discriminative RBM of [Mandel et al., 2011a], al-

though many details of feature summarisation and training are different. In

particular these models appear to do well because the parameters of hidden

layers can be learned by pretraining on large quantities of unlabelled audio

data. In practice pretraining can be done ahead of the contest, compensating

for the small size of the contest dataset, which in itself may offer too little train-
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ing data to support significant machine learning [Marques et al., 2011].

The contest also evaluates algorithms on a second dataset of 3,500 tracks

labelled as belonging to one or more of 18 mood groups, where the mood

labels have been established by human moderation of social tags [Hu et al.,

2009]. Over half the songs in the dataset are marked as belonging to more than

one mood group, going some way to addressing the shortcomings of the sim-

ple classification tasks referrred to in Section 1.5.1. Relative algorithm perfor-

mance is consistent between the two datasets, although absolute performance

is slightly worse when predicting mood labels.

1.6 Modelling semantic relevance

An obvious theoretical shortcoming of most existing work on semantic anno-

tation of music is the use of a classification approach in the absence of a princi-

pled model for semantic relevance: instead ad hoc thresholds have to be used

to decide whether or not a particular word is relevant to any given track. This

leads to problems of data sparsity, potential misclassification during training

and evaluation, and difficulty in handling weak but significant associations

between words and tracks.

Although Whitman uses sophisticated techniques for text mining, his clas-

sification system implicitly uses a naive binary semantic relevance model dur-

ing training and evaluation: each word in the vocabulary is regarded either as

relevant to a given track (if the word occurs anywhere in its artist’s associated

training text) or irrelevant (if it does not). Turnbull & Barrington’s question-

naire also asks listeners simply to rate concepts as either relevant or irrelevant.

Of course listeners do not always agree, and so Turnbull & Barrington use a

straightforward ad hoc model to aggregate conflicting answers into a contin-

uous relevance score. Despite their impressive dataset of millions of individ-

ual tags, and their decision to annotate artists rather than individual tracks,

Eck et al. still complain of a problem of data sparsity in relation to their rela-
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tively modest target vocabulary of sixty terms. Mandel’s approach appears to

capture a more refined measure of semantic relevance, although this remains

hidden in the parameters of his ingenious “smoothing” model, and his work

remains focussed on binary classification.

Simple relevance models like these clearly look to be dangerous given the

weak semantics of music. Conflicting opinions amongst listeners, and weak

associations between text and the music it purports to describe, are the norm.

This poses particular problems for machine annotation. It is difficult, for ex-

ample, to choose positive training examples for any given concept with confi-

dence, to create a trustworthy human ‘groundtruth’ for evaluation, or to avoid

false negatives during evaluation, e.g. when the machine outputs strings for

a track annotated only as violin. What looks to be needed is a better way of

measuring the relevance of concepts to a given track: in the work presented

here, well-understood latent semantic models are used to address this.

1.7 Contribution of this thesis

The remainder of this thesis develops and evaluates an information retrieval

approach to semantic search and machine annotation of music, using data from

both social tags and audio content, as an alternative to the classification-based

methods described in the preceding Sections. Also in contrast to most previous

work, the methods developed in this study work at the track rather than the

artist level, in order to model more directly the relationship between sound

and description.

The work is organised broadly as follows: Chapter 2 shows how retrieval

models can be applied to data from social tags; Chapter 3 proposes a discrete

method of modelling audio features to make them easily compatible with tag

data; Chapter 4 extends the models to the resulting joint vocabulary; Chapter

5 shows how these models can be used for real-world tasks such as annotating

sparsely-tagged tracks and supporting query by description search. Finally
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Chapter 6 focusses specifically on modelling emotion words in tags, leading

both to proposals for novel interfaces for browsing and searching large music

collections, and, less expectedly, to results of interest to the study of the psy-

chology of music.

The following Sections give a more detailed overview:

Chapter 2

This Chapter begins by motivating the use of ranked retrieval methods in pref-

erence to a classification approach for practical applications in the domain of

music. It then gives an introduction to social tags in general, and social tags for

music in particular. A set of some 660,000 tags for tracks is collected, and cer-

tain characteristics of tags for music are identified: these characteristics inform

the choice of how best to interpret the tags we see applied to tracks as data

expressing semantic relevance. The resulting data is first modelled in a sim-

ple vector space. Latent semantic models, derived respectively by geometric

and probabilistic methods, are then introduced. An experimental framework

is established, together with standard evaluation metrics, allowing reasonable

comparison with previous work. A set of retrieval tasks is then used to com-

pare the models both with one another and with a baseline from the literature.

Special attention is paid to the extent to which the models are able to gener-

alise to tracks by artists for whom there were no tags in the training data. The

results show that a vector space model based on tags outperforms previous

methods in the literature on simple artist identity and genre retrieval tasks,

while pobabilistic latent semantic models in particular show encouraging abil-

ity to generalise to unseen artists. Finally the specific semantic aspects learned

by the latent semantic models are illustrated and discussed.
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Chapter 3

Having established the effectiveness of semantic models based on tags in Chap-

ter 2, Chapter 3 explores an approach to extending them to model audio con-

tent. The aim here is to develop a representation of low-level audio features as a

vocabulary of discrete audio muswords, where each musword can be associated

more or less strongly with any particular track in exactly the same way as a con-

ventional word. The models can then be extended easily to a joint vocabulary

of words and muswords. The Chapter begins by expanding the motivation

for incorporating audio information in our models despite the excellent per-

formance of models based purely on tags reported in Chapter 2. It then intro-

duces a method of selecting timbral and rhythmic features for automatically-

identified regions of interest within a given track, and proposes two alterna-

tive ways in which the resulting features can be mapped onto a vocabulary of

muswords. The experimental framework of the preceding Chapter is reused to

evaluate the performance of muswords on retrieval tasks using a simple vector

space model: the features and discretisation methods are compared with one

another and with related work in the literature. The best performing musword

representation is found to outperform previous discrete methods in the liter-

ature, being comparable with state of the art methods based on a raw audio

feature representation, paving the way for effective joint semantic models.

Chapter 4

This Chapter shows how the semantic models of Chapter 2 can be applied ef-

fectively to the joint vocabulary of words and audio muswords established in

Chapter 3. In general, given the state of the art in low-level audio feature rep-

resentations, the semantic information contained is words is far more reliable

than that offered by audio content. This Chapter therefore looks in detail at

how words and muswords can be combined effectively, particularly in cases

where tags are sparse and audio information has to be relied upon: such cases
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are all too common in real music collections. This leads to the development

of an experimental framework in which retrieval tasks are evaluated under

increasing conditions of tag sparsity. Combining words and muswords in a

single vocabulary raises the issue of how to scale the association between John

Coltrane’s Giant Steps and audio feature zQy432, say, relative to the association

between that track and the word jazz. The framework is used to study this

scaling and also to compare two different training methods for a joint aspect

model; again all results are compared with a baseline. Given a suitable training

method, the inclusion of audio muswords in a joint model is found to improve

retrieval performance for sparsely-tagged tracks with no loss of performance

for well-tagged ones.

Chapter 5

In this Chapter the models developed in Chapters 2-4 are finally applied to the

problems that originally motivated them: automatic annotation of sparsely or

un-annotated tracks, and semantic retrieval. A realistic experimental frame-

work is established, simulating the current real-world availability of tags, so

that, for example, 30% of the tracks in the test set have no annotations at all.

Performance on these tasks is then evaluated for a range of latent aspect mod-

els trained jointly on tags and audio. Annotation performance is found to

be equivalent to a comparable classification approach, while retrieval perfor-

mance is roughly twice as good as that of the most similar system reported in

the literature.

Chapter 6

This Chapter studies emotion words in social tags for music. It relates the low-

dimensional latent semantic spaces learned by the models of Chapters 2-5 to

the emotion spaces studied for decades by music psychologists, and shows

how data from tags can be used to update and extend the psychological mod-
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els. Semantic models are also used to investigate the correlation between emo-

tion words and musical genre. Finally the close relationship of latent semantic

and psychological models is used as a basis to propose novel interfaces for

browsing and searching large collections of music.

Chapter 7

The final Chapter gives an overview of the work presented here, with a critical

analysis of its strengths and weaknesses, and outlining proposals for further

work.

1.7.1 Major contributions

The major contributions of the thesis are in the following areas:

1. this study introduces the use of text information retrieval methods to

analyse social tags for music

2. latent semantic models are applied to capture the relevance of individual

words to tracks from a large dataset of tags

3. a new discrete audio feature representation is introduced, based on au-

tomatically identified regions of interest within each track, enabling the

extension of these models to audio information

4. a simple probabilistic setting for machine annotation is proposed in place

of a classification approach and evaluated

5. a joint aspect model, able to learn descriptions of music from both tagged

and untagged tracks, is developed and evaluated

While this work naturally uses semantic models to represent tracks by the

set of descriptions applied to them, the symmetry of the models also allows

us to represent descriptive words by the tracks to which they are applied. This

approach is pursued here in a study of emotion words applied to music in tags,
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demonstrating the potential broader application of semantic models based on

tags as computational tools within music psychology and musicology. The

major contributions here can be summarised as follows:

1. semantic models of tags are introduced to the study of emotion in music,

suggesting changes to traditional models of affect

2. a novel psychologically-motivated user interface to large collections of

tracks is proposed, based on analysis of the co-occurrence of tracks and

emotion words in tags
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Chapter 2

Learning semantic models for

music from social tags

In the age of physical recordings of music (LPs, singles, cassettes, CDs, etc.) the

primary form of organisation for collections of recorded music was the record-

ing catalogue. The system embodied in these catalogues, whether in their orig-

inal form as printed books or in more recent digital incarnations, was essen-

tially a tree structure encompassing basic metadata, with nodes representing

record labels or genres near the top of the tree, nodes below these representing

artists, and leaves representing albums or other releases. This organisation can

still be seen in the fully digital era in the design of personal media collection

managers such as iTunes, and in the menu structures of some online music re-

tailers. While this may be a symptom of slow innovation in the music business,

or of intellectual conservatism on the part of music consumers, it also suggests

that there is some intrinsic value in the genre-artist-album tree structure as a

mechanism for organising music collections.

The history of internet search, however, suggests strongly that such rigid

tree structures rapidly prove inadequate as the number of digital documents

available grows. More flexible and powerful systems for searching and brows-

36
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ing digital music collections (let alone all music available on the web) are likely

to require models similar to those familiar from text information retrieval. In

these models the similarity between tracks, or between tracks and arbitrary

text queries such as “laid back piano jazz”, can be expressed either in terms of

conditional probabilities or as distances between points in some vector space.

This Chapter shows how existing methods from the field of text search can

be used to learn latent semantic models for music, in which individual tracks

are represented as points in relatively low-dimensional spaces. The spaces are

computed by geometric or probabilistic dimension reduction from very high-

dimensional term vectors, representing the relevance to each track of a large

vocabulary of words found in social tags. The learned dimensions are con-

sidered semantic because they appear to capture a set of significant underlying

concepts for the collection of tracks being modelled.

The models described in this Chapter can be used to support various kinds

of information retrieval on collections of tracks, including nearest neighbour

search and query by keyword, and their performance can be measured in many

different ways. In this Chapter we focus on evaluating the extent to which

nearest neighbour search with these models respects a traditional recording

catalogue organisation, in which tracks are grouped by artist and genre. A

good deal of work has been devoted to addressing this issue in relation to mod-

els based on low-level audio features in the hope of building playlist generation

and music recommendation systems based on audio analysis (see Scaringella

et al. [2006] for a recent review). The conclusion, after several years of research,

is that current low-level feature sets lead to a representation that is only weakly

structured by artist and genre Aucouturier [2006]; Pampalk [2006]. While there

is no ‘right answer’ for the degree of organisation that is required for practical

search systems, because, for example, songs by other artists or from differ-

ent genres can quite reasonably be considered very similar to any given query

track, organisation by artist and genre is well understood by music lovers, and

the lack of such organisation in low-level feature representations appears to be
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a major barrier to their acceptance in practical applications.

One possible reason for the poor performance of existing audio content-

based models is that the data representation, with tracks or sections of audio

summarised typically with the order of 100 feature statistics or model param-

eters, is simply not rich enough to capture the complexity of music in general.

We investigate the performance of our models as the number of latent dimen-

sions varies to see if low-dimensional semantic representations improve or de-

grade our ability to search music collections, and whether there appears to be

a ‘natural’ dimensionality to the space of descriptions of music collections, and

we measure the extent to which a semantic model trained on a particular col-

lection can generalise to unseen tracks. Finally, where possible, we also attempt

to understand which concepts are expressed by the learned dimensions of our

models.

The rest of this Chapter is organised as follows: in Sections 2.1, 2.2 and 2.3

we motivate the use of social tags as our underlying source of data and dis-

cuss the particular nature of social tags for music; in Section 2.4 we describe a

basic vector space model for tracks based on tags; in Sections 2.5 and 2.6 we

introduce latent semantic models derived respectively by geometric and prob-

abilistic methods; in Section 2.7 we describe our experimental framework and

evaluation metrics, giving results in Section 2.8 and 2.9, and drawing conclu-

sions in Section 2.10.

Some of the work in this Chapter was previously published in [Levy &

Sandler, 2007, 2008b].
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Table 2.1: Symbols used in this thesis

symbol meaning
t, ti a track, the i-th track in a collection
T a collection of tracks {t1, t2, ..., tN}
N number of tracks in a collection
g a tag, may contain several words
G number of distinct tags applied to a collection
Gw set of tags containing word w
f(t, g) number of times tag g has been applied to track t
F total number of tags applied to a collection
w, wj a word or term, the j-th word in the vocabulary
W vocabulary of words {w1, w2, ..., wM}
M vocabulary size i.e. number of distinct words applied to a collection
n(t, w) number of times word w has been applied to track t
n(t)

∑
w n(t, w) i.e. total number of words in tags applied to track t

N track-term matrix of counts n(t, w)
N(w) number of tracks tagged with word w
R number of track-word pairs where n(t, w) > 0
z, zk a latent aspect, the k-th latent aspect of a model
K number of latent aspects
m a musword
ym features for musword m
c(t,m) count for musword m for track t
D musword vocabulary size

Notation

For consistency, in this and subsequent and Chapters the notation given in

Table 2.1 is used wherever possible when referring to the basic concepts of

interest here. These concepts are also used as far as possible when introducing

models and algorithms from conventional text Information Retrieval, so for

example we talk about ’tracks‘ rather than ’documents‘. Note that ’word‘ and

’term‘ are used interchangeably, while ’tag‘ refers to the complete annotation

attached to a track by a listener, which may consist of more than one word.

2.1 Social tags for music

Social or collaborative tags are brief descriptions supplied by a community of

internet users to allow navigation through large collections of uncatalogued
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media [Wu et al., 2006; Golder & Huberman, 2006]. Tags therefore aid browsing

or searching types of material which are not yet well served by fully automatic

information retrieval techniques. Some well-known tagging systems are those

offered by flickr (digital photographs), Technorati (blog posts), or del.icio.us

(favourite web links)1. Users might tag an image on flickr, for example, as

“beach”, “vacation”, “summer”, “santa barbara”, “blue sky”, etc. Such tags are

described as social because they are automatically shared with all other users.

This implicit collaboration makes it possible to annotate large collections of

documents so that they become navigable by keyword: “find me all pictures

tagged beach and blue sky”, etc.

As well as overcoming issues of scale in annotating large collections, the

sharing of tags encourages the emergence of a common tagging vocabulary.

Although tagging conventionally places no restrictions on the text that can be

used as a tag, the shared purpose of creating a usable navigation system makes

it attractive for users to select tags which others are already using. New tags

consequently enter the mainstream vocabulary in an “organic” fashion as they

become adopted by significant numbers of users. This can lead to the devel-

opment of folksonomies, entire taxonomies reflecting current usage amongst the

user community, offering a different view to the traditional categories of library

cataloguing.

2.2 The nature of tags for music

With this model in mind, we might expect users to take advantage of tagging

systems for music by tagging tracks directly with a vocabulary of relevant con-

cepts, presumably encompassing things such as mood and function in addition

to genre and music-specific technical terms, expanding the tree of basic meta-

data into a rich folksonomy of significant terms. This is arguably the ‘classical’

tagging scenario, embodied in most current tag-based search interfaces, which

1http://www.flickr.com, http://www.technorati.com, http://www.delicious.
com
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highlight the most widely-used tags for the page or item in question, and of-

fer a naive search facility based on direct matching of tags. It also forms the

basis for the collaborative structured tagging intended to power new knowledge-

sharing ventures such as Amazon’s amapedia2. This model, however, appears

unrealistic for social tags for music.

Basic catalogue information (artist, track title, etc.) is already available for

most recordings in embedded ID3 tags, or can be found by a straightforward

request to a look-up service such as CDDB or MusicBrainz3. This information

is therefore automatically made available to listeners by standard media play-

ers such as iTunes or Windows Media Player. Tagging, however, can support

navigation through large collections of music according to categories which

are more relevant to the role of music in everyday life: “find me music that’s

good to exercise to”, etc. Tags also allow the expression of personal or “tribal”

responses to particular songs or performers which are central to the charac-

teristic use of music to define one’s social identity. Because the vocabulary of

tags is unconstrained, this self-expression can go far beyond a simple adver-

tisement of the user’s musical likes and dislikes, potentially allowing users to

share and compare their emotional responses to, or categorisations of, music

freely with millions of peers.

Data collection

To investigate further, a data set of 667,900 tags for 31,359 individual tracks by

5,265 artists was aggregated from two of the most important sources of tags

for music. The tags were downloaded from the Last.fm4 and MyStrands5 web

services between March and August 2007. Information about the individual

users who applied the tags is not available, but the Last.fm service provides

‘counts’ indicating the relative number of times each tag has been applied to

2http://amapedia.amazon.com/view/Meta:About
3http://www.gracenote.com, http://musicbrainz.org
4http://ws.audioscrobbler.com
5https://www.musicstrands.com
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the track in question. The MyStrands service lists all the tags ever applied

to each track, while the Last.fm service returns a maximum of the 100 most

frequently applied tags for each track. Although the terms of use do not permit

redistribution of the data set as a whole, it was acquired through standard

documented calls to the public Last.fm and MyStrands web service APIs, and

a similar data set can be obtained as long those APIs remain available.

Simple statistics of these tags as shown in Figures 2.1 and 2.2 demonstrate

that they are far from constituting a vocabulary of basic concepts, even allow-

ing for a large amount of error, subjectivity or other statistical noise. In the

first place, tags for music are often discursive, as illustrated in Fig. 2.1, which

shows the number of tags in our data set against their length in words. We

can observe that over a third of the tags consist of three or more words, while

over 10% contain five or more words: these are frequently complete phrases.

Secondly, the vocabulary of tags shows no sign of converging to a taxonomy

as the number of tags grows. Rather the vocabulary grows according to the

power law, known as Heaps’ Law, characteristic of ordinary text documents,

as shown in the log-log plot of Fig. 2.2. Heaps’ Law is given by

G = κF b (2.1)

where G is the number of distinct tags and F is the total number of tags ap-

plied, and κ and b are constants for the given collection of tracks. The vocab-

ulary growth which we observe for tags for music fits very closely to b = 0.42

once we consider a large number of tags, in line with typical values seen in

standard text corpora [Manning et al., 2008]. Table 2.2 shows the first few tags

we downloaded containing the term 80s, illustrating the freedom with which

words are combined even in short tags.

There are various reasons why we might expect to see a large vocabulary of

tags applied to music. In the first place, music’s weak semantics compared to

other media can make the selection of tags highly subjective. There may be few
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Figure 2.1: Tag lengths

Figure 2.2: Tag vocabulary growth obeys Heap’s law
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Table 2.2: Some tags containing the term 80s

80s
80s rock
My 80s memories
80s y 90s
80s and 90s
60s 70s 80s rock
80s and 90s rnb
80s wave
80s-90s
80s Music
flya 80s
Decade: 80s
80s Classic
we love the 80s
80s magic
big-hair 80s
20 songs mix : 80s Hits
golden 80s
80s alternative
ilx 80s poll
The 80s was not a dead decade
pop 80s
80s soundtracks
80s Pop
80s throwback
80s songs i love
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‘obvious’ choices of tags for a new track, compared, say, to choosing tags for a

photo of a dog, or for a blog about a particular new operating system. To judge

from available figures (the ones we could find are not as recent as our data for

music) the vocabulary of tags for music does indeed grow faster than that for

photos or urls. A dataset of tags for 9 million Flickr photos had a vocabulary of

over 200,000 terms [Schmitz, 2006], and a comparable set of Del.icio.us tags for

690,482 urls had 126,304 distinct tags [Wu et al., 2006]: the statistics of our tags

would predict over 800,000 and 300,000 distinct tags for this number of photos

and urls respectively.

The language of tags for music is ad hoc and highly informal, suggesting

that tags are frequently supplied in a spontaneous and unreflecting manner,

and may say as much about the tagger as about the piece being tagged, as

shown by the following selection of tags chosen at random: ‘all my hope is

gone’, ‘oregon trips’, ‘my favourite muse songs’, ‘french-canadian’, ‘Tool Mix’,

‘comp1’, ‘ragga rhythm’, ‘Dave Brubeck Quartet’, ‘american wedding’, ‘fora

do mundo’, ‘space trucking’, ‘right in two’, ‘desert island songs - songs which

keep me alive or otherwise enrich entertain and edify - the best songs in the

world’, ‘heard on 96wave’, ‘put on mikey cds’. Longer tags can verge on the

poetic: ‘good for dancing to in a goth bar if you can muster sufficient abandon

and like getting the evil eye’, ‘if you fall in love with me you should know

these songs by heart’, ‘sure go ahead and depress the hell outta me what do

i care’, supporting the view that tags for music should primarily be regarded

as a form of free self-expression on the part of the tagger. Tags most certainly

do provide a novel source of information about personal responses to music,

which we can bring to bear, for example, on various classic questions in the

study of music psychology: this approach is pursued further in Chapter 6.

In this and the following Chapters, however, it is assumed simply that, de-

spite the vagaries of individual tags, patterns of co-occurrences of words in

tags can reveal terms or combinations of terms which are

1. significantly grounded in the music they describe, rather than expressing
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arbitrary personal reactions; and

2. generalisable across tracks.

