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Abstract

This thesis investigates the non-abelian dynamics of D-Brane systems in String

Theory, specifically focussing on the fate of the open string Tachyon. Starting from

the action of two coincident non-BPS D9-branes, we investigate kink configura-

tions of the U(2) matrix tachyon field, considering both symmetrised (Str) and

conventional (Tr) prescriptions for the trace over gauge indices of the non-BPS

action. Non-abelian tachyon condensation in the theory with Tr prescription, and

the resulting fluctuations about the kink profile, are shown to give rise to a theory

of two coincident BPS D8-branes.

Next we investigate magnetic monopole solutions of the non-abelian Dirac-

Born-Infeld (DBI) action describing two coincident non-BPS D9-branes in flat

space. These monopole configurations are singular in the first instance and require

regularization. We discuss a suitable non-abelian ansatz which describes a point-

like magnetic monopole and show it solves the equations of motion to leading

order in the regularization parameter. Fluctuations are studied and shown to

describe a codimension three BPS D6-brane, a formula is derived for its tension.

Finally, we investigate the dynamics of a pair of coincident D5 branes in the

background of k NS5 branes. We extend Kutasov’s original proposal to the non-

abelian case of multiple D-Branes and find that the duality still holds provided

one promotes the radial direction to a matrix valued field associated with a non-

abelian geometric tachyon and a particular parametrization for the transverse

scalar fields is chosen. Analytic and numerical solutions for the pair’s equations

of motion are found in certain simplified cases in which the U(2) symmetry is

broken to U(1) ⊗ U(1). For certain range of parameters these solutions describe

periodic motion of the centre of mass of the pair bouncing off a finite sized throat

whose minimum size is limited by the D5 branes separation.
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CHAPTER 1

INTRODUCTION

1 The Birth of a New Theory

One can safely say that the two greatest achievements of human thought within

the area of theoretical physics are the invention of Quantum Mechanics (QM) and

the complete formulation of the General theory of Relativity (GR). The first is the

completely counter-intuitive notion that the universe at extremely small scales is

intrinsically probabilistic, there is no real sense in trying to explore the universe

in its most intimate form with the hope of extracting certain answers. Though

ideologically and philosophically difficult to digest quantum mechanics in its most

mathematical form has led to some of the greatest theoretical models of previously

puzzling experimental observations and, through many more of these, has become

an undeniable truth about the nature of the universe we live in. Thanks to an ad-

hoc quantisation of phase space we have gained a complete understanding of the

energy levels of the harmonic oscillator, thanks to the wave-particle interpretation

of light we have defeated the double-slit experiment, thanks to the quantisation of

the orbital radius we have unveiled the true beauty of the atom, and many many

more.

However, it is only during the field theory revolution of theoretical physics

that Quantum Mechanics has shown its true unpredictable power. Quantum Field

Theory, which as the name suggests involves the quantisation of fields, forms the

backbone of all modern theoretical understanding of particle interactions. By

merging quantum field theory with the mathematical framework describing the

symmetries of our universe theoretical physicists have unified three fundamental

forces into one model, creating what is currently the most successful theoretical

model of the universe: the Standard Model. The Standard Model describes the

interactions of particles through electric, weak and strong forces, it is the Bible

of any particle physicist and is the crowning achievement of complex research
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CHAPTER 1. INTRODUCTION

originating from Quantum Mechanics. Its theoretical foundations awarded five

years of Nobel prizes 1 alone and uncountable further results were obtained in

areas of research which, by the essential nature of the theory, the Standard Model

embraces and reinforces. It is based on the fundamental notion that oscillations

in quantum fields generate particles and that these fields form representations of

the symmetry group

GSM = U(1)⊗ SU(2)⊗ SU(3) (1.1)

where U(1) ⊗ SU(2) is the symmetry group of the Electro-Weak forces and

SU(3) that of Quantum ChromoDynamics (QCD) describing the interactions of

quarks and the strong force. Forces are mediated by interchange of virtual par-

ticles, called gauge bosons which are massless for long range forces (such as the

photon for the electromagnetic force) or massive for short range forces (the case of

gauge bosons in representations of a non-abelian symmetry group is not so simple,

in this case the indefinite propagation of such massless bosons is restricted by self-

interactions). To account for the observed mass of the Weak force gauge bosons

the model relies on spontaneous symmetry breaking and predicts the existence of

a yet unobserved (but long sought after) Higgs boson, a further Nobel prize to be

awarded upon its confirmation. Until the Higgs boson is observed, one is allowed

to call this a “weakness” of the Standard Model, together with the numerous free

parameters which are adjusted according to experimental observations rather than

determined from the theory itself (such as the strength of the coupling constants

and masses of particles).

The Standard Model is an incredibly successful theory of three fundamental

forces, however four are believed to exist in nature. The fourth is the force of

gravity whose description has followed a very different path, diametrically opposite

to that originating through the studies of Quantum Mechanics. Gravity is the

domain of Einstein whose revolutionary thought and lifetime of research led to

a completely different understanding of this force. Einstein related the force of

gravity to the geometry of space-time itself, postulating that it is the latter that

in its full mathematical description encapsulates the behaviour of gravity and

1These were in chronological order: 1969 - Gell-Mann, 1979- Glashow, Weinberg, Salam,
1999- t’Hooft, Veltman, 2004- Gross, Wilczek, Politzer, 2008- Kobayashi, Maskawa, Nambu

9



CHAPTER 1. INTRODUCTION

that the two descriptions are interchangeable, i.e. gravity produces geometry as

a geometry is a form of gravity. What then is the source of this geometry? What

“makes” gravity? Well, it is nothing but matter, mass or energy. This is the core

structure of Einstein’s equations

Rµν −
1

2
gµν + Λgµν =

8πG

c4
Tµν (1.2)

where Rµν is the Ricci tensor formed from the metric gµν which encapsulates

the geometry of space-time and thus describes gravity, Λ is the cosmological con-

stant, G is Newton’s gravitational constant and Tµν is the Energy-Momentum

tensor describing the matter content of space-time. Hence, matter creates geom-

etry and geometry is gravity and objects that move and exist in the geometry

formed from this matter experience its form of gravity. As a straight line de-

scribes the path of least length between two points on a sheet of paper, objects

in a gravitational field follow geodesics of the geometry they live in. The gravita-

tional field, and thus the geometry of space-time is something which is dynamic,

produced by sources of energy and constantly evolving to adjust for changes in its

matter content. Light itself is just a traveller through the geometry and suffers

from the same laws as any (massless) observer, it bends and follows geodesics

of the gravitational field. Since the observation of the bending of light due to

massive objects GR has been confirmed in numerous experiments (Eddington’s

famous solar eclipse experiment is an example) and, on a par with QM for the very

small, is the best model for how gravity behaves in our universe. It comprises the

more classical motion (in its Newtonian approximation) of a ball thrown on earth

up to motion of planets and the dynamics and geometrical nature of the universe

as a whole. The theory has given birth to the study of Cosmology and it forms

the essence of modern theories of the origin of the universe (such as inflation).

Therefore the modern theoretical physicist is armed with two weapons with

which to fight the constant struggle to determine the real nature of the universe.

In his right hand he holds Quantum Mechanics, with which he can study the very

small structures of atoms and particle interactions, on the other he has General

Relativity which gives him the power to master the geometrical structure of the

universe. A natural question arises: can he put his hands together to form one big

10



CHAPTER 1. INTRODUCTION

weapon, a Grand Unified Theory (GUT) with which he can answer any question

scaling from the extremely small to the extremely large, which flows smoothly

between QM and GR, a quantum theory of gravity? The answer is not fully

known, attempts at unifying QM with GR in a brute force way by quantising

the metric gµν seem to fail from any angle the problem is approached, the theory

of the canonically quantised graviton is non-renormalizable. The theories work

extremely well by themselves but fail to work together. A new, radical approach

to the problem is needed.

2 String Theory

String Theory is a possible answer to the problem. It is a candidate for a

consistent theory of quantum gravity and a general unifying theory of all the forces
2. The basic idea at its core, and from which its name derives, is to abandon the

concept of zero-dimensional point particles and assume that the most basic object

in nature is a one-dimensional string of length of the order of the Planck length

lp ≈ 1.6 × 10−35m. Then as per the frequency of oscillation of a guitar string

taut between two end points creates different notes, different modes of oscillation

of the fundamental string form different particles, one of which is the graviton.

Thus, string theory is a theory of strings whose oscillation modes are quantised

to form all ordinary QFT particles plus the graviton. In this sense string theory

generates its own geometry (it is a source for the graviton) and is a quantised

theory of gravity. Both open strings and closed strings (those that form a closed

loop) can exist and are essential to complete the theory. This section is devoted to

introducing and summarising the main mathematical ideas and formulations for

consistent string theories and the main results and key concepts these theories give

birth to. Many of the results and concepts investigated below are general to string

theory and not directly in contact with the work presented in this thesis, they are

however important in gaining a more general understanding of the completeness

of the theory before delving in the more intricate details of the particular topic

investigated. When results are reached which have a more important connection

with material in the thesis these are pointed out and dealt with in more detail. The

2there exist other attempts to create such a theory, e.g. Loop Quantum Gravity, Causal sets,
Causal Dynamical Triangulations.
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CHAPTER 1. INTRODUCTION

notation used and overall treatment of the ideas presented follow [7], for details

on calculations of the presented material the reader is referred to this source.

A natural point to start off with is writing a suitable action describing the

dynamics of the string. The first step to consider in order to achieve this is

the presence of the extra dimension imposed by dropping the notion of a point

particle. For a free particle the action is derived by minimising its world-line, the

trajectory the particle sweeps moving through space-time. For a string embedded

in space-time, its motion will sweep out a world-sheet rather than a line, and this

is the object which needs to be minimised. Thus if σ and τ are the coordinates

of the world-sheet and Xµ(τ, σ) describes its embedding, we can write an action

for its area in Minkowski space as

SNG = −T
∫
dσdτ

√
(Ẋ ·X ′)2 − Ẋ2X ′2 (1.3)

or

SP = −1

2
T

∫
d2σ
√
−hhαβ∂αX∂βX (1.4)

(with ˙ = ∂
∂τ

and ′ = ∂
∂σ

), which are the Nambu-Goto and Polyakov actions

for the bosonic string of tension T with world sheet metric hαβ. The two actions

are equivalent in the sense that they yield the same equations of motion. The

resulting equations for the string embedding obey the wave equation with general

solution given by closed string or open string mode expansions composed of sums

of equal numbers (NL = NR) of right-movers Xµ
R and left-movers Xµ

L with the

appropriate boundary conditions. The condition NL = NR is not imposed by

hand, it is a requirement for the theory to be consistent. It is derived by requiring

that the modes of the quantised stress-energy tensor (which obey the Virasoro

algebra) describe physical (positive norm) states. For the closed string,

Xµ
R =

1

2
xµ +

1

2
l2sp

µ(τ − σ) +
i

2
ls
∑
n 6=0

1

n
αµne

−2in(τ−σ) (1.5)

Xµ
L =

1

2
xµ +

1

2
l2sp

µ(τ + σ) +
i

2
ls
∑
n 6=0

1

n
α̃µne

−2in(τ+σ) (1.6)

where xµ is a centre of mass position and pµ is the total string momentum
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CHAPTER 1. INTRODUCTION

describing the free motion of the string centre of mass. A similar expansion

exists for the open string solution and the quantisation procedure follows that

of the closed string very closely, we will not present this here. The parameter

ls known as the string length scale, is related to the string tension by T = 1
2πα′

where α′ is the open string Regge slope parameter α′ = 1
2
l2s . The terms in the

sum (αµm, α̃
µ
m) represent the string excitation modes. Here is the key idea of string

theory: it is these modes of oscillation which are quantised. By imposing canonical

commutation relations on the excitation modes

[aµm, a
†ν
n ] = [ãµm, ã

†ν
n ] = ηµνδm,n, [αµm, α̃

ν
n] = 0 (1.7)

with aµm = 1√
m
αµm and a†µm = 1√

m
αµ−m one obtains the familiar algebra of quan-

tum mechanical harmonic oscillators with the addition of negative norm states

[a0
m, a

†0
m ] = −1. These states are unphysical and can be successfully removed from

the theory to obtain a consistent spectrum of physical states of the quantised

bosonic string, however one must pay the price for this: it can only be achieved

in D = 26 space-time dimensions. This is a new ingredient of any quantum the-

ory, the emergence of new space-time dimensions above the four that we live in.

Clearly, a consistent theory of low energy physics has to make touch with the well-

known four dimensional quantum field theory of the Standard Model, this is a far

from trivial task and one which string theorist are yet to complete. Furthermore,

even though a state may be physical in the sense of having positive norm, it may

be the case that the particle it describes has negative mass, i.e. it is Tachyonic.

Tachyons are particles which travel faster than light, they are naturally emerging

from spectra of string theory and denote an instability of the system. Due to

their unphysical nature they cannot be part of a unified theory of gravity plus the

Standard Model, they must be removed manually. From the open string sector

we obtain

• a Tachyonic state with negative mass2 α′M2 = −1

• a massless vector boson in the vector representation of SO(24) and

• a symmetric traceless second rank tensor representation of SO(25) , i.e. a

single massive spin-two state.

13
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Note the appearance of a tachyonic state. From the closed string sector the

spectrum consists of

• a Tachyonic ground state

• a trace term singlet of SO(24), a massless scalar called the dilaton Φ(X),

• a symmetric traceless representation of SO(24), a massless spin-two particle:

the graviton gµν(X), and

• an antisymmetric second rank tensor representation of SO(24), which is a

massless two-form gauge field Bµν(X).

Hence, the graviton appears naturally in the spectrum of the closed bosonic

string upon quantisation of its oscillation modes. This is, in its simplest form, the

major achievement of string theory. It is a theory which sources the graviton in a

quantised context: it is a quantum theory of gravity. We can consistently couple

the graviton to the string world sheet by allowing a term in the action of the form

Sg =
1

4πα′

∫
M

√
hhαβgµν(X)∂αX

µ∂βX
νd2z (1.8)

with z = e2(τ−iσ) the conformal coordinates on the string world sheet M3.

Note the resemblance to the Polyakov action 1.4 which considered only the flat

space case of gµν = ηµν . We have previously mentioned that Tachyonic states

represent unphysical particles and need to be removed, however what are the roles

of the new massless scalar and antisymmetric tensor particles? Firstly consider

the antisymmetric second rank bosonic gauge field Bµν(X). String theory contains

many antisymmetric forms of distinct dimensions. In the more common case of

one dimension (the usual gauge field Aµ of electrodynamics) one naturally couples

the form to the world line of a charged particle

SA = q

∫
Aµ

(
dxµ

dτ

)
dτ (1.9)

where q is the charge of the particle and τ is its world-line parameter, hence

3the change of coordinates σ, τ → z is done here purely for notational convenience
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when the rank of the form is increased it makes sense to consider generalised

couplings of the form

SB =
1

4πα′

∫
M

εαβBµν(X)∂αX
µ∂βX

νd2z, (1.10)

with εαβ the rank-two totally antisymmetric tensor. As particles which couple

to the Maxwell field are charged, so are strings which couple to two-forms, and

therefore these describe in general charged couplings of the string world-sheet.

The dilaton plays a fundamentally new and important role in string theory, its

appearance in the string action is in a term of the form

SΦ =
1

4π

∫
M

√
hΦ(X)R2(h)d2z, (1.11)

where h is the world-sheet metric and R2(h) is the corresponding Ricci scalar.

Consider the case where the dilaton is a constant, then SΦ is simply the topological

invariant quantity

χ(M) =
1

4π

∫
M

√
hR2(h)d2z, (1.12)

which is the Euler characteristic of M , it is a quantity derived from topolog-

ical features of the world-sheet. String scattering amplitudes are closely related

to zero-dimensional particle scatterings, however one must make sure to replace

the world-lines of particles with the world-sheets of strings, as one did for the

construction of their action. Therefore to calculate string scatterings one needs

to sum over all surfaces spanned by interacting open and closed strings. Consider

the partition function for scattering amplitudes of strings

Z =

∫
Dh

∫
DXµ...e−S[h,X,...] (1.13)

where
∫
Dh means the sum over all Riemann surfaces (M,h) and S is the

overall string action containing the factors from the two-form, the graviton and

the dilaton shown above. Then if the dilaton is a constant Φ = φ0 this contributes

an overall factor of e−φ0χ(M) to the partition function, i.e. it can be interpreted

as a string coupling gs = e−φ0 . This is a beautiful result, string theory sources

it’s own coupling strength by making it the vacuum expectation value (VEV) of

15



CHAPTER 1. INTRODUCTION

the dilaton field, which fully illustrates its role. Note that in α′ dimensions the

dilaton is dimensionless and thus appears at next order (1 loop) in a coupling

expansion, this is not to be expected from a usual coupling. This is indeed a

more general result of string theory as a whole, all dimensionless parameters in

string theory can be derived from VEVs of scalar fields, the theory has no free

parameters (except ls). Indeed this seems to be an improvement over the well-

known Standard Model, which is abundant in free parameters, and is a promising

sign of a healthy theory.

Therefore the bosonic string hints at a complete theory of quantum gravity

with no free parameters in D=26 space-time dimensions (except ls). However, it

is unsatisfactory if it is required to describe nature for two main reasons: firstly,

it lacks a clear understanding of how to eliminate the extra dimensions, secondly

and of equal importance the spectrum contains no fermions. Fermions account

for all the leptons and quarks present in the Standard model and must arise

naturally in any theory which endows itself the task of merging it with gravity.

The incorporation of fermions in string theory has been coined the “first string

theory revolution” and has led to the invention of the Superstring4. Superstring

theory is the union of string theory with supersymmetry, a symmetry which relates

fermions to bosons. The theory of supersymmetry has been extensively studied

in the literature (for a review see [8, 9]). Its major claim is that the universe at

higher energies possesses an extra symmetry which interchanges a boson with a

fermion. Hence, for every boson and fermion we see in nature there should exist

a high energy supersymmetric partner, the sfermion and the bosino. Up to the

present day, none of these supersymmetric partners have been observed in particle

accelerators.

There are two distinct procedures to include supersymmetry in string theory,

the Ramond-Neveu-Schwarz (RNS) [10] formalism which is supersymmetric on

the string world-sheet, or the Green-Schwarz (GS) [11, 12] formalism which is

supersymmetric on background Minkowski space-time. The two formulations are

equivalent in the sense of obtaining the same spectrum for the superstring, however

the RNS formalism appears mathematically simpler to present. The theory can

4The notion of the superstring was present before the “first string theory revolution” which
in fact originates from the miraculous E8 gauge group anomaly cancellations, but it is during
this same period that its true potential was appreciated
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CHAPTER 1. INTRODUCTION

be most elegantly expressed on superspace, an extension of ordinary space-time

to include anti-commuting Grassmanian numbers. Fields defined on superspace

are called superfields. In the RNS formalism one extends the string world-sheet

and defines a string super-world-sheet with coordinates (σα, θA) where σα = (τ, σ)

are the usual string world-sheet coordinates and θA = (θ−, θ+) are anticommuting

Grassmann coordinates, i.e.

{θA, θB} = 0. (1.14)

The Supercharges which generate supersymmetry transformations of the super-

world-sheet coordinates are

QA =
∂

∂θ̄A
− (ραθ)A∂α, (1.15)

where ρα are two-dimensional Dirac matrices obeying the Dirac algebra {ρα, ρβ} =

2ηαβ and θ̄ = iρ0θ. It is possible then to introduce general superfields Y µ(σα, θ)

on the super-world-sheet by considering a general expansion in powers of θ (in

Dirac notation),

Y µ(σα, θ) = Xµ(σα) + θ̄ψµ(σα) +
1

2
θ̄θBµ(σα), (1.16)

where ψµ(σα) = (ψµ−, ψ
µ
+) is a Dirac spinor obeying (classically) {ψµ, ψν} = 0

and Bµ(σα) is an auxiliary field added to the theory to ensure the supersymmetry

transformations close off-shell. Then by the action of the supercharges on the

superfield δY µ = [ε̄Q, Y µ] one obtains the supersymmetry transformations

δXµ = ε̄ψµ (1.17)

δψµ = ρα∂αX
µε+Bµε (1.18)

δBµ = ε̄ρα∂αψ
µ, (1.19)

which interchange fermions and bosons. From these a supersymmetry invariant

string-world-sheet action can be derived

S =
i

4π

∫
d2σd2θD̄Y µDYµ, (1.20)
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CHAPTER 1. INTRODUCTION

where DA = ∂
∂θ̄A

+(ραθ)A∂α is the supercovariant derivative and a very similar

procedure follows that of the bosonic string to produce the full spectrum of the

superstring. There are however new ingredients, by ensuring that the variation of

the action vanish one finds that there are distinct possibilities on the boundary

conditions for the fermions. In the open string sector in light-cone gauge one sets

ψµ+
∣∣
σ=0

= ψµ−
∣∣
σ=0

= 0 and is faced with the option of choosing the relative sign at

the other end of the string. One choice are Ramond boundary conditions, where

one sets

ψµ+
∣∣
σ=π

= ψµ−
∣∣
σ=π

(1.21)

in which case the most general mode expansion for the fermionic field satisfying

its equations of motion takes the form

ψµ−(σ, τ) =
1√
2

∑
(n∈Z)

dµne
−in(τ−σ) (1.22)

ψµ+(σ, τ) =
1√
2

∑
(n∈Z)

dµne
−in(τ+σ) (1.23)

where dµn are the modal expansion coefficients similar to the αµn for the bosonic

string. A Majorana condition on the fermions requires that these satisfy dµ−n =

dµ†n . If instead we pick the Neveu-Schwarz boundary conditions

ψµ+
∣∣
σ=π

= −ψµ−
∣∣
σ=π

(1.24)

then the modal expansion takes the form

ψµ−(σ, τ) =
1√
2

∑
(n∈Z+ 1

2
)

bµne
−in(τ−σ) (1.25)

ψµ+(σ, τ) =
1√
2

∑
(n∈Z+ 1

2
)

bµne
−in(τ+σ) (1.26)

where the major difference in the two choices is the modes being integers or half

(odd) integers. In the closed string sector both choices also exist: imposing the

boundary conditions ψ±(σ) = ±ψ±(σ+π) one can write similar modal expansions

over integers or half (odd) integers. As per the bosonic string, one quantises the
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modes of oscillation of the superstring, but crucially one needs to impose anti-

commutator relations on the fermionic modes, hence

{bµr , bνs} = ηµνδr+s,0 (1.27)

{dµr , dνs} = ηµνδr+s,0 (1.28)

which also give rise to negative norm states. Their elimination follows a very

similar procedure to that of the bosonic string, however with the superstring one

finds that the negative norm states can only be consistently eliminated in D = 10

dimensions. Even though this is still far from the goal of making contact with

a four-dimensional theory it is a vast improvement over the D = 26 dimensions

imposed by the bosonic string alone: supersymmetry has dramatically reduced the

number of extra dimensions the theory imposes. Note that the fermionic modes

furnish a representation of the Dirac algebra {Γµ,Γν} = 2ηµν which means that

there exists degenerate ground states such that dµ0
∣∣a〉 = 1√

2
Γµab
∣∣b〉. Therefore there

exists a natural relation between the fermionic modes and the Gamma matrices of

the Dirac algebra Γµ =
√

2dµ0 which is crucial for chirality operations, as mentioned

later in this section.

