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Abstract 

 

Multiple sclerosis (MS) is a putative autoimmune disease of the central nervous system (CNS), 

which often affects the optic nerve pathway. Optic neuritis (ON) is a clinical feature of MS that can 

cause loss of vision due to conduction block and demyelination. Visual function may not recover 

due to axonal loss in the optic nerve and subsequent loss of retinal ganglion cells (RGC) in the 

retina. The visual system is the most accessible and best studied part of the CNS and provides an 

ideal target to monitor the efficacy of strategies aimed at neuroprotection and repair.  

 
A C57BL/6 mouse expressing a T cell receptor (TCR) transgene specific for 35-55 residues of myelin 

oligodendrocyte glycoprotein (MOG), which develops ON spontaneously (approximately 5%) was 

characterised and an immunising protocol developed with a combination of immune adjuvants 

(Pertussis toxin, MOG-specific Z12 monoclonal antibody) to give a high incidence of disease. ON is 

associated with extensive axonal loss in the optic nerve and RGC loss in the retina. These animals 

were crossed with C57BL/6.Thy1 CFP mice, which express cyan fluorescent protein (CFP) under 

control of a Thy1 promoter that limits expression of CFP to the RGC in the eye. The resultant 

MOGTCRxThy1CFP mice develop ON leading to neuronal loss that can be monitored longitudinally 

in “real-time” in the living animal using techniques that correlate with studies undertaken in 

humans (visually evoked potentials, scanning laser ophthalmoscopy and optical coherence 

tomography). These techniques were used in the MOGTCRxThy1CFP to study neuroprotective and 

repair therapies for their potential in human trials. 

 

This novel model of optic neuritis will be invaluable for the study of neuroprotective and repair 

strategies in autoimmune diseases and offers a refinement of previous models of MS, such as 

“classical” EAE. 
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Chapter 1 

Introduction 

 

1.1 Multiple sclerosis 

 

Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease of the central 

nervous system (CNS), which due to its high prevalence is the most common disabling disease in 

young adults (Noseworthy et al., 2000). The first definitive clinicopathological account of MS as a 

disease was by Jean-Martin Charcot in 1868 (McDonald, 1993) who described MS as a neurological 

condition with the presence of ‘la sclérose en plaques’ in the brain and spinal cord following 

autopsy. MS presents as a series of attacks of potentially autoimmune-mediated inflammation 

leading to demyelination and neuronal damage and consequently neurological disability. Globally, 

MS affects approximately 2.5 million people with a mean onset age of 30 years and a variable 

disease course and outcome (McQualter & Bernard, 2007). It is estimated that there are 100,000 

people in the UK with MS and a MS Register is currently being setup to gain a more accurate 

estimate (MS Society).  

 

There is no known single causative element in MS and it is plausible that there are several 

interacting factors (Weiner, 2004). Disease susceptibility is associated with environmental (Ebers, 

2008), genetic (Sawcer, 2008) and gender factors (Orton et al., 2006). Environmental factors 

studied for their association with disease prevalence include infections, diet, trauma, pollution, 

climate, chemical exposures, vitamin D and occupational hazards (Hauser & Oksenberg, 2006). 

Evidence suggesting that environmental triggers are causative factors comes from migration and 

epidemiological studies (Gale & Martyn, 1995). The most researched and plausible causative 

factors in MS are infectious agents, such as Epstein-Barr virus (EBV), Human Herpesvirus type 6, 

Human endogenous retrovirus  and Chlamydia pneumonia (Hauser & Oksenberg, 2006; Marrie, 

2004).  

 

Currently, EBV is being intensively investigated as one of the primary infectious agents associated 

with a moderately increased risk of MS (Pohl, 2009).  EBV is a member of the gamma-herpes virus 

family, which is present in 90% of adults in all populations (Straus et al., 1993). EBV infection in 
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children is usually asymptomatic, however in young adults EBV infection can cause infectious 

mononucleosis due to an increase in circulating cytotoxic T lymphocytes and inflammatory 

cytokines (Kutok & Wang, 2006). A link between infectious mononucleosis and MS was initially 

proposed from epidemiological evidence showing a similarity in terms of age, distribution and 

ethnicity (Warner & Carp, 1981). Large population studies show EBV infection leads to an increase 

in susceptibility to MS (Ramagopalan et al., 2009b), (Levin et al., 2010). However, in paediatric MS 

the rate of EBV infection is 83-99% (Alotaibi et al., 2004; Banwell et al., 2007); therefore 

suggesting that EBV infection is associated with the risk of developing MS but not a requisition for 

the development of MS.  Additional evidence for a link between EBV and MS comes from studies 

which show increased levels of EBV antibody titre in MS patients compared to controls (Bray et al., 

1983).  EBV infected B cells were present in ectopic meningeal follicles of MS patients (Serafini et 

al., 2007), suggesting EBV infected B cells infiltrate the brain and elicit damage leading to the 

initiation of MS. However, these results have not been reproduced (Peferoen et al., 2009 ; Willis et 

al., 2009) and the role of EBV in the pathogenesis of MS remains to be clarified due to the 

difficulty in ascertaining the presence of viral infections in the brain. There is therefore compelling 

evidence to show a link between MS and EBV infection, although the underlying mechanisms are 

unclear and future studies will reveal if EBV is a leading causative element in MS. 

 

Epidemiological studies have identified clusters of MS cases, which indicate a genetic component 

of disease susceptibility independent of geographical location and familial aggregation of MS 

(Riise, 1997). Population studies have shown an increased risk of disease in family members of 

affected individuals compared to the general population (Ebers et al., 1995; Sadovnick et al., 

1996). Monozygotic twins have a greater concordance (~30%) than dizygotic twins (~6.5%); these 

values are relatively low therefore indicating other factors influencing disease susceptibility 

(Sadovnick et al., 1993). There is a link between MS and genes of the major histocompatibility 

complex (MHC), which plays an important role in the immune system and autoimmunity (Lincoln 

et al., 2005). The human leucocyte antigen (HLA) class II region, a subset of MHC genes, is 

associated with disease susceptibility (Oksenberg & Barcellos, 2005). In particular the DRB1*1501 

allele and its associated serotype DR2 have been found to have a dose effect on MS susceptibility 

(Barcellos et al., 2003). More recently, genome-wide association studies have been conducted to 

reveal SNPs, which are associated with MS (Kemppinen et al., 2011). From these studies 16 

putative loci have been identified with immunological or neurological functions, including IL7 

receptor (Lundmark et al., 2007), CD58 (De Jager et al., 2009) and IL2 receptor (Alcina et al., 2009). 
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A collaborative genome-wide association study of 9,792 MS patients confirmed previously 

suggested genetic associations and revealed a further 29 new susceptible loci involved in the 

pathogenesis of MS (Sawcer et al., 2011).   

 

Gender factors also play an important role in disease susceptibility. Population based studies show 

a bias towards females (2:1), due to an unidentified sex specific susceptibility factor (Orton et al., 

2006). The gender bias appears to be increasing and is speculated to be caused by environmental 

and lifestyle factors (Debouverie et al., 2007; Noonan et al., 2002). 

 

The prevalence of MS varies around the world; as a general rule the prevalence increases with 

increasing latitude from the equator (Kurtzke, 1991).  The highest prevalence of MS occurs in 

North America, Northern Europe, Southern Australia and New Zealand (Kurtzke, 1975).  The 

geographical variation in MS incidences has been correlated to UV exposure and its resultant 

effect on vitamin D synthesis (Handunnetthi & Ramagopalan, 2010). There is an increasing interest 

in the positive role of vitamin D in MS; based on experimental (Cantorna et al., 1996) and 

epidemiological evidence (Pierrot-Deseilligny, 2009). The benefits of vitamin D are thought to be 

mediated by its effects on the immune system (Mora et al., 2008), although vitamin D is 

neuroprotective in neuronal cultures (Wang et al., 2001). Vitamin D is an immunoregulatory agent, 

which modulates T cell activation and regulates class II HLA and CD4 antigen expression (Rigby et 

al., 1990). Vitamin D controls HLA gene expression by a direct interaction with a functional vitamin 

D response element in the promoter region of HLA-DRB1, which is preserved in the  MS associated 

DRB1*1501 allele (Ramagopalan et al., 2009a). These results provide a mechanism which links 

genetic and environmental factors of MS susceptibility. 

 

Migration studies have also indicated a link between environmental factors and the risk of 

developing MS. Migration of individuals as adults from areas of low MS risk to high MS risk (UK) 

retained their low risk of MS from their country of origin (Visscher et al., 1977). In contrast 

migration as a child from a low risk to a high risk area increases your risk of developing MS.  

 

1.1.1 Clinical 

In the majority of people with MS the disease course is characterized by episodes of relapse and 

remission of paralysis, which after a variable period of time enters the secondary progressive 
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phase. A minority of people (~10-15%) have a progressive course from the onset and are referred 

to as having primary progressive MS (PPMS). Based on the clinical course, several subtypes of 

disease have been defined (Keegan & Noseworthy, 2002). MS is clinically diagnosed according to 

the ‘McDonald Criteria’, which required one to demonstrate dissemination of disease in both time 

and space using both clinical and MRI criteria (McDonald et al., 2001). The diagnostic criteria also 

incorporate abnormal cerebral spinal fluid (CSF) and evoked potentials (Polman et al., 2006). 

 

In 80% of clinical definite MS cases, patients with active disease have a relapsing-remitting form of 

MS (RRMS), categorised by intermittent attacks followed by periods of remission (Noseworthy et 

al., 2000). Due to accumulation of CNS damage, the disease usually progresses and deteriorates to 

become secondary progressive disease (SPMS). In 10-15% of clinically definite MS cases, patients 

present with a PPMS with no signs of remission from onset (Miller & Leary, 2007). There is also a 

subgroup of patients that have ‘benign’ MS, which shows little or no progression in disease 

severity. The true frequency of benign cases is unknown due to its unclear definition, current 

literature suggests 6-64% of MS cases are benign (Ramsaransing & De Keyser, 2006). Furthermore, 

the clinical implications of benign MS are variable and some patients will show clinical 

deterioration many years after diagnosis (Pittock et al., 2004). 

 

Neurological symptoms present in MS vary depending on the specific CNS pathways involved. 

Common initial symptoms include weakness of limbs, sensory disturbance, optic neuritis (ON), 

diplopia and ataxia (Hauser & Oksenberg, 2006). As the disease progresses, patients may suffer 

from vertigo, fatigue and bowel and bladder disturbance (Hauser & Oksenberg, 2006). Patients 

may also suffer from cognitive deficits and depression. Although MS is typically not life 

threatening, mortality is slightly higher in MS patients due to long-term disability and 

complications associated with disease (Ragonese et al., 2008); on average the life expectancy of 

someone with MS is reduced by 7 to 10 years. 

 

1.1.2 Pathophysiology 

The pathology of MS is complex and the sequence of events leading to initiation of disease 

remains to be established.  Complexity arises due to the heterogeneous nature of the disease, 

which progresses in a dynamic and unpredictable manner (McFarland & Martin, 2007). MS 

appears to be an immune-mediated disease initiated by the activation of autoreactive T cells, 
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which leads to an inflammatory cascade and ultimately myelin destruction, axonal loss and 

neurological deficit (Figure 1.1) (Weiner, 2004). 

 

MS is initiated by an unknown mechanism, which appears to activate auto-reactive T cells in the 

periphery and leads to a disruption of the blood brain barrier (BBB). Disruption of the BBB in MS 

has been demonstrated using histology (Broman, 1964) and clinically using gadolinium enhanced 

MRI (Alnemri et al., 1996) which identifies active lesions in MS patients (Grossman et al., 1986).  

Activated circulating T cells adhere to the endothelium by ligand-receptor interactions of adhesion 

molecules, such as very late activation antigen-4 (VLA-4/CD49d) with its ligand vascular cell 

adhesion molecule-1 (VCAM-1 CD106) on brain endothelium (Hemler, 1990). Upon binding, T cells 

penetrate the BBB using matrix metalloproteinases, matrix degrading enzymes expressed under 

inflammatory conditions capable of degrading tissue macromolecules (Kouwenhoven et al., 2001).  

As a result, the BBB develops a lack of structural integrity, leading to a disruption and 

reorganisation of tight junctions and an influx of immune cells into the microenvironment of the 

CNS (Kirk et al., 2003; Plumb et al., 2002). Homeostatic regulation in the CNS is also maintained by 

P-glycoprotein and other ATP-binding cassette transporters, which keep hydrophobic molecules 

out of the brain (Schinkel et al., 1994). During neuroinflammation, CD4+ T cells decrease the 

expression of P-glycoprotein on the BBB, therefore disturbing this balance, potentially aggravating 

disease (Kooij et al., 2010). 

 

In the CNS the autoimmune response is activated further and targeted towards putative 

oligodendrocytes and myelin components, such as alpha B-crystallin, myelin associated 

glycoprotein (MAG), myelin oligodendrocyte glycoprotein (MOG), proteolipid protein (PLP) and 

myelin basic protein (MBP) (Sospedra & Martin, 2005). This leads to chronic inflammation in the 

CNS, which amplifies the response of pro-inflammatory molecule release, such as cytokines, 

chemokines, adhesion molecules and matrix degrading enzymes (Hjelmström et al., 1998). This 

environment results in further BBB permeability and leucocyte trafficking and results in 

amplification of disease severity. The complex cascade of events in MS ultimately leads to 

demyelination and accumulative axonal loss, contributing towards neurological disturbances 

(Neumann, 2003). Remyelination occurs spontaneously in response to a demyelinating attack in 

MS (Gensert & Goldman, 1997). 
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Figure 1.1 Demyelination and neurodegeneration in MS. Activated T cells cross the BBB and by expression of 

VCAM-1 on brain endothelium. Inside the CNS, activated T cells release pro-inflammatory cytokines and 

chemokines leading to recruitment and activation of inflammatory cells (macrophages, CD8+ cytotoxic T cells 

and B cells), which mediate oligodendrocyte dysfunction resulting in demyelination and axonal degeneration. 

 

The major histopathalogical hallmark of MS is the demyelinated plaque or lesion. Lesions can be 

found in the optic nerves, periventricular white matter, brain stem, cerebellum and spinal cord 

(Noseworthy et al., 2000). The lesion is characterized by a loss of myelin and oligodendrocytes, 

axonal damage, hypertophic astrocytes and macrophages (Frohman et al., 2006). Variations in the 

structure and immunology of plaques verify the complex pathogenic nature and heterogeneity of 

disease progression. Lesions can be characterized and defined into pathological subtypes by the 

degree of myelin loss, geography and extension of lesions, pattern of oligodendrocyte destruction 

and complement activation (Lucchinetti et al., 2000). There are predominately two main types of 

lesions in an MS brain; the active lesion and the chronic lesion. An active lesion can be defined by 

an indistinct margin, perivascular infiltration, loss of myelin and oligodendrocytes and myelin 

laden macrophages. A method used to classify lesions was proposed to identify heterogeneity 

between patients with four distinct groups (Patterns I, II, III and IV) (Table 1.1) (Lassmann et al., 

2001).   
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Pattern of 
demyelination 

Pathology 

Pattern I Demyelination due to T cell and macrophage infiltration. 

Pattern II Demyelination due to antibody and complement deposition. 

Pattern III 
Demyelination due to oligodendrocyte dysfunction and 

apoptosis. 

Pattern IV 
Primary oligodendrocyte degeneration through DNA 

fragmentation with secondary demyelination. 

Table 1.1 Different patterns of demyelination in multiple sclerosis. Description of the pathology of Patterns 

I, II, III and IV and the heterogeneity of immunopathological process in MS. 

 

Chronic lesions contain sharp edges, perivascular cuffs, increased recruitment of oligodendrocytes 

and some signs of remyelination. The centre of a chronic lesion contains naked axons surrounded 

by scarring astrocytes with no oligodendrocyte support.  

 

Demyelination in MS is thought to be caused by autoimmunity to CNS myelin components and a 

repeated activation of an inflammatory cascade, which attacks oligodendrocytes and myelin 

(McQualter & Bernard, 2007). The traditional view is that demyelination is the key event in MS, 

which results in neurological deficits. Demyelination results in reduced axonal support, 

redistributed ion channel density and reduced neuronal excitability leading to conduction block 

(McDonald, 1969 #412) and axonal loss (Kornek, 2000 #1511). As a result of demyelination, axons 

become exposed to damage from proteases, inflammatory cytokines, nitric oxide, free radicals and 

glutamate (Bjartmar et al., 2003). However, it is debatable whether demyelination is a prerequisite 

to axonal injury and long term neurological disability. Demyelination is thought to be mediated by 

mediators of both the adaptive (T cells and B cells) and the innate immune system (macrophages, 

NK cells, γ/σ T cells) (Pouly & Antel, 1999).  

 

Activated T cells can indirectly damage the CNS by the production of proinflammatory products 

which activate endogenous microglia and infiltrating macrophages (Jack et al., 2005).  Although 

more emphasis has been given to research on the role of CD4+ T cells, CD8+ T cells are also 

implicated in the pathogenesis of MS and are associated with pathological lesions (Traugott et al., 

1983). It is speculated that CD4+ T cells initiate the formation of MS lesions and CD8+ T cells 

amplify the damage to axons and play a regulatory role (McFarland & Martin, 2007).  
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1.1.3 Current treatments 

Current therapies are aimed at modulating the immune response. Anti-inflammatory and 

immunosuppressive therapies can provide beneficial effects on relapse rate and symptoms in early 

disease, but do not appear to impact on disease progression (Confavreux & Vukusic, 2004). There 

is an urgent need for remyelination and neuroprotective strategies as well as targeted 

immunomodulatory therapies. 

 

Initially, immunosuppressive therapies were used to treat MS based on the assumption that MS is 

an autoimmune disease (Whitaker, 1994). Corticosteroids are currently used to treat relapses and 

modulate the duration of relapse in MS patients by suppressing crucial elements of the immune 

system and vascular permeability (Tischner & Reichardt, 2007). However, many of these 

treatments produce systemic adverse effects and are only partially effective in reducing disease 

severity (Thrower, 2009).  

 

Immunomodulatory drugs were later developed and used to control relapses of MS; the most 

successful therapies include interferon-β-1b (IFNβ) (Betaferon™, Bayer) and IFN-β-1a (Avonex™, 

Biogen Idec; Rebif™, MerckSerono), glatiramer acetate (Copaxone™, Teva Pharmaceuticals) and 

more recently natalizumab (Tysabri™, Biogen Idec) (Kieseier et al., 2008), fingolimod (Gilenya®, 

Novartis) (Kappos et al., 2010) and cladribine (Movectro™, Merck Serono) (Giovannoni et al., 

2010).  IFNβ has been proven to decrease the frequency of clinical relapses (Paty et al., 1993) and 

slow disease progression in some studies (Rudick et al., 1997). This may shift the immune response 

by altering cytokine production to promote anti-inflammatory conditions over pro-inflammatory 

conditions (Neuhaus et al., 2007). Glatiramer acetate (GA) is a widely prescribed 

immunomodulatory drug for RRMS. GA is a synthetic analogue of MBP, initially developed as a 

research tool to induce experimental autoimmune encephalomyelitis (EAE) but it was discovered 

to inhibit the development of EAE (Lisak et al., 1983). A successful pilot study of GA (Bornstein et 

al., 1987) followed by a large scale clinical trial (Johnson et al., 2001) led to approval of GA for the 

treatment of RRMS. GA primarily affects T cell reactivity and acts as an altered peptide ligand to 

induce a cytokine shift to T-helper 2 (Th2) cells (Farina et al., 2005). GA acts as a T cell receptor 

antagonist and binds with high affinity to MHC and prevents MBP binding to inhibit immune cell 

activation (Fridkis-Hareli et al., 1999).  
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Natalizumab (Tysabri™) is the first highly targeted therapy for MS and represents a new era of 

immune specific therapy (Miller et al., 2003). Natalizumab is a humanised monocolonal antibody 

(mAb) against α4β1-integrin, which is approved for use as a monotherapy for treatment of highly-

active relapsing forms of MS. In the highly-active cohort it reduces relapse rates by over 80%. 

Natalizumab works by reducing the transmigration of lymphocytes into the CNS and also reduces T 

cell activation and contributes towards T cell apoptosis (Miller et al., 2003). Natalizumab is the first 

of the next generation of MS drugs that can reduce the relapse by more than 50% (Hutchinson et 

al., 2009). However, treatment with Natalizumab is associated with an increased risk of developing 

progressive multifocal leukoencephalopathy (PML) (Twyman & Berger, 2010). PML is caused by JC 

virus (JCV) infection, which leads to lysis of oligodendrocytes and widespread white matter 

demyelination. The relatively high incidence of PML cases in patients treated with Natalizumab has 

raised significant issues over the future of immunomodulatory treatments and our understanding 

of disease mechanisms. 

 

Rituximab (Mabthera®/Rituxan®) is an anti-CD20 monoclonal antibody, which depletes CD20+ B 

lymphocytes involved in the pathogenesis of MS, originally developed for the treatment of non-

Hodgkin’s B cell lymphomas (Maloney et al., 1994). Rituximab has been successful in clinical trials 

for RRMS (Bar-Or et al., 2008; Hauser et al., 2008) and PPMS (Hawker et al., 2009) and results 

showed Rituximab slows disease progression and reduces the number of new lesions on MRI and 

the number of relapses.  

 

Alemtuzumab (Campath™/Lemtrada™) is a human monoclonal antibody targeting CD52, a cell 

surface antigen expressed by T and B cells, which produces rapid and prolonged lymphopenia 

(Moreau et al., 1996). A Phase II clinical trial in RRMS showed Alemtuzumab prolonged time to 

disability and improved clinical and MRI outcomes (Coles et al., 2008). Phase III trial results 

reported Alemtuzumab reduced the frequency of relapses but did not prevent the progression to 

disability. This drug however can induce antibody mediated autoimmunity such as idiopathic 

thrombocytopenic purpura, Grave’s disease and Goodpasture’s syndrome (Treon et al., 2011; 

Weetman, 2009). 

 

Fingolimod, FTY720 (Gilenya™) is a sphingosine-1-phosphate (S1P) receptor agonist, which binds 

to S1P1 receptors on lymphocytes and affects receptor signalling to inhibit lymphocyte migration 

from secondary lymphatic organs to the periphery (Brinkmann et al., 2004). In vitro studies show 
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that Fingolimod also has functional effects on oligodendrocyte precursor cells (OPC) and may 

contribute to the remyelinative process (Miron et al., 2008). The latter has recently been 

challenged by others, which showed Fingolimod failed to promote remyelination in vivo  (Hu et al., 

2011). In clinical trials, Fingolimod reduces the relapse rate, the risk of disability progression and 

improves MRI outcomes (Kappos et al., 2010) and was shown to be more effective than IFNβ 

(Cohen et al., 2010). Fingolimod has now been approved in Europe for use in patients with highly 

active RRMS. Side effects of Fingolimod include an increased risk of secondary tumours and 

opportunistic infections (Cohen & Chun, 2011). Fingolimod also has off-target effects on several 

systems in the body due to the wide variety of cellular mechanisms mediated by S1P (Spiegel & 

Milstien, 2003), resulting in adverse events such as transient bradycardia (Budde et al., 2002). 

 

Cladribine (2-chlorodeoxyadenosine) (Movectro™) is a purine nucleoside analogue resistant to 

degradation by adenosine deaminase (Carson et al., 1983). Cladribine triphosphate, the activated 

form of cladribine, causes an accumulation of deoxynucleotides in lymphocytes and disrupts DNA 

synthesis and repair leading to T cell depletion (Brousil et al., 2006). Phase III clinical trials of oral 

cladribine showed a statistically significant reduction in relapase rates (Giovannoni et al., 2010). 

However, cladribine has recently been withdrawn from the market. 

 

The increased efficacy of these new agents has been associated with potentially life threatening 

complications, which could be anticipated following marked immunosupression such as infections 

and the development of tumours (Hartung, 2009; Ismail et al., 2008). Immunomodulatory drugs, 

such as Alemtuzumab, Cladribine, and bone marrow transplantation, significantly affect relapse 

rate but have a limited effect on disease progression and a new generation of drugs which 

enhance neuroprotection and neurorepair is required (Pilz et al., 2008; Rice & Scolding, 2007). The 

ultimate goal in MS is to halt disease progression by focusing on treatment strategies beyond the 

immune system, which target axonal damage.  
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1.2 Axonal injury 

Neurological disturbances in MS were originally thought to occur as a result of demyelination; 

however it was subsequently found that axonal injury plays a significant role in early disease 

pathogenesis (Bitsch et al., 2000; Trapp et al., 1998) and recent findings have shown that axonal 

loss is the major determinant of neurological disability (Bjartmar et al., 2003). Progression to SPMS 

and permanent disability appears to occur when a threshold of axonal loss is reached and 

compensatory mechanisms are exhausted, such as reorganisation of functional pathways (Reddy 

et al., 2000; Waxman, 1998). There is a matter of debate regarding the sequence of events and the 

proposition that demyelination is a perquisite to axonal injury, or whether the two events are 

independent of each other. The “axonal hypothesis” proposes that cumulative axonal loss results 

in irreversible neurological disability (Bjartmar et al., 2003; Ferguson et al., 1997).  

 

1.2.1 Mechanisms of axonal injury  

Axonal injury can be described as the transection of axons and the formation of axonal spheroids 

and end bulbs (Trapp et al., 1998).  Initially axonal loss was hypothesised to occur due to a loss of 

trophic support for axons following demyelination (Compston, 1996). Mechanisms of axonal injury 

are unclear, but axonal damage is mediated by a range of factors including inflammatory 

mediators (Ferguson et al., 1997), NO (Smith et al., 2001), CD8+ T cells (Babbe et al., 2000), 

glutamate excitotoxicity (Pitt et al., 2000b), mitochondrial dysfunction (Su et al., 2009) and 

metabolic disturbances leading to toxic ion concentration within the nerve (Dutta et al., 2006). 

 

Studies have shown a correlation of expression between axonal injury and macrophages, microglia 

and CD8+ T lymphocytes, therefore suggesting axonal injury can be mediated by immune cells 

(Bitsch et al., 2000). Immune cell mediated axonal injury has also been shown to be a common 

feature in EAE animal models (Dandekar et al., 2001). 

 

The prolonged activation of glutamate, the main excitatory CNS neurotransmitter, can contribute 

to axonal damage (Olney, 1969). During neuroinflammation, the levels of glutamate increase due 

to decreased capability of astrocytes to metabolise glutamate (Hardin-Pouzet et al., 1997) and 

increased release from unmyelinated axons (Ziskin et al., 2007). Increased availability of glutamate 

results in an overstimulation of NMDA (N-Methyl-D-aspartate), AMPA (α-amino-3-hydroxy-5-

methil-4-isoxazol-propionic acid) and kainite receptors, an influx of sodium and calcium, reversal 
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of sodium-calcium exchanger and ultimately leads to toxic calcium accumulation in the 

mitochondria (Matute et al., 2002; Pitt et al., 2000a; Smith et al., 2001; Stout et al., 1998). 

 

Nitric oxide (NO) is a potent signalling molecule, which influences a variety of biological cell 

responses. The extent that NO contributes towards axonal damage in MS is not fully understood 

due to its complex biochemistry, production and interaction with its microenvironment. Studies 

have shown NO has both a beneficial and deleterious effect in MS (Smith & Lassmann, 2002). 

During inflammation, NO is released from activated inflammatory cells and exposed to axons, 

leading to axonal damage (Smith et al., 2001a). Circumstantial evidence has been postulated that 

NO causes axonal damage by a variety of mechanisms inducing impairment of sodium channels 

(Ahern et al., 2000), potassium and calcium channels (Kurenny et al., 1994), depolarization of 

axons (Garthwaite et al., 2002) and disruption of the sodium-potassium ATPase pump (Guzman et 

al., 1995). It is clear that NO has a significant role in the pathogenesis of MS and axonal damage 

but the role is complex and unclear (Kapoor et al., 1999). Oxidation of NO can produce the highly 

toxic epitope, peroxynitrite, which induces demyelination and axonal damage (Touil et al., 2001). 

Peroxynitrite has been found in areas of demyelination and inflammation in MS patients (Cross et 

al., 1998) and correlates with disease activity in EAE (van der Veen et al., 1997).  

 

In vitro studies suggested a major role for sodium channels in axonal injury (Stys et al., 1992) and 

propose a sodium cascade. The initial stage in the cascade is energy failure of the Na+K+ATPase, 

which leads to depolarisation and loss of transmembrane gradient. This results in activation of 

Nav1.6 channels, which stimulates an increase in intracellular calcium (Nikolaeva et al., 2005) 

leading to activation of calcium dependant degenerative pathways (Stys et al., 1992). This also 

leads to activation of calpain, a calcium dependant protease, which actively degrades myelin 

(Banik et al., 1985). Demyelinated axons show an increased expression of sodium channels along 

the membrane and are more susceptible to injury (Craner et al., 2004b).  

 

1.2.2 Neuroprotective therapies 

The impetus to study neuroprotection in MS came from studies in the late 1990’s, which showed 

an increased frequency of axon degeneration in acute lesions (Ferguson et al., 1997; Trapp et al., 

1998) and the presence of axonal damage in early stages of MS (Filippi et al., 2003). Axonal 

damage was also found to correlate with functional disability and reinforce the need for 

neuroprotective therapies (Davie et al., 1995; De Stefano et al., 1998). Whilst immune suppression 
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therapies will be indirectly neuroprotective by virtue of preventing the immune cells from 

triggering damage, this is not sufficient to prevent disease progression due to a neurodegenerative 

microenvironment (Al-Izki et al., 2011; Pilz et al., 2008; Pryce et al., 2005).  

 

Neuroprotective therapies currently being studied include drugs which are currently approved for 

use in other indications, including glutamate antagonists (Gilgun-Sherki et al., 2003), sodium, 

calcium and potassium channel blockers, cannabinoids (Pryce et al., 2003) and erythropoietin (Li et 

al., 2004b). Research has also identified modulators that prevent axonal loss (such as leukaemia-

inhibitory factor, ciliary neurotrophic factor, erythropoietin and insulin-like growth factor), which 

could potentially be used as neuroprotective therapies but require further exploration before 

clinical application. 