The set of tags for each track is consequently treated as a Bag of Words (BOW),

following the standard information retrieval approach to text documents. Tags

for each track are first tokenized with a standard stop-list to remove extremely

common words with little or no semantic content (‘it’, ‘and’, ‘the’, etc). The tags

are then tabulated as entries in a track-term matrix N of co-occurrence counts

n(t, w) similar to the document-term matrix familiar from conventional text IR,

where n(t, w) represents the number of times we see the wordw in tags applied

to track t. In contrast to standard practice with traditional text documents,

a stemmer is not used to strip word endings (so that, for example, ”singer”,

”sings” and ”singing” would all be recorded simply as ”sing”). Although in

principle it might be advantageous to use a stemmer, existing algorithms can

be expected to fail in many cases due both to the idiosyncratic vocabulary of

social tagging, and to the large number of standard dictionary words used as

proper nouns, particularly in artist names used in tags (for exiample we would

most likely not want to stem ”talking heads” or ”rolling stones”). Using words

rather than entire tags as the basic unit of data nonetheless goes some way

towards capturing the common meaning of alternate forms such as ‘female

vocalist’, ‘female vocals’, ‘good female vocals’, ‘sexy female vocals’, ‘lovely

female vocals’, etc.

In practice only partial information is available about the number of times

that each tag has been applied to a given track. The Last.fm web service gives

integer percentages relative to the most frequently applied tag, with the fre-

quency of relatively rare tags rounded down to zero: this enforces a form of

editorial censorship in the tag clouds shown on web pages, where by conven-

tion the font size for each tag is proportional to its count, i.e. tags with zero

counts are simply not displayed. The MyStrands web service gives only a list

of tags applied to each track, with no information about their relative popu-
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larity. Following some initial experiments (reported in full in [Levy & Sandler,

2007]), it was decided to discard the MyStrands data, and to expose our models

to all the Last.fm tags, including those with zero counts, simply by increment-

ing the published numbers. Formally we set

n(t, w) =
∑
Gw

f(t, g) + 1 (2.2)

where Gw is the set of tags containing the word w, and f(t, g) is the frequency

with which tag g has been applied to track t according to the Last.fm web ser-

vice. This resulted in an overall matrix of roughly 25,000 rows (tracks) and

30,000 columns (words). In our experiments the data was naturally split into

various training and test sets: exact details of the size of these datasets are

given later in Table 2.4.

2.3 Tags vs web-mined text

This approach to tags makes them directly comparable with the web-mined

text, particularly blogs and music reviews, used in various academic studies as

a source of high-volume descriptive metadata for music [Baumann & Hummel,

2003; Whitman, 2005; Knees et al., 2004]. Although some interesting prelimi-

nary results have been reported, two significant problems are associated with

mining descriptive metadata from the web. Firstly, the text retrieved is usually

noisy, i.e. it unavoidably contains a great deal of irrelevant content. Secondly,

for computational reasons, and because the noise problem becomes insupera-

ble, text has to be mined on a per-artist rather than per-track basis. Social tags

as applied to individual tracks appear to offer a solution to both of these issues.

Web-mined text is typically retrieved by searching for pages that appear

to be relevant to a particular artist, and then attempting to retain only terms

that relate to their music [Baumann & Hummel, 2003; Whitman, 2005]. The

resulting text is inherently noisy on two levels. Firstly, the pages retrieved by



CHAPTER 2. LEARNING SEMANTIC MODELS I 48

Table 2.3: Top terms describing Portishead

Tags Web-mined text
trip-hop cynical
electronic produced
portishead smooth
female vocalists dark
downtempo particular
alternative loud
mellow amazing
chillout vocal
sad unique
90s simple

any automated system are not guaranteed to be relevant (in particular when an

artist’s name has other meanings), and come from a variety of kinds of source,

each with its own characteristic vocabulary. Secondly, in general only a small

unknown part of the content of each page will refer directly to music of inter-

est. One consequence of the inevitable inclusion of irrelevant terms is that the

vocabulary size explodes. A typical web crawl reported in [Knees et al., 2004]

found over 200,000 terms for a set of 200 well-known artists. In contrast, we

found less than 13,500 distinct tags for tracks by the same set of artists. Such

a comparison is necessarily informal, because of the difficulty of comparing

the sizes of the input data sources (50 web pages vs tags from many different

users for each artist). More importantly, however, web-mining appears to be

impractical as a source of metadata at the track level, as the problems of noise

multiply still further.

The vocabulary of tags is different from web-mined text not only in size,

but also in character, as illustrated in Table 2.3, which compares the ten most

widely applied tags in our dataset for the group Portishead with the top web-

mined adjectives given in [Whitman, 2003]. We observe that, in contrast to

the tags, as many as half of the web-mined adjectives (‘cynical’, ‘produced’,

‘particular’, ‘amazing’, ‘unique’) are very unlikely to be grounded in the music

of this particular group.
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2.4 Vector space model

In the well-known Vector Space Model for information retrieval [Salton et al.,

1975], a weighting scheme is applied to the entries of the track-term matrix N,

and a distance measure between vectors of weighted counts n̂(t, w) is chosen

as the matching function between tracks and queries. Queries can be either

free combinations of words or, in the query by example scenario character-

istic of music applications such as playlist generation and recommendation,

tracks themselves, represented by their term vectors, i.e. their entire vectors of

weighted word counts.

For our baseline model we use the standard tf-idf (term frequency - inverse

document frequency) weighting

n̂(t, w) = n(t, w)log
N

N(w)
(2.3)

where N is the total number of tracks and N(w) is the number of tracks tagged

with word w. To compare queries and tracks we use a standard matching func-

tion, cosine distance

s(t, q) =

∑
w n̂(t, w)n̂(q, w)√∑

w n̂(t, w)2
√∑

w n̂(q, w)2
(2.4)

While the implementation details vary in practice, the basic algorithm for

retrieval using a vector space model to find the top r tracks matching a query

q in a collection of N tracks is given in Algorithm 2.1 [Manning et al., 2008,

section 6.3]. The so-called document Length for track t is simply the normalis-

ing term
√∑

w n̂(t, w)2 from the denominator of Equation 2.4; in practice the

Lengths for tracks in the collection will be computed in advance of query time.

Note that the Length of the query is neglected in Algorithm 2.1 because it de-

pends only on the query and so does not affect the ranking of the tracks in the

collection.
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Algorithm 2.1: Basic vector space retrieval algorithm

Input: Query q, number r of desired hits

Output: Top r best matching tracks

Scores[N ]←− 0;

Compute Lengths[N ];

foreach Query Term w in q do
Calculate n̂(q, w);

Fetch list of tracks containing w;

foreach Track t in list do
Scores[t]←− Scores[t] + n̂(t, w) ∗ n̂(q, w);

end

end

foreach Track t do
Scores[t]←− Scores[t] / Length[t];

end

Return tracks with the highest r Scores;

2.5 Latent semantic analysis

Retrieval in the Vector Space Model depends on exact matches between the

words present in queries and documents, and is therefore subject to problems

of polysemy (where the same word is present in two documents but with differ-

ent meanings), synonymy (where different words are present but with identical

meanings), noise (where matching but irrelevant words are present), and data

sparsity (where a relevant word is not present). Synonmy and data sparsity are

a common problem when modelling social tags for music, because, for exam-

ple, we want the query ‘electronica’ to retrieve tracks that have been tagged

‘electro’, ‘electronic’, etc., and we cannot guarantee that all popular variants

will have been applied to each relevant track. When in due course we extend

our model to predict tags for new tracks, synonymy also becomes a serious
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problem in evaluation: is a prediction of ‘electro’ correct for a track tagged only

‘electronic’? And what about a prediction of ‘sad’ for a track actually tagged

‘depressing’? While the issue of polysemy, for example ‘progressive [jazz]’ vs

‘progressive [rock]’, arises mainly from the decision to index individual words

rather than entire tags, noise is inevitable due to the high subjectivity of many

tags and the inherent weak semantics of music. In occasional cases, noise can

also be created by explicit spam tagging of artists who are unpopular with a

significant section of a particular tagging community.

Latent semantic models can mitigate all these issues by learning from co-

occurrences of words over the entire collection: intuitively we learn that ‘elec-

tro’ co-occurs frequently with ‘electronica’, ‘sad’ with ‘depressing’, ‘progres-

sive’ with ‘rock’ and ‘floyd’ or with ‘jazz’ and ‘miles’ (but not both at once),

etc. The simplest and best-known model of this kind is so-called Latent Se-

mantic Analysis (LSA) [Deerwester et al., 1990].

In LSA, term vectors for tracks are mapped to a lower-dimensional space

based on a Singular Value Decomposition of the track-term matrix for a given

collection of tracks. We compute a rank-k approximation of N

Ñk = UkΣkVk
T (2.5)

where N = UΣVT with UTU = VTV = I, Σk contains the first k singular

values of N, and Uk and Vk the corresponding eigenvectors, for some empiri-

cally determined dimensionality k. We then base our similarities on the cosine

distance between the reduced term vectors UkΣk. Term vectors for queries or

tracks from outside the collection are folded in to the latent semantic space by a

simple matrix multiplication [Manning et al., 2008, section 18.4]:

q̂ = Σk
−1Uk

Tq (2.6)

Retrieval with LSA is done with Algorithm 2.2, where t̂ is the k-dimensional

representation of track t given by its corresponding row in UkΣk. As in the
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simple vector space retrieval of Algorithm 2.1, the Length of track t is given by

|̂t|, and the Length of the query can again be neglected.

Algorithm 2.2: LSA retrieval algorithm

Input: Query q, number r of desired hits

Output: Top r best matching tracks

Scores[N ]←− 0;

Compute Lengths[N ];

Compute q̂ by Folding In;

foreach Track t do
Scores[t]←− q̂ . t̂ / Length[̂t];

end

Return tracks with the highest r Scores;

Besides solving some problems of the Vector Space Model, a low-dimensional

representation for tracks and queries has the additional significant benefit of

reducing the memory requirement for real world search and recommendation

systems.

2.6 Aspect model

Although LSA has been applied successfully in many contexts, it has some

shortcomings. In particular because it depends on a purely geometrical ap-

proach to dimension reduction, it is difficult to give any interpretation to the

latent concepts that are being learned, it is uncertain in general whether they

will generalise well to unseen tracks, and it is difficult to incorporate other in-

formation into the model in a principled way. Alternative probabilistic meth-

ods of dimension reduction have therefore been proposed, such as the aspect

model or Probabilistic Latent Semantic Analysis (PLSA) introduced in [Hof-

mann, 1999a].
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Figure 2.3: Aspect model

In the aspect model represented graphically in Fig. 2.3, we associate a latent

class variable z ∈ Z = {z1, ..., zK} with each occurrence of a word w ∈ W =

{w1, ..., wM} in the tags for track t ∈ T = {t1, ..., tN}. The model can then be

defined generatively as follows:

• select a track t with probability P (t),

• select a latent class z with probability P (z|t),

• select a word w with probability P (w|z).

The joint probability model for the observed data is given by

P (t, w) = P (t)P (w|t) = P (t)
∑
z∈Z

P (w|z)P (z|t) (2.7)

To fit the model to a collection of training tracks we maximise the log-

likelihood

L =
∑
t∈T

∑
w∈W

n(t, w) logP (t, w) (2.8)

=
∑
t∈T

n(t)

[
P (t) +

∑
w∈W

n(t, w)

n(t)
log
∑
z∈Z

P (w|z)P (z|t)

]
(2.9)

where n(t) is the total number of words in tags for track t, using the Expecta-

tion Maximization (E-M) algorithm, alternating the following steps [Hofmann,

2001]:
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E-step:

P (z|t, w) =
P (w|z)P (z|t)∑
z′ P (w|z′)P (z′|t)

(2.10)

M-step:

P (w|z) =

∑
t n(t, w)P (z|t, w)∑

t,w′ n(t, w′)P (z|t, w′)
(2.11)

P (z|t) =

∑
w n(t, w)P (z|t, w)

n(t)
(2.12)

We avoid overfitting the training data by early stopping, based on the likeli-

hood of a validation set of tracks which we hold out from the training set. After

each iteration we fold in the validation tracks to learn their aspect probabilities

P (z|t). Folding in is achieved as follows: we perform a fixed number of E-M

iterations on P (z|t) for tracks t in the validation set, following (2.10) and (2.12),

but with the word probabilities P (w|z) held fixed to the values learned from

the main training set. We then compute the log-likelihood of the validation set

according to the model, stopping when it fails to increase from the previous

iteration of the main E-M process.

In practice the E- and M-steps can be interleaved, giving training a compu-

tational complexity of O(RK), where R is the number of observed track-term

pairs, i.e. the number of non-zero entries of N. Algorithms 2.3 and 2.4 show

this interleaved training and folding-in respectively.
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Algorithm 2.3: Training an aspect model with interleaved E-M steps and

early stopping

Input: Number of aspects K, vocabulary size M , training set of N tracks,

validation set of tracks, early-stopping threshold τ

Output: Probabilities P (w|z), P (z|t)

Initialise P (w|z), P (z|t) to random values;

Initialise accumulators W [M ][K]←− 0, Z[K][N ]←− 0;

Compute L by folding in validation set;

while increase in L > τ do
W [M ][K]←− 0, Z[K][N ]←− 0;

foreach Track t in training set do

foreach Word w do

foreach Aspect z do
p[z]←− P (w|z) ∗ P (z|t);

end

Normalise p[z] to unit sum;

foreach Aspect z do
W [w][z]←−W [w][z] + n(t, w) ∗ p[z];

Z[z][t]←− Z[z][t] + n(t, w) ∗ p[z];

end

end

end

foreach Track t do

foreach Aspect z do
P (z|t)←− Z[z][t];

end

Normalise P (z|t) to unit sum over z;

end

foreach Aspect z do

foreach Word w do
P (w|z)←−W [w][z];

end

Normalise P (w|z) to unit sum over w;

end

Compute L by folding in validation set;

end
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Algorithm 2.4: Folding-in tracks into an aspect model

Input: Probabilities P (w|z), set of V tracks, number of iterations I

Output: Probabilities P (z|t), loglikelihood L

Initialise P (z|t) to random values;

Initialise accumulators Z[K][V ];

foreach iter in 1...I do
Z[K][V ]←− 0;

L←− 0;

foreach Track t in supplied set do

foreach Word w do
ptot←− 0;

foreach Aspect z do
p[z]←− P (w|z) ∗ P (z|t);

ptot←− ptot + p[z];

end

foreach Aspect z do
Z[z][t]←− Z[z][t] + n(t, w) ∗ p[z]/ptot;

end

L←− L + n(t, w) ∗ log(ptot);

end

end

foreach Track t do

foreach Aspect z do
P (z|t)←− Z[z][t];

end

Normalise P (z|t) to unit sum over z;

end

end

To do retrieval with a trained aspect model, we first fold in a text query

or track outside the training set q, following the same procedure used on the
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validation set, to compute its aspect probabilities P (z|q). We can then use co-

sine distance as our matching function between the K-dimensional vectors of

aspect probabilities: the retrieval algorithm is essentially identically to the one

given for conventional LSA in Algorithm 2.2, but with vectors of aspect prob-

abilities P (z|q), P (z|t) taking the place of the vectors q̂, t̂. The formulation of

the aspect model also makes it possible to use an alternative probabilistic sim-

ilarity measure, estimating P (q|t) directly for each track t in the collection.

2.7 Evaluating the models

We evaluate these models within a query by example framework, in particular

to learn to what extent the representation of tracks within each model respects

traditional catalogue organisation by artist and genre. We naturally partition

our full dataset into training and test sets of tracks: to allow comparison with

previous work we select the test set to replicate the experimental set-up used in

a series of influential papers following [Knees et al., 2004]. In these experiments

artist-artist similarities were calculated for a set of 224 well-known artists split

equally over 14 mainstream genres. The genre labels for each artist in this list

were chosen by comparing editorial labels from the All Music Guide, Yahoo!

LAUNCHcast and other sources, and can therefore be considered authoritative

in comparison with individual tags [Knees, 2004]. Our corresponding test set

T contains 1561 tagged tracks by 212 of the original 224 artists, with between 4

and 12 tracks for each artist, and 67 and 141 tracks for each genre.

In order to study the ability of our models to generalise to unseen tracks,

we ensure that the training set has no artists in common with the test set. In a

practical application this scenario would arise if it was undesirable to retrain

the model even following the arrival of tracks by hundreds of new artists, per-

haps because of computational expense or the difficulty of making updates to

data used in a live search engine. More importantly, it provides a good test

of whether our learned dimensions capture significant basic musical concepts,
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Table 2.4: Test and training sets

Summary statistics of test set T, which is selected for comparison with
previous work, and training set AD, which has no artists in common with T.

ADW is a subset of AD containing all tracks with at least 30 words.

tracks vocabulary size data density % % of test vocab.
T (test) 1561 11332 0.50 100
AD (artist-disjoint) 23196 28959 0.08 67
ADW (” well-tagged) 5064 25591 0.33 62

rather than depending on artist names (which are commonly applied as social

tags) and associated highly specific vocabulary. Our resulting artist-disjoint

training set AD contains 23,196 tracks. In order to assess the effect of data

sparsity (i.e. having few tags for some artists) on our models, we also select

a well-tagged subset of the training set for comparison. This subset ADW is

created by excluding all training tracks tagged with less than 30 distinct words:

it contains 5,064 well-tagged tracks.

Table 2.4 shows the vocabulary sizes and data densities (i.e. the percent-

age of non-zero entries in the corresponding track-term matrix) for the test and

training sets, after tokenizing tags for all tracks with a standard stop-list . The

Table also shows the proportion of the vocabulary applied to tracks in the test

set which occurs in each training set. We observe that a third of the words ap-

plied to the test tracks do not occur at all in tags applied to the training tracks:

this shows the extent of the artist-specific vocabulary which we exclude when

learning models from the training sets. This makes us reasonably confident

that models learned on the training set which continue to perform well on the

test set have indeed captured some genuine underlying semantics of tags for

music.

As a baseline we use a simple vector space model with tf-idf weights on

the full co-occurrence matrix for the test set, as described in Section 2.4. We

then apply LSA at a range of ranks to the test and training sets, folding in the

test tracks as required to create a series of models as described in Section 2.5.

Finally we train a series of aspect models on the test and well-tagged training
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sets, again folding in the test tracks, as described in Section 2.6. For all the

models we then evaluate a query-by-example search over the test set, using

each test track in turn as a query and measuring various precision and recall

statistics as described in the following section.

2.8 Results

2.8.1 Evaluation metrics

The accepted basic evaluation measures for information retrieval are precision

and recall [Manning et al., 2008, section 8.3]. Suppose we have found some

number of tracks matching a query according to our system. We suppose that

we know in advance whether each track in our collection is or is not relevant

to the query. The precision is then the fraction of the retrieved tracks that are

indeed relevant

precision =
#(relevant tracks retrieved)

#(retrieved tracks)
(2.13)

and the recall is the fraction of the relevant tracks in the collection that have

been retrieved

recall =
#(relevant tracks retrieved)

#(relevant tracks)
. (2.14)

The precision and recall clearly will vary from query to query, and will also

depend on the number of retrieved tracks we consider. In a typical web search

application scenario the user will only be interested in the first few results, even

though the search system may be able to find large numbers of matching items.

It is therefore usual to report the precision and recall at rank r, often written as

precision @r, where r is some suitable small number, meaning the precision and

recall of a system averaged over a set of test queries, considering only the top

r items retrieved for each query [Manning et al., 2008, section 8.4].

Retrieval in the domain of music can be different in character from general
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Table 2.5: Evaluation metrics

precision @5
= 2

5

1
0
1
0
0
1
0
1
0
0
0

r-precision
= 2

4 = 1
2

1
0
1
0
0
1
0
1
0
0
0

mean AP
=

1
1+

2
3+

3
6+

4
8

4
= 2

3

1
0
1
0
0
1
0
1
0
0
0

web search. In particular we will frequently be interested in more than the top

few results, for example when choosing tracks for radio streaming or playlist

generation. In general the results below therefore show the per-word mean

Average Precision (mAP), averaged over the sets of artist and genre labels. The

AP for a particular query is calculated as

AP =

∑N
r=1 P (r)rel(r)∑N

r=1 rel(r)
(2.15)

where P (r) is the precision at rank r, rel(r) is 1 if the track at rank r is relevant

(i.e. is labelled with same genre/artist as the query) and 0 otherwise, and N

is the total number of tracks in the collection [Manning et al., 2008, section

8.4]. AP therefore measures the precision averaged over the ranks at which

each relevant track is retrieved. The mAP for a particular genre or artist label

is the AP averaged over all queries labelled with that term, and the overall

per-word mAP is the mean mAP over all the terms in the query vocabulary.

Besides being a standard IR performance metric (which has become consensual

in parallel literature in the field of image retrieval), mAP rewards the retrieval

of relevant tracks ahead of irrelevant ones, and is consequently an extremely

good indicator of how the semantic space is organised by each model.

We also report two other evaluation metrics for comparison with previous

work. The r-precision is the precision at rank r, where r is the number of rele-
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Table 2.6: Vector space retrieval compared to classification baselines

model genre 212 artists 32 artists
tag vector space 0.93 0.64 0.92
web-mined text [Knees et al., 2004] 0.87
audio content-based [Mandel et al., 2006] 0.68

vant tracks in the collection; note that at this rank the recall and precision are

equivalent. The Leave One Out 1-nearest neighbour classification rate is reported

in some experiments where the queries are tracks in the collection. It is calcu-

lated by inspecting the top search result returned, other than the query itself:

the classification rate for a set of queries with a particular artist or genre label

is the proportion of times this result also matches the label. Assuming that the

query track itself is returned as the top search result, this is equivalent (within

a constant) to the precision at rank 2.

Table 2.5 illustrates how the various evaluation metrics are calculated once

all the tracks in a collection have been ranked by a retrieval algorithm for a

particular query. Alternate columns of Table 2.5 show the pattern of relevant

and irrelevant tracks in a toy collection of tracks that has been ranked by an

algorithm, with the first result returned by the algorithm at the top: 1 indi-

cates a genuinely relevant track while 0 indicates one that is not relevant. Note

in particular how (despite their names) mAP and r-precision both implicitly

summarise recall as well as precision.

2.8.2 Vector space model

Using our full-rank term vectors with tf-idf weighting and a cosine distance

similarity measure, the genre mAP is 76%, and the artist mAP 56%. For his-

torical reasons, many previous studies of musical similarity report a Leave

One Out 1-nearest neighbour classification rate, effectively showing precision

at rank 2. Table 2.6 summarises the performance of our vector space compared

to these baselines. In particular the composition of our test set allows direct

comparison with [Knees et al., 2004], which reports a genre classification rate



CHAPTER 2. LEARNING SEMANTIC MODELS I 62

of 87% for a classifier trained on web-mined text. Using our vector space model

to rank nearest neighbours to each query track, the equivalent LOO genre clas-

sification rate is 93%, and the artist-filtered classification rate, using the nearest

neighbouring track by a different artist to the query, is 88%.