The spectrum of open superstring theory, or type I superstring theory, has

N = 1 Supersymmetry, for the open string in the NS sector it consists of

• a Tachyonic scalar ground state

• a massless SO(8) vector + tower of massive states

whilst from the Ramond sector we obtain

• a 32-component spinor ground state

• a tower of excited states representing space-time spinors.

The 32 component ground state spinor can be further decomposed by applying

Majorana and Weyl conditions, which leads to two possible ground states repre-

senting the different ten-dimensional chiralities. The Tachyonic ground state can

be consistently removed by taking a GSO projection (see [7] for details), this also
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makes the spectrum manifestly supersymmetric. This projection is not a choice,

it is required to obtain modular invariance without which there are anomalies in

global world-sheet diffeomorphisms which would render the theory inconsistent.

From the open string type I theory one forms the closed string, type II, spectrum

by coupling left-movers and right-movers. This gives a choice between four possi-

ble sectors: the R-R, R-NS, NS-R and NS-NS sectors, plus the choice of chirality

of the ground state. For type IIB string theory, one couples the left and right

moving sectors of the Ramond sector with the same chirality whilst for type IIA

string theory the chiralities are opposite. This leads to a total of sixty four states

in each of the four massless closed string sectors

• NS-NS: IIA=IIB, one scalar (dilaton), an antisymmetric two-form gauge

field and a symmetric traceless two-tensor (the graviton)

• NS-R and R-NS , a spin 3
2

gravitino and a spin 1
2

fermion (dilatino). The

gravitinos differ in chirality in type IIA whilst have equal chiralities in type

IIB.

• R-R, type IIA: one-form vector gauge field and a three form gauge field.

IIB: a scalar gauge field (0-form), a two-form gauge field and a four-form

gauge field.

Note the appearance of the fermions, in particular the gravitino and dilatino

which are superpartners to the graviton and dilaton. Hence the spectrum can

be consistently freed of negative norm states and Tachyonic states by reducing

the space-time dimension to D = 10 and more importantly it now contains both

bosons and fermions. Furthermore, one can obtain phenomenologically more ap-

pealing string theories by mixing superstring sectors with bosonic string theory

sectors. Heterotic string theories are obtained in this way by combining the left

moving degrees of freedom of bosonic string theory with the right moving de-

grees of freedom of superstring theory. These theories are excellent candidates for

models of grand unification based on the SO(32) and E8 ⊗ E8 gauge groups.

Superstring theory is therefore even more appealing then its bosonic cousin

as a consistent quantum description of gravity. It has reduced the number of

required space-time dimensions and has included a complete spectrum of fermions.

However, it relies on supersymmetry, which remains an unobserved feature of
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nature, the dimensions are still greater than the four we observe and it is not

unique, one has the theory of the open string, both IIA and IIB theories of the

closed string and two classes of heterotic theories. How do we then make sense of

the multitude of possible theories? Which one is the one we should use to create

a theory of everything (TOE)? It was only during the “second string revolution”

that these questions were answered. It turns out that all superstring theories are

connected by dualities. A duality is a fundamental concept of theoretical physics,

it states that if two systems are dual then they possess the same physics, and

there exists a precise map which takes you from one description to the other.

This happens in superstring theory as well, there are maps (or dualities) which

link superstring theories together. T-duality maps a superstring theory to another

superstring theory in a T-dual geometry. The simplest example of this is provided

by the closed bosonic string compactified on a circle. The space-time geometry

is M = R24,1 × S1, where the circle S1 has radius R. This endows “modified”

periodic boundary conditions to the embedding coordinates on the S1

X25(σ + π, τ) = X25(σ, τ) + 2πRW, (1.29)

where W is the winding number, the number of times the string wraps the

closed circle. Following usual Kaluza-Klein theory, the momentum along the com-

pact dimension will be quantized, i.e.

p25 =
K

R
(1.30)

where K is an integer called the Kaluza-Klein excitation number describing

the momentum mode excitation level. The equation for the mass of the modes of

the spectrum of the compactified bosonic string is

α′M2 = α′

[(
K

R

)2

+

(
WR

α′

)2
]

+ 2NL + 2NR − 4, (1.31)

where NL and NR are the number of left-movers and right-movers respectively

(NL 6= NR due to the compactification). This equation is invariant under the

map
(
R→ α′

R
,W → K

)
, which describes the T-duality of the bosonic string. It

indicates that the bosonic string compactified on a circle is dual to a bosonic string

21



CHAPTER 1. INTRODUCTION

compactified on a circle of inverse radius, with winding modes and Kaluza-Klein

modes interchanged. It is quite a counter-intuitive geometrical result which can

only be understood by realising that the radius in question is small (of the order

of the string scale) and that ordinary geometrical concepts break down at these

scales, as they should in a theory of quantum gravity. T-duality is a consequence

of the string being a one-dimensional object, indeed if the above analysis was

repeated with a point-particle we would find that its winding mode W = 0 and

therefore no duality exists. The presence of the duality is in fact independent of the

size of R. The interchange between winding number and Kaluza-Klein excitation

number is indicative of a map between the spectra of dual open string theories,

from it it can be shown that T-duality maps (in the compact direction) XR →
−XR and XL → XL. This is an essential fact that allows us to extend T-duality to

the closed sector of superstrings (as these are built from combinations of left and

right moving sectors of open strings). Imagine compactifying ten-dimensional

superstring theory on a circle. The bosonic coordinates map in the same way

as bosonic string theory under T-duality and world-sheet supersymmetry ensures

that the fermionic coordinates map in the same way as the bosonic ones, ψL → ψL

and ψR → −ψR. The latter relationship means that the chirality of the ground

states is reversed under T-duality (recall the relation between the fermionic zero

modes and the Dirac Gamma matrices previously mentioned), and since this is

the only thing distinguishing between the IIA and IIB superstring theories we can

deduce that IIA theory compactified on a circle of radius R is T-dual to IIB theory

on a circle of radius α′

R
. Furthermore, T-duality maps the IIA and IIB coupling

constants

gIIBs =
α′

R
gIIAs (1.32)

hence a perturbative expansion in gIIBs corresponds to a perturbative expan-

sion in gIIAs and T-duality holds order by order. Hence the two theories are directly

linked by a duality, i.e. they possess the same physical content. Analogously to the

map between a compactifying radius and its inverse, S-duality maps a string the-

ory with coupling constant gs to a different string theory with coupling 1
gs

. When

one is strongly coupled the other is weakly coupled. S-duality can be understood

as an extension of the common electric-magnetic duality of Maxwell’s equations,

together with the Dirac quantisation condition. A simple example is N = 4 su-

per Yang-Mills under the electric-magnetic duality (i.e. switching electric and
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magnetic parameters) combined with the coupling transformation gYM → 4π
gYM

. S

and T dualities together form an intricate network which links string theories, the

results of dualities on each theory presented so far are listed in the table below.5

Theory T-duality S-duality

Heterotic Type I SO(32) Heterotic Type I E8 ⊗ E8 Type I open string

Heterotic Type I E8 ⊗ E8 Heterotic Type I SO(32) M-theory at gs →∞
Type IIA superstring , R, gs Type IIB on α′

R
, gs M-theory gs →∞

Type IIB superstring, R, gs Type IIA on α′

R
, gs Type IIB on R, 1

gs

Type I open string Type I’ open string Heterotic Type I SO(32)

The last of these dualities, those regarding the open string, deserve special

attention. The map (XR → −XR, XL → XL) of bosonic right moving and left

moving coordinates translates to a transformations on the boundary conditions of

the open string. T-duality maps open strings with Neumann boundary conditions

into open strings with Dirichlet boundary conditions, on a dualised geometry.

Therefore it switches strings with momentum to strings with winding in the com-

pactified direction. It is as if the dual open string is stuck to a hyperplane of the

dual geometry. In effect, the dual string has end points which are bound on a

membrane. Membranes where open strings end are called Dirichlet Branes (D-

Branes) and are an essential and incredibly important ingredient of string theory.

The key point here is that, whereas intuitively one might think that these objects

are simply mathematical hyperplanes of a specified geometry, they are in fact

physical objects per se. They also exist in closed string theories such as IIB and

IIA superstring theory where they couple to gauge forms by providing a similar

hypersurface coupling as that of the string-world-sheet. Hence a Dp brane, or a

brane which spreads in p dimensions can couple to a p+ 1 form through its world

5For the case of Heterotic E8 ⊗ E8 and Type IIA superstring theory M-theory at strong
coupling is not precisely an S-dual theory as we shall see below. However we present it here as
so to illustrate the general picture of the intricate web of dualities that exist throughout string
theory. Also, the T-dual to type I open string theory, type I’ theory, is simply an orientifold
projection of type IIA theory compactified on a dual circle of radius α′

R
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volume

Sint =
qp

(p+ 1)!

∫
Aµ1....µp+1

∂xµ1

∂σ0

.......
∂xµp+1

∂σp
dp+1σ (1.33)

where qp denotes the charge carried by the Dp brane, µp indicates the gauge

form indices and σp are the coordinates on the brane world-volume. These branes

are thus electrically and magnetically (through standard Hodge duality) charged

and carry flux. They also have a definite tension or energy, they are all in all

physically independent real objects appearing in string theory. In type IIA theory

the spectrum of the R-R sector carries p-forms with odd dimensions, hence the

theory contains Dp branes with even dimensions to which these forms can couple.

Similarly type IIB theory contains p-forms of even dimensions and Dp branes of

odd dimension. D-branes which are charged under a p-form coupling are stable,

those that don’t are unstable and give rise to an open string spectrum which carries

a Tachyon. Hence, in both type II superstring theories any dimension Dp brane

exist, but only those that couple to (p−1) forms are stable. The unstable D-branes

are thought to decay via emission of closed string radiation. The fate of Tachyons

on unstable D-branes, and the investigation of their dynamical description, forms

the core of this thesis.

With the idea that Dp branes describe physical hypersurfaces where strings

can end one is naturally led to the generalisation to multiple membranes. Indeed

a string can have both end points on one-brane or one end point ending on one

brane and the other on another brane. In this way there would be a theory of one

string stretching between two D-Branes. It is in general a good idea to assign a

label to the end point of a string, this will provide it with additional degrees of

freedom. Chan-Paton factors associate N degrees of freedom to string end-points.

By letting one end-point carry a fundamental representation of the N degrees

of freedom and the other the anti-fundamental representation one can describe

a gauge theory with U(N) symmetry. This result is most easily understood in

string scattering calculations where the Chan-Paton factors appear explicitly in

amplitudes contributing identically to standard U(N) gauge indices. In terms of

strings on D-branes, when there are n non-coincident D-branes strings stretching

between them describe a U(1)n gauge theory. When instead these branes coincide,

the symmetry is enhanced to U(n). Thus we see that by assigning Chan-Paton
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factors to end points of strings we can easily include gauge symmetries, both

abelian and non-abelian, in superstring theory. This is a crucial step in making

contact with the non-trivial gauge symmetry of the Standard Model, equation 1.1.

Given the fact that D-Branes are physical objects in their own right, we are faced

with the challenge of finding a suitable action that describes their dynamics and

that includes their gauge symmetry. The D-Brane action arises as a p-dimensional

generalisation of an attempt by Born and Infeld to eliminate the infinite self-

energy of the charged point particle in classical Maxwell theory. This resulted in

the abelian bosonic Dirac-Born-Infeld action for the Dp-brane which is central to

this thesis and has its own section (2) dedicated to it.

In summary, the theory of superstrings and D-Branes is a consistent theory

of quantum gravity in D = 10 dimensions which includes both the graviton and

fermions in its spectrum. Its major flaws are that it relies on supersymmetry

which hasn’t been observed yet, and that there still is no direct contact to the

four dimensions we observe. The first of these problems, and possibly the simplest

to conceptualise, is being dealt with through a constant struggle to find supersym-

metric partners of known particles at increasingly high energies in modern day

particle accelerators . There is hope that with the Large Hadron Collider (LHC)

up and running we might observe a supersymmetric partner below the energies of

14 TeV . This does not mean that if the particle is not observed below this energy

scale then supersymmetry is ruled out. The second however is one which must

be dealt with far from the laboratory and only through the complex process of

theoretical modelling. There are two main lines of thought with what to do with

extra dimensions: the first asserts that the extra dimensions are simply too small

to be observed at our scales of energy, i.e. they only really make a noteable im-

pact at scales close to the string scale, the second is that the extra dimensions are

simply unaccessible to us, we live on a hypersurface of a higher-dimensional world

in which we cannot detect the extra dimensions (which may indeed be very large)

at least at the energies accessible to present technology. The first of these is the

idea of Kaluza-Klein Compactification, the second is generally called Brane-World

Scenario (BWS).

In Kaluza-Klein compactification, one compactifies the ten-dimensional space-
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time of superstring theory on a product manifold of the form

M =M4 ⊗ C6 (1.34)

where M4 is Minkowski space and C6 is a six-dimensional suitable chosen

manifold which gives promising phenomenological theories in the compactification.

The idea is that the scale of the extra six dimensions of the compactified manifold

are of the order of the string scale and thus by far too small to be detectable in

present day experiments. The obvious choices are compactifications which lead to

a theory with the Standard Model gauge group in four dimensions and which break

supersymmetry down to N = 1 as this is the only supersymmetry consistent with

chirality of the fermions. Therefore the compactifying manifold has to be chosen

very carefully, if for example one should try compactifying on the simple six torus

then no supersymmetry would be broken and this would make no contact with

phenomenological models. It turns out that the most promising compactifying

manifolds are of Calabi-Yau type. These are special kinds of n-folds which are

Kahler and have SU(n) holonomy. Being complex, it is three-folds (which have

six real dimensions) which are used for compactifications from ten dimensions.

Much progress has been achieved in compactifying the heterotic superstring on

Calabi-Yau three folds, the problem is that the precise number of such three

folds is unknown, and indeed whether this is a finite number is also not known

although some are known to be related to each other by Mirror Symmetry. Also,

compactifications result in the presence of massless scalar fields, or moduli fields,

which should not be there as we know from experimental observations (for example

the dilaton or the radial modulus). Models have been constructed in which all

moduli fields are stabilised by flux compactifications, in which higher dimensional

fluxes are compactified to provide potentials for the moduli fields, but a complete

consistent reduction to the D = 4 Standard Model by a Kaluza-Klein reduction

is still to be achieved.

The alternative to the Kaluza-Klein method of taking very small compacti-

fied dimensions is the Brane-World Scenario. In this model the world we live in

is believed to reside on a three dimensional brane, which is itself embedded in

the full ten dimensional space-time. The fields of the standard model live on the

brane and only gravity is allowed to permeate the full space-time. Within the
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context of string theory this idea seems to have a natural explanation as open

strings, which generate the fields we see, would be stuck by their ends to the

three brane whilst only closed strings, which describe gravity through the gravi-

ton, can travel outside the brane in the full space-time. In fact, by making the

outside space-time warped one can find suitable models which solve the hierarchy

problem of the Standard Model, that is to explain the large differences in energy

scales between standard model sectors (for example why the quark masses are so

much lighter than the Planck scale, the scale at which quantum gravity effects

become important). This space introduces a warp factor which warps all scales

on the visible sector brane compared to the Planck scale (see [13,14] for a review

on the subject). Brane world scenarios also play an important role in models of

supersymmetry breaking where the idea of us living on an independent brane is

combined with a hidden sector brane, somewhere along an extra dimension of the

full space-time, in which supersymmetry breaking occurs and can be mediated to

us by an appropriate mechanism (see [15] for a review on the subject). Both the

Kaluza-Klein compactification method and the Brane-World Scenario are promis-

ing models for making contact between string theory and the real world. On one

side the major challenge is to determine exactly how many Calabi-Yau three fold

compactifications exist, and hence which one is the more promising one for phe-

nomenological models and how to consistently eliminate moduli fields from the

resulting theory. On the contrary, Brane-World Scenarios provide excellent can-

didates for resolving hierarchy issues but lack a complete understanding of their

high energy completion, there is no direct low energy string theory solution which

results in acceptable models of Brane-worlds, not to mention that branes have

never been directly observed.

Being theories at the order of the string scale, and thus at extremely high

energies, there is a more direct method of establishing some connection between

more accessible energy scales and superstring theories. If superstring theory de-

scribes a theory of quantum gravity at the order of the Planck scale, what is its

low energy limit? What do we obtain if we reduce the energy scale of superstring

theories manually? The answer to these questions has led to one of the greatest

theoretical discoveries of string theory and one which has important implications

for a concrete theory of everything. The low energy action of type IIA superstring
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theory is ten dimensional type IIA supergravity, its bosonic part consists of

S = SNS + SR + SCS (1.35)

where SNS involves fields from the NS sector and SR and SCS involve R-R

sector fields. More specifically,

SNS =
1

2κ2

∫
d10x
√
−ge−2Φ

(
R + 4∂µΦ∂µΦ− 1

2
|H3|2

)
(1.36)

with 2κ2 = 1
2π

(2πls)
8, Φ being the usual scalar field of superstring theory and

H3 is the three-form field strength,

SIIAR = − 1

4κ2

∫
d10x
√
−g
(
|F2|2 + |F̃4|2

)
(1.37)

where F2 and F4 are two-form and four-form field strengths with

F̃4 = dA3 + A1 ∧H3 (1.38)

and

SIIACS = − 1

4κ2

∫
B2 ∧ F4 ∧ F4 (1.39)

with B2 the R-R two-form. Similarly the low energy bosonic action of type IIB

superstring theory is type IIB supergravity, with equal SNS but different R − R
sector actions, which results from the difference in the R-R sector superstring

fields. The bosonic part of D = 11 supergravity is

S =
1

2κ2
11

∫
d11x
√
−G

(
R− 1

2
|F4|2

)
− 1

6

∫
A3 ∧ F4 ∧ F4 (1.40)

with κ11 the eleven dimensional gravitational coupling constant, and by com-

pactifying this on a circle and integrating out the modes in the compact dimension

one obtains the IIA supergravity action quoted above (1.37). Hence it seems that

the low energy limit of type IIA superstring theory corresponds to the compactifi-

cation of eleven dimensional supergravity, a natural question arises: since D = 10

supergravity is the low energy limit of D = 10 superstring theory, is this D = 11
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supergravity also a low-energy limit of some D = 11 theory? And fundamen-

tally, since all the superstring theories are related to each other via dualities, is

this high energy theory the high-energy limit of all superstring theories? The an-

swer is yes, to both questions. The eleven dimensional supergravity action, from

which one can achieve type IIA supergravity and by dualities all other low energy

limits of superstring theores, is the low energy limit of M-theory. M-theory is a

non-perturbative version of string theory that contains no strings, its name was

introduced by E. Witten but its true significance is unknown (“magical”, “myste-

rious”, “mother” and “membrane” are all candidates) . Precisely for this reason,

its lack of a perturbative expansion, it is not well understood but evidence for its

existence is overwhelming. This includes the interpretation of D0 branes in type

IIA superstring theory as the first Kaluza-Klein excitation states of the eleven

dimensional massless supergravity multiplet compactified on a circle. The mass

of the D0 branes is given by (lsgs)
−1 and the mass of the compactified eleven

dimensional supergraviton is

(MN)2 =

(
N

R11

)2

(1.41)

where N is an integer which describes a tower of states in the compactification.

Hence for the first state N = 1 we require that

R11 = lsgs. (1.42)

Therefore the radius of compactification is proportional to the string coupling

constant and hence the decompactification limit R11 → ∞ corresponds to the

strong coupling limit of type IIA superstring theory. This decompactification

limit should lead us directly to M-theory, as D = 11 supergravity is its low energy

limit. Hence the strong-coupling limit of type IIA superstring theory is nothing

but M-theory. Recall however that the fundamental objects of M-theory are not

strings, so indeed one can extend this correspondence further and postulate that

the fundamental string in type IIA superstring theory is simply derived from a

two-dimensional brane in M-theory wrapped on a circle. Similarly the D4 brane

would be a five dimensional membrane wrapped on a circle (the D6 brane doesn’t

follow this identification, being the magnetic dual of the D0 brane it is interpreted

as a Kaluza-Klein monopole in eleven dimensions). The dynamics of these M2
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and M5 branes, which are the fundamental objects of M-theory, has been cap-

tured in terms of trialgebras by Bagger and Lambert [16–18]. Further evidence

for the existence of this high-energy theory comes from dualities regarding the

heterotic string, where it is eventually shown that M-theory compactified on S1

Z2
is

dual to E8 ⊗ E8 heterotic string theory in ten dimensions. From these and many

more we can say there is compelling theoretical evidence that all superstring the-

ories are daughters to one fundamental high-energy theory in eleven dimensions.

The study of M-theory is complex due to its non-perturbative nature and to the

present day little is known about it.

Through the implementation of this web of dualities string theorists have linked

the five superstring theories together first, then all of these to a larger parent

theory called M-theory. This is a major achievement and indeed gives us hope

that if string theory is the way the universe works then we have truly made gigantic

steps towards its full understanding. However the story doesn’t end here. There

is a further duality arising from string theory which encapsulates the beautiful

essence of its dual gauge/gravity description. One knows that higher dimensional

supergravity theories, such as those derived in the low energy limits of superstring

theories possess gravitational solutions describing extended black-hole like objects

called p-branes. For theories such as superstring theory, where we have seen that

extended objects arise naturally as hypersurfaces on which string end points can

end, there is a natural interpretation in identifying the two. Polchinski [19] showed

that indeed p-branes and D−branes can be interpreted as the same objects, and

that therefore the latter arise naturally as gravitational solutions of superstring

theory. In this sense the D-branes are sources of geometry, and thus of gravity.

