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Fast multidimensional entropy estimation
by k-d partitioning

Dan Stowell, Mark D. Plumbley

Abstract—We describe a non-parametric estimator for the
differential entropy of a multidimensional distribution, given a
limited set of data points, by a recursive rectilinear partitioning.
The estimator uses an adaptive partitioning method and runs
in Θ

(
N log N

)
time, with low memory requirements. In experi-

ments using known distributions, the estimator is several orders
of magnitude faster than other estimators, with only modest
increase in bias and variance.

I. INTRODUCTION

For a multivariate random variable X taking values x ∈ X ,
X = RD, the differential Shannon entropy is given as

H = −
∫
X
f(x) log f(x) dx (1)

where f(x) is the probability density function (pdf) of X
[1]. Estimating this quantity from data is useful in various
contexts, for example image processing [2] or genetic analysis
[3]. While estimators can be constructed based on an assumed
parametric form for f(x), non-parametric estimators [4] can
avoid errors due to model mis-specification [5].

In this communication we describe a new non-parametric
entropy estimator, based on a rectilinear adaptive partitioning
of the data space. The partitioning procedure is similar to that
used in constructing a k-d tree data structure [6], although the
estimator itself does not involve the explicit construction of a
k-d tree. The method produces entropy estimates with similar
bias and variance to those of alternative estimators, but with
improved computational efficiency of order Θ

(
N logN

)
.

In the following, we first state the standard approach to
entropy estimation by adaptive partitioning (Section II), before
describing our new recursive partitioning method and stopping
criterion in Section III, and considering computational com-
plexity issues in Section IV. We present empirical results on
the bias, variance and efficiency of the estimator in Section V.

II. ENTROPY ESTIMATION

Consider a partition A of X , A = {Aj | j = 1, ...,m} with
Aj ∩Ak = ∅ if j 6= k and

⋃
j Aj = X . The probability mass

of f(x) in each cell Aj is pj =
∫

Aj
f(x). We may construct

an approximation fA(x) having the same probability mass in
each cell as f(x), but with a uniform density in each cell:

fA(x) =
pj

µ(Aj)
, j s.t. x ∈ Aj (2)

where µ(Aj) is the D-dimensional volume of Aj .
Often we do not know the form of f(x) but are given

some empirical data points sampled from it. Given a set of
N D-dimensional data points {xi | i = 1, ..., N}, xi ∈ RD, we
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estimate pj by nj/N where nj is the number of data points
in cell Aj . An empirical density estimate can then be made:

f̂A(x) =
nj

Nµ(Aj)
, j s.t. x ∈ Aj . (3)

This general form is the basis of a wide range of density
estimators, depending on the choice of partitioning scheme
used to specify A. A surprisingly broad class of data-adaptive
partitioning schemes can be used to create a consistent esti-
mator, meaning f̂A(x)→ f(x) as N →∞ [7, chapter 12][8].

The within-cell uniformity of fA(x) allows us to rewrite (1)
to give the following expression for its entropy:

HA =
m∑

j=1

pj log
µ(Aj)
pj

(4)

and so our partition-based estimator from data points xj is

Ĥ =
m∑

j=1

nj

N
log
(
N

nj
µ(Aj)

)
(5)

To estimate the entropy from data, it thus remains for us to
choose a suitable partition A for the data.

A. Partitioning methods

A computationally simple approach to choose a partition A
is to divide a dataset into quantiles along each dimension,
since quantiles provide a natural way to divide a single
dimension into regions of equal empirical probability. Indeed,
in one dimension this approach leads to estimators such as
the “mN -spacing” estimator of [10] (see also [11]). In the
multidimensional case, by dividing each dimension of RD into
q-quantiles, we would create a product partition having qD

cells. However, such a product partition can in fact lead to poor
estimation at limited number of data points N because f(x)
is not in general equal to the product of its marginal densities,
and so the product partition may be a poor approximation to
the structure of the ideal data partition [12].

