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Measuring the performance of beat tracking
algorithms using a beat error histogram

Matthew E. P. Davies*Member, IEEE, Norberto Degara and Mark D. Plumbleviember, |IEEE

Abstract—We present a new evaluation method for measuring considered accurate. While the size of the tolerance window
the performance of musical audio beat tracking systems. Centta can be calculated in absolute time (etgZ0 milliseconds [2])
to our method is a novel visualisation, the beat error histogram, . in proportion with the inter-annotation-interval, (e420%

which illustrates the metrical relationship between two gausi- 51). the decisi their size | hat arbitraryi
periodic sequences of time instants: the output of beat tracking [5]), the decision over their size is somewhat arbitraryings

system and a set of ground truth annotations. To quantify beat 10O narrow a WindOW may fail to capture perceptually acaurat
tracking performance we derive an information theoretic statisic  forms of tapping, while too wide and performance may be
from the histogram. Results indicate that our method is able @yerestimated

to measure performance with greater precision than existing . . . .,
evaluation methods and implicitly cater for metrical ambiguity If we consider that for most pieces of music there isn't a

in tapping sequences. single unambiguous tempo at which to tap the beat [5], the
issue of metrical levels must be addressed by the evaluation
method. If only a single ground truth sequence is provided
) i o without any information about which other metrical levelaym
‘The research topic of audio beat tracking is well knowge perceptually valid, then two options exist. The first is to
within the music information retrieval community. Its ais i consider only this interpretation to be valid and punisheoth
to recover a sequence of regular time instants from a musigderpretations even if they may be acceptable to a human
input that are consistent with when a human listener might g§stener. The second method is to adopt a heuristic approach
their foot [1]. While this problem has received much attemtioyhere peats can be accurate if they are tapped at doublefor hal
in terms of the development of beat tracking algorithmgye tempo of the annotations [3]. However merely allowint 2:
e.g. [2], [3], [4] and comparative studies [5], far less €ffo gng 1:2 ratios will only be appropriate for music with a 4/4
has been placed on techniques used to measure performaggg._signature (i.e. four beats per bar); meaningful roatri
However evaluation is extremely important; without a meafeye|s for other time-signatures will also be punished.
ingful measure of performance it is very d!fﬁcult to_assess Given the inherent limitations placed on beat tracking -eval
the strengths and weaknesses of beat tracking algorithohs an . . ' .
. uation by using tolerance windows and pre-defined metrical
reliably compare them. . .
. S . S relationships we propose a new approach able to contend
The basis of objective beat tracking evaluation is to compar . : . .
with these issues. Our method is based on modelling the

W n f time instants: th f racki _— o .
two sequences o time instants: the output of a bea_t t aCTﬂ%tnbutlon of timing error between beats and annotatiovis
algorithm and a sequence of ground truth annotations. The

annotations are normally obtained by recording the tapstim?jsfgr::;i\?ésgi'gﬁgﬁgéﬁtgfﬁt :; ;otr tgg;?]ram’egg?rf&;?;%n
of a musical expert and then modifying them to corre gp

any errors [6]. Given these two sequences, the role of t e histogram we show how different metrical interpretadio

. . : . can be observed. To provide a quantitative measure of beat
evaluation method is to provide a meaningful measuremef

of how well the beat locations “match” the annotations. Théa(_:king perf.ormanc.e we _propose an accuracy score which
extent to which a match can be determined is based on twgmates th.em_‘ormatlo.n gain a beat tracker provides over a
factors: temporal localisation and metrical level. For tbe un|f0rmly distributed (i.e. completely unrelated) seqeerof
to be considered accurate they must be close in time toagk%eat times compared to the annotations. In effect, we measur

e ”
annotations and tapped a tempo which is meaningful for hadw much t?e“er t'han random _th? beats are. _
specific musical excerpt. Through simulations on an existing beat tracking database
We do not expect the beat locations and annotations W§ demonstrate that our approach is able to capture cases
coincide precisely at the same time instants. To account fr accurate tapping which are inaccurate using other meth-
this uncertainty most existing evaluation methods emp|@ds..l:.urthermore, we can measure pgrformance with greater
tolerance windows. These are p|aced around each ground trufecision than traditional tolerance window based methOdS

annotation such that any beat falling within their range Rarticularly in circumstances where tolerance window Hase
approaches indicate 100% accuracy.
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A. Measuring Beat Error

To avoid the reliance on tolerance windows we formulat
our evaluation method by measuring the timing error betwee *0-5} o 005 0
beats and annotations. Assuming a sequendg loéats and/ 2% 6 S8 60 T e
annotations, we notate ti" beat,y,, and thej** annotation,
a;. Comparing beat times to annotations we measure tl