Now since gauge fields live on branes through string excitations, does there exist

a way to link the gauge theory derived from strings to the gravitational geometry

sourced by the branes the strings end on? Originally, the answer to this question

was derived by considering stacks of N parallel D3 branes. In general the link

works as follows: the near-horizon geometry of a collection of coincident D-branes

in the limit that this number is large is dual to the world-volume gauge theory

of the corresponding branes. For the specific case of a stack of N D3 branes, the

near horizon geometry corresponds to five-dimensional anti-de-Sitter space times
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a five-sphere

M = AdS5 ⊗ S5, (1.43)

and the low energy world-volume gauge theory is simply N = 4 Super-Yang-

Mills in four dimensions, which is conformal. The duality works as follows: the

integer N which is the number of stacked D3 branes corresponds to the rank of

the gauge group, the coupling constants from the string side and Yang-Mills side

are matched through the relation g2
YM = 4πgs, the radius of the AdS5 is related

to the t’Hooft parameter λ = g2
YMN of the gauge theory by R = λ

1
4 ls and the

generators of the Killing isomotries of the geometry correspond to the generators

of the superconformal group in four dimensions. Boundary values of bulk fields act

as sources for conformal operators in the dual field theory through the relation [20]

〈
e
∫
φ0O
〉

= e(−Sos[φ0]) (1.44)

where φ0 is the boundary value of the bulk field φ and Sos denotes the bulk ac-

tion evaluated on-shell. This duality, proposed by Maldacena [21], was named the

AdS/CFT correspondence and its implications are gigantic. It relates a strongly

coupled gauge theory to a theory of pure gravity. Through this correspondence

calculations in strong coupling non-perturbative regimes of field theory can be per-

formed by the dual gravitational picture, this is the essence of the developments

in understanding models of QCD [22] (AdS/QCD) in which strong coupling cal-

culations are essential and in condensed matter theory [23–25] (AdS/CMT ) in

which models of holographic superconductivity can be constructed by describing

a condensate in the field theory as a black hole developing a hairy profile in the

gravitational picture. These are just two of a vast literature of applications of

the correspondence, for a review see [26] . Whilst the duality remains a conjec-

ture and has not been fully proven it is widely accepted as true in the theoretical

community, with increasing number of calculations in the gauge and gravity side

confirming it.

In conclusion, already in its bosonic formulation by considering quantisation of

the open and closed string modes of oscillation string theory produced an ideolog-
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ically revolutionary and mathematically elegant theory of quantum gravity. The

graviton, the particle which mediates the force of gravity, appears naturally in the

spectrum of the closed bosonic string. However so do Tachyons, particles which

are unphysical and must be removed from the theory in order to make contact

with more realistic models of the universe. Furthermore, the theory is only free

of negative norm unphysical states in D = 26 dimensions, far greater than the

four we observe and contains no fermions. At this stage string theory seems only

a plausible idea but lacks the real mathematical modelling to describe anything

which is phenomenologically promising. When string theory is fused with super-

symmetry the idea takes a significant step further towards its goal. Superstring

theories consistently include fermions, the graviton and reduce the required num-

ber of dimensions to D = 10. But there are five of them, and which one should be

used to best describe nature? In fact, all superstring theories are part of a joined

picture through dualities. These include T-duality, which is a perturbative duality

between string theory compactified on a circle of radius R to a similar string the-

ory on α′

R
, and S-duality which relates weak coupling to strong coupling theories

via gs → 1
gs

. We observed that progress can be made in attempting to eliminate

the extra number of dimensions by Kaluza-Klein compactification and that the

most phenomenologically promising manifolds on which to compactify are of the

Calabi-Yau form. Through T-duality, which interchanges Neumann with Dirich-

let boundary conditions for strings, higher dimensional physical objects called

D-Branes were discovered and it was understood that these were simply the fa-

miliar p-brane solutions in supergravity known time before. Hence D-branes are

sources of geometry and therefore gravity and through their couplings to gauge

fields are also charged. Through them we constructed models which could indeed

describe more common features of the universe and resolve hierarchy issues, the

Brane-World Scenarios. We observed that the low energy effective supergravity

action of type IIA superstring theory can be interpreted as coming from a higher

dimensional D = 11 theory compactified on a circle. Through dualities we there-

fore postulated that the high energy limit of this theory is unique and common to

all string theories and that it describes their high energy unification into one par-

ent theory, called M-theory: the best candidate for a real Theory of Everything.

Finally we mentioned that there exists strong evidence for a further duality which

relates a gauge theory at strong coupling with a purely gravitational picture. The

AdS/CFT correspondence holds within it the potential for achieving the unthink-
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able, it gives hope to string theorists to test results directly in a laboratory.

Of all the areas touched on by string theory, of which the above are only some,

this thesis investigates aspects of non-abelian D-Brane world-volume dynamics

specifically focussing on the fate of Tachyons on unstable D-Branes. In sections 2

and 3 we provide an introduction to the specifics of the subject, with a detailed

derivation of the non-abelian DBI action of coincident D-Branes and an overview

of previous research on Tachyons and their abelian dynamics. We will present

here Sen’s conjectures [27] and illustrate the general method by which solitonic

solutions for the abelian Tachyon profile generate world-volume theories of co-

dimension branes. We also give a detailed presentation of Kutasov’s work [28]

on unstable D-Brane dynamics in the proximity of NS5 branes and introduce

the symmetry between this setup and that of the unstable Tachyon. Section 4 is

devoted to extending above investigations to their corresponding non-abelian the-

ories. The kink Tachyon solution is investigated in the case of multiple coincident

branes and next we demonstrate similar procedures for the case of a monopole

solution. Later in the section we investigate the idea of a geometrical Tachyon

interpretation in a multiple brane non-abelian set up. We will see here that there

are new non-trivial features arising from the non-abelianity of the system. Finally,

in section 5 we provide a summary of the conclusions obtained and point out areas

of further work.
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CHAPTER 2

THE EFFECTIVE TACHYON DBI

ACTION

1 The non-abelian DBI action of coincident Branes

In this section we derive the non-abelian action for N coincident Dp-branes by

T-dualising the non-abelian action for coincident D9-Branes. The end result is a

crucial starting point for further analysis in this thesis. The analysis follows [29]

to which the reader is referred to for complete details.

The theory of type IIA and type IIB superstrings contains many fields of vary-

ing rank. These include the string frame metric Gµν (note the change in notation

from the previous chapter gµν = Gµν), the dilaton φ and the anti-symmetric two-

form Bµν . As explained in chapter 1, these fields couple to higher dimensional

world volumes and this leads to a natural construction of appropriate actions for

D-Branes. The general argument for the analysis that will lead to the end result

is the following: we will start with the action generated by considering D9-branes

which are space-filling and thus have no transverse scalar fields and T-dualise in

directions along the world volume of the D-brane. This will give co-dimension one

Dp → D(p − 1) branes which will allow us to write the full action of D(p < 9)-

branes including the transverse scalar fields. To this purpose we recall the action

of T-duality on the background fields

G̃yy =
1

Gyy

, e2φ̃ =
e2φ

Gyy

(2.1)

G̃µν = Gµν −
GµyGνy −BµyBνy

Gyy

, G̃µy =
Bµy

Gyy

(2.2)

B̃µν = Bµν −
BµyGνy −GµyBνy

Gyy

, B̃µy =
Gµy

Gyy

(2.3)
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where y denotes the coordinate with respect to which T-duality is applied

whilst µ, ν denote the rest of the coordinate directions. To make contact with the

previously introduced geometric concept of T-dualizing, if y is made periodic on a

circle, i.e. y = y + 2πR then after T-duality the new radius becomes R̃ = α′

R
and

the coupling constant shifts by g̃s = gsls
R

. If we define a ten-dimensional matrix

Eµν = Gµν +Bµν (2.4)

then we can define the action of T-duality on multiple world-volume directions

i, j = p+ 1, ...., 9 on it by

Ẽab = Eab − EaiEijEjb, Ẽaj = EakE
kj, Ẽij = Eij, (2.5)

with a, b = 0, 1, ...., p denoting the remaining coordinate directions and Eij

being the inverse of Eij. Similarly the transformation of the dilaton takes the

simple form

e2φ̃ = e2φdet
(
Eij
)
. (2.6)

The starting point is the non-abelian D9-Brane action with U(N) symmetry

[29]

SDBI = −T9

∫
d10σTr

(
e−Φ
√
−det (Gab +Bab + λFab)

)
(2.7)

with T9 = 1
gs(2π)9(α′)5 , λ = 2πα′ and there is no need to include a pull-back

due to the absence of transverse scalar fields. Note that one can consistently

include the fermionic degrees of freedom in the DBI action and make it manifestly

supersymmetric, for simplicity we will not include the full fermionic DBI action

here. The DBI action makes one crucial assumption: that the fields are “slowly

varying”, i.e. it ignores higher derivatives of fields appearing in the action, this

approximation will be assumed throughout this thesis. As mentioned in chapter 1

the world-volume theory of N coincident branes admits non-abelian U(N) gauge

symmetry, captured by the usual non-abelian definitions for gauge fields, field
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strengths and covariant derivatives

Aa = AnaTn (2.8)

Fab = ∂aAb − ∂bAa + i[Aa, Ab] (2.9)

DaΦ
i = ∂aΦ

i + i[Aa,Φ
i], (2.10)

with Tn being N × N matrices satisfying Tr(TnTm) = Nδnm. Let us first illus-

trate why one cannot simply perform the non-abelianisation of the DBI action

manually, that is promoting fields to matrices, derivatives to covariant derivates,

field strengths to include commutators and taking an overall Trace. When we T-

dualise on a direction along the D-Brane world volume y = xp then the resulting

theory will be that of a D(p−1)-Brane with y being an extra transverse direction.

Therefore the role of the pth gauge field must switch to that of a transverse scalar

field

Ap → Φp (2.11)

which means that the corresponding p-component of the field strength becomes

Fap → DaΦp (2.12)

Therefore in the non-abelian case where Fab has an extra commutator term

the above relations show that T-duality transforms

DpΦ
i → i[Φp,Φi] (2.13)

and therefore this generates new world-volume interactions between the scalars

that would simply be missed by a conventional ad-hoc abelian to non-abelian

promotion of the fields. The complete process of promoting the DBI action to the

non-abelian case has to be performed by T-duality step by step. We proceed to

T-dualise on 9− p coordinates xi = p + 1, ...., 9 therefore if D = det(Eab + λFab)

then this becomes

D̃ = det

(
Eab − EaiEijEjb + λFab EakE

kj + λDaΦ
j

−EikEkb − λDbΦ
i Eij + iλ[Φi,Φj]

)
(2.14)
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and by defining the following matrix

Qj
i = δij + iλ[Φi,Φk]Ekj (2.15)

and using the fact that upon addition to a matrix of multiples of columns and

rows of the same matrix the determinant remains invariant 1 one can show that

the above determinant reduces to

D̃ = det
(
P
[
Eab + Eai

(
Q−1 − δ

)ijEjb]+ λFab

)
det(Eij)det(Qi

j). (2.16)

where P [Gab] = Gµν
∂xµ

∂σa
∂xν

∂σb
is the usual pull-back to the brane world volume.

Using the transformation of the dilaton

e−φ → e−φ√
Eij

(2.17)

the second factor in the determinant cancels from the overall resulting action and

integrating out the compactified directions we obtain the change in the tension

T9 →
9∏

i=p+1

(2πRi) (2.18)

which combined with the transformations for the radii and couplings

Ri →
l2s
Ri

gs → gs
l9−ps∏9
i=p+1Ri

(2.19)

gives an overall pre-factor which is exactly Tp = 1

gs(2π)p(α′)
(p+1)

2

. Hence combining

these results together we obtain the T-Dual action for N coincident Dp-Branes

SDBI = −Tp
∫
dp+1σTr

(
e−φ
√
−det (P [Eαβ + Eαi(Q−1 − δ)ijEjβ] + λFαβ) detQi

j

)
.

(2.20)

The second determinant contains the intrinsic non-abelian nature of the action

and provides the scalar potential for the theory, as can be seen from the interaction

1this is easily verified in the case of abelian entries for the matrix, but in the non-abelian
case this relation is not trivial and requires special care
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terms arising from its expansion in the flat space limit (Gµν = ηµν and Bµν = 0)

√
detQi

j = 1− λ2

4
[Φi,Φj][Φi,Φj] + .... (2.21)

The Chern-Simons action involving the R-R couplings to the D9-brane is

SCSD9 = µ9

∫
Tr
(
CeB+λF

)
10
. (2.22)

and its promotion to the non-abelian case follows the same procedure of T-

dualisation, the end result is quoted below for completeness but is not investigated

further in this thesis. The full result for the complete Chern-Simons coupling

action is

SCS = µp

∫
Tr
(
P [eiλiΦiΦC]eB+λF

)
(2.23)

where iΦ denotes the interior product by Φi regarded as a vector in the trans-

verse space. 2

2 Effective Tachyon DBI action

As previously stated, the distinguishing feature between stable (BPS) branes

and unstable (non-BPS) branes is the presence of a negative mass Tachyonic mode

in the spectrum of open strings on a non-BPS brane. Also, BPS branes are charged

under RR (p+1) form gauge fields of string theory, whilst non-BPS branes are not.

One would really like to investigate the dynamics of the Tachyonic mode, however

this is not an easy task. Since the mass of the Tachyonic mode is of the same

order of magnitude as that of the other heavy modes of the string, one cannot

simply work with a low energy effective action which results by integrating out

other heavy modes of the string. Nevertheless it is convenient to state the results

2Therefore, as an example, this operator acting on the two form C2 is simply

iΦiΦC2 = ΦjΦiC2
ij =

1

2
C2
ij [Φ

i,Φj ]. (2.24)
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of the analysis in terms of an effective action Seff (T, ...) obtained by integrating

out all positive mass fields. Here ... stands for the massless Bosonic fields. This

is the approach we will use here.

From the analysis of the D-Brane actions 2.20 above we can easily include this

mode into a Tachyonic effective action. For the abelian case [30]

ST = −Tp
∫
dp+1σV (T )

√
−det (Aµν) (2.25)

where

Aµν = ηµν + λ∂µT∂νT + λ∂µX
i∂νX

i + λFµν (2.26)

(note that we use gµν = ηµν and Bµν = 0) and V (T ) is the Tachyon potential

(which sometimes includes the tension Tp) which we will discuss later in this

section and X i denote the remaining transverse scalar fields. Here 0 ≤ µ, ν ≤ p

and (p + 1) ≤ I ≤ 9. Note how the Tachyon appears simply as an extra scalar

field supplemented by a suitable potential which must generate an instability.

This potential has three requirements

• it is symmetric under T → −T

• it has a maximum at T = 0

• its minima are at T = ±∞ where it vanishes.

These conditions are easily understood, a small displacement from around the

origin must grow exponentially, signifying an instability of the system. With these

conditions satisfied the above action 2.25 is expected to be a good effective field

theory description for the Tachyon field under the further conditions that T is

large and that second and higher derivatives of T are small. Hence we should

keep in mind that this is at best simply an approximation to the full Tachyon

action in string theory and it admits correction terms. Nevertheless, it is an

excellent starting point to describe Tachyon dynamics. Altough the exact form of

Tachyon potential is still unknown, there are different proposals in the literature.

For instance, the one which is consistent with S-matrix element calculation is
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given by [31]

V (T ) = T9 (1 + πα′m2T 2 +
1

2
(πα′m2T 2)2 +O(T 6)) (2.27)

with T9 the tension of the D9-brane and m2 = − 1
2α′

the Tachyon mass. The one

obtained from boundary string field theory (BSFT) computations is [32,33]

V (T ) = T9 e
−πα′m2 T 2

. (2.28)

In particular, the potential (2.27) can be obtained from (2.28) by expanding the

latter around the Tachyonic vacuum, T = 0. There has been a more phenomeno-

logically agreeable string theory result proposal which takes the form [34–36]

V (T ) =
Tp

cosh
(
T√
2

) , (2.29)

we will see the latter result being important in later sections of this thesis, but

for now choose to work with the most general form of the potential and simply

leave this as arbitrary. By making use of the pull-back notation we can extend

the action to the curved space case

ST = −
∫
dp+1σV (T )

√
−det (P [gµν +Bµν ] + λFµν + λ∂µT∂νT ) (2.30)

with P [gµν ] = gab∂µX
a∂νX

b which reduces to the previous action 2.25 in the

flat space limit gµν = ηµν , Bµν = 0 and the tension Tp is included in the Tachyon

potential. Its non-abelian generalisation follows closely the derivation of the co-

incident D-Brane action presented before. Hence we begin with the non-abelian

Tachyon effective action for coincident D9 branes, and apply T-duality rules to

derive the most general Dp-Brane Tachyon effective action. The Tachyon action

of two coincident D9’s is

S = −T9

∫
d10σTr

(
e−φV (T )

√
−det (Gµν +Bµν + λFµν + λ (DµTDνT +DνTDµT ))

)
(2.31)
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where we recognise the usual fields and

DµT =
∂T

∂σµ
− i[Aµ, T ]. (2.32)

This action has an overall U(2) symmetry. Note that from this action one

can arrive at an effective action for a Dp-anti-Dp-brane pair proposed in [30] by

projecting it with (−1)FL where FL is the spacetime left-handed fermion number.

In this case, the gauge group is U(1)× U(1) and so there are two massless gauge

fields A
(1)
µ and A

(2)
µ , a complex Tachyon field T and scalar fields XI

(1), X
I
(2) cor-

responding to the transverse coordinate of individual branes. In particular, the

action reads

S = −
∫
dp+1xV (T,XI

(1) −XI
(2))
(√
−detG(1) +

√
−detG(2)

)
(2.33)

where

G(i)µν = ηµν + 2πα′F (i)
µν + ∂µX

I
(i)∂µX

I
(i) + πα′(DµT )∗(DνT ) + πα′(DνT )∗(DµT ) .

(2.34)

This action has the nice property of admitting a vortex solution whose world

volume action is given by the DBI action of a stable D(p− 2)-brane [30].

In [37] another form of the effective action for a coincident non-BPS D9-brane

pair has been proposed. It is given in terms of the symmetrized trace3 [29, 38]

S = −Str
∫
d10xV (T )e−φ

√
−det (gµν12 +Bµν12 + 2πα′DµTDνT + 2πα′Fµν).

(2.35)

Various couplings in this action are consistent with the appropriate disk level

S-matrix elements in string theory. In the above action the Str prescription

means specifically that one has to first symmetrize over all orderings of terms

like Fµν , DµT and also individual T that appear in the potential V (T ), and thus

that the square root factor appearing in the action has to be understood as an

infinite series expansion. The Tr or Str forms of the action are thus very different

when one has carried out the individual symmetrizations mentioned above. As

3Str(M1 . . .Mn) ≡ Tr
∑
σ M1 . . .Mn where

∑
σ is a sum over all permutations of matrices

in M1 . . .Mn divided by n!.
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we discussed before, by projecting this action with (−1)FL one can obtain the

effective action of a D9-anti-D9-brane pair. However, for this action there are

no known solutions corresponding to a vortex whose world volume is given by

the DBI action of a stable D7-brane. This is symptomatic of a deeper difference

between the two prescriptions. As we will see in section 4 different choices for the

Trace prescription lead to significantly different results.

Even though the trace prescription may require a symmetric completion, mak-

ing it completely symmetric between non-abelian expressions of the form Fµν , DµT

and individual T ’s appearing in V (T ), the covariant derivative Tachyon terms ap-

pearing in 2.31 are written in symmetric form directly. Applying the standard

T-duality transformations on i = p+ 1, ......, 9 coordinates will yield the action for

coincident Dp branes. The gauge fields in these directions become

Ãi =
X i

λ
(2.36)

and the Tachyon remains unchanged, T̃ = T . Hence the covariant derivative

on the Tachyon field becomes

D̃iT̃ = − i
λ

[X i, T ] (2.37)

using the fact that under the transformation the transformed field must be

independent of the coordinates σi. The T-duality transformations are 2.1 with

F̃ab = Fab, F̃ai =
1

λ
DaX

i (2.38)

F̃ij = − i

λ2
[X i, Xj], F̃ia = −1

λ
DaX

i. (2.39)

The transformations of the determinant 2.16 result in

D̃ = det

(
Ẽab + λFab + λDaTDbT Ẽaj +DaX

j − iDaT [Xj, T ]

Ẽib−DbX
i − i[X i, T ]DbT Ẽij − i

λ
[X i, Xj]− 1

λ
[Xi, T ][Xj, T ]

)
(2.40)

which is the same expression as in 2.5 augmented with the Tachyon terms.
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Upon manipulations of the determinant one obtains

D̃ = det
(
P [Eab + Eai

(
Q−1 − δ

)ij
Ejb] + λFab + Tab

)
det(Qi

j)det(E
ij) (2.41)

which is exactly the result obtained before 2.16 with in addition some extra

Tachyon coupling terms of the form

Qi
j = δij −

i

λ
[X i, Xk]Ekj −

1

λ
[X i, T ][Xk, T ]Ekj

Tab = λDaTDbT −DaT [X i, T ](Q−1)ij[X
j, T ]DbT

− iEai(Q−1)ij[X
j, T ]DbT − iDaT [X i, T ](Q−1)jiEjb

− iDaX
i(Q−1)ij[X

j, T ]DbT − iDaT [X i, T ](Q−1)ijDbX
j

(2.42)

which gives the final non-abelian Tachyon DBI action as

ST = −Tp
∫
dp+1σ

× Tr

(
e−φV (T )V ′(T,X i)

√
−det

(
P [Eab + Eai (Q−1− δ)ij Ejb] + λFab + Tab

))
(2.43)

which we recognise as the usual action of N coincident branes with the extra

Tachyon couplings. The Trace prescription is symmetric in orderings of matrices.

It has been suggested however that the above Tachyon action is inconsistent

with Tachyon scattering calculations involving Tachyons carrying internal degrees

of freedom, as is the case here. Namely the Pauli Matrix factors carried by the

Tachyons cannot be ignored in amplitude calculations and give results which origi-

nate from a field theory which possesses Chan-Paton factors explicitly [39]. There-

fore the action needs to be modified to take this into account and the Tachyon

field is promoted to carry an internal Pauli matrix T i = Tσi with i = 1, 2. Then
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an action consistent with the above scattering calculations takes the form

SDBI = −Tp
2

∫
dp+1σSTr

(
V (T iT i)

√
1 +

1

2
[T i, T j][T j, T i]

×
√
−det

(
ηab + λFab + λDaT i (Q−1)ij DbT j

)) (2.44)

with

Qij = I2δ
ij − i[T i, T j]. (2.45)

The presence of the extra O(T 4) coupling comes from the Pauli matrix terms

carried by the Tachyon field. Here the trace prescription is written in terms of the

symmetrized trace STr to denote the symmetrisation procedure explicitly. The

potential has an expansion of the form 2.27. Note that in the case of the modified

action above one needs to calculate the full form of the pre-potential term

1

2
STr

(
V (T iT i)

√
1 + [T i, T j][T j, T i]

)
=

(
1− π

2
T 2 +

π2

24
T 4 + ....

)
(1 + T 4 + .....)

(2.46)

and hence the extra terms are not believed to change the overall sign of the

potential, which is therefore still expected to vanish as T →∞. Both 2.43 and 2.44

are the main forms of the actions we will use in the rest of the paper, from these

we will investigate Tachyon dynamics and, more generally, D-Brane dynamics in

String Theory. 4

4One should note that other forms have been suggested in the literature, one important one
with direct links to results presented below is that due to Kluson [40], which we won’t discuss
further
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ABELIAN TACHYON DYNAMICS

1 Tachyon Solutions and Sen’s Conjectures

The major question we are interested in in determining Tachyon dynamics is

whether the Tachyon potential V (T ) has a local minimum, and if it does, then

how does the theory behave around this minimum? The answer to this question

has been summarised by A. Sen [27] in three conjectures

• V (T ) does have a pair of global minima at T = ±T0 for the non-BPS Brane.