The LOO 1-nearest neighbour artist classification rate is 64% for our set of

212 artists. We note that this level of artist retrieval vastly exceeds the state of

the art for audio content-based methods: we reach 92% precision on a reduced

set of 32 rock and pop artists, compared to 68% by content-based similarity on

a set of 18 similar artists in [Mandel et al., 2006], although there is no reason

to demand anything approaching perfect precision on this task on datasets of

any size, because songs by other artists can quite reasonably be considered

very similar to any given query.

2.8.3 LSA models

We show mAP retrieval performance using the LSA models over a range of

ranks in Figures 2.4 and 2.5. Results are shown for models computed from

the three different training sets, with the full-rank baseline shown as the right-

most point in the curve for the test set T. When LSA is applied directly to

T it can learn the target label classes directly, as shown by the peaks in the

mAP curves which coincide with the number of genre and artist labels respec-

tively, outperforming standard vector space retrieval with the full-rank term

vectors. When LSA is applied to the artist-disjoint training sets, however, re-

trieval performance peaks at around rank 100, suggesting that this is the un-

derlying dimensionality of the semantic space, but retrieval performance drops

significantly. The similar mAP results for AD and ADW show that there is no

disadvantage in leaving sparsely tagged tracks in the training set. More im-

portantly, however, the results show that the learned space generalises poorly

to tracks by unseen artists.
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Figure 2.4: LSA genre mean AP

Figure 2.5: LSA artist mean AP
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Table 2.7: Best retrieval results with all models, latent semantic models trained
on ADW

model genre mAP artist mAP
vector space 0.76 0.56
LSA 0.61 0.25
aspect 0.75 0.49

2.8.4 Aspect models

To limit computation time when training aspect models we reduce the vocabu-

lary size further by filtering out words applied to less than five training tracks.

This reduces the vocabulary size of the ADW training set from 25,591 to 11,020

words, although the data density remains almost unchanged at 0.35%. The E-

M training on ADW converged after 20-50 iterations.

Retrieval performance for the aspect models with a range of numbers of

aspects is shown in Figures 2.6 and 2.7. The aspect models trained on ADW

significantly outperform LSA at all ranks. The results for artist labels show

no significant difference between aspect models trained on the test set itself

and those trained on the artist-disjoint training set, while for genre labels the

performance is significantly improved at nearly all ranks by training on artist-

disjoint tracks. We can conclude that the aspect models generalise very well to

tracks by unseen artists. We observe that aspect models appear to learn well

despite the low data density of the training set, which is well below the values

reported as necessary for effective training of models for collaborative filtering

data reported in [Popescul et al., 2001].

Table 2.7 summarises the best retrieval performance from the results shown

in Figures 2.4-2.7 for both types of latent semantic model trained on ADW and

the baseline model, showing that the simple vector space model still outper-

forms latent semantic models on this task. We would expect, however, that

semantic models would have advantages for more realistic retrieval tasks such

as query-by-example and keyword retrieval: this hypothesis is tested (and

strongly confirmed) in due course in Chapter 5.
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Figure 2.6: Aspect model genre mean AP

Figure 2.7: Aspect model artist mean AP
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2.9 Emergent semantics

Given a trained aspect model, we can inspect the semantics of a latent aspect

z directly by looking at the top-ranking words w when ordered by P (w|z).

The top few words for each aspect of the 90-aspect model learned from the

ADW training set, together with their conditional probabilities, are shown in

Tables 2.8-2.10. We have chosen the number, and occasionally the order, of top-

ranking words shown for each aspect to give a brief meaningful description of

its semantics, although to avoid over-interpretation we always show all words

with an aspect-conditional probability greater than 0.1.

We observe that the aspects can be grouped fairly easily by their semantics,

as shown by the headings in Tables 2.8-2.10. Genre is highly dominant, appar-

ently accounting for over 60 of the 90 aspects. As one might expect, general

rock and pop account for several aspects each, mainly relating to particular sub-

genres and artists, but also, in the case of pop music, corresponding to romantic

ballads as opposed to fun upbeat male vocalists. Mood itself accounts unambigu-

ously for only one sad aspect. This is suprising since emotion words occur very

frequently in social tags for music (as shown below in Chapter 6), suggesting

that mood words may be strongly correlated with genre words. Other aspects

express obviously useful concepts such as era and nationality, a few appear to

be dominated by words associated with particular artists, while three aspects

capture general notions of mild preference such as favourite and good, which

are also very common in tags. Only three aspects, headed Tag-specific in Table

2.10, have clearly arbitrary semantics, simply capturing the co-occurrence of

words found in idiosyncratic multi-word tags that happen to be frequently ap-

plied in our dataset: ‘i am a party girl here is my soundtrack’, ‘my secret spy’

and ‘malloy2000 playlist - top songs - classical to metal’.

The effectiveness of these models in organising tracks in accordance with

external editorial genre labels suggests that genre is well characterized by the

word distributions of the learned aspects. The small number of aspects rep-
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resenting other music-specific concepts, however, may limit the usefulness of

tag-based semantic models as the basis for music discovery and recommenda-

tion systems. The Pandora music recommendation service 6, widely regarded

as being the best of its kind, is built on expert annotations using a vocabulary

which is rich in such concepts, describing instrumentation, rhythmic character,

harmonic complexity, etc. For comparison we also inspected a larger model

with 500 aspects. Although this had learned a richer set of aspects centering on

mood (expressing melancholy, dark and silent intensity, happiness, relaxation,

humour, aggression, fun, high energy, dreaminess, romance, feeling good) and

context (music for getting drunk to, for rainy days and coffee breaks), there

was no increase in the number of aspects centred on musical concepts besides

genre.

2.10 Conclusions

Although the usage of individual tags is ad hoc and informal, frequently ex-

pressing free personal responses to music rather than any attempt at collabo-

rative structured description, using latent semantic models we can uncover an

emergent semantics from social tags for music. This semantics currently fo-

cuses largely on genre, and defines an underlying similarity space for tracks

that is highly organised by both genre and artist. Traditional LSA cannot learn

this space effectively, overfitting the particular artists found in the training set,

but, despite low data density (0.35% on our dataset), the semantics can be

learned by a simple probabilistic aspect model. In subsequent Chapters the

aspect model is extended to incorporate information from audio content, and

its perfomance is evaluated on a wider range of retrieval tasks.

6http://www.pandora.com
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Table 2.8: Learned semantic aspects

Genre
alternative (0.903637)
big (0.153041) beat (0.159211)
blues (0.472954) rock (0.243667)
chillout (0.224984) electronica (0.136519) ambient (0.135075) downtempo (0.0708973)
country (0.103101) love (0.167323)
electronic (0.141172) acid (0.0405934)
electronic (0.580491) electronica (0.183323)
electronic (0.137179) idm (0.136875)
experimental (0.307966) avant (0.12498) garde (0.121019)
female (0.491881) vocalists (0.346216)
female (0.234413) vocalists (0.174914) singer (0.0793115) songwriter (0.0762832)
folk (0.536908)
hardcore (0.275105) punk (0.266487)
hip (0.339388) hop (0.387366)
hip (0.327094) hop (0.336327)
hip (0.195971) hop (0.198069) rap (0.175463)
indie (0.55891)
indie (0.62218)
industrial (0.361554)
instrumental (0.365454) new (0.112528) age (0.0926655)
jazz (0.164102) fusion (0.133837)
jazz (0.453036) acid (0.092242)
vocal (0.18561) jazz (0.14978) easy (0.0727063) listening (0.0701247)
latin (0.219131)spanish (0.0853835) world (0.0823915) easy (0.0911382) listening (0.0807576)
metal (0.592658) nu (0.144499)
metal (0.443665) rock (0.144781) heavy (0.0922799)
motown (0.116136) old (0.0929515) school (0.102976) oldies (0.0968027) 60s (0.0962359)
new (0.286276) wave (0.228912) 80s (0.198137)
pop (0.395282) favorites (0.16737) favorite (0.0990058)
pop (0.699179) love (0.0434928) romantic (0.0208581) ballad (0.01479)
pop (0.534512) male (0.0902425) vocalists (0.0438629) fun (0.0477448) upbeat (0.0261533)
pop (0.213411) soft (0.160436) rock (0.1181)
post (0.425698) experimental (0.138828)
progressive (0.4349) rock (0.355539)
psychedelic (0.340054) rock (0.351364)
psychedelic (0.31107) progressive (0.112553) rock (0.110226)
reggae (0.308941) ska (0.264064)
rnb (0.192611) dance (0.124039)
classic (0.425913) rock (0.365819)
guitar (0.375608) rock (0.307403)
punk (0.661967) rock (0.102884)
rock (0.396519) alternative (0.174497)
rock (0.486211) alternative (0.0923912) american (0.08528)
rock (0.357265) alternative (0.19367) 90s (0.18555)
rock (0.253884) alternative (0.145053) political (0.0661571)
rock (0.239378) classic (0.151553) male (0.0754704) vocalist (0.0787315)
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Table 2.9: Learned semantic aspects (cont.)

Genre (cont.)
rock (0.43024) deutschrock (0.0637865)
rock (0.456883) gothic (0.10763) glam (0.103065)
rock (0.229483) hard (0.126003) alternative (0.109098)
rock (0.712857) hard (0.0910012) classic (0.0853406)
rock (0.483282) indie (0.257368) alternative (0.118185)
rock (0.339735) indie (0.163039) 00s (0.169082) alternative (0.148359)
rock (0.311591) top (0.077397) song (0.0742493) radio (0.0729789)
rock (0.13689) n (0.111813) roll (0.134409) 70s (0.110408)
rap (0.391534) hip (0.0966936) hop (0.0798972)
singer (0.380835) songwriter (0.372339)
singer (0.294251) songwriter (0.285342) folk (0.166677)
soul (0.3935) rnb (0.0829992)
synth (0.113573) pop (0.115882) synthpop (0.106553)
trance (0.151609) australian (0.0702906) chilled (0.0693821)
trip (0.29392) hop (0.269011)

Nationality
british (0.843287)
britpop (0.17749) indie (0.209654)
french (0.133541) dance (0.243374)
german (0.265269) deutsch (0.127166)
irish (0.208149) rock (0.273498)
swedish (0.104755) alternative (0.161654)
uk (0.223606) english (0.122075) england (0.107208)

Era
60s (0.241197) rock (0.310489) classic (0.199013) oldies (0.101261)
70s (0.332746) male (0.0538104) faves (0.0407649) great (0.0291682) rolling (0.0275969) stones (0.0290014)
80s (0.365832) rock (0.0922272)
90s (0.829352)
00s (0.21898) drum (0.141555) n (0.0411199) bass (0.199598)

Other musical
cover (0.232786) covers (0.155134) ballad (0.113401)
piano (0.277365)
soundtrack (0.446551)

Artist
alternative (0.189528) female (0.140492) icelandic (0.0778212) vocalists (0.0733118) bjork (0.0258379)
beatles (0.19894) pop (0.107256) rock (0.10571) british (0.0833975) invasion (0.0518532) lennon (0.0246465)
funk (0.399733) red (0.0751185) hot (0.0812188) chili (0.067166) peppers (0.0689253)
rock (0.822775) muse (0.01499) pink (0.0146779) floyd (0.0135611)
rock (0.141085) songs (0.0562564) queen (0.0399782) classic (0.0306823)
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Table 2.10: Learned semantic aspects (cont.)

Mood
acoustic (0.342529) mellow (0.170217) chill (0.0807014)
sad (0.1822) melancholic (0.125459) beautiful (0.100356) melancholy (0.0854095) mellow (0.0839701)

User-specific
seen (0.237975) live (0.327781) world (0.118652) music (0.033688)

Preference
favourite (0.279855) songs (0.135857) best (0.109118) artists (0.1018) ever (0.091739) favorite (0.0802845)
favourite (0.0949422) songs (0.114899) essential (0.0912613) cool (0.0885247)
good (0.134277) love (0.116914) male (0.111679) vocalist (0.0653571) favorites (0.0807613)

Tag-specific
i (0.111074) am (0.105064) party (0.126584) girl (0.104435) my (0.116596) soundtrack (0.107144)
my (0.181792) secret (0.107245) spy (0.109136)
top (0.297385) songs (0.156311) malloy2000 (0.131718) playlist (0.139019) classical (0.15024)



Chapter 3

A discrete representation for

musical audio features

This Chapter proposes a discrete representation for musical audio features that

allows the models of the preceding Chapter to be extended in a straightforward

fashion to audio content as well as words in tags. Much work in recent years

has focussed on developing low-level features intended to capture musically

meaningful aspects of an audio signal, in particular in the hope of doing re-

liable automatic genre classification. Discrete representations of audio of the

kind that would be useful to us here, however, have been used only as an ap-

proximate and poorly-performing computational shortcut. The remainder of

this Chapter discusses this work in detail, and motivates, describes and evalu-

ates a new representation that can easily be used in a conventional information

retrieval framework. It begins, however, by discussing why we should be in-

terested in modelling audio content at all, given the increasing availability of

tags.

71
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Why model audio content?

Chapter 2 demonstrated that semantic models learned from social tags have

highly attractive properties. Even the simplest vector space models position

tracks in a space which is extremely well-organised by artist and genre, while

latent semantic models can learn a wide range of familiar and readily meaning-

ful semantic aspects. It is reasonable to speculate that, as long as tags are read-

ily available for all the tracks we wish to index, audio information is redundant

if we want to create practical semantic music search applications. Tags are be-

ing supplied by listeners in huge numbers: last.fm currently receives around

two million new annotations each month.1 There are reasons, however, why

despite the huge and growing number of tags available, the distribution of so-

cial tags is likely to remain highly uneven in practice, meaning that we should

expect to find many sparsely-tagged or untagged tracks in any large collection.

Firstly, new music is constantly being created, leading to the well-known

cold start problem: tracks can be tagged only once listeners discover them,

but untagged new tracks remain invisible within systems that depend on tags

to give search results or recommendations. Secondly, recent research [Mar-

lin et al., 2007] has highlighted the correlation between a listener’s liking for

a particular track and their willingness to supply a rating for it: listeners are

much more likely to rate a track which they like or (somewhat less often) dis-

like strongly. Ratings for tracks that are new to a particular listener are there-

fore not missing at random (NMAR), contradicting an underlying assumption

of most existing collaborative filtering systems. We can expect a similar re-

lationship to exist for tagging, with tracks that provoke only mild feelings of

affection in their listeners remaining sparsely-tagged, even if they have obvi-

ous characteristics that could be described in words. In particular we expect

that there will be a clear difference between the distribution of tags for tracks

by mainstream and by new or niche artists.

This uneven distribution of tags between ‘haves’ and ‘have-nots’ can be

1private communication from Elias Pampalk, last.fm, March 2008
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Figure 3.1: Artist tag distribution

clearly observed in our dataset, as illustrated in Figure 3.1, which shows the

number of artists found in our dataset as a function of the mean number of

tags applied to their tracks. Roughly a third of our 5265 artists have received

no tags for any of their tracks, while even amongst the artists with tagged

tracks, roughly a third have no more than five distinct tags per track on aver-

age. The cold start and NMAR issues evident here will give real-world music

recommendation or search systems based on tags an inbuilt conservative bias

towards tracks by well-known and well-liked artists. While this is a reason-

able starting point for a usable system, the ability to suggest a large variety

of tracks, in particular including little-known music, is clearly also valuable.

This provides a practical motivation to extend our models by incorporating

information drawn directly from the audio signal. It also suggests a realistic

framework for evaluating the contribution of such audio information to both

the quality and variety of results returned to set of search queries: we develop

this in Section 4.2.

One straightforward way to incorporate audio information into semantic

models is to discretise audio features, representing them as a set of “audio

words” extending, or parallel to, the vocabulary of conventional words. A

simple method of this kind, using vector quantisation (VQ) to discretise the
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features and treating the resulting VQ codebook as the vocabulary of audio

words, was first proposed in a somewhat different context by Vignoli and

Pauws in [Vignoli & Pauws, 2005], where a discrete representation was cho-

sen as the basis of a similarity metric for audio tracks because of its computa-

tional efficiency in relation to existing methods. In [Vignoli & Pauws, 2005], a

single Self-Organising Map (SOM, defined below in Section 3.2.1) trained on

features drawn from all tracks in the collection to be indexed was used for VQ.

Features from each track were mapped onto the indices of their best-matching

SOM units, and the indices for each track recorded in a histogram. A distance

between tracks could then be computed by comparing histograms with a suit-

able measure: Vignoli and Pauws proposed Kullback-Leibler divergence.

We investigated this representation in comparison to a number of other

lightweight audio similarity measures in previous work published in [Levy &

Sandler, 2006b]. Despite finding a more effective distance measure to compare

the histograms than that used by Vignoli and Pauws, our results showed that

tracks were poorly organised in the resulting similarity space: in particular us-

ing this discretisation degraded results in comparison to similarity measures

computed directly on the underlying features. In this chapter we propose a

new approach to extracting a discrete vocabulary of audio muswords intended

to correspond to properties of important musical events within each track. We

show in particular that tracks in our test dataset are no worse organised by

muswords in a simple vector space model than when using a state-of-the-art

similarity measure directly on the features.

Audio features intended to model perceptual characteristics of music have

been widely studied in the context of automatic genre classification, with fea-

tures for a particular track typically modelled as a so-called bag-of-frames, i.e.

all frames in the track are modelled but with no consideration of their temporal

sequence. While the bag-of-frames (BOF) model works well for classification

of non-musical audio such as natural ambient soundscapes, detailed studies

by Aucouturier in [Aucouturier et al., 2007] and [Aucouturier, 2006] highlight



CHAPTER 3. DISCRETISING AUDIO FEATURES 75

its shortcomings in relation to music. In particular Aucouturier observes ([Au-

couturier et al., 2007], p.889) that

with BOF algorithms, frames contribute to the simulation of

the auditory sensation in proportion of their statistical predomi-

nance in the global frame distribution. In other words, the percep-

tive saliency of sound events is modeled as their statistical typicality...

The above-presented results establish, as expected, that the mecha-

nism of auditory saliency implicitly assumed by the BOF approach

does not hold for polyphonic music signals: For instance, frames in

statistical minority have a crucial importance in simulating percep-

tive judgments.

Aucouturier hypothesises that higher-level features are required to improve

classification performance on musical audio. In our work, this problem is com-

pounded by the obvious mismatch between semantics and either individual

audio frames or track-level models. While fully addressing these issues re-

mains well beyond the scope of this thesis, we use them to motivate a novel

approach to audio feature modelling, based on an initial step in which we iden-

tify regions of interest within each track.

We make the following simple assumptions:

1. semantics apply naturally to music at the phrase level (a single track can

contain both harsh and gentle sections)

2. semantics are associated with particular events within the music (rather

than with individual audio frames)

3. significant musical events will be perceptually prominent by design (both

composer and performer devote their skill to bringing this about)

We consequently extract muswords for a track by first identifying musical

events within it, and then discretising timbral and rhythmic features for each

region found.
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We note that this perspective differs from previous work on semantic mu-

sic search and annotation, in which semantics are associated either with every

frame of audio [Barrington et al., 2007; Turnbull et al., 2008] or with randomly

selected segments [Eck et al., 2008].

The remainder of this chapter is organised as follows: Section 3.1 introduces

a method for finding regions of interest within each track; Section 3.2 shows

how timbral and rhythmic features from each region are mapped onto discrete

muswords corresponding to musical properties of the audio signal; and Sec-

tion 3.3 evaluates musword representation in a simple vector space model, and

conclusions are drawn in Section 3.4.

3.1 Finding regions of interest

A number of methods have been proposed to find representative thumbnail seg-

ments of musical audio tracks, typically based on a first step in which the rep-

etition structure of the track is estimated [Maddage et al., 2004; Lu et al., 2004;

Goto, 2003; Chai & Vercoe, 2003; Paulus & Klapuri, 2006; Shiu et al., 2006]. We

review these approaches in our own contributions to this literature [Levy et al.,

2006; Levy & Sandler, 2006a, 2008a] . While some of these structural segmen-

tation algorithms have been shown to be effective in locating chorus sections

in conventional pop tracks, notably [Goto, 2003], they are not suitable for our

purposes here, in particular because the initial analysis of repetition structures

within a track is too computationally expensive to scale to large music collec-

tions.

Assumption (3) above, on the other hand, suggests a straightforward and

computationally scalable method to locate musical events by finding perceptu-

ally prominent regions of interest within the signal: such regions are identified

by their degree of contrast with what has come before in the track. Figure 3.2

shows an overview of the process. We first extract perceptually-motivated au-

dio features for the whole track. We then pass a fixed-length window along
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the track, comparing the distribution of features in the window to their dis-

tribution in the time-decayed history (i.e. from the beginning of the track to

the start of the window) with a probabilistic distance measure. The distance

of the window from its history gives us a boundary function, expressing the

contrast between them, and consequently, given assumption (3), the likelihood

of an event beginning at the start of the window. We smooth the boundary

function with a median filter to eliminate noise from local contrast, and peak-

pick, i.e. find local maxima in the smoothed boundary function, to give a set of

candidate event start times. Finally we normalise for the degree of local con-

trast within each track by discarding candidates whose boundary function is

less than the mean value over the whole track. We return windows beginning

at each of the remaining event start times as the track’s regions of semantic

interest.

Input audio

Perceptual feature extraction

Window comparison

Smoothing, peak picking

Regions of interest

(a)

(b) audio signal

(c) perceptual features

(d) boundary function

(e) event locations

(f) regions of interest

Figure 3.2: Locating regions of interest
Locating regions of interest. (a): overall flowchart. (b): input audio signal. (c)-
(f): outputs at each stage. (c) perceptual features (MFCCs); (d) unsmoothed
boundary function; (e) smoothed, mean-subtracted boundary function and
found event start times; (f) identified regions.
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In our current implementation we use the first twenty Mel-Frequency Cep-

stral Coefficients (including the 0-th coefficient) as our perceptual audio fea-

tures, extracted from audio downsampled to 22.05kHz and mixed to mono,

with a frame and hop size of 4096 samples. Mel-Frequency Cepstral Coef-

ficients (MFCCs) represent the short-term power spectrum on a non-linear

frequency scale inspired by the human auditory system [Mermelstein, 1976].

They are computed as follows:

1. a Hamming window is applied to each frame of audio.

2. the Fourier Transform is taken.

3. the mel spectrum is computed by applying a filterbank of overlapping tri-

angular windows centred on mel frequencies.