 

Sodium channel blockers, such as Carbamazepine, were initially used to treat trigeminal neuralgia, 

a positive symptom of MS (Espir & Millac, 1970). Tetrodotoxin (Craner et al., 2004b), lidocaine 

(Craner et al., 2004a), phenytoin and carbamazepine (Fern et al., 1993) have been shown to 

prevent axonal injury in in vitro preparations of central myelinated axons. Sodium channel 

blockers have also shown to reduce axonal loss and have a protective effect in animal models of 

EAE (Bechtold et al., 2004; Bechtold et al., 2006; Lo et al., 2002). However, flecanide reduced 

clinical disease severity in early stages of disease, which therefore suggests an immunomodulatory 

effect (Bechtold et al., 2005). Sodium channels are present on macrophages and microglia in EAE 

and acute MS lesions, and therefore suggest a role in immune cell function (Black et al., 2007b; 

Craner et al., 2005). 

 

The protective effects of voltage-gated calcium channel antagonists have been demonstrated in 

vivo to prevent calcium dependant axonal damage (Imaizumi et al., 1999), reduced inflammation 

and ameliorate EAE (Brand-Schieber & Werner, 2004). An alternative method of inhibiting the 

effect of calcium is targeting calpain, a calcium-dependant protease, which degrades myelin and 

axonal elements (Hendriks et al., 2005). Using a calpain-inhibitor (cycteic-leucyl-argininal), the 

levels of axonal damage were reduced in an chronic progressive model of EAE (Hassen et al., 

2008). However, there are currently no clinical trials investigating calcium channel blockers as a 

neuroprotective therapy in MS. 

 

Several studies have shown the AMPA receptor antagonist NBQX (2,3-dihydroxy-6-nitro-7-

sulfamoyl-benzo(F)quinoxaline) has neuroprotective effects in EAE models (Pitt et al., 2000b; 
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Smith et al., 2000). The effects of riluzole, a drug which inhibits glutamate release and modulates 

kainate and NMDA receptors, were investigated in a pilot study in PPMS and showed a favourable 

but not significant effect on axonal loss (Kalkers et al., 2001). To investigate the full potential of 

glutamate antagonists, larger clinical trials are needed across a variety of MS subtypes. 

 

Insulin growth factor-1 (IGF-1) has been shown to promote oligodendrocyte growth and 

maturation and has been proposed as a neuroprotective therapy (McMorris & McKinnon 1996). 

However, there are conflicting reports of the effect of IGF-1 in animal models of EAE; studies have 

either shown an improvement in clinical deficits (Liu et al., 1997; Yao et al., 1996) or have been 

limited to a transient effect (Cannella et al., 2000). Erythropoietin (Epo) is a haematopoietic 

growth factor, which has also a candidate for neuroprotective therapy. Epo receptors are 

expressed throughout the CNS and activation has beneficial effects on neurological injury, 

including ischemia, trauma and epilepsy (Brines et al., 2000; Buemi et al., 2003). In animal models 

of EAE, Epo has both an anti-inflammatory and neuroprotective effect (Diem et al., 2005; Li et al., 

2004a). Following on from beneficial experimental models, a pilot study in PPMS was carried out, 

initial results show a reduction in disability and an improvement in cognition (Ehrenreich et al., 

2007). 

 

Cannabis is used by approximately 15% of MS patients to continually relieve symptoms such as 

sleep, pain and to improve mood (Clark et al., 2004). Cannabinoids have also been shown in vitro 

to have an effect on several mechanisms of axonal injury, including inhibition of glutamate release 

and the resultant excitotoxic damage (Fujiwara & Egashira 2004). In addition, they can slow the 

neurodegenerative process: exogenous agonists for the CB1 (cannabinoids type 1) receptors 

offered significant neuroprotection in an animal model of EAE (Pryce et al., 2003). The 

neuroprotective effects of tetrahydrocannabinol  are currently being investigated in a clinical trial 

for people with PPMS (Cannabis Use in Progressive Inflammatory brain Disease, CUPID), based 

upon evidence indicating neuroprotective effects of cannabinoids (El-Remessy et al., 2003; 

Hampson et al., 1998; van der Stelt et al., 2001) 
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1.3 Optic Neuritis 

ON is an acute inflammatory condition affecting the afferent visual system which causes painful 

vision decline over several days. Acute ON is one of the most common causes of unilateral painful 

visual loss. The incidence of ON is 3-5/100,000 cases per year (Kaufman et al., 2000). ON may 

either occur in isolation (clinically isolated syndrome) or in association with MS. A significant 

amount of information has been gathered from the ON Treatment Trial (ONTT), which assessed 

treatment with corticosteroids, visual function, and development of MS over a period of 15 years 

(Beck, 1988). The cause of ON is unclear and there are numerous conditions which may lead to the 

development of ON: MS, neuromyelitis optica (Devic’s disease), viral infections (measles, mumps), 

mycoplasma, infectious mononucleosis, herpes zoster and intraocular inflammation (Burton et al., 

2010).   

 

1.3.1 Clinical 

The primary symptom of ON is loss of vision, which is due to inflammation and oedema (Youl, 

1991 #1086), demyelination and axonal loss in the myelinated part of the optic nerve or chiasm. 

Presenting symptoms usually last approximately 7-10 days and include sub-acute visual loss, 

diminished central acuity, disturbed colour vision and afferent pupillary defects (Optic Neuritis 

Study, 1991). Approximately 90% of ON cases occur in association with periocular pain (Lee et al., 

2004). Misdiagnosis of ON commonly occurs as clinical symptoms overlap with other optic 

neuropathies: neuromyelitis optica (known as Devic’s disease), anterior and posterior ischemic 

optic neuropathies and infective conditions (Shams & Plant, 2009).  

 

The visual prognosis following acute optic neuritis is good, with approximately 80% of patients 

recovering within 2-3 weeks and stabilising within a year (Beck et al., 2004). Results from the ONTT 

trial showed that one year following ON attack, 93% of patients had vision better than 20/40 and 

69% patients had vision better than 20/20 (Optic Neuritis Study, 2008). Long term follow up of 

acute ON patients has shown that visual function recovers in the majority of patients (Hickman et 

al., 2004). 

 

1.3.2 Treatment 

Treatment of ON is typically treated with corticosteroids, which also reduce the rate of 

development of MS (Beck et al., 1993b). The ONNT assessed the benefits of corticosteroid 



 

33 
 

      

treatment on visual recovery (Optic Neuritis Study, 1991). The trial reported 92% of patients 

suffered from concomitant pain with eye movements with a varying degree of vision loss. A meta-

analysis of clinical studies of corticosteroid treatment in ON concluded that corticosteroid 

treatment improves short term visual recovery but had no long term benefits (Brusaferri & 

Candelise, 2000). Corticosteroid treatment is associated with a range of side effects including 

insomnia, mood changes, stomach upset, hypertension, hyperglycaemia, acne and weight gain 

(Beck et al., 1992). As there is no alternative treatment, the recommendation from the ONTT is 1g 

of intravenous methylprednisolone per day for three days for patients with who require fast 

recovery (Beck et al., 1992). 

 

1.3.3 Pathophysiology  

The pathophysiology of ON closely reflects the pathophysiology of MS; all pathological features of 

MS present in the brain and spinal cord are recapitulated in the anterior visual system during ON, 

which can therefore be used as an insight into the pathophysiology of MS (Trapp et al., 1998). The 

relationship between pathological features of ON and clinical deficits have been well documented 

using MRI and recording VEP (visual evoked potential) (Youl et al., 1991). Inflammation can be 

present in any part of the afferent visual system, including the optic chiasm and optic tract. It is 

hypothesized that ON starts with a focal area of inflammation around venules in the optic nerve, 

which leads to increased permeability of the blood nerve barrier (Rizzo et al., 2002).  Peripheral 

memory T-lymphocytes, which cross the BBB and become activated ultimately lead to 

demyelination and axonal loss, leading to conduction block and impairment of vision.  

 

1.3.4 Relationship between ON and MS 

There is a significant relationship between MS and ON. Following an episode of ON, the risk of 

developing MS can be assessed by MRI and the presence of oligoclonal bands in the CSF. 

Approximately 50-70% of people presenting with ON will have white matter abnormalities in the 

brain or spinal cord, which can be detected by MRI (Beck et al., 1993a; Dalton et al., 2003; Jacobs 

et al., 1991). Approximately 40% of MS patients experience ON as their first clinical demyelination 

event and 50-70% of patients with monosymptomatic ON have clinically silent MS lesions 

(Söderström, 2001). Results from the ONTT reported the risk of developing MS after acute ON is 

38% after 10 years (The Optic Neuritis Study, 2003) and 50% after 15 years (The Optic Neuritis 

Study, 2008). The risk of children developing MS after acute ON is much lower and estimated at 

approximately 26% after 40 years (Lucchinetti et al., 1997). 
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Post-mortem studies of MS patients show a high frequency of histological lesions in the visual 

pathway, despite no clinical signs of optic abnormalities (Toussaint et al., 1983). Measurement of 

retinal nerve fibre layer (RNFL) thickness, in secondary progressive MS patients with no clinical 

history of ON, is significantly reduced compared to healthy controls (Henderson et al., 2008). 

Therefore, it is clear that there is an important link between ON and MS. Early and accurate 

diagnosis of ON and MS is crucial due to the availability of disease modifying therapies, which can 

slow disease progress and relapse rate. Clinical studies of IFNβ in patients with acute ON reported 

a delayed conversion to clinically definite MS (Kappos et al., 2006). 

 

1.3.5 Imaging ON 

A range of techniques are used to examine changes in structure and function of the afferent visual 

pathway in ON: visual evoked potential (VEP), MRI, magnetisation transfer imaging, magnetic 

resonance spectroscopy, diffusion tensor imaging, optical coherence tomography (Sinha et al.) and 

confocal scanning laser ophthalmoscopy (cSLO) (Kolappan et al., 2009). 

 

VEP measures the gross electrical potential from the visual cortex in response to a visual stimulus 

and can be used to quantify retinal nerve cell loss (Ridder & Nusinowitz, 2006). Prior to the 

development of MRI technology, optic nerve conduction was measured using VEP, which are 

capable of detecting subclinical optic nerve demyelination (Holder, 2004).  Measurement of VEP 

has been proposed as an outcome measure for remyelinative therapies to quantify subclinical 

demyelination in MS patients (Niklas et al., 2009). MS patients have an increased frequency of VEP 

abnormalities due to visual pathway disruption (Lester et al., 2009). During ON, the VEP is 

characteristically delayed with preserved amplitude. Severe ON results in reduced amplitude due 

to temporary conduction block. The VEP may return to normal following resolution of ON (Youl et 

al., 1991). However, measuring VEP has a limited clinical utility and is normally only used when 

there is a lack of other techniques available to accurately diagnose MS (Gronseth & Ashman, 

2000), the exception being primary progressive MS, where it is very helpful in demonstrating 

dissemination in space (McDonald criteria).  

 

MRI is routinely used to identify lesions in brain and spinal cord, however, the optic nerve is rather 

small and challenging to routinely study on MRI (Miller et al., 1988). However, MRI can be used to 

determine variations in dimensions of intraorbital optic nerve and can therefore be used to 
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support diagnosis of ON. In approximately 90% of cases, ON can be detected by an increased 

signal in optic nerves using gadolinium enhanced MRI; gadolinium enhancement represents a 

breach in the integrity of the blood nerve barrier (Rizzo et al., 2002). MRI is an important 

prognostic tool to identify white matter lesions and determine the risk of developing MS following 

an attack of ON (Barkhof et al., 1997).  

 

OCT is a relatively new technology, which is increasingly being used as an imaging outcome for MS 

clinical trials. OCT detects changes in RNFL thickness and macular volume using reflection patterns 

from infra-red light. Retinal imaging using OCT provides a correlate to underlying pathology of ON 

and can detect RNFL thinning due to axonal loss (Costello et al., 2006; Fisher et al., 2006; Frohman 

et al., 2008b; Gordon-Lipkin et al., 2007; Grazioli et al., 2008; Henderson et al., 2008; Sergott et al., 

2007; Trip et al., 2005). The development of high-resolution spectral domain scanners has 

increased the sensitivity and reliability of OCT systems and led to the proposal that they should be 

used as a primary outcome measure for analysing the efficacy of neuroprotective agents by using 

the retina as a target organ for therapeutic studies (Barkhof et al., 2009).  
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1.4 The visual system 

As described in the previous section there is a clear relationship between ON and MS showing that 

the anterior visual pathway is frequently involved in the pathogenesis of MS (Diem et al., 2003; 

Henderson et al., 2008; Toussaint et al., 1983). The visual pathway is an ideal model to develop 

neuroprotective therapies due to its ease of accessibility through the pupil opening and the 

development of novel technology to quantify changes in neuronal integrity, including OCT and 

cSLO (Frohman et al., 2008a). Therefore to produce a novel animal model, which can be used as a 

correlate for human studies, the visual pathway can be used as a target for investigating 

neuroprotective therapies. 

 

1.4.1 Structure of the eye  

The eye is formed of three major layers (Berne & Levy, 2000); the outer layer, the middle layer and 

the inner layer. The outer layer is composed of a fibrous coat, which includes the transparent 

cornea, conjunctiva and opaque sclera. The middle layer is composed of the vascular coat, iris and 

choroid. The iris contains smooth muscles (pupillary dilator and sphincter muscles), which is used 

to control the size of the pupil and the amount of light entering the eye. The inner layer is 

composed of the retina, which converts the external environment into neural impulses that can be 

transmitted to the brain. The eye also contains a lens, which focuses light onto the retina. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 A schematic diagram of the cross sectional structure of the a) eye and b) retina. The retinal 

nerve fibre layer (RNFL) contains axons from the retinal ganglion cells (RGC) that form the optic nerve. 
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The retina consists of several layers of neuronal and non-neuronal components (Figure 1.). 

Photoreceptors transduce light energy into neural impulses. There are two types which are 

functionally distinct and heterogeneously distributed – the rods and the cones (Kawamura & 

Tachibanaki, 2008). Rods have a low threshold and are responsible for light sensitivity (scotopic 

vision). In contrast, cones require more light to become activated and are responsible for colour 

vision (photopic vision) (Conway, 2009). Information is transmitted from the photoreceptors to 

converge on bipolar cells and then ganglion cells (Snellman et al., 2008). The retina also contains 

interneurones, consisting of horizontal cells and amacrine cells. Müller cells are the predominate 

glial cells in the retina, which synthesise and secrete signalling molecules which promote neuron 

viability, differentiation, synaptogenesis and neuroprotection (Bringmann et al., 2006; de Melo 

Reis et al., 2008). Ganglion cells can be divided into three groups according to their response to 

stimuli and receptive fields (X-, Y-, W-) (Hide-Aki, 1983) and are located at the interface of the 

retina and the vitreous humour.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ganglion cell axons leave the retina to form the optic nerve (cranial nerve II), which becomes 

myelinated after passing out of the eye through the lamina cribrosa (Selhorst & Chen, 2009). 

Retinal pigment epithelial 
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Figure 1.3 Layers of the retina. Histological cross-section of retina taken from C57BL/6 mouse. Animals were 

perfused and tissue was fixed in Karnovsky’s Fixative. Tissue was embedded in resin and semi-thin sections 

(0.7μm) were cut. 20x objective lens magnification 
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Axons from both eyes converge at the optic chiasm (Jeffery, 2001). There are three main pathways 

that transmit information along the optic nerve from the retina to the brain; 

reinogeniculocalcarine (visual processing), retinomesencephalic (pupillary light reflex) and 

retinohypothalamic (regulation of the circadian clock) (Frohman et al., 2008a). 

 

The optic tract synapses at the lateral geniculate nucleus (LGN) in the thalamus. The LGN consists 

of six layers; ipsilateral input (layers 2, 3 and 5) and contralateral input (layers 1, 4 and 6) 

(Sherman & V.A. Casagrande, 2005).  The LGN also receives input from other areas, including 

visual cortex, brainstem nuclei and reticular nucleus of the thalamus. The LGN projects to the 

primary visual cortex of the occipital lobe in the cerebral cortex (Sincich & Horton, 2005). 

 

1.4.2 The visual system as a model  

The visual system is a valuable tool for studying neurodegeneration in the CNS due to its ease of 

accessibility and CNS characteristics (the presence of astrocytes, oligodendrocytes, microglia, BBB 

and neurons).  Mice were initially disregarded as an ophthalmic research tool due to small eye 

size, experimental fragility and low acuity. Also, mice are not considered to be “visual animals” 

(Pinto & Enroth-Cugell, 2000) due to their nocturnal nature. However, advances in mouse genetics 

and breeding and the introduction of transgenic and knockout technology lead to the generation 

of mice replicating ocular diseases, such as retinitis pigmentosa (Humphries et al., 1997), cataract 

formation (Runge et al., 1992), retinal degeneration (Chang et al., 1993) and glaucoma (John et al., 

1998). There are several differences between human and rodent eyes; the most noticeable being 

the size. Rodent eyes also lack a macula, a fovea and have a significantly larger lens.  

 

The development of mouse models in ophthalmic research led to the demand for tests to evaluate 

the mouse visual system. Recent advances in live imaging allow the visual system to be studied in 

detail with accurate correlation of behaviour, function and pathophysiological changes in neurons 

over time. For a successful in vivo technique to evaluate the mouse visual system it must be rapid 

and reliable to allow a high number of mice to be screened. However, techniques developed to 

allow live imaging in rodent eyes have restricted resolution due to the optical quality of rodent 

eyes in comparison to human eyes. Rodent eyes have a smaller axial length, higher optical power 

and larger refractive error, which makes them problematic to image. Several techniques which 

have been used in humans are being translated for use in rodents, including OCT, cSLO and 

electrophysiology (discussed in detail in Chapter 5).    
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1.5 Animal models of MS and ON 

There are several animal models, which recapitulate pathological and clinical aspects of MS and 

ON. Animal models have contributed significantly to our understanding of MS disease mechanisms 

and the development of new therapies. Each model mimics specific aspects of MS 

comprehensively and are important in differentiating key pathways in MS.  

 

1.5.1“Classic” Experimental Autoimmune Encephalomyelitis   

EAE is the most intensively used animal model for the study of demyelination and has contributed 

towards several developments in the field of MS research. The earliest reports of EAE came from 

studies in rhesus monkeys, which were injected with brain tissue from rabbits leading to the 

development of a neurological disease with pathological evidence of an inflammation and 

demyelination (Rivers & Schwentker, 1935; Rivers et al., 1933). The addition of Freund’s adjuvant, 

which amplified the production of antibodies against horse serum in guinea pigs (Freund & 

McDermott, 1942), was used to induce a rapid onset of encephalomyelitis after inoculation with 

brain material (Freund et al., 1947; Morgan, 1947; Morrison, 1947). EAE was later documented for 

its resemblance to human demyelinating disease (Wolf et al., 1947) and was later used expansively 

in research into the immunogenetic and histopathalogical basis of MS.  

 

EAE is induced by injecting genetically susceptible animal strains with CNS myelin proteins (myelin 

basic protein, myelin oligodendrocyte glycoprotein, myelin-associated oligodendrocyte basic 

protein, proteolipid protein, myelin associated glycoprotein), glial proteins (glial fibrillary acidic 

protein, αβ-crystallin), neuronal proteins (neurofilament-L, neurofilament-M, β-synuclein, 

conatactin-2, neurofascin) or spinal cord homogenate emulsified with an adjuvant 

(Krishnamoorthy & Wekerle, 2009). EAE can also be induced by adoptive transfer of myelin 

reactive T cells (Mokhtarian et al., 1984).  The responsiveness of EAE depends on the nature of the 

autoantigen and the species of rodent, for example, C57BL/6 mice are highly responsive to MOG 

but not to MBP (Lando et al., 1979; Mendel et al., 1995). EAE is a versatile model which produces 

lesions in the CNS and sometimes in the visual pathway. For example, induction of EAE with MOG-

derived encephalitogenic peptides results in a high incidence of ON in association with EAE (Shao 

et al., 2004). Optic nerve lesions are normally associated with inflammation and demyelination in 

the brain and spinal cord (O'Neill et al., 1998). EAE recapitulates many clinical, neuropathological 

and immunological features of MS and has aided the understanding of MS (Gold et al., 2006). 

Clinically, EAE presents initially with tail atony followed by hind limb muscle tonicity and paralysis, 



 

40 
 

      

which can further develops to quadriplegia (Krishnamoorthy & Wekerle, 2009). The EAE model has 

many similarities with MS; genetic susceptibility, environmental triggers, white matter pathology, 

grey matter pathology, clinical presentation and clinical forms (Steinman & Zamvil, 2005).  

 

The EAE model has contributed towards the successful development of approved drugs for the 

treatment of MS, such as GA (Arnon et al., 1989) and Natalizumab (Yednock et al., 1992). 

However, the EAE model has failed to predict clinical toxicity; for example, Linomide (quinoline 3-

carboxamide) ameliorated EAE but failed clinical testing due to unacceptable levels of 

cardiotoxicity (Schwid & Trotter, 2000). The usefulness of EAE as a pre-screen for potential MS 

drugs is controversial due to its failure to predict clinical outcomes (Ransohoff, 2006). The EAE 

model is clearly valuable as a pre-clinical proof of concept tool, however, there is no guarantee 

results in EAE will be translated to humans (Steinman & Zamvil, 2005).  

 

It has long been established that EAE is mediated by T helper type 1 cells (Th1), based on cytokine 

secretion and transcription factor expression. However, new evidence suggests EAE is mediated by 

T helper type 17 cells (Th17) (Batoulis et al., 2010). Mice deficient in IL-23 cytokine are resistant to 

EAE (Cua et al., 2003), therefore suggesting IL-23 is critical for EAE pathogenesis. The cytokine Il-23 

is necessary for Th17 development and differentiation (McGeachy et al., 2009). Both Th1 and Th17 

cells are critical in the pathogenesis of EAE but the role of each subset of T cell helper cells remains 

a matter of debate (El-behi et al., 2010) and are likely to play differing roles dependant on the 

antigen and strain combination used. 

 

1.5.2 Virus-induced demyelination 

Demyelinating disease can also be induced in animals by chronic viruses, including murine 

hepatitis virus and Semliki Forest virus (Dal Canto & Rabinowitz, 1982). The most reliable and 

frequently used model of demyelination is the TMEV (Theiler’s murine encephalomyelitis virus) 

model, which induces the formation of demyelinating lesions following intracerebral infection 

(Brahic et al., 2005; Theiler, 1937). TMEV induced demyelination presents with many similarities to 

MS and is used to understand the contribution of viruses to MS (Lipton & Dal Canto, 1979). The 

exact mechanism of demyelination by TMEV remains to be defined. 
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1.5.3 Toxin-induced demyelination 

Another approach to initiating demyelination, is to use agents like cuprizone (a copper chelating 

agent) (Blakemore, 1973), ethidium bromide (Blakemore, 1982) or lysolecithin (activator of 

phospholipase A2) (Blakemore, 1978) to induce the formation of focal areas of demyelination.  

These models have the advantage of producing lesions by microinjection at defined CNS regions. 

Toxin models are not immune mediated and are therefore used as a system to study 

demyelination rather than mimic disease (Blakemore & Franklin, 2008).  

 

1.5.4 Animal models of ON 

Attempts to develop and animal model of ON have been based on techniques described earlier; 

EAE (Shindler et al., 2006) and virus-induced demyelination (Shindler et al., 2008). EAE induced in 

mice can frequently affect the visual system and lead to optic neuritis. The first evidence of the 

development of optic neuritis in a mouse model of EAE was identified in SJL/J mice immunised 

with PLP, 17 days after immunisation, which showed histopathalogical evidence of cellular 

infiltration in optic nerve (Potter & Bigazzi, 1992). Immunisation of SJL/J mice with 

oligodendrocyte-specific protein (Sospedra & Martin, 2005) also induces EAE with ON (Kaushansky 

et al., 2006). However, the occurrence of ON in mouse models is approximately 60-70% (Kezuka et 

al., 2011). 

 

The development of a novel model of optic neuritis would be highly advantageous compared to 

classical ‘EAE’ models currently being used and would allow study of new therapies in addition to 

offering a refinement and reduction of current methods (Table 1.2).  
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Classical ‘EAE’ model 

Novel model of optic 
neuritis 

Advantages of 
new model  

Disease 
induction 

Severe – PTX , Freund’s adjuvant 
and immunogen. 

Moderate - PTX 
Refinement 

Time in 
procedure 

Weeks/months Weeks 
Refinement 

Disease fatality High Low Refinement 

Home Office 
procedure 

Substantial Moderate 
Refinement 

Clinical 
response 

Sight disturbance, paralysis, 
weight loss, bladder problems, 
faecal incontinence, 
tremor/spasticity, sensory loss 

Sight disturbance and 
occasional paralysis 

Refinement 

Outcome 
measures 

Subjective non-parametric scale Parametric 
Reduction 

Neuroprotectio
n outcome 
measures 

Histological – serial assessment 
not possible 

Serial monitoring, instant 
readout, parametric 

Reduction 

Assessment of 
RGC 

Not possible – need to use 
surgical injection of retrograde 
tracer 

Use CFP expression in Thy1 
Refinement 

Table 1.2 Comparison of classical ‘EAE’ model and a novel model of optic neuritis (MOG
TCR

xThy1CFP). 

Advantages of new model in accordance with the NC3Rs – reduction, refinement and replacement. 

 

  



 

43 
 

      

1.6 Aims of project 

The aim of the project is to develop and characterise a novel transgenic mouse model for the 

study of neuroprotection and repair strategies in autoimmune diseases. 

 

The objectives of the project are; 

 

1. To develop a transgenic mouse model that can be used to monitor inflammation, demyelination 

and neurodegeneration in the absence of clinical paralysis typically associated with “classical” EAE 

(Chapter 2). 

 

2. To refine immunisation protocols to optimise the extent and timing of demyelination and axonal 

loss to produce a model with optimal disease that can be used in drug studies (Chapter 3). 

 

3. To develop a non-invasive means to correlate visual dysfunction with optic nerve pathology and 

neurodegeneration using electrophysiology (Chapter 4). 

 

4. To develop methods to measure RGC loss and provide an animal model correlate to concurrent 

human studies using ophthalmic microscopes (Chapter 5). 

 

5. To test potential neuroprotective and repair therapies using the drug screening transgenic 

mouse model (Chapter 6). 

 

By achieving these objectives, the transgenic mouse model can be used to identify potential new 

drug treatments and offers a refinement and reduction of existing animal models of autoimmune 

diseases in accordance with the cohort of 3Rs (reduction, refinement, replacement). 
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Chapter 2 

Establishment of animal model 

 

2.1 Introduction 

An aim of the project was to develop an animal model of optic neuritis that can be used to study 

demyelination, remyelination and neuroprotection. In particular, the model is required to be a 

refinement over previous models of EAE which are associated with clinical paralysis. Several 

models were investigated for their potential as a novel model of optic neuritis. 

 

2.1.1 Myelin-associated glycoprotein (MAG) knockout mice 

The potential of the MAG knockout as a slow demyelinating model in the optic nerve was assessed 

in collaboration with Prof. P. Calabresi, MS Center, The John Hopkins University School of 

Medicine, Baltimor, USA.   

 

2.1.1.1 Structure and function of MAG 

MAG was first detected in CNS myelin extracted from the rat (Quarles et al., 1973), which was 

subsequently followed by the discovery of MAG in periaxonal oligodendroglial membranes of CNS 

myelin sheaths (Sternberger et al., 1979). MAG was also found to be located in the periphery in 

periaxonal Schwann cell membranes (Figlewicz et al., 1982). The detailed structure of MAG was 

revealed from the predicted protein sequence following cloning of the rat MAG gene (Arquint et 

al., 1987), which revealed a long extracellular domain, short transmembrane domain, intracellular 

carboxyl-terminal domain and the presence of Ig-like domains.  

 

The role of MAG in myelination is poorly understood, however, the expression of MAG is  

observed early in myelination (Keita et al., 2002; Owens & Bunge, 1989) suggesting a function 

during the initial oligodendrocyte processes. It was later discovered, that a high level of MAG 

expression continues in later stages of myelination (Päiväläinen & Heape, 2007) suggesting a 

function in the maintenance of myelinated axons.   
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2.1.1.2 MAG knockout mice 

MAG knockout mice (MAG-/-) were initially created by disruption of exon 5 of the Mag  gene and 

were used to investigate the function of this molecule and its role in myelination (Li et al., 1994; 

Montag et al., 1994). MAG-/- mice were later used to test the hypothesis that removal of MAG 

would transfer the CNS from an inhibitory environment to one that will promote neurite growth 

(Ng et al., 1996). MAG-/- mice exhibit hypomyelination and an increased number of unmyelinated 

axons compared to controls (Bartsch et al., 1997), which confirms the hypothesis that MAG is 

involved in early stages of myelination. Several other abnormalities are present in the CNS in 

MAG-/- mice, including reduced length of oligodendrocyte periaxonal cytoplasmic collar, myelin 

sheaths containing cytoplasmic loops and axons surrounded by more than one myelin sheath. In 

the peripheral nervous system (PNS), MAG-/- mice show evidence of demyelination with the 

formation of onion bulbs (Fruttiger et al., 1995) and late axonal loss is observed in the CNS and 

PNS (Nguyen et al., 2009; Pan et al., 2005; Yin et al., 1998). From these results it was hypothesised 

that MAG may play an important protective role and contributes towards axonal stabilisation and 

survival following injury (Nguyen et al., 2009). The phenotype of MAG-/- mice is mild and it is 

therefore speculated that there are compensatory mechanisms occurring to contribute to the lack 

of the molecule.  

 

2.1.2 T-cell receptor transgenic mice 

The search for a spontaneous animal model of EAE led to the generation of T-cell receptor (TCR) 

transgenic models, which display a T cell repertoire directed towards specific myelin autoantigens. 