At this minimum the tension of the original D-Brane configuration is exactly

canceled by the negative contribution of the potential V (T ). Therefore

V (T0) + Tp = 0 (3.1)

where

Tp =
√

2(2π)−pg−1
s . (3.2)

Therefore the total energy density vanishes at the Tachyon minima.

• Since there is no energy density at the Tachyon minima T = ±T0 and be-

cause the non-BPS brane carries no RR charge it seems natural to conjecture

that the minimum describes a vacuum without any D-Brane. Hence upon

quantising the theory around this minimum we expect there to be no open

string states in the perturbation theory (as open strings must end on D-

Branes). This is of course not what we expected, since in conventional field

theories the number of perturbative states doesn’t change as we go from one

extremum of the potential to another.
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• Even in the absence of perturbative physical states in the minimum of the

potential there are non-trivial time independent classical solutions to the

equations of motion for the Tachyon derived from Seff (T, ...). The con-

jecture is that these solutions describe lower dimensional D-Branes. Some

examples include the following (the case of the kink solution and vortex so-

lution on the D anti-D brane pair will be investigated in detail further along

this thesis as they illustrate the general method to achieve their non-abelian

extensions):

1. The effective action admits a one-dimensional T (xp) kink solution, such

that the limits xp → ±∞ correspond to the limits T → ±T0, with the

solution interpolating between the two minima around xp = 0. Since

the energy density vanishes at T = ±T0 the energy density must be

concentrated around a (p−1) dimensional hypersurface around xp = 0.

Hence the kink solution describes a BPS D-(p-1)-Brane in the same

theory. This result will be shown in full later in this section.

2. The Brane-AntiBrane system admits a similar solution with the imag-

inary part of the Tachyon set to zero and the real part taking the kink

profile. This describes a non-BPS D(p − 1)-Brane, and is thus non

stable as compared to the above solution.

3. The Brane-AntiBrane system Dp− D̄p also admits vortex solutions for

the Tachyon field. Here the Tachyon is a function of two coordinates

xp and xp−1,

T = T0f(ρ)eiθ (3.3)

where

ρ =
√

(xp−1)2 + (xp)2, θ = tan−1

(
xp

xp−1

)
(3.4)

and the function f(ρ) has the property

f(∞) = 1, f(0) = 0. (3.5)

Hence the energy density of this solution vanishes as ρ→∞ and given

that the gauge fields fall off sufficiently quickly at large ρ then the net

energy density is concentrated around the ρ = 0 region. This is a co-

dimension two solitonic solution describing a BPS D(p − 2)-Brane in
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the same theory. This specific conjecture will also be verified explicitly

in subsequent sections of this thesis.

4. If rather than taking the case of the single brane we focus on a pair of

coincident non-BPS branes then, as we saw before, the effective field

theory around T = 0 contains a U(2) gauge field and the Tachyon field

contains four degrees of freedom contained in a two-by-two hermitian

matrix transforming in the adjoint representation of the gauge group.

From the standard theory of Chan-Paton factors we know that the (ij)

component of the matrix represents the Tachyon in the open string

sector beginning on the i-th D-Brane and ending on the j-th D-Brane.

There is a whole family of minima of the Tachyon potential found by

taking the Tachyon in the configuration

T = T0

(
1 0

0 −1

)
(3.6)

which represents Tachyons at their respective minima on either Brane.

Then the family of minima is obtained by performing an SU(2) rotation

of this configuration, to obtain minima of the form T = T0n̂iσ
i where

σi are standard Pauli matrices. This breaks the SU(2) part of the

gauge group down to a U(1). The theory thus describes a ’t Hooft-

Polyakov monopole solution, depending on three spatial coordinates xi

(i = 1, 2, 3) given by

T (xi) u T0
σixi
|xi|

, F a
ij(x

i) u εaij
xa

|xi|3
(3.7)

with F a
ij denoting the standard gauge field strength. The energy density

of the solution is concentrated around xi = 0 and it describes a BPS

D(p − 3)-Brane in the same theory. This solution is fully investigated

in section 4 of this thesis, an initial analysis is presented later in this

section.

Therefore, by combinations of the above results, if we start with sufficient

numbers of non-BPS D9-Branes or D9 − D̄9-branes we can describe any lower

dimensional D-Brane by giving the Tachyon profile a classical solitonic solution.
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These are in effect descent relations between p-dimensional branes.

Up to this point we have discussed time independent solutions for the Tachyon

field, however a vast literature on time-dependent configurations exists [35,41–58].

Indeed a natural question is what happens if one displaces the Tachyon from

the maximum of the potential and lets it roll down to a minimum? Also, since

D-Branes act as sources for closed string fields, a time dependent string field

configuration such as the rolling Tachyon acts as a time dependent source for

closed string fields, and thus produces closed string radiation. This radiation can

be computed with standard scattering techniques [36, 59–61] and has led to the

formulation of the open string completeness conjecture [62] which states that the

complete dynamics of a D-Brane is captured by the quantum open string sector

without need to consider the coupling of the system to closed strings. Indeed the

closed sector provides a dual description (details for this can be found in [27]).

Furthermore, rolling Tachyon solutions provide important avenues for Tachyon

driven inflation models [63–73]. We will not discuss the very interesting area of

time dependent cosmological Tachyon solutions further, however time dependence

plays a crucial part in the geometrical Tachyon interpretation of unstable D-Brane

systems as will be shown in section 2 of this chapter.

1.1 The classical Kink Solution and the D(p− 1)-Brane

We begin by analysing the descent relation Dp → D(p − 1) from a Tachyon

kink profile on a non-BPS Brane [30]. Therefore we start off with the action for

a non-BPS Dp brane 2.25. The energy momentum tensor associated with this

action is

T µν = −V (T )
(
A−1

)µν
s

√
−detA (3.8)

where the subscript s denotes that only the symmetric part of the matrix Aµν

is taken. When the Tachyon takes the kink profile, it depends on one coordinate
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x = xp only, hence the components of the energy-momentum tensor become

Txx = − V (T )√
1 + (∂xT )2

Tαx = 0

Tαβ = −V (T )
√

1 + (∂xT )2ηαβ

(3.9)

where α, β = 0, ...., p− 1. This results in the energy-momentum conservation

equation

∂xTxx = 0, (3.10)

i.e. Txx is independent of x. However, for the kink solution T → ±∞ as

x→ ±∞ and V (T )→ 0 in this limit, hence Txx must vanish as x→∞ and since

it is independent of x by 3.10 it must vanish for all x. This in turn implies that we

must have either T = ±∞ or ∂xT =∞ (or both) for all x. Therefore the solution

is singular, but as will be shown below has finite energy density. To work with

this singularity consider a field configuration of the form

T (x) = f(ax) (3.11)

where

f(−u) = −f(u), f ′(u) > 0 ∀u, f(±∞) = ±∞, (3.12)

and the constant a serves as the regularisation constant which will eventually

be taken to infinity to reproduce the singularity. Note that in the a→∞ limit we

recover precisely the singular behaviour of the kink solution. The a → ∞ limit

is a direct consequence of the nature of the DBI action. Being this an infinite

expansion higher order terms will have different scaling powers with respect to a

which do not remain under control. Taking a truncation of the action would yield

a regular kink solution. In this regularisation limit this ansatz for the Tachyon

field satisfies the Tachyon equations of motion and is thus a classical solution to

the system (see [30]). From the energy-momentum equations (3.9) Txx vanishes

in the a→∞ limit and

Tαβ = −aηαβV (f(ax))f ′(ax), (3.13)
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from which the integrated Tαβ associated with the codimension one soliton is

T kinkαβ = −aηαβ
∫ ∞
−∞

dxV (f(ax))f ′(ax) = −ηαβ
∫ ∞
−∞

dyV (y), (3.14)

where y = f(ax). Note that this depends only on the form of the potential

V (y) and not on the function f(ax), hence the energy-density result is independent

of the regularisation procedure used to derive it. Since y = f(ax) the greatest

contribution to the integral comes from a region of x of width 1
a

around x = 0,

which approaches a delta function as a→∞. Therefore

Tαβ = −ηαβδ(x)

∫ ∞
−∞

dyV (y) (3.15)

which is what we would expect from a D(p− 1)-Brane provided we associate

the integral
∫∞
∞ dyV (y) to its tension, i.e.

Tp = V (0), Tp−1 =

∫ ∞
−∞

V (y)dy. (3.16)

Hence, before analysing the world-volume theory of fluctuations around this

solution we have clear indication that the resulting theory is that of a codimension

D(p− 1) brane. Note however that we started with an action believed to be valid

in the limit that derivatives of the Tachyon are small. Therefore the above result

can in principle be spoilt be higher derivative Tachyon corrections. However, the

agreement between the properties of the soliton and those of the D(p− 1)-Brane

suggest that these higher derivatives arrange themselves so as not to spoil this

result.

Let’s proceed to investigate the theory of fluctuations for the bosonic fields

around the kink solution to reproduce the DBI action of the D(p−1)-Brane. The

general method of analysis presented here is central in derivations of results shown
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later in the thesis. Consider a fluctuation ansatz of the form

T (x, ξ) = f(a(x− t(ξ)))

Ax(x, ξ) = 0

Aα(x, ξ) = aα(ξ)

Y I(x, ξ) = yI(ξ)

(3.17)

where ξα for 0 ≤ α ≤ (p − 1) are coordinates tangential to the kink world-

volume. Hence fields denoted by lower case letters will be our fluctuations over

the upper case ones. We denote with Y I the remaining transverse scalar fields

(previously XI) to avoid confusion with coordinates xi. With this ansatz Aµν

defined in 2.26 (with units α′ = 1) yields

Axx = 1 + a2(f ′)2

Axα = Aαx = −a2(f ′)2∂αt

Aαβ = (a2(f ′)2 − 1)∂αt∂βt+ aαβ

(3.18)

with f ′ = f ′(a(x− t(ξ))) and

aαβ = ηαβ + fαβ + ∂αy
I∂βy

I + ∂αt∂βt (3.19)

where fαβ = ∂αaβ−∂βaα. This determinant can be easily evaluated by adding

multiples of the first row and first column to other rows and columns. Hence we

define
Âµβ = Aµβ + Aµx∂βt, Âµx = Aµx

Ãαν = Âαν + Âxν∂αt, Ãxν = Âxν
(3.20)

so that

det(A) = det(Â) = det(Ã). (3.21)

In components the matrix Ãµν reads

Ãxx = 1 + a2(f ′)2, Ãxα = Ãαx = ∂αt,

Ãαβ = aαβ
(3.22)
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and hence

det(A) = a2(f ′)2

(
det(a) +O

(
1

a2

))
. (3.23)

Substituting this into the action 2.25 (with the tension Tp absorbed inside the

Tachyon potential) we obtain in the a→∞ limit

S = −
∫
dpξ

∫
dxV (f)af ′

√
−det(a) (3.24)

which upon the change of variables y = f(a(x− t(ξ))) becomes

S = −Tp−1

∫
dpξ
√
−det(a) (3.25)

which is precisely the world-volume action of a BPS D(p−1)-Brane identifying

the field t as the coordinate xp associated with the p-the direction. But what about

other fluctuation ansatze for the fields? Will these lead to different results? There

is a nice argument due to Sen which shows that this is not the case. Consider the

more general ansatz

Y I(x, ξ) = yI(ξ) +
∞∑
n=1

fn(x− t(ξ))yI(n)(ξ)

Ax(x, ξ) = φ0(ξ) +
∞∑
n=1

fn(x− t(ξ))φ(n)

Aα(x, ξ) = aα(ξ) +
∞∑
n=1

fn(x− t(ξ))a(n)
α (ξ)− φ(x, ξ)∂αt,

(3.26)

where fn(u) obey the same condition of being smooth functions which vanish

at u = 0 and which are bounded (also including the points u = ±∞). Then it can

be shown that the resulting action will be independent of yIn(ξ), anα(ξ) for n ≥ 1

and φn(ξ) for n ≥ 0. Hence at the Tachyon vacuum a finite deformation of the Aµ

and the Y I leaves the action unchanged, and hence all such field configurations

are identified at a single point in configuration space. It is therefore postulated

that all such transformations are related to each other by a local transformations,

and hence all such deformations associated with φ(x, ξ),yIn(ξ) and anα(ξ) should be

regarded as pure gauge deformations.
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Therefore the soliton kink configuration for the Tachyon on a non-BPS Dp-

Brane describes the effective theory of a BPS D(p − 1)-Brane, as conjectured

in [27]. In Section 4 of this thesis we will investigate non-abelian kink solutions

on a pair of coincident non-BPS Branes and derive similar results on descent

relations linking pairs of non-BPS to pairs of BPS D-Branes. The next section will

demonstrate a very similar procedure to the above by analysing vortex solutions of

the D− D̄ brane system, this will serve as a perfect introduction to the monopole

analysis presented later in the same section.

1.2 Vortex Solution on the D − D̄ system

This section will perform a similar analysis to that of the kink solution on a

non-BPS D-Brane for the case of the vortex on a D − D̄ Brane-anti-Brane pair.

Apart from elucidating a key result on the main subject of this thesis it will re-

inforce the mathematical trickery presented previously, providing a very natural

next step in complexity of calculations which will lead nicely to the results pre-

sented in the later section on non-abelian Tachyon dynamics (see chapter 4). For

this setup, the Tachyon is complex as it originates from a string stretched between

the brane and the anti-brane, these having opposite orientations.

The starting point will be the Tachyon effective action on the brane-anti-brane

pair

S = −
∫
dp+1xV

(
T, Y I

1 − Y I
2

) (√
−detA1 +

√
−detA2

)
(3.27)

where

Aiµν = ηµν + F i
µν + ∂µY

I
i ∂νY

I
i +

1

2
(DµT )∗(DνT ) +

1

2
(DνT )∗(DµT ) (3.28)

and

F i
µν = ∂µA

i
ν − ∂νAiµ, DµT =

(
∂µ − iA1

µ + iA2
µ

)
T. (3.29)
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For small T the potential behaves as

V
(
T, Y I

1 − Y I
2

)
= Tp

[
1 +

1

2

(∑
I

(
Y I

1 − Y I
2

2π

)2

− 1

2

)
|T |2 +O(|T |4)

]
(3.30)

with Tp denoting the tension of the individual Dp-branes. The analysis for the

vortex solution proceeds in similar fashion to that of the kink, hence the energy-

momentum tensor is given by

T µν = −V
(
T, Y I

1 − Y I
2

) [√
−detA1

(
A−1

1

)µν
S

+
√
−detA2

(
A−1

2

)µν
S

]
(3.31)

with the subscript S denoting symmetrisation, and we will use a vortex ansatz of

the form

T (r, θ) = f̄(r)eiθ, A1
θ = −A2

θ =
1

2
ḡ(r) (3.32)

where r and θ denote the polar coordinates in the (xp−1, xp) plane and f̄(r) and

ḡ(r) are real functions of r which satisfy

f̄(0) = 0, f̄(∞) =∞, ḡ(0) = 0, ḡ′(0) = 0 (3.33)

and all other fields vanish. This background yields

−detA1 = −detA2 =

[(
1 + (f̄ ′)2

) (
r2 + f̄ 2(1− ḡ)2

)
+

1

4
(ḡ′)2

]
(3.34)

with ′ denoting differentiation with respect to r, and non-zero components of the

energy-momentum tensor given by

Tαβ = −2ηαβV (T )

√(
1 + (f̄ ′)2

) (
r2 + f̄ 2(1− ḡ)2

)
+

1

4
(ḡ′)2

Trr = −2V (T )
(
r2 + f̄ 2(1− ḡ)2

) /√(
1 + (f̄ ′)2

) (
r2 + f̄ 2(1− ḡ)2

)
+

1

4
(ḡ′)2

Tθθ = −2V (T )
(
1 + (f̄ ′)2

) /√(
1 + (f̄ ′)2

) (
r2 + f̄ 2(1− ḡ)2

)
+

1

4
(ḡ′)2

(3.35)
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with V (T ) = V (T, 0).

As per the kink solution, the energy conservation equation

∂µTµr = ∂rTrr = 0 (3.36)

means that Trr must be a constant, and since V (T ) vanishes exponentially at large

T we see that Trr vanishes there also unless ḡ(r) is singular. However it can be

shown [30] that ḡ varies monotonically between zero and one. This is achieved by

a careful consideration of how the function ḡ(r) must behave in order to minimise

the integrated energy momentum tensor and thus be a solution of the equations

of motion. Indeed if the function exceeds the value 1 in some range, then we

can replace it by another function equal to the original when this is less than

1 and equal to 1 when this is greater, which thus minimises
∫
drdθT00 further,

showing that the original ḡ(r) cannot be a solution of the equations of motion if

it exceeds 1. The same argument applies to the lower bound and the fact that

the function cannot have any local maxima. Hence Trr vanishes at infinity and by

the conservation equation, must vanish everywhere. This can either be achieved

if V (T ) = 0 or the denominator is infinite, which requires f̄ ′ and/or ḡ′ to be

singular. Now V (T ) is certainly not zero close to r = 0 so, in parallel to the kink

ansatz, we look for function profiles of the form

f̄(r) = f(ar), ḡ(r) = g(ar) (3.37)

and take the a→∞ limit to reproduce the singularity. In this limit we obtain

−detA1 = −detA2 u a2(f ′(ar))2

[
r2 + f(ar)2(1− g(ar))2 +

1

4

(
g′(ar)

f ′(ar)

)2
]

Tαβ u −2ηαβV (f(ar))af ′(ar)

√
r2 + f(ar)2(1− g(ar))2 +

1

4

(
g′(ar)

f ′(ar)

)2

Trr u −2V (f(ar))
r2 + f(ar)2(1− g(ar))2

af ′(ar)

√
r2 + f(ar)2(1− g(ar))2 + 1

4

(
g′(ar)
f ′(ar)

)2

(3.38)

note how indeed Trr vanishes in the a → ∞ limit as argued above. However the
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integral over (r, θ) of Tαβ gives the (p − 2 + 1) dimensional energy-momentum

tensor T vortexαβ on the vortex. Substituting the relations

y = f(ar), r̂(y) = a−1f−1(y), ĝ(y) = g(ar) = g(ar̂(y)) (3.39)

this reads

T vortexαβ = −4πηαβ

∫ ∞
0

dyV (y)

√
r̂(y)2 + y2(1− ĝ(y))2 +

1

4
ĝ′(y)2 (3.40)

which further simplifies to

T vortexαβ = −4πηαβ

∫ ∞
0

dyV (y)

√
y2(1− ĝ(y))2 +

1

4
ĝ′(y)2 (3.41)

in the a→∞ limit as r̂(y) vanishes when this is taken. Hence in similar fashion

to the kink solution the overall energy-momentum vortex tensor is independent

of the choice of f(y). However, it does depend on the shape of g(y), which is in

turn determined by its equation of motion

1

4
∂y

V (y)
ĝ′(y)√

y2(1− ĝ(y))2 + 1
4
ĝ′(y)2

+ V (y)
y2[1− ĝ(y)]√

y2(1− ĝ(y))2 + 1
4
ĝ′(y)2

= 0

(3.42)

Hence it is the potential V (y) which fully determines T vortexαβ . Most of the

contribution to the energy-momentum tensor is concentrated in a region in r

space of width 1
a

around the origin (this was also the case for the kink solution),

in the limit that a→ 0 we have

T vortexαβ = −4πηαβδ(x
p−1)δ(xp)

∫ ∞
0

dyV (y)

√
y2(1− ĝ(y))2 +

1

4
ĝ′(y)2 (3.43)

which can be interpreted as an energy-momentum tensor localised on a (p−2)-

dimensional surface. This agrees with the identification of the vortex solution as

a D − (p− 2)-Brane, where we recognise the tension of the brane as

Tp−2 = 4π

∫ ∞
0

dyV (y)

√
y2(1− ĝ(y))2 +

1

4
ĝ′(y)2. (3.44)
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This shows that at least at the level of energy-momentum the Tachyon vortex

solution on a Brane-anti-Brane corresponds to a BPS D(p− 2)-Brane in the same

theory. Note that if we take a BSFT potential profile of the form V (y) = V0e
−βy2

then 3.42 admits the analytic solution

g(y) = 1− e−
1
β
y2

(3.45)

which gives the following tensions for the Dp-branes

Tp−1 = V0

√
π

β

Tp−2 = 2π
V0√

1 + β2

(3.46)

in units where 2πα′ = 1 (the first result is derived from the kink relation for the

D(p− 1) tension 3.16). By making the choice V0 =
√

2Tp and β = 1 we obtain

Tp−1 =
√

2πTp
Tp−2 = 2πTp

(3.47)

which reproduce the correct descent relations.

As we did before for the kink, we now proceed to demonstrate this descent

relation in full by analysing the world-volume theory of fluctuations around the

vortex background. The coordinates transverse to the brane world-volume of the

vortex are denoted by xi with (p− 1) ≤ i ≤ p and those tangential to it as ξα for

0 ≤ α ≤ (p− 2) and re-express the vortex ansatz in Cartesian coordinates

A1
i = −Ai2 = h̄i(x), T (x) = f̄(x), (3.48)

where

h̄p−1(x) = − xp

2r2
ḡ(r), h̄p(x) =

xp−1

2r2
ḡ(r), f̄(x) = f̄(r), (3.49)

and r = |x|, x = (xp−1, xp). We take the following ansatz for the fluctuating
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fields

A1
i (x, ξ) = h̄i[x− t(ξ)], A2

i (x, ξ) = −h̄i[x− t(ξ)],

A1
α(x, ξ) = −h̄i[x− t(ξ)]∂αti + aα(ξ),

A2
α(x, ξ) = −h̄i[x− t(ξ)]∂αti + aα(ξ),

Y I
1 (x, ξ) = T I2 (x, ξ) = yI(ξ), T (x, ξ) = f̄ [x− t(ξ)],

(3.50)

with lower case letters denoting the fluctuation fields on the vortex world-

volume. Following calculations identical to that of the kink, evaluating the com-

ponents of the matrices A1,2 and adding rows and columns of the matrix to the

same matrix in the following way

Â(s)αν = A(s)αν + A(s)iν∂αt
i, Â(s)iν = A(s)iν

Ã(s)µβ = Â(s)µβ + Â(s)µj∂βt
j, Ã(s)µj = Â(s)µj

(3.51)

for 0 ≤ µ, ν ≤ p, one can show that the resulting action after taking the determi-

nant det(Ãs) becomes

S =− 2

∫
dp−1ξ

∫
drdθV (f(ar))af ′(ar)

×

√
r2 + f(ar)2[1− g(ar)]2 +

1

4

(
g′(ar)

f ′(ar)

)2

×
√
−detaαβ

(3.52)

where

aαβ = ηαβ + fαβ + ∂αy
I∂βy

I + ∂αt
i∂βt

i (3.53)

and r = |x − t(ξ)|, θ = tan−1[(xp−1 − tp−1(ξ))/(xp − tp(ξ))]. Performing the

integrals over r and θ this yields

S = −Tp−2

∫
dp−1ξ

√
−detaαβ (3.54)

which is the world-volume action on a BPS D(p − 2) brane, with ti and yI

interpreted as coordinates transverse to the brane, and aα as the gauge field on

the brane world-volume, as was the goal to show. Hence we have shown explicitly
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the descent relations working for the abelian cases of the kink on a single non-

BPS brane and the vortex on the Brane-anti-Brane system. The answer to the

natural question of what happens when one considers multiple branes and thus

a non-abelian promotion of such theories is explored in chapter 4 of this thesis,

which focusses on non-abelian kinks on multiple non-BPS brane systems and the

non-abelian monopole solution leading to a co-dimension D(p− 3)-Brane.