4. MFCCs are computed as the amplitudes of the Discrete Cosine Transform

of the log powers of the mel spectrum.

The moving window used in computing the boundary function from the

MFCCs has a length of 5 seconds. We estimate the distribution of MFCCs in

the moving window v and the history h by fitting a single Gaussian to features

in each of them, weighting features in the history with a Hamming window

extending back to the start of the track, so that features from the distant past

are gradually “forgotten”. We measure the distance between the two Gaussians

with a symmetrised Kullback-Leibler divergence

KLs(v||h) = KL(v||h) +KL(h||v) (3.1)

=
tr(Σ−1h Σv + Σ−1v Σh) + (µv − µh)T (Σ−1h + Σ−1v )(µv − µh)

2
− d

where the Gaussians are given by v(x) = N (x;µv,Σv) and h(x) = N (x;µh,Σh),

and d is the dimensionality of the features.

This boundary function is smoothed with a median filter of length 2 sec-

onds. Finally after peak-picking we prune candidates that are within two win-
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dow lengths of each other, retaining the one with the higher boundary function

value.

Following the motivating assumptions listed in the previous Section, the

temporal regions found by this process are expected to correspond to the signif-

icant musical events in the track, i.e. the regions most likely to bear semantics

and to be usefully modelled for retrieval or automatic annotation. Low-level

features are therefore extracted for each of these regions, and mapped onto one

or more muswords representing characteristic areas of the audio feature space.

The set of muswords for a track is the union of the muswords associated with

each of its temporal regions of interest. The following Section proposes var-

ious ways in which audio features for a given region can be represented as

muswords.

3.2 A vocabulary of audio muswords

In considering how each region of interest found in a track can be mapped onto

muswords, we assume that is reasonable to create muswords representing two

independent vocabularies of timbral and rhythmic characteristics respectively,

i.e. we attempt to describe a musical event within a track as having on the one

hand some particular type of instrumentation, and on the other some particular

type of tempo and beat.

3.2.1 Creating timbre muswords

Our underlying timbral feature for each region of interest is the same feature

that we used when computing the boundary function for event-finding de-

scribed in the previous Section, i.e. the mean and variance of the first twenty

MFCCs. This Subsection describes two alternative methods of representing

these features as muswords. The methods are evaluated comparatively in Sec-

tion 3.3.
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VQ method

We concatenate means and variances into a single 40-dimensional feature for

each region of interest. Following our work in [Levy & Sandler, 2006b], we

train a single Self-Organising Map on features from our collection of tracks,

first normalising each feature dimension to have zero mean and unit variance.

The SOM is a simple unsupervised neural network which learns a mapping

of input vectors to a very low-dimenstional grid: the mapping captures non-

linear relationships between the input vectors as geometrical relationships in

the grid, in particular preserving the local topology of the input vectors [Koho-

nen, 1984]. Each grid location or neuron of the SOM is associated with a weight

vector mi with the same dimensionality as the input vectors. On each training

step, an input vector x is chosen at random, its best matching unit in the SOM is

found, i.e. the neuron mc whose weight vector is closest to the input one, and

the weight vectors for that unit and those in its neighbourhood are updated to

move them closer to the input vector. The update rule at time k is given by

mi(k + 1) = mi(k) + α(k)hci(r(k))[x−mi(k)] (3.2)

where mi(k) is the value of the i-th weight vector, α(k) is the learning rate, and

hci(r(k)) is a neighbourhood function around the best matching unit mc, with

radius r(k). Both the learning rate and the neighbourhood size decrease over

time.

We use a SOM with 1000 hexagonal units arranged in a rectangular 50 x

20 grid, and a Gaussian neighbourhood function, as implemented in the SOM

Toolbox [Vesanto, 2000]: each unit represents one timbre musword. A single

musword for each region of interest in a track is then created by finding its best

matching unit in the trained SOM.
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Distance method

A simple perceptual test was applied to the mapping to muswords using the

VQ method described above. A sample of 50 muswords was chosen at ran-

dom and considered in turn. For each musword, a sample of 20 audio seg-

ments that mapped onto it was concatenated. Finally we simply listened back

to the patchwork of audio segments for each musword. The results were dis-

appointing: for many muswords there appeared to be little perceptual timbral

consistency between the regions. We therefore developed an alternative map-

ping based closely on the timbral distance measure in (3.1), which is known to

be relatively well-behaved [Levy & Sandler, 2006b].

We first select 1000 regions of interest at random from our collection of

tracks, and consider these directly as comprising our vocabulary of timbre

muswords. We then map a region of interest with features x not onto inte-

ger counts, but instead onto a vector of continuous relevance scores, {c(x,m)}

with c(x,m) ∈ (0, 1],∀m, based on the distance of the region to each musword

m in the vocabulary. The score for the musword m for a region with features x,

is given by

c(x,m) =
1

(1 +KLs(x||ym))
(3.3)

where ym are the features for musword m, and the distance measure KLs(·||·)

is the symmetrised Kullback-Leibler divergence given in (3.1). Finally we com-

pute the relevance scores for a track {c(t,m)} by summing the scores for each

musword over all of the track’s regions of interest.

Because each region of interest is mapped onto a score for every musword

in the timbre vocabulary, in general this representation is no longer sparse.

This will prove a disadvantage in our aspect models, where the computational

complexity is proportional to the total number of non-zero (mus)word counts

over the training set, as discussed in Section 2.6 above (and in fact the same ap-

plies to industrial-scale implementations even of simple vector space models).

We therefore increase sparsity by zeroing small scores for timbre muswords in
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this representation. Specifically we set scores for track t to zero when they are

less than σmaxm c(t,m), where c(t,m) is the track’s total relevance score for

musword m. We discuss the choice of the threshold σ in the next Section.

3.2.2 Creating rhythm muswords

Our rhythmic feature for each region of interest is the thresholded autocorre-

lation of an onset detection function introduced by Davies and Plumbley in

[Davies & Plumbley, 2008]:

A(l) =

∑L
l′=1 Γ̃(l′)Γ̃(l′ − l)
|l − L|

l = 1, ..., L (3.4)

where L = 144 samples and Γ̃(·) is an adaptively-thresholded onset detection

function based on complex spectral difference (see [Davies & Plumbley, 2008]

and [Bello et al., 2004] for full details). This feature was found in [Davies &

Plumbley, 2008] to give good results in a classification task for different styles

of ballroom dance music.

We follow the VQ approach as for timbre muswords, training a 50 x 20

SOM on these 144-dimensional features and mapping each region of interest

onto its best matching unit. Unlike the timbre muswords produced by VQ, this

approach does satisfy a simple perceptual test: in informal listening tests we

found that regions mapped to the same unit frequently have the same tempo

and rhythmic character.

3.3 Evaluating the bag-of-muswords

The methods of the previous Section produce a bag-of-muswords (BOM) for

each track. We evaluate this representation initially in a simple Vector Space

model, just as we did for the tag BOW in Chapter 2. Audio was not available

for all 1561 tracks in our test set T, so we pruned it to create a reduced set

of 928 tracks with audio Ta, with between 25 and 98 tracks for each of the 14
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labelled genres. We evaluated artist retrieval over the remaining 105 artists

with at least 4 tracks each in Ta. The results in this Section are all based on

query by example over the tracks in this set, using a Vector Space model with

tf-idf weighting, with document frequencies for each musword computed over

the test set. We prune from the vocabulary any muswords applied to less than

five tracks in the set.

3.3.1 Sparsifying the distance method timbre muswords

Figure 3.3 shows retrieval results using timbre muswords created by the dis-

tance method of Section 3.2.1. This illustrates the effect of sparsifying the con-

tinuous relevance scores produced by this method to varying degrees, by ze-

roing all scores for each track which are less than some proportion σ of the

score for its most relevant musword. We can clearly reduce data density to

under 10% with no significant loss in retrieval performance: in practice we set

σ = 0.6, which gives a data density of 7.4% on the test set.

3.3.2 Results

Table 3.1 gives average genre and artist retrieval precision figures using each

track in the test set as the query in a query by example scenario. Besides the

mean Average Precision (mAP) reported in Section 2.7, Table 3.1 shows the

precision at rank 5 for genre labels, and the r-precision for artist identity, i.e.

the precision at rank r, where r is the total number of tracks by the query artist

in the collection. These two figures give a measure of the performance at high

ranks, reflecting the results that would be seen in practice by the user of a

search engine, while the mAP figures express the quality of organisation over

the entire collection. The best BOM results are shown in bold.

Besides comparing the BOM with timbre muswords created by the VQ

and distance methods described in the previous section, we give results for

three baseline methods. For our primary baseline we evaluate content-based
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Figure 3.3: Retrieval performance vs data density
The sparsification threshold σ takes values 0.9, 0.8, ... 0.1

retrieval using a state-of-the-art distance measure directly on the underlying

timbral audio features: we use symmetrised Kullback-Leibler divergence on

single Gaussians fitted to MFCCs from the whole of each track [Mandel & El-

lis, 2005; Levy & Sandler, 2006b]. We also show results for a random baseline,

and for the BOW Vector Space model re-evaluated on the reduced test set.

The results in Table 3.1 show that timbre muswords created by the distance

method of Section 3.2.1 are significantly more effective than those created by

VQ. The organisation of our test tracks in a simple BOM model using these

muswords is similar to using a state-of-the-art similarity measure directly on

the underlying features: genre retrieval is marginally better in the BOM model,

and artist retrieval slightly worse. Rhythm muswords, however, give poor

retrieval performance on their own, and either make no significant difference

or reduce performance when combined with timbre muswords.
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Table 3.1: BOM retrieval performance

genre genre artist artist
prec. mAP r-prec. mAP
at 5

BOM:
rhythm 0.322 0.121 0.233 0.203
VQ timbre 0.387 0.168 0.251 0.228
VQ timbre + rhythm 0.379 0.165 0.247 0.227
distance timbre 0.462 0.203 0.286 0.269
distance timbre + rhythm 0.439 0.196 0.278 0.256
baseline:
random 0.262 0.099 0.208 0.175
timbre similarity 0.461 0.187 0.304 0.288
BOW 0.939 0.774 0.581 0.629

3.4 Conclusions

This Chapter introduced a method of finding regions of interest within a track

that - while only a first simple implementation of the approach - leads to an

effective discretisation of audio as a vocabulary of timbral muswords. Query by

example using these muswords is more successful than with previous discrete

representations, equalling the performance of an effective similarity measure

applied directly to the underlying audio features. Rhythm muswords, while

inducing some organisation on the collection when compared with a random

baseline, unfortunately do not improve retrieval performance when combined

with timbre muswords, and are therefore not used in the models developed in

the course of the following Chapter.

The novel musword representation developed here makes it straightfor-

ward to extend retrieval models to audio content as well as words. Nonethe-

less, the most striking result in Table 3.1 is the difference in performance be-

tween the baseline model trained on words and any of the audio content-based

methods. This raises issues in evaluating the contribution of audio features to

joint models: we return to this in the next Chapter.



Chapter 4

Learning semantic models for

music from social tags and

audio

This Chapter extends the aspect model of Chapter 2 to incorporate muswords

as well as words, providing the basis of a search system that learns from both

social tags and audio. The first step towards this is to combine words and mus-

words in a single Vector Space model. We can take a straightforward approach

here, simply concatenating words and muswords into a single extended vocab-

ulary, so the track representation is a bag-of-words-and-muswords (BOW+M).

Because of course we are not really counting words in documents, we ob-

serve that “counts” for the two types of word in this representation, n(t, w)

and c(t,m) in the notation of the preceding Chapters, have dissimilar - and

essentially arbitrary - ranges. A consequence of this is that it is necessary to

choose a scaling for counts for muswords relative to those for words.

The results of Chapter 2 demonstrate that retrieval models based on tags

place tracks in a space which respects traditional catalogue organisation ex-

tremely well, in fact outperforming all previous published methods on genre

86
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and artist retrieval tasks. We also know, however, that in real music collec-

tions tracks by many artists will be at best sparsely tagged. This Chapter at-

tempts to establish the level of tag sparsity at which retrieval based purely on

words starts to degrade, and investigates whether or not combining words and

muswords does indeed improve performance according to objective measures.

This leads to a realistic cross-validation framework for evaluating joint models

trained on tags and audio features.

Finally this Chapter investigates how latent aspect models can best be trained

on words and muswords, again given the much higher reliability of drawing

semantic information from tags than inferring it from current low-level audio

features. Two different training strategies are compared for these models: con-

ventional training on the joint vocabulary of words and muswords, and a two-

stage training method, in which we first learn the latent aspects from words

only, and then learn the musword distributions.

The remainder of this Chapter is organised as follows: Section 4.1 discusses

how words and muswords can be combined into a joint vocabulary by scaling

counts; Section 4.2 details a framework for evaluating the contribution of mus-

words to semantic search; and Section 4.3 investigates the effect of tag sparsity

on track organisation in a Vector Space model based on the joint vocabulary.

Two training methods for a joint aspect model are explained in more detail in

section 4.4; section 4.5 describes how the evaluation developed in the Section

4.2 is applied to the resulting models; results are given in section 4.6.

4.1 Scaling word counts

In the BOW+M representation, counts for words n(t, w) and muswords c(t,m)

are computed by different means, and have no natural scaling with respect

to one another. Specifically the counts for conventional words depend on

Last.fm’s unpublished normalisation of the number of times a tag has been

applied to any particular track, as described at the start of Chapter 2, while the
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Figure 4.1: BOW+M retrieval performance

counts or continuous scores for muswords result from the particular discreti-

sation method used to map features for a track onto muswords, specifically the

methods described in Chapter 3.

Figure 4.1 illustrates how the relative scaling of word and muswords counts

affects retrieval performance, using the same tasks and evaluation metrics as

the experiments of Sections 2.8 and 3.3. Retrieval is done in a simple Vector

Space BOW+M model with tf-idf weighting with a range of different scalings

between the two sets of counts: the scale factor shown is the ratio between the

mean count for muswords and that for words. A scale factor of zero corre-

sponds to discarding muswords completely i.e. using a baseline BOW model.

Table 4.1 gives the top ten search results returned by this model for some ex-

ample query tracks at several scale factors.

Using a scale factor of 1.0, the retrieval performance is slightly lower than

the BOW baseline, but, as the examples in Table 4.1 show, search results for

query by example in this model are largely acceptable, although by no means
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identical to those returned by searching on words only. With a scale factor of

3.0, however, objective retrieval performance is reduced significantly, and the

search results include more surprises.

A more detailed examination of the examples in the third column of Table

4.1 is informative. At first glance, the jazz tracks returned for Joni Mitchell’s

‘Both Sides Now’ are poor matches, because Mitchell is most often labelled as

a folk singer (as she is in our genre groundtruth). ‘Both Sides Now’, however,

is the title track of an album of classic jazz songs, and the pianist on the album

is none other than Herbie Hancock, whose ‘Tell Me a Bedtime Story’ is the

fourth result here. Radiohead’s brit rock classic ‘Karma Police’ is slow, minor

key song with a bittersweet character, a guitar and piano accompaniment, with

prominent cymbal hits in the mix. Out-of-genre search results for this track

include a pop song, Robbie Williams’ ‘She’s the One’, and a classic punk track,

‘London Calling’ by The Clash: both of these, however, share some obvious

musical characteristics with the query. The remaining unexpected results, on

the other hand, are plainly poor, such as a Mozart mass movement returned

for a track by Moby, or ABBA, Deep Purple or the death metal band Sepultura

to match Sonic Youth’s experimental noise rock.

We see that in this setting the scale factor for musword counts serves ef-

fectively as a system parameter, controlling the influence of the audio content

analysis on search results. Indeed one possibility in a practical search system

would be to allow the user to vary this parameter at search time, controlling

the balance between audio-based music discovery, with its increased risk of

inexplicable ‘clunkers’, and purely word-based search with its tendency to rec-

ommend the obvious. We observe that the tracks in our test set are reasonably

well-tagged. A further consideration in searching large collections is the ef-

fect of scaling musword counts in the presence of a large number of sparsely-

tagged tracks. We investigate this in the following Sections.

It is possible to avoid the issue of scaling counts altogether by using more

sophisticated models, such as an extended version of the aspect model, in
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which words and muswords are treated as being generated independently

for each track. This has its own problems, however, most significantly a mis-

match between our observations and the model structure. The underlying co-

occurrence data for such a three-way model is a set of <track, word, musword>

triples; in reality we do not know the association of individual muswords for a

track with any of the particular words describing it. For this and other reasons

this approach, while attractive, remains outside the scope of the present study.

4.2 An evaluation framework for joint models

For evaluation to be realistic, retrieval tasks have to be set in a scenario in which

tracks for some artists are sparsely-tagged, as discussed in Chapter 3. This can

be simulated in a cross-validation framework as follows:

1. the test set artists are split into three folds at random

For each fold in turn:

2. the tag words for each track by the artists in the current fold are sorted

by their count

3. all but the top κ words for each track are masked by setting their counts

to zero

4. query by example is evaluated as before for all tracks in the test set

The three-fold harness both allows cross-validation and reproduces approxi-

mately the distribution of tags which we observed in the full dataset in Chap-

ter 3: it simulates the scenario in which tracks by a third of all artists have been

tagged with only some small number κ of words. A possible consequence of

the uneven distribution of tags is that search results may effectively segregate

tracks by sparsely- and well-tagged artists. Besides means and standard errors

for genre and artist retrieval precision over the three folds, we therefore report
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a measure of track integration: the proportion of masked tracks appearing in

the top ten search results for unmasked tracks, and vice versa.

4.3 The effect of tag sparsity

Figures 4.2, 4.3 and 4.4 show cross-validation results for query by example on

the test set using the BOW+M representation in a Vector Space model with tf-

idf in the framework described in the previous Section. The plots show how

search results are affected by tag sparsity, and how they vary as we use words

only (scale factor = 0), words plus muswords with counts scaled to have the

same mean (scale factor = 1), and words plus muswords scaled to have more

influence (scale factor = 2). The x-axis shows the number of words remaining

after masking to simulate sparse tagging, i.e. all but the indicated number of

top tag words are masked for tracks by the artists in each fold. The rightmost

value of each corresponds to using all tags words for each track i.e. it shows a

performance in the ideal scenario where tag sparsity is not an issue.

We can draw several conclusions from these results. Firstly, Figures 4.2 and

4.3 show that tracks remain highly organised in a BOW+M model even when

tags are scarce: although it helps to have many words for each track, retrieval

remains at state-of-the-art levels as long as we have more than one word for

each track. Even with only a single word available for a third of our test tracks,

performance far exceeds content-based methods, such as the baseline method

shown in Table 3.1. This shows the ‘wisdom of crowds’ in action: by inspection

the most frequently applied word in tags for a track is usually an appropriate

genre label. Secondly, incorporating muswords into the model can actually in-

crease retrieval performance when only a single word is available for a third

of the tracks, as long as the counts are scaled appropriately. In particular artist

organisation increases significantly when we introduce muswords, taking ad-

vantage of the so-called ‘album effect’, i.e. the ability of content-based repre-

sentations to match highly similar tracks. Finally, we see from Figure 4.4 that
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Figure 4.2: BOW+M genre retrieval performance with sparse tags

Figure 4.3: BOW+M artist retrieval performance with sparse tags
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Figure 4.4: BOW+M integration with sparse tags

tag sparsity does cause some segregation in the Vector Space model. In partic-

ular we observe that on average there is less than one well-tagged track in the

top ten search results for query tracks tagged with only a single word. Using

muswords moderates this effect, but only makes a large difference if the scale

factor for musword counts is high enough to degrade overall track organisa-

tion in the model.

These suggest that while current audio content-based information offers

only limited help in solving the full cold start problem, i.e. with completely

untagged tracks, it is useful in the context of sparse tagging. Specifically these

results motivate the development of models trained on a joint vocabulary of

tag words and audio muswords. In the following Sections we develop and

evalute an aspect model of this kind, with word counts scaled so that the mean

counts for conventional words and muswords are the same, and in the fol-

lowing Chapter we evaluate it as the basis of a practical system for query by

keyword and automatic annotation.
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4.4 Training an aspect model on words and mus-

words

One straightforward approach to training an aspect model on words and mus-

words is simply to apply the existing model of Chapter 2 to the counts over

the joint vocabulary established in the preceding Sections. In Chapter 2, how-

ever, we saw that the aspects learned by models trained on conventional words

alone were semantically coherent: high probability words for a given aspect

clearly related to a common domain concept, such as a genre, era, national-

ity, particular artist, etc. Given the relatively poor correlation between current

audio features and such domain concepts, this motivates an alternative two-

stage training method, as suggested in [Monay & Gatica-Perez, 2007] where

aspect models are applied to image annotation. In this two-stage training, se-

mantic aspects are first learned by training on words only; the P (z|t) for the

training tracks are then held fixed during a further set of E-M iterations in

which the P (m|z) are learned for the muswords. Finally the word and mus-

word probabilities P (w|z), P (m|z) are weighted by the total word and mus-

word counts respectively, and normalised to sum to unity. The second stage of

training is given in Algorithm 4.1, where the input probabilities are the output

of Algorithm 2.3 shown earlier in Section 2.6. This two-stage training ensures

that the aspects remain semantically coherent, while further tracks, particu-

larly those that are sparsely- or un-tagged, can be folded in to the model using

both words and muswords. In the following Sections we compare the retrieval

performance of models trained by the simple and two-stage strategies.
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Algorithm 4.1: Second stage training for a joint aspect model

Input: Probabilities P (w|z) for w in words, P (z|t), total counts nword,

cmusword , number of aspects K, musword vocabulary size D,

training and validation sets of tracks, early-stopping threshold τ

Output: Updated P (w|z), probabilities P (m|z) for m in muswords

Initialise P (m|z) to random values for m in muswords

Initialise accumulators W [D][K] to 0

Compute L by folding in validation set

while increase in L > τ do
W [D][K]←− 0

foreach Track t in training set do

foreach Musword m do

foreach Aspect z do
q[z]←− P (m|z) ∗ P (z|t)

end

Normalise q[z] to unit sum

foreach Aspect z do
W [m][z]←−W [m][z] + c(t,m) ∗ q[z]

end

end

end

foreach Aspect z do

foreach Musword m do
P (m|z)←−W [m][z]

end

Normalise P (m|z) to unit sum over m

end

Compute L by folding in validation set

end

Normalise P (m|z) to sum to cmusword over m in muswords

Normalise P (w|z) to sum to nword over w in words

Append P (m|z) to P (w|z) and normalise to unit sum
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4.5 Evaluation

Aspect models with a range of numbers of aspects were trained jointly on

words and muswords, using both the one- and two-stage training strategies,

and evaluated in the three-fold framework introduced in Section 4.2. The mod-

els were trained on the artist-disjoint training set of 5064 well-tagged tracks

ADW. Audio was available for 2824 of these tracks; all available words and

muswords for each training track were used in training, scaling musword counts

to have the same mean as word counts. For each fold of the test set Ta either

all or all but one of the tag word counts for the relevant tracks were masked

before folding in the whole test set.