TCR transgenic mice are valuable research tools for elucidating immune system mechanisms. They 

have been used to study the pathogenesis of autoimmune diseases such as MS, type 1 diabetes, 

rheumatoid arthritis (Lafaille, 2004) and have been crucial to understanding the behaviour of 

autoimmune T cells against self antigens (Davto et al., 1990). 

 

2.1.2.1 The T-cell receptor structure  

The TCR  is a cell surface disulphide-linked heterodimer composed of two chains of α and β or γ 

and δ with a variable (V) region and constant (C) region (Chothia et al., 1988; Yanagi et al., 1984). 

The TCR is polymorphic and has a diverse amino acid variability in the V region, which interacts 

with antigens (Nobuhara et al., 1989). T-cells in the immune system recognise foreign antigens 

linked to the MHC complex by the TCR, as demonstrated by gene transfer experiments (Dembic et 

al., 1986; Saito et al., 1987). The ligand is usually a peptide attached to the surface of an antigen-
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presenting cell with a class I or II MHC molecule. TCR α and β chains are members of 

immunoglobulin superfamily. The mouse α gene family is located on chromosome 14 (Kranz et al., 

1985) and is composed of 100 variable (Vα), 50 joining (Jα) and a single constant (Cα) gene 

segments. Mouse β family is located on chromosome 6 in mice (Caccia et al., 1984) and is 

composed of 21 variable (Vβ), 2 diversity (Dβ), 12 functional Jβ and two Cβ gene segments (Lai et 

al., 1987). Gene segments are arranged in the thymus during T cell differentiation.  

 

2.1.2.2 Generation of T-cell receptor constructs  

Genetic transfection of α- and β- genes is sufficient to transmit functional MHC specificity from the 

donor T cell to the recipient T-cell (Dembic et al., 1986; Saito et al., 1987). This technique opened 

new avenues of research to allow in vivo manipulation of T-cell receptor specificity, leading to a 

greater understanding of interactions, genetic regulations and development of T-cells. TCR 

constructs were originally constructed with large fragments of genomic DNA and heterologous 

promoter fragments such as MHC class I (Pircher et al., 1989) and CD2 (Mamalaki et al., 1993), 

which resulted in abnormal timing and expression of TCR genes.  Cassette vectors were developed 

with short segments of α and β regions driven by natural TCR regulatory elements (Kouskoff et al., 

1995). DNA segments originated from fragments of DNA from a T-cell clone used to produce HY-

specific TCR mice (Blüthmann et al., 1988; Uematsu et al., 1988). 

 

2.1.2.3 Generation of T-cell receptor transgenic mice 

The first TCR transgenic mouse created contained a TCR which recognised the male H-Y antigen in 

the context of class I, H-2Dd molecule (Kisielow et al., 1988; Teh et al., 1988). As a model of MS, 

EAE is commonly used as a disease model, which replicates many pathological elements of MS. In 

EAE, the main CNS antigens reactive to autoimmune T cells are MBP, PLP and MOG.  Therefore, a 

MBP-specific TCR transgenic mouse was created to study the spontaneous induction and 

pathology in autoimmune diseases (Goverman et al., 1993). MBP-specific TCR mice housed in a 

pathogen free environment did not develop spontaneous EAE. However, a proportion of mice 

housed in an environment with pathogens developed spontaneous EAE. It was later reported that 

a MBP-specific TCR transgenic mouse crossed with a RAG-/- (recombination activating gene 

knockout) mouse had been created, which removed expression of TCR encoded by endogenous 

genes (Lafaille et al., 1994). These mice developed T cells that all expressed the MBP-specific TCR 

transgene and as a result 100% of mice developed spontaneous EAE.  
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PLP-specific TCR mice were generated using an encephalitogenic (5B6) and non-encephalitogneic 

PLP-specific T-cell clone (4E3) (Waldner et al., 2000). These mice behave in a similar manner to 

MBP-specific TCR mice, although PLP-specific TCR mice develop a higher incidence of spontaneous 

EAE. The higher incidence of EAE was hypothesised to be due to a more effective allelic exclusion 

of endogenous TCR genes, which are needed for regulatory T cells to prevent spontaneous EAE. 

 

2.1.2.4 Structure and function of MOG 

MOG is located on the surface of myelin sheaths and is therefore the leading candidates as the 

primary target autoantigen in the pathophysiology of MS (Iglesias et al., 2001). MOG was 

identified as a target antigen in a guinea pig model of EAE (Lebar et al., 1986a), which lead to the 

development of MOG induced models of EAE with evidence of demyelination caused by MOG-

specific auto-antibodies (Adelmann et al., 1995). The demyelinating nature of MOG is attributed to 

its localisation within CNS myelin exposed on the outermost surface of myelin (Brunner et al., 

1989). Cloning of MOG identified the protein as a member of the immunoglobulin superfamily 

(Gardinier et al., 1992).   

 

2.1.2.5  MOG-specific T-cell receptor transgenic mice 

MOG-specific TCR transgenic mice were generated from the “2D2” clone, which expressed a TCR 

combination of Vα3.2 and Vβ11 (clone picked due to the availability of specific antibodies to 

detect the TCR) (Bettelli et al., 2003). Plasmids containing linearised TCR were injected into 

pronuclei of fertilised C57BL/6 oocytes and transgenic founder mice were bred with C57BL/6 mice 

(Kouskoff et al., 1995). The MOG-specific TCR (MOGTCR) transgenic mice develop spontaneous or 

induced ON, in the absence of clinical or histological EAE, with evidence of loss of retinal ganglion 

cell (RGC) and demyelination in the optic nerve (Guan et al., 2006). The predisposition of mice to 

develop ON can be explained by the higher levels of MOG present in optic nerve compared to 

spinal cord and brain (Bettelli et al., 2003). The MOGTCR can be used as an experimental model to 

study ON in isolation and to gain a greater understanding of autoimmune diseases. 

 

2.1.3 Fluorescent transgenic mice 

The identification of the complimentary DNA encoding the green fluorescent protein (GFP) from 

jellyfish (Aequorea victoria) was a major advancement for monitoring gene expression and protein 

localisation (Chalfie et al., 1994). GFP is a versatile protein that requires no exogenous cofactors to 
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be expressed and can be fused with proteins to allow cell specific fluorescence (Kain et al., 1995). 

GFP can also be mutated to produce spectral variants; cyan fluorescent protein (CFP), red 

fluorescent protein (RFP) and yellow fluorescent protein, (YFP) (Yang et al., 1998). GFP and its 

variants have been used extensively in neuroscience and have significantly aided studies in 

neuronal development and plasticity (Dynes et al., 1998; Knobel et al., 1999; Murray et al., 1998; 

Rodriguez et al., 1999; Zito et al., 1999).  

 

Thy-1 is a glycoprotein expressed on thymocytes, peripheral T cells and neurons throughout the 

CNS (Haeryfar & Hoskin, 2004).  Of particular interest, Thy1 can be used as a RGC specific marker 

(Barnstable & Dräger, 1984). Neuronal specific expression of Thy1 can be generated by altering its 

genomic composition; deletion of the third intron in mouse Thy-1 genes eliminates non-neuronal 

expression (Vidal et al., 1990). Therefore, the Thy1 gene can be used to selectively express 

fluorescent proteins in neuronal cells and facilitate the study of neuronal structure, function and 

development. Several transgenic lines have been generated, which have variations in expression 

due to differences in integration site and copy number of the construct (Feng et al., 2000) (Table 

2.1). Each transgenic line can be used to study a specific neuronal subset of interest, for example, 

the CFP-23 strain can be used to study RGC due to its high expression in the retina. 

 

The most widely used method to label RGC is by retrograde-labeling using a stereotactic injection 

of a fluorescent tracer into the superior colliculus (SC). Approximately 98% of RGC project to the 

SC (Forrester & Peters, 1967) therefore this method allows almost all RGC to be labeled. However, 

this method has very invasive and is a severe procedure, which requires expose of the brain. Also, 

the dye is only available for a short time dye and is phagocytosed by microglia, which can cause 

problems when analyzing data (Kanamori et al., 2010). Therefore, the Thy1CFP model offers an 

advantage over previous methods as the RGC are labeled endogenously through the expression of 

the transgene.In order to study disease progress in real time, the MOG-specific TCR mice will be 

crossbred with Thy1CFP line CFP-23mice with fluorescent RGC. This will produce a mouse model 

that develops optic neuritis, with the potential to quantitatively monitor disease progress 

longitudinally by measuring RGC population expressing CFP. The Thy1CFP model offers a quick and 

rapid approach to quantifying RGC loss, which is essential for an efficient model system. 
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Transgenic 

Line 
Motor Axon 

Retina SCG 
DRG Cortex 

Cerebellum 

RGC INL Pre Post Mossy Purk Molec 

YFP-12 All Many A None None Many 5,6 All Many Few 

YFP-16 All All A+B All Few All 2-6 All None Few 

YFP-21 All All A All Many All 2-6 All All None 

YFP-A Many Many A Many None Many 2-6 All Many Few 

YFP-C All All A+B+M All Few All 2-6 All None None 

YFP-D All All A All None All 2-6 All None Few 

YFP-F All Many A Many None All 2-6 All Few Few 

YFP-G All Many A All Few All 2-6 All None None 

YFP-H Few Few None Few Few Many 5 Many None None 

GFP-F All All A+B+M All None All 2-6 All Many Few 

GFP-G All All A+B+M All Few All 2-6 All Many Few 

GFP-H All Many None All None Many 2-6 Many None None 

GFP-I All Few None All None All 6 All Many None 

GFP-J All All A+BM All None All 2-6 All Many None 

GFP-M Few Few None None None Many Few Many None None 

GFP-O All Few None None None All 2-6 All Many None 

GFP-S Few Few None None None None Few Few None None 

CFP-4 All Many None None Few Many 5,6 All Many None 

CFP-11 All Many None Few Few Many 2-6 All Few Few 

CFP-23 All All A None None Many 2-6 All None None 

CFP-D All Few None None None All 5,6 All None None 

CFP-F All Many None All None All 2-6 All None Few 

CFP-H All Many None None None Many 2-6 Many None None 

CFP-I All All None None None All 2-6 All None None 

CFP-S Few None None None None Few Few Few None None 

Table 2.1 Patterns of transgene expression in Thy1-XFP lines of transgenic mice expressing fluorescent 

protein under the control of the Thy1 promoter. A number of transgenic mice were produced that contain a 

transgene for a fluorescent protein under the control of the Thy1 promoter (Reproduced from Feng et al., 

2000). Tissue sections were prepared and cryostat sections were visualised using fluorescence microscopy to 

analyse the fluorescence profile of expression in the CNS. A, amacrine cells; B, bipolar cells; DRG, dorsal root 

ganglion (lumbar ganglia were examined); INL, inner nuclear layer of the retina; Mossy, mossy fibres in 

internal granule layer of the cerebellum; Purk, cerebellar Purkinje cells; Molec, interneurons of the cerebellar 

molecular layer; RGC, retinal ganglion cells; SCG, superior cervical ganglion. 
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2.2 Materials and methods 

2.2.1 Animals 

2.2.1.1 GFP expressing mice 

GFP expressing mice eyes (C57BL/6-Tg(UBC-GFP)30Scha/J) (Schaefer et al., 2001) were supplied by 

Kunihiko Takahashi, William Harvey Institute, Barts and the London School of Medicine and 

Dentistry, London, UK.  

 

2.2.1.2 MAG knockout mice 

MAG knockout mice (Yin et al., 1998) were supplied by Peter Calabresi, John Hopkins Hospital, 

Baltimore, USA. 

 

2.2.1.3 MOGTCR transgenic mice 

The novel TCR (T cell receptor) transgenic mouse specific for MOG 35-55 (myelin oligodendrocyte 

glycoprotein) peptide on a C57BL/6 mouse background (Bettelli et al., 2003) were supplied by Dr. 

Steven Anderton, University of Edinburgh with permission from Vijay Kuchroo, Harvard University, 

Cambridge, Massachusetts, USA. Mating pairs were setup and a breeding stock established. 

Experiments were performed according to UK Animals (Scientific Procedures) Act 1986. 

 

2.2.1.4 Thy1-CFP transgenic mice 

Transgenic mice expressing enhanced CFP protein under control of the Thy1 promoter, named 

B6.Cg-Tg(Thy1-CFP)23Jrs/J (Stock number 003710) were developed by (Feng et al., 2000) and were 

obtained from the Jackson Laboratory, Bar Harbor, Maine, USA. Mating pairs were setup and a 

breeding stock established.  
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2.2.2 Genotyping and Phenotyping 

2.2.2.1 MOGTCR transgenic mice 

Blood samples were taken from mice and analysed by flow cytometry. A 20-50µl sample of 

heparinised blood was stained with a 1:50 dilution of anti-mouse Vβ11 TCR fluorescein 

isothiocyanate (FITC) conjugated antibody (Invitrogen, Paisley, UK) and anti-mouse CD4 

phycoerythrin (PE) conjugated antibody (Invitrogen, Paisley, UK) in 5% normal mouse serum in 

phosphate buffered saline (PBS). Cells were incubated with the antibodies for 30 minutes at 4°C 

and contaminating red blood cells were then lysed by addition of 500µl of 1:10 dilution FACS Lysis 

Buffer (Becton Dickinson, Oxford, UK). Samples were vortexed and incubated for a minimum of 10 

minutes at room temperature. Samples were analysed by flow cytometry (Becton Dickinson, 

Oxford, UK). Positive animals were selected for the expression of Vβ11 TCR in the majority of CD4 

T cell population. 

 

2.2.2.2 Thy1-CFP transgenic mice 

Thy1-CFP transgenic mice were genotyped using polymerase chain reaction (PCR). Tissue samples 

were removed from the ear of animals and digested over night at 60°C with 487.5μl Nucleon™ 

reagent B (400mM TRIS, 60mM EDTA, 15mM NaCl) and 12.5μl (20mg/ml) proteinase K (Invitrogen, 

Paisley, UK). The samples were deproteinised in 187.5μl 6M sodium perchlorate (Sigma-Aldrich, 

Poole, Dorset, UK), vortexed and placed in 60°C for 30 minutes. Following the addition of 750μl 

chloroform, samples were shaken for 10 minutes and centrifuged for 2 minutes at 18,000xg. The 

aqueous layer was removed and mixed with 1000μl ethanol to precipitate the DNA. Samples were 

inverted and spun for 1 minute at 12,000xg. The supernatant was removed and the pellet of DNA 

was dried at 60°C for 10 minutes. Samples were resuspended in 200μl of distilled H2O (dH2O).  

 

Primers sequences for the target transgene and a Wildtype control were obtained from Jackson 

Laboratory, Bar Harbor, Maine, USA (Table 2.2). The PCR volume was 50µl and run on specific 

cycling conditions (Table 2.3, Table 2.4). 
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Transgene primers  
(from Thy1 and CFP sequence) 

Sequence 

Thy1F1 TCTGAGTGGCAAAGGACCTTAGG 
EYFPR1 CCGTCGCCGATGGGGGTGTT 

Control primers  
(from T cell receptor delta chain sequence) 

Sequence 

Wildtype forward AAATGTTGCTTGTCTGGTG 

Wildtype reverse GTCAGTCGAGTGCACAGTTT 

 

Table 2.2 PCR primers and probes. Oligonucleotide sequence of transgene primers and control primers 

(Sigma-Aldrich Ltd, Poole, Dorset, UK) 

Initial concentration reaction 
components 

Final concentration reaction 
components 

Volume (µl) 

H2O H2O 15.5 

10 x PE Buffer II 

(Invitrogen, Paisley, UK) 

(Tris HCl [pH8.3], 50mM KCl) 

10 x PE Buffer II 

(Tris HCl [pH8.3], 50mM KCl) 
5 

50mM MgCl2 (Invitrogen, Paisley, UK) 2mM MgCl2 2 

2.5mM dNTP (Invitrogen, Paisley, UK) 0.2mM dNTP 5 

5M Betaine 

(Sigma-Aldrich Ltd, Poole, Dorset, 

UK) 

0.7M Betaine 7 

20μMThy1 primer 

(Sigma-Aldrich Ltd, Poole, Dorset, 

UK) 

1μMThy1 primer 2.5 

20μM ECFPR1 primer 

(Sigma-Aldrich Ltd, Poole, Dorset, 

UK) 

1μM ECFPR1 primer 2.5 

20μM Wt forward primer 

(Sigma-Aldrich Ltd, Poole, Dorset, 

UK) 

1μM Wt forward primer 2.5 

20μM Wt reverse primer 

(Sigma-Aldrich Ltd, Poole, Dorset, 

UK) 

1μM Wt reverse primer 2.5 

1.25U/μl Taq Polymerase 

(Invitrogen, Paisley, UK) 
0.0125U/μl Taq Polymerase 0.5 

DNA sample DNA sample 5 

Total volume 50.00μl/reaction 

 

Table 2.3 PCR components for master mix. Initial concentrations, final concentrations and volume of 

components required for PCR master mix to produce a final concentration of 50µl per reaction. 
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Step Temperature Time Notes 

1 94°C 90 seconds  

2 94°C 30 seconds  

3 60°C 60 seconds  

4 72°C 60 seconds 
Repeat steps 2-4 for 35 

cycles 

5 72°C 120 seconds  

6 10°C -  

Table 2.4 Cycling conditions for PCR. Temperature and time of each step involved in PCR amplification, 

including repeated steps at step 4. 

 

The PCR products were analysed using gel electrophoresis. For each sample, 5μl was loaded with 

3μl bromophenol blue loading buffer and 5μl distilled water (dH2O). Samples were run on a 1% 

agarose gel (20ml Tris/Borate/EDTA (TBE) buffer (Sigma-Aldrich Ltd, Poole, UK), 2g agarose (Fisher 

BioReagents, Loughborough, UK), 10μl Safeview (NBS Biologicals, Huntingdon, Cambridgeshire, 

UK) and 180ml TBE. A 50bp ladder (Invitrogen, Paisley, UK) was used as a reference. Gels were 

imaged on a luminescent imaging system (UVIdoc). 

 

Alternatively, Thy1CFP mice were phenotyped using a fluorescent microscope. Animals were 

placed under a fluorescence microscope on the FITC channel for approximately 5 seconds. Positive 

animals were confirmed by the presence of fluorescent RGC producing a pupil that appeared 

green. 

 

2.2.2.3 Genotyping homozygous mice  

To refine time and costs of the breeding process, the aim was to produce a homozygous breeding 

colony, which would therefore minimise the need for genotyping or phentoyping every new 

offspring. Initially, a homozygous transgenic mouse was identified by breeding with a Wildtype 

mouse and analysing the genetics of the offspring (ie. 100% offspring positive for transgene shows 

a homozygous parent). However, this technique was time consuming and uneconomical so a 

quantitative PCR method was developed to determine homozygous mice.  

 

To design primers and probes needed for quantitative PCR, the oligonucleotide sequence of the 

transgene needs to be known to allow a sequence to be targeted appropriately. The CFP sequence 

was identified using NCBI Nucleotide library to locate the oligonucleotide sequence for CFP. 
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Although primers for the MOGTCR transgene were known and were accessible from Jackson 

Laboratory (Bar Harbor, Maine, USA), the full oligonucleotide sequence of the transgene has not 

been published. The 675bp MOGTCR transgene was therefore sequenced from PCR products using 

Sanger sequence technology based at The Genome Centre, William Harvey Research Institute, 

Queen Mary University of London.   

 

Quantitative PCR was carried out as a duplex reaction with a reference gene to compare 

expression with the target gene. Ribosomal protein S29 (RPS29) was used as an endogenous 

control as it is expressed at a constant level (Svingen et al., 2009). Primer 3 software (Whitehead 

Institute for Biomedical Research, Cambridge, MA, USA) was used to design oligonucleotide 

primers and probes based upon enhanced CFP (eCFP), MOGTCR and RPS29 sequence (Table 2.5). 

The target gene probes were made with the fluorescent dye FAM attached to the 5’ end and a 

fluorescent quencher TAMRA attached to the 3’ end. The reference gene probes were made with 

HEX attached to the 5’ end to allow distinction between target and reference gene. 

 

Target gene (eCFP) Sequence 

eCFP Forward primer GCCTACATACCTCGCTCTGC 

eCFP Reverse primer CAACCCGGTAAGACACGACT 

eCFP Probe [FAM]-ATCCTGTTACCAGTGGCTGC-[TAM] 

MOG
TCR

 Forward primer 

MOG
TCR 

Reverse primer 

MOG
TCR

 Probe 

ACCCAGTGGTTCAAGGAGTG 

CTTGGTTCCCTGTCCAAAGA 

[FAM]- AGCGACTGGGCTGTGTACTT -[TAM] 

Reference gene (RPS29) Sequence 

RPS29 Forward primer ACGGTCTGATCCGCAAATAC 

RPS29 Reverse primer CATTCAAGGTCGCTTAGTCCA 

RPS29 Probe [HEX]-TACGCGAAGGACATAGGCTT-[TAM] 

Table 2.5 PCR primers and probes. Oligonucleotide sequence of Target gene (eCFP) primers and probe and 

Reference gene (RPS29) primers and probe (Sigma-Aldrich Ltd, Poole, Dorset, UK). 
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Tissue samples were removed from the ear of animals, digested and DNA extracted as described 

previously and a duplex quantitative PCR reaction was carried out to quantify the number of 

transgenes in each animal. Quantitative PCR was carried out in triplicates in 96-well reaction plates 

with the Applied Biosystems 7500 Real-Time PCR system (Applied Biosystems, Warrington, 

Cheshire, UK). The PCR volume was 20µl including  TaqMan® Gene Expression Master Mix, eCFP 

forward and reverse primers and probe, RPS29 forward and reverse primers and probe (Table 2.6) 

and run on specific cycling conditions (Table 2.7). 

 

Initial concentration reaction 
components 

Final concentration reaction 
components 

Volume 
(µl) 

TaqMan® Gene Expression Master Mix 

(2x) 

(Applied Biosystems,  

Warrington, Cheshire, UK) 

TaqMan® Gene Expression Master 

Mix (1x) 

(Applied Biosystems,  

Warrington, Cheshire, UK) 

10 

100μM CFP or MOG
TCR 

Forward Primer 

(Sigma-Aldrich Ltd, Poole, Dorset, UK) 
1μM CFP Forward primer 0.2 

100μM CFP or MOG
TCR

 Reverse primer 

(Sigma-Aldrich Ltd, Poole, Dorset, UK) 
1μM CFP Reverse primer 0.2 

100μM RSP29 Forward primer 

(Sigma-Aldrich Ltd, Poole, Dorset, UK) 
1μM RSP29 Forward primer 0.2 

100μM RSP29 Reverse primer 

(Sigma-Aldrich Ltd, Poole, Dorset, UK) 
1μM RSP29 Reverse primer 0.2 

100μM CFP or MOG
TCR

 probe 

(Sigma-Aldrich Ltd, Poole, Dorset, UK) 
500nM CFP Reverse probe 0.1 

100μM RSP29 probe 

(Sigma-Aldrich Ltd, Poole, Dorset, UK) 
500nM RSP29 Reverse probe 0.1 

DNA sample DNA sample 5 

H2O H2O 4 

Total volume 20μl/reaction 

Table 2.6 PCR components for master mix. Initial concentrations, final concentrations and volume of 

components required for PCR master mix to produce a final concentration of 50µl per reaction. 
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 Temperature Time Step Notes 

1 95°C 10 minutes Initial denaturation 
Repeat steps  

2-4 for 40 
cycles 

2 95°C 45 seconds Denaturation 
3 60°C 45 seconds Annealing 
4 72°C 120 seconds Extension 

Table 2.7 Cycling conditions for PCR. Temperature and time of each step involved in PCR amplification, 

including repeated steps 2-4. 

 

Data was collected on 7500 System Sequence Detection Software (Applied Biosystems, 

Warrington, Cheshire, UK) and cycle threshold (Ct) values were analysed by using a manual 

baseline of 0.2. Results were exported in .csv format and analysed using CopyCaller™ software 

(Applied Biosystems, Warrington, Cheshire, UK). 

 

2.2.3 Histological techniques 

2.2.3.1 Primary Fixation 

Karnovsky’s Fixative was freshly prepared for use as a primary fixative for tissue used in epoxy 

resin sectioning for confocal and electron microscopy. The fixative was composed of 

paraformaldehyde (PFA) (Sigma-Aldrich Ltd, Poole, Dorset, UK), glutaraldehyde (Agar Scientific Ltd, 

Stansted, Essex, UK) and 400ml 0.2M sodium cacodylate buffer (Agar Scientific Ltd, Stansted, 

Essex, UK). 

 

(1) 10% PFA was made by adding 10g PFA (Sigma-Aldrich Ltd, Poole, Dorset, UK) to 100ml 

distilled water and mixed on an electric hotplate with stirrer to 60-70°C in a fume hood 

(without boiling). After approximately 15 minutes the solution turns from milky to 

opalescent. To clarify the solution, 2-5 drops of 1M sodium hydroxide were added. The pH 

was adjusted 7.2 using HCl or NaOH. The solution was left to cool and filtered. 

 

(2) 0.2M sodium cacodylate was prepared by adding 21.4g sodium cacodylate (Agar Scientific 

Ltd, Stansted, Essex, UK) to 500ml distilled water.  

 

(3) 100ml of 10% PFA (1) (Sigma-Aldrich Ltd, Poole, Dorset, UK) was added to 120ml 25% 

glutaraldehyde (Agar Scientific Ltd, Stansted, Essex, UK) and 400ml sodium cacodylate (2) 
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(Agar Scientific Ltd, Stansted, Essex, UK). The solution was made up to 1 litre with distilled 

water and the pH was adjusted to 7.2. 

 

Cardiac perfusion with approximately 20ml PBS followed by 20ml Karnovsky’s fixative was 

performed. Samples were preserved in Karnovsky’s fixative at 4°C.  

 

2.2.3.2 Secondary Fixation 

Following primary fixation, optic nerves and eyes were rinsed in 0.1M sodium cacodylate buffer 

(Agar Scientific Ltd, Stansted, Essex, UK) for three changes of 10 minute cycles. Secondary fixation 

and impregnation of a contrast agent was achieved using 1% aqueous (w/v) osmium tetroxide. 

Tissue samples were left in secondary fixative for 2 hours with agitation.  

 

2.2.3.3 Dehydration 

Following secondary fixation, tissue samples were rinsed with distilled water and passed through a 

series of ascending alcohols, each for 10 minutes at 50%, 70%, 90% and 100% ethanol (three 

times).  

 

2.2.3.4 Infiltration of samples with resin 

Samples were passed through two 15 minute changes of 100% propylene oxide (Agar Scientific 

Ltd, Stansted, Essex, UK) followed by an overnight immersion in 1:1 mixture of propylene oxide 

and resin with agitation. Resin was prepared by adding 20ml araldite CY212 resin to 25ml 

Dodecenyl Succinic Anhydride (DDSA) (Agar Scientific Ltd, Stansted, Essex, UK)and 0.8ml DMP30 

(tri-dimethylamnomethyl phenol) (Agar Scientific Ltd, Stansted, Essex, UK). The following day, 

samples were removed and placed in 100% resin. After 3-6 hours samples were transferred into 

moulds with full resin and placed in the oven overnight at 60°C to polymerise. Resin blocks were 

trimmed with a fine-toothed hacksaw and roughly cut with a glass knife. Semi-thin sections were 

cut at 0.7µm thickness using a 6mm Histo diamond knife (Leica Microsystems Ltd, Milton Keynes, 

UK) on an Ultra Microtome (Leica Microsystems Ltd, Milton Keynes, UK) and placed on microscope 

slides (RA. Lamb, Eastbourne, UK). Ultra-thin sections were cut between 80-90nm with an 

Ultradiamond knife (Leica Microsystems Ltd, Milton Keynes, UK) on an Ultra Microtome (Leica 

Microsystems Ltd, Milton Keynes, UK)  and placed on copper grids. 
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2.2.3.5 Staining of resin sections 

Semi-thin sections were allowed to dry for several minutes on a hotplate and were stained with 1-

2 drops of 1% toluidine blue for 10-20 seconds and rinsed with distilled water. Slides were left to 

dry then mounted in DPX (dibutyl-phthalate-xylene) (Merck, Leicester, UK) and coverslipped (RA. 

Lamb, Eastbourne, UK).  

 

Ultra-thin sections were stained with a drop of Reynold’s Lead Citrate. Reynold’s Lead Citrate was 

prepared by dissolving 1.33g lead nitrate and 2.67g sodium citrate in 20ml distilled water and 

agitated for 30 minutes. 8ml of 0.1M NaOH was added and volume adjusted to 50ml with distilled 

water. To stain samples, drops of lead citrate are placed on a square of parafilm in a petri dish. 

Several sodium hydroxide pellets were added to the petri dish, moistened with distilled water and 

left for 2 minutes to absorb the CO2 from the dish. Copper grids with samples were inverted on 

droplets of lead citrate in the petri dish for approximately 2 minutes. Grids were quickly rinsed in 

distilled water and dried by blotting on clean filter paper. 

 

2.2.4 Microscopy 

Samples were viewed on a Nikon Eclipse 80i microscope and images analysed with Stereo 

Investigator 7.35.1. Axons were counted by drawing a contour around the optic nerve and using a 

fractionator probe to create 10 counting frames (80μm x 80μm). RGCs were counted along 3 

contour lines drawn along the edge of the RNFL. Further analysis was carried out with a Zeiss 

S10LSM confocal microscope and JEOL1010 transmission electron microscope.  