As shown in this section, one particularly interesting aspect of Tachyon dy-

namics that is captured by the various effective descriptions is the existence of

solitonic configurations of the Tachyon field [74], including singular Tachyon kink

profiles [30, 75–77] which describe codimension one BPS branes as well as more

exotic objects such as vortex solutions in Brane-anti-Brane systems.

More generally, Tachyon condensation has long been an interesting aspect of

D-brane physics (for a comprehensive review see [27]). Study of the dynamics

of open string Tachyons has provided a fertile arena for studying various aspects

of non-perturbative string theory. A growing body of research has developed in

open string field theory (for a review see [78] or [79, 80] for more recent works)

boundary string field theory, (BSFT) [32, 33, 81–85] and various effective actions

around the Tachyon vacuum [37,86–89] to demonstrate Sen’s results [90–94] con-

cerning the fate of the open string vacuum in the presence of Tachyons. In related

developments, it was also shown that D-brane charges take values in appropriate

K-theory groups of space-time. A major result is that all lower-dimensional D-

branes can be considered in a unifying manner as non-trivial excitations on the

appropriate configuration of higher-dimensional branes. In type IIB superstring

theory, it was demonstrated by Witten in [95] that all branes can be built from

sufficiently many D9-anti-D9 pairs. In type IIA superstring theory, Horava de-

scribed how to construct BPS D(p − 2k − 1)-branes as bound states of unstable

Dp-branes [74].

In the next section we aim to introduce the geometrical interpretation of the

Tachyon in the abelian setup and, as per the case of Tachyon descent relations

presented above, leave its non-abelian extension to a later section of the thesis.
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2 NS5 Branes and the Geometrical Tachyon

In previous chapters we have introduced the concept of S-duality as the trans-

formation that links weak to strongly coupled theories through inversion of the

coupling constant gs → g̃s = 1
gs

. In string theory it is the dilaton that plays

the part of the string coupling and, as we have seen, this appears in terms of an

exponential in D-Brane actions. Hence the S-duality inversion of the coupling can

be recast in terms of the dilaton by gs = eφ → g̃s = eφ̃ where φ̃ = −φ. This in

turn implies a re-definition of the string length, i.e. α′ = g̃−1
s α̃′ from which we

can deduce the action of S-duality on D-Branes by analysing the resultant dual

forms for the tension. Hence for example the D-String (or the D1-brane) tension

is mapped to

T1 =
1

2πα′gs
→ 1

2πα̃′
= T F1 (3.55)

which is the tension of the fundamental string in the dual string theory. Similarly

the D3-Brane tension is mapped to

T3 =
1

(2π)3α′2gs
→ 1

(2π)3α̃′2g̃s
= T̃3 (3.56)

which is the tension of a D3-Brane in the dual theory. The case of the D5 brane

in type IIB superstring theory is however more interesting, consider the map of

the D5-brane tension

T5 =
1

(2π)5α′3gs
→ 1

(2π)5α̃′3g̃2
s

= T F5 (3.57)

the dual tension is not the tension of a D5-Brane. In fact, since under the duality

the R-R two form is mapped to the NS-NS two form the latter brane is magneti-

cally charged under the latter. This type of brane is called an NS5 brane and it

is a soliton solution in the NS-NS sector of the theory [96].

Kutasov [97, 98] has presented intriguing links between systems of unstable

D-branes and the DBI effective action of open string Tachyon modes of non BPS

D-branes. The former can be considered for example as a probe BPS D-brane

moving in a background geometry which breaks all remaining supersymmetry.

An example of such a geometric background is that due to k coincident NS5
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branes [99]. It then emerges that one can associate the radial motion of the probe

brane in this background with that of the open string Tachyon of non BPS D-

branes. Such an association gives the former a geometrical interpretation, hence

the notion of ‘geometric Tachyons’, as we will shortly show.

We consider a stack of k NS5 branes in type II string theory, then although D-

Branes might be BPS their motion in the vicinity of the stack is unstable since the

NS branes and D-Branes preserve different halves of the now completely broken

supersymmetry. This is indeed not surprising as the gravitational picture formed

by the stack is that of an infinite throat along which the string coupling grows

without bound, which denotes a physical instability.

Let us proceed to study the abelian system in a bit more detail (see [97]),

this will serve as a good illustration for the later section in which the non-abelian

generalisation is presented. The stack of k parallel NS5 branes is extended in

(x1, x2, ....x5) directions and localised in (x6, .....x9) directions. We are interested

here in the dynamics of a BPS Dp-brane in the vicinity of the NS5’s, we take

this brane to be parallel to the fivebranes and pointlike in directions transverse to

it. We label the world-volume of the brane by xµ where µ = 0, 1, ....p with p ≤ 5.

The background fields around k parallel NS5 branes are

ds2 = GABdx
AdxB = ηµνdx

µdxν + δmnH(xm)dxmdxn (3.58)

e2(Φ−Φ0) = H(xm)

Hmnp = −εqmnp∂qΦ (3.59)

where the index A = (µ,m) with m denoting the transversal directions. The

function H(xn) is the harmonic function describing k five-branes, Hmnp is the

field strength of the Kalb-Ramond B-field and Φ is, as usual, the dilaton field.

For coincident NS5 branes the harmonic function H(xn) reduces to

H = 1 +
kl2s
r2

(3.60)

where r = |~x| is the radial coordinate away from the five-branes in the transverse

R4 labeled by (x6, · · · , x9) and ls =
√
α′ is the string length. The dynamics of

transverse scalar fields on the D-Brane (X6(xµ)......, X9(xµ)) is governed by the
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DBI action

Sp = −Tp
∫
dp+1σe−(φ−φ0)

√
−det (Gµν +Bµν) (3.61)

where the standard pull-back 2.16 on the fields inside the determinant is im-

plied. As mentioned in chapter 2 this action is expected to be reliable for the case

of small string coupling, i.e. eφ << 1, which in this case is not a trivial constraint

as we will soon see. We consider the special case where all the fivebranes are placed

at xm = 0 and we restrict to purely radial fluctuations of the Dp-Brane in the

transverse R4 labelled by xm. For this case there is only one excited field on the

brane: R(xµ) =
√
XmXm(xµ), and the B field vanishes. With this simplification

the induced metric takes the form

Gµν = ηµν +H(R)∂µR∂νR (3.62)

and the DBI action becomes

Sp = −Tp
∫
dp+1x

1√
H

√
1 +H(R)∂µR∂µR. (3.63)

This is similar to the Tachyon DBI action 2.25 with the field strength Fµν and the

remaining transverse scalar fields XI vanishing and in fact one can map one into

the other using the relation

dT

dR
=
√
H(R) =

√
1 +

kl2s
R2

(3.64)

where the Tachyon potential becomes

V (T ) =
Tp√

H(R(T ))
. (3.65)

This map has an analytic solution given by

T (R) =
√
kl2s +R2 +

1

2

√
klsln

√
kl2s +R2 −

√
kls√

kl2s +R2 +
√
kls

(3.66)

up to an additive constant. In the limit of close proximity R → 0 and being far
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away from the brane stack R→∞ the solutions become

T (R→ 0) u
√
klsln

R√
kls

T (R→∞) u R

(3.67)

which give limiting behaviours for the Tachyon potential as

1

Tp
V (T → −∞) u exp

(
T√
kls

)
1

Tp
V (T →∞) u 1− kl2s

2T 2
,

(3.68)

and therefore for large positive T we recognise the long range gravitational at-

traction between the D-Brane and the fivebranes. In the opposite case, where

T → −∞ the potential vanishes exponentially. Note that even in proximity of

the fivebranes there is no perturbative string Tachyon, as indeed no fundamental

string can stretch between the D-Branes and the NS5 branes. Hence in this case

the Tachyon field acquires a geometrical meaning as the radial distance between

the D-Brane and the fivebranes.

This system has interesting solutions to the equations of motion for the radial

mode

Ṙ2 =
1

H
−
T 2
p

E2H2
(3.69)

where E is the conserved energy of the system, for the case of vanishing angular

momentum and in the region R <<
√
kls one can solve this exactly and obtain

1

R
=

Tp
E
√
kls

cosh
t√
kls

(3.70)

where t = 0 is (by choice) the time at which the D-Branes reach maximal dis-

tance from the fivebrane stack. Substituting this into 3.58 we can determine the

behaviour of the dilaton (and thus of the string coupling) as a function of time

eΦ =
gsTp
E

cosh
t√
kls

(3.71)
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and thus we see that the above solution is only reliable when gsTp << E << Tp
where we are safely in the eΦ << 1 region in which quantum effects are not

important. Whilst the solution remains valid, it describes oscillatory motion1 of

the Dp-Branes which go from one side of the fivebranes to the other, passing

through them twice in each cycle. Under the geometrical Tachyon mapping (R→
T ) this dynamics has interesting analogues in rolling Tachyon solutions. Indeed it

appears that as the D-Brane approaches the fivebranes it behaves as a pressureless

fluid, which is very similar to late time behaviour of unstable D-Branes. Also, due

to the open-closed completeness conjecture presented above (see discussion above

section 1.1 of this chapter) we can interpret the D-Brane as shedding energy into

modes which live on the NS5 branes as it approaches them.

Kutasov’s original model was further investigated and extended in [76, 100–

112]. Cosmological applications of geometrical Tachyons were considered in [76,

113–118] following Sen’s original rolling Tachyons ideas in [45]. A subsection of

chapter 4 is dedicated to extending this study to the case of parallel Dp-Branes

approaching the stack of NS5’s, we will show that new non trivial dynamics is

seen and investigate further the meaning of the geometrical Tachyon map in a

non-abelian context.

1the oscillation is in proper time τ , i.e. with regards to an observer on the Branes, where
−dt2 = G00dτ

2
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NON-ABELIAN TACHYON

DYNAMICS

1 Non-Abelian Tachyon Kink

In chapter 3 [30], the world-volume theory of the singular kink soliton so-

lution (suitably regularised) where a single real Tachyon field ‘condenses’ on a

single non-BPS D-brane in a flat background was investigated using the effective

Dirac-Born-Infeld (DBI) framework. Remarkably, it was shown that the effective

theory of fluctuations about the Tachyon kink profile, that depends only on a

single spatial world-volume coordinate, are precisely those of a co-dimension one

BPS brane. Furthermore, it was also shown that in brane-antibrane systems, in

which a single complex Tachyon field is present, vortex solutions to the equations

of motion exist, that naturally depend on two spatial worldvolume coordinates.

Analysis of the fluctuations in this case show that they describe a co-dimension

two BPS D-brane. Monopole solutions in certain truncations of Tachyon models

have also been found and initial investigations suggest that the corresponding ef-

fective theory of fluctuations about this background correspond to co-dimension

three BPS D-branes [119] (see the next section).

In this section we wish to investigate the process of Tachyon condensation

starting from the effective description of two coincident non-BPS D9-branes as

proposed by Garousi in [86] (see chapter 2, equation 2.31). As we mentioned

previously, this theory describes a non-abelian version of the DBI action in which

the Tachyon field transforms in the adjoint representation of the U(2) gauge sym-

metry of the coincident non-BPS D9-brane world volume action. Crucially, in the

original construction of this action and its generalisation to coincident non-BPS

Dp-branes, a standard trace prescription (which we denote as Tr) was taken over
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the gauge indices. Another prescription, motivated by string scattering calcula-

tions (at least to low orders in α′ [29,38]) is to take the symmetrized trace (which

we denote by Str) over gauge indices. In both cases the expression being traced

over is the same but the Str prescription results in significantly more compli-

cated terms in the action compared to Tr (see the discussion in chapter 2, below

equation 2.31).

The effective theory of coincident non-BPS D9-branes is the simplest example

of a multiple non-BPS brane action since there are no matrix valued coordinate

fields present perpendicular to the branes. We shall show that singular Tachyon

profiles exist which can be regularised in a way that preserves the U(2) symme-

try. We will see that studying the most general fluctuations about this profile

yields precisely the non-abelian DBI action of two coincident D8-branes. The

only caveat is that our proof relies on assuming the standard Tr as opposed to

the Str prescription for tracing over gauge indices in the DBI action of both

the non-abelian non-BPS D9-brane action and the non-abelian D8-brane action.

Whilst it is possible that Tachyon condensation in the non-BPS action using Str

could lead to the Str form of the action for two coincident D8-branes [29,38], the

exact mechanism for this to happen seems beyond a straightforward extension of

the method Sen used in the case of a single non-BPS brane [30]. In this sense the

Str prescription presents a challenge for non-abelian Tachyon condensation and

deserves further investigation.

As a simple check of the non-abelian Tachyon condensation we also consider

the case of non-abelian Tachyon kinks where the U(2) symmetry is spontaneously

broken to U(1) ⊗ U(1). The resulting effective theory of fluctuations is shown

to lead to the sum of two DBI actions of separate BPS D8-branes, as expected.

The structure of the following sections is as follows. First, we study regularised

kink profiles in the matrix valued Tachyon field that preserve the U(2) symmetry

and derive the effective world volume theory of its fluctuations. Here we also

discuss the issues of Tr vs Str prescriptions and why the latter seems problematic

as far as Tachyon condensation is concerned. Finally we extend these results to

kink profiles that spontaneously break U(2)→ U(1)⊗ U(1).

We begin our calculations by working with the action 2.31, we retain the Trace

prescription throughout the analysis. To simplify our calculations we set Bµν = 0,
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gµν = ηµν = (−1, 1, . . . , 1) and take a constant dilaton φ consistent with the flat

background. We also set the gauge fields to zero. The latter will be reintroduced

when we consider fluctuations around the kink solution.

1.1 Energy-momentum tensor and equations of motion

In this section we shall compute the energy-momentum tensor and the equa-

tions of motion associated with the actions (2.31) and (2.35). In particular the

energy-momentum tensor associated with the action (2.31) is given by

Tµν = −Tr V (T )
√
−detGG−1

{µν} (4.1)

where curly brackets denote symmetrisation and we defined

Gµν ≡ ηµν +Bµν + πα′(DµTDνT +DνTDµT ) + 2πα′Fµν . (4.2)

A similar expression holds for the symmetrized trace form of the action but with

Tr replaced by Str.

Following Sen [30], we show that the kink solution consistent with the energy-

momentum conservation and the equations of motion (e.o.m) is given by

T (x) = f(a
x√
α′

)12 = f(a
x√
α′
12) (4.3)

with gauge fields set to zero, x ≡ x9 a direction longitudinal to the system and a

an arbitrary dimensionless constant that we should take to infinity at the end. The

function f(u) can be any real function with the property that f(u→ ±∞)→ ±∞
and f ′(u) > 0, ∀u. As a matter of fact, eq. (4.3) is a way of regularizing the

Tachyon singular solution (as per the abelian case) which comes from the energy-

momentum conservation condition ∂xTxx = 0: the latter implies that

Txx = −Tr V (T )√
1 + 2πα′∂xT∂xT

(4.4)

must be independent of x. Therefore, since for x → ∞ we have that Txx → 0
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then1 Txx = 0, ∀x. We conclude that T is singular, namely

T = ±∞ and/or ∂xT = ±∞ ∀x (4.5)

and this singularity is regularized by taking the constant a in (4.3) to infinity.

However, one can also show that this kink solution has finite energy density re-

gardless of the way of regularizing the singularity.

Let’s compute now the equation of motion for the Tachyon (keeping the gauge

fields non-zero), in particular, varying eq. (4.3) w.r.t. T we obtain:

πα′Dρ

(
V (T )

√
−detG (G−1)µν(DνTδ

ρ
µ +DµTδ

ρ
ν)
)
− ∂V (T )

∂T

√
−detG = 0 (4.6)

where we use the properties of the trace to permute all the various sources of δT

factors that arise in the variation of the action. When one uses the symmetrized

trace form of the action (2.35) the equations of motion for T are:

Σσ

[
πα′Dρ

(
V (T )

√
−detG (G−1)µν(DνTδ

ρ
µ +DµTδ

ρ
ν)
)
− ∂V (T )

∂T

√
−detG

]
= 0

(4.7)

where
∑

σ accounts for all symmetrical permutations of the matrices inside the

squared brackets in the previous expression.

We now verify that the kink solution eq. (4.3) satisfy the equation of motions

(4.6) in the a→∞ limit. In this case:

Gµν = ηµν + 2πα′∂µT∂νT =


−1 0 . . . 0

0 1 . . . 0
...

. . . . . .
...

0 . . . 0 (1 + 2a2π(f
′
)2)

⊗ 12 (4.8)

where ′ denotes differentiation w.r.t. the dimensionless argument of f . It follows

that

−detG = 1 + 2a2π(f
′
)2 ≈ 2a2π(f

′
)2 (4.9)

1Recall that for a kink solution limx→∞ T →∞ and we assumed that the Tachyon potential
is zero at infinity.
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and

(G−1)µν =

[
ηµν +

(
1

1 + 2a2π(f ′)2
− 1

)
δµxδ

ν
x

]
⊗ 12 . (4.10)

Substituting eqs. (4.3), (4.9) and (4.10) into eq. (4.6) one obtains

2πα′∂x

(
V (T )

√
−detG (G−1)xx∂xT

)
− ∂V (T )

∂T

√
−detG

= 2π
√
α′∂x

(
V (T )

1√
1 + 2a2π(f ′)2

af
′

)
− ∂V (T )

∂T

√
1 + 2a2π(f ′)2

≈
√

2πα′∂xV (T )−
√

2πaf
′ ∂V (T )

∂T
= 0 (4.11)

where in the last step we have taken the large a limit. Notice that since the solution

(4.3) is such that both T and DxT commute (indeed they are both proportional

to the identity in group space), then it is equally a solution of the equations of

motion derived from the Str procedure eq. (2.35) in the background in which the

gauge fields are set to zero.

1.2 Study of the fluctuations

We proceed to study the fluctuations around the solution (4.3) which preserve

the U(2) symmetry. These fluctuations correspond just to shifts in the argument

of the function f(a x√
α′

). The analysis is similar to chapter 3 [30], however, we

now have two copies of the usual abelian Tachyon profile filling out the diagonal

elements of the matrix Tachyon field, thus representing the two coincident D8-

branes.

• T = f( a√
α′

(x− t(ξ)))12

As a warmup calculation we consider a fluctuation of the type

T = f(
a√
α′

(x1 − t(ξ)))12 , (4.12)

where ξα denotes all the coordinates tangential to the kink world-volume

and t(ξ) the field associated with the translational zero mode of the kink.

Taking the group trace, Tr or Str, in the action (2.31) or (2.35) in the case

where the Tachyon profile and its derivatives are proportional to the identity
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as in eq. (4.12), will thus give us two identical D8-brane actions1. Indeed,

for the fluctuation (4.12),

−detG = 1 + 2πa2(f ′)2 (1 + ηαβ∂αt∂βt) (4.13)

and we obtain

S = −Tr
∫
d9ξ dx V (f)

√
2πaf ′

√
1 + ηαβ∂αt∂βt

= −2
√

2πa

∫
d9ξ dx V (f)f ′

√
1 + ηαβ∂αt∂βt (4.14)

and by a substitution y = f( a√
α′

(x− t(ξ))) one finds

S = −2
√

2πα′
∫ ∞
−∞

dyV (y)

∫
d9ξ
√

1 + ηαβ∂αt∂βt (4.15)

which upon the identification T8 =
√

2πα′
∫∞
−∞ dyV (y) we recognize as the

action describing two identical D8-branes (with no separation) with a single

translational fluctuation mode t(ξ) turned on.

• T = f( a√
α′

(x12 − ta(ξ)σa))

Of course it is well known that the full DBI action for coincident BPS D8-

branes should involve a nonabelian theory in which the single coordinate

perpendicular to the D8-brane worldvolume is a U(2) matrix-valued field

and the resulting action has local U(2) gauge invariance. Thus we would

like to show how such an action appears by looking at the most general

fluctuations around our original kink solution T = f( a√
α′
x)12. To this end,

let us keep the fluctuations in the gauge field zero for the time being and

consider fluctuations of the Tachyon profile of the form:

T = f(
a√
α′

(x12 − ta(ξ)σa)) (4.16)

where σa = (σ0 = 12, σ
i), σi being the Pauli matrices and we should regard

f as a matrix-valued application expressed as an infinite power series of its

argument. The above ansatz for the fluctuations is a natural non-abelian

1Note that in the determinant under the square root the symmetric DµTDνT term is auto-
matically diagonalized in the gauge indices.
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generalization of the one that Sen used to describe fluctuations of regularized

Tachyon kink in the abelian case [30].

If in the first instance, we make use of the quadratic approximation for the

determinant:

detGµν = 12 + 2πα
′
∂µT∂

µT +O(α
′2) (4.17)

the action in the large a limit becomes

S = −Tr
∫
d10xV (f)

√
2πa

√
f ′2
√
12 + ∂αt∂αt (4.18)

where t is the U(2) matrix taσa.

In obtaining the above we have implicitly assumed that ∂αf = − a√
α′
f ′∂αt

while ∂x f = a√
α′
f ′ is identically the case since the dependence on x is

via the unit matrix 12 in f . In fact, there is a subtlety associated with

the former relation: since ∂αt and t do not commute in general, there is an

ordering issue that means that for general functions f , differentiating w.r.t.

ξα one cannot simply use the chain rule and express the result as − a√
α′
f ′∂αt.

There will be various symmetric ordering of ∂αt and t that spoil this.

However there is at least one example, namely when f(u) is linear in its

argument (with positive coefficient so that f ′ > 0 everywhere as required)

where the chain rule will hold and no ordering problems occur when differ-

entiating.

The linear form of f has another interesting feature. If we had started with

the Str form of the action, then as discussed above this implies symmetriza-

tion w.r.t. Fµν , DµT and T . For linear f we see that it follows that this

Tr procedure immediately implies a similar Str procedure where we replace

T with t. This is exactly what we would expect if we require that the Str

procedure is the one that correctly describes coincident D8-branes with t

the single transverse coordinate to the world volume.

Finally it is interesting to observe that as pointed out in [30], the linear

Tachyon profile seems to play and important role in the BSFT description

of Tachyon vortex solutions discussed in [32,33].

For all these reasons the linear form of f seems to be singled out as being

special. For now we will leave f in its generic form but bear in mind these
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issues.