Amplitude

(d) (e) ®

timing error¢,|, between each beat and the closest annotatic ¢ o)
mufase) s oo yea  FPTNNTH
A = *0-5% [ A O A L
C’Y‘“(b) = . (1) 52 5456 58 60 03 ZO
mmjA(L'j:,;a\) if j= 1 or v > aj. time (s) A

; ; H 'g. 1: Example forward and backward analysis. (a) annotationgdjsol
To contend with tempo changes, we normalise the tlm”ﬁ%ats (dashed), (b) forward error histogram, (c) forwarcutar histogram. (d)

error relative to the apprqpriate inter-annotation-ivé(IAl),  annotations (dashed), beats (solid), () backward erstogriam, (f) backward
A; = aj — aj—1, depending on whethey, occurs before or circular histogram.

aftera;. In this way, the timing errot, |, is bounded between
-0.5 and 0.5 for all beats occurring within the range of thet fir
to last annotations. If any beats occur more than half the 1&pnstraint is not problematic, however for very short seges
before the first orafter the last annotation, these are mappeaur method cannot currently be applied.
back into the rangé—0.5,0.5] using modulo arithmetic. Given K bins, p,.(z1) represents the estimated probability
If we consider an example where the beats are tappedotbin k, such that the distribution of errors sum to unity,
half the tempo of the annotations, then every other anmmtatil.€. Zszl pz(z1) = 1, wherex refers to either the forward
will be close to a beat, however no timing error measuremdpgat error(, ., or the backward beat erraf,|,. We calculate
will be made for the remaining annotations. Here, the4Be bin centresz, such that a beat error of zero will fall
“floating” annotations could occur at highly irregular lticms exactly in the middle of a histogram bin (not at the boundary
and not affect the timing error. To contend with this sitaati between two histogram bins), with the same true of beat®rror
we follow the two-way mismatch procedure of Maher and equivalent to -0.5 and 0.5. Plotted on a linear scale frora -0.
Beauchamp [7] and form a second sequence of beat gror, 10 0.5, this means that the first and last bins are half thehwidt
in which we measure the timing error between each annotatiehthe others. In subsequent calculations the contentseskéth

and the nearest beat, two bins are summed together and treated as a single bin.
mins(lay—1) Organising the histogram bin centres in this way enables a
— 5, f b=B or a; < simple mapping onto the unit circle, with circular bin cestyr
Caly (4) = . (2) ¢ = (27k/K)—n. Example forward and backward beat error
%ﬂ if b=1 or a;>y. histograms are shown in Fig. 1.

Visual inspection of the histograms highlights the two

In this way, theunder-detection of beats to annotations is ain properties when comparing beat sequences: metrical
transformed into theover-detection of annotations to beats. relationship and temporal localisation. In Fig. 1(a) thare

Henceforth we will refer to the timing erroc,|, (b€ats (ree peats for every two annotations and hence three main
compared to annotations) as tfeward beat error and s, peaks in the forward beat error histogram. Similarly in the

(annotations to beats) as thackward beat error. backward beat error histogram (Fig. 1(d)) we find two main
peaks, consistent with the two annotations occurring fergev
B. Histogram three beats (for sound examples see [8]). In general, if@aeg

. . . . . metrical relationship exists between the two sequenceanit ¢
To visualise the behaviour of a beat tracking algorithm we X :

; o : . be observed as the ratio of the number of modes in the forward
determine the probability density function (pdf) for ther-fo

. error histogram to the number in the backward error histogra
ward and backward beat error sequences. Each pdfis esﬂimate| C .
n terms of localisation of beats and annotations, we can see

by calculating ai-bin histogram over the range of -0.5 to 0.5 : )

) o ! . ; . that the peaks in the histograms are not centred on a beat erro
Since K specifies how finely the beat error is quantised, it is . : .
. ; : Of zero. Inspection of Fig. 1(a) shows that the estimatedsbea
important to select an appropriate number of bins. Too few

. are consistently “late” compared to the annotations. Gihen

(e.0. K < 10) and we may fail to adequately capture th%. . o .

o : . istogram visualisation, any systematic offsets betwéden t
shape of the distribution. Conversely having more bins than . ] o
o . : ats and annotations can be identified and hence corrected.
individual error measurements will mean some bins canndt
be occupied and the resulting histogram will be too sparse.
Through informal tests we found = 40 to be sufficient
to obtain a good estimate of the probability distribution of While the beat error histogram is an informative visuali-
beat error for musical excerpts of at least 30 seconds. FEation we also wish to extract a numerical measurement of

the majority of existing test databases (e.g. [6], [3]) tlis beat tracking accuracy. Towards this aim we consider two