 

2.2.4.1 Tissue sections 

The brain, spleen, spinal cord and eyes were studied from Thy1CFP transgenic animals. Animals 

were perfused with 4% PFA and tissue was placed in 4% PFA overnight. Tissue was cryoprotected 

with 15% sucrose, followed by 30% sucrose until samples were submerged. Tissue was embedded 

in O.C.T. embedding compound (VWR, Lutterworth, Leicestershire, UK) and immersed in cold 

isopentane (VWR, Lutterworth, Leicestershire, UK) cooled with dry ice until frozen. Sections of 

40μm thickness were cut on a cryostat and coverslipped with anti-fade glycerol (CitiFluor Ltd, 

London, UK). 
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2.2.5 Retinal flatmounts 

Eyes were dissected from mice and immersed in 2% PFA (Sigma, Poole, Dorset, UK) in PBS (pH7.4) 

overnight. The retinae were dissected and the cornea, sclera, lens, hyaloid vasculature and 

connective tissue were removed in 2x normal strength PBS. Four radial incisions were cut around 

the retinae, which allowed it to lie flat (Figure 2.1). Flatmounts were mounted onto slides and 

cover slipped with anti-fade glycerol (CitiFluor Ltd, London, UK). The retinal flatmounts were 

imaged by fluorescent microscopy and RGC density was calculated by counting CFP expressing RGC 

using a fractionator probe. 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.1 Retinal flatmount dissection to create a retinal flatmount to expose RGC and allow 

quantification. a) Cornea is dissected and lens removed from eye. Four radial incisions made in the retina to 

create a Maltese cross shape. b) The retina was flattened and mounted on a microscope slide and cover 

slipped with ant-fade glycerol. 

a)   b)   
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2.2.6 In vivo imaging 

The retina from Thy1CFP animals was imaged in vivo under a fluorescent microscope. To study the 

RGC cells in detail, mice were anaesthetised with Euthatal (a terminal anaesthetic) and pupils were 

dilated with Mydriacyl® 1% (active ingredient tropicamide, Alcon, Hemel Hempstead, 

Hertfordshire, UK) and drops of Viscotears® (active ingredient carbomer, polyacylic acid, Novartis, 

Basel, Switzerland) were dropped onto the eye as a substitute for tear fluid and a coverslip was 

used to achieve optimal resolution. 

 

 

2.2.7 Statistical analysis 

Statistical analysis was performed in SigmaStat 3.1. Results were presented as mean values ± 

standard error of mean. Differences between two groups were analysed by Students t-test 

following normality tests. Differences between multiple groups were analysed by one way analysis 

of variance (ANOVA) tests. Correlations were analysed using the Pearson product correlation. 

Results were considered significantly different if the probability level P<0.05 (*), P<0.01(**) or 

P<0.001(***) was reached between groups. 
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2.3 Results 

2.3.1 MAG knockout mice  

MAG knockout mice were investigated for their potential as a model of demyelination and axonal 

loss. MAG knockout mice were sacrificed at 2.5 months (n=5) and 7 months (n=5). Optic nerve 

tissue and retinae were embedded in resin, sectioned and stained with toluidine blue. Density of 

axons and RGC were calculated using stereology software to count 15 random squares. The retina 

was analysed and density of RGC quantified (Figure 2.2). The average RGC density at 2.5 and 7.5 

months was 63.6±0.002 and 63.5±0.005 respectively, with no significant difference (p=0.975). 

Optic nerves were analysed and density of myelinated axons were quantified (Figure 2.3). The 

average axonal density at 2.5 and 7.5 months was 184±12 and 181±16 respectively, with no 

significant difference (p=0.885). 
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Figure 2.2 RGC counts from retina of MAG knockout animals at 2.5 and 7 months. C57BL/6 MAG knockout 

were sacrificed at two different time points, 2.5 months (n=5) and 7 months (n=5). Retinae were embedded 

in resin, sectioned and stained with toluidine blue. Density of RGC was calculated using stereology software 

to count number of cells along retina perimeter. The results show individual values (circles) and boxes show 

mean and 25% and 75% percentiles. 

 

Age of animal 
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Between the ages of 2.5 and 7 months MAG knockout mice do not lose a significant amount of 

axons to be used as a model of disease. Previous studies suggest axonal degeneration occurs later 

in disease course (approx 18 months) (Yin et al., 1998), which would make the MAG knockout 

mouse an unviable experimental model of disease. 
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Figure 2.3 Axonal counts from optic nerves proximal to the optic nerve chiasm from MAG knockout 

animals at 2.5 and 7 months. C57BL/6 MAG knockouts were sacrificed at two different time points, 2.5 

months (n=5) and 7 months (n=5). Optic nerve tissue were embedded in resin, sectioned and stained with 

toluidine blue. Density of axons was calculated using stereology software to count 15 random squares. The 

results show individual values (circles) and boxes show mean and 25% and 75% percentiles. 
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2.3.2 MOG-TCR transgenic mice 

2.3.2.1 Phenotyping MOGTCR transgenic mice 

A breeding stock of MOGTCR mice cross-bred with Thy1-CFP mice was setup and genotyping 

protocols were developed. MOG-specific TCR animals were phenotyped using flow cytometer. 

Blood samples were stained with CD4-specific mAb conjugated with FITC and TCR Vβ11-specific 

mAb conjugated with PE. In normal samples, about 95% of stained cell population were TCR Vβ11 

negative (Quadrant 1 and 3, Q1 and Q3) and about 5% of cells were Vβ11 positive (Quadrant 2, 

Q2). Samples were confirmed as positive MOGTCR transgenic if the T cell population was largely 

positive for both CD4 and TCR Vβ11 expression (Figure 2.4). Positive MOGTCR transgenic T cells also 

express TCRVα3. 

 

 

 

 

 

 

 

 

 

2.3.2.2 Spontaneous disease in MOGTCR transgenic mice 

 

 

 

Figure 2.4 Immunophenotyping MOG-specific TCR transgenic mice. Flow cytometry analysis of the T cell 

population specific for TCR expression in MOG
TCR

 mice to determine phenotype of animal. Peripheral blood 

cells from 4-6 week old MOG
TCR

 mice were obtained in heparinised tubes and stained with CD4 (FITC) and 

TCR Vβ11 (PE) specific antibodies for 30 minutes and red blood cells were lysed with lysis buffer. Samples 

were analysed by flow cytometry and events were gated to contain lymphoid cells based on forward and side 

scatter. a) An example of a negative sample which shows approximately 95% of CD4+ T cells were Vβ11 

negative and 5% are TCR Vβ11 positive. b) An example of a positive sample which shows approximately 

100% of CD4+ T cells are TCR Vβ11 positive.  

b) a) 
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4
 (
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TCR Vβ11 (PE) 
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Approximately 5% of MOGTCR animals develop spontaneous EAE from 8 weeks of age, consistent 

with previous reports (Bettelli et al., 2003). These results were supported from observations made 

during routine care of MOGTCR transgenic mice. The first signs of spontaneous EAE were typically a 

limp tail followed by partial and full hindlimb paralysis. Optic nerves and eyes from mice with 

spontaneous EAE were studied for signs of optic neuritis. The majority of animals that developed 

spontaneous EAE also had signs of optic neuritis. Any clinical signs were associated with the 

development of optic nerve involvement included eyelid swelling, tearing and reddening of the 

eye. Histological optic neuritis occurred at a higher frequency than clinical disease. ON was 

difficult to determine using macroscopic clinical signs due to the low number of animals that show 

clinical signs of ON. ON could only be confirmed by histological examination of optic nerve and 

retina. Optic nerve tissue from animals developing spontaneous neurological EAE was analysed for 

histological signs of ON using toluidine blue semi-thin stained sections (Figure 2.5, 2.7). Optic 

nerve tissue was also imaged using EM transmission microscopy to allow a more detailed analysis 

of pathology and allow identification of possible demyelinated fibres (Figure 2.6). Tissue was taken 

two weeks after spontaneous EAE developed or when the animal reached grade 5, a clinical 

endpoint due to the severity of disease. There is a loss in the integrity of axons in spontaneous ON 

optic nerves compared with normal optic nerves (Figure 2.).  
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In optic nerve tissue from spontaneous ON, there appeared to be areas of axonal loss (Figure 2.5, 

Figure 2.6). There are a few demyelinated axons, which were difficult to identify. Well defined 

blood vessels appear in the optic nerve and do not appear to be compromised as shown by the 

lack of evidence of perivascular cuffing. There were distinct foamy macrophages containing myelin 

debris and swollen mitochondria could often be seen throughout the optic nerve. This could 

reflect pathology or this could be due to a fixation artefact. 

Figure 2.5 Longitudinal stained sections of optic nerves from wildtype and MOG
TCR

 mice. Animals were 

perfused and tissue was fixed in Karnovsky’s Fixative. Tissue was embedded in resin and 0.7µm thin sections 

were cut and stained with Toluidine blue. a) Tissue taken from wildtype C57BL/6 without ON, showed the 

appearance of normal myelinated fibres (arrows). b) Tissue taken from MOG
TCR

 mice with spontaneous ON, 

showed a relative absence of myelinated fibres and areas of axonal loss (arrows). Animals were sacrificed 

two weeks after developing spontaneous EAE.  

a) 

b) 
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Figure 2.6 Cross section EM images from the optic nerve of MOG
TCR

 mice with spontaneous EAE.  MOG
TCR

 

transgenic mice were perfused and tissue was fixed in Karnovsky’s fixative. Tissue was embedded in resin and 

ultra-thin sections (90nm) were cut, tissue was stained with lead citrate and examined by transmission EM. 

Animals were sacrificed two weeks after developing spontaneous EAE. a) Cross section of optic nerve with 

myelinated axons (M) and histological signs of ON including degenerating axons (Dg) and demyelinated 

axons (Dm) and areas of axonal loss (AL). b) Cross section of optic nerve showing the presence of a blood 

vessel (Bv). c) Cross section of optic nerve showing the presence of inflammatory cells (arrows) surrounding 

the optic nerve sheath.  

a) 

c) 

b) 
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There was evidence to suggest the integrity of the BBB had been compromised due to the 

inflammatory response and the presence of mononuclear leucocytes, which could be seen within 

the parenchyma, on surrounding blood vessels and on the surface of the optic nerve (Figure 2.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.7 Longitudinal stained sections of optic nerves from MOG
TCR

 mice with spontaneous ON. 

Longitudinal section showing meninges of optic nerve with cellular infiltration in spontaneous ON. MOG
TCR

 

transgenic mice were perfused and tissue was fixed in Karnovsky’s Fixative. Tissue was embedded in resin 

and semi-thin sections (0.7μm) were cut and stained with toluidine blue. Animals were sacrificed two weeks 

after developing spontaneous EAE. Infiltrating white blood cells could be detected (arrows) in areas 

surrounding the optic nerve.  
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2.3.3 GFP expressing transgenic mice 

To improve the MOGTCR model and optimise its use as a drug screening model, a method needed 

to be developed, which would allow quick and reliable measurement of RGC loss without the need 

for surgical injection of tracer compounds or time consuming histology. The first approach was to 

examine the retinae of (C57BL/6-Tg(UBC-GFP)30Scha/J) mice which ubiquitously express GFP 

under the human ubiquitin C promoter as a potential method to quantify RGC by GFP selective 

expression in RGC (Inoue et al., 2005). Retinal flatmounts were studied, however, RGC could not 

be identified in retinal flat mounts due to the high level of expression in surrounding tissue. 

Therefore, this would not be a useful method to quantify RGC loss and was not pursued as a 

model.   
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2.3.4 Thy1CFP transgenic mice 

An alternative was to use Thy1CFP mice which selectively express CFP in RGC, allowing RGC to be 

easily quantified (Feng et al., 2006).  

 

2.3.4.1 Phenotyping Thy1CFP transgenic mice 

The potential to phenotype Thy1CFP mice using FACS was explored. Blood samples were analysed 

by FACS to identify CFP expression on peripheral T cells. The results were negative and T cells did 

not express CFP, probably due to the transgenic only expressing CFP on neuronal Thy1 (negative 

data not shown). CFP expression was also absent from T cell areas in the spleen, as assessed by 

fluorescence and confocal microscopy, confirming negative FACS results. 

 

Alternatively, Thy1-CFP mice were phenotyped by their CFP expressing retina, which can be 

visualised under a fluorescent microscope on the FITC channel (Figure 2.9). Positive phenotypes 

can be distinguished in normal eyes by the observation of cyan pupil under fluorescent light. It was 

easier to determine positive phenotypes when the pupil was dilated but this was not necessary 

and 3-4 week mice could be easily screened. This is a quick and rapid method to determine 

positive Thy1-CFP mice. 

 

 

 

 

 

Figure 2.9 Phenotyping Thy1-CFP transgenic mice using fluorescent microscopy.  Fluorescence microscopy 

was used to visualise CFP expressing retina. MOG
TCR

 mice between the ages of 4-6 weeks were screened for 

the presence of CFP expressing RGC in the eye. Mice were held under a standard fluorescent microscope on a 

FITC channel for several seconds to observe CFP expression. a) Image taken of an undilated pupil showing 

very weak CFP fluorescence. b) CFP expression is clearer in an image taken of a pupil dilated with 

tropicamide, which allows visualisation of the whole retina. This quick technique removes the need for PCR 

genotyping to identify CFP expressing animals. 

a) b) 



 

70 
 

      

2.3.4.2 Genotyping Thy1CFP transgenic mice 

 

Thy1-CFP mice were genotyped using PCR analysis. Positive Thy1-CFP transgenic mice showed a 

700bp band, which corresponded to the CFP gene (Figure 2.10). Positive control bands showed a 

200bp product, which corresponded to Tcrd (T-cell receptor delta chain).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quantitative PCR (qPCR) was used to determine homozygous mice, which can be used in the 

breeding stock to produce a homozygous breeding colony. Tissue samples were taken from known 

heterozygous and homozygous Thy1CFP mice based upon the genotypes of their offspring and 

negative tissue samples were taken from Wildtype C57BL/6 mice. Quantitative PCR showed 

heterozygous samples with one copy of the transgene, homozygous samples with two or more 

copies of the gene and negative samples with no copies of the gene (Figure 2.11). Using qPCR 

allowed mice to be screened and only mice homozygous for the Thy1CFP gene were used as 

breeders to produce a homozygous mouse colony which would require no further genotyping or 

phenotyping. 

-     +           +           +            +           + 
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Control (200bp) 

 

Figure 2.10 Genotyping Thy1-CFP transgenic mice by PCR. DNA samples were prepared from 4-6 week old 

MOG
TCR

 mice and analysed by PCR using primers for specific CFP and Tcrd sequences. These were detected 

following agrose gel electrophoresis using a 2% agarose gel stained with quick view to detect DNA. Negative 

samples produced a single band at 200bp corresponding to Tcrd as a control for the integrity of DNA. 

Positive samples also produced a band at 700bp corresponding to CFP and a band at 200bp corresponding to 

Tcrd.  
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Figure 2.11 Predicted gene copy number in samples. Results from qPCR were analysed using CopyCaller™ 

software. Ct values were used to determine predicted copy numbers of target CFP gene and calibrated 

against known heterozygous and homozygous samples. Hetrozygous samples (het), homozygous samples 

(hom). Results show samples 1, 2, 6, 7 were heterozygous and were not used in the breeding stock, sample 8 

was homozygous and used in the breeding stock. 
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2.3.4.2 Characterising Thy1-CFP transgenic mice 

The retina of Thy1CFP transgenic mice can be visualised both in vitro and in vivo (Figure 2.12).The 

optic nerve head is clearly visible in both images and individual RGC can be easily identified. The 

cross section of retina shows the many layers of the retina; RGC are clearly expressing CFP in the 

RNFL (Figure 2.12a). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 Fluorescent images from Thy1CFP transgenic mice. a) Animals were perfused and tissue fixed in 

4% PFA and cryoprotected. Frozen sections of the retina were cut at 40µm thickness. RGC (arrows) were 

visualised under fluorescence microscopy. b) Tissue was fixed in 4% PFA overnight and retina was dissected 

and flatmounted. RGC (circles) and the optic nerve head (arrow) were visible with fluorescence microscopy. c) 

Animals were held briefly (unanaesthetised) under a fluorescence microscope focused on the back of the 

retina. RGC (circles) and optic nerve head (arrow) are visible.   

a) b) c) 
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Other areas of tissue were examined for CFP expression. CFP expression is found in Thy1CFP 

transgenic mice in the brain and spleen (Figure 2.13). These results support the findings according 

to (Feng et al., 2000); CFP expression is found in the cerebellum and cortex. The spleen was 

examined for CFP expression. There was some low-level expression of CFP but the white pulp 

typically failed to show expression suggesting lack of expression on T cells (Figure 2.13c). 

 

 

 

 

 

 

  

Figure 2.13 CFP expression in the brain and spleen of Thy1CFP transgenic mice. Mice were perfused with 4% 

PFA and cryoprotected. Frozen sections of tissue were cut at 40µm thickness and visualised with fluorescence 

microscopy. CFP expression was detected in brain (a,b) and the spleen (c) in Thy1CFP transgenic mice. 

a) b) 

c) 
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2.3.5 MOGTCR xThy1CFP transgenic mice 

Thy1CFP transgenic mice were crossbred with MOGTCR transgenic mice to create a double 

transgenic MOGTCRxThy1CFP mouse (Figure 2.14), which develops spontaneous and induced optic 

neuritis with CFP expressing RGC, such that optic nerve loss can be visualised in the retina. These 

mice can develop ON in the absence of paralytic experimental autoimmune encephalomyelitis 

(EAE) and RGC can be seen in the living eye. Therefore the model has potential advantages over 

standard EAE models.  

  

T
C

R

CD4+ 
T Cell

MOG

T
C

R

CD4+ 
T Cell

MOG

Figure 2.14 MOG-TCR crossed with Thy1CFP transgenic mouse. MOG-specific TCR transgenic mice were 

bred with Thy1CFP transgenic mice to create a double transgenic MOG
TCR

xThy1CFP mouse.  

MOG-specific TCR transgenic mouse Thy1CFP transgenic mouse 

MOGTCRxThy1CFP double transgenic mouse 
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2.3.6 Characterising RGC loss in MOGTCR x Thy1CFP transgenic mice 

To gain a better understanding of factors affecting the disease susceptibility and severity in 

MOGTCRxThy1CFP mice, the average density of RGC was investigated in different groups of mice to 

determine which mice should be selected for future experiments. 

 

There is a clear role for gender factors influencing the susceptibility of MS. Gender difference has 

also been observed in EAE disease susceptibility (Reddy et al., 2005; Sinha et al., 2008). Therefore, 

the possibility of a gender difference in disease susceptibility in this strain of mice was investigated 

by looking at the differences in RGC density between male and female MOGTCRxThy1CFP mice 

(Figure 2.15). There was found to be no significant difference (P=0.197) between these two 

groups, therefore supporting the use of both male and female MOGTCRxThy1CFP mice in future 

experiments.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15 No difference in RGC loss between male and female MOG
TCR

xThy1CFP mice. Animals were 

immunised with 150ng PTX on Day 0 and Day 2. Animals were sacrificed 21 days post immunisation. Eyes 

were dissected immediately and placed in 4% PFA overnight. Eyes were flatmounted and mounted on slides. 

RGC were counted using stereology software to count 15 random 100µm x 100µm squares. The RGC density 

was compared between male (n=5) and female mice (n=8).  
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The pathophysiology of ON can develop either bilaterally or unilaterally (Youl et al., 1991). The 

pathogenesis of the disease in MOGTCRxThy1CFP mice was unknown and eyes from 

MOGTCRxThy1CFP mice were studied to analyse if disease is bilateral or unilateral (Figure 2.16). 

There was found to be a strong correlation between left and right eyes (r=0.972, p<0.005), 

therefore suggesting the development of ON in MOGTCRxThy1CFP typically occurs bilaterally. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16 Correlation between RGC loss in both eyes of MOG
TCR

xThy1CFP mice. Animals were immunised 

with 150ng PTX on Day 0 and Day 2. Animals were sacrificed 21 days post immunisation. Eyes were 

dissected immediately and placed in 4% PFA overnight. Eyes were flatmounted and mounted on slides. RGC 

were counted using sterology software to count 15 random 100µm x 100µm squares. The RGC density was 

compared between left eyes (n=6) and right eyes (n=6).  
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Previous analysis of MOGTCR mice suggested EAE occurred as a continuum of the pathology seen in 

the optic nerve (Bettelli et al., 2003). This reflects the pathology observed in humans, as ON is 

often the presenting symptom before MS occurs (The Optic Neuritis Study, 2008). The correlation 

between neurological EAE score and RGC density was examined (Figure 2.17). The results show 

that neurological EAE score was significantly correlated with RGC density (P=0.0176), correlation 

coefficient (r=-0.45), therefore  suggesting a decreasing linear relationship, such that as the 

neurological EAE score increased, the RGC density decreased. The lack of significance in the 

correlation between EAE and RGC density could be due to lack of data of histological EAE, which is 

not clinically observed. 
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Figure 2.17 No correlation between neurological EAE score and RGC density in MOG
TCR

xThy1CFP mice. 

Animals were immunised with 150ng PTX on Day 0 and Day 2. Animals were sacrificed 21 days post 

immunisation. Eyes were dissected immediately and placed in 4% PFA overnight. Eyes were flatmounted and 

mounted on slides. RGC were counted using stereology software to count 15 random 100µm x 100µm 

squares. Animals were scored daily and final neurological EAE score recorded on Day 21.  
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The correlation between weight of animal and RGC density was examined (Figure 2.18). The 

weight of the animal was not correlated with the density of RGC (P=0.832, r=0.018); therefore 

future experiments do not have to be selective for animal weight.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From these results it can be concluded that the weight and sex of the mouse does not affect the 

density of RGC and all animals can be included in future experiments. The results also show that 

ON develops bilaterally and therefore taking results from a single eye will be representative of the 

pathology in both eyes. The relationship between neurological EAE score and RGC density appears 

to be ambiguous, however there is evidence to suggest a weak relationship between neurological 

EAE score and development of ON. 

 

  

Density of RGC (cells/mm2)

1200 1400 1600 1800 2000 2200 2400

Fi
n

al
 W

ei
gh

t 
(g

)

10

12

14

16

18

20

22

24

Figure 2.18 No correlation between weight and RGC density in MOG
TCR

xThy1CFP mice. Animals were 

immunised with 150ng PTX on Day 0 and Day 2. Animals were sacrificed 21 days post immunisation. Eyes 

were dissected immediately and placed in 4% PFA overnight. Eyes were flatmounted and mounted on slides. 

RGC were counted using stereology software to count 15 random 100µm x 100µm squares. Animals were 

weighed daily and final weight recorded on Day 21.  
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2.4 Discussion 

Animal models are essential in scientific research to clarify disease mechanisms and to test novel 

therapeutic treatments. This chapter details the establishment of a novel animal model and its 

potential use as a model for demyelination, remyelination and neuroprotection.  

 

Initial research into the pathology of disease of MAG transgenic mouse led to the conclusion that 

this would be an unsuitable model to use due to the slow degenerative process, which was not 

evident after 7 months and previous data which suggests this could be a very slow process (Pan et 

al., 2005). This would therefore be a costly and time consuming experiment to run using this 

transgenic strain of mice. As an alternative, the MOG-specific TCR transgenic mouse was 

investigated as a potential animal model. Histological results from MOG-specific TCR provided 

evidence that would support the use of this model as a rapid model of axonal loss and possibly 

demyelination, although the evidence to suggest the model demyelinates is limited. As only 30% 

of mice develop ON, it would be necessary to develop an immunising protocol to achieve 100% 

disease occurrence (discussed in Chapter 3). Observations from MOGTCR mice reveal that 

spontaneous ON developed at a higher rate than spontaneous EAE (Bettelli et al., 2003); therefore 

implying that EAE pathologically follows ON. This could be attributable to differences in 

permeability of the BBB, variations in MOG expression and/or T cell infiltration in the optic nerve 

and spinal cord. Previous studies show MOG mRNA expression was significantly higher in the optic 

nerve compared to the brain and spinal cord and suggests that selective distribution as antigen is 

the cause of increased disease activity in the optic nerve (Bettelli et al., 2003). This study may 

indicate that the pathology starts in the optic nerve and development to EAE is due to a 

continuum of disease pathology. This mechanism can be related to MS pathology in humans, 

which initially develops as ON in a significant number of cases. To confirm this hypothesis, further 

studies should address the kinetics by which activated MOG-specific T cells invade cross the BBB 

and invade the CNS. 

 

The visual system offers a unique way to monitor axonal loss and changes in tissue architecture in 

the retina relating directly to pathophysiology in the optic nerve. In MS, the eye is a valuable 

biomarker and is regularly used to monitor changes in disease progression using OCT technology 

to measure changes in RNFL thickness (Frohman et al., 2008b). Therefore animal models which 

offered the potential to monitor RGC expression were evaluated. The GFP expressing rat was not 

suitable as an animal model to detect RGC, although a transgenic rat model is a future avenue of 
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research, which could still be followed.  Rat transgenic models are currently difficult and time 

consuming to create due to the unstable nature of their embryonic stem cells, which are isolated 

in mice and genetically modified before reintroducing into the embryo (Babinet et al., 1989). Using 

a rat model instead of a mouse model would be beneficial due to the increased size of the eye, 

which would allow any changes in RGC to be easily studied at a higher resolution.  

 

However, the Thy1CFP model offered selective expression of RGC, which allowed RGC to be 

rapidly quantified using retinal flatmounts and offered an advantage over the single transgenic 

MOG-specific TCR mouse which could only be evaluated with time consuming histology. By 

crossing MOG-specific TCR mice with Thy1CFP mice to produce the MOGTCRxThy1CFP transgenic 

mouse, a valuable mouse model to study neuroinflammation and nerve damage has been created 

and can be developed for use in the study of demyelination, neuroprotection and repair. The 

model offers many benefits for the study of autoimmune diseases; the optic nerve is an accessible 

CNS target that can be serially assessed by a range of techniques that are applicable to humans. 

The RGC are also an accessible neuronal target, which can be easily visualised to study 

neurodegeneration. One of the most valuable aspects of this model is the opportunity to study 

axonal degeneration via the RNFL. The RNFL is the only part of the CNS that allows direct 

visualisation of axons (Henderson et al., 2008). A lesion in the optic nerve will result in retrograde 

degeneration leading to RGC loss and thinning of the RNFL. Previous evidence to support this 

comes from primate studies (Quigley et al., 1977) and rat models of ON (Hobom et al., 2004). 

 

Compared to the EAE model, the MOGTCRxThy1CFP model would offer a beneficial refinement in 

accordance with the UK Home Office 3R’s principle of reduction, replacement and refinement of 

research animals. The EAE induction protocol is considered to be a ‘substantial’ Home Office 

procedure and so the lack of paralysis leads to less distress to animal and reduced severity of 

animals in procedure. It also avoids the use of Freund’s adjuvant which can cause morbidity to 

animals such as the development of granulomas and allodynia. It allows disease progress to be 

studied in animals without the necessity of paralysis and can be serially monitored without the 

need for sacrificing the animal for histological assessment, therefore reducing animal numbers 

used. Disease progress can be accurately determined by quantitatively measuring CFP-expressing 

RGC. Although the mice will lose vision, sight is a sense that is not of primary importance to 

rodents as they have evolved to be active in the dark and have poor visual acuity. Many laboratory 

strains of mice (e.g. SJL, CBA) have hereditary retinal dystrophy, which do not affect normal 

behaviour (Hafezi et al., 2000). 
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In summary the MOG-specific TCR transgenic mice was successfully crossed with the Thy1CFP 

transgenic model to produce a novel model that expresses fluorescent RRC and develops ON, 

which will be invaluable for the study of neurodegeneration in autoimmune diseases. The 

MOGTCRxThy1CFP model will help understand the pathogenesis of demyelination and its 

relationship with axonal loss and will contribute towards the development of therapeutics and 

validation of targets for drug intervention.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

82 
 

      

Chapter 3 

Development of immunising protocol 

 

3.1 Introduction 

Once the double transgenic mouse model MOGTCRxThy1CFP had been created (Chapter 2), 

research focused upon developing an immunisation protocol to induce disease. Approximately 

30% of the MOGTCR transgenic mice develop spontaneous ON with a wide range of time to onset 

(from 2.5 months to 5 months) (Bettelli et al., 2003). The aim therefore was to develop a method 

of immunisation to ensure a significantly large proportion of mice develop ON with optimal 

disease activity that can be manipulated with anti-inflammatory, neuroprotective or remyelinative 

therapies.  

 

3.1.1 Complete Freund’s adjuvant 

Adjuvants are administered in combination with antigens, which boost the T cell response leading 

to an increase in activated T cells and a more vigorous immune response to the antigen. One of 

the most widely used adjuvants in experimental models of autoimmune disease is Complete 

Freund’s Adjuvant (CFA), which enhances antibody production and T cell response (Billiau & 

Matthys, 2001). CFA contains heat-killed mycobacteria (Mycobacterium tuberculosis) in an oil and 

water emulsion. Administering antigens in an oil and water emulsion prolongs the lifetime of the 

antigen and allows a slow release over a long period of time (Herbert, 1968). CFA has also been 

shown to promote dendritic cell maturation (Tsuji et al., 2000), enhance phagocytosis (Pulendran 

et al., 2001), cytokine induction (Tovey & Lallemand, 2010) and activation and proliferation of 

CD4+ lymphocytes (Dalton et al., 2000). CFA was used in early EAE experiments and is used today 

as an immunological adjuvant (Freund et al., 1947). 

 

3.1.2 Pertussis Toxin 

Bordetella pertussis toxin (PTX) is frequently used as an immunological adjuvant in animal models 

of autoimmune disease. The traditional belief is that PTX predisposes animals to autoimmunity by 

disrupting the BBB to allow passage of inflammatory mediators, which target the CNS (Linthicum & 

Frelinger, 1982). The permabilisation of the BBB was classically associated with an increased 
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sensitisation to the histamine sensitisation factor of PTX (Teuscher, 1985). However, PTX is 

mitogenic for lymphoid cells as evidenced by the enlargement of the spleen with the expansion of 

antigen specific T cell following injection with PTX (Ryan et al., 1998). Accumulating evidence 

suggests PTX mediates its effects on the CNS by an alternate immunomodulatory mechanism in 

contrary to traditionally held belief, with effects on the blood-brain barrier being secondary. PTX 

has a range of effects and is associated with enhanced T cell differentiation, (Ryan et al., 1998), 

increased cytokine responses, activation of Toll-like receptor 4 signalling (Kerfoot et al., 2004; 

Racke et al., 2005) and depletion of CD4+,CD25+,FoxP3 subpopulation of regulatory T cells (Cassan 

et al., 2006; Chen et al., 2006). The discovery of these further effects of PTX highlights the complex 

interplay between PTX and autoimmunity. 