The action (4.18) looks of the right form, i.e., it is a non-abelian DBI action

(though with the gauge field fluctuations yet to be included). However, one

faces taking the square root of the function f ′2 which is matrix valued and

is thus non trivial. One has to diagonalize the matrix f first in order to take

its square root and obtain a closed form expression. The terms inside the

second square root part of the action are proportional to the identity and

so we can diagonalize them by a U(2) transformation directly 2:

S = −
√

2πa Tr

∫
d10xV (f)

√
f ′2
√
12 + ∂αt∂αt

= −
√

2πa Tr

∫
d10xU † V (f)U U †

√
f ′2U

√
12 + ∂αt∂αt

= −
√

2πa Tr

∫
d10xV (U †fU)

√
U †f ′2U

√
12 + ∂αt∂αt . (4.19)

Now,

U †f(
a√
α′

(x12 + ta(ξ)σa))U = f(U †
a√
α′

(x12 + taσa)U)

= f

(
a√
α′

(
(x+ t0)12 + U †tiσiU

))
= f

(
a√
α′

(
(x+ t0)12 +

√
tataσ3

))
.(4.20)

This diagonalization then describes a matrix of the form:

U †f(
a√
α′

(x12 + ta(ξ)σa))U =

 f
(

a√
α′

(x+ t0 +
√
tata)

)
0

0 f
(

a√
α′

(x+ t0 −
√
tata)

) 
≡ D(f1, f2) (4.21)

2Note that whilst the results following from this action are for general f , in order to write
this action in the first place one assumes that either f is linear or the DBI action arranges itself
so as to be possible to factorise powers of f ′ in the way written in this action
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where

f1 = f

(
a√
α′

(x+ t0 +
√
tata)

)
,

f2 = f

(
a√
α′

(x+ t0 −
√
tata)

)
.

We also note that the matrix used to diagonalize f only depends on the

variables ti(ξ) which means that U †f ′U = (U †fU)′ and so the action (4.19)

becomes

S = −
√

2πa Tr

∫
d10xD(V (f1), V (f2))D(f ′1, f

′
2)
√
12 + ∂αt∂αt

= −
√

2πa Tr

∫
d10xD(V (f1)f ′1, V (f2)f ′2)

√
12 + ∂αt∂αt . (4.22)

Substituting for the variables y = f1 and z = f2 we obtain the generalization

of Sen’s procedure for the non-abelian case:

S = −
√

2πα′Tr

∫
d9xD

(∫ ∞
−∞

dyV (y) ,

∫ ∞
−∞

dzV (z)

)√
12 + ∂αt∂αt

= −T8 Tr

∫
d9x
√
12 + ∂αt∂αt (4.23)

which we recognize as the non-abelian DBI action for the coincident D8-

branes (with gauge fields set to zero) upon identifying the tension T8 =√
2πα′

∫∞
−∞ dyV (y). In order to be sure that in the a → ∞ limit one really

is in the vacuum of the theory we must look at the potential for the matrix

form of T : the requirement that V (f(±∞)) = 0 is enough to ensure that.

Now one might also try and arrive at the Str form of the above action, by

starting with the Str form of the Tachyon action for non-BPS D9-branes

(2.35). The terms inside the square root part of the action are diagonal in

U(2) space and so one can imagine expanding out the square root factor

in a power series and them symmetrizing over terms involving ∂αT and

T in V (T ). The problem one encounters then is that integrating over dx

by making the change of variables as above does not look feasible due to

the non-commutation between f and ∂αt terms. That is, even using the

cyclic properties of Tr, terms obtained through Str cannot be factorized

into terms involving just powers of f times those involving ∂αt. Therefore,
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it seems that a straightforward generalization of Sen’s procedure to show

that non-abelian Tachyon condensation via kink solitons in coincident non-

BPS brane theories gives rise to coincident Dp-branes is only possible in the

Tr prescription rather than Str. It is interesting to see here a parallel to the

problem of Str vs Tr prescriptions in trying to realize vortex (as opposed

to kink) solutions in brane-antibrane systems obtained from coincident non-

BPS D9-branes [37].

Working within the Tr prescription, let us now proceed to include the gauge

field fluctuations and to go beyond the quadratic approximation of the deter-

minant used before, to include all higher order terms. We take the following

ansatz for the gauge fields [30]:

Ax(x, ξ) = 0 , Aα(x, ξ) = a(ξ)aασa , (4.24)

Now let us pause briefly to comment on the action of the covariant derivative

Dα on the function f appearing in the ansatz eq. (4.16) for the Tachyon kink.

Just as we mentioned earlier when discussing the action of ∂α on f , the

commutator terms [Aα, f ] cannot, in general, easily be expressed in terms

of f ′ and [Aα, t] which is what we would have hoped if we are to promote

the action eq. (4.23) to one that is locally U(2) invariant. There are again

ordering issues arising form the non-commutativity of [Aα, t] and t. Taking

f(u) linear in its argument avoids this as before. For now let us just keep

f in our expressions but have in mind that it is likely to be constrained

to be linear if we assume that DαT = − a√
α′
f ′Dαt. We can proceed with

calculating the determinant of the matrix in the action using the ansatz

(4.16) for the Tachyon field and (4.24) for the gauge fields. We obtain

Gxx = (1 + 2πa2f ′2) (4.25)

Gαx = −2πa2f ′2Dαt (4.26)

Gαβ = πa2f ′2(DαtDβt+DβtDαt) + aαβ (4.27)

where aαβ = ηαβ + 2πα′Fαβ. Now we can make use of Sen’s trick [30] of

adding rows and columns of the same matrix to simplify the computation
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of the determinant. In particular, we have

Ĝµβ = GµβI2 +
1

2
GµxDβt+

1

2
DβtGµx (4.28)

Ĝµx = Gµx (4.29)

and finally:

G̃αν = ĜανI2 + ĜxνDαt (4.30)

G̃xν = Ĝxν (4.31)

from which we obtain

G̃xx = (1 + 2πa2f ′2)12, G̃xα = G̃αx = Dαt(ξ)
aσa, G̃αβ = ãαβ (4.32)

where

ãαβ = aαβ +Dαt
a(ξ)Dβt

b(ξ)σaσb . (4.33)

This means that overall

det(G̃µν) = det(Gµν) = 2πa2f ′2det(ãαβ) +O(
1

a2
) . (4.34)

The last equation is precisely the generalization of the result Sen obtained

to the case of local U(2) gauge covariant quantities. Note that in the above

manipulations we have taken f ′ to commute through expressions involving

U(2) matrices. For general f this would not be the case but for linear f , f ′

is simply proportional to the 2 × 2 identity matrix as noted earlier, so this

is justified.

We can now substitute this result into the action to obtain

S = −
√

2πa Tr

∫
d10xD(V (f1)f ′1, V (f2)f ′2)

√
−det(ãαβ) (4.35)

which is the full non-abelian DBI action for two coincident D8-branes (using

the Tr prescription) once the usual parameter substitutions are performed

and the resulting integral over x identified with the D8-brane tension T8:

S = −T8 Tr

∫
d9x
√
−det(ãαβ) . (4.36)
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Now one should also show, as a further check, that the solutions of the

equations of motion arising from the action (4.36) coincide with the solutions

as derived from the original coincident non-BPS D9-brane action (2.31),

upon using the non-abelian Tachyon profile given in eq. (4.16). This check

was done explicitly by Sen in [30] in the case of Tachyon condensation on

a single non-BPS Dp-brane. The calculation in our case would follow quite

closely that of Sen, just extended to the non-abelian case relevant to two

coincident D-branes.

1.3 Breaking U(2) to U(1)⊗ U(1)

As further check on our generalized Sen ansatz eq. (4.16), we can consider

modifying the argument of f so that the corresponding kink solution breaks U(2)

symmetry and thus should describe a pair of separated D8-branes after conden-

sation. This amounts to allowing a vacuum expectation value to one of the U(2)

adjoint fields ti. In particular, we set t(ξ)→ t(ξ)+cσ3, where c denotes a constant

v.e.v. related to the separation of the two D8-branes along their single transverse

direction. In this case we expect to break the U(2) invariance of the theory down

to U(1) ⊗ U(1). The resulting action of fluctuations about this vacuum config-

uration should split into two abelian DBI actions, i.e., two distinct determinant

terms each carrying a single U(1) gauge field and perpendicular scalar fluctuation

field, that describe the separate D8-branes.

We start by introducing the v.e.v. c and obtain a modification of eq. (4.33)

due to this shift: in particular

G̃αβ = ãαβ = aαβ + ∂αt∂βt− i∂αt[Aβ, t]− i[Aα, t]∂βt− [Aα, t][Aβ, t]

−ic ∂αt [Aβ, σ3]− ic[Aα, σ3]∂βt− c[Aα, t][Aβ, σ3]− c[Aα, σ3][Aβ, t]

−c2[Aα, σ3][Aβ, σ3] (4.37)

where the covariant derivatives appearing in eq. (4.33) have been expanded out

explicitly. To proceed we make use of a different parametrization of t that makes

explicit the Goldstone modes associated with U(2) symmetry breaking: we set

taσa = U †(t̃012 + t̃3σ3)U (4.38)
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where U = exp
i
c
(t̃1σ1+t̃2σ2) and we pick a preferential gauge in which

(taσa)
′ = UtaσaU

† = t̃012 + t̃3σ3 (4.39)

(Aaασa)
′ = U(Aaασa)U

† − (∂αU)U † . (4.40)

In this gauge, the fluctuations t are diagonal and3

∂αt∂βt = (∂αt
0∂βt

0 + ∂αt
3∂βt

3)12 + (∂αt
0∂βt

3 + ∂αt
3∂βt

0)σ3

∂αt [Aβ, t] = 2it3∂αt
0
(
A2
βσ1 − A1

βσ2

)
− 2t3∂αt

3
(
A2
βσ2 + A1

βσ1

)
[Aα, t][Aβ, t] = 4(t3)2

(
−A1

αA
1
β − A2

αA
2
β + i

(
A2
αA

1
β − A1

αA
2
β

)
σ3

)
(4.41)

with similar expressions holding with various t3 are replaced by the v.e.v. c. Now

we redefine the gauge fields so as to absorb the v.e.v. c by setting Aiα = 1
2c
Ãiα for

i = 1, 2. Substituting these expressions and taking the large c limit one obtains

to leading order

G̃αβ = ηαβ + F 0
αβ12 + F 3

αβσ3 + (∂αt
0∂βt

0 + ∂αt
3∂βt

3)12 + (∂αt
0∂βt

3 + ∂αt
3∂βt

0)σ3(
∂αt

0(A2
βσ1 − A1

βσ2) + (α↔ β)
)

+ i
(
∂αt

3(A1
βσ1 + A2

βσ2)− (α↔ β)
)

+(A1
αA

1
β + A2

αA
2
β)12 − i

(
A2
αA

1
β − A1

αA
2
β

)
σ3 (4.42)

The fields Aiα, i = 1, 2 are non-propagating to lowest order in a 1/c expansion and

a consistent solution of their equations of motion is to set A1
α = A2

α = 0. The

limit of large c corresponds to considering the two coincident D8-branes as being

separated by a distance that is large compared to the string length
√
α′.

We use this and redefine the field strengths and scalar fields associated to each

brane as F 1
αβ = F 0

αβ +F 3
αβ, F 2

αβ = F 0
αβ −F 3

αβ and φ1 = t0 + t3, φ2 = t0− t3. Then,

in group space the matrix G̃αβ reduces to

G̃αβ =

(
ηαβ + F 1

αβ + ∂αφ
1∂βφ

1 0

0 ηαβ + F 2
αβ + ∂αφ

2∂βφ
2

)

3We drop the prime sign from the gauged form of A′
α and the tilde on t̃0, t̃3.
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hence,

√
−det(G̃αβ) =

 √
−det(ηαβ + F 1

αβ + ∂αφ1∂βφ1) 0

0
√
−det(ηαβ + F 2

αβ + ∂αφ2∂βφ2)


and finally defining G̃1

αβ = ηαβ +F 1
αβ +∂αφ

1∂βφ
1 and G̃2

αβ = ηαβ +F 2
αβ +∂αφ

2∂βφ
2

we find that the action becomes

S = −
√

2πa

∫
d10x

(
V (f1)f ′1

√
−det(G̃1

αβ) + V (f2)f ′2

√
−det(G̃2

αβ)

)
. (4.43)

After performing the usual change of variables and using the descent relation

between T9, T8 and V , we recognise this as being the U(1) ⊗ U(1) symmetric

abelian DBI action for two separate D8-branes.
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2 Dirac-Born-Infeld Tachyon Monopoles

2.1 Monopole Solution in the D8-D6 System

In this section we will discuss how to obtain a Dp→ D(p− 3) brane descent

relation via a monopole solution for the tachyon profile [120]. The construction

of this solution involves a t’Hooft-Polyakov monopole in SU(2) Yang-Mills The-

ory [121, 122]. Just as in the case of kink and vortex solitonic tachyon solutions

of the full DBI non-BPS actions, as previously analysed by Sen, these monopole

configurations are singular in the first instance and require regularisation. We dis-

cuss a suitable non-abelian ansatz which describes a point-like magnetic monopole

and show it solves the equations of motion to leading order in the regularisation

parameter. Fluctuations are studied and shown to describe a co-dimension three

BPS D6-brane and a formula is derived for its tension. In order to introduce

the full world-volume calculation we present first an energy based method which

serves to illustrate the descent relation and its main result without delving in

complex calculations [120].

To obtain two parallel D8 branes we will start off with two non-BPS D9 branes

and use a kink solution for the Tachyon to arrive at the D8’s via the method of

tachyon condensation Dp → D(p − 1) illustrated above. We start off with the

action

S = T STr
∫
d10xe−

T2

a

(
I + (DµT )(DµT ) +

1

2
FµνF

µν

)
(4.44)

which can be considered as the two-derivative truncated form of 2.31 with the

BSFT potential 2.28 and a symmetrisation implied over T 2, DµT and Fµν . The

equations of motion derived from this action take the form

∑
σ

[(
−2DµD

µT − 2

a
T (I−DµTD

µT +
1

2
FµνF

µν)

)
e−

T2

a

]
= 0∑

σ

[
Dµ

(
e−

T2

a F µν
)

+
[
T, e−

T2

a DνT
]]

= 0,
(4.45)

where
∑

σ denotes the symmetrisation over U(2) matrices described above. These

equations present a particularly interesting solution with non-vanishing gauge
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field:
T = x9I + Φ

Ai = εaijxj
W (r)

r

1

2
σa−5

(4.46)

with a, i and j running from 6 to 8 and σa−5 are the usual sigma matrices.

The scalar field Φ is given by

Φ = xa
F (r)

r

1

2
σa−5. (4.47)

The scalar field and the gauge field take the exact form of the Prasad-Sommerfield

limit of the t’Hooft-Polyakov monopole solution,

F (r) =
C

tanh(Cr)
− 1

r
, W (r) =

1

r
− C

sinh(Cr)
(4.48)

and accordingly the solution satisfies the Bogomol’nyi equation Bi +DiΦ = 0

where Bi = εijkFjk. The part proportional to the identity in the solution for T

is precisely what we expect in order to construct the D8’s from non-BPS D9’s,

i.e. a kink-like profile. We proceed now to show that the rest of the solution

corresponds to a D6 brane localised between the D8’s. To do so, consider the

energy of the system

E = T STr
∫
d9xe−

T2

a

(
(I− ∂9T )2 + 2∂9T + (DiT +Bi)

2 − 2(DiTBi)
)

(4.49)

given that the solution satisfies the BPS equations I − ∂9T = DiT + Bi = 0

the above provides an energy bound for the solution. Evaluating this energy for

the solution above gives

E = T STr
(

2
√
πa

∫
d8xI

[
S

(
T√
a

)]∞
−∞

−2
√
πa

∫
d5x

∫
dx9

∫
r=∞

dSi

[
S

(
T√
a

)
Bi

]) (4.50)

with S(X) denoting the step function. Hence the first term in this expression

shows the energy of two parallel D8 branes as we were expecting, however the

second term involves an integral over d5x which suggests that this corresponds
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to a D6 brane, at least at the level of energy considerations. Using the gauge

symmetry to diagonalise Φ such that

T =

(
x9 + C

2
0

0 x9 − C
2

)
(4.51)

(where the function F (r) is expanded around r →∞), then the magnetic field

also becomes diagonal

Bi = −1

2

xi
r3
σ3 (4.52)

and the energy evaluates to

E = 4π
√
πaV ol5T

∫
dx9

(
S

(
(x9 + C/2)√

a

)
− S

(
(x9 − C/2)√

a

))
(4.53)

with V ol5 the five-dimensional volume. Hence these step functions indicate

that the energy-density of the D6 Brane is localised on the line segment −C/2 <
x9 < C/2 and therefore the solution corresponds to a D6 brane suspended be-

tween parallel D8 branes. Therefore this initial investigation has shown that a

monopole solution for the Tachyon is related to a descent relation to a D(p − 3)

brane, which we now proceed to investigate in full.

Monopole solutions in certain truncations of tachyon models have already been

studied in [119] as shown above. In [123] the authors extended their results to

include all higher derivatives using the boundary string field theory (BSFT) ap-

proach and thus argued the ansatz for the tachyon monopole introduced in [119]

survives higher derivative corrections. However, in this section we wish to inves-

tigate magnetic monopole solutions arising from the full non-linear non-abelian

DBI like action, i.e., without assuming an action truncated in an expansion in

derivatives of the tachyon field. From our understanding of the DBI tachyon kink

and vortex solutions discussed above, we expect (and find) that such monopole

solutions will again be singular in the first instance and require regularisation.

We find solutions that are in perfect agreement with those obtained in BSFT and

so provides an independent check of the tachyon monopole ansatz first presented

in [119,123].
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Our starting point will be the effective description of two coincident non-BPS

D9-branes proposed in [37]. As discussed, this theory describes a non-abelian

version of the DBI action in which the tachyon field transforms in the adjoint

representation of the U(2) gauge symmetry of the coincident non-BPS D9-brane

world volume action. In the original construction of this action and its generali-

sation to coincident non-BPS Dp-branes, a standard trace prescription (which we

denote as Tr) was taken over the gauge indices. As mentioned earlier, the other

prescription, motivated by string scattering calculations (at least to low orders

in α′ [29, 38]) is to take the symmetrized trace (which we denote by Str) over

gauge indices. In both cases the expression being traced over is the same but the

Str prescription results, in general, in significantly more complicated terms in the

action compared to Tr. Throughout this section we will adopt the Str procedure

and we will find that its implementation in the case of a tachyon monopole profile

is straightforward and leads to the correct expression for the D6-Brane tension.

The structure of the analysis is as follows. We begin in section 2.2 with a ‘t

Hooft-Polyakov monopole like ansatz for the U(2) non-abelian DBI tachyon world

volume theory and show how it leads to the correct expression for the resulting

D6 brane tension, realised as a co-dimension 3 solution of the equations of motion,

with a suitable regularisation. In section 2.3 a study of the fluctuation spectrum

about these monopoles shows them to be precisely described by a DBI action of a

single BPS D6 brane in flat space, in the limit where the regularisation is removed.

Finally in Appendix A, we show how the tachyon monopole ansatz satisfies

the correct Dirac quantisation of magnetic charge.

2.2 The ‘t Hooft-Polyakov Monopole and the DBI action

We begin by reviewing an effective DBI action for the coincident non-BPS D9-

brane pair [37]. This system is unstable and it contains a tachyon in its spectrum,

in particular, around the maximum of the tachyon potential, the theory contains a

U(2) gauge field and four tachyon states represented by a 2× 2 hermitian matrix-

valued scalar field transforming in the adjoint representation of the gauge group.

We therefore start with action 2.31 with a full symmetrised trace prescription,

for the potential we shall only assume that a family of minima can be found by
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taking (up to a SU(2) rotation)

T =

(
+∞ 0

0 −∞

)
(4.54)

which represent the tachyon on the first D-brane at its minimum T0 = +∞ and

the tachyon on the second D-brane at its minimum T0 = −∞. We shall also

assume that the potential vanishes at T = T0. The monopole solution of the DBI

action (2.31) corresponds in taking the tachyon and the gauge fields to depend

on three worldvolume coordinates xi, with i = 1, 2, 3 whereas α, β = 0, 4 . . . 9 will

label the other worldvolume coordinates including time.

Apart from a U(1) subgroup, the effective theory of two unstable D-branes,

admits as a solution the ‘t Hooft-Polyakov monopole, which in the limit of zero-

size core is of the form

T (x) = t(r)
x · σ
r

,

Ai(x) =
1

2
εijk

xj
r2
σk (4.55)

where r is the radial distance from the origin in the three transverse directions
4. In [124] it was shown that the limit of zero-size core correctly reproduces also

the Ramond-Ramond couplings of a D6-brane. It is actually more convenient to

work in spherical coordinates

x1 = r cos θ , x2 = r sin θ cosφ , x3 = r sin θ sinφ (4.56)

to make use of the spherical symmetry of the solution. In these coordinates the

tachyon takes the form

T = t(r)xr · σ (4.57)

and the gauge fields

Ar = 0 , Aθ = − 1

2 sin θ
xφr · σ , Aφ =

1

2
sin θ xθr · σ (4.58)

4A similar ansatz was proposed by [119] in the context of a truncated tachyon DBI action
and later extended to include all higher derivatives via BSFT in [123]
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where xir = ∂rx
i and xiφr = ∂r∂φx

i and so on. The covariant derivatives of the

tachyon are

DrT = t′(r)xr · σ , DθT = DφT = 0 , (4.59)

the gauge field strength

Frθ = Frφ = 0 , Fθφ = −1

2
sin θxr · σ . (4.60)

Finally, the determinant becomes:

−detG = (1 + λDrTDrT )
(
r4 sin2 θ + λ2F 2

θφ

)
. (4.61)

We now compute the energy-momentum tensor

T µν = −STr
(
V (T )

√
−detG(G−1)µν

)
(4.62)

The elements with one r-component are

Trr = −STr

V (T )
√
r4 sin2 θ + λ2F 2

θφ
√

1 + λDrTDrT

 ,
Trθ = Trφ = 0 . (4.63)

From the previous expressions it is clear that the conservation equation for the

r-component reduces to ∂r Trr = 0. If we assume that the potential vanishes at

infinity, then Trr must vanish everywhere because of the conservation equation,

hence Trr should vanish for all r. However, for r close to the origin, the potential

is finite and Trr doesn’t vanish and so at least for small r we require t′(r) to blow

up. This forces us to consider a regularization of the form

T = t̂(kr)xr · σ (4.64)

such that in the k → ∞ limit t′(r) goes to infinity while keeping t(r) fixed. In

particular, in the large k limit:

DrTDrT = k2t̂′2(xr · σ)2 (4.65)

and the energy-momentum tensor which goes like Trr ∼ 1/k vanishes everywhere
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as required. This shows that the monopole solution is indeed a solution to the

conservation equation and hence a consistent solution of the system e.o.m. Let us

now calculate the tension associated with the D6-brane: the energy-momentum

tensor along the directions orthogonal to the monopole is

Tαβ = −ηαβ STr

[
V (T )

√
(1 + λDrTDrT )

(
r4 sin2 θ + λ2F 2

θφ

)]
(4.66)

which, by taking the large k-limit and by performing the following coordinate

transformation,

y = t̂(kr) , r ≡ r̂(y) = k−1t̂−1(y) , (4.67)

becomes, after integrating over the xi world-volume coordinates

T intαβ = −1

2
λ3/2ηαβ STr

[∫
dyd(− cos θ)dφV (T (y))(xr · σ)2

]
(4.68)

In a similar fashion to the kink and vortex calculations seen in chapter 3 [30] most

of the contribution to Tαβ comes from a small region in r space centered around
1
k
. We can identify the tension of the D6-brane as:

T6 =
1

2
λ3/2STr

∫
d(− cos θ)dφ dyV (y)(xr · σ)2 (4.69)

The tension of the D6-brane is determined only by the tachyon potential. Now

we try to evaluate the previous expression by choosing an explicit expression for

the tachyon potential. One which gives a lot quantitative agreements with string

theory results is 2.29 5:

V (T ) =

√
2T9

cosh(
√
πT )

=
√

2T9

∞∑
i=0

E2i(
√
πy)2i(xr · σ)2i

(2i)!
(4.70)

where Ei is ith Euler number. We see that in order to compute the tension of the

D6-brane we need to evaluate

STr
[
(xr · σ)2m

]
= Tr

[
(xr · σ)2m

]
= 2 . (4.71)

5For example, this potential reproduces the correct tachyon mass L ∼ Tr
(
DµTD

µT − 1
2α′T

2
)
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Therefore, the tension becomes

T6 =
√

2T9λ
3/24π

∫ ∞
0

dy
1

cosh(
√
πy)

= (2π
√
α′)3T9 . (4.72)

which correctly reproduces the D-brane tension descent relation between the T9

and the T6 tension.