Il. I NFORMATION GAIN



extremes of beat tracking performance. First, where th¢ bea IV. RESULTS
locations are identical to the annotations, we would obtain 14 jlustrate the properties of the information gain evalua

a delta function in both the forward and backward beat errggn method we compare it to the performance scores given
histograms. Considering the worst case of beat trackingr&vh,,, our existing evaluation methods.

the beats and annotations are entirely unrelated, we shogl§.gre peat accuracy is measured by finding the sum of a

expect near uniform di;tribu'.[ions of beat error. This caBear jime-limited cross-correlation between impulse trainpree

in one of two ways, either if the beats are sampled from @nting the beats and the annotations. A tolerance window of

uniform distribution, or if they are regular but tapped at 8200, of the median IAI specifies the region around each

non-meaningful tempo (e.g. 109 bpm compared to 100 bpmhnotation for which beats can be accurate [5].

This leads totempo drift where occasional beats are closgemgil: beat accuracy is calculated by measuring the timing

annotations and considered accurate, but no relationl§fse aror hetween each annotation and the temporally closest be
Our aim is for the numerical accuracy to meaningfullyhe timing error is evaluated on a Gaussian error function

reflect these two extremes of beat tracking while accountigghich assigns low scores for beats which are poorly locdlise
for tempo drift. To this end we could measure the variangg gnnotations 9.

of the beat error histogram. However, if we re-examine they c: peat accuracy is found as the ratio of the longest
examples in Figs. 1 (b) and (d), which are both multi-mod@hntinuously correct segment to the length of the excempt fo
distributions, the resulting high variance would not reflé®  peats tapped at the correct metrical level; each beat milist fa
perceptual accuracy of the beats. . within a+17.5% tolerance window around the annotation and
An alternative is to look for a description of tpeakinessof e previous beat be within the previous tolerance winddw [4
the pdf of beat error, which can be determined by measuripg ¢ - as CMLc, however the continuity requirement is
the entropy of the histogram. However, mstead of using thelaxed and beats may be tapped in anti-phase (the “offjpeat
entropy directly, we use a related quantity, imformation ¢ yice or half the metrical level of the annotations [4].
gain. We calculate the divergence between the empirical bealy, an annotated beat tracking database containing 222
error pdf of a given beat tracking algorithm and a uniform pq:_fxcerpts [6] we measure the performance of a beat tracking
indicative of the theoretically worst beat tracker. In effeve algorithm (available as a plugin for Sonic Visualeusing
are measuring the dependence between the two sequencesadf of the four evaluation methods described above and com-
they are unrelated we will have low information gain; Withyre these to the information gain. To visualise the diffees
high information gain if a relationship exists. in performance, scatter plots are shown in Fig. 2. Following

We find the information gain/,. in terms of the Kulback- the reproducible research model [10] we make available code
Leibler divergence between each beat error distributiottn wi;, regenerate the figures in this paper [8].

estimated mass probabilify, (z;) and the uniform histogram |, gach of the scatter plots for the fixed tolerance window
with K bins of heightl/K as, methods, see Fig. 2(a), (b) and (d), we can observe clusters

K palzr) of points which score near to 100% under each evaluation
I, = pr(zk)logQ( ) (3) method. However, within these clusters there are a range of
k=1 K information gain values. This highlights a limitation ofing
K a fixed tolerance window. For many excerpts the beats are
= > pe(z)logy(pa(2r)) + loga(K) (4) sufficiently accurate to fall within the range of the tolezan
k=1 windows, but no further distinction can be made between them
= logy(K) — H(pz(2r)) () as thelimit of accuracy has been reached. Without repeated

where H (p,(z1)) is the entropy of the estimated beat erroq&_calculation of performfance over a range of siz_es of tnte_&a
distribution of the beat tracking algorithm under evalomi ~ Window [4], any comparison between beat tracking algorghm
(and discrimination between 100% accurate systems) is con-

Hpa(24)) = _Zp (o) 108 (s (22)) ©6) strained by the choice of tolerange Window. However if the
r r 2\P\Zk))- output of one beat tracking algorithm is better localised to
. =1 ] the annotations than another this will appear in the beat err
Given that we have two beat error histograms to analy§gsiograms and result in a higher information gain. Used in
derived from¢, |, and ¢, ,, we extract the both the forwardis \way, information gain can reveal accuracy beyond the
and backward information gain, |, and/,|, respectively. To rego|ytion to the tolerance windows, and provide addifiona

prevent overestimating the information gain given by thatbejiscrimination between beat tracking algorithms.
tracker, which could arise if very few beats were compared to1p¢ Cemgil score, in Fig. 2(c), which does not use a