 

3.1.3 MOG and MOG-specific antibodies 

Although myelin reactive T lymphocytes can trigger the development of EAE, myelin specific B 

lymphocytes can contribute to pathology through antigen presenting capacities and the 

production of demyelinating autoantibodies (Pollinger et al., 2009). In contrast to myelin antigens 

such as MBP and PLP, which are not exposed, MOG is expressed on the surface of the myelin 

sheath and is exposed to antibodies penetrating the CNS. MOG is a minor antigen of the CNS 

which is strongly immunogenic and induces autoantibodies that can potentially be a target for 

chronic demyelination in EAE (Lebar et al., 1986b). Studies from MOG knockout mice highlighted 

the importance of the protein as a self-antigen and its necessity for development of EAE 

(Delarasse et al., 2003; Liñares et al., 2003). MOG IgG autoantibodies are sometimes present in 

cerebrospinal fluid (CSF) of MS patients and provides evidence supporting their importance in MS 

pathogenesis (Xiao et al., 1991). The physiological function of MOG is unknown, however evidence 

suggests a role in myelin maturation and maintenance due to its late expression during 

development (Scolding et al., 1989).  

 

MOG-specific antibodies were developed to study the effects of circulating anti-myelin antibodies 

on clinical and pathological course of EAE, which leads to extensive demyelination in the presence 

of an inflammatory disease that produces BBB dysfunction (Linington et al., 1988). Several clones 

of MOG-specific antibody have been produced and characterised to further investigate their 

demyelinative potential and to characterise the immune response in EAE (Piddlesden et al., 1993). 

The Z12 clone (mouse IgG2a monoclonal antibody) produces the most severe demyelination and a 

significant increase in deposition of membrane attack-complex of complement due to its 
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enhanced ability of the IgG2a isotype to activate complement (Piddlesden et al., 1993). It was later 

shown that the effects of antibody-mediated damage are associated with an increased 

recruitment of mononuclear cells into the CNS in mice, probably in response to complement-

mediated killing of cells, an effect which requires activation of complement (Morris-Downes et al., 

2002). This enhanced degree of damage could lead to an increase of severity of EAE that could 

result in death of the mice (D Baker, personal communication). This suggested that in contrast to 

the rat, mouse EAE may be too severe to augment demyelination using complement fixing MOG-

specific mAb (Linington et al., 1988). 

 

3.1.4 CD4-specific antibodies  

CD4 antibodies were extensively studied as a tool to modify the pathogenesis of EAE and gain a 

greater understanding of the inflammatory components of disease. CD4-specific mAb suppress T 

cell dependant responses and have been shown to prevent the development of neurological EAE 

(O'Neill et al., 1993). Administration of YTS191.1 (CD4-specific mAb) led to a rapid reduction of 

CD4+ T cells in the peripheral blood and lymphoid tissue by a complement mediated mechanism 

(Cobbold et al., 1984). The basis of CD4-specific mAb immunomodulation is not completely 

understood but it is thought to prevent the function of activated effector cells (Sedgwick & Mason, 

1986). YTS177, a non-depleting CD4 mAb, results in the down regulation of CD4 and thus cannot 

cause interaction of CD4 with MHC class II antigens, which is required for T cell activation following 

engagement of the TCR with the MHC antigen complex (O'Neill et al., 1993). YTS177 has also been 

used to reduce the established inflammation present in non-obese diabetic mice and prevents the 

onset of type 1 diabetes (Thompson et al., 2004). 
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3.1.5 Aims and Objectives 

The aim was to produce and refine an immunisation protocol, which results in optimal disease 

activity that can be manipulated for drug studies. Initial studies were aimed at investigating the 

effects of using classical immunological adjuvants such as PTX and MOG in CFA, which have 

previously been used in EAE experiments and also in this model (Bettelli et al., 2003). Following 

this the immunisation protocol was refined using Z12 MOG-specific mAb and modulated with CD4-

specific mAb to produce disease with maximum axonal and RGC loss but without paralysis typically 

associated with EAE. 
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3.2 Materials and Methods 

3.2.1 Animals 

MOGTCRxThy1CFP transgenic mice as described earlier were used for all experiments. All 

experiments were performed according to UK Animals (Scientific Procedures) Act 1986. 

 

3.2.2 Immunisation  

Animals were either injected intraperitoneally (i.p.) on day 0 and 2 with 150ng Bordetella pertussis 

toxin (PTX) (1) (Sigma-Aldrich Ltd, Poole, Dorset, UK) or subcutaneously (s.c.) with 100µg MOG (2) 

in complete Freund’s adjuvant (CFA) (3) (Difco Laboratories, West Molesey, Surrey, UK).  

 

(1) PTX (Sigma-Aldrich Ltd, Poole, Dorset, UK) was reconstituted in 500µl PBS. To prepare 1ml 

of 150ng/100µl PTX, 67µl of reconstituted PTX was dissolved in 933µl distilled water. 

 

(2) 200µg/ml of MOG 35-55 peptide was prepared by adding 100µg MOG 35-55 to 5ml PBS. 

 

(3) CFA was prepared by adding 8mg Mycobacterium tuberculosis H37Ra to 10ml incomplete 

Freund’s adjuvant (Difco Laboratories, West Molesey, Surrey, UK). 

 

(4) 100µg MOG in CFA was prepared by adding 5ml of 200µg/ml of MOG 35-55 peptide (2) to 

5ml CFA (3).  An emulsion was formed by rapidly pumping the mixture through a 1ml 

syringe for around 15 minutes. The consistency was tested by placing a droplet onto the 

surface of water and observing dispersion from the droplet.  

 

On day 14 animals were injected with 0.1-1.0mg MOG-specific Z12 monoclonal antibody in 200µl 

sterile PBS. In subsequent studies animals were injected with 100μl of anti-CD4 YTS177 

monoclonal antibody ascites (O'Neill et al., 1993) to reduced disease severity and axonal loss to 

study demyelination. CD4 is a primary co-ligand for T cell activation; therefore anti-CD4 mAb 

reduces T cell activation and CNS infiltration.  

 

Animals developing EAE were weighed and scored daily using a five-point EAE scale (Figure 3.1). 

During the paralytic phase animals are fed on a soaked diet. In accordance with the Home Office 

animal care protocols, several end points are specified due to the severity of this procedure. 
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Animals must be euthanized when they reach the following endpoints: a weight loss of greater 

than 35% of initial weight, prolapsed penis for more than 2 days, loss of bladder control, 

hypothermia (temperature below 31oC), 5 days of complete hind limb paralysis (without weight 

gain), 7 days of complete hind limb paralysis (with weight gain) (Al-Izki et al., 2011). A small 

percentage of animals (>1%) will show signs of distress due to visual disturbance and may rub their 

eyes beyond what is considered normal grooming, in these cases the animals are also euthanised. 

  

 

 

 

  

Clinical 
Score 

Description 

0 Normal 

1 
Fully flaccid tail, the tail is completely 
paralysed. If the tail does not lift but 

has some tone the score is 0.5. 

2 

Impaired righting reflex. The animal is 
turned on its back, it will not right 

itself. If the animal rights itself slowly 
the score is 1.5. 

3 
Hind limb paresis. If the animals only 
have a hind limb gait disturbance, the 

score is 2.5. 

4 

Complete hind limb paralysis. If the 
limbs are virtually paralysed but have 
some minor movement, the score is 

3.5. 

5 

Moribund/Death. If the animals’ 
forelimbs become paralysed in 

addition to the hind limbs then the 
animal must be euthanised (in 

accordance with UK home office 
legislation). 

Figure 3.1 EAE scoring scale. Animals scored on a scale of 1-5 (Al-Izki et al., 2011). Each clinical 

score has been defined and described to allow accurate scoring. 
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3.2.3 Hybridomas  

3.2.3.1 Growing hybridomas 

Hybridomas secreting Z12 MOG-specific mAb (mouse IgG2a monoclonal antibody) (Piddlesden et 

al., 1993) were used to produce antibodies. A frozen sample of Z12 clone was removed from liquid 

nitrogen and grown in RPMI 1640 medium (containing L-glutamine) (Invitrogen, Paisley, UK). 

150ml of RPMI medium was poured into a 250ml filter unit and additional medium components 

were added (Table 3.1).  The solution was filtered with 0.22µm sterile filter and added back to the 

original 500ml bottle of RPMI medium. 

 

Medium components 
Final 

concentration 

58ml Foetal calf serum (heat inactivated) 

(Invitrogen, Paisley, UK) 

10% FCS 

5.8ml Pen/Strep (100x stock) (Sigma, Poole, Dorset, UK) 
100 units/ml Penicillin G, 

100µg/ml streptomycin 

5.8ml insulin (Invitrogen, Paisley, UK) 5µg/ml insulin 

5.8ml sodium pyruvate (Sigma, Poole, Dorset, UK) 
1mM sodium 

pyruvate 

0.5ml 0.1% β-mercaptoethanol (Sigma, Poole, Dorset, UK) from 

freshly made 1000x stock (7µl into 10mls distilled H2O) 

0.0001% 

β-mercaptoethanol 

Table 3.1  Medium components for growing hybridomas. Concentration and volumes of components added 

to 500ml RPMI medium 1640. 

 

A 24 well plate was prepared by adding 0.5ml RPMI medium to the middle 8 wells and was left to 

equilibrate in a 37°C (5/10% CO2) incubator for one hour. A Z12 sample was removed from liquid 

nitrogen and thawed in 37°C water bath. Cells were mixed with 10ml pre-warmed medium and 

spun at 1000xg for 10 minutes. The medium was decanted and cells re-suspended in 0.5ml RPMI 

1640 medium.  The re-suspended cells were divided between 4 centre wells and left to incubate 

overnight in a 37°C (5/10% CO2) incubator. Once the cells were 30-50% confluent, fresh medium 

was added from neighbouring wells and fresh medium was added to eight empty wells. After 1-3 

days the cells were confluent and a pipette was used to take up the cells and split into 8 wells. 

Three 150cm2 flasks were prepared by adding 50ml medium and placing in incubator. When all 8 

wells were confluent, the cells were pipetted up and down and re-suspended in 15 ml tube. The 
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cells were split between the flasks. To propagate, cells were fed everyday by doubling the 

medium. Once fully confluent, the bottles were stood up and left for 2 weeks with occasional 

agitation. The supernatant was removed and purified.  

 

3.2.3.2 Purifying monoclonal antibodies 

Monoclonal antibodies were purified using protein A affinity chromatography, a chromatography 

matrix that allows interaction between the Fc portion of protein A and antibody, which can be 

reversed to isolate antibody of interest. To prepare the sample for purification, the supernatant 

was centrifuged to remove cell debris (10,000g for 10 minutes) and filtered to remove particulate 

matter (0.45µm filter).   

 

A HiTrap™ Protein A High Performance 1ml column (GE Healthcare Life Sciences, Buckinghamshire, 

UK) was used to purify hybridomas.  Binding, elution and neutralisation buffer were prepared 

(Table 3.2).  

Buffer Chemical pH 

Binding buffer 
0.02M sodium phosphate 

(Sigma, Poole, Dorset, UK) 
7.0 

Elution buffer 
0.1M citric acid 

(Sigma, Poole, Dorset, UK) 
4.5-5.5 

Neutralisation buffer 
1M Tris-HCL 

(Calbiochem, Merck, Nottingham, UK) 
9.0 

Table 3.2  Buffers used in antibody purification. Binding, elution and neutralisation buffer composition and 

pH for purifying hybridomas on a Protein A column. 

 

The column was linked to a peristaltic pump (Pharmacia, Stockholm, Sweden) and equilibrated 

with 10ml binding buffer at a rate of 1ml/min. The supernatant was pumped through the column 

at a rate of 3ml/min, followed by 10ml binding buffer at 1ml/min.  The antibody was eluted with 

5ml elution buffer and collected with 60-200µl neutralisation buffer. To reuse the column, it was 

re-equilibrated with 10ml binding buffer and washed with 20% ethanol to prevent microbial 

growth and stored at 4-8°C for future use. The concentration of the antibody was tested by placing 

a 1µl sample onto a Nanodrop Spectrophotometer (Thermo Scientific, Wilmington, Delaware, 

USA) and measuring its absorbance at 280nm.   
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3.2.4 Statistical analysis  

Statistical analysis was performed using SigmaStat 3.1. Results were presented as mean values ± 

standard error of mean. Differences between two groups were analysed by Students t-test following 

normality tests. Differences between multiple groups were analysed by one way analysis of variance 

(ANOVA) tests. Results were considered significantly different if the probability level P<0.05 (*), 

P<0.01(**) or P<0.001(***) was reached between groups.  
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3.3 Results 

 

3.3.1 Pertussis toxin and MOG in CFA immunisation  

Following on from work by Bettelli et al 2003, which described the potential use of an immunising 

protocol, the development of an immunisation protocol to allow sufficient disease to be obtained 

in MOGTCR mice was explored. Animals were either injected with 150ng PTX on day 0 and 2 or 

immunized with 50μg MOG peptide in CFA on day 0 (Figure 3.2). Animals were euthanised after 14 

days , which has been reported to be the time of maximum disease (Guan et al., 2006) and optic 

nerves and eyes were removed and analysed. None of these animals developed neurological EAE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.2 Timeline of experimental design for investigating immunisation with PTX and MOG in CFA.  

a) Animals immunised with 150ng Pertussis toxin on day 0 and 2. b) Animals immunised with 50µg MOG in 

CFA on day 0. All animals were euthanised on day 14. 

Day 0 

50µg MOG in 

CFA 

Day 14 

Animals euthanised 

a) 

b) 

Day 0 Day 2 

150ng 

Pertussis toxin 

Day 14 

Animals euthanised 
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Optic nerves were analysed and the number of myelinated axons in a cross section were counted. 

The number of myelinated axons decreased in optic nerves taken from animals immunised with 

PTX or MOG in CFA (Figure 3.3). Both PTX and MOG in CFA immunisation groups showed a 

decrease in the number of myelinated axons. However, the decrease in the number of myelinated 

axons was not statistically significantly different in immunised groups when compared to controls. 

This was possibly due to the small numbers in each group but this clearly was associated with the 

large deviations within the groups, suggesting that some animals were non-responders. Low 

availability of MOGTCR mice necessitated the use of wildtype littermate C57BL/6 controls. 

However, in other experiments the number of axons in C57BL/6 mice was not different from 

normal C57BL/6 MOGTCR mice. 
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Figure 3.3 Axonal counts from optic nerves of normal and diseased MOG
TCR

 mice induced to develop ON 

using PTX or immunised with MOG peptide in CFA. Axonal counts from normal animals (n=4), MOGTCR
 

animals immunised with 100µg MOG in CFA (n=5) and MOGTCR
 animals immunised with 150ng PTX (n=7).  

Animals were euthanized on day 14 and perfused with Karnovsky’s Fixative. Tissue was embedded in resin 

and semi-thin sections (0.7µm) were cut and stained with toluidine blue. Control animals were wildtype 

C57BL/6 animals of a similar age. Axons were randomly counted from a cross section using stereology 

software. Boxes show 25
th

 and 75
th

 percentile and median line. Circles show results from individual animals. 
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The retina was analysed and RGC were counted along a cross section of the RNFL. The number of 

RGC was estimated from animals immunized with PTX or MOG in CFA. Both PTX and MOG in CFA 

immunisation groups showed a decrease in the number of RGC (Figure 3.4). The decrease in RGC 

was significantly (P<0.05) different in immunised groups when compared to controls. This 

suggested that analysis of RGC number may be more reliable than analysis of the optic nerve. 
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Figure 3.4 RGC counts from retina of normal and diseased MOG
TCR

 mice induced to develop ON using PTX 

or immunised with MOG peptide in CFA. RGC counts from normal animals (n=4), MOG
TCR

 animals 

immunised with 100µg MOG in CFA (n=5) and MOG
TCR

 animals immunised with 150ng PTX (n=7).  Animals 

were euthanized on day 14 and perfused with Karnovsky’s Fixative. Tissue was embedded in resin and semi-

thin sections (0.7µm) were cut and stained with toluidine blue. Control animals were wildtype C57BL/6 

animals of a similar age. RGC were counted along a cross-section of retina and density calculated by 

measuring the length of retina using sterology software. Boxes show 25
th

 and 75
th

 percentile and median 

line. Circles show results from individual animals. *P<0.05 compared to controls. 
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The percentage of axonal loss and RGC loss following immunisation suggests immunisation was 

effective at incidence of disease in the majority of MOGTCR transgenic mice (Table 3.3). 

Immunisation with PTX showed a greater percentage of axonal loss and RGC loss when compared 

with MOG in CFA immunisation. RGC loss was statistically significant in both PTX and MOG in CFA 

immunised animals compared to control animals. Axonal loss was not statistically significant in PTX 

and MOG in CFA immunised animals compared to normal animals. However, there was a large 

standard error, suggesting a considerable variability between animals in the same group. This was 

probably due to the suggestion that some animals failed to develop disease, as there was an 

overlap of RGC and axonal numbers between disease transgenic and normal wildtype mice. 

 

 
Pertussis toxin 

Mean ± SEM 

MOG in CFA 

Mean ± SEM 

% Axonal loss 33±18 22±10 

% RGC loss 25±8* 17±4* 

 

Table 3.3 Percentage of mean axonal and RGC loss in normal and diseased MOG
TCR

 mice induced to 

develop ON using PTX or immunised with MOG peptide in CFA. MOG
TCR

 mice were immunised with PTX 

(Day 0 and 2) (n=7) or MOG in CFA (Day 0) (n=6) and were euthanised on Day 14. The % axonal loss and RGC 

loss was calculated by % mean reduction of MOG-TCR animals immunised compared to wildtype littermates. 

The largest axonal loss and RGC loss were seen in PTX treated animals. *P<0.05 compared to control 

animals.  
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To gain a greater understanding of the underlying pathology, semi-thin cross sections of the optic 

nerve and retina stained with toluidine blue were examined (Figure 3.5). Optic nerves from PTX 

and MOG in CFA treated groups show axonal loss and limited evidence of demyelination.  

 

 

 

 

 

 

 

 

Figure 3.5 Cross sections of optic nerves from normal and diseased MOG
TCR

 mice induced to develop ON 

using PTX or immunised with MOG peptide in CFA. Animals euthanised after 2 weeks of immunisation and 

wildtype controls were age-matched. Animals were perfused and tissue was fixed in Karnovsky’s Fixative. 

Tissue was embedded in resin and semi-thin sections (0.7μm) were cut and stained with Toluidine blue. a,d) 

Cross section of optic nerve from wildtype, C57BL/6 mouse shows uniformly myelinated axons and no 

evidence of optic neuritis. b,e) Cross section of optic nerve from MOG
TCR

 mice immunised with PTX (Day 0 

and 2) showed large areas of axonal loss and signs of ON. c,f) Cross section of optic nerve from MOG
TCR

 mice 

immunised with MOG in CFA (Day 0) showed large areas of axonal loss.  

c) 

a) 

c) 

b) 

d) 

f) 

e) 
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Figure 3.6 Cross sections of retina from normal and diseased MOG
TCR

 mice induced to develop ON using 

PTX or immunised with MOG peptide in CFA. Animals were perfused and tissue was fixed in Karnovsky’s 

Fixative. Tissue was embedded in resin and semi-thin sections (0.7μm) were cut and stained with toluidine 

blue and RGC (arrows) were counted. a) Cross section of retina from wildtype, C57BL/6 mouse showed 

uniform RGC. b) Cross section of retina from MOG
TCR

 mice immunised with PTX (Day 0 and 2) showed 

irregular RGC distribution. c) Cross section of retina from MOG
TCR

 mice immunised with MOG in CFA (Day 0) 

showed irregular RGC. All images are at 60x objective lens magnification. Animals euthanised after 2 weeks 

of immunisation and wildtype controls were age-matched.  

The retina from control animals showed uniformly rounded RGC with closely packed nuclei, which 

are typical characteristics of healthy RGC (Figure 3.6a). The retina from PTX and MOG in CFA 

immunised animals were not uniform in appearance and were sporadically organised (Figure 

3.6b,c). 
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Ultra-thin sections were stained with lead citrate and uranyl acetate and were examined with an 

electron microscope (Figure 3.7). Optic nerves from control animals looked normal with densely 

packed, uniform myelination surrounding the axon (Figure 3.7a,b). In the immunised animals, the 

optic nerve contains few axons, some of which appear to be demyelinated but these were 

infrequent and not easy to distinguish from glial cell processes (Figure 3.7c,d).  

 

 

 

 

 

 

 

 

 

Figure 3.7 Electron microscopy of optic nerves from normal and diseased MOG
TCR

 mice induced to develop 

ON using PTX or immunised with MOG peptide in CFA. Animals euthanised after 2 weeks of immunisation 

and wildtype controls were age-matched. Animals were perfused and tissue was fixed in Karnovsky’s 

Fixative. Tissue was embedded in resin and ultra-thin sections (90nm) were cut and stained with Lead 

citrate. a,b) Cross section of optic nerve from Wildtype, C57BL/6 mice showed uniformly myelinated axons 

(M). c) Cross section of optic nerve from MOG
TCR

 mice immunised with PTX (Day 0 and 2) showed evidence of 

demyelination (D) and axonal loss. Demyelinated axons can be differentiated from other cell types by the 

characteristic stippled cytoplasm surrounded by faintly stained thin line, corresponding to the axonal 

membrane. d) Cross section of optic nerve from MOG
TCR

 mice immunised with MOG in CFA (Day 0) showed 

large areas of axonal loss (A). 
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These results clearly show a difference between control mice and MOGTCR mice immunised with 

PTX or MOG in CFA. Therefore, from this study it can be concluded that PTX has a greater effect on 

RGC and axonal loss compared to animals immunised with MOG in CFA. Future studies should 

employ immunisation of animals with PTX for optimal results.  

 

 3.3.2 Pertussis toxin followed by Z12 MOG-specific mAb at different times  

Studies in rats have shown that injection of complement fixing antibody can augment 

demyelination  (Linington et al., 1988). In classic EAE in the mouse, this can augment clinical 

disease (Morris-Downes et al., 2002) such that it can cause death. As spinal EAE was not a feature 

of ON, a combination of PTX and anti-MOG Z12 mAb (monoclonal mouse IgG2a) was used in 

immunised MOGTCR mice in an attempt to amplify demyelination in the optic nerve. Injection of 

Z12 MOG-specific mAb when the BBB was compromised, would therefore facilitate entry of 

antibody into the CNS and induce complement-dependant lysis of oligodendrocytes to induce 

demyelination (Morris-Downes et al., 2002). Initial studies investigated the optimal timing of Z12 

MOG-specific mAb injection. Animals were immunised with 150ng PTX on day 0 and 2 followed by 

i.p. injection of 1.0mg Z12 MOG-specific mAb on day 14 or 21, animals were euthanised on 7 days 

post Z12 MOG-specific mAb injection (Figure 3.8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Timeline of experimental design for investigating the timing of Z12 MOG-specific mAb.  

a) Animals immunised with 150ng Pertussis toxin on day 0 and 2 and 1.0mg Z12 MOG-specific mAb at day 14 

and euthanised on day 21. b) Animals immunised with 150ng Pertussis toxin on day 0 and 2 and 1.0mg Z12 

MOG-specific mAb at day 21 and euthanised on day 28. 

 

Day 0 Day 2 

150ng 

Pertussis toxin 

Day 14 

1.0mg Z12  

MOG-specific mAb 

Day 21 

Animals 

euthanised 

Day 0 Day 2 

150ng 

Pertussis toxin 

Day 21 

1.0mg Z12  

MOG-specific mAb 

Day 28 

Animals 

euthanised 

Day 14 

a) 

b) 



 

99 
 

      

Time of anti-MOG Z12 injection (days)

Normal 14 days 21 days
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The majority of animals developed neurological EAE (approximately 86%). The average maximal 

neurological EAE score for animals immunised with Z12 MOG-specific mAb after 14 days and 21 

days was 3.2±1.0 and 2.8±0.8 respectively.  There was no significant difference between maximal 

neurological EAE scores when immunised with Z12 MOG-specific mAb on day 14 or 21. 

Comparison of axonal loss in optic nerve sections following Z12 MOG-specific mAb injection at day 

14 showed no significant difference between Z12 MOG-specific mAb injection at day 21 (Figure 

3.9). However, Z12 MOG-specific mAb injection at Day 21 shows more variability in axonal counts 

compared to day 21 post-disease induction. The results are comparable to neurological EAE scores 

as the group immunised at 14 days show less variability. Therefore, there is no significant 

difference between axonal loss after Z12 MOG-specific mAb injection on day 14 and day 21 post-

disease induction. From these results it would suggest that future immunising protocols should 

use Z12 MOG-specific mAb at day 14, to ensure a shorter and more concise development of 

disease.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Axonal counts from optic nerve of normal and MOG
TCR

 mice induced to develop ON following 

administration with Z12 MOG-specific mAb. Axonal counts taken in optic nerves from normal animals (n=4) 

and MOG
TCR

 animals immunised with 150ng PTX (Day 0 and 2) and injected i.p. 1mg MOG-specific Z12 on Day 

14 (n=7) or Day 21 (n=9) post-disease induction. Animals were sacrificed at 4 (cyan), 7 (blue), 11(yellow) or 

14(green) days post MOG-specific Z12 injection. Animals were perfused and tissue was fixed in Karnovsky’s 

Fixative. Tissue was embedded in resin and semi-thin sections (0.7µm) were cut and stained with toluidine 

blue. Data was compared with normal animals, which were wildtype C57BL/6 animals of a similar age. Axons 

were randomly counted from a cross section using stereology software. Grey boxes show 25
th

 and 75
th

 

percentile and median line. Circles show results from individual animals. *P<0.01 compared to normal 

animals.  
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3.3.3 Pertussis toxin followed by Z12 MOG-specific mAb at different doses  

Different doses of Z12 MOG-specific mAb were administered to establish an immunising protocol 

that would achieve optimal frequency of ON but limited development of neurological EAE and 

amount of antibody used. Animals were immunised with PTX on day 0 and 2 followed by i.p. 

injection of 0.1, 0.5 or 1.0mg of Z12 MOG-specific mAb on day 14 post-disease induction, mice 

were euthanised on day 28 post-disease induction (Figure 3.10).  

 

 

 

 

 

 

 

 

 

 

 

The average weight of animals remained constant following different doses of Z12 MOG-specific 

mAb (Figure 3.11). The percentage of animals developing neurological EAE and the maximal EAE 

score increased following increasing doses of Z12 MOG-specific mAb (Figure 3.12, Table 3.4). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Timeline of experimental design for investigating different doses of Z12 MOG specific mAb.  

a) Animals immunised with 150ng Pertussis toxin on day 0 and 2 and 0.1mg, 0.5mg or 1.0mg Z12 MOG-

specific mAb on day 14, animals euthanised on day 28. 
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Figure 3.12 Neurological EAE develops in MOG
TCR

 mice induced to develop ON following administration 

with Z12 MOG-specific mAb at different doses. MOG
TCR

 animals were immunised with 200ng PTX (Day 0 

and 2). Animals were injected i.p. with 0.1mg (n=8), 0.5mg (n=8) and 1.0mg (n=7) Z12 MOG specific mAb on 

day 14 post-disease induction. Animals were scored daily following MOG-specific Z12 mAb injection. The 

results represent the mean daily neurological EAE score ± SEM. ** P<0.01 compared to animals receiving no 

Z12 mAb. 

Figure 3.11 Mean weight changes in MOG
TCR

 mice induced to develop ON following administration with 

Z12 MOG-specific mAb at different doses.  MOG
TCR

 animals were immunised with PTX (Day 0 and 2) and 

0.1mg (n=8), 0.5mg (n=8) or 1mg (n=7) MOG-specific Z12 mAb on Day 14. Animals were weighed daily 

following Z12 MOG-specific mAb injection. The % weight change was calculated from the mean weight on 

day 0 of Z12 MOG-specific mAb injection.  

 

 ** 

 ** 

 ** 
 **  **  **  **  ** 
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The number of surviving RGC following administration of different concentrations of Z12 MOG-

specific mAb were significantly reduced compared to untreated control MOGTCR mice (figure 3.13). 

There appeared to be an increased variability of RGC loss at the lower doses of 0.1mg Z12 MOG-

specific mAb. However, the average RGC counts were not significantly different for each 

concentration of Z12 MOG-specific mAb.   
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Figure 3.13 Administration of Z12 MOG-specific mAb augments RGC loss following induction of ON in 

MOG
TCR 

mice.  Animals were immunised with 150ng PTX (Day 0 and 2) and injected i.p. with 0.1mg (n=8), 

0.5mg (n=7) or 1mg (n=5) MOG-specific Z12 mAb on Day 14 post-disease induction. Eyes were removed and 

embedded in resin and 0.7µm sections were made. The RGC number per unit length of retina was counted 

under light microscopy. Data was compared with control animals, which were wildtype C57BL/6 littermates. 

Results represent individual RGC counts (circle) and the boxes represent mean and 25 and 75 percentiles. ** 

P<0.01 compared to normal animals. 
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Therefore, increasing doses of Z12 MOG-specific mAb had a significant effect on the development 

of neurological EAE but did not appear to influence the amount of RGC loss. Therefore, a lower 

dose between 0.1mg and 0.5mg of Z12 MOG-specific mAb could be used to achieve optimal RGC 

loss whilst minimising the incidence and severity of neurological EAE.  