Data-driven non-product partitioning methods exist. Voronoi
partitioning divides the space such that each data point is the
centroid of a cell, and the boundary between two adjacent
cells is placed equidistant from their centroids. Delaunay
triangulation partitions the space using a set of simplices
defined with the data points at their corners [13, chapter 13].
Such partitions are amenable to entropy estimation by (5), as
considered by Learned-Miller [14]. However, the complexity
of such diagrams has a strong interaction with dimensionality:
although two-dimensional diagrams can be O

(
N logN

)
in

time and storage, at D ≥ 3 they require O
(
Nd

D+1
2 e) time

and O
(
Nd

D
2 e) storage [13, chapter 13].

Partitioning by tree-like recursive splitting of a dataset is
attractive for a number of reasons. It is used in nonparametric
regression [7] as well as in constructing data structures for
efficient spatial search [6]. The non-product partitions created
can take various forms, but in many schemes they consist
of hyperrectangular cells whose faces are axis-aligned. Such
hyperrectangle-based schemes are computationally advanta-
geous because the storage complexity of the cells does not
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diverge strongly, requiring only 2D real numbers to specify
any cell. A notable example here is Darbellay and Vajda’s 2D
mutual information estimator [12], which recursively splits a
dataset into four subpartitions until an independence criterion
is met. In Section III we will describe our new method which
has commonalities with this approach, but is specialised for
the fast estimation of multidimensional entropy.

B. Support issues

If the support of the data is not known or unbounded
then there will be open cells at the edges of A. These are
problematic because they have effectively infinite volume and
zero density, and cannot be used to calculate (5). One solution
is to neglect these regions and adjust N and m to exclude the
regions and their data points [14]. But for small datasets or
high dimensionality, this may lead to the estimator neglecting
a large proportion of the data points, leading to an estimator
with high variance. It also leads to a biased estimate, tending
to underestimate the support.

An alternative is to limit edge cells to finite volume by using
the Maximum Likelihood Estimate of the hyperrectangular
support. This reduces to the estimate that the extrema of
the data sample define the support (since any broadening of
the support beyond the extrema cannot increase the posterior
probability of the data sample). This is of course likewise
a biased estimate, but does not exclude data points from
the calculation of (5), and so should provide more efficient
estimation at low N . We use this approach in the following.

III. ADAPTIVE PARTITIONING METHOD

Since the approximation f̂A(x) has a uniform distribution
in each cell, it is reasonable to design our adaptive partitioning
scheme deliberately to produce cells with uniform empirical
distribution, so that f̂A(x) best approximates f(x) at limited
N . Partitioning by recursively splitting a dataset along quan-
tiles produces a consistent density estimator [7, chapter 12][8],
so we design such a scheme whose stopping criterion includes
a test for uniformity.

At each step, we split a set of data points by their sample
median along one axis, producing two subpartitions of ap-
proximately equal probability. This has a close analogy in the
approach used to create a k-d tree data structure [6], hence we
will refer to it as k-d partitioning. Such rectilinear partitioning
is computationally efficient to implement: not only because the
splitting procedure needs only consider one dimension at a
time, but because unlike in the Voronoi or Delaunay schemes
any given cell is a hyperrectangle, completely specified by
only 2D real numbers.

It remains to select a test of uniformity. Various tests exist
[15], but in the present work we seek a computationally effi-
cient estimator, so we require a test which is computationally
light enough to be performed many times during estimation
(once at each branch of the recursion). Since our partitioning
scheme requires measurement of the sample median, we might
attempt to use the distribution of the sample median in a
uniform distribution to design a statistical test for uniformity.