4.6 Results

The retrieval results given in Figures 4.5 and 4.6 show that aspect models

trained by conventional E-M over the joint vocabulary perform poorly. Two-

stage training, on the other hand, where we learn the aspects themselves from

tag words only, gives retrieval performance only slightly below that of the vec-

tor space model, while solving the segregation of well- and sparsely-tagged

tracks, as illustrated by Figures 4.7 and 4.8. For clarity the plots show mean AP

only. The best genre precision at 5 for the two-stage model was 0.86, while the

best artist r-precision was 0.44.

We observe further that we achieve these results despite adopting the ex-

treme scenario in which none of our test artists were present in the training set.

While this scenario gives us confidence that our models have indeed learned

some semantics, in a practical application it can be avoided by a variety of

means including training on the whole dataset if computational resources per-

mit, representative subsampling of tracks, vocabulary pruning or incremental

training with the use of approximate direct parameter updates if necessary.

We find that retrieval performance with aspect models equals or exceeds that

of the vector space model when the training set does indeed include tracks by
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test artists.

Figure 4.5: Aspect model genre retrieval performance with sparse tags

Figure 4.6: Aspect model artist retrieval performance with sparse tags

4.7 Conclusions

In this Chapter we indexed a joint vocabulary of conventional words, drawn

from social tags, and muswords with vector space and probabilistic aspect

models, and demonstrated how a scaling factor for word counts serves as a

system parameter controlling the influence of audio over retrieval results. We
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Figure 4.7: Aspect model integration with sparse tags: well-tagged queries

Figure 4.8: Aspect model integration with sparse tags: sparsely-tagged queries
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saw how these models provide effective retrieval even under realistic condi-

tions of tag sparsity: in particular retrieval is is excellent as long as two or

more tags are available for each track, with the inclusion of audio making no

significant difference to the performance in such cases. Retrieval is improved

by indexing audio when fewer tags are available, as is the case in current real-

world tagging systems, and indexing audio also helps to avoid segregation

between sparsely and well-tagged tracks.

Social tags for music are increasingly being used in research, principally

as a direct groundtruth for classification and retrieval tasks [Eck et al., 2008;

Knees et al., 2007; Geleijnse et al., 2007]. Most existing studies acknowledge,

however, that real tags for music are in fact far from being idealised class labels,

leading to a need to “normalise away” the subjectivity and informality that in

fact typify social tags for music. The methods of this Chapter, on the other

hand, outline an approach that can make good use of tags for music as they

really are. The next Chapter builds on this, leading to practical systems for

automatic annotation and semantic retrieval.



Chapter 5

Retrieval and annotation

using semantic models

So far in this thesis, the evaluation of semantic models for music has centred

on query by example, i.e. experiments in which the models are used to retrieve

other tracks similar to a given query track. The use of a query by example

scenario is motivated by two important practical applications: track or artist-

based playlist generation and (internet) radio streaming. In both cases a music

service is required to select a number - in the case of streaming, often a large

number - of tracks similar to an initial seed track or artist specified by the user.

Query by example is also an attractive scenario to use for evaluation because

it makes it possible to verify the organisation of tracks according to a model

against a credible groundtruth: tracks by the same artist and in the same genre

as the query should come high up in the results.

In this Chapter, the models developed earlier are finally applied to the more

challenging scenarios that motivated this research in the first place: seman-

tic retrieval, i.e. query by keyword or free text, and automatic annotation of

sparsely- or un-tagged tracks. Practical applications of semantic retrieval in-

clude playlist generation, radio streaming or, equivalently, catalogue search,

101
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given a keyword or free text query supplied by a user. A few current real

world systems address these tasks. The All Music Guide1 supports catalogue

query by keyword, where the keyword can be drawn from a large vocabulary

of specialist descriptive terms encompassing so-called moods and themes as well

as more familiar labels for genre, instrumentation and nationality. Tracks are

annotated by hand against a checklist of the terms, leading to obvious issues

of scalability. Last.fm “tag radio” provides internet streams of tracks sharing

a particular tag chosen by the user. This is scalable, and queries are in prin-

ciple not constrained to a fixed vocabulary, provided that users as a whole

continue to supply tags in large numbers. The variety of tracks chosen for

these streams suffers, however, from the large number of artists whose tracks

are at best sparsely-tagged, as discussed at the start of Chapter 5. This chapter

explores the value of semantic models in relation to these issues.

Useful practical applications of automatic annotation for its own sake are

harder to find. Perhaps the most intriguing is the prospect of a reliable mu-

sic description machine, with futuristic consequences such as the computer-

generated music reviews suggested in [Whitman & Ellis, 2004]. For the time

being, a reasonable view of automatic annotation is as an intermediate step on

the way to semantic retrieval, supplying descriptions that allow unannotated

documents to be retrieved as easily as annotated ones. This seems particu-

larly true for music, where weak semantics mean that associations between

descriptions and tracks are better described with continuous relevance scores

or probabilities than considered simply ‘right’ or ‘wrong’. The task of anno-

tating a track therefore corresponds to assigning suitable scores to each word

in the vocabulary. Although a hard annotation can then be derived from these

scores, for example by outputting some arbitrary number of highest scoring

words [Turnbull et al., 2008], output of this kind is very hard to evaluate di-

rectly, for example because there is no sensible figure for the “correct” number

of annotations for any particular track.

1http://www.allmusic.com



CHAPTER 5. RETRIEVAL AND ANNOTATION 103

If we accept that the primary purpose of machine annotation is to support

semantic retrieval, then it is more sensible simply to evaluate retrieval per-

formance and treat this as an implicit guide to the quality of annotation: in

other words semantic retrieval and annotation reduce to a single task for eval-

uation purposes. Suppose for concreteness that we have scores according to a

model for a collection of tracks for the word slow. Instead of attempting to mea-

sure the absolute relevance of this annotation to each track, we use the scores

to rank the tracks by slow-ness, and then use well-established information re-

trieval measures to evalute the quality of the ranking. This argument has been

largely accepted in the extensive parallel literature on automatic image anno-

tation and retrieval [Monay & Gatica-Perez, 2007]. In this chapter performance

statistics for automatic annotation are given for the sake of completeness, but

the main evaluation focusses on semantic retrieval.

The remainder of this chapter is organised as follows: sections 5.1 and 5.2

explain how semantic models can be used respectively to supply annotations

for sparsely-tagged tracks, and to improve retrieval of tracks matching seman-

tic queries; section 5.3 describes an experimental setup for evaluation of au-

tomatic annotation, and of retrieval over a vocabulary of realistic queries; re-

sults, including examples of annotations produced by aspect models trained

on words and muswords, and lists of tracks retrieved for semantic queries, are

given in section 5.4, and conclusions are summarised in section 5.5.

5.1 Automatic annotation using aspect models

Given a trained aspect model, and a track t with aspect conditional proba-

bilities P (z|t), which we can obtain by folding in if t was not in the original

training set, we can estimate the probability of each word w in the vocabulary

being applied to t as follows:

P (w|t) =
∑
z

P (w|z)P (z|t) (5.1)
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This “folding out” of the aspect probabilities can be seen as smoothing the

probability mass associated with counts for each word observed in tags for a

track across other words which we would expect to see given more observa-

tions i.e. more tags or other training annotations for t. In other words, P (w|t) is

a smoothed version of the empirical distribution P̂ (w|t) = n(t, w)/n(t), which

we obtain by back-projection from the latent semantic space into the original

word space according to (5.1). So, for example, if P (z|t) is large for a se-

mantic aspect z relating to motown, as might happen if t were tagged with a

highly characteristic word such as motown itself, then P (oldies|t) and P (60s|t)

are likely to be significant according to (5.1), even if oldies and 60s were not

amongst the tags actually applied to t.

Using the joint models discussed in the previous chapter, aspect probabil-

ities P (z|t) are estimated even for completely untagged tracks from the audio

muswords associated with them. This illustrates an important property of this

smoothing approach: a single model can generate improved annotations for

tracks that already have tags, as well as purely automatic annotations for un-

tagged tracks. This is a far better fit to the real-world availability of annotations

than the pure prediction approach, typically using banks of classifiers, pursued

in previous work [Turnbull et al., 2006, 2008; Eck et al., 2008], particularly given

the poor state of the art for such classifiers and the relative ease of obtaining,

say, a single relevant human annotation for any given track.

Given the smoothed P (w|t), a hard annotation can be output most sim-

ply by ranking the vocabulary according to P (w|t) and retaining some arbi-

trary number of the highest ranking words. Although this approach has been

widely used in the parallel image literature, more sophisticated strategies for

choosing which words to output are possible. These include (i) creating sepa-

rate decision rules based on P (w|t) for each word in the vocabulary, either by

taking into account their prior probabilities P (w) or by hand-tuning against a

validation dataset to optimise the ratio of true to false positives; and (ii) using

a suitable information measure to determine the optimal number of words to
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output for each track. In the experiments described below, however, the simple

ranking strategy outputting a fixed number of words for each track is used, to

allow comparison with previous work.

5.2 Semantic retrieval using aspect models

In the case of semantic retrieval, our aim is to retrieve tracks from a collection

which best match the user’s query q, where q is a bag of words such as “cool

jazz vocals”, “ironic gospel”, “funky 70s disco”, etc. Given a trained aspect

model and a set of tracks with aspect conditional probabilities P (z|t), obtained

by folding in if necessary, two approaches to semantic retrieval are proposed

in Hofmann’s original paper [Hofmann, 1999b], based on cosine distance in

the original word space and the latent semantic space respectively. In the first

approach, the smoothing of (5.1) is applied to word counts for each track in

the collection, and the cosine distance between q and the smoothed count vec-

tor P (w|t) is used as the score for track t. In the second approach, the query

q is first folded in to the model to estimate its aspect probabilities P (z|q), as

described in Section 2.6, and the cosine distance between P (z|q) and P (z|t) is

then used as the score for track t. In Hofmann’s experiments over four dif-

ferent collections of standard text documents, both methods performed well,

the best method varying from one collection to another. In the experiments

described below, the second approach is adopted, i.e. cosine distance in the

low-dimensional semantic space is used as the similarity score.

5.2.1 Related work

Semantic retrieval differs from the binary search by tag which is currently im-

plemented in real-world systems such as Last.fm. These systems typically ex-

pect queries to correspond directly to an existing tag g, returning tracks tagged

g in order of popularity. In contrast, using a semantic model allows us to re-

turn tracks tagged with words that are similar in meaning rather than neces-
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sarily identical to those of the query, and gives a natural ordering by semantic

similarity. In addition, models trained jointly on words and muswords offer

a simple way to take advantage of audio similarity to allow the retrieval of

sparsely-tagged tracks within a single system.

Recent academic work on web-based music retrieval by Knees, Phole, Schedl

and Widmer [Knees et al., 2007], however, does provide a useful baseline for

the retrieval results presented in this chapter. Knees et al. build a vector space

model based on web-mined text for a collection of tracks. Although the model

only indexes words, a timbral similarity metric is employed to smooth word

counts by weighted averaging over acoustically similar tracks. As discussed

in section 2.3, web-mining text for large numbers of tracks suffers from huge

vocabulary sizes, even compared with social tags, as irrelevant content is in-

evitably included in the text to be indexed, making dimension reduction of

some kind essential. Knees et al. use timbral similarity indirectly to prune the

word counts for each track, retaining only the words that discriminate most

effectively between a group of timbrally neighbouring tracks and a group of

distant ones. The vocabulary that remains after this track-specific pruning is

clearly highly fitted to the training set, and external queries have to be folded

in by a process of massive expansion. In the current implementation, queries

are first submitted to Google, then the top 10 pages returned are downloaded,

and all their text aggregated, before finally indexing against the model vocab-

ulary. Knees et al. evaluate their model in a free text query scenario, using the

most popular Last.fm tags as queries, and treating Last.fm tags for each track

directly as a groundtruth, achieving a best r-precision of 0.264 over a set of 227

test queries including genre and other terms.

While not directly comparable, Turnbull reports per-word mean Average

Precision of 0.390 for semantic retrieval averaged over a set of 174 queries and

based on a bank of classifiers trained on audio only [Turnbull et al., 2008]. In-

dependent work by Law, Settles and Mitchell reported in [Law et al., 2010] pur-

sues research related to the methods described here and previously published
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in [Levy & Sandler, 2009]. Although Law et al. take a classification approach

to predict tags from audio only, their classifier is trained on posterior proba-

bilities for latent topics for each labelled example. The topics themselves are

first learned by Latent Dirichlet Allocation [Blei et al., 2003]; at query time tag

probabilities are inferred from the predicted topic weights for an unlabelled

audio query. Law et al. use training and test data acquired via the TagATune

online annotation game [Law & von Ahn, 2009]. Annotation and retrieval over

a test vocabulary of some 200 tags are evaluated using both this model and a

baseline method in which a separate binary classifier is trained for each tag.

Law et al. report mean Average Precision of around 0.3 on a retrieval task, and

precision and recall both around 0.25 for annotation of unlabelled audio. They

also report results from a separate human evaluation for a subset of their test

queries. Perhaps as a result of having used groundtruth data acquired through

collaborative gameplay, they find that human evaluation suggests that offline

metrics appear to underestimate the performance of their algorithms: overall

their topic-based method performs similarly to their simpler baseline classi-

fiers.

5.3 Experimental setup

5.3.1 Dataset and model training

For the experiments described in this chapter we would ideally like a large

training set of tracks for each of which we have audio and a full set of trust-

worthy human semantic annotations to use as a groundtruth. Even disregard-

ing issues of subjectivity in annotation, such datasets are not currently open

to the research community. The approach taken here is consequently a prag-

matic one, using some simplifying assumptions that make it possible to define

realistic tasks for evaluation on the data available:

1. a dataset of well-tagged tracks with audio available is selected
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2. tags for some tracks are withheld to simulate realistic tag availability

3. query by keyword over the whole dataset is evaluated, treating the with-

held tags as a groundtruth

4. automatic annotation of tracks that are untagged is evaluated, treating

the withheld tags as a groundtruth

The following sections give more details of each step.

The chosen dataset consists of the 2,824 well-tagged tracks for which audio

is available in set ADW, as described in Section 4.5. For simplicity, and to allow

comparison with previous work, the tags are treated directly as a groundtruth

for both annotation and retrieval: a wordw is considered to be a correct annota-

tion for track t if it occurs amongst tags applied to t. Similarly when searching

for tracks matching a query q, a track t is considered to be a correct hit if each

word in q occurs amongst tags applied to t.

In order to investigate the usefulness of semantic models under realistic

conditions of tag availability, tag words for some tracks are masked by setting

their counts to zero, following a similar (though not identical) procedure to the

one used in the experiments of Section 4.2. In this case a target distribution

for the number of distinct words per track is first chosen, to simulate approxi-

mately the distribution of tags for each artist observed in our full set of tracks.

The observed artist-wise tag distribution was illustrated in Fig. 3.1; the target

track-wise distribution used here is shown in Fig. 5.1. The appropriate number

of tracks is then chosen at random for each bin of the target distribution, and

finally words for each track are masked by setting counts to zero for all but the

target number of most frequently applied words. Note in particular that 30%

of the tracks are completely untagged after masking.

Aspect models of various ranks are then trained on all the tracks in this

dataset, using the masked words and, following the two-step training algo-

rithm described in 4.4, all muswords for each track. In contrast to the experi-

ments reported in previous chapters, the decision was taken not to use separate
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Figure 5.1: Masked tag distribution

training and test sets here, as the assumptions motivating this separation ap-

peared unduly pessimistic for semantic retrieval in particular:

1. real-world retrieval systems aim to index the entire collection to be searched,

i.e. in our context there is a very strong motivation to train models on as

many tracks as possible, even if this means using parallel or approximate

fast implementations, or making extra hardware available;

2. concerns over the scalability of this approach receded as with growing

experience it became possible to optimise code to train aspect models

using the standard E-M algorithm on hundreds of thousands of tracks in

well under an hour on a single machine;

3. earlier experiments suggest good generalisation of aspect models even

when many artists in a collection are completely unrepresented during

training, i.e. retrieval performance even in the worst-case scenario is not

likely to be much worse than in the best-case scenario adopted here.
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5.3.2 Automatic Annotation

For each of the tracks in the dataset which are completely untagged after mask-

ing, automatic annotations are generated by outputting the ten top words ac-

cording to P (w|t) (5.1). Note that in contrast to automatic annotation using

a bank of classifiers, the vocabulary of our automatic annotations is not con-

strained before annotation time (except by the overall vocabulary encountered

in tags during training), and therefore varies from model to model. In practice

models with more aspects tend to output a greater variety of words.

To avoid bias effects caused by the distribution of words in the groundtruth,

and for easier comparison with related work, the annotations are evaluated by

computing precision and recall for each word in the output vocabulary. The

machine annotations always contain exactly 10 words for each track, while the

groundtruth always contains more, frequently as many as 100 words, as illus-

trated in Figure 5.2, which shows the track-wise distribution of tags over the

test tracks before masking. This means that there is an upper bound of less

than 1 on the per-word recall possible with any annotation method, even one

based on full knowledge of the groundtruth tags. A baseline method is used

to estimate this upper bound for each word output by the model: this gen-

erates annotations by drawing 10 words at random from the groundtruth for

each track. Note that the recall estimated from this baseline is only an approx-

imation to a true upper bound for the performance of the model, due both to

sampling effects and the fact that we evaluate recall over the words output by

the machine algorithm rather than over a fixed vocabulary. Although per-track

precision and recall avoid these issues, they can favour systems which output

only the commonest words in the tag vocabulary, and per-word statistics have

therefore been widely preferred in the parallel image annotation literature and

in related work on music.
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Figure 5.2: Groundtruth tag distribution

5.3.3 Semantic Retrieval

Following Knees et al., Last.fm’s top tags at the time of writing2 were used as

a set of typical semantic queries: tracks are then retrieved from the masked

dataset for each query. The complete list of queries is given in Table 5.1. A

handful of the Last.fm top tags, describing user-track relationships rather than

tracks themselves were, excluded from the list of queries: favo(u)rite(s), seen live.

As shown in Table 5.1, the remaining queries refer predominantly to genre, but

also include era, nationality and mood.

For realism given the simple groundtruth defined here, retrieval is done in

two stages: tracks whose available tags match the query directly are returned

first, and a model is then used to find further tracks. More formally, given a

trained aspect model, the retrieval algorithm is as follows: tracks containing

all the words of the query q in their (masked) tag words are returned first;

the query is then folded into the model, and the remaining tracks are ordered

2http://www.last.fm.charts/toptags, retrievd on 16 August 2008
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Table 5.1: Semantic Queries

00s 60s 70s 80s 90s
acoustic alternative alternative metal alternative rock ambient
american anime atmospheric avant garde awesome
beautiful black metal blues blues rock british
britpop brutal death metal canadian celtic chill
chillout christian classic classic rock classical
comedy cool country cover dance

dark ambient darkwave death metal disco doom metal
downtempo drum and bass dub easy listening ebm

electro electronic electronica emo experimental
female female vocalist female vocalists finnish folk

folk metal folk rock french fun funk
german goth gothic gothic metal gothic rock

grindcore grunge guitar hard rock hardcore
heavy metal hip hop hiphop house idm

indie indie pop indie rock industrial industrial metal
instrumental j pop j rock japanese jazz

jpop latin lounge love male vocalists
melancholy mellow melodic death metal metal metalcore

minimal new age new wave noise nu metal
oldies piano polish pop pop punk

pop rock post hardcore post punk post rock power metal
progressive progressive metal progressive rock psychedelic psychedelic rock
psytrance punk punk rock rap reggae

rnb rock russian sad screamo
sexy shoegaze singer songwriter ska soul

soundtrack stoner rock swedish symphonic metal synthpop
techno thrash metal trance trip hop uk

viking metal visual kei world
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by their cosine distance from the query in the latent space. For evaluation

purposes, the top r tracks are returned altogether, where r is the number of

tracks containing all query words in their groundtruth (unmasked) tags.

As a baseline, tracks are also retrieved for each query following the same

two-stage procedure but using a simple Vector Space model to rank tracks once

all the exact matches have been found. This can return tracks matching some

but not all of the query words. Finally, if r tracks have not yet been found,

further tracks are returned simply in order of their overall number of tags, until

r tracks altogether are again returned for evaluation. The results for each query

are evaluated with r-precision, i.e. the precision (or equivalently the recall) at

rank r. The r-precision is chosen in preference to mean Average Precision for

this experiment because the algorithms being compared will return exactly the

same tracks at low ranks (the tracks whose masked tags still contain all the

words of the query).

Note that in contrast to the experiments described in previous Chapters,

we have no trustworthy external groundtruth for general semantic retrieval. If

such a groundtruth were available, i.e. a separate set of reliable annotations,

and not the same set of tags which form the basis for retrieval, it might well

be preferable to retrieve all tracks in a single stage using the model. In prac-

tice this would allow similarities learned from the overall distribution of tags

for each track to override noise or poor annotation at the level of individual

tags. In the absence of external annotations, however, deciding not to return a

track tagged with all query words will always reduce the r-precision, whether

or not the tags are truly appropriate for the track in question. The two-stage

retrieval method described above was therefore adopted as a sensible way to

evaluate the usefulness of the model given the unavoidable limitations of the

experimental setup.
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5.4 Results

5.4.1 Automatic annotation

Per-word precision and recall for 10-word annotations generated by a range of

aspect models of different ranks are shown in Table 5.2, along with recall for

the upper bound algorithm which draws words directly from the groundtruth,

computed over the vocabulary output by each model. Table 5.2 also shows the

total number of distinct words output in each case, as well as the number out-

put with non-zero recall: remaining output words were not in the groundtruth

for any track in the test set and are not evaluated.

Models with fewer aspects output a smaller vocabulary and have corre-

spondingly higher precision and recall. Annotation with a model with 20 as-

pects is broadly comparable with the classification approach reported by Turn-

bull in [Turnbull et al., 2008], which achieved per-word precision of 0.265 and

recall 0.158 over a vocabulary of 174 concepts, of which 166 were output cor-

rectly. The different nature of Turnbull’s training data, however, means that his

estimated upper bound for recall of 0.375 is roughly three times higher than

those estimated here for our dataset. In his setup a vocabulary is fixed in ad-

vance, his annotation dataset of questionnaire answers is constrained to stay

within it, and each track is guaranteed to have roughly the same number of

groundtruth annotations. In our case, there are simply more, and more varied,

words applied to many tracks in the test set.