 
  

Treatment % MOGTCR 

mice developing 
neurological EAE 

Maximal EAE 
Score 

Mean ± SEM 

RGC density 
(RGC/mm) 
Mean ± SEM 

0.0mg Z12 MOG-specific mAb 0 0 67±7 

0.1mg Z12 MOG-specific mAb 25 0.9±0.6 45±5 

0.5mg Z12 MOG-specific mAb 38 1.3±0.7 50±3 

1.0mg Z12 MOG-specific mAb 60 3.2±0.7 52±3 

Table 3.42 Development of neurological EAE in MOG
TCR

 mice induced to develop ON following 

administration of different concentrations of MOG-specific mAb. MOG
TCR

 mice were immunised with PTX 

(Day 0 and 2) followed by 0.1mg (n=8), 0.5mg (n=7) or 1.0mg (n=5) Z12 MOG-specific mAb (Day 14) and 

were sacrificed on Day 21 post-disease induction. Neurological EAE score was assessed daily and % incidence 

of neurological EAE was calculated by the number of animals developing any signs of neurological EAE (score 

1-5) compared to the total number of animals in the group. The results show the maximal EAE clinical score 

of all animals within the group and the RGC density. 
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3.3.4 Pertussis toxin, Z12 MOG-specific mAb and anti-CD4 modulation  

The previous data suggested that whilst addition of Z12 MOG-specific mAb augmented RGC loss, 

the disease was so aggressive that axonal loss rather than demyelination was the predominant 

histological feature. Therefore in an attempt to generate more robust demyelination such that it 

may be feasible to investigate remyelination strategies rather than purely neuroprotective agents, 

immunosupression was administered to reduce the level of the inflammatory response. The CD4-

specific YTS177 mAb has been shown to cause down regulation of CD4 antigen and rapidly inhibits 

EAE (O'Neill et al., 1993).   

 

Animals were injected with 150ng PTX on day 0 and 2, followed by 0.25mg MOG-specific Z12 mAb 

day 14 post-disease induction. Animals were also injected with 100µl i.p. CD4-specific ascites fluid 

mAb on day 14 or day 16 post-disease induction (Figure 3.14). This contains about 0.5mg of 

specific mAb and is sufficient to induce the down regulation of CD4 on all T cells within 3 hours of 

antibody administration (O'Neill et al., 1993). Animals were euthanised at day 21 post-disease 

induction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

a) 

Day 0 Day 2 

150ng 

Pertussis toxin 

Day 14 

1.0mg Z12  

MOG-specific mAb 

Day 21 

Animals euthanised 

100µl CD4-
specific mAb 

b) 

Day 0 Day 2 

150ng 

Pertussis toxin 

Day 14 

1.0mg Z12  

MOG-specific mAb 

Day 21 

Animals euthanised 

Day 16 

100µl CD4-
specific mAb 

Figure 3.14 Timeline of experimental design for investigating immunomodulation with anti-CD4. Animals 

immunised with 150ng Pertussis toxin on day 0 and 2 and 0.25mg Z12 MOG-specific mAb on day 14 a) 

animals injected with 100µl CD4-specific ascites on day 14. b) Animals injected 100µl CD4-specific ascites on 

day 16.  Animals were euthanised on day 21. 
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The average weight remained relatively constant despite the development of EAE in some animals 

(Figure 3.15, Table 3.5). The severity of the neurological EAE score was reduced following injection 

with CD4-specific mAb when compared with animals in previous studies which were not injected 

with anti-CD4 mAb (Figure 3.16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 Mean weight changes in MOG
TCR

 mice administered with Z12 MOG-specific mAb and CD4-

specific mAb. Animals were immunised with 150ng PTX (Day 0 and 2) and 0.25mg Z12 MOG-specific mAb at 

day 14 post-disease induction.  MOG-specific TCR animals were given CD4-specific mAb at day 14 post-

disease induction (n=5) or day 16 post disease induction (n=4) and compared with animals without CD4-

specific mAb (n=4). Animals were weighed daily following injection of Z12 MOG-specific mAb. The % weight 

change was recorded from the day of Z12 MOG-specific mAb injection. 
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 % MOGTCR mice 
developing 

neurological EAE 

Maximal EAE Score 

Mean ± SEM 
RGC density 
(RGC/mm) 
Mean ± SEM 

No CD4-specific mAb 60 3.2±0.7 52±3 

CD4-specific mAb day 1 20 0.4±0.1 46±6 

CD4-specific mAb day 3 60 0.2±0.2 45±9 

Figure 3.16 Neurological EAE development in immunised MOG
TCR

 mice following administration of MOG 

specific mAb and CD4-specific mAb. Animals were immunised with 150ng PTX (Day 0 and 2) and 0.25mg Z12 

MOG-specific mAb at day 14 post disease induction. MOG-specific TCR animals were given CD4-specific mAb 

at day 14 post-disease induction (n=5) or day 16 post disease induction (n=4) and compared with animals 

without CD4-specific mAb (n=4).  The results represent the mean daily neurological EAE score ± SEM.  
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Table 3.5  Development of neurological EAE and RGC loss induced by injection of MOG-specific mAb in 

MOG
TCR

. Animals were immunised with 150ng PTX (Day 0 and 2) and 0.25mg anti-MOG Z12 (Day 14). CD4-

specific mAb was injected i.p. on either day 14 post-disease induction (n=5) or day 16 post-disease induction 

(n=5). Animals were sacrificed on Day 21 post-disease induction. Neurological EAE score was assessed daily 

and % neurological EAE was calculated by the number of animals developing any signs of neurological EAE 

(score 1-5).  
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There was no statistically significant difference in RGC loss in immunised MOGTCR mice injected 

with CD4-specific mAb on day 14 and day 16, and without injection of CD4-specific mAb (Figure 

3.17). These results suggest that the CD4-specific mAb injected at the time of Z12 MOG-specific 

mAb injection has no effect on the disease process in the optic nerve and retina in contrast to that 

occurring in the spinal cord, which is associated with the development of neurological EAE.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17 CD4-specific mAb does not inhibit RGC loss induced by injection of MOG-specific mAb in 

MOG
TCR

 immunised to develop optic neuritis. Animals were immunised with 150ng of PTX (Day 0 and 2) and 

0.25mg anti-MOG Z12 (Day 14). CD4-specific mAb was injected i.p. on either day 14 post-disease induction 

(n=5) or day 16 post-disease induction (n=5). Control animals were wildtype C57BL/6 animals of a similar 

age. The eyes were removed and fixed in Karnovsky’s fixative and embedded in resin. Sections of 0.7µm were 

cut and stained with toluidine blue at the level of the optic nerve head. The number of RGC was counted and 

expressed as number of cells per mm of retina. The results show individual values (circles) and boxes show 

mean and 25% and 75% percentiles. **P<0.01 compared to control animals. 
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Toluidine blue stained optic nerves were studied to look for evidence of demyelination in the optic 

nerve (Figure 3.18). The pathology of the optic nerves from mice treated with CD4-specific mAb 

showed no evidence of demyelination and ranged from moderate to severe axonal loss. Optic 

nerves from mice without CD4-specific mAb treatment showed extensive axonal loss without 

demyelination.   
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a) 

c) 

b) 

c) 

Figure 3.18 CD4-specific mAb prevents axonal loss in the optic nerve induced by treatment with MOG-

specific mAb in MOG
TCR

 mice induced to develop ON. Animals were immunised with 150ng PTX (Day 0 and 2) 

and injected i.p. 0.25mg MOG-specific Z12 at day 14 post-disease induction. One group of animals were 

injected i.p. with CD4-specific mAb day 16 post-disease induction and compared with animals without CD4-

specific mAb.  a) Optic nerve taken from normal C57BL/6 wildtype animal. b) Optic nerve taken from MOG
TCR

 

specific animal immunised with PTX and MOG-specific mAb without CD4-specific treatment. c) Optic nerve 

taken from MOG
TCR

 animal immunised with PTX and MOG-specific mAb with CD4-specific treatment shows 

moderate axonal loss. d) Optic nerve taken from MOG
TCR

 animal immunised with PTX and MOG-specific mAb 

with CD4-specific treatment shows severe axonal loss and no myelinated axons.  
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Treatment with CD4-specific mAb had a significant ameliorating effect on neurological EAE score. 

However, this immunosuppression had no effect on RGC counts, which were similar in animals 

injected with CD4-specific mAb and without CD4-specific mAb. Optic nerves were also comparable 

to early studies without CD4-specific mAb, showing little evidence of demyelination and 

widespread axonal loss.  

 

To allow CD4-specific mAb to have a greater effect on reducing the extent of axonal loss, the CD4-

specific mAb was administered at an earlier stage of the disease process (Figure 3.19). Animals 

were injected with 150ng PTX on day 0 and 2, followed by 0.25mg MOG-specific Z12 mAb on day 

6, day 8 or day 10. Animals were also injected with 100µl i.p. CD4-specific ascites fluid on day 6, 

day 8 or day 10. Animals were euthanized 7 days after MOG-specific Z12 mAb injection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 CD4-specific mAb injection at an early stage in disease does not inhibit RGC loss induced by 

injection of MOG-specific mAb in MOG
TCR

 immunised to develop optic neuritis. Animals were immunised 

with 150ng of PTX (Day 0 and 2). Animals were injected with 0.25mg anti-MOG Z12 on day 6 post-disease 

induction (n=7), day 8 post-disease induction (n=4) or day 10 post-disease induction (n=5). Another sample of 

animals were injected with with 0.25mg anti-MOG Z12 and CD4-specific mAb on day 6 post-disease induction 

(n=7), day 8 post-disease induction (n=4) or day 10 post-disease induction (n=5). Control animals were 

wildtype C57BL/6 animals of a similar age. The eyes were removed and fixed in Karnovsky’s fixative and 

embedded in resin. Sections of 0.7µm were cut and stained with toluidine blue at the level of the optic nerve 

head. The number of RGC was counted and expressed as number of cells per mm
2
 of retina. The results show 

individual values (circles) and boxes show mean and 25% and 75% percentiles.  
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The difference in RGC loss between animals with and without injection of anti-CD4 mAb at day 6, 

day 8 and day 10 was insignificant. This result suggests that administration of anti-CD4 mAb was 

not sufficient early enough to produce immunosupression and was therefore incapable of 

protecting the loss of RGC. It appears from these results that the timing of administering anti-CD4 

mAb needs to be earlier in disease to produce an effect that would promote demyelination and 

prevent the rapid axonal loss and the accompanied RGC loss. Therefore, further studies are 

needed to establish an optimal time for CD4-specific mAb administration to prevent severe 

damage to optic nerve and RGC loss. 

 

 

3.3.5 Immunisation of the double transgenic MOGTCRxThy1CFP model 

Once the two transgenic strains had been successfully crossed to produce the double transgenic 

MOGTCRxThy1CFP, the immunising protocol which was developed in previous studies was 

investigated. Mice were immunised with 150ng PTX on day 0 and 2 followed by 0.25mg Z12 MOG-

specific mAb on day 14 post-disease induction. Animals were euthanised on day 21 post-disease 

induction and perfused with 4% PFA. Retinae were dissected and flatmounted. The weight of the 

animals following immunisation with PTX slightly increased as animals aged, the weight then 

decreased following MOG-specific mAb injection once clinical signs of EAE occurred (Figure 3.20). 

In this particular experiment, all animals developed neurological EAE (n=7). The neurological EAE 

score increased after Z12 MOG-specific mAb immunsiation on day 14 post-disease induction 

(figure 3.21).  
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Figure 3.21 Neurological EAE score following immunisation of MOG
TCR

xThy1CFP mice induced with MOG-

specific mAb to develop ON. Animals were immunised with 150ng PTX (Day 0 and 2) and injected i.p. with 

0.25mg MOG-specific Z12 mAb at day 14 post-disease induction (n=7). Neurological EAE score was assessed 

daily (score 1-5) following PTX immunisation.  
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Figure 3.20 Changes in weight following immunisation of MOG
TCR

xThy1CFP mice induced with MOG-

specific mAb to develop ON. Animals were immunised with 150ng PTX (Day 0 and 2) and injected i.p. with 

0.25mg MOG-specific Z12 mAb at day 14 post-disease induction (n=7). Animals were weighed daily following 

PTX immunisation.  
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RGC were counted from the retinal flatmounts and RGC densities were calculated. The RGC loss 

following 0.25mg Z12 MOG-specific mAb immunisation was approximately 34% and was 

significantly different compared to untreated animals (Figure 3.22). The average RGC count in mice 

immunised with 0.25mg MOG-specific mAB was 955±45 cells/mm2 compared to 1456±59 

cells/mm2 in the control animals, which did not show any overlap in RGC numbers. 

 

 

  

Figure 3.22 RGC loss following immunisation of MOG
TCR

xThy1CFP mice induced with MOG-specific mAb to 

develop ON. Animals were immunised with 150ng PTX on day 0 and 2 and injected i.p. with 0.25mg MOG-

specific mAb at day 14 post-disease induction (n=7). Data were compared with normal Thy1CFP animals, 

which were littermates of the MOG
TCR

xThy1CFP
 
mice (n=6). Animals were sacrificed one week after MOG-

specific mAb injection and retina dissected and placed in 4% PFA overnight. Retina were flatmounted and 

RGC counted using fluorescence microscope. 
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 3.4 Discussion 

This chapter details the steps taken to refine the immunising protocol for MOG-specific TCR 

transgenic mouse which results in optimum disease activity so the model can be ultimately used 

for studies of neuroprotective compounds.  

  

Initial studies investigated the efficiency of producing disease in the MOGTCR model by immunising 

with MOG in CFA or PTX. Using MOG in CFA did not result in a significant reduction in RGC loss or 

axonal loss in the optic nerve and was therefore not pursued as an immunising protocol for the 

MOGTCR model. Using CFA would have also been disadvantageous as CFA can cause granulomas in 

the host animal and can sometimes ulcerate. Injection with PTX produced a more severe disease 

progression with a greater degree of RGC loss. It appears that PTX stimulates the immune 

response and the development of ON but is not sufficient to induce EAE, this suggests that PTX 

activates T cells, which interact with MOG leading to autoimmunity exclusively to the optic nerve. 

The promising results achieved from immunising MOGTCR mice with PTX supports the use of PTX as 

an immune adjuvant in future experiments. To increase the severity of disease in the MOGTCR 

model, injection of Z12 MOG-specific mAb following PTX immunisation led to greater axonal and 

RGC loss and exacerbated neurological deficits as shown by the increase in incidence and severity 

of EAE and ON. Normally, a solo injection of Z12 MOG-specific mAb would be excluded from the 

CNS and would therefore have no effect. However, PTX immunisation generates an inflammatory 

response in the CNS that is sufficient to compromise the BBB and therefore allow Z12 MOG-

specific mAb to access the CNS. This appears to exacerbate the inflammatory response and leads 

to further degeneration of nerves, rather than produce demyelinated axons. The lack of 

pathological evidence showing demyelination and the large degree of axonal loss found in this 

model is consistent with the limited demyelination observed in ‘classical’ EAE models in C57BL/6 

mice where neurodegeneration predominates (Jones et al., 2008). Z12 MOG-specific mAb 

modulates CNS inflammation via the complement system, a biochemical cascade, which activates 

proteases that cleave proteins to release cytokines, which amplify the cascade leading to further 

cleavage. The end result is a massive amplification and activation of the membrane attack complex 

(MAC) which binds to the plasma membrane on myelin/oligodendrocyte surface and leads to lysis 

of the oligodendrocyte cell membrane and disruption of myelin (Mead et al., 2002). This role has 

been demonstrated using cobra venom factor which inhibits the complement cascade and reduces 

the ability of anti-MOG Z12 to enhance inflammation and mediate demyelination (Morris-Downes 
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et al., 2002). Therefore disease in MOGTCR mice can be initiated by immunisation with PTX and CNS 

inflammation increased by injection of Z12 MOG-specific mAb at a later time point. 

 

The MOGTCR model is therefore currently a valuable model to study axonal loss; however, it would 

be advanageous to adapt the model so this model can be used to study demyelination and 

remyelination. To accomplish this, the disease severity needs to be attenuated to avoid 

widespread axonal loss in favour of areas of demyelination. The approach taken was to administer 

a CD4-specific mAb antibody to modulate the immune response following immunisation with PTX 

and Z12 MOG-specific mAb. In the MOGTCR model the mice were given CD4-specific mAb on the 

same day as Z12 MOG-specific mAb treatment (i.e. before any signs of neurological EAE but during 

sub-clinical disease period). This resulted in a reduced severity and incidence of animals 

developing neurological EAE. However, CD4-specific mAb had no effect on disease severity in the 

optic nerve and retina and animals showed significant RGC and axonal loss again with limited 

demyelination. These results suggest CD4-specific mAb was administered too late to have an 

effect on CD4 T cells in the optic nerve but in sufficient time to prevent spinal cord damage and 

development of neurological EAE. Further investigation into the effect of administering anti-CD4 

mAb at earlier time points was also inadequate to promote immunosupression. To resolve this 

issue, future experiments should take advantage of the confocal scanning laser ophthalmoscope 

to longitudinally measure RGC loss, therefore reducing the need for many animals to be taken at 

different time points. This would then enable the optimal timing for administering CD4-specific 

mAb antibody to modulate the immune response and promote demyelination in favour of axonal 

loss to be determined.  

 

Once an immunising protocol had been developed (PTX on day 0 and 2, Z12 MOG-specific mAb 

day 14), the protocol was used to immunise MOGTCRxThy1CFP double transgenic mice, which 

express the MOG-specific TCR and fluorescent RGC. The MOGTCRxThy1CFP allowed easy 

visualisation of the RGC and a rapid method to evaluate RGC loss at the end of an experiment, 

which was significantly lower in mice immunised to develop ON. Therefore the MOGTCRxThy1CFP is 

an ideal model to study neuroprotective capabilities of drugs by analysing the effect of the drug on 

the survival of RGC in the retina, as quantified by retinal flatmounts. Ideally the model could be 

used to also study remyelinative strategies, however further research needs to be undertaken to 

identify if demyelination occurs and the possibility of a time window of demyelination. 
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Chapter 4 

 
Development of methods to measure visual dysfunction 

 

4.1 Introduction 

To test the hypothesis that axonal loss correlates with neurological deficit, methods need to be 

developed that measure visual dysfunction that can be compared with underlying pathology. 

Recording VEP and the behavioural assessment of visual-tracking with a rotating drum are two 

methods, which can be used to measure the integrity of the visual system (Porciatti et al., 1999; 

Thaung et al., 2002a).  

 

4.1.1 Electrophysiology 

The visual system can be functionally assessed by measuring flash-evoked VEPs. The VEP measures 

changes in electrical potential over the visual cortex in response to a visual stimulus to assess post-

retinal function. The VEP is only produced when the optic nerve is intact and can therefore be 

used to assess visual pathway diseases, such as optic neuritis (Trip et al., 2005). The use of VEP to 

measure RGC loss during ON was described in Section 1.3.5.  

 

The use of the VEP in animals has been demonstrated in a range of species to study the 

electrophysiology of the optic nerve (Maertz et al., 2006; Mozafari et al., 2010; Soto et al., 2004). 

The currents that generate the VEP have been studied in primates and cats, which was found to 

result from activity of neurons in the geniculo-cortical pathway and the visual cortex (Kraut et al., 

1985; Rose & Lindsley, 1968). Although the VEP is often used in mice to detect pathological 

changes, the precise origin and cellular organisation of the neuronal response of the VEP in the 

mouse has not been studied comprehensively. Sufficient evidence is available to show that the 

flash VEP can be used to assess the signal processing through the visual pathway from the retina 

to the visual cortex (Ridder & Nusinowitz, 2006). Measuring VEP can be used as an objective 

method to detect pathological changes in the optic nerve. Demyelination in the optic nerve has 

reported to increase the response latency, as demonstrated in PLP knockout mice (Chow et al., 
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2005). The VEP has been used to demonstrate transgenic mice with enhanced myelination in the 

optic nerve display faster VEP responses (Yu et al., 2011). Limited studies have been performed on 

EAE models, however, one study reported a correlation between measured VEP response and RGC 

counts (Hobom et al., 2004).  

 

4.1.2 Visual Acuity 

The visual acuity of mice can be assessed using an optokinetic (OKN) drum, which is a rapid, 

reliable and reproducible method of measuring visual acuity.  The OKN drum measures the OKN 

nystagmus, an involuntary mechanism that is part of the vestibulo-ocular reflex that is elicited by a 

moving field, which results in the head tracking of movement when the body is stationary (Buttner 

& Kremmyda, 2007). The OKN is sensitive to defects in the visual pathway and can be used to 

detect pathological changes. The OKN drum was one of the first approaches used to measure 

optokinetic response in rats (Cowey & Franzini, 1979) and has been adapted for use in many 

species including mice (Thaung et al., 2002a). The visual-tracking drum consists of a motorised 

rotating vertical grate surrounding the mouse, which is on a stationary platform. The head tracking 

response of the animal can be measured to assess visual acuity and quantitatively analysed by 

varying parameters such as grating width, contrast and illumination (Cahill & Nathans, 2008).  

 

In mice with severe loss of visual function, the OKN drum protocol does not evoke any behavioural 

response and partly for this reason is thought to be a good marker of visual function. Furthermore, 

the technique is not influenced by other sensory information (auditory or tactile) (Thaung et al., 

2002b). This method has been used accurately to assess visual function in mice (Thaung et al., 

2002a), rats (Coffey et al., 2002; Schmucker et al., 2005) and fish (Haug et al., 2010). The visual 

acuity drum has been tested in a variety of mouse strains, the C57BL/6 strain successfully 

demonstrated head tracking movements reflective of visual acuity (Puk et al., 2008).  The OKN 

drum can also be modified to allow monocular visual assessment (Thomas et al., 2004). Therefore 

the OKN drum is an ideal, non-invasive, method to assess visual acuity in mice. 
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4.1.3 Aims and objectives 

The aim of this chapter was to develop objective methods that could be used to measure visual 

dysfunction in immunised MOGTCRxThy1CFP mouse model. To achieve this aim, recording of the 

VEP following a flash stimulus and head tracking movements in the OKN drum were assessed for 

their potential to detect changes occurring in the optic nerve. Both methods are minimally 

invasive and allow longitudinal measurement of the disease process.  

 

 

  



4.2 Materials and Methods 

4.2.1 Animals  

MOGTCRxThy1CFP transgenic mice as described earlier were used for all experiments. All 

experiments were performed according to UK, Animals (Scientific Procedures) Act 1986. 

 

4.2.2 Anaesthesia 

Animals were anaesthetised with an intraperitoneal injection of 75mg/kg Ketamine and 1mg/kg 

Medetomidine in normal saline, a dose of 100µl (35µl Ketamine + 50µl Medetomidine + 15µl 

saline) was administered to each animal. To reverse the anaesthetic, animals were injected with a 

100µl dose of 1mg/kg Atipamezole in normal saline (10µl Aptemazole + 90µl saline) and were left 

to recover under a heated lamp and supplied with soaked diet.  

 

4.2.3 Electrophysiological setup 

The pupils were dilated with Mydriacyl® 1% (active ingredient tropicamide. Alcon, Hemel 

Hempstead, Hertfordshire, UK) and drops of Viscotears® (active ingredient carbomer, polyacylic 

acid. Novartis, Basel, Switzerland) were used to prevent the eyes from drying out and clouding 

during the recording. The animals were secured in a stereotaxic frame and body temperature was 

maintained at 35˚C with a small heating plate with built in Resistance Temperature Detector (RTD) 

sensor (World Precision Instruments, Stevenage, Hertfordshire, UK) connected to a DC direct 

temperature controller (ATC1000. World Precision Instruments, Stevenage, Hertfordshire, UK). 

The active electrode was a needle electrode placed subcutaneously over the visual cortex and the 

reference electrode was a needle electrode placed subcutaneously in the snout. The signal was 

amplified 10,000x (NL104A AC Amplifier. Digitimer Ltd, Hertfordshire, UK). A flash stimulus of 

10ms duration every 300ms from a stand-alone monocular ganzfield photic stimulator (MGS-2, 

LKC Technologies Inc, Gaithersburg, MD, USA) was presented approximately 20cm from the eyes. 

Signals were band pass filtered at 5Hz and 1kHz and sampled at 1000 Hz. Flash recordings were 

available at +5dB (decibel), 0dB, -5dB, -10dB, -20dB and -25dB. Recordings were made with sweep-

based data capture software (Signal v3.11, Cambridge Electronic Design, Cambridge, UK). For each 

recording, 5-200 stimuli were captured and consecutive sweeps averaged to produce a VEP 

response. 
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4.2.4 Visual Acuity 

Visual acuity was measured using a custom-built visual tracking drum (supplied by Prof. P Coffey, 

Institute of Ophthalmology, UCL, London) that was setup as in Figure 4.1. Two lamps were used to 

illuminate the drum to allow the mouse to be videoed from an aerial position using a tripod for 

support. An individual mouse was placed on a stationary platform located in the centre of the 

visual tracking drum, which was rotated on a vertical axis. The drum was motored by an electric 

DC motor and the direction of rotation could be changed with a mechanical flick switch connected 

to the power supply.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Schematic diagram of visual tracking drum. Setup of visual tracking drum used to monitor visual 

acuity in mice. Mice are placed in centre of the drum, which rotates in clockwise and anti-clockwise 

directions. The head movements are recorded as a measure of visual acuity. 
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A pattern of clockwise and anti-clock wise rotations with intermediary breaks were performed 

based upon previous experimental design (personal communication with Dr. P. Lundh von 

Leithner, Institute of Ophthalmology, UCL, London) (Table 4.1). The initial 30 second pause is 

required to allow the mouse to familiarise with the environment. Additional pauses and 

alternation of the direction of rotation were used to prevent habituation of the mouse in its 

environment. The platform was washed in between each mouse to minimise any odour related 

behaviour, which would distract the mouse from the rotating drum. The experiments were filmed 

using a video recorder to enable post-hoc measurements of head tracking movements of the 

mouse.  

Time Action 

30 seconds Pause 

60 seconds Clockwise rotation 

30 seconds Pause 

60 seconds Clockwise rotation 

30 seconds Pause 

60 seconds Anti-clockwise rotation 

30 seconds Pause 

60 seconds Anti-clockwise rotation 

30 seconds Pause 

Total time = 6 minutes 30 seconds 

 

 

 

 

 

Successful head tracking movement was characterised as a horizontal head movement in the 

direction of rotation and the same speed as the visual tracking drum. Analysis of head tracking 

movements was performed by replaying video using Windows Media Player. Animal videos were 

coded and the observer was blinded to treatment to allow unbiased reporting. The number of 

head movements in both directions was noted and the net movement in positive tracking 

directions was calculated (Positive head movements – Negative head movements = Net positive 

head movements).   

Table 4.1 Pattern of rotations of optokinetic drum used to measure visual acuity in mice. Rotations 

subjected to each mouse tested using the visual acuity drum to incorporate both clockwise and anti-

clockwise rotations and pauses. 
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4.2.5 Statistical analysis 

Statistical analysis was performed using SigmaStat 3.1. Results were presented as mean values ± 

SEM. Differences between amplitude and latency were analysed by one-way repeated measures 

ANOVA with Dunnett’s post test. Differences between the two groups (binocular and monocular 

vision, day 0 and day 21) were analysed using a paired t test. For the visual acuity testing, the 

differences between the two groups (control and ON) at different time points were analysed using 

a two-way ANOVA. Each time point was further analysed using a Student’s t-test. Results was 

considered significantly different if the probability level P<0.05 (*), P<0.01(**) or P<0.001(***) 

was reached between groups. 
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4.3 Results 

4.3.1 Electrophysiology 

4.3.1.1 Characterising the normal VEP response 

To examine the changes in electrophysiological function of the optic nerve in MOG-specific TCR 

immunised mice, VEP recordings in response to a flash stimulus were recorded. Initially, VEP 

responses of wildtype C57BL/6 mice to a flash stimulus were obtained. The typical VEP pattern 

observed using recordings from the scalp showed an initial major negative peak followed by a 

major positive peak (Figure 4.2). From this VEP pattern, several key data points could be extracted 

and used to measure changes in the visual system. Factors which can be measured include peak to 

peak amplitude (from negative trough to positive peak), time delay of first negative peak and the 

latency.  

 

 

 

Figure 4.2 Typical flash VEP pattern. Animal were anaesthetised and the VEP was recorded at a flash 

stimulus of +5dB for 10ms duration averaged over 200 consecutive sweeps. P1 (first positive peak), N1 (first 

negative peak), P2 (second positive peak). Red text shows measurements taken for N1 latency, N1-P2 latency 

and amplitude.  

 

  

N1-P2 Latency (ms) 

Amplitude (µV) 

P2 

N1 

P1 

N1 Latency (ms) 
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4.2.1.2 VEP response to different light intensities  

The electrophysiological setup allowed flash intensities to be set over a wide range, from a 

maximum of +5dB to a minimum of -25dB (Table 4.2). The VEP response pattern from each flash 

intensity varied in amplitude, timing of first negative peak and latency with decreasing flash 

intensity (Figure 4.3).   