KDPEE({xi}, D,N)
LN ← result of equation (7)
A0 ← range({xi})
return KDPEE RECURSE(A0, 1)

KDPEE RECURSE(A, level)
d← level mod D
n← count(xi ∈ A)
med ← median along dth dimension of xi ∈ A
Z ← result of equation (6)
if level ≥ LN and |Z| ≥ 1.96

then
return n

N log(N
n µ(A))

else
U ← A ∩ (dimensiond < med)
V ← A ∩ (dimensiond ≥ med)
return KDPEE RECURSE(U, level +1)

+KDPEE RECURSE(V, level +1)

Fig. 1. The kd partitioning entropy estimation algorithm for a set of N
D-dimensional data points {xi}. Note that the dimensions are given an
arbitrary order, 0...(D − 1). A0 is the initial partition with a single cell
containing all the xi.

The distribution of the sample median tends to a normal
distribution [16] which can be standardised as

Zj =
√
nj

2 ·medd(Aj)−mind(Aj)−maxd(Aj)
maxd(Aj)−mind(Aj)

(6)

where medd(Aj), mind(Aj), maxd(Aj) respectively denote
the median, minimum and maximum of the hyperrectangular
cell Aj along dimension d. An improbable value for Zj

(we use the 95% confidence threshold for a standard normal
distribution, |Zj | > 1.96) indicates significant deviation from
uniformity, and that the cell should be divided further.

This test is weak, having a high probability of Type II error
if the distribution is non-uniform along a dimension other
than d, and so can lead to early termination of branching.
We therefore combine it with an additional heuristic criterion
that requires partitioning to proceed to at least a minimum
branching level LN , so that the cell boundaries must reflect
at least some of the structure of the distribution. We use the
partitioning level at which there are

√
N data points in each

partition,

LN =
⌈

1
2

log2N

⌉
. (7)

This is analogous to the common choice of m =
√
N

in the m-spacings entropy estimator, which in that case is
chosen as a good compromise between bias and variance [14].
Our combined stopping criterion is therefore L ≥ LN and
|Zj | > 1.96.

The recursive estimation procedure is summarised as pseu-
docode in Figure 1.

To produce a reasonable estimate, we expect to require a
minimum amount of data values. We require the estimator to
be able to partition at least once along each dimension–in order
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that no dimension is neglected in the volume estimation–so the
estimator must have the potential to branch to D levels. The
number of levels in the full binary tree approximates log2N ,
which gives us a lower limit of N ≥ 2D. This limit will
become important at high dimensionality.

IV. COMPLEXITY

The complexity of all-nearest-neighbour-based estimators
such as that of Kybic [17] is dominated by their All Nearest
Neighbour (ANN) search algorithm. The naı̈ve ANN search
takes Θ

(
N2D

)
time, but improved methods exist [18]. For

example, using a cover tree data structure, ANN can be per-
formed in O

(
c12N logN

)
time, where c is a data-dependent

“expansion constant” which may grow rapidly with increas-
ing dimensionality [19]. Time complexity of O

(
N logN

)
is

possible in a parallel-computation framework [20].
Learned-Miller’s estimator based on Voronoi-region parti-

tions [14] is, like ours, a multidimensional partitioning esti-
mator. As discussed in section II-A the complexity of Voronoi
or Delaunay partitioning schemes is O

(
Nd

D+1
2 e) in time and

O
(
Nd

D
2 e) in storage, meaning that for example a 3D Voronoi

diagram is O
(
N2
)

in time and storage.
Kernel density estimation (KDE) can also be a basis for

entropy estimation [4]. Methods have been proposed to im-
prove on the naı̈ve KDE complexity of O

(
N2D

)
, although

their actual time complexity is not yet clear [21].
For our algorithm, the time complexity is dominated by

the median partitioning, which we perform in Θ
(
N
)

time
using Hoare’s method [22]. At each partitioning level we have
mL cells each containing approximately N

mL
points, meaning

that the total complexity of the mL median-finding operations
remains at Θ

(
N
)

for each level. For any given dataset, the
stopping criterion (6) may result in termination as soon as we
reach level LN or may force us to continue further, even to
the full extent of partitioning. Therefore the number of levels
processed lies in the range 1

2 log2N to log2N . This gives an
overall time complexity of Θ

(
N logN

)
at any dimensionality.