The vocabulary output by a 20-aspect model is given in Table 5.3, with

words output correctly for at least one track shown in bold, and some example

annotations output by a 100-aspect model are given in Table 5.4, illustrating

the high proportion of relevant words output for some tracks in the test set.

5.4.2 Semantic retrieval

Table 5.5 gives the mean r-precision over the set of test semantic queries listed

in Table 5.1 for the baseline method and for a range of aspect models of differ-
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Table 5.2: Auto-annotation performance

aspects precision recall words output
(upper bound) output correctly

500 0.107 0.025 (0.112) 747 676
100 0.174 0.052 (0.118) 390 372
20 0.260 0.113 (0.121) 135 132
10 0.302 0.176 (0.135) 77 74

Table 5.3: Machine annotation vocabulary for 20-aspect model

00 001 007 00s 01
010 011 60s 70s 80s
90s acid acoustic alternative am

ambient artists avant bass beat
beatles blues british britpop chanson
chill chillout classic classical coast
cool country cover covers dance

deutsch downtempo drum easy electro
electronic electronica epic experimental favorite
favorites favourite favourites female folk
francaise french funk fusion garage

garde german girl glam grunge
guitar hard hardcore heavy here

hip hiphop hop hot house
i idm indie instrumental irish

jazz latin listening live lounge
love male malloy2000 melancholic mellow

metal motown music my n
neo new nu oldies party

peppers piano playlist political pop
post progressive psychedelic punk queen
rap red reggae remix rnb

rock roll singer ska soft
songs songwriter soul soundtrack spanish
stone stoner techno top tracks
trance trip turntablism underground vocal

vocalist vocalists wave world york
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Table 5.4: Some machine annotations

Katie Melua: Red Hot Chili Peppers: Jason Mraz:
The Closest Thing to Crazy Under The Bridge Tonight, Not Again
female 0.159 rock 0.186 singer 0.082
vocalists 0.113 hop 0.071 songwriter 0.076
alternative 0.096 hip 0.060 rock 0.070
singer 0.043 funk 0.053 acoustic 0.060
songwriter 0.043 alternative 0.038 folk 0.050
soul 0.028 rap 0.025 mellow 0.044
jazz 0.027 cover 0.019 soft 0.027
piano 0.025 covers 0.018 artists 0.019
blues 0.021 classic 0.014 male 0.016
top 0.014 hard 0.013 jazz 0.015

Table 5.5: Semantic retrieval performance

model mean r-precision
vector space 0.426
10 aspect 0.445
10 aspect + muswords 0.470
20 aspect 0.441
20 aspect + muswords 0.466
100 aspect 0.480
100 aspect + muswords 0.531
500 aspect 0.476
500 aspect + muswords 0.531

ent sizes. Results are given for aspect models trained on words only, as well as

jointly on words and muswords, to separate out any possible benefit of using

audio information from the effects of the semantic representation. Figure 5.3

shows the r-precision for each query in the test set for the baseline method and

the best-performing aspect model: in each case the queries have been arranged

in descending order of r-precision, to show how performance varies from word

to word within the query vocabulary. The results show clearly that using the

latent semantic representation provided by aspect models improves retrieval

for queries at all levels of difficulty, while incorporating audio information im-

proves it further still, with an overall improvement in average r-precision of

25% over the baseline.

Table 5.6 compares the top 20 tracks retrieved for the query gothic rock by
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Figure 5.3: Semantic retrieval performance

the baseline method with those retrieved using a 100-aspect model trained on

words and muswords. Tracks whose groundtruth tags do indeed contain both

query words are shown in bold. The baseline method performs poorly for this

query, because, after masking to simulate real-world tag sparsity, few tracks in

the dataset are tagged gothic. The model easily overcomes this issue, although

the presence of unexpected tracks marked as correct, such as a laid-back acous-

tic number by the singer-songwriter Jack Johnson, is a reminder of the short-

comings of our experimental setup described in Section 5.3.3: treating all tags

directly as a groundtruth is clearly unrealistic.

To get some insight into the comparative performance of the methods given

a stricter groundtruth, we can repeat the evaluation, but with a threshold on

the count required for each query word for a track to be accepted into the

groundtruth: tracks are only accepted as correct hits for a query q if every

word w in q has been applied to the track at least θ times. As described in

Section 2.2, the counts available from the Last.fm web service have been nor-
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Table 5.6: Top hits for gothic rock

vector space aspect model
The Velvet Underground: I’ll Be Your Mirror Evanescence: Tourniquet
Filter: Hey Man, Nice Shot Collide: Wings of Steel
David Bowie: Speed of Life Nightwish: Dark Chest of Wonders
John Lennon: Watching The Wheels Farin Urlaub: Sumisu
The Rolling Stones: Sympathy for the Devil Queens Of The Stone Age: Someone’s in the Wolf
Sting: Englishman in New York Creedence Clearwater Revival: Bad Moon Rising
Liquido: Narcotic Queens Of The Stone Age: Tangled Up In Plaid
Pink Floyd: Another Brick in the Wall, Part 2 The Smashing Pumpkins: Bullet With Butterfly Wings
The Velvet Underground: Sunday Morning Tocotronic: Hi Freaks
The Beatles: The Ballad of John and Yoko Linkin Park: Nobody’s Listening
The Beatles: Got to Get You into My Life Jack Johnson: Fortunate Fool
The Verve: Lucky Man Nine Inch Nails: And All That Could Have Been
Pink Floyd: The Fletcher Memorial Home Apocalyptica: Kaamos
Electric Light Orchestra: Mr. Blue Sky Marilyn Manson: The KKK Took My Baby Away
Pink Floyd: Us and Them Opeth: Death Whispered a Lullaby
R.E.M.: Everybody Hurts Linkin Park: Figure.09
The Verve: The Rolling People Nena: 99 Luftballons
U2: Where The Streets Have No Name The Beta Band: Push It Out
U2: Electrical Storm The Verve: The Rolling People
Queens Of The Stone Age: First It Giveth Tortoise: I Set My Face to the Hillside

malised so that the largest value for each track is 100, and rounded down so

that relatively infrequent tags have an apparent frequency of zero: we incre-

ment them to give non-zero values. The threshold θ consequently specifies the

frequency of w relative to the word most often applied in tags for the track in

question, and by inspection a threshold of θ = 6, i.e. accepting only words

whose count is at least 5% of that for the top word for each track, eliminates

most of the obviously poor examples from the groundtruth. Tracks removed

from the groundtruth for gothic rock by this threshold are shown in italics in

Table 5.6. Note that in general while less tracks will be accepted as correct hits

against this groundtruth, the r-precision will not necessarily go down, because

r is typically smaller for a given word and so less hits will be evaluated.

Retrieval results based on the thresholded groundtruth are given in table

Table 5.7. Retrieval performance with aspect models trained jointly on words

and muswords is virtually unaffected, in fact improving slightly for models

with less aspects. Aspect models trained on words only, however, perform
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Table 5.7: Semantic retrieval performance, thresholded groundtruth

model mean r-precision
vector space 0.458
10 aspect 0.505
10 aspect + muswords 0.519
20 aspect 0.506
20 aspect + muswords 0.519
100 aspect 0.506
100 aspect + muswords 0.519
500 aspect 0.505
500 aspect + muswords 0.518

better against this groundtruth, and the baseline results are significantly bet-

ter: the best-performing models nonetheless still show an improvement of 13%

over the baseline.

5.5 Conclusions

In this Chapter aspect models trained jointly on words and muswords were

used to annotate completely untagged tracks, and to do semantic retrieval

from a set of partially-tagged tracks. To create a realistic test set for seman-

tic retrieval, annotations were masked to simulate the real-world availability

of tags: in particular 30% of the tracks in this set were competely unannotated

after masking.

Annotation performance is comparable with a state of the art classification

approach (despite the more challenging nature of the data used here), while re-

trieval performance is roughly twice as good as that of the most similar system

reported in the literature. Retrieval performance using aspect models trained

on words improved over a baseline method for virtually all queries, with train-

ing jointly on audio muswords improving results still further. During evalua-

tion it became clear that, in contrast to earlier experiments based on query by

example, noise in the tags is an issue for semantic retrieval. Retrieval perfor-

mance did not suffer when evaluated against a stricter groundtruth, but this



CHAPTER 5. RETRIEVAL AND ANNOTATION 120

does raise the possibility that better results could be achieved by the models if

infrequently applied tags had been removed before training. A full investiga-

tion of this remains for future work.



Chapter 6

Emotion aspects of the

semantic space of music

In preceding Chapters we have seen how dimension-reduction methods such

as LSA and its probabilistic equivalents can be applied to social tags for music,

both to build practical solutions for information retrieval tasks, and directly to

reveal semantic aspects of the space of descriptions of music. The subjective

coherence of the aspects learned by the models (as illustrated in Section 2.9,

together with the quantifiable success of the models in practical tasks (as re-

ported in Sections 2.8, 4.6 and 5.4), suggests that the aspects can reasonably be

seen as a set of meanings informing the way in which listeners choose to asso-

ciate particular words with individual tracks. While of course this leap from

so-called “semantic” models to meanings understood by real people remains

only an audacious hypothesis, it does suggest that it ought to be possible to ap-

ply empirical methods to large numbers of social tags to produce convincing

results of interest to the broader study of music: this Chapter attempts to do

exactly that.

As discussed in the introduction to social tags for music presented in Chap-

ter 2, while the mechanism of social tagging is designed primarily to support

121
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classification and retrieval, the usage in the track-level tags considered here

suggests that a much broader range of motivations is in play during the act

of tagging music. Tags for tracks are frequently discursive rather than simple

labels, they are often personal and spontaneous in nature, and they employ a

very wide vocabulary: in particular they contain a wide range of words de-

scribing emotions. Inspired both by the frequent occurrence of emotion words

in tags, and the striking similarity between the latent semantic spaces explored

in Chapters 2-5 and the emotion spaces traditionally studied by psychologists

(described below in Section 6.2), this Chapter presents an analysis of the use of

emotion words in social tags for music, set in the context of the rich literature

on emotional responses which already exists in the field of music psychology.

It would, of course, be naive to suppose that the act of tagging a track

with an emotion word is equivalent to the responses, typically questionnaire

answers, collected under controlled conditions in psychological experiments

specifically designed to study listeners’ experience of emotion in music. In

general we know little about the identity of individual taggers, and we have

no control over the circumstances in which they applied any particular tag. In-

deed we cannot guarantee that they have even listened to the track in question,

and we certainly cannot say whether an emotion word in some particular tag

was intended to describe how the track made them feel, or what they thought

the track was trying to express, or something else altogether (perhaps their

girlfriend dumped them while they were listening).

On the other hand, tags have some enormous advantages compared with

laboratory experiments as a means of collecting written emotional responses

to music. Tags are supplied spontaneously by listeners in relation to music

of their own choice and under normal listening conditions; the vocabulary

used to describe emotion is not prescribed; and emotion annotations in tags

are available in virtually unlimited quantities. This last advantage is particu-

larly important. Laboratory experiments are designed to minimise the effect

of biases and context effects in small samples. Given a sufficient volume of
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data, however, we can reasonably expect that such effects will simply cancel

out or, at worst, add some small amount of noise to overall statistics in a large

sample of tags. Indeed it is difficult to think of a realistic scenario in which con-

text effects could cause systematic bias in the statistics of a large set of emotion

words in tags: if more than a few couples split up while listening to a partic-

ular track then we can reasonably assume that some genuine emotional mech-

anism is at work here! It remains difficult to distinguish words intended to

describe emotions that the listener actually experienced during listening from

those listing emotions that they perceived to be expressed by the music: but

this is a weakness of any method relying on self-reporting of emotion, rather

than a particular shortcoming of tags in this context.

Like any other internet medium, tags are subject to deliberate spam, and at

any given time some proportion of spam tags are likely to remain unfiltered

by tagging systems, however hard their designers struggle to keep up with

the behaviour of spammers. The well-known cases to date are largely playful

in nature, for example the appearance of unexpected artists on Last.fm’s bru-

tal death metal tag page or radio stream, following mass tagging by users who

surely knew that this tag is a poor description for artists such as Paris Hilton

or Rick Astley. While emotion words do not seem an obvious target for spam-

mers, in the work that follows simple measures are taken to mitigate the effect

of unfiltered spam tags in the dataset used.

In this chapter we consider tags containing emotion words simply as un-

constrained verbal responses to the tracks they describe, and look to the statis-

tics of a large collection of such responses to show the extent to which the re-

sulting associations are arbitrary, or whether they exhibit meaningful patterns.

Specifically we apply semantic models to emotion words occurring in tags for

tracks, and show how the resulting low-dimensional representations relate to

traditional constructs in music psychology such as the circumplex [Russell,

1980] and the dimensional theory of affect [Posner et al., 2005]. This Chapter

also explores how emotion words relate to musical genre, and demonstrates
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how a joint mapping of tracks and emotion words might be used as the basis

of novel interfaces to music collections. The remainder of this Chapter is or-

ganised as follows: Section 6.1 explains how a vocabulary of emotion words

can be mined from tags; Section 6.2 compares a semantic model of this vocab-

ulary to the classic circumplex of musical affect; Section 6.3 investigates how

musical genres are characterised in this emotion vocabulary; finally Section 6.4

introduces the use of Correspondence Analysis to plot tracks and emotions in

a joint space that can support psychologically-motivated browsing interfaces

for music.

The approach described in this Chapter was first published in [Levy & San-

dler, 2007] and subsequently developed further in collaboration with the mu-

sic psychologist Gunter Kreutz, while he was a Research Fellow at the Royal

Northern College of Music. Prof. Kreutz also helped set up the expert selec-

tion of emotion words reported in Section 6.1. Independent work extending

the methods given in [Levy & Sandler, 2007] to a categorical model inspired by

the theory of basic emotions was reported in [Laurier et al., 2009b,a].

6.1 A vocabulary of emotion words in tags

The dataset of tracks studied in this Chapter (which was later extended to form

the full dataset described in Chapter 3) was chosen to include a wide range of

artists and also to ensure that a large number of emotion words were repre-

sented in their tags. Tags were retrieved for 8,872 tracks, including songs by

some 2,700 artists from all the well-known popular genres, and a few classi-

cal pieces by the best-known 18th and 19th-century composers. All available

tags for each chosen track were retrieved from the MyStrands and Last.fm web

services. The MyStrands service provides all the tags ever applied to a given

track, while the Last.fm service supplies up to 100 tags, ordered by the fre-

quency with which users have applied them to the track in question. While the

dataset clearly contains only a small subset of the total number of track-level
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tags available, it is still several orders of magnitude larger than the number

of responses that can be collected in even a very large-scale laboratory experi-

ment, containing over 330,000 individual annotations.

Information about the individual users who originally supplied the tags

is not available from the web services, and while the Last.fm service gives

“counts” indicating the frequency with which particular tags have been ap-

plied to a given track, as described in Section 2.2, these are relative values based

on an unexplained normalisation, and are frequently zero. Put simply, we do

not know which, or even exactly how many, listeners applied any particular

word to a given track: an important consequence for the work in this chapter

is that we therefore cannot know the extent to which some particular word is

applied consistently by different listeners. To use the language of experimen-

tal psychology, we have no robust direct measure of inter-rater agreement for

responses to a given musical stimulus. This means we cannot support asser-

tions about the appropriateness of some particular emotion word to describe

any specific individual track, in the manner of traditional music psychology.

On the other hand, the size of the dataset, and the approach taken here, do

ensure that we can make statements with confidence about the relationship of

one emotion word to another, and of particular emotions to large numbers of

tracks.

The choice of tracks for which to collect tags was seeded with both artists

and emotion words. Tracks were first selected for a set of well-known artists

balanced across the mainstream musical genres, based on the list described in

Section 2.7. Further tracks were chosen by querying the web services for tracks

tagged with with words in Hevner’s seminal checklist of musical expression

words, shown in Figure 6.1 (and discussed further below) [Hevner, 1935, 1936],

which was expanded and updated to give a total of 366 words by adding all

synonyms from WordNet [Fellbaum, 1998] for each word in the original check-

list. Finally tags were collected for some 3,000 further tracks from an existing

research collection. The scale of the aggregated dataset was chosen to give rea-
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sonable coverage across tracks and terms without becoming computationally

intractable. Note that emotion words in the tags collected for each track are by

no means restricted to those in the expanded checklist used to seed the selec-

tion of tracks. Conversely, a word in the checklist is not guaranteed to appear

in tags for any of the tracks, if, for example, the word has fallen out of current

usage to describe music: in this case the web services will simply return no

results when queried for tracks tagged with the outmoded word in question.

A three-stage filtering process was used to establish a vocabulary of emo-

tion words from these tags. Words applied to less than 50 different tracks in the

dataset were first discarded, to avoid over-dependence on the particular tracks

under consideration. The remaining 1,142 widely-used words were then in-

spected by hand, and reduced to a list of 174 candidate words which could

plausibly refer to emotion. Finally these candidate words were presented to

two expert raters: two experienced music psychologists (one male, one female)

were given a forced-choice task to decide whether or not each of the terms was

a meaningful description of an affect, emotion or mood that was appropriate to

apply to music. Words judged by both experts to be appropriate were retained.

This resulted in a final vocabulary of 105 emotion words: aggressive, angry,

angst, atmospheric, bitter, bittersweet, bright, calm, cheerful, chill, chilling, comfort,

contemplative, crazy, creepy, crying, cute, dark, deep, delicate, depressed, depressing,

depressive, dirty, downbeat, downtempo, dreamy, driving, earnest, emotional, emotive,

energetic, ethereal, exciting, feelgood, feeling, fiery, fun, funny, gentle, gloomy, happy,

haunting, hypnotic, inspiring, intense, intimate, joy, joyous, light, longing, lush, ma-

jestic, meditative, melancholic, melancholy, mellow, merry, moody, mournful, mov-

ing, mystical, noir, nostalgic, passionate, peaceful, playful, poignant, positive, power,

powerful, pure, quirky, reflective, relaxed, relaxing, romantic, rousing, sad, sadness,

sensual, sentimental, serene, serious, sexy, sleepy, soaring, soothing, soulful, spiritual,

sunny, sweet, sweetness, trance, tranquil, trippy, triumphant, uplifting, warm, weird,

wistful, witty, wry, yearning.

Expert selection was chosen here as a pragmatic method of establishing a
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vocabulary with reasonable confidence, although it clearly risks a mismatch

between the expertise of trained music psychologists and the usage current

amongst the tagging community. By inspection, however, only three of the 105

words may have been subject to misinterpretation, and even these words are

likely to be used to refer to emotion in some cases: trance is most commonly

used in tags as a genre label; merry can refer simply to the popular j-rock group

of the same name; while driving is frequently used to identify tracks to listen to

in the car.

6.1.1 Related work

Comprehensive lists of emotions expressed or evoked by music, commonly

arranged into groups of semantically similar terms, have been important to

psychologists since the pioneering work of Kate Hevner in the 1930s. The most

direct use of such lists is in the design of questionnaires or other instruments

intended to capture and categorise responses to music, in particular to sup-

port research into musical expression i.e. the relationship between technical

characteristics of a particular piece of music or performance and the emotions

experienced or identified while listening to it. Hevner’s original papers consid-

ered musical expression in relation to major and minor modes [Hevner, 1935]

and tempo and melodic structure [Hevner, 1937], and her checklist and exper-

imental design continue to be influential to this day, with studies from the last

few years including [Iwanaga, 1997; Schubert, 1999; Gabrielsson & Lindström,

2001; Collier, 2007].

The language of the 1930s can of course appear dated today and indeed

several previous laboratory-style studies have updated Hevner’s checklist to

account for changes in usage [Farnsworth, 1954, 1969; Gabrielsson & Lind-

ström, 2001]. The most recent update is Schubert’s 2003 study [Schubert, 2003],

in which 133 university music students were asked to rate the words in the

checklist, along with an additional 23 words drawn from other sources [Rus-

sell, 1980; Whissell, 1989], for their suitability “for describing any kind of mu-
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Figure 6.1: Hevner’s checklist
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Table 6.1: Schubert’s updated version of Hevner’s checklist

Cluster A *bright, *cheerful, *happy, *joyous
Cluster B humorous, *light, lyrical, *merry, *playful
Cluster C *calm, *delicate, graceful, quiet, *relaxed, *serene, *soothing, tender, *tranquil
Cluster D *dreamy, *sentimental
Cluster F *dark, *depressing, *gloomy, *melancholy, *mournful, *sad, solemn
Cluster G heavy, *majestic, sacred, *serious, *spiritual, vigorous
Cluster E tragic, *yearning
Cluster I agitated, *angry, restless, tense
Cluster H dramatic, *exciting, exhilarated, *passionate, sensational, *soaring, *triumphant

sic”. The resulting updated list, shown in Table 6.1, includes 41 of Hevner’s 67

original words and just two of the new candidates: words also found in our

tag emotion vocabulary are marked with an asterisk. As Table 6.1 illustrates,

the tag vocabulary includes the great majority of Schubert’s words, including

some from each of his clusters of similar terms (note that the order of the clus-

ters follows Schubert’s paper, where the letters used as cluster names refer to

an earlier update of Hevner’s list).

While some words in the tag vocabulary could be considered substitutes

for words in Schubert’s list not commonly found in tags, or equivalent new

coinages such as chill or mellow, the tag vocabulary clearly covers a larger emo-

tional landscape. Despite the specific request to subjects in Schubert’s exper-

iment to rate the suitability of words to describe “any kind of music”, the re-

sulting list of words is somewhat chaste, getting at most agitated or exhilarated

while tags can be aggressive, feelgood, sensual, sexy or downright dirty. Given

the recent date of Schubert’s study, this almost certainly reflects a degree of

self-censorship, or at the very least an unconscious bias towards the conven-

tional protocols of classical music, whether on the part of the experimenter in

choosing candidate words, or in the ratings given by his young college student

subjects: such biases are not present in the context of tagging, where viewers

of a listener’s tags can be presumed in general to be peers. The tag vocabulary

also adds haunting and hypnotic, suggesting a further significant semantic clus-

ter not present in Hevner’s or Schubert’s lists. More generally, we observe that
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the non-intrusive origin of the tag data - where music and vocabulary are both

chosen freely by listeners - does indeed lead to a different set of emotion words

for music from those collected in laboratory-style experiments.