Flash Intensities 
(dB) 

Flash Intensities 
(cd/m2) 

5 7.743 

0 2.448 

-5 0.7691 

-10 0.2436 

-15 0.07685 

-20 0.02443 

-25 0.007674 

 

Table 4.2 Range of flash intensities produced from ganzfield photic stimulator. Flash intensities expressed 

in  dB and cd/m2 of flash stimulus used to produce VEP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 VEP at different flash intensities. Averaged VEP recording from a normal mouse using flash 

stimulus of  0dB, -5dB, -10dB and -15dB. 
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The VEP response was recorded at different flash intensities in a stepwise fashion and changes in 

amplitude and N1 latency were recorded (Figure 4.4, Figure 4.5). An overall significant increase in 

amplitude (P<0.001) and decrease in N1 latency (P<0.001) was observed with decreasing flash 

intensities. Initially the mean amplitude increased with decreasing flash intensity (observed 

between +5dB and -5dB), which would suggest the flash stimulus was saturated and too large to 

produce a constant maximal VEP response (Figure 4.4).  The mean amplitude reached a maximum 

of 32.6µV at a flash intensity of -5dB, which appeared to be the most appropriate flash intensity to 

produce an optimal response. The mean amplitude subsequently decreased at -15, -20 and -25dB 

and was significantly reduced compared to the mean amplitude at the maximum response. At the 

minimum producible flash intensity it was still possible to elicit a VEP response. The mean N1 

latency showed a trend towards increasing with decreasing flash intensity, which reflects the delay 

in the visual system processing weaker flash intensities (Figure 4.5). Therefore decreasing the flash 

intensity decreases the mean amplitude and increases the N1 latency. These results show a 

decreased response to a decreased flash intensity and represent a functional response to light. 
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Figure 4.4 Decrease in mean amplitude of VEP with decreased flash intensity. Animals were anaesthetised 

and the VEP was recorded (n=8) at +5dB, 0dB, -5dB, -10dB, -15dB, -20dB and -25dB flash intensity. Animals 

were dark adapted for 30 minutes. Results represent the mean ± SEM of amplitude.**P<0.01 and 

***P<0.001 compared to VEP response at +5dB light intensity. 
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Figure 4.5 Increase in N1 latency of VEP with decreased flash intensity. Animals were anaesthetised and 

the VEP was recorded (n=8) at +5dB, 0dB, -5dB, -10dB, -15dB, -20dB and -25dB flash intensity. Animals were 

dark adapted for 30 minutes. Results represent the mean ± SEM of latency N1 ***P<0.001 compared to 

response at +5dB light intensity. 
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4.3.1.3 VEP response to visual impairment 

To further characterise the VEP response, the setup was used to test the differences in mean 

amplitude and N1 latency of the VEP response in mice with both eyes (binocular vision) or with 

one eye occluded (monocular vision). It is hypothesised that occluding one eye resulted in halving 

the amount of light that enters the visual system and is processed in the visual cortex. The 

occlusion of one eye (monocular vision) lead to a decrease in the mean amplitude of the VEP 

response (Figure 4.6). The difference in amplitude between monocular and binocular vision was 

significant at a flash intensity of -10dB and resulted in a 37% reduction. The results also show that 

monocular vision increases the mean N1 latency by 9% compared to binocular vision (Figure 4.7).  
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Figure 4.6 Decrease in mean VEP amplitude following occlusion of one eye. Animals were anaesthetised 

and the amplitude of the VEP was recorded (n=5) at -10dB flash intensity. The VEP measurements were 

repeated with one eye being visually impaired by covering with foil. Animals were dark adapted for 30 

minutes. Results represent the mean ± SEM of amplitude *P<0.05 between binocular and monocular vision  

(paired t test). 
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Therefore, these results show that by significantly reducing the amount of light that enters the 

visual pathway, the amplitude is decreased and the latency shows signs of increasing. These 

changes in the characteristic VEP signal reflect the reduced input of light into the visual system, 

therefore producing a reduced response in the visual cortex showing signs of delay. These results 

provide evidence that the experimental setup is sensitive and capable of detecting dysfunctional 

changes in the mouse eye and therefore can be used to test the dysfunction occurring in the visual 

system of MOGTCRxThy1CFP mice.  

  

Figure 4.7 Increase in the mean N1 latency of VEP response following occlusion of one eye. Animals were 

anaesthetised and the time of first peak of VEP was recorded (n=5) at -10dB flash intensity. The VEP 

measurements were repeated with one eye being visually impaired by covering with foil. Animals were dark 

adapted for 30 minutes. Results represent the mean ± SEM of N1 latency. *P<0.05 between binocular and 

monocular vision (paired t test). 
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4.3.1.4 VEP response following immunisation to develop ON 

The VEP response was examined in MOGTCRxThy1CFP immunised mice to determine the 

electrophysiological changes occurring in the optic nerve through the disease progress, which has 

been described in detail in previous chapters. Animals were tested on day 0 (before disease onset) 

and day 21 (after disease onset) of disease induction and VEP recorded at a flash intensity of -10dB 

to assess changes occurring through the development of ON (Figure 4.8, Figure 4.9 and Figure 

4.10). This study showed that VEP recordings trended towards a reduction in mean amplitude 

between day 0 and day 21 (Figure 4.8).  The difference between mean amplitudes before and after 

development of ON observed at a flash intensity of -10dB showed a mean amplitude before 

disease of 31.8µV and after disease of 18.5µV, representing a 42% reduction in mean amplitude.  
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Figure 4.8 Decrease in mean VEP amplitude following immunisation to develop ON. MOG
TCR 

x Thy1CFP 

transgenic mice were immunised with 150ng PTX on day 0 and 2 followed by injection of 0.25mg Z12 MOG-

specific mAb at day 14 post-disease induction. Animals were anaesthetised and the amplitude of the VEP 

was recorded before the development of ON at day 0 (n=8) and after the development of ON at day 21 (n=5) 

at a flash intensity of -10dB. To allow comparison by paired t-test, day 0 was plotted (n=5) as a direct 

comparison with day 21 (n=5). Animals were dark adapted for 30 minutes. Results represent the mean ± 

SEM of amplitude. *P<0.05 between day 0 (n=5) and day 21 (n=5) (paired t test). 
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A decrease in the mean N1 latency (Figure 4.9) and an increase in mean N1-P2 latency between 

day 0 and day 21 were observed (Figure 4.10). These results suggest that the VEP response 

following disease induction is prolonged due to the slow processing of the visual stimulus as a 

result of the damage occurring in the optic nerve.  
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Figure 4.9 Decreased N1 latency of VEP response following immunisation to develop ON. MOG
TCR

xThy1CFP 

transgenic mice were immunised with 150ng PTX on day 0 and 2 followed by injection of 0.25mg Z12 MOG-

specific mAb on day 14 post-disease induction. Animals were anaesthetised and the mean time of the first 

peak of the VEP was recorded before the development of ON at day 0 (n=8) and after the development of ON 

at day 21 (n=5). Animals were dark adapted for 30 minutes. Results represent the mean ± SEM of N1 latency. 

*P<0.05 between day 0 (n=5) and day 21 (n=5) (paired t test). 
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This data indicate that the electrophysiological function of the optic nerve is dysfunctional at day 

21 due to the disease activity resulting in reduced amplitude. The data also indicates that although 

the signal is disrupted, the visual pathway is still sufficiently intact to allow nerve impulse 

transmission from the retina to the visual cortex. The reduction in VEP amplitude and minimal 

change in latency suggests axonal loss rather than demyelination occurs in the optic nerve, 

although the small increase in N1-P2 latency of 22% could suggest demyelination is slowing the 

VEP response. 
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Figure 4.10 Increased N1-P2 latency of VEP amplitude following immunisation to develop ON. 

MOG
TCR

xThy1CFP transgenic mice were immunised with 150ng PTX on day 0 and 2 followed by injection of 

0.25mg Z12 MOG-specific mAb at day 14 post-disease induction. Animals were anaesthetised and the 

latency of the VEP was recorded before the development of ON at day 0 (n=8) and after the development of 

ON at day 21 (n=5) at a flash intensity of -10dB. Animals were dark adapted for 30 minutes. Results 

represent the mean ± SEM of N1-P2 latency. *P<0.05 between day 0 (n=5) and day 21 (n=5) (paired t test). 
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4.3.2 Visual Acuity 

The visual acuity of animals was tested by monitoring their behaviour in a visual tracking drum. 

Animals were divided into two groups; one group were used as a control and the other group were 

immunised on day 0 and 2 with PTX and day 14 with Z12 MOG-specific mAb to develop ON. 

Animals were tested on 0, 7, 14 and 21 days post-PTX immunisation (Figure 4.11).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Decrease in positive head tracking movements following MOG
TCR 

immunisation. Animals were 

divided into two groups a) control group (n=10), b) MOGTCR immunised with PTX on day 0 and 2 and Z12 

MOG-specific mAb on day 14 to produce optic neuritis (n=10). Animals were observed in the visual tracking 

drum on days 0, 7, 14 and 21 for four times 60 seconds with 30 second intervals in both clockwise and anti-

clockwise direction. Results represent the mean ± SEM of net positive head movements. 
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The mice withstood sitting on the stationary platform and although some mice showed signs of 

leaning over, no mice jumped off the platform and remained calm and appeared unstressed 

throughout the process. However, one of the fundamental problems with this method was the 

difficulty in observing head tracking movements as they were short in length and often 

interrupted due to examining and grooming behaviour. To resolve this, both positive and negative 

head movements were counted and a net positive head movement in the direction of the rotating 

drum was calculated. There was a significant difference (P<0.01) between the control group and 

the optic neuritis group, with a lower incidence of positive head movements occurring in the ON 

group. This differences between the Control group and ON group was observed from day 7 (Figure 

4.11), proposing a rapid onset of disease and the threshold for disease activity observable using 

the OKN drum had already been reached at this early stage. At the end of the study, animals were 

sacrificed and the RGC density was calculated from retinal flatmounts (Figure 4.12). A reduction in 

RGC density was observed in the ON group compared to the control, although this was not 

significant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is clear from these results that the level of accuracy of determining the visual acuity of mice 

using the visual tracking drum is variable but is capable of detecting a difference between the 

control and ON group.  The results also suggest visual acuity is reduced by day 7 therefore showing 

the rate of degeneration following PTX treatment is rapid and occurs in the early stages of disease.   
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Figure 4.12 RGC loss in immunised MOG
TCR

 mice. Animals were divided into two groups a) control group 

(n=9), b) MOGTCR immunised with PTX on day 0 and 2 and Z12 MOG-specific mAb on day 14 to produce ONs 

(n=10). Mice were sacrificed on day 21. Eyes were flatmounted and RGC were counted using stereology 

software. Results represent mean ± SEM of density of RGC. 



 
 

133 
 

 

4.4 Discussion 

This chapter investigated two methods, which can be used to objectively assess the visual system 

in MOGTCRxThy1CFP mice. These methods have been used to detect visual dysfunction following 

immunisation of MOGTCRxThy1CFP mice and can be used in future studies to correlate with optic 

nerve pathology and determine the beneficial effect of potential neuroprotective therapies.  

 

Recording the VEP in MOGTCRxThy1CFP mice allowed a measure of synaptic activity in the visual 

cortex, which was altered during the disease process of optic neuritis. Although the 

electrophysiology setup was capable of detecting a decrease in the VEP amplitude, the variability 

between individual mouse recordings could hide the significance of the results due to the large 

degree of variation. The method used to measure VEP in this study employed needle electrodes 

which are minimally invasive and easily placed into the skin. However, several previous studies 

used intracranial electrodes implanted following craniotomies, which allow direct recording from 

the visual cortex (Tebano et al., 1999). This results in an increased signal to noise ratio allowing for 

a more accurate VEP signal to be recorded. The major advantage is the increased reliability of the 

measurements as repeated tests would be conducted in exactly the same cortical area, unlike the 

needle electrode method which is open to variability. However, the most significant disadvantage 

would be the invasive surgical nature of this method, which would require greater time to carry 

out the experiment and increased attention for the welfare of the animal due to the possibility of 

increased suffering. Previous studies using needle electrodes have supported the use of this 

method and consider the effect of the skull thickness on the evoked potential amplitude to be 

minimal, therefore allowing adequate extracranial recordings (Hobom et al., 2004; Porciatti et al., 

1999; Strain & Tedford, 1993). In this study, the non-invasive needle electrode method appears to 

be sensitive enough to detect changes in amplitude of the VEP, but not sufficiently sensitive to 

detect any changes in the latency of the VEP, expected to be associated with demyelination (Chow 

et al., 2005). This could be attributed to the variability of positioning of the needle electrode. To 

reduce this level of variability, methods need to be developed to allow more reproducible 

positioning of the extracranial needle electrodes. Another variable to take into consideration is the 

effect of anaesthesia on the VEP response, which is capable of augmenting the VEP amplitude and 

increasing the latency (Hetzler & Oaklay, 1981). The evidence suggests that this effect could be 

due to a drop in body temperature as a result of the anaesthetic (Dyer & Boyes, 1983). In this 
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study, the body temperature was maintained using a heat pad at a constant level of 35°C for all 

the VEP studies described in this chapter, and therefore is unlikely to have an effect on the 

variability of the VEP response. A greater insight into the dysfunction of the visual system in 

MOGTCRxThy1CFP mice may be found by using the electrophysiology setup to record the VEP in 

each eye individually, which may give further insight into the changes occurring in the visual 

system. Assessment of the visual system could also be extended by analysing the pattern VEP, 

which can detect the response to spatial features of a stimulus (Porciatti et al., 1999; Strain & 

Tedford, 1993). Another method which could be tested in the MOGTCRxThy1CFP mice is recording 

the ERG from the corneal surface. The ERG measures the massed response of the retina to light 

stimulation, recorded from the corneal surface (Peachey & Ball, 2003). The ERG is a good 

assessment to measure restricted sets of neurons and can therefore offer further information 

compared to the VEP, which is limited to measurement of the overall visual function.  

 

The advantage of using the visual tracking drum as a behavioural technique to measure visual 

acuity in the mouse is that animals do not need any training or time to customise to their 

surroundings. The technique is also non-invasive and the animals are allowed to move freely and 

are not restricted. The disadvantage of this technique is the difficulty in assessing head tracking 

movements and the subjective variability as a result. Mice show very minimal head movements in 

comparison to rats, which are easier to assess due to their exaggerated head movements. The 

technique has been frequently used to demonstrate head tracking behaviour in rats (Fuller, 1985; 

Thomas et al., 2004). To overcome this issue the results were analysed blinded to avoid the 

induction of bias and animals were observed on video at a slower speed which allowed all head 

movements to be counted. Variability also occurs according to the positioning of the mouse, which 

is free to roam on a small platform and therefore the distance between the mouse and the 

rotating drum does not remain constant. The OKN drum could be adapted to allow additional 

testing of acuity and contrast sensitivity by changing light illumination, grating size and stripe 

contrast to determine thresholds of vision. The development of virtual reality optomoter systems 

have allowed the frequency, contrast and velocity of horizontal stripes to be easily manipulated 

allowing further examination of the mouse visual system (Prusky et al., 2004). This data suggests 

that loss of visual acuity occurs quickly following the development of disease and is perhaps 

consistent with the rapid loss of RGC following induction as shown following CD4 antibody 

treatment.  
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Using electrophysiology to measure the VEP response and the OKN drum to measure visual acuity 

has profound implications on the 3Rs. These techniques allow longitudinal measurement of 

changes in the visual system of animals, which ultimately reduce the number of animals required 

to conduct an experiment. In addition, the OKN drum eliminates the need of an anaesthetic, 

further reducing potentially harmful manipulations. Both the methods studied in this chapter can 

be related to techniques used in humans to monitor a dysfunctional visual system in people with 

MS. The visual acuity in people with MS is normally quantitatively measured using a low-contrast 

visual test (Balcer & Frohman, 2011) and has been proven to correlate with expanded disability 

status scale (EDSS) scores in people with SPMS (Balcer, 2001). The optokinetic reflex has been 

used to study visual impairment in people with MS, which showed delays in the optokinetic reflex 

in response to drum movements (Todd et al., 2001). This method has also been proposed as a 

method to diagnose MS and to evaluate the efficacy of new drugs in clinical trials (Prasad & 

Galetta, 2010). The VEP response is known to be delayed in patients with MS (Corallo et al., 2005; 

Naismith et al., 2009) and is used as a complimentary tool for the diagnosis of MS. Therefore both 

the methods studied in this chapter show correlation with techniques used in humans to monitor 

MS. To conclude, two methods to study the visual dysfunction occurring in the MOGTCRxThy1CFP 

have been developed with the potential to longitudinally measure changes in the visual system. 

Although both methods were carried out as independent studies, future studies could utilise both 

methods to allow correlation between visual acuity and visual function.  
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Chapter 5 

Development of methods to measure RGC loss 

 

5.1 Introduction 

To take full advantage of the MOGTCRxThy1CFP mouse model, it is essential to be able to serially 

measure RGC loss. The cSLO and OCT are two technologies that are used in humans to study ON 

and can be used to serially assess RGC loss in the MOGTCRxThy1CFP model. 

 

5.1.1 Confocal scanning laser ophthalmoscope (cSLO) 

The cSLO is a non-invasive device used to image the eye. The technique is based on the standard 

scanning laser microscope, which is capable of producing detailed images of the retina. The 

method was first developed by (Webb et al., 1980), by adapting a conventional ophthalmoscope 

to produce a focused laser beam capable of producing high quality images. The most common 

clinical use of the cSLO is to use fluorescent dyes to label cells and monitor the dynamics of cells 

(Hassenstein & Meyer, 2009), tomographic imaging (Weinreb, 1993) and fluorescein and 

indocyanine green angiography for the diagnosis of retinal and choroidal disorders (Marmor & 

Ravin, 2011).  

 

Due to the small size of the mouse eye, the cSLO has only recently been developed and adapted to 

visualise the mouse retina. The cSLO has been used in mice to study retinal and choroidal 

circulation (Xu et al., 2002), visualisation of RGC (Paques et al., 2006) and mononuclear 

phagocytes (Eter et al., 2008). Therefore the SLO is a valuable tool which can be used in 

biomedical research to investigate the eye in detail and reduces the need for histology and large 

numbers of animals in experiments. To examine Thy1-CFP expressing RGC, a  modified blue-light 

cSLO (bCSLO, 460 nM excitation and 490 nm detection) has been used to allow quantification of 

RGC loss (Leung et al., 2008b), without the need to surgically label the RGC. This study showed 

that co-localisation of RGC from images taken from a live animal using a cSLO are comparable with 

a retinal flatmount image from the same animal. This therefore demonstrates that the cSLO 

detects RGC with good reliability and that fluorescent non-RGC (such as amacrine cells) are not an 

issue when considering the value of the model for detecting RGC loss (Leung et al., 2008a). These 
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results therefore support the use of a modified blue light cSLO to monitor RGC loss in 

MOGTCRxThy1CFP mice.  

 

5.1.2 Optical coherence tomography (OCT) 

OCT is a non-invasive retinal imaging tool that can be used to measure the microstructure of the 

retina. OCT was introduced in 1991 (Huang et al., 1991) and revolutionised the field of ophthalmic 

imaging to allow non-invasive visualisation of the retina, which is used for medical diagnosis.  

 

OCT is analogous to ultrasound but is based upon the principle of low coherence interferometry 

instead of ultrasound waves. OCT omits a light source, which is split into two beams: a reference 

beam and a sample beam. The reference beam is received and reflected by a reference mirror and 

the sample beam is focused into the eye and reflected back by the different layers of the retina. 

The reflected light from the two pathways converge to induce an interference signal detected by a 

photodetector, which uses an interferometer to produce a cross-sectional depth image of the 

retina (Fercher, 2010). The Stratus OCT (Carl Zeiss Meditec) is an example of a first generation OCT 

system, which offers axial resolutions of up to 10µm and 400 axial-scans per second (A-scans/s).  

The speed and sensitivity of OCT has been increased by using Fourier domain technology, which 

are capable of measuring all echoes of light from different delays simultaneously to produce 

Spectral-Domain OCT (SD-OCT) (Drexler et al., 2003). SD-OCT allows axial resolutions of less than 

5µm and a 50 fold higher acquisition speed compared to time-domain SD (Alam et al., 2006), with 

speeds capable of 312,500 A-scans/s (Potsaid et al., 2008). The development of SD-OCT allowed 

comprehensive visualisation and mapping of retinal structures at a higher speed and resolution, 

which led to improved diagnosis and disease monitoring. Ultrahigh-resolution OCT (UHR-OCT) is 

also being developed, which uses bandwidth as a low coherence light source and gives much 

greater resolutions, which almost allows cellular visualisation of the retinal layer (Wojtkowski et 

al., 2005).  These improvements and developments in OCT technology will allow early patient 

diagnosis and contribute to knowledge on the pathogenesis of eye disease. 

 

This technique is frequently used as a primary outcome in clinical trials to monitor MS disease 

progress due to its capability to detect RNFL thinning as a result of axonal loss in MS patients 

(Parisi et al., 1999; Urano et al., 2011). Due to its low variability and high reliability, OCT is a 

valuable technology to evaluate disease activity and neuroprotection. The first study of MS 
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patients using OCT, demonstrated that MS patients who had previously suffered with ON showed 

a significant reduction in the RNFL thickness compared to healthy controls (Parisi et al., 1999). 

Detection of RNFL thinning with OCT has also been found in MS patients without any prior 

episodes of ON, therefore suggesting OCT is a marker of global neuronal degeneration in MS 

(Gordon-Lipkin et al., 2007). OCT has also been shown to distinguish between disease subtypes 

(RRMS, PPMS and SPMS) based upon RNFL thickness (Pulicken et al., 2007). Some evidence 

suggests that ultimately using OCT to measure RNFL thinning maybe a more useful evaluation to 

measure neuronal loss than conventional MRI (Frohman et al., 2009). MRI has been shown to have 

poor correlation with MS disease outcome when monitored over a short period of time (Daumer 

et al., 2008). Therefore, there is significant evidence to suggest OCT could be used in future 

neuroprotection clinical trials in MS to monitor changes in the rate of neurodegeneration 

(Greenberg, 2010).  

 

The development of SD-OCT and UHR-OCT has also allowed the technology to be used in animal 

research (Ruggeri et al., 2007). Using OCT in rodent models allows monitoring of disease progress 

without the need to sacrifice large numbers of animals at different time points for histological 

analysis. OCT has been used on mice to evaluate retinal degeneration in retinal degeneration slow 

mice (Horio et al., 2001; Li et al., 2001). Studies using OCT in mouse models are limited due to the 

small size of the mouse pupil in comparison to the rat. The small pupil size makes OCT 

measurements difficult and also limits the amount of reflected light from the retina and the signal-

to-noise ratio. OCT can produce high resolution images, which are comparable to stained histology 

samples (Kim et al., 2008) and has been used to evaluate RGC loss following optic nerve crush 

(Gabriele et al., 2011). 

 

5.1.3 Aims and Objectives 

The aim of this chapter was to develop methods to measure RGC loss in the MOGTCRxThy1CFP 

transgenic model, thus providing an animal model correlate to concurrent human studies using 

ophthalmic devices. To achieve this aim, the non-invasive SLO and OCT methods were investigated 

for their potential to monitor longitudinal RGC loss following immunisation of MOGTCRxThy1CFP 

transgenic mice to develop ON.  
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5.2 Materials and Methods 

5.2.1 Animals 

MOGTCRxThy1CFP transgenic mice as described earlier were used for all experiments. All 

experiments were performed according to UK Animals (Scientific Procedures) Act 1986. 

 

5.2.2 Histology 

Animals were perfused, tissue fixed and embedded, sections cut and stained with toluidine blue as 

described in Section 2.2.3. Using Stereo Investigator software the ganglion cell layer (GCL) was 

measured at 100µm sections across the retina (Figure 5.1). 

 

 

 

 

 

 

 

 

 

 

 

  

100μm 

Optic Nerve Head Optic Nerve  

Ganglion cell layer 

Figure 5.1 Cross-section of retina. Measurements taken at 100µm sections from a cross section of retina to 

estimate changes in the thickness of GCL. 
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5.2.3 Immunisation 

MOGTCRxThy1CFP transgenic mice were immunised as described in Section 3.2.2 with 150ng PTX 

(day 0 and 2) and 1mg MOG-specific Z12 monoclonal antibody (day 14). Animals were sacrificed 

on day 21. 

 

5.2.4 Multiline OCT 

A Spectralis® HRA + OCT from Heidelberg Engineering, Inc (Heidelberg, Germany) was modified to 

allow imaging of CFP and adapted to comply with mouse optics. The modifications resulted in the 

Spectralis® being unsuitably certified for human use and was therefore renamed Multiline OCT for 

animal use only. 

 

5.2.4.1 Modifications of Multiline OCT 

Modifications include changes to the diameter of the exciting laser beam, which was reduced to 

2mm to allow more efficient coupling of laser light into the small animal aperture. The patient 

fixation light was removed as the filter slot was required for alternative filters. The standard chin 

rest was replaced with a special animal mount (custom built by Workshop, Institute of 

Ophthalmology, UCL) to allow the animal to be positioned correctly (Figure 5.2). A +25 diopter 

add-on lens was used to correct for the characteristic hyperopia seen in rodents. The machine 

consisted of a 4 slot filter wheel with different filters: 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Setup of Multiline OCT. A Spectalis HRA + OCT from Heidelberg Engineering was modified to allow 

imaging of MOG
TCR

xThy1CFP mice. 
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Filter #1 – Standard Heidelberg retina angiograph (HRA) filter, which has a high blocking of laser 

wavelengths between 450nm and 488nm and a high transmission between 498nm and 720nm.  

 

Filter #2 – RazorEdge® ultrasteep long-pass filter, transmits between 458 and 670nm (LP02-458RS-

25, Semrock, Baltimore, USA) to allow detection of CFP (Figure 5.3). 

 

Filter #3 - 510/20 nm BrightLine® single-band bandpass filter, transmits between 510 and 520nm 

(FF02 510/20-25, Semrock, Baltimore, USA) to allow detection of GFP (Figure 5.4). 

 

Filter #4 - 525/50 nm BrightLine® single-band bandpass filter, transmits between 525 and 550nm 

(FF02-525/50-25, Semrock, Baltimore, USA) to allow detection of YFP (Figure 5.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 458nm RazorEdge® ultrasteep long-pass filter. Filter positioned in Filter #2 transmits between 

458 and 670nm to detect CFP excitation. 
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Figure 5.4 510/20 nm BrightLine® single-band bandpass filter. Filter positioned in Filter #3 transmits 

between 510 and 520nm to detect GFP. 

Figure 5.5 525/50 nm BrightLine
®
 single-band bandpass filter. Filter positioned in Filter #4 transmits 

between 525 and 550nm to detect YFP. 
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5.2.4.2 Preparing animals 

Animals were anaesthetised as described in Section 4.2.2. Eyes were dilated with one drop of 

Tropicamide (Minims® Tropicamide 1% w/v, Bausch & Lomb, Surrey, UK) and one drop of 

phenylephrine hydrochloride (Minims® phenylephrine hydrochloride 2.5% w/v, Bausch & Lomb, 

Surrey, UK). A polymethylmethacrylate contact lens (Cantor & Nissel, Northamptonshire, UK) or a 

drop of 2% hydroxypropyl methylcellulose (HPMC, Sigma-Aldrich Ltd, Poole, Dorset, UK) was used 

to prevent the mouse eyes from drying out during anaesthesia.  

 

5.2.4.3 Capturing OCT images 

Previous studies have reported imaging of the eye without the use of anaesthetic (Leung et al., 

2009), however this method was insufficient to allow a quality image of the eye to be obtained. 

Therefore, to capture an OCT image, animals were anaesthetised and placed on the animal mount 

and an infra red (IR) reflection image with the optic nerve head in a centralised position was 

achieved with optimal focus, which generally occurred at a refraction setting of +18.0 dioptres.  

The machine was switched to IR&OCT mode and the reference arm length was adjusted to bring 

the OCT image into the acquisition frame and to find the optimal position to acquire an OCT 

image. Examinations were recorded in both the right eye (oculus dextrus, OD) and the left eye 

(oculus sinister, OS) of each animal. A RNFL Single Exam using the Automatic Real Time (ART) 

mode (allows averaging of 100 recordings) was produced for each mouse eye, which measured 

RNFL thickness (µm) in a circle with the optic nerve head in the centre (Figure 5.6). Results were 

compared to a normative database (normative database was automatically set by Heidelberg and 

compiled of 201 Caucasian subjects who were considered to have ‘normal’ eyes as diagnosed by 

an ophthalmologist) and were colour coded with green (within normal limits), yellow (borderline) 

and red (outside normal limits).  These results were therefore not applicable to examination of 

mouse eyes, however current communication with Heidelberg is being undertaken to investigate 

the possibility of a normative database consisting of C57BL/6 data. Examinations also generated 

an OCT Thickness Profile Map, which measured a detailed total thickness of the RNFL over a 

15°x15° sample area (Figure 5.7).  
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Figure 5.6 Example of OCT RNFL Single Exam Report. RNFL single exam report measures the thickness of the 

RNFL surrounding the optic nerve head in OD (right eye) and OS (left eye). Report shows IR image of the 

retina and green circle shows the area measured by OCT. The Heidelberg Eye Explorer software automatically 

detects the RNFL (highlighted by red lines labelled ILM, internal limiting membrane and RNFL, retinal nerve 

fibre layer). RNFL Thickness Graph displays RNFL measurements along the calculation circle compared to a 

normative database. The results are simplified in a RNFL Quadrant which shows the average thickness in 6 

segments surrounding the eye: nasal superior (NS), nasal (N), nasal inferior (NI), temporal inferior (TI), 

temporal (T), temporal superior (TS) and a global average (G). Differences between OD and OS 

measurements are recorded in the RNFL Quadrant and RNFL Thickness Graph (grey) in the centre.  
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Figure 5.7 Example of OCT Thickness Map Single Exam Report. Thickness Map Single Exam Report measures 

the thickness of the retina in a detailed 15°x15° area centralised over the optic nerve head in the OD (right 

eye) and OS (left eye). Report shows IR image with detail area of measurement and topographical display of 

RNFL with a thickness map. Average thickness of retina (µm) (black text) and volume of macular (mm
3
) (red 

text) (not applicable to the mouse eye, which lack a macula region) are summarised in the circle diagram. 

OCT image shows a horizontal scan through the centre of the optic nerve head.  
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5.2.4.4 Capturing SLO images 

To capture an SLO image, an IR reflection image was achieved as described in the previous section. 

Once an IR image had been acquired, the CFP (450nm) laser was selected and the CFP-expressing 

RGC were visualised. A constant sensitivity of 80% and a field view of 30° were maintained for 

each eye examined. For each eye a minimum of 10 recordings were made at different refractions 

settings using the average real time (ART) mode to capture an average of 50 images for each 

recording. A montage of all recordings was produced using Heidelberg Eye Explorer software.  

 

To calculate the RGC density, images were analysed in a blinded fashion using Image J software. 