For D > 2 and a single processor this is therefore an
improvement over the other methods.

The memory requirements of our algorithm are also low. In-
place partitioning of the data can be used, and no additional
data structures are required, so space complexity is Θ

(
N
)
.

This is the same order as the cover-tree-based ANN estimator,
and better than the Voronoi-based estimator.

V. EXPERIMENTS

We tested our k-d estimation algorithm against samples
from some common distribution types, with N = 5000 and
D from 1 to 12. In each case we ran 100 simulations and
calculated the mean deviation from the theoretical entropy
value of the distribution, as well as the variance of the entropy
estimates. These will be expressed as deviations from the true
entropy, which in all cases was 2 nats ( 2

ln 2 bits) or greater.
For comparison, we also tested two other common types of

estimator: a KDE-based resubstitution estimator, and an ANN
estimator. We used publicly-available implementations due to
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Fig. 2. Bias of some entropy estimators at increasing dimensionality.
Error bars show the 95% confidence interval exaggerated by a factor of
10 for visibility. Distributions tested are gaussian (top), uniform (middle),
exponential (bottom). N = 5000, 100 runs. ANN = all-nearest-neighbours
estimator. RS = resubstitution estimator. kd = k-d partitioning estimator.

Ihler1, which use a k-d tree to speed up the KDE and ANN
algorithms. All three implementations are Matlab code using
C/C++ for the main calculations. We did not test the Voronoi-
region-based estimator because it becomes impractical beyond
around 4 dimensions (Learned-Miller, pers. comm.).

Fig. 2 plots the bias for up to 12 dimensions, for each of
the three different estimators. In general, the estimators all
provide bias performance at a similar order of magnitude and
with a similar deterioration at higher dimensionality, although
our estimator exhibits roughly twice as much bias as the others.
The narrow confidence intervals on the graphs (exaggerated for
visibility in Fig. 2) reflect the low variance of the estimators.

The upward bias of our estimator for non-uniform distri-
butions at higher dimensions is likely to be due to underes-
timation of the support, neglecting regions of low probability
(see Section II-B). This would lead to some overestimation of

1http://www.ics.uci.edu/∼ihler/code/

http://www.ics.uci.edu/~ihler/code/
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Fig. 3. CPU time for the estimators in Figure 2, using Gaussian distributions
and D ∈ 2, 5, 8. Tests performed in Matlab 7.4 (Mac OSX, 2 GHz Intel Core
2 Duo processor). Data points are averaged over 10 runs each (20 runs each
for our estimator). 95% confidence intervals are shown (some are not visible).
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Fig. 4. CPU time for our estimator, calculated as in Figure 3 but for all D
ranging from 1 to 12. The shaded areas indicate slopes of kN log N .

the evenness of the distribution and therefore of the entropy.
Since the estimator is consistent, this bias should decrease with
increasing N .

Fig. 3 plots the CPU time taken by the same three esti-
mators, at various data sizes and D ∈ 2, 5, 8. In all tested
cases our estimator is faster, by between one and three
orders of magnitude. More importantly, the times taken by
the resubstitution and ANN estimators diverge much more
strongly than those for our estimator, at increasing D and/or
N . As we expect from Section IV, CPU time for our estimator
is broadly compatible with Θ

(
N logN

)
(Fig. 4).

VI. CONCLUSION

We have described a nonparametric entropy estimator us-
ing k-d partitioning which has a very simple and efficient
implementation on digital systems, running in Θ

(
N logN

)
time for any dimensionality of data. In experiments with
known distributions, our estimator exhibits bias and variance
comparable with other estimators.

The estimator is available for Matlab or GNU Octave2.
2http://www.elec.qmul.ac.uk/digitalmusic/downloads
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