6.2 Emotion tags and the Circumplex

6.2.1 The circumplex

Hevner’s list of words, as presented in the circular arrangement of Figure 6.1,

proved an immediate precursor of the so-called circumplex model of affect first

proposed by Schlosberg [Schlosberg, 1941] and widely discussed ever since

(see [Larsen & Diener, 1992; Plutchik & Conte, 1997; Remington et al., 2000;

Posner et al., 2005] for some recent reviews of the literature). In the circumplex,

emotions are positioned around the circumference of a circle in such a way that

the distance between words in the model reflects their similarity i.e. neighbour-

ing words on the circle are maximally similar while words on opposite sides

of the circle are maximally dissimilar, typically being polar opposites such as

happy versus sad. Figure 6.2 shows a recent example, where the emotion words

are drawn from the domain of consumer product design.

As Figure 6.2 illustrates, the circumplex has been adopted across a huge

range of psychological domains, and circumplex arrangements of emotions

have been found by applying statistical techniques to a wide range of types of

data, including self-reported affect, similarity judgements, responses to pho-

tographs of facial expressions, etc. [Remington et al., 2000]. While the resulting

arrangement of emotions is sometimes considered simply as expressing a set of

independent bipolar relationships between basic emotions, the circumplex has

increasingly been regarded as a particular instance of the more general dimen-

sional theory of affect. A recent study by Posner, Russell and Peterson [Posner

et al., 2005] helpfully summarises the dimensional theory and its main rival,

the theory of basic emotions. In contrast to most previous work, where it can

sometimes be unclear to the non-specialist what exactly is being modelled by
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Figure 6.2: Circumplex model of affect
Copyright: c©2007 Desmet and Hekkert. Reproduced under Creative

Commons license from [Desmet, 2008].
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the circumplex, Posner et al. attempt to unite work from neuroscience and cog-

nitive psychology, and introduce the circumplex as a simple model of the very

neural systems which engender our experience of emotion.

Posner et al. describe the theory of basic emotions as follows:

The dominant theory of emotion in psychiatric and neuroscience

research posits that humans are evolutionarily endowed with a dis-

crete and limited set of basic emotions... Each emotion is indepen-

dent of the others in its behavioral, psychological, and physiolog-

ical manifestations, and each arises from activation within unique

neural pathways of the central nervous system... This is a theory in

which each specific emotion maps to one neural system.

The dimensional model in contrast is based on recurrent observations of

the difficulty that people have in assessing, discerning, and describ-

ing their own emotions... This difficulty suggests that individuals

do not experience, or recognize, emotions as isolated, discrete en-

tities, but that they rather recognize emotions as ambiguous and

overlapping experiences... Dimensional models regard affective ex-

periences as a continuum of highly interrelated and often ambigu-

ous states.

The circumplex is identified directly with a two-dimensional model of affect:

Although poorly represented in psychiatry, dimensional models have

a long history in psychology... One particular dimensional approach,

termed the circumplex model of affect, proposes that all affective

states arise from two fundamental neurophysiological systems, one

related to valence (a pleasure-displeasure continuum) and the other

to arousal, or alertness... Each emotion can be understood as a lin-

ear combination of these two dimensions, or as varying degrees of

both valence and arousal... Joy, for example, is conceptualized as an
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emotional state that is the product of strong activation in the neural

systems associated with positive valence or pleasure together with

moderate activation in the neural systems associated with arousal.

While not all psychologists accept that the circumplex directly models neu-

ral systems, there is widespread support for the view that mappings from dis-

parate datasets producing similar circular arrangements of emotions show that

the circumplex successfully conceptualises some essential property of human

affective processing.

6.2.2 Modelling emotion words in tags

We can model the relationship of emotion words in our tag data by represent-

ing each word by its vector of track occurrences in the Vector Space model of

Section 2.4, or, similarly, its dimensionally-reduced equivalent in one of the la-

tent semantic models developed in Sections 2.5 and 2.6: instead of considering

rows of the document-term matrix representing tracks we now simply consider

columns representing words.

Formally, we represent word w by the vector w = [n(t1, w), ..., n(tm, w)]

where tj is the j-th track in our collection of m tracks, and n(tj , w) is the num-

ber of distinct tags applied to tj which contain w. After applying semantic re-

duction to the document-term matrix N using LSA at rank k, or by training an

aspect model with k aspects, word w is represented by a k-dimensional vector

in the resulting semantic space ŵ. The indivual elements of ŵ then represent

the projection of w onto the k-th semantic axis in LSA, or the probability of w

conditional on the k-th aspect P (w|z = k) in the aspect model.

The similarity between two words w and w′ can then be modelled by the

cosine distance between their track vectors w and w′

s(w,w′) =

∑
t n(t, w)n(t, w′)√∑

t n(t, w)2
√∑

t n(t, w′)2
(6.1)

or their k-dimensional semantic equivalents, ŵ and ŵ′ . Note that the cosine
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distance is a similarity score i.e. it takes its maximum value when the vectors

for w and w′ are identical: to create mappings requiring an increasing distance

measure we can use d(w,w′) = 1 − s(w,w′) as the distance between words w

and w′.

We observe that distances between emotion words computed in this way

are robust to inter-rater inconsistency in tagging individual tracks, because

they depend on the pattern of co-occurrence of words across a large number

of tracks (8872 in the dataset used here). The distance between two emotion

words in this representation changes significantly only when both words are

applied to some non-trivial number of common tracks: while some individ-

ual co-occurrences of words and tracks in a large set of tags are likely to be

spurious, co-occurrences across sets of tracks are much more likely to repre-

sent genuine associations. We note further that the design of the counts n(t, w)

used here is different from those in the models built in Chapter 2 to compare

tracks: by neglecting the Last.fm “counts” here, and simply counting the num-

ber of distinct tags containing word w, the effect of spamming of any particular

tag is minimised.

Various visualisation techniques can now be applied to the set of track vec-

tors WE = {w|w ∈ E} representing the words in our tag emotion vocabulary

E, or to the matrix of pairwise distances DE = {d(w,w′)|w,w′ ∈ E} between

them, and the resulting mappings inspected to see if evidence of a circum-

plex arrangement, or any other low-dimensional semantic organisation, does

indeed emerge from tag data.

6.2.3 Circumplex 2.0

To avoid over-interpretating artefacts of some particular visualisation tech-

nique, two quite different methods were used to create mappings, based on

WE and DE respectively.
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Self-Organising Maps

A simple two-dimensional mapping was first generated by training a Self-

Organising Map (described previously in Section 3.2.1) on the full-rank track

vectors for the emotion words WE, and mapping each word onto its vector’s

best-matching unit in the trained SOM. The map topology is a 10 x 10 rect-

angular grid, and a Gaussian neighbourhood function was again used during

training. The resulting configuration of words is shown in Table 6.2. A rela-

tionship to traditional arousal-valence axes is immediately evident, with va-

lence increasing clearly from bottom to top (sad to happy) and arousal generally

from right to left (relaxing to exciting).

The mapping of Table 6.2 is rather congested in the lower left-hand cor-

ner, however, giving a poor idea of the larger-scale topology, perhaps because

of the high dimensionality of the input vectors. We can get better discrimi-

nation between these terms by training on the SOM on a lower-dimensional

representation of the emotion words, for example using LSA at rank 40, and

learning a larger grid, as shown in Table 6.3. Here we see some sign of the

conventional circumplex in the arrangement of words around the periphery

of the mapping, particular in pairs of polar opposites such as mystical, gentle,

reflective and power, feelgood, driving at centre top and bottom respectively, or

fiery, rousing exciting and dreamy, downtempo, relaxing at centre left and right.

We can also see the sequence of emotions proceeding downwards from dark,

sad, melancholy at the top right corner, through calm, soothing, dreamy, to sexy,

fun, happy, round to feelgood, uplifting and finally angry, aggressive towards the

bottom left as reminiscent of Hevner’s original arrangement (Figure 6.1). On

the other hand, the location of clusters such as delicate, intimate, peaceful, wistful

and powerful, intense, moving, passionate, sensual, soulful towards the centre of

the map suggest that, while semantic organisation is strong in this space, it is

not based on simple arousal-valence axes.
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Table 6.2: Emotion words mapped onto a SOM

energetic cute angry driving fun happy
funny feelgood sexy
quirky power
sunny uplifting

cheerful crazy trance chill
fast
positive

joy light sweet mellow
weird

aggressive pure nostalgic
bright warm playful
exciting trippy

dirty downtempo relaxing
fiery
joyous
lush
rousing

hypnotic sweetness passionate meditative mystical gentle ethereal dreamy
majestic relaxed
merry
soaring
triumphant
witty
wry
chilling earnest delicate peaceful wistful atmospheric soothing calm
emotive downbeat yearning reflective
serene feeling
serious sensual
tranquil

inspiring intimate sleepy sentimental romantic

bitter soulful intense bittersweet melancholic
noir
poignant

comfort angst moving deep depressing emotional dark melancholy
contemplative depressive powerful haunting moody sad
creepy gloomy
crying sadness
depressed spiritual
longing
mournful
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Multi-Dimensional Scaling

A more traditional visualisation technique is to project the emotion words into

a very low-dimensional space by applying classical Multi-Dimensional Scaling

(MDS) to the distance matrix DE [Torgerson, 1958]. This approach highlights

the relationship between the work presented in this and the preceding Chap-

ters: where previously we attempted to learn a general latent semantic space

from our matrix of track-word associations, here we attempt to model a sub-

space of emotion. In classical MDS, Principal Component Analysis is used to

compute a low-rank approximation to the doubly-centred matrix of squared dis-

tances given by

B = −1

2
JD

(2)
E J (6.2)

where J = I−M−111T andM is the total number of emotion words. The coor-

dinates of emotion words in a k-dimensional space are then given by EkΛk
1
2 ,

where Λk contains the k largest eigenvalues of B, and Ek their corresponding

eigenvectors.

MDS plots based on cosine distances between track vectors after LSA at

rank 40, i.e. the same vectors used to train the SOM illustrated in Table 6.2,

are given in Figures 6.3 and 6.4. The plots show the position of the emotion

words in the first three dimensions found by MDS. The proportion of total

variance explained by each dimension of the MDS solution is shown in Figure

6.5, suggesting that these are indeed the significant dimensions. Note that the

proportion of variance accounted for by these dimensions is small in relation to

comparable analyses in the literature: this is at least partly due to the very high

dimensionality of our underlying data relative to the small samples acquired

in a more conventional experimental setting.

A circumplex arrangement is strongly evident in Figure 6.4, with the x-axis

(dimension 1 of the MDS solution) representing arousal, increasing from right

to left, and the y-axis (dimension 3 of the MDS) representing valence. We also

see the expected bipolar semantic pairings around the periphery of the map-
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ping, with the positions of peaceful, relaxed opposite fast, fiery, and depressive,

dark opposite happy, cheerful echoing the familiar quadrants of the circumplex.

A feature of this mapping which differs from the traditional circumplex, how-

ever, is the empty region at the centre bottom of the plot. This can reasonably be

interpreted as saying that neutral arousal is rarely associated with low valence

in this emotional space, i.e. tag data suggests that negative feelings tend to

be evoked by music which is also either exciting or relaxing, but not by music

which is only moderately energetic. While this is hardly a controversial con-

clusion, it is noteworthy that it emerges so clearly from our data in comparison

with previous work.

Figure 6.3, which shows dimension 2 of the MDS as the y-axis, shows an-

other striking feature of the tag emotion space for music: there is a third sig-

nificant dimension besides arousal and valence. The broadly triangular ar-

rangement of words in this plane suggests that this third emotional dimension

is particularly important for music associated with low arousal. Looking at

the progression of words along the right-hand edge of the mappping, we see

clearly that this dimension relates to the spiritual, meditative component of mu-

sical experience. The triangular shape of the mapping seems natural given this

interpretation of dimension 2: a spiritual component is associated far more

often with music that is slow and tranquil than with music that is fast and ex-

citing. While the SOMs of Tables 6.2 and 6.3 have only two dimensions, they

also show a clustering of words which supports the existence of a clear dis-

tinction between sad and medidative components in music associated with low

arousal.

The space of musical emotion defined by social tags can consequently be

described as having three significant axes, associated with the traditional bipo-

lar scales of arousal and valence, as well as a third scale which we can desig-

nate as transcendence. While this echoes the three-dimensional arousal-valence-

potence space reported in studies such as [Osgood et al., 1957; Morgan & Heise,

1988], it is clearly different. Potence is described as a unipolar scale which dis-
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tinguishes emotions with negative valence according to their association with

feelings of power or powerlessness: thus anger and fear are strongly differen-

tiated by their degree of potence. Transcendence, on the other hand, differ-

entiates musical emotions with low arousal according to their degree of asso-

ciation with spiritual tranquility, ranging from depression (spiritual tension i.e.

low transcendence) through simple relaxation to meditation (spiritual harmony

i.e. high transcendence). The existence of a dimension of transcendence fills an

important gap in the account of musical experience suggested by traditional

two- and three-dimensional emotion spaces: the fact that listening to slow, sad

music so often makes us feel good. Whether or not one accepts the details of

interpretation offered here, the ability to model this particular emotional expe-

rience - so different from that, say, of looking at a series of sad faces - points to

the value of the high-volume social media studied in this Thesis in uncovering

significant aspects of music listening.

6.3 Emotion words and genre

Besides studying emotional responses to music in general, we can also use so-

cial tags to shed light on relationships between groups of pieces and specific

words. In particular, we can measure the extent to which musical genres are

associated with specific emotional vocabularies in the minds of listeners, and

whether descriptions of emotion associated with particular genres go beyond

clichés such as aggressive metal or relaxing classical music. While the experi-

ments described in this section are simple, and based on a smaller dataset than

we would want in order to draw robust conclusions, they are intended primar-

ily to show how a statistical study of tags and other high-volume social media

can be used in place of traditional questionnaire approaches to reach novel

conclusions informing not only the cognitive or social psychology of music,

but also musicological studies of so-called music reception, particularly in the

domain of popular music.
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Figure 6.3: MDS of emotion words, dimensions 1 and 2



CHAPTER 6. EMOTION ASPECTS 142

Figure 6.4: MDS of emotion words, dimensions 1 and 3
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Figure 6.5: MDS of emotion words, variance explained
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6.3.1 Do emotion words characterize genre?

We can test the extent to which genres are characterized by the use of specific

emotion words with a simple information retrieval task similar to the ones used

for evaluation in earlier chapters. Specifically we collect a set of tracks labelled

by genre, and represent each track by the tag words applied to it, using a vector

space model restricted to words in our emotion vocabulary. For each track in

the dataset, we retrieve the nearest neighbouring tracks according to the model.

We then measure the retrieval precision, i.e. the proportion of the retrieved

tracks that were in the same genre as the query track. The precision will be high

if tracks within the same genre are annotated with similar words. By restricting

the vector space model to words in our emotion vocabulary only, we can use

retrieval precision to measure the extent to which listeners characterize genres

by their choice of emotion words. As a baseline we can measure precision

with the vector space restricted to a randomly chosen set of words of the same

size as our emotion vocabulary. If retrieval performance using the emotion

vocabulary exceeds the baseline significantly, we can conclude that emotion

annotations do indeed characterize artists and genres. By comparing with the

retrieval performance using the entire vocabulary, we can get a measure of the

extent to which genres are characterized by emotion words rather than other

terms used in tagging.

Retrieval was evaluated over a subset of 1196 tagged tracks from the test set

T described in Section 2.7, including between 4 and 12 tracks by each of 223

of the 224 artists assigned genres in [Knees, 2004]. Figure 6.6 shows precision-

recall curves averaged over all the tracks for retrieval using, respectively, the

emotion words only, all 11,509 words applied to these tracks, and an average

over ten randomly chosen vocabularies of the same size as the emotion vocab-

ulary. We observe that using the emotion words we retrieve twice the number

of matching tracks as with a randomly chosen vocabulary, at all but the highest

levels of recall. We observe further that the number of tracks of the same genre

retrieved using the emotion words is around one third of the number retrieved
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Figure 6.6: Genre retrieval using emotion words

using the full vocabulary, despite the fact that the emotion words make up less

than 1% of the total, and that the full vocabulary includes words with a high

information content for this task, such as artist names and genre labels them-

selves. While the retrieval task is clearly artificial in nature, the results show

clearly that emotion words are far more powerful predictors of genre than ran-

domly chosen vocabularies of equivalent size.
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6.3.2 Which words are characteristic?

The retrieval results show that emotion words do characterize genre to some

extent. We can inspect the particular emotion words that are characteristic by

generating a simple emotion profile for each genre. We first make naive un-

smoothed estimates of the genre-conditional

p(w|g) =
n(w, g)∑
g′ n(w, g′)

(6.3)

and prior probabilities of each word w

p(w) =
n(w)∑
w′ n(w′)

(6.4)

where n(w, g) is the number of tags attached to tracks in genre g which con-

tain w, and n(w) the number of tags overall containing w. We then order the

emotion words for each genre by their posterior probability

p(g|w) =
p(w|g)p(g)

p(w)
(6.5)

i.e. the likelihood that genre of a track is g if we know that it has been tagged

with word w. Finally we can estimate the overall predictability of each genre

given all the emotion words applied to it from the contional entropy:

H(WE |g) =
∑

w∈WE

p(w|g)log(
1

p(w|g)
) (6.6)

Table 6.4 shows twelve top emotion words and their corresponding posteriors

for each genre, as well as the conditional entropy.

The small set of tracks used here makes it unwise to draw sweeping conclu-

sions from the profiles in Table 6.4, because the significance of individual words

can easily be overestimated within a small dataset. It is nonetheless interest-

ing that, within the tagging community at least, indie and folk tracks appear

to be particularly characterised by the emotion words associated with them
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Table 6.4: Top emotion words by genre

genre H(W |g) word p(g|w)
alt/indie (40.8) soaring (0.71) creepy (0.67) majestic (0.60) melancholic (0.54) de-

pressing (0.53) moody (0.53) serious (0.50) dark (0.46) angst (0.44)
melancholy (0.39) depressive (0.39) haunting (0.37)

folk (31.8) poignant (0.73) mystical (0.67) wry (0.60) intimate (0.57) yearning
(0.52) comfort (0.50) joyous (0.50) noir (0.50) wistful (0.50) spiri-
tual (0.40) bitter (0.38) bittersweet (0.36)

electronic (29.5) trance (0.82) downbeat (0.57) downtempo (0.55) hypnotic (0.50)
meditative (0.50) tranquil (0.50) soothing (0.48) chilling (0.46)
peaceful (0.44) warm (0.43) delicate (0.43) joy (0.43)

pop (25.7) lush (0.45) emotive (0.44) cute (0.38) inspiring (0.36) sexy (0.35)
longing (0.29) positive (0.26) bright (0.25) fun (0.24) energetic
(0.24) cheerful (0.23) playful (0.23)

rnb/soul (23.4) rousing (0.57) soulful (0.54) earnest (0.50) fiery (0.50) passion-
ate (0.30) sensual (0.28) hypnotic (0.25) yearning (0.24) downbeat
(0.21) inspiring (0.21) mournful (0.20) triumphant (0.20)

heavy metal (15.9) aggressive (0.57) fiery (0.50) power (0.45) angry (0.28) depressive
(0.28) fast (0.25) deep (0.24) feelgood (0.18) pure (0.17) uplifting
(0.16) intense (0.15) driving (0.14)

jazz (15.7) serene (0.33) delicate (0.29) gloomy (0.25) tranquil (0.25) majestic
(0.20) triumphant (0.20) sentimental (0.16) longing (0.14) rousing
(0.14) wistful (0.13) spiritual (0.12) gentle (0.11)

punk (14.2) noir (0.25) exciting (0.23) wry (0.20) pure (0.19) angst (0.19) com-
fort (0.17) fast (0.17) feeling (0.16) funny (0.14) playful (0.14) bit-
tersweet (0.13) depressed (0.11)

rap/hiphop (12.2) mournful (0.40) dirty (0.23) triumphant (0.20) witty (0.20) crazy
(0.19) serious (0.19) creepy (0.17) bitter (0.15) funny (0.14) angry
(0.12) driving (0.11) cheerful (0.09)

country (11.0) longing (0.29) earnest (0.25) reflective (0.24) gloomy (0.21) relaxed
(0.19) passionate (0.18) crying (0.17) bittersweet (0.16) emotive
(0.11) lush (0.09) spiritual (0.08) angst (0.07)

rock (10.1) crying (0.50) exciting (0.23) quirky (0.20) rousing (0.14) fast (0.10)
uplifting (0.10) witty (0.10) positive (0.09) light (0.08) fun (0.08)
happy (0.07) energetic (0.07)

classical (8.3) meditative (0.50) serene (0.33) bright (0.25) romantic (0.20) joy-
ous (0.17) sensual (0.12) contemplative (0.11) emotive (0.11) gen-
tle (0.11) peaceful (0.11) mournful (0.10) powerful (0.10)

reggae (5.8) chilling (0.23) serious (0.19) emotive (0.11) dirty (0.09) sleepy
(0.07) chill (0.06) gentle (0.06) feeling (0.05) nostalgic (0.05) cheer-
ful (0.05) playful (0.05) cute (0.04)

blues (2.9) mystical (0.33) sensual (0.08) bitter (0.08) sadness (0.07) dirty
(0.05) feeling (0.03) sentimental (0.02) soulful (0.02) passionate
(0.02) chill (0.02) nostalgic (0.02) intense (0.01)
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in comparison to other genres. Metal is indeed characteristically described as

aggressive, even though we can reasonably assume that a large proportion of

tags applied to metal tracks come from metal-lovers. Classical music is dis-

tinguished to an extent as meditative, serene, contemplative, but also as bright,

romantic, joyous, sensual, suggesting that the tagging community includes lis-

teners keen to give sophisticated responses to classical music.

Note that while these observations are offered with caution, in a dedicated

study it would be straightforward to support robust conclusions of this kind

by using a larger dataset and in particular by cross-validation between distinct

sets of artists or tracks.

6.4 Browsing the semantic space of musical emo-

tion

The results of Section 6.2 demonstrate that straightforward computational meth-

ods applied to social tags can be used to map large numbers of tracks into

psychologically meaningful two- and three-dimensional spaces. Besides being

of theoretical interest, such mappings also offer a valuable paradigm for inter-

faces to large music collections, to serve users looking to browse large numbers

of tracks by mood. Such interfaces could be valuable both to music lovers look-

ing to find background music for different social occasions or activities, and to

users with a commercial aim in mind, such as film or television producers look-

ing for music to match particular dramatic or visual scenario, or to associate a

particular mood with some product to be advertised.