2.3 World-volume action and the monopole

This section is devoted to analyzing the world-volume fluctuations of the

tachyon monopole background described in the previous section. We plan to

show that the world-volume theory of the monopole condensed on a Dp-brane

results in a D(p-3)-brane, described by an action with a U(1) gauge theory. Al-

though our analysis involves the presence of non-abelian tachyon and gauge fields,

what follows is similar to [30] because all our computations are carried out inside

the STr operation, in which objects are effectively commutative. We begin by

recasting the ansatz for the monopole in the following way:

T (~x) = f(r)xiσi

Ai(~x) = g(r)εijkxjσk (4.73)

where g(r) = 1/(2r2) and f(r) = t(r)/r. We make the following ansatz for the

fluctuating fields:

T̄ (~x, ξ) = T (~x− ~φ(ξ)) = f(r̂)(xi − φi(ξ))σi
Āi(~x, ξ) = Ai(~x− ~φ(ξ)) = g(r̂)εijk(xj − φj(ξ))σk
Āα(~x, ξ) = −Āi(~x, ξ)∂αφi + aα(ξ)⊗ 1l (4.74)

In the previous expressions, φi(ξ) are scalar fluctuations which depend on the

worldvolume coordinate of the D-brane and we have defined

r̂2 = (xi − φi(ξ))(xi − φi(ξ)) (4.75)
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Using the fact that at the end we have to take the symmetrized trace we can write

∂αT̄ = −∂αφi∂iT̄ and [Āα, T̄ ] = −∂αφi[Āi, T̄ ] to obtain

DαT̄ = −DiT̄ ∂αφ
i (4.76)

and similarly, using the fact that ∂αĀj = −∂αφi∂iĀj and defining fαβ ≡ ∂αaβ −
∂βaα, we have

Fαβ = F̄ij∂αφ
i∂βφ

j + fαβ1l

Fαj = −∂αφiF̄ij
Fiα = −F̄ij∂αφj ,

Fij = ∂iĀj − ∂jĀi − i[Āi, Āj]

From these we can proceed to compute the matrix elements of our determinant,

by defining

γij ≡ λDiT̄DjT̄ + λF̄ij (4.77)

we have

Gµν =

(
Gαβ Gαj

Giβ Gij

)
=(

ηαβ + λfαβ + gij∂αφ
i∂βφ

j −∂αφigij
−gij∂βφj δij + gij

)

Next, we introduce a new matrix Ĝµν whose elements are Ĝαν ≡ Gαν + ∂αφ
iGiν

and Ĝiν = Giν , namely

Ĝµν =

(
Ĝαβ Ĝαj

Ĝiβ Ĝij

)
≡

(
Gαβ Gαj

Giβ Gij

)
+ ∂αφ

i

(
Giβ Gij

0 0

)

=

(
ηαβ + fαβ ∂αφj

Giβ Gij

)
(4.78)

If we were considering matrices whose elements were commuting, then clearly

detGµν = detĜµν because in that case the determinant would be invariant under

the addition of a multiple of a row(column) to another row(column). This property

follows from the fact that if each element in a row(column) is a sum of two terms,

the determinant equals the sum of the two corresponding determinants. In our
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case the entries of the matrix Gµν are su(2) algebra-valued elements and therefore

it is not clear a priori whether in this case that result should hold. However,

notice that also in our case

detĜµν ≡

∣∣∣∣∣ Gαβ + ∂αφ
iGiβ Gαj + ∂αφ

iGij

Giβ Gij

∣∣∣∣∣
=

∣∣∣∣∣ Gαβ Gαj

Giβ Gij

∣∣∣∣∣+

∣∣∣∣∣ ∂αφiGiβ ∂αφ
iGij

Giβ Gij

∣∣∣∣∣ (4.79)

and the latter determinant is zero because ∂αφ
i, being proportional to the identity

in group space, commutes with all the other elements and, therefore, detGµν =

detĜµν . Using the same arguments, we perform a final redefinition by introducing

the matrix G̃µν whose elements are G̃µβ = Ĝµβ + Ĝµj∂βφ
j and G̃µj = Ĝµj, namely

G̃µν =

(
G̃αβ G̃αj

G̃iβ G̃ij

)
≡

(
Ĝαβ Ĝαj

Ĝiβ Ĝij

)
+

(
Ĝαj 0

Ĝij 0

)
∂βφ

j

=

(
ηαβ + fαβ + ∂αφ

i∂βφi ∂αφi

∂βφi Gij

)
(4.80)

Now, we take the determinant of the previous expression. Notice that the deter-

minant of Gij is given by (4.61) upon the replacement of r by |~x − ~φ(ξ)|. This

determinant has an explicit factor of k2 which becomes dominant in the large k

limit, hence, we can ignore the off-diagonal contributions in computing detG̃µν .

We have

−detG̃µν ≈ −detGij detG̃αβ (4.81)

So substituting this into the action gives:

S = −λ1/2STr

∫
d7ξ

∫
drd(− cos θ)dφ V (t̂(kr))k t̂′(kr)

×
√
r4 sin2 θ + λ2Fθφ

√
− det(G̃αβ) (4.82)

88



CHAPTER 4. NON-ABELIAN TACHYON DYNAMICS

Performing the coordinate transformation in (4.67) and taking the large k-limit,

we find

S = −1

2
λ3/2STr

∫
d7ξ

∫
dyd(− cos θ)dφ

× V (y)(xr · σ)2

√
− det G̃αβ

= −T6

∫
d7ξ

√
− det G̃αβ (4.83)

where

G̃αβ = ηαβ + λfαβ + ∂αφ
i∂βφi (4.84)

This we recognize as the action of a BPS D6-brane, with the correct U(1) gauge

theory.

There is therefore a natural non-abelian extension of Sen’s descent relations for

Tachyon condensation regarding the Kink solution and the conjectured relation

between a Dp and a D(p− 3) brane via condensation into a monopole solution is

proven from the world-volume analysis shown above. In the next section, moti-

vated by the discussion introduced in the previous chapter, we attempt to perform

a similar non-abelian extension of Kutasov’s geometric Tachyon interpretation.

This will provide a more complete analysis of non-abelian D-brane world-volume

dynamics and a more general understanding of non-abelian Tachyon systems in

String Theory.
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3 Non-Abelian Geometrical Tachyon

In section 2 of the previous chapter we introduced Kutasov’s geometric inter-

pretation of the Tachyon field. We showed how the dynamics of a D-Brane moving

in the vicinity of a stack of NS5 branes is unstable and can be directly described

by a non-BPS Tachyon DBI action under a mapping where the Tachyon field is

identified with the radial mode of the D-brane dynamics.

In this section we want to investigate what happens if we consider not just

a single probe D-brane but rather a coincident pair of probe D-branes moving

in the background of k coincident NS5 branes. For k large, this coincident pair

of branes can still be regarded as probes in the sense that one may neglect the

back-reaction on the geometry to first approximation.

The analysis proceeds as follows: in the first two sections we consider different

ansatze for the scalar fields which realise the map of the unstable D-brane system

to one described by a non-abelian Tachyonic mode. Next we show the importance

of a careful choice of definition for the harmonic function H describing the NS5

branes background and we stress the differences between the matrix and function

approach. Finally we make use of a symmetry breaking ansatz to expose a sim-

plified version of the non-abelian system and give solutions for the equations of

motion of the Tachyonic field, these will be shown to reduce to the known single

brane results in the abelian limit.

3.1 Multiple D-branes in the NS5-brane background

Consider a stack of k parallel NS5 branes in type II string theory, stretched in

the directions xµ = (t, x1, . . . , x5), µ = 0, . . . 5, and localised in xm = (x6, . . . , x9),

m = 6, . . . 9. Then the background is that shown in 3.58, and we will make use of

it here. We are interested in the dynamics of two coincident BPS D5 branes in the

background of the five-branes. We can label the world-volume coordinates of the

D-branes by ξµ, and by using reparametrisation invariance on their world-volume

we set ξµ = xµ.

The low-energy dynamics of the D5-brane pair is described by a non-abelian

U(2) gauge theory [29] (see also [38]). The dynamics of the open string sector light-
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est degrees of freedom, namely the adjoint valued scalar fields (X6(ξµ), . . . , X9(ξµ))

which describe the position of the pair in the transverse directions (x6, . . . , x9),

the non-abelian gauge field Aµ as well as the lightest degrees of freedom of the

closed string sector, namely the metric GAB, the dilaton φ and the Kalb-Ramond

field BAB is governed by the non-abelian DBI action 2.20

S =

− T5

∫
d6x STr

(
e−(Φ−Φ0)

√
−det (P [Eµν + Eµm (Q−1 − δ)mnEnν ] + λFµν) det(Qm

n )

)
with

λ = 2πl2s , EAB = GAB +BAB, and Qm
n = δmn + iλ[Xm, Xk]Ekn. (4.85)

The field strength Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ], P denotes the pullback to the

brane world-volume and STr denotes the symmetrised trace.

3.2 Fuzzy-sphere ansatz for the bulk scalars

‘Fuzzy sphere’ configurations for the adjoint scalars Xm in the previous non-

abelian DBI action have been considered in the past [29, 76, 125, 126] . Let us

generalise for the moment and consider the case of N coincident D5-branes rather

than just two and consider the following ‘fuzzy sphere’ ansatz for the transverse

scalar fields:

X i = R̂(xµ)αi , i = 1, 2, 3, (4.86)

where αi give some N ×N matrix representation of the SU(2) algebra

[αi, αj] = 2iεijkα
k . (4.87)

We define the physical radius of the 5-dimensional transverse space as

R2(xµ) =
λ2

N

3∑
i=1

Tr
[
X i(xµ)2

]
= λ2CR̂(xµ)2 (4.88)
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where C is the Casimir of the particular representation of the generators under

consideration, defined by the identity

3∑
i=1

αiαi = C1lN (4.89)

Now, given this ansatz the DBI action becomes

S = −T5

∫
d6x STr

 1√
H

√
1 + λ2H∂aR̂∂aR̂αiαi + 4

λR2H(1− 2λR2H)αiαi

1 + 4λ2R4H2αiαi
∂aR∂aR

×
√

1 + 4λ2R̂4H2αiαi
)

(4.90)

with

H = 1 +
kl2s

R̂2αiαi
(4.91)

where it is understood that H is an N × N matrix. Note that the symmetrized

trace in the action ensures that one cannot simply replace all αiαi by the Casimir

C, there will be ordering issues which spoil this.

This action resembles a modified DBI action in flat background of N non-BPS

D5-branes proposed in [39], namely

SDBI = −T5

∫
d6x STr

(
V (TiTi)

√
1 +

1

2
[Ti, Tj] [Tj, Ti]

×
√
−det

(
ηab + λ∂aTi (Q−1)ij ∂bTj

))
(4.92)

where

Qij = 1lNδij − i [Ti, Tj] (4.93)

with T1 = Tσ1 and T2 = Tσ2 and there is no sum over i, j, with the inclusion of an

extra term with a αiαi factor in the denominator. Now we proceed to study the

two limits of large and small R, which correspond to the probe D-branes being

close and far from the NS5’s respectively. The results quoted in these sections

are for the case where we ignore the contribution from the extra term, however

bear in mind that this term is present and unless it can be ignored by taking a

particular region of R space it may spoil these. It is not clear a priori whether
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this region exists or not and certainly deserves further attention, the difficulties

arise because of the extra factors of αiα
i in the denominator which in order to

investigate require a full expansion of the square root factor and order by order

matching of the terms after performing the symmetrised trace manually.

3.3 The limit of Large radius

In this section we are looking for a limit of R̂ space in which H → 1. Hence

we need R2 >> kl2s but, to obtain an expandable DBI action which is crucial

to performing calculations involving the Symmetrised Trace we must also have

λR2 = 2πl2sR
2 << 1. In the approximation where we can safely ignore the second

term in the extra contribution in the square root (assuming this approximation

is consistent with the above limits for R) we obtain that the DBI action (4.90)

becomes:

S = −T5

∫
d6xSTr

(
1√
H

√
1 + λ2∂aR∂aRαmαm

√
1 + 4λ2R4αnαn

)
. (4.94)

Expanding both square roots and performing the symmetrised trace manually

we find that this action is dual to

S = −T5

∫
d6xSTr

(
V (TiTi)

√
1 + 2T 4

√
1 + λ̃∂aT∂aTαiαi

)
(4.95)

under the map T 4 = 2λ2R4CN (where λ̃ =
√

N
2C
λ and C is the Casimir of

the N dimensional representation generated by the αi) up to order λ2R4 which

given the choice of limit means this term is small and higher order terms are

progressively less important. This is simply the large6 T expansion of (4.92),

where to carry out this expansion one needs to be careful in the choice of i = 1, 2

as detailed in [39].

6large here is a slight misnomer, with the map used we still have T 4 << 1, which is important
for the latter action to be expandable
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The potential takes the form:

1

T5

V (T 2) = 1− 1

2

2Ckl2s λ̃

T 2
(4.96)

which is simply the long range gravitational attraction between the D-branes and

the five-branes.

3.4 The limit of Small radius

In this section we are looking for a region of R-space where

H ∼ kl2s

R̂2
, (4.97)

which is achieved for R2 < kl2s . However we still want to have a DBI action which

is expandable, hence we also need R2 > λ2kl2s , which is a sensible enough region

provided R2 is not too small compared to kl2s originally (recalling that λ = 2πl2s).

We take the approximation where the extra term can be ignored to obtain:

S = −T5

∫
d6x STr

(
R̂√
kls

√
1 + λ2

kl2s

R̂2
∂aR̂∂aR̂αiαi

√
1 + 4λ2(kl2s)

2αiαi

)

If we set

T =
√
kls ln

R̂√
kls

(4.98)

the previous action becomes,

S = −T5

∫
d6x STr

(
e

T√
kls

√
1 + 4λ2(kl2s)

2αiαi
√

1 + λ2∂aT∂aTαiαi
)

which is the Tachyon-DBI action with Tachyon potential which is corrected from

the usual e
T√
kls by terms which are derived by expanding the action, taking the

symmetrised trace and matching terms order by order.

Therefore the fuzzy sphere ansatz seems to provide a valuable avenue in order

to form a duality between the NS5 system and Garousi’s Tachyon action, at

least for the case in which the above mentioned approximation is valid. This is
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however not a trivial approximation and it’s validity must be investigated further

by explicit expansion of the DBI actions and order by order matching of the terms

before the duality can be claimed true overall.

3.5 Commutative Ansatz

Here we shall consider a different ansatz to that in the previous section. In-

spired by [97], where purely radial fluctuations of the fields on the branes give a

geometrical description of a dual Tachyonic system, we re-write the non-abelian

action in terms of a radial “direction” defined as XmXm = R2, and we parametrize

the scalar fields as

Xm = fm(θ, φ, χ)R̃ (4.99)

where fm are angular functions with fmfm = 1 and R is an adjoint valued U(2)

matrix which we rewrite as a linear combination of U(2) adjoint matrices αa in

the following way

R̃ = R̃a(ξ)α
a (4.100)

where we have also included the U(1) field R0 and defined α0 = 1l2. With

this parametrization it is clear that the commutator of the scalar fields vanishes

[Xm, Xn] = 0, in particular, Qm
n = δmn . Thus in contrast to the fuzzy sphere

ansatz of the previous section, one might call this a ‘commutative’ ansatz.

The action of the D5-brane pair becomes:

S = −T5

∫
d6x STr

(
1√
H

√
−det (ηµν +HDµRaDνRbαaαb + Fµν)

)
(4.101)

where

H = 1 +
kl2s

XmXm

(4.102)

where again it is understood that H is an N ×N matrix, and

XmXm = (R0α0)2 + 2R0R
iα0αi + (Riαi)

2 (4.103)

This action resembles that of two non-BPS D5-branes proposed in [86] in the case

95



CHAPTER 4. NON-ABELIAN TACHYON DYNAMICS

of vanishing transverse scalar fields:

S = −T5

∫
d6x STr

(
V (T )

√
−det (ηαβ + λDµTDνT + λFµν)

)
. (4.104)

3.6 The limit of Small radius

In the limit in which R0 ∼ R1 ∼ R2 ∼ R3 ∼ 0 the action (4.101) reduces to

S =

−T5

∫
d6x STr

1√
H

√
1 + kl2s

∂µR0∂µR0α2
0 + 2∂µR0∂µRiαi + ∂µRi∂µRiαiαi

(R0α0)2 + 2R0Riα0αi + (Riαi)
2

If we set

T =
√
kls ln (Rmαm) = lnR (4.105)

the above action becomes

S = −
∫
d6x STr

(
V (T )

√
1 + ∂µT∂µT

)
(4.106)

and in this limit the potential is given by

V (T ) =
T5√
kls

e
T√
kls (4.107)

If we define T = Tmαm then in order to obtain an explicit expression for the

different components Tm of the Tachyon matrix we would expand (4.105) and

match order by order each Tm components on the l.h.s. with the respective αm

component on the r.h.s.

There is an important point which must be noted here. The map 4.105 is non-

linear and hence to show that the duality truly holds one needs to show that this

non-linearity is consistent in the symmetrisation procedure. The result quoted

above for the dual action is true only under a symmetrisation with respect to the

original field R, and not the new field T , which is what it would have to be in

order for it to be the Tachyon DBI action. In order to show that this action is

dual even under the symmetrisation procedure one needs to expand the original

action in terms of R, perform the symmetrisation and then match order by order
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under a linear map for T . For this case this is a hard task due to the difficult

powers of αiαj appearing in the expansion.

Note that this form of the map allows one to map the fully non-abelian actions,

including the covariant derivatives. In particular, using eq. (4.105), under the STr

we have that

DαR = ∂αR + i[Aα, R] (4.108)

=
√
klse

T√
kls ∂αT + i

√
kls e

T√
kls [Aα, T ] =

√
kls e

T√
klsDαT (4.109)

where in the second line we used the fact that [f(R), σa] = f ′(R)[R, σa] for f(R) a

continuous power series function of a matrix R = Raσa (see B). This means that

1

R2
DαRD

αR = DαTD
αT +

√
kls
R2

[exp
T√
kls

, DαT ]. (4.110)

The symmetrized trace STr in the action will ensure that the commutator vanishes

everywhere, so the non-abelian map including the covariant derivatives is realised

in this limit.

3.7 The limit of Large radius

In the other case, namely when R0 ∼ R1 ∼ R2 ∼ R3 →∞ the map is realized

if we set

T = R (4.111)

and it is trivial to map the components of T with those of R. In this case the

Tachyon potential becomes

V (T ) =
T5√

1 + kl2s
T 2

∼ T5

(
1− 1

2

kl2s
T 2

)
(4.112)

which is the long-range gravitational attraction between multiple D5-branes and

the NS5 branes.

In this limit it is trivial to map the covariant derivatives in the action, one

simply has DαT = DαR and also note that there are now no symmetrisation
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issues in matching the actions.

3.8 General solution

Given the ansatz in eq. (4.99), we would like to show that one can find a

general map for all values of R between the two actions (4.101) and (4.104).

In [97], it was shown that for the case of a single probing D-brane (where now R

is a function rather than a matrix) one could map the two systems by finding an

analytical solution to the following differential equation:

dT

dR
=
√
H(R) (4.113)

and by identifying the Tachyon potential with the harmonic function H as follows:

V (T ) =
T5√
H(R)

. (4.114)

In the small and large R limits the map gave useful insight into the dynamics

of the probing brane and provided useful information regarding rolling Tachyonic

solutions [97] and the nature of unstable D-brane systems. In the non-abelian

case, the general requirement to realise the map is

STr (HDµRDνR) = STr (λDµTDνT ) (4.115)

When the system is promoted to a non-abelian one such a map is still possible.

However, one needs to be careful with the choice of definition of H. One possibility

is that H can be thought of as a matrix, in which case H(RR) depends in a general

way on the matrix product of R, or we could understand H to depend on R via the

non-abelian distance H(Tr(R2)) so that H is a function and not a matrix. We will

see in the following analysis that the choice is important. Careful string scattering

calculations should reveal the true form of the Harmonic function appearing in the

non-abelian DBI action and we think that once these calculations are performed

the functional form of H will be obtained. However, being unaware of this result

in the present literature, we decided to pursue both routes and obtain significantly

differing results.
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3.9 H function

Consider the case where H is chosen to be a function. We will show here

that analytical solutions for T (Ra) still exist and furthermore that they yield

the expected single brane results of [97] in the abelian limit. We consider the

simplifying case where the gauge fields are turned off.