many annotations, we keep the lower information gain, sugheq tolerance window, appears to be strongly correlatet wi
that I = min(l,|q, Io}y). The information gain is measured inintormation gain. Note, for both methods it is very unlikely
bits and is lower and upper bounded by< I < log, (K). to obtain “perfect” performance. For the information gdiist
Because the entropy calculation in (6) is invariant to thgoyiq require all beat error measurements to fall within a
ordering of the bins, any beat-relative shift of a histogra@ngb bin of the histogram and for ti@emgil score the beat

will have the same information gain. Therefore tapping thgnes and annotations would have to be identical. Althotgh t
“off-beat” in reference to the annotations will have the sam

information gain as beats which are “in-phase”. Lhttp://isophonics.net/QMVampPlugins

K



@ () has certain surprising properties which arise from estimgat

performance from a single ground truth annotation sequence

z .5 . By explicitly choosingnot to make any assumptions about
<§ ‘E X **i other likely metrical levels it is possible (although sonhey
2 wk . *;g 2 *ff %ﬁ**fﬁi * unlikely in practice) to achieve a high information gainrfro
E j;*% S ;;f E * et unusual relationships (e.g. 5 beats for every 3 annotgtions
= et = However this would be observable by inspection of the his-
40 60 80 100 20 0 80 100 tograms. Also, by treating beat-relative shifts as eqeival
PScore (3) CHL (%) beats which are consistently early or late can also appear
. © . @ accurate. Although this may be deemed problematic, there is

evidence to suggest human tappers behave in this way while
« still perceiving the beat [11]; and again such behaviouddou
be identified in the beat error histograms.

In future work we will investigate how to extend our model

N
N

Information Gain (bits)
(%)

Information Gain (bits)
N w
*
*
*
¥
*
i

. P b 4% to exploit multiple annotation sequences, e.g. by weightin

. LT * the contribution of regions of the beat error histogram \whic

0 20 40 60 80 100 o 20 4 60 8 100 correspond to acceptable metrical relationships and tsffse
Cemgil (%) AMLLt (%)

In addition we plan to explore the dependence between beat
tracking algorithms by comparing their output without gndu
truth, e.g. as in [12].

Beyond its use an evaluation method we hope that our
visualisation can be used as a diagnostic tool for invetitiga

lated. ti@email . | lculated f the qualitative behaviour of beat tracking systems towards
two scores are rejated, tizEmgil score is only calculated for enhancing performance of future beat tracking systems.
a single metrical level. Therefore any beat sequences dappe

at other tempi will be punished in proportion with the number VI. ACKNOWLEDGEMENTS

of beats and annotations which not well-localised, and anyThis work was partially supported by EPSRC Grants
beat sequences tapped on the off-beat will score zero. W/G007144/1 and EP/E045235/1 and Spanish MCYT
can observe this behaviour in Fig. 2(c) where several exserFEC2009-14414-C03-03. We would like to thank the anony-

Fig. 2: Scatter plots showing information gain scores for the besmtkir
output against the following evaluation methods: (a) PSc(ise CMLc; (c)
Cemgil; and (d) AMLL.

score a high information gain but are among the least a@urgious reviewers for their comments and recommendations.

for the Cemgil score. A similar pattern can be observed
for the tolerance window approaches, including thilLt
method, which allows tapping at double or half the annotatefi]
metrical level and the off-beat. Here other meaningful ioatr 2]
relationships exist beyond the scope of the allowed métrica
levels, e.g. the “two-against-three” case in Fig. 1.

When evaluating beat tracking systems using existing meth?!
ods we should pay particular attention to beat tracking ac-
curacy scores of either 100% or 0%. In the former casd4l
information gain can be used to discriminate between the
systems, allowing us to find the beat sequence which ig
best localised to the annotations. In the latter case, a high
information gain can indicate if a relationship exists betw
the beats and annotations beyond those permitted by pre-
defined rules; alternatively a low information gain can confi
that the sequences are indeed unrelated. 7]

8l

We have presented a new evaluation method for measurifg
the performance of beat tracking algorithms based on the
generation of two beat error histograms, one representifig
the comparison of beat times to annotations and the other
comparing annotations to beats. From these histograms w
calculate an information theoretic measure of performance
based on the peakiness of the histograms to indicate the leve
of dependence between the two sequences.

While we have demonstrated our approach can contend with
the limitations of existing tolerance window based methdaids

V. CONCLUSIONS
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Following the reproducible research model [Vandewalle, et al., IEEE Signal. Process. Mag., vol. 26, pp. 37-47, 2009], audio examples and source
code to regenerate the figures in this paper are available at the Sound Software Code Repository http://code.soundsoftware.ac.uk/projects/beh
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