Figure 6.7 shows a screenshot of Trackinabox, a system developed using

the work reported in this Thesis. Trackinabox incorporates a map view of a

collection of tracks, using an MDS mapping similar to those of Section 6.2. The

collection can also be searched by keyword, using the methods of Chapter 5,

and similar tracks to any of those found by mood or by keyword can then be

retrieved as in the experiments reported in Chapter 2. Trackinabox has not
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Figure 6.7: Track-in-a-box

been formally evaluated, and is consequently not reported in more detail here.

The mappings of Section 6.2 are also used as the basis of a novel interactive

spatial audio interface that positions tracks in a virtual 3-d space around the

listener, to be navigated with the use of a small games controller: this interface,

together with the results of a small user study, is reported in detail in [Stewart

et al., 2008].

The results of the user study, as well as experience gained during the devel-

opment of the Trackinabox software, suggest the potential usefulness of being

able to visualise emotion words and individual tracks within the same space.

The following subsections therefore investigate the application to tags of a fur-

ther visualisation technique, Correspondence Analysis, which does indeed al-

low us to map words and tracks into a single low-dimensional space.
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6.4.1 Correspondence Analysis

Correspondence Analysis (CA) is a well-established technique of dimension re-

duction used primarily for visualising multivariate categorical data [Benzécri,

1977; Greenacre, 1984]. It has two properties that make it extremely attractive

for our purposes:

1. it enables the visualisation of two sets of cross-tabulated variables (in our

case tracks and semantic terms) in the same low-dimensional space;

2. Euclidean distances in the visualisation represent distributional (χ2) dis-

tances in the data.

CA is a generalised form of Principal Component Analysis suitable for ap-

plication to an M by N table of co-occurrence data F, where F has been nor-

malised to have total sum 1. CA finds a low-dimensional projection of F which

optimally preserves χ2-distances between row and column profiles

f c|r=i =

(
fi1
fi
, ...,

fiN
fi

)
fr|c=j =

(
f1j
fj
, ...,

fMj

fj

)

where fi, fj are the row and column sums respectively, i.e. fi =
∑N

j=1 fij and

fj =
∑M

i=1 fij .

The χ2-metric between row profiles is a weighted Euclidean distance where

the weight for each column is given by 1
fj

; the metric between column profiles

is weighted similarly by 1
fi

. The χ2-metric has the desirable property that dis-

tances between columns (tag words) do not change if columns (tracks) with

identical profiles (normalised term vectors) are amalgamated, and vice versa.

We compute a generalised SVD of F

F̃ = U∆V′ (6.7)
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where ∆ is a diagonal matrix, and U and V satisfy

U′(Fr)−1U = V′(Fc)−1V = I (6.8)

where Fr and Fc are diagonal matrices of the row and column sums respec-

tively. Co-ordinates S of row profiles onto axes U are then given by

f c|r = US (6.9)

where

S = ∆V′(Fc)−1 (6.10)

Co-ordinates T of column profiles onto axes V are given similarly by

fr|c = VT (6.11)

where

T = ∆U′(Fr)−1 (6.12)

Row and column profiles can then be plotted in the same d-dimensional space,

taking only the first d co-ordinates of S and T. Although it is not meaningful

in general to interpret row-column distances in this visualisation, it does show

the relative distances of a single row (track) to all the columns (emotion words),

and vice versa.

This suggests a natural application of CA with d = 2 to create a browse-

by-mood interface to a collection of tracks, using a normalised portion of the

document-term matrix, with row profiles representing tracks and columns re-

stricted to mood terms. The resulting plot of tracks and terms shows mood

words in a meaningful relationship, while tracks in any particular region of

the space should be well described by nearby words.
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6.4.2 Evaluation

While a full user evaluation of the application of CA remains for future work,

this approach was tested empirically on a small list of 14 mood words, con-

sisting of the subset of terms from Hevner’s original list of musical emotions

[Hevner, 1936] which were applied to at least 50 tracks in the dataset, and the

subset of 3176 tracks tagged with at least one of these words. Figure 6.8 shows

the resulting positions of the terms and tracks. The organisation of the plot

can be evaluated by calculating the mean AP for each mood word, where we

consider a track to be relevant to its closest mood word in the plot if it has been

tagged with it.

To comply with the allowable interpretation of distances in CA, we take the

mean AP for each term only over tracks which are closer to it in the CA space

than they are to any other term (so each track in the dataset gets considered

exactly once). The results are given in Table 6.5, showing that the plot parti-

tions the space almost perfectly by this measure. It is important to note that

precision is measured here against words found in tags themselves, not a ver-

ifiable external source of information. Nonetheless these results suggest that

CA is worthy of further investigation as the basis of practical browse-by-mood

interfaces to music collections.

6.5 Conclusions

This Chapter presented studies of emotion words in tags from a variety of per-

spectives, based only on the assumption that it is reasonable to treat social tags

as unconstrained verbal responses to tracks. While such responses are subject

to frequent inconsistency, noise, and even deliberate spam, this Chapter sug-

gested methods to extract valuable information from tags as a complement to

more traditional laboratory experiments from the domain of music psychol-

ogy, and presented a range initial results to give a flavour of the work possible

with this novel approach. An updated vocabulary of emotion words for music
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Figure 6.8: CA joint plot of mood words and tracks

Table 6.5: Mean Average Precision for mood words

Mood mean AP
calm 0.998
cheerful 1.000
dark 0.947
energetic 0.925
gloomy 0.987
intense 0.924
joyous 1.000
love 1.000
nice 0.939
sad 0.965
sunny 0.942
tender 1.000
tragic 1.000
whimsical 0.919
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was first mined from tags, with the help of some expert selection, and shown to

be significantly different from that found in recent laboratory work. Emotion

words from tags were mapped into a contemporary Circumplex 2.0 using two

different visualisation techniques, suggesting the existence of a possible addi-

tional dimension of transcendence in the emotion space for music in addition to

the well-known axes of arousal and valence. The association between emotion

words and musical genres was investigated and quantified, showing that emo-

tion words in general are at least weakly predictive of genre, and tag data was

used to generate characteristic emotion profiles for several well-known musi-

cal genres. Finally Correspondence Analysis applied to word occurrences in

tags was proposed as a novel basis for a user interface to large collections of

tracks, allowing users to browse easily in a psychologically-motivated space

structured jointly around emotion words and tracks themselves.

While these studies are all preliminary in nature, and based on relatively

small datasets, they demonstrate the scope of possible future research into

emotion based on a study of social tags for music, and indeed the possible ap-

plications of scientific studies of social media in general to social and cognitive

psychology, as well as to musicology and its sister disciplines in the humani-

ties.



Chapter 7

Conclusions

Over and above any of the individual results reported here, the work reported

in this thesis has aimed to encourage a modest but significant paradigm shift

in the study of music information retrieval. In place of the audio classification

tasks that have dominated research in the field for many years, this thesis pro-

poses the use of frameworks and models familiar from conventional text IR

as more appropriate and effective for real-world applications. Such a shift is

desirable - and indeed possible in the first place - due to the massive increase

in the availability of concise descriptive information associated with specific

audio tracks resulting from the very recent phenomenon of social tagging. The

wide and growing availability of tags clearly favours approaches that com-

bine audio and descriptive information, rather than attempting simply to infer

one from the other. The nature of tags for music, indeed of any kind of writ-

ing about music, also strongly suggests that to best support useful retrieval

tasks we should learn significant semantic aspects from our data rather than

attempting to model predetermined categories such as genre labels.

155
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7.1 Summary

The key findings reported in this thesis are summarised briefly in the following

sections.

7.1.1 The semantics of social tags for music

A dataset of over half a million social tags was collected and analysed, reveal-

ing that tags for music resemble natural language rather than a rigid lexicon

of class labels: human descriptions of music are informal, discursive and per-

sonal, and the vocabulary of tags grows in accordance with Heaps’ Law. Chap-

ter 2 describes how nonetheless semantic analysis of tags using the methods

of classical Information Retrieval, such as Latent Semantic Analysis and as-

pect modelling, reveals coherent latent structure embodying concepts such as

genre, era, mood, instrumentation and nationality . Simple IR methods ap-

plied to tags were also shown to outperform the use of both audio features and

web-mined text by a huge margin on standard retrieval tasks.

7.1.2 A discrete representation for musical audio

A discrete representation was developed in Chapter 3 to simplify the use of

IR methods to model audio content jointly with social tags. This takes the

form of a vocabulary of muswords representing musically significant regions

of recordings of, in principle, the entire universe of music. The regions them-

selves are automatically identified using a novel method which detects the start

of new sections within a track. In contrast to established methods for struc-

tural segmentation, this process can be accomplished in a single pass, making

it scalable to large collections of audio. A representation using muswords alone

was shown to outperform alternative approaches to discretizing audio content

when used as a basis for standard retrieval tasks.
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7.1.3 Semantic models for music annotation and retrieval

Semantic models based on a joint vocabulary of words and muswords were

developed in Chapter 4 and applied to retrieval tasks in a realistic setting de-

scribed in Chapter 5, in which some tracks were only sparsely tagged and oth-

ers were completely untagged. Retrieval performance was shown to be sig-

nificantly improved both by the use of audio information in addition to tags,

and specifically by modelling latent structure in the semantic space. A simple

method was introduced to use the same model to generate annotations for un-

tagged tracks. Although evaluation of open vocabulary annotation is difficult,

results were presented suggesting that these annotations are at least as accurate

as those produced by the closest comparable system.

7.1.4 Emotion words in social tags for music

The semantic models used previously for practical tasks were employed in

Chapter 6 to uncover latent patterns in the application of mood words in social

tags. In particular two different visualization methods were employed to em-

bed mood words from tags in very low-dimensional spaces, revealing struc-

tures corresponding strikingly to the well-established dimensional theory of

affect, though with some interesting differences to traditonal models. A joint

embedding of mood words and tracks based on Correspondence Analysis was

proposed as the basis for a novel music browsing interface, with encouraging

initial evaluation results.

7.2 Future work

Many aspects of the research reported in this thesis could be improved or ex-

tended: the following sections attempt to identify the most promising oppor-

tunities for further work.
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7.2.1 Data collection

Data collection remains the single most important step in building semantic

systems for music retrieval, and two straightforward measures should be taken

as a basis for future research. Firstly the easy availability of distributed stor-

age and processing infrastructure now makes it possible to work with datasets

that are several orders of magnitude larger than those used in the experiments

reported in Chapters 2 to 6. Secondly, as outlined in Section 5.4, some simple

cleaning procedure should be applied to remove the most obviously noisy tags.

With hindsight the very simple model of Equation 2.2 used to interpret the

publicly available ‘counts’ for tag assignments as semantic weights was prob-

ably too naive, and more sophisticated approaches should be considered, for

example by taking into account the overall frequency of the tag in question, as

well as information about the reach of the track or artist to which it is applied.

It would also make sense to add artist names explicitly to the tags attached to

each track, as these are already commonly used by listeners in practice: this

should add semantic richness to learned models, for example allowing us to

label latent aspects with the names of artists, as well as allowing new avenues

for evaluation. Finally, assuming a sufficiently large experimental dataset, it

would be sensible to reconsider the decision made in Section 2.2 to model in-

dividual words, and consider modelling either entire tags, or at least recurring

ngrams of words.

7.2.2 Modelling

There are many ways in which modelling of audio content could be improved,

even while keeping to the existing framework where we construct a sparse rep-

resentation based on a vocabulary of discrete muswords extracted from specific

regions of interest in each track.

The various stages making up the method of Section 3.1 used to find the

regions of interest should be more fully investigated and evaluted. In particu-
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lar a wider range of low-level audio features should be considered in place of

MFCCs and simple rhythmic features, and statistics other than mean and vari-

ance should be investigated when summarising them. One immediate pos-

sibility is to take advantage of recent work on audio similarity, and replace

simple low-level feature statistics with GMM supervectors [Charbuillet et al.,

2011], which capture timbral characteristics of individual tracks relative to a

Universal Background Model trained on a large corpus of audio: this is re-

ported to improve both performance and scalability, as the resulting song fea-

tures are comparable with Euclidean distance.

More sophisticated methods should also be used to establish significant

novel section boundaries, for example by combining two separate measures,

one expressing local contrast and the other overall novelty within a song. The

effect of varying the number of distinct muswords in the overall vocabulary

should also be fully investigated. While evaluating the audio representation

on retrieval tasks remains sensible given an ultimate goal of supporting search

systems, it would also be interesting to evaluate separately the part of the pro-

cess concerned with finding regions of interest, for example by formalising the

listening test of Section 3.2.1 to ensure that the extracted regions do indeed

sound similar. If successful, this approach would also have direct application

to audio thumbnailing for collection browsing.

The aspect model of Chapters 3 to 5 could be improved as suggested in

[Hofmann, 2001], for example by using a training algorithm in which the learn-

ing rate is tempered in place of early stopping; by training several distinct mod-

els with different numbers of aspects and interploating their results at query

time; or by applying pseudo-tfidf reweighting to promote the significance of

rare aspects at query time. On the other hand it is also tempting simply to re-

place the aspect model altogether with a topic model learned by Latent Dirich-

let Allocation [Blei et al., 2003], which is reported to give better performance

on text IR tasks, and for which a highly scalable implementation is now freely

available [Smola & Narayanamurthy, 2010].
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7.2.3 Applications and evaluation

Given the reported weakness of current benchmark training sets and offline

metrics for semantic annotation and retrieval [Law et al., 2009; Marques et al.,

2011], perhaps the most significant opportunity for further work is in the de-

velopment of applications allowing human evaluation of semantic models and

corresponding algorithm performance. This could take the form of further de-

velopment of the existing Trackinabox prototype mentioned briefly in Section

6.4, or the spatial audio interface described in [Stewart et al., 2008]: the former

could naturally be developed as a tablet app allowing browsing and playback.

Recent experience suggests, however, that a more efficient approach to gath-

ering evaluation data is via a direct online questionnaire that also offers some

simple form of engagement, for example by playing music that the user likes,

and at least a nominal reward for participation, such as points on a leaderboard

[Levy, 2011]; such an application can also be designed with little overhead to

make use of well-established methods for controlled evaluation of rival algo-

rithms [Kohavi et al., 2007]. Semantic search of a music catalogue by free text

query clearly lends itself to this approach, as the UI requirements are largely

trivial, and would involve very limited development effort compared to exist-

ing online annotation games; on the other hand, if hosted in a suitable context

it should avoid the issues of spam and low quality responses associated with

soliciting online questionnaire answers for money [Lee, 2010; Speck et al., 2011].
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7.3 Reflections

Even during the lifetime of this thesis, there have been some encouraging

signs that the focus of MIR research is maturing from simplistic classification

paradigms to engage with richer and more realistic problems: for example in

the 2011 round of the MIREX algorithm contest the simple Train-Test set of

classification tasks was relegated to ‘DIY’ status, with the results no longer

reported on the competition website or formal results poster1. On the other

hand, semantic approaches to music retrieval and annotation have gained rela-

tively little attention, the most significant contributions being [Law et al., 2010],

which builds on the methods proposed in [Levy & Sandler, 2007, 2009], and the

neural networks described in [Mandel et al., 2011b; Hamel et al., 2011], which

attempt to capture semantic relationships implicitly in learned features. Se-

mantic search as a paradigm for music discovery still also has few real world

implementations, despite rapid growth in streaming services backed by large

catalogues, and continuing demand for potentially lucrative systems to match

musical content to films, TV programmes or adverts [Inskip et al., 2010].

Some developments within the past few months suggest that we may fi-

nally be starting to see the transition of these ideas to the mainstream. A paper

reporting ongoing research at Google [Weston et al., 2011] describes a novel

learning framework in which audio features, tags, artist names, and in princi-

ple any other labels of interest, are mapped into a single joint semantic space:

the learned mappings ensure that both similar sounding songs and related la-

bels lie close together. Any number of labelling or retrieval tasks can then

be performed based simply on the distance between relevant entities in this

space. Besides the elegance and reported effectiveness of this approach, this

work potentially has a significant impact beyond the research community as it

was designed to support Google’s own music streaming service2.

The recent release of a research dataset of some 8.5 million tags by Last.fm
1http://www.music-ir.org/mirex/wiki/2011:MIREX2011_Results, http://www.

music-ir.org/mirex/results/2011/mirex_2011_poster.pdf
2http://music.google.com, personal communication from Doug Eck, October 2011
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[Bertin-Mahieux et al., 2011] should make it possible for researchers with more

limited resources to work on similarly scalable methods for semantic annota-

tion and retrieval. Finally a new user interface to a catalogue of several mil-

lion tracks by unsigned artists3, developed for Last.fm by a team including the

author of this thesis, should introduce a semantic search paradigm to a large

existing community of music listeners, as well as enabling ongoing research

based on day-to-day feedback from a working large-scale system.

3http://www.last.fm/discover
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Laurier, Cyril, Sordo, Mohamed, Serrà, Joan, & Herrera, Perfecto. 2009b. Music

Mood Representations from Social Tags. In: Proc. 10th International Society for

Music Information Retrieval Conference.



BIBLIOGRAPHY 169

Law, E., West, K., Mandel, M., Bay, M., & Downie, S. 2009. Evaluation of al-

gorithms using games: the case of music tagging. In: Proc. 10th International

Conference on Music Information Retrieval.

Law, Edith, & von Ahn, Luis. 2009. Input-agreement: a new mechanism for

collecting data using human computation games. In: Proc. 27th Conference on

Human Factors in Computing Systems (CHI 2009).

Law, Edith, Settles, Burr, & Mitchell, Tom. 2010. Learning to Tag from Open

Vocabulary Labels. Pages 211–226 of: Balczar, Jos, Bonchi, Francesco, Gionis,

Aristides, & Sebag, Michle (eds), Machine Learning and Knowledge Discovery

in Databases. Lecture Notes in Computer Science, vol. 6322. Springer Berlin

/ Heidelberg.

Lee, Jin H. 2010. Crowdsourcing Music Similarity Judgments using Mechan-

ical Turk. In: Proc. 11th International Society for Music Information Retrieval

Conference.

Levy, M., & Sandler, M. 2006a. New methods in structural segmentation of

musical audio. In: Proc. 14th European Signal Processing Conference (EUSIPCO

2006).

Levy, M., & Sandler, M. 2007. A semantic space for music derived from social

tags. In: Proc. 8th International Society for Music Information Retrieval Confer-

ence.

Levy, M., & Sandler, M. 2008a. Structural segmentation of musical audio by

constrained clustering. IEEE Trans. Audio, Speech and Language Processing,

16(2), 318–326.

Levy, M., & Sandler, M. B. 2008b. Learning latent semantic models for music

from social tags. Journal of New Music Research, 37(2), 137–150.

Levy, M., & Sandler, M. B. 2009. Music Information Retrieval Using Social Tags

and Audio. IEEE Trans. Multimedia, 11(3), 383–395.



BIBLIOGRAPHY 170

Levy, Mark. 2011. Improving perceptual tempo estimation with crowd-sourced

annotations. In: Proc. 12th International Society for Music Information Retrieval

Conference.

Levy, Mark, & Sandler, Mark. 2006b. Lightweight measures for timbral sim-

ilarity of musical audio. In: Proc. 1st ACM Workshop on Audio and Music

Computing for Multimedia.

Levy, Mark, Sandler, Mark, & Casey, Michael. 2006. Extraction of high-level

musical structure from audio data and its application to thumbnail gener-

ation. In: Proc. IEEE International Conference on Acoustics, Speech and Signal

Processing.

Li, T., & Ogihara, M. 2003. Detecting emotion in music. In: Proc. 4th Interna-

tional Society for Music Information Retrieval Conference.

Liu, D., Lu, L., & Zhang, H.-J. 2003. Automatic mood detection from music. In:

Proc. 4th International Society for Music Information Retrieval Conference.

Logan, B., Kositsky, A., & Moreno, P. 2004. Semantic analysis of song lyrics. In:

Proc. IEEE International Conference on Multimedia and Expo (ICME 2004).

Lu, L., Wang, M., & Zhang, H. 2004 (October). Repeating Pattern Discovery

and Structure Analysis from Acoustic Music Data. In: 6th ACM SIGMM

International Workshop on Multimedia Information Retrieval.

Maddage, N., Changsheng, X., Kankanhalli, M., & Shao, X. 2004 (October).

Content-based Music Structure Analysis with Applications to Music Seman-

tics Understanding. In: 6th ACM SIGMM International Workshop on Multime-

dia Information Retrieval.

Mandel, M., & Ellis, D. 2005. Song-level features and SVMs for music classifi-

cation. In: Proc. 6th International Society for Music Information Retrieval Confer-

ence.



BIBLIOGRAPHY 171

Mandel, M., & Ellis, D. 2007. A web-based game for collecting music metadata.

In: Proc. 8th International Society for Music Information Retrieval Conference.

Mandel, Michael, Poliner, Graham, & Ellis, Daniel. 2006. Support vector ma-

chine active learning for music retrieval. Multimedia Systems, 12(1), 3–13.

Mandel, Michael, Pascanu, Razvan, Larochelle, Hugo, & Bengio, Yoshua.

2011a. Autotagging music with conditional restricted Boltzmann machines.

Arxiv preprint arXiv11032832.

Mandel, Michael I., Eck, Douglas, & Bengio, Yoshua. 2010 (August). Learning

tags that vary within a song. Pages 399–404 of: Proc. 11th International Society

for Music Information Retrieval Conference.

Mandel, Michael I., Pascanu, Razvan, Eck, Douglas, Bengio, Yoshua, Aiello,

Luca M., Schifanella, Rossano, & Menczer, Filippo. 2011b. Contextual tag

inference. ACM Transactions on Multimedia Computing, Communications and

Applications. In press.

Manning, C. D., Raghavan, P., & Schütze, H. 2008. Introduction to Information

Retrieval. Cambridge University Press.

Marlin, B., Zemel, R., Roweis, S., & Slaney, M. 2007. Collaborative Filtering and

the Missing at Random Assumption. In: Proc. 23rd Conference on Uncertainty

in Artificial Intelligence.

Marques, G., Domingues, M., Langlois, T., & Gouyon, F. 2011. Three Current

Issues in Music Autotagging. In: Proc. 12th International Society for Music

Information Retrieval Conference.

Mermelstein, P. 1976. Distance Measures for Speech Recognition: Psychologi-

cal and Instrumental. Pages 374–388 of: Chen, C. H. (ed), Pattern Recognition

and Artificial Intelligence. New York: Academic Press.

Monay, Florent, & Gatica-Perez, Daniel. 2007. Modeling semantic aspects for



BIBLIOGRAPHY 172

cross-media image indexing. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 29(10), 1802–1817.
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