In this case we define a physical radius as

R2 =
3∑

m=1

1

N
TrXmXm =

1

N
TrR̃2 = R2

0 +R2
1 +R2

2 +R2
3 (4.116)

With this choice one has7

H (XmXm) = 1 +
kl2s

Tr XmXm
= 1 +

kl2s
R2

0 +R2
1 +R2

2 +R2
3

(4.117)

In this case we can solve the full map analytically. For every value of R we need

to solve

∂µT =
√
H(R2)∂µR . (4.118)

If we write T = Tmαm then for each m = 0, . . . 3 we have to solve

∂µT
m =

√
1 +

kl2s
R2

0 +R2
1 +R2

2 +R2
3

∂µR
m. (4.119)

In the abelian case with a single D5-brane we would find the solution∫ √
1 +

kl2s
R2

dR =
√
kl2s +R2 +

1

2
ln

√
kl2s +R2 −

√
kls√

kl2s +R2 +
√
kls

= T kut(R) (4.120)

where T kut refers to the Tachyon field of the single probe brane case of [97]. By

contrast, in the non abelian case we have to solve, for example, for the m = 0

7Notice that another ansatz which makes H a function is H (XmXm) ∼ TrH (XmXm).
This ansatz would lead to different results from those we find below and we do not pursue this
approach any further.
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component

∫ √
1 +

kl2s
R2

0 + d2
dR0 = −i

√
d2 + kl2sE

(
i sinh−1

(
R0

d

)
,

d2

d2 + kl2s

)
(4.121)

where we define d2 = R2
1 + R2

2 + R2
3 for simplicity and E(z, ω) is the incomplete

elliptic integral of the second kind. Although it is trivial to take the limit in

which d → 0 on the l.h.s., one has to take care with this limit on the r.h.s. due

to divergences appearing in the argument of the elliptic integral . In order to

explore the differences between the abelian and non-abelian case it is instructive

to expand the explicit expression for the integrand on the l.h.s. in the limit in

which R2
1 +R2

2 +R2
3 � R2

0 Then we obtain:

T0 = T kut(R0) +
1

4

d2

R2
0

√kl2s +R2
0 −

R2
0sinh−1

(√
kls
R0

)
√
kls


+ O

((
d2

R2
0

)4
)
,

the second term here denotes the non-abelian corrections to the abelian result.

For reference we write below the full solution for all m

Tm =

c(Rj 6=m)− i
√
kl2s +R2 − R̃2

mE

[
i sinh−1

[
R̃m

√
1

R2 − R̃2
m

]
,

R2 − R̃2
m

kl2s +R2 − R̃2
m

]

for m = 0, 1, 2, 3. where R2 = R2
0 +R2

1 +R2
2 +R2

3 and R̃m corresponds to the

component of Tm one wants to solve for and c(Rj 6=m) is an integration constant.

3.10 H Matrix

In this case we would like to solve the map (4.115) where H is in general a

non-diagonal matrix. The map is non-trivial (in the case where no particular limit

for R is taken) unless H is diagonalised, this can be achieved by choosing an a

priori diagonal ansatz for R. In this case the full U(2) symmetry of the problem
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would be broken to U(1)⊗ U(1). To illustrate this take R = R0σ0 +R3σ3, then

dT =

 √
1− kl2s

(R0+R3)2 0

0
√

1− kl2s
(R0−R3)2

×( dR0 + dR3 0

0 dR0 − dR3

)
(4.122)

and substituting for R+ = R0 + R3, R− = R0 − R3, T+ = T 0 + T 3 and T− =

T 0 − T 3 then one arrives at the map

dT+ =

√
1− kl2s

R+
2dR+ (4.123)

dT− =

√
1− kl2s

R−
2dR− (4.124)

which has as solutions two copies of the solution found in [97]. In particular, the

action

S = −T5

∫
d4xSTr

1√
H

(√
1−H∂αR∂αR

)
(4.125)

becomes

ST = −T5

∫
d4x

(
e
T+√
kls

√
1− ∂αT+∂αT+ + e

T−√
kls

√
1− ∂αT−∂αT−

)
(4.126)

which is the U(1) ⊗ U(1) symmetric double copy of the single brane case. This

is to be expected from a diagonal ansatz, the D-brane probes effectively separate

and have independent single probe dynamics.

3.11 Dynamics of the Coincident Brane set-up

In the case where H is regarded as a diagonal matrix we have seen the effec-

tive action is just the direct sum of two independent actions each describing the

dynamics of a single probe D5-brane, which has already been investigated in [97].

Regarding H as a function of the non-abelian distance defined in eq. (4.99) pro-

duces a dynamical system where there is a non-trivial interaction between the

probe branes if we choose to separate them (which breaks U(2)→ U(1)×U(1)) .

Such an interaction vanishes in the flat space limit, as one would expect because

101



CHAPTER 4. NON-ABELIAN TACHYON DYNAMICS

then the probe branes are fully BPS and no force exists between them whether

separated or coincident.

We take a symmetrical parametrization of the scalar fields, and demand that

they depend only on time t via

Xm(t) = fm(θ, φ, χ)R(t) . (4.127)

Starting from the following action8

S = −T5

∫
d6x STr

(
1√
H

√
−det (ηµν +H∂µR∂νR)

)
, (4.128)

we make a diagonal ansatz for the scalar field R

R = R0σ0 +R3σ3 (4.129)

and finally we set

φ = R0 +R3

χ = R0 −R3 (4.130)

One finds the action (4.128) reduces to

S = T5

∫
d6x

1√
H

(√
1−Hφ̇2 +

√
1−Hχ̇2

)
(4.131)

where the harmonic function H is now given by

H = 1 +
kl2s

χ2 + φ2
(4.132)

The equation of motion that follows in the limit in which φ ∼ χ� kl2s is

φ

kl2s

√
χ2+φ2

kl2s
− χ̇2

+
φ

kl2s

√
χ2+φ2

kl2s
− φ̇2

+
φ̈√

χ2+φ2

kl2s
− φ̇2

−
φ̇
(
χχ̇+ φ̇

(
φ− kl2s φ̈

))
kl2s

(
χ2+φ2

kl2s
− φ̇2

)3/2
= 0

(4.133)

8We set again the gauge fields to zero manually
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with an analogous one in which χ and φ are interchanged. Exact solutions to these

equations are hard to find but one can consider the conservation of the energy

which results in a simpler first order differential equation. The energy E of the

system is defined as

E = Pφφ̇+ Pχχ̇− L (4.134)

and we investigate the following ansatz9

φ =
1

2
(R0 + C) (4.135)

χ =
1

2
(R0 − C) (4.136)

where C is a constant. In the small R0 limit the conservation of the energy gives

Ṙ0
2

=
2 (C2 +R2

0)

kl2s
− 4T 2

5 (C2 +R2
0)

2

E2 (kl2s)
2 . (4.137)

By imposing reality of the solution one obtains an important inequality

2kl2s
R2

0 + C2
≥ 4T 2

5

E2
− 1, (4.138)

we see that there are solutions at a critical energy Ecrit = 2T5 which can escape

to infinity.

The energy equation (4.137) has analytical solutions for C non-zero

R0 = ±iCJacobiSN

[√
2

kl2s

√
−1 + 2

T 2
5

E2
C2t∓ i

√
−1 + 2

T 2
5

E2
C2c1,

2T 2
5C

2

−E2 + 2T 2
5C

2

]
(4.139)

where c1 is an integration constant. In Figure 1 we present a plot of this solution

(with given choice of signs ) for certain values of the parameters E, k, ls, c1 and the

parameter C = 0, 0.01, 0.1. They all correspond to the regime where the throat

approximation to H is valid. The case C = 0 corresponds to the abelian case

where R0(t) describes motion which is isomorphic to that of a single probe brane

in an infinite throat, with energy less than the critical energy required to escape

9by a slight abuse of notation we have used the notation R0 though it is not strictly exactly
the same as the quantity occurring in eq. (4.129).
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to infinity [97]. What is particularly interesting in the case where C 6= 0 is that

the solutions appear to bounce, at least if we identify the solutions with negative

values of R0 as separated probe branes moving up the throat. This does not

involve patching two distinct solutions together dis-continually, it is an issue with

how to exactly interpret the negative R0 solutions. After all only R2 = R2
0 + C2

makes sense in this setup. Looking at Figure 4.1 we see that plotting R2
0 would

mean that the solution is “bouncing” as described above. Looking at the harmonic

function H it is clear that in the case C 6= 0, the geometry seen by the probes is

one of a finite cutoff throat, with C acting as a cutoff parameter. So the resulting

centre of mass dynamics of the separated probe pair is equivalent to a single probe

brane moving in a cutoff throat background.

In this interpretation, the sub-critical energy probe falls down the throat but

then reflects off the boundary and back up the throat reaching a certain maximum

distance, the motion being repeated forever. It’s clear from the plots that the

period of oscillation increases with decreasing C. This makes sense as in the limit

C → 0 we recover the solution found in [97] which does not oscillate (at least not

in coordinate time t ) but corresponds to an infalling probe brane taking infinite

coordinate time to reach the throat bottom. By patching the two solutions (which

differ by a minus sign) together in the regions where R0(t) is negative one finds

an explicit change of sign in the velocity Ṙ0(t) of the branes as they reach the

throat cutoff, as is expected from a perfectly elastic bouncing solution. We now

investigate the behaviour of the string coupling with time using the relation

e2φ = gsH(Tr(RR)) (4.140)

In Figure 4.2 we show a plot of the effective string coupling using the solution

(4.139), valid in the throat approximation. The thick curve corresponds to the

abelian case C = 0 and shows, as one expects, a rapidly increasing effective string

coupling as the probe falls down the infinite throat. Thus after some time t = tmax

the solution is no longer within the perturbative string approximation. As argued

in [97], the value of tmax depends analytically on the energy E of the probe and

there is an energy ‘window’ gsT5 � E � T5 for which the probe brane moves in

the throat and remains within perturbation theory.

By contrast , the case where C 6= 0 (regular and dashed curves in Figure 2),
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0.2

0.4

t

R0

Figure 4.1: Plots of R0 vs t. The bold curve has C = 0 and corresponds to the
abelian case. The continuous regular curve corresponds to C = 0.01, and finally

the dashed curve to C = 0.1. In all cases we have chosen
2T 2

5

E2 = 10 , c1 = 0 and
kl2s = 1

we see the effective coupling as oscillating in time as the probes oscillate in the

throat. By choosing the value of E and/or C it is possible to control the motion

such that the string coupling is always in the perturbative regime and for the

probes to remain in the throat region for all time.

Due to the complexity of the solution (4.139) one cannot derive a simple ex-

pression for a bound on the energy and/or C in order for the above to hold, even

for small C. Instead one has to use the full expression for the JacobiSN function

for C 6= 0 and thus we are limited to numerical plots as in Figure 2.
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eΦ

Figure 4.2: Plots of the effective string coupling eφ vs t. The bold curve has C = 0
and corresponds to the abelian case. The continuous regular curve corresponds
to C = 0.01, and finally the dashed curve to C = 0.1. In all plots we have chosen
2T 2

5

E2 = 10 , c1 = 0 and kl2s = 1. The value of gs = 0.0001.
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CONCLUSIONS

This thesis has concentrated on non-abelian aspects of D-Brane world-volume

dynamics, specifically focussing on the fate of the open string Tachyon. In chapter

4 we initially considered the generalisation of Sen’s Tachyon condensation mech-

anism to the formation of two coincident BPS D8-branes on the world volume of

Tachyon kink-like configurations of two coincident non-BPS D9-branes. We found

a natural extension of Sen’s regularisation of the singular Tachyon kink profile, to

the case of U(2) Tachyon valued field in the latter theory. What is apparent is the

very different properties of the Str vs Tr prescription in taking the gauge trace

in the non-abelian, non-BPS DBI action. The former leads to a series of very

complicated terms that mix DµT, Fµν and more problematically individual T in

the Tachyon potential V (T ). In particular, the latter consequence of taking Str

over gauge indices makes it very difficult to see Tachyon condensation occurring

in a way that is calculable and which yields the Str prescription of the action of

two coincident BPS D8-branes.

Starting with the Tr prescription however, we have explicitly shown that

Tachyon condensation gives rise directly to the BPS action of two coincident

D8-branes. This stark contrast between the Str and Tr prescriptions, parallels

similar issues found by Garousi in [37] regarding the existence (or not) of vortex

solutions in Brane-anti-Brane actions derived from coincident non-BPS D9-brane

actions with Tr or Str prescriptions.

Regarding further work in this area, firstly, it would be interesting to investi-

gate non-abelian Tachyon condensation, along the lines presented in this thesis,

where one starts with e.g. two coincident non-BPS Dp-branes with p < 9. Then

one expects to find the action of two coincident D(p−1) BPS branes after Tachyon

condensation. The resulting action should presumably have the same structure as

the one proposed by Myers [29]. Since the latter action is obtained via T-duality
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of the coincident D9-brane action, understanding the details of how non-abelian

Tachyon condensation works in this case would allow us to see if T-duality ‘com-

mutes’ with it. On the other hand, since the Myers action has a Str prescription,

it is by no means obvious how one may realise such actions through the process of

non-abelian Tachyon condensation. Secondly, there are obvious extensions of our

results to the case of multiple coincident non-BPS D9-branes and Tachyon con-

densation leading to the action of multiple coincident BPS D8-branes. Finally, it

would be interesting to show how one can inherit the correct Wess-Zumino terms

for the BPS D(p − 1) branes from those that are part of the non-BPS action re-

cently proposed in [127,128].

Next, we investigated co-dimension 3 magnetic monopole solutions arising from

the DBI-like action of two coincident non-BPS D9-branes. We showed the exis-

tence of singular monopoles that require regularisation in a similar fashion to the

kink and vortex soliton solutions investigated by Sen in [30]. An analysis of the

fluctuations shows that in the limit where the regularisation is removed, we recover

the correct DBI action corresponding to a single BPS D6-brane. This extends the

earlier results found by using truncated DBI like actions [119]. Our results are

complementary to those presented in [123] within the BSFT framework, where

the authors showed that the basic Tachyon monopole ansatz survives all higher

order derivative corrections. Our results put magnetic monopoles alongside kinks

and vortices as the possible products of Tachyon condensation occurring in the

full non-linear, non-BPS DBI actions and which yield fluctuation spectra that are

described by the full DBI action corresponding to co-dimension 1, 2 and 3 BPS

branes.

These results were obtained within the framework of the non-BPS action pre-

sented in [37]. Recently, [39], a modified version of this action (based on the

results of [129,130]) has been proposed (this was important also in the discussion

in chapter 4). In this modified version, the Tachyon field carries internal Pauli ma-

trices σ1 and σ2 and was obtained by considering the disk level S-matrix element

of one Ramond-Ramond field and three Tachyon fields. In [39] the modified action

was shown to be consistent with the S-matrix element of one gauge field and four

Tachyon fields. The modified action amounts to a multiplication of the Tachyon

potential V (Ti) in the symmetrized trace version of the non-BPS action [37] by
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a factor
√

1 + 1
2
[Ti, Tj][Ti, Tj] where Ti = Tσi, i = 1, 2. For large Tachyon field

values it was argued in [130] that one may compute the Str by expanding V (Ti)

and that such modifications resulted in effectively the potential V (T ) being multi-

plied by a factor of T 4. The resulting modified potential still vanishes as T →∞,

so Tachyon condensation is still expected to occur. Indeed one might argue that

since the Tachyon field configurations describing kinks, vortices and as we have

shown, monopoles, are ‘large’ almost everywhere in the regularised theory (the

Tachyon field is infinite everywhere except at the maximum of V (T ) where it is

zero, in the unregularised theory) this large T approximation is justified. Never-

theless it would be interesting to see the details of Tachyon condensation in such

a modified DBI action, including an analysis of the fluctuation spectrum, and to

see if they give the same results starting with the unmodified action in [37]. A

first glance shows that at the very least, the formulae for the various tensions of

the co-dimension 1, 2 and 3 BPS branes will change in that V (T ) will be replaced

by V (T )T 4.

Note that we have only discussed Tachyon condensation in flat space. When

one considers curved backgrounds there are non-vanishing Ramond-Ramond forms

and thus Wess-Zumino (WZ) terms appear in both the actions of BPS and non-

BPS branes. Therefore it is natural to consider the origin of such Wess-Zumino

terms when BPS D-branes emerge as a result of Tachyon condensation. This has

been studied some time ago in [124] in the case where a normal trace (as opposed

to symmetrized trace) prescription is taken for the WZ term in the non-BPS D-

brane action. More recently [128] and [127] have studied higher order derivative

corrections to the WZ terms in non-BPS D-brane actions via disk amplitude S-

matrix calculations. It is certainly an interesting question to consider how such

corrections modify the results of [124] when one considers Tachyon condensation

producing codimension 1, 2 and 3 BPS D-branes.

Finally we attempted to generalise the notion of Kutasov’s geometric interpre-

tation of the open string Tachyon, in the scenario where a D-brane is moving in a

background geometry of k NS5 branes that render the system non-BPS [97]. The

generalisation we investigated considered a pair of coincident probe D5-branes

moving in this background instead of a single probe D5 brane discussed in [97].

The single real geometric Tachyon field that appears in the single probe case is,

in the simplest scenario, related to purely transverse radial motion of the probe.
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This system is abelian in that there is a U(1) gauge theory on the probe brane

world volume.

When we consider the case where, for example, one has as a probe two co-

incident D5-branes, then the situation becomes more subtle. Firstly the probe

world-volume now supports non-abelian U(2) gauge fields and secondly, as is well

known, the coordinates transverse to this probe stack become matrix valued.

This latter phenomenon raises the question of how one interprets the geometri-

cal quantities such as the harmonic function H sourced by the NS5 branes. In

one interpretation, we can define a notion of non-abelian distance in the trans-

verse matrix geometry via the quantity Tr(XmXm) where Xm are the matrix

valued transverse coordinates. Then H(Xm) can be thought of as a function via

H = H(Tr(XmXm)). Another possible interpretation is that H becomes a matrix

through its dependence on Xm.

Both definitions seem to give rise to well defined actions since ultimately the

Lagrangians are matrix valued objects in each case and Str is taken over all free

gauge indices. However as we have shown, the resulting definition of the matrix

valued geometric Tachyon field and the resulting dynamics is different in the two

interpretations.

As an illustration of this we saw that in the case where H is treated as a

function of non-abelian distance defined above, the Tachyon map can be found

exactly and in the limit where the U(2) adjoint valued radial coordinate R is

dominated by the terms proportional to the 2 × 2 identity matrix, we recovered

the single probe brane Tachyon map of Kutasov.

On the other hand, a general solution for the Tachyon map in the case of H

being a matrix is very complicated and its explicit form is not known. However we

found that at least in the symmetry breaking case where U(2)→ U(1)×U(1) the

system reduces to two non-interacting copies of single geometrical Tachyon fields.

By contrast, the same U(2) breaking configuration of the probe stack, in the case

where H is a function and not a matrix, yields a dynamical system involving two

coupled geometric Tachyon fields.

In this case we found analytic expressions for homogeneous time dependent

solutions at least in the situation where we consider only diagonal degrees of

freedom in the non-abelian Tachyon field, which corresponds to U(2) symmetry
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breaking. Interestingly we found oscillating or ‘bouncing’ solutions in this case

where the separation parameter between the two D5 probes acting as an effective

cutoff on the NS5 brane infinite throat.

It would be very interesting to find (even numerically) dynamical solutions

which involve the full non-abelian degrees of freedom in the U(2) valued Tachyon

field in the action 2.43 including non-vanishing gauge fields. Another extension

is to look at different arrangements of background NS5 branes other than the

point like ones considered in this thesis. For example one can also consider the k

NS5 branes arranged around a ring of finite radius. This is a known supergravity

solution and the corresponding metric and harmonic function are known [131,132].

This would extend to the non abelian case the results found in [106].
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APPENDIX A

DIRAC QUANTIZATION OF

MAGNETIC CHARGE

To evaluate the magnetic charge associated to the ansatz (4.55), we need

to have a definition of the magnetic field. In a U(2) gauge theory, there is no

unambiguous definition, but in a spontaneously broken theory, with unbroken

group U(1), provided that the fields are close to the vacuum, a magnetic field can

be defined:

FEM
µν =

1

2
F a
µνT̂

a (A.1)

where T̂ a is a unit vector that points along the direction of the ‘Higgs’ field (in

the present case the adjoint tachyon field T a). In particular, T̂ a = xa

r
and the

physical magnetic field becomes:

Bi =
1

2
εijkF

EM
jk =

1

4
εijkF

a
jk

xa

r
. (A.2)

To find the total magnetic flux which is equal to the magnetic charge m, we have

to integrate the magnetic field over S2
∞, the 2-sphere at infinity. The magnetic

charge m enclosed in some Gaussian surface Σ enclosing the magnetic charge

density is given by

m =

∫
S2
∞

BidSi = lim
r→∞

1

4

∫
S2

εijkF
a
jk

xa

r
dSi (A.3)

Now dSi = εijkdx
j ∧ dxk, so

m = lim
r→∞

1

2

∫
S2

F a
jk

xa

r
dxj ∧ dxk (A.4)

in polar coordinates, we can write

dxj ∧ dxk = ∂mx
j(r, θ, φ)∂nx

k(r, θ, φ) dξm ∧ dξn (A.5)
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where ξn, n = 1, 2, correspond to the coordinates θ and φ. We have

m = lim
r→∞

1

2

∫
S2

F a
jk

xa

r
∂mx

j(r, θ, φ)∂nx
k(r, θ, φ)dξm ∧ dξn

= lim
r→∞

∫
S2

F a
θφ

xa(r, θ, φ)

r
dθdφ (A.6)

where the S2 has radius r. Using the definition of xa(r, θ, φ) and the expressions

derived before for F a
θφ we find

m = −1

2

∫
S2
∞

sin θ dθdφ = −2π (A.7)

The Dirac quantization of magnetic charge requires that

m =
2πn

e
(A.8)

for a charge m magnetic monopole where e is the electric charge. From the

definition of the covariant derivative of the tachyon field T a it is clear that e = −1.

So for an n = +1 magnetic monopole, the magnetic charge is

m =
2πn

e
= −2π . (A.9)
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APPENDIX B

PROOF OF COMMUTATION

RELATION

In this appendix we wish to prove the relation

[f(R), σa] = f ′(R)[R, σa] +O([, ]) (B.1)

for f(R) a continuous power series function of the matrix R and σa the usual

Pauli Matrices, O([, ]) denotes terms which are pure commutators involving the

matrices R and σa which will be unimportant due to the explicit symmetrisation

over the Trace in the action.

Proof: Let f(R) be a continuous power series function of the matrix R, then

f =
∑
n

cnR
n (B.2)

for some coefficients cn.

Hence
[f(R), σa] =

∑
n

cn[Rn, σa]

=
∑
n

cn[Rn−1R, σa]

=
∑
n

cn
(
Rn−1[R, σa] + [Rn−1, σa]R

) (B.3)
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which becomes

=
∑
n

cn
(
Rn−1[R, σa] + [Rn−2R, σa]R

)
=
∑
n

cn
(
Rn−1[R, σa] +Rn−2[Rn, σa]R + [Rn−2, σa]R

2
)

=
∑
n

cn
(
Rn−1[R, σa] +Rn−2 (R[R, σa]− [R, [R, σa]]) + [Rn−2, σa]R

2
) (B.4)

but

Rn−2[R, [R, σa]] = 2[Rn−1, Rσa] (B.5)

and hence all such terms arising in the expansion are pure commutator terms.

By induction one derives

=
∑
n

(
nRn−1[R, σa] +O([, ])

)
= f ′(R) +O([, ]) (B.6)

which is the result set out to prove.
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[1] V. Calò, G. Tallarita, and S. Thomas, “Non Abelian Tachyon Kinks,”

JHEP 08 (2009) 094, arXiv:0904.0601 [hep-th].
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