Assumptions on the area of retina observed were made from (Leung et al., 2009), who estimated 

1° of field is subtended by 30µm of retina, therefore, a 30° field of view is subtended by 900µm 

area of retina. The image resolution analysed with Image J software had a resolution of 

48pixels/inch with an image width of 16.33 inches, therefore the total image width was 783.84 

pixels = 1 pixel/1.148µm. The number of RGC was counted in the Superior, Nasal, Inferior and 

Temporal quadrants of a box overlaid on the image of the retina (Figure 5.8) and the density of 

RGC calculated in terms of mm2. 

 

 

 

 

  

Figure 5.8 Area of retina used to count RGC to calculate RGC density. A 12 x 12 inch box (equivalent to 

0.437mm
2
) was divided into 4 quadrants and a 4 x 4 inch box (equivalent to 0.048mm

2
) was placed in the 

centre over the optic nerve head. RGC were counted in grey areas in the Superior, Nasal, Inferior and 

Temporal quadrants. The total area of retina counted is equivalent to 0.389mm
2
. 
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5.2.5 Statistical analysis 

Statistical analysis was performed in SigmaStat 3.1. Results were presented as mean values ± 

standard error of mean. In preliminary experiments using histological data, differences between 

the RGC density in control and MOGTCRxThy1CFP immunised mice were analysed by Student t 

tests. Differences between RGC density and thickness of GCL between control and 

MOGTCRxThy1CFP immunised mice at different distances from the optic nerve head were analysed 

using a two-way ANOVA with Tukey post-hoc analysis. For OCT, differences between the two 

groups (Day 0 and Day 21) at different segments were analysed using a two-way paired ANOVA 

with Tukey post-hoc analysis and were further analysed using a paired t test. For SLO, differences 

between the two groups (Day 0 and Day 21) were analysed using a paired t test and compared 

with histological data using a Student t test. Correlations were analysed using the Pearson product 

moment correlation. Results was considered significantly different if the probability level P<0.05 

(*), P<0.01(**) or P<0.001(***) was reached between groups. 
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5.3 Results 

5.3.1 Preliminary data for OCT 

To test the feasibility of an OCT machine being able to detect RNFL thinning in the 

MOGTCRxThy1CFP mouse model, a preliminary study investigated the thickness of the RGC layer 

using histological sections. As described previously, mice were immunised with 150ng PTX on day 

0 and 2 followed by 0.25mg Z12 MOG-specific mAb on day 14.  Animals were sacrificed on day 21, 

retinae was fixed, resin embedded and stained with toluidine blue to allow identification of RGC 

structure. The RGC density in MOG-specific TCR mice was significantly reduced compared to 

control mice (Figure 5.9). 
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Figure 5.9 RGC loss following immunisation of MOG-specific TCR mice. Animals were immunised with 150ng 

PTX on day 0 and 2 and injected i.p. with 0.25mg MOG-specific mAb at day 14 post-disease induction (n=5). 

Data was compared with control C57BL/6 animals, which were Wildtype littermates of the MOG-specific TCR 

mice (n=5). Animals were sacrificed on day 21 and perfused with Karnovsky’s Fixative. Tissue was embedded 

in resin and semi-thin sections (0.7µm) were cut and stained with toluidine blue. The number of RGC in a 

cross section was counted and the length was measured to calculate RGC density using stereology software. 
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The RGC density in 100µm sections was measured at intervals from the optic nerve head. RCG 

density in MOGTCRxThy1CFP mice was significantly reduced compared to control mice (P<0.001), 

which showed the RGC density is reduced throughout the retina with more significant loss 

observed closer to the optic nerve head (Figure 5.10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 RGC loss following immunisation of MOG-specific TCR mice at intervals from the optic nerve 

head. Animals were immunised with 150ng PTX on day 0 and 2 and injected i.p. with 0.25mg MOG-specific 

mAb at day 14 post-disease induction (n=5). Data was compared with control C57Bl/6 animals, which were 

wildtype littermates of the MOG-specific TCR
 
mice (n=5). Animals were sacrificed on day 21 and perfused 

with Karnovsky’s Fixative. Tissue was embedded in resin and semi-thin sections (0.7µm) were cut and stained 

with toluidine blue. The number of RGC in a 100µm section was counted at intervals starting at the optic 

nerve head using stereology software. **P<0.01 and ***P<0.001 between control mice and MOG-specific 

TCR mice at the same distance from optic nerve head. 
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Although it is clear from these results that RGC density is significantly reduced in MOGTCRxThy1CFP, 

for the OCT to be able to detect any changes there must also be a significant reduction in the 

thickness of the GCL. Using stereology software it was possible to measure the thickness of the 

GCL at 100µm sections throughout the retina, which was found to be significantly reduced in 

MOGTCRxThy1CFP mice immunised to develop ON compared to control (P<0.001) (Figure 5.11). The 

greatest reduction in GCL thickness was observed in close proximity to the optic nerve head, with 

minimal reduction in the outer periphery of the retina.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Comparison of RGC layer thickness. Changes in the thickness of RGC layer in normal animals 

(n=5) and MOGTCR animals (n=5) immunised with 150ng PTX day 0 and 2 and anti-MOG Z12 mAb at day 14. 

Animals were perfused with Karnovsky’s Fixative and tissue was fixed. Tissue was embedded in resin and 

semi-thin sections (0.7µm) were cut and stained with toluidine blue. Thickness of RGC layer was counted at 

100µm sections starting from the optic nerve head using stereology software. Results represent the mean ± 

SEM of RGC layer thickness. **P<0.01 and ***P<0.001 between control mice and MOG-specific TCR mice at 

the same distance from optic nerve head. 
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The resolution of the OCT machine is crucial, as the resolution needs to be great enough to detect 

a difference in RNFL in mice. The mean reduction in RNFL thickness found in this study was 8µm 

with a maximum difference of 13.7µm and a minimum difference of 1.7µm. Table 5.1 shows the 

smallest measurable changes recorded in three commercially available machines (data taken from 

Heidelberg Engineering website) (Wolf-Schnurrbusch et al., 2009) and their coefficient of 

variation. The results of this study (Wolf-Schnurrbusch et al., 2009) clearly show that the 

Spectralis® OCT manufactured by Heidelberg Engineering produces the greatest resolution and 

reliability compared with 5 other commercially available OCT instruments. This data would also 

suggests that the Spectralis® OCT machine would be capable of detecting changes in RNFL 

thickness; the smallest measurable change the machine can detect is 1µm and the smallest 

difference recorded in this preliminary study of histological sections was 1.7µm.  

 

Manufacturer Device 
Smallest measurable 

change 
Coefficient of 

Variation 

Heidelberg 
Engineering, Inc 

Spectralis® 1µm 0.46% 

Opko/OTI, Inc OCT SLO™ 5µm 2.23% 

Carl Zeiss Meditec, 
Inc 

Cirrus™ 9µm 3.33% 

Table 5.1 Comparison of OCT machines. Comparison of measurements of retinal thickness and 

reproducibility in commercially available OCT machines (Wolf-Schnurrbusch et al., 2009) 

 

Therefore, the available literature proposes that the Heidelberg Spectralis® OCT machine would be 

the only OCT machine commercially available that would be capable of detecting changes in the 

thickness of RNFL in mice.  
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5.3.2 Measuring RGC loss with OCT 

To assess the ability of the OCT to measure changes in retina thickness, MOGTCRxThy1CFP animals 

were monitored on Day 0 (before disease induction) and Day 21 (end of experiment) to analyse 

the impact of disease on the reduction of thickness of the retina as a result of RGC loss. Using OCT, 

a detailed density map of total retina thickness was created in a 15°x15° area surrounding the 

optic nerve head. The density map calculated the average thickness of the retina in four segments 

(superior, nasal, inferior and temporal) surrounding the optic nerve head (Figure 5.13). A decrease 

in the total retina thickness of 10μm was observed following immunisation of MOGTCRxThy1CFP 

animals to develop ON (Figure 5.12). In particular, a statistical difference was noted in the nasal 

and inferior segments (P<0.05 and P<0.01 respectively) and an overall decrease in the thickness of 

the retina of 4% was observed (P<0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 Decrease in mean retina thickness following immunisation of MOG
TCR

xThy1CFP mice. Animals 

were immunised with 150ng PTX on day 0 and 2 and injected i.p. with 0.25mg MOG-specific mAb at day 14 

post-disease induction (n=8). OCT images of retina were acquired on Day 0 and Day 21 of disease induction 

and total retina thickness was calculated in four segments: superior, nasal, inferior and temporal. Results 

represent mean ± SEM of retina thickness. 
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Figure 5.13 Density map of OCT measured mean thickness of retina following immunisation of 

MOG
TCR

xThy1CFP mice. A MOG
TCR

xThy1CFP mouse was immunised with 150ng PTX on day 0 and 2 and 

injected i.p. with 0.25mg MOG-specific mAb at day 14. OCT images of retina were acquired on Day 0 (right 

eye a, c and left eye b, d) and Day 21 (right eye e, g and left eye f, h) of disease induction. Numbers in black 

show average thickness (µm) and numbers in red show volume (mm
3
). 

 

a) 

c) 

e) 

g) 

b) 

d) 

f) 

h) 
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To further analyse the decrease in thickness of the retina, the OCT was used to observe the RNFL 

thickness in a circle surrounding the optic nerve head (Figure 5.15), which calculated the average 

thickness of the RNFL in four segments (S, N, I, T segments) (Figure 5.13). A 12µm decrease in the 

RNFL thickness was observed following immunisation of MOGTCRxThy1CFP animals to develop ON 

(Figure 5.14). Each segment (with the exception of the temporal segment) showed a decrease in 

RNFL thickness and an overall decrease in the thickness of the retina of 33% (P<0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.14 Decrease in measured RNFL thickness following immunisation of MOG
TCR

xThy1CFP mice. 

Animals were immunised with 150ng PTX on day 0 and 2 and injected i.p. with 0.25mg MOG-specific mAb at 

day 14 post-disease induction (n=8). OCT images of retina were acquired on Day 0 and Day 21 of disease 

induction and total retina thickness was calculated in four segments: superior, nasal, inferior and temporal. 

Plots show mean ± SEM of RNFL thickness.  
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Figure 5.15 RNFL thickness using RNFL examination with OCT following immunisation of MOG
TCR

xThy1CFP 

mice. A MOG
TCR

xThy1CFP mouse was immunised with 150ng PTX on day 0 and 2 and injected i.p. with 

0.25mg MOG-specific mAb at day 14. OCT images of retina were acquired on Day 0 (right eye, a and left eye 

b) and Day 21 (right eye, c and left eye, d) of disease induction. Red lines indicate RNFL measured. Numbers 

indicate average RNFL thickness (µm) at superior (S), temporal (T), inferior (I) and nasal (N).  

 

d) c) 

a) b) 
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Both the results of total retina thickness and RNFL thickness using OCT showed a decrease of 

10µm and 12µm following immunisation of MOGTCRxThy1CFP mice to develop ON.  There was a 

positive correlation between measuring changes in total retina thickness and RNFL thickness 

(P>0.05). The decrease in total retina thickness was small (4%) compared to the observed decrease 

in RNFL thickness (33%), which reflects the small proportion of RNFL in the total retina. Both these 

methods could therefore be used to assess RNFL thinning following the development of ON. 

 

These results show the capability of the OCT to detect small changes in the RNFL of 

MOGTCRxThy1CFP mice immunised to develop ON, as predicted with the preliminary data and the 

high resolution of the Heidelberg Spectralis OCT. This technique can therefore be used as a 

longitudinal method to assess RGC damage and to study neuroprotective therapies. 

 

5.3.3 Measuring RGC loss with cSLO 

The cSLO was used to take images of the retina of MOGTCRxThy1CFP on day 0 and day 21, which 

allowed RGC density to be quantified before and after disease induction (Figure 5.16). RGC density 

was also quantified at the end of the experiment using retinal flatmounts. There was a significant 

difference between RGC density on day 0 and day 21 as quantified from cSLO images (P<0.05) 

(Figure 5.17).  

 

 

 

 

 

 

 

 

  

b) 

Figure 5.16 In vivo cSLO image of retina from MOG
TCR

xThy1CFP mouse before and after disease induction. 

Animals were immunised with 150ng PTX on day 0 and 2 and injected i.p. with 0.25mg MOG-specific mAb at 

day 14 post-disease induction. Animals were anaesthetised and retina viewed using SLO. a) Retina before 

disease induction on day 0, b) Retina after disease induction on day 21. Images taken over a 30° field of 

view and a contrast sensitivity of 80%. 

 

a) 
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The RGC density was quantified on day 21 by cSLO images and histology images (retinal 

flatmounts) and were positively correlated (P<0.05). The density of RGC assessed by cSLO was 

935±193 cells/mm2 and the density of RGC assessed by histology was 791±173 cells/mm2. 

Therefore, using the cSLO to quantify RGC loss appears to be an accurate method and is in 

agreement with results obtained from histological methods. 
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Figure 5.17 Decrease in RGC density measured by cSLO following immunisation of MOG
TCR

xThy1CFP. 

Animals were immunised with 150ng PTX on day 0 and 2 and injected i.p. with 0.25mg MOG-specific mAb at 

day 14 post-disease induction (n=8). RGC density of retina was quantified using images taken with cSLO on 

Day 0 and Day 21 of disease induction. Mice were sacrificed on day 21. Eyes were flatmounted and RGC 

were counted using stereology software. Plots show mean ± SEM of RGC density.  

 

a) a) 
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Using the 15° field of view the cSLO can be used to detect individual RGC and can be used to 

detect areas of RGC loss by using the topography of the blood vessels to locate RGC (Figure 5.18).  

 

 

 

 

 

 

 

 

 

 

 

 

The results acquired using the OCT and cSLO to study the level of RGC loss in MOGTCRxThy1CFP 

mice are concurrent; the decrease in the thickness of the RNFL using OCT was 32% and the 

decrease in RGC density using cSLO was 29%.  This therefore provides further evidence that 

measuring RGC loss using cSLO and RNFL thinning using OCT are accurate methods to assess the 

disease process. 

 

  

Figure 5.18 Repeated SLO image of retina from MOG
TCR

xThy1CFP mouse before and after disease 

induction shows loss of RGC. Animals were immunised with 150ng PTX on day 0 and 2 and injected i.p. with 

0.25mg MOG-specific mAb at day 14 post-disease induction. Animals were anaesthetised and retina viewed 

using SLO. a) Example of retina before disease induction on day 0 b) Example of retina after disease 

induction on day 21, with fewer surviving RGC. Images taken over a 15° field of view and a contrast 

sensitivity of 80%. Red and green circles highlight repeated imaging of surviving RGC.  

 

b) a) a) 
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5.4 Discussion 

To allow the MOGTCRxThy1CFP model to be used to its full potential, methods to measure RGC loss 

needed to be developed. This chapter investigated the ability of the cSLO and OCT to 

longitudinally measure RGC loss in MOGTCRxThy1CFP immunised to develop ON. Each of these 

methods successfully showed the capability to monitor disease progression and could therefore be 

used to study new drug therapies and assess their neuroprotective potential by serially measuring 

disease progression. 

 

The preliminary data gained to assess the feasibility of using OCT to monitor RGC loss were 

confirmed by the positive results achieved with the Multiline OCT, which had a resolution great 

enough to detect small changes in the thickness of the RNFL. Capturing an OCT image of the 

mouse retina proved to be a quick and rapid method to understand the pathology without the 

killing of animals at multiple points for histological purposes. By using the cSLO to quantify RGC 

before disease induction on day 0 and subsequently after disease induction on day 21, will result 

in a more accurate assessment of the disease progression. Previous results could only take into 

consideration the density of RGC on day 21 using retinal flatmounts and therefore no methods 

were available to fully assess the degree of RGC loss. Both the cSLO and OCT results correlated 

well with each other signifying the loss of RGC occurs in accordance with the thinning of the RNFL. 

The RGC density quantified from the cSLO was also comparable with the RGC density quantified by 

retinal flatmounts, therefore showing an accurate method to quantify RGC density and therefore 

evaluate the degeneration in the visual system.   

 

There are multiple advantages of using the cSLO and OCT to monitor RGC loss, which offers a 

refinement over current methods and a reduction in the number of animals used in experiments.  

These methods are non-invasive and result in minimal harm to the animals. The methods can be 

used to longitudinally monitor disease progression and therefore animals do not have to be 

sacrificed at time points to analyse RGC loss. In particular, the OCT could potentially be used 

without the need for anaesthetic therefore allowing very rapid evaluation of RNFL.  

 

Using OCT as a method to detect RNFL thinning in the MOGTCRxThy1CFP offers a direct correlate of 

human studies, which use OCT as an outcome measure. OCT is becoming increasingly popular as 

an outcome measure for clinical trials in MS (Garcia-Martin et al., 2011; Keltner et al., 2011). 
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Evaluation of disease in mice developing optic neuritis using OCT would therefore be a valuable 

asset and correlate to neuroprotective clinical trials currently being carried out in humans. 

 

However, one of the major limitations of this study is the development of media opacity during 

the experiment due to the anaesthetic (Calderone et al., 1986). Although 2% HPMC drops were 

used to protect the eye from drying out, occasionally opacity was detected in mice which were 

examined for long periods of the time. Several lines of evidence suggest that blue light exposure 

can induce apoptosis both in vivo (Wu et al., 1999) and in vitro (Osborne et al., 2008) and may 

contribute to a decrease in colour contrast sensitivity (Berninger et al., 1989). However, the 

duration of blue light exposure in this system is very short (several minutes) and rapid and 

therefore unlikely to induce long-term cell damage (Feng et al., 2000). All the studies reported in 

this chapter required the use of anaesthesia to ensure the animal remained stable to allow an 

image to be acquired. Previous papers describe the technique without use of anaesthetic (Leung 

et al., 2009). Although this could be easily feasible to acquire an OCT image, the cSLO currently 

requires a longer period of time due to the large amount of time required to scan the eye and 

produce a feasible image, which can be used to quantify RGC. However, rapid screening would 

allow serial monitoring at multiple time points. Also for convenience and to improve animal 

welfare, future experiments should aim to acquire images without the need for anaesthesia.  

 

Using the cSLO it was possible to detect animals with a low number of RGC before immunisation 

with PTX and Z12 MOG-specific mAb, which reflects the development of spontaneous ON in a 

small percentage of animals, which confirmed previous reports suggesting ON occurred in 30% of 

MOG-specific TCR animals (Bettelli et al., 2003). Therefore in future studies, exclusion criteria 

should be set to remove animals developing spontaneous ON from the study to reduce the 

variability in baseline density of RGC and allow more accurate analysis of potential drug 

interventions.   

 

In summary, the OCT and cSLO offer a non-invasive method to study the CNS and longitudinally 

measure RGC loss throughout the development of ON in the MOGTCRxThy1CFP model. These 

methods will allow the MOGTCRxThy1CFP model to be studied in greater detail to understand the 

disease progression and will also allow new therapies to be rapidly screened for their potential 

neuroprotective properties. 
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Chapter 6 

Neuroprotective treatments in MOGTCRxThy1CFP model 

 

6.1 Introduction  

There is clear evidence to show that axonal degeneration is a major contributor to the progressive 

stages of MS. Axonal loss has been shown to be related to neurological deficit (Wujek et al., 2002), 

therefore supporting research focusing on developing protective strategies. Axonal damage and 

loss has also been implicated in early stages of disease (Kuhlmann et al., 2002). Therefore it is 

crucial that research is aimed at finding neuroprotective treatments to prevent axonal damage 

and is used at the earliest stages of disease. 

 

6.1.1 Voltage gated sodium channels and sodium channel blockers 

Voltage gated sodium channels are present in the cell membrane of electrically excitable cells and 

contribute to the generation of action potentials. Sodium channels exist in several functional 

states: resting state, channel pore is closed; open state, channel pore is open; inactivated state, 

channel pore is open but unable to conduct (Catterall, 1995). There are nine different types of 

sodium channels, which all share a common overall motif but are expressed in different areas and 

have different voltage dependencies and kinetics; Nav1.1, Nav1.3, Nav1.6, Nav1.9 (neuronal), 

Nav1.4 (muscle) and Nav1.5 (cardiac) (Catterall et al., 2005).  

 

Sodium channel modulation therapy therefore has wide implications across many disorders, 

including affective disorders, anxiety disorders, behavioural disorders, cardiovascular disorders, 

CNS and PNS degenerative disorders, CNS injuries, cerebral ischemia’s,  chemical injuries, cognitive 

disorders, eyes disease and pain. In particular, sodium channel blockers have been used as 

therapeutic agents in a range of CNS diseases, including epilepsy, neuropathic pain, spasticity and 

potentially neurodegeneration (Tarnawa et al., 2007). These conditions are characterised by a 

neuronal over-excited state, leading to an abnormal increase in sodium channel activity, which can 

be relieved by the blockade of sodium channels with sodium channel blockers.  
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6.1.1.1 The role of sodium channel blockers in neuroprotection 

Mature CNS axons predominantly express Nav1.6, which are the main target for neuroprotection 

and the focus of current research (Caldwell et al., 2000). Sodium channels are clustered on the 

axon at a high density at the nodes of Ranvier (approximately 1000µm-2) and are also located at 

internodal domains at a lower density (25µm-2) (Waxman, 1977). During demyelination Nav1.6 is 

overexpressed and clustered within the nodal membrane (Black et al., 2006). Voltage-gated 

sodium channels have been shown to play a significant role in the injury cascade, which leads to 

axonal damage and loss (Figure 6.1). During demyelination, sodium channels are redistributed and 

the density is reduced leading to conduction failure. Disruption of sodium channels during 

demyelination results in the persistent opening and an increased influx of sodium into the axon 

ultimately leading to axonal injury (Waxman, 2006).  

  

In addition to the direct neuroprotective effects of sodium channel blockers, they have also been 

implicated in a parallel mechanism reducing the inflammatory damage. The sodium channel 

Nav1.6 is also expressed on macrophages and microglia (Craner et al., 2005). Cultured microglia 

treated with TTX showed a 40% reduction in phagocytic activity and Med mice, lacking functional 

Nav1.6, show reduced activation of microglia. The role of sodium channels in inflammatory cells is 

unclear and is the focus of current research but could prove to be an additional target for sodium 

channel blockers. 
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Figure 6.1 The role of sodium channel Nav1.6 in the axonal injury cascade. a) Several factor contribute 

towards the injury cascade (inflammation, nitric oxide damage, altered gene expression, hypoxia and 

ischemia), which lead to energy failure within the axon. Energy failure leads to the rundown of the 

Na
+
K

+
ATPase leading to depolarisation and activated Nav1.6 channels, which results in persistent Na

+
influx. 

As a result, the Na
+
Ca

2+
 exchanger runs in reverse and increases intracellular Ca

2+
levels. The rise in 

intracellular Ca
2+

 levels is also increased by Ca
2+

-induced Ca
2+

 release from intracellular stores. Increased 

levels of Ca
2+ 

are damaging to the axon and leads to activation of nitric oxide synthase, proteases and 

lipases resulting in axonal injury.  b) Blocking of the sodium channels with a sodium channel blocker prevents 

the persistent Na
+ 

influx and the consequential reversal of  Na
+
Ca

2+
 exchanger and the resulting axonal 

injury.   Figure adapted from (Black & Waxman, 2008; Waxman, 2008) 

a) 

b) 
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6.1.1.2 Sodium channel blockers in EAE  

There is evidence to show sodium channel blockers are effective in animal models of EAE. The 

sodium channel blockers phenytoin and carbamazepine were investigated in the animal model 

EAE for their potential to prevent axon degeneration (Black et al., 2007a; Black & Waxman, 2008).  

Phenytoin and carbamazepine prevented axon degeneration, preserved action potential 

conductance and also reduced neurological deficit. However, both studies noted worsening of EAE 

clinical signs upon withdrawal of sodium channel blockers, which has raised doubt into the 

potential of sodium channel blockers to treat MS. Sodium channel blockers flecanide and 

lamotrigine have also been tested in rat chronic-relapsing EAE models and demonstrated 

protection of axons (Bechtold et al., 2004; Bechtold et al., 2006).  

 

6.1.1.3 Sodium channel blockers in MS 

Sodium channel blockers were initially used in MS to control positive symptoms such as trigeminal 

neuralgia, a pain caused by lesions on the trigeminal nerve leading to propagation of ectopic 

impulses (Hooge & Redekop, 1995; Sakurai & Kanazawa, 1999). However, treatment with sodium 

channel blockers can also lead to an increase in negative symptoms such as weakness caused by 

conduction block  and was reported in a clinical trial of sodium channel blockers (Solaro et al., 

2005). The role of sodium channels in the pathogenesis of MS was highlighted by the upregulation 

of Nav1.6 in acute MS lesions (Waxman, 2006), which is associated with increased loading of 

calcium leading to damaging effects (Waxman, 2008).  

 

A Phase II clinical trial on lamotrigine was conducted to investigate the neuroprotective effect in 

patients with SPMS (Kapoor et al., 2010), based upon animal studies showing a neuroprotective 

role for lamotrigine preventing axonal damage and preserving electrophysiological function 

(Bechtold et al., 2006). However, the results of the trial showed no change in EDSS score and the 

primary outcome measured changes of partial cerebral volume with no significant changes. 

Changes in brain volume were complex and raised questions about the underlying mechanisms 

and its relationship with neurodegeneration. The negative outcome of this trial was partially 

attributed to the limited tolerability of lamotrigine, the high dropout rate and also the observed 

pseudoatrophy in the treated group, probably secondary to an anti-inflammatory effect that 

reduced oedema.  
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6.1.2 Apoptosis and caspases 

Apoptosis is a form of cell suicide characterised by distinct cellular changes (condensation and 

fragmentation of nuclear chromatin, membrane blebbing, dilation of endoplasmic reticulum, 

decrease in cell volume and changes in plasma membrane permeability) which result in 

phagocytosis of apoptotic cells (Arends & Wyllie, 1991). 

 

6.1.2.1 The role of caspases in neuroprotection 

Caspases (cysteine-dependant aspsartate-directed proteases) are a family of cysteine proteases 

that are involved in the apoptotic pathway, triggered by pro-apoptotic signals leading to the 

disassembly of the cell (Thornberry & Lazebnik, 1998). There are 12 caspases in total which each 

share an oligomerisation motif for the caspase recruitment domain and death effector domain.  

 

Caspases are synthesised as inactive pro-caspases and are activated following cleavage at 

aspartate cleavage sites and hydrolyze key proteins in the progression of apoptosis (Cohen, 1997; 

Weaver et al., 1996). There are two types of caspases; initiators (cleave inactive effector caspases 

to activate) and effectors (cleave other proteins in apoptotic cascade). Caspases also have non-

death functions, including maturation of red blood cells and skeletal muscle myoblasts (Lamkanfi 

et al., 2006).  

 

Caspase 2 (ICH-1/Nedd2) acts as both an ‘initiator’ and an ‘effector’ caspase and was originally 

identified as a down regulated gene in neural precursor cells during development of the mouse 

brain (Kumar et al., 1992). It was later identified to show sequence conservation at the active site 

with caspase-1 (Kumar et al., 1994). There are several other lines of evidence to suggest caspase 2 

is involved in apoptosis; caspase 2 induces cell death when over expressed (Wang et al., 1994), is 

activated early in the apoptotic pathway (Harvey et al., 1997) and caspase 2 inhibition results in 

delayed cell death (Kumar, 1995).  

 

6.1.2.2 Caspases in disease 

Caspases have been implicated in apoptotic cell death in a range of neurodegenerative disorders. 

Studies have shown that neurons exposed to degeneration lacking caspase 2 result in inhibition of 

apoptosis and ultimately increased neuronal survival (Tiwari et al., 2011). Caspase 1 and 3 have 
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been shown to mediate axonal damage and cell death in EAE and in particular, caspase 3 has been 

proposed as an important target for caspase 3 inhibitors to prevent neurodegeneration in MS 

(Ahmed et al., 2002). In Alzheimer’s disease, caspase 2 is upregulated, suggesting neuronal 

damage occurs by an apoptotic dependant manner and also proposing a target for caspase 

inhibitors (Shimohama et al., 1999).  

 

In this particular study, the focus is upon the role of caspase 2 in RGC death occurring in the retina 

following ON. Previous studies show morphological changes occurring during RGC death 

(chromatin condensation and formation of apoptotic bodies) are evidence that cell death occurs 

by apoptosis and revealed an important role for the caspase family in the execution phase 

(Quigley et al., 1995). Specifically, it has been demonstrated that caspase 2 was expressed in RGC 

undergoing apoptosis following ischemia injury and plays an important role in apoptotic 

mechanisms (Kurokawa et al., 1999).  

 

 

6.1.3 Aims and Objectives 

The objective of this chapter was to test whether the MOGTCRxThy1CFP transgenic model was 

responsive to drug therapy; the further aim was to identify therapeutic strategies which could 

potentially be developed towards a drug candidate for future clinical trials in MS patients. The two 

main neuroprotective strategies which were investigated in this model were sodium channel 

blockers and small interfering RNA (siRNA) against Caspase-2. 
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6.2 Materials and Methods 

6.2.1 Animals  

MOGTCRxThy1CFP transgenic mice as described in Chapter 3 were used for all experiments. All 

experiments were performed according to UK Animals (Scientific Procedures) Act 1986. 

 

6.2.2 Immunisation 

MOGTCRxThy1CFP transgenic mice were immunised as described in Chapter 3 to achieve optimal 

disease activity to study neuroprotective drugs. Animals were immunised with a combination of 

PTX and Z12 MOG-specific mAb (Figure 6.2). 

 

 

 

 

 

 

 

 

 

 

The primary experimental outcome was quantification of RGC loss and the secondary outcome 

was the neurological EAE score. 

 

  

Day 0 Day 2 

150ng 

Pertussis toxin 

1.0mg Z12  

MOG-specific mAb 

Day 21 

Animals euthanised 

Figure 6.2 Immunising protocol used to immunise MOG
TCR

xThy1CFP mice. Animals immunised with 150ng 

PTX on day 0 and 2, injected with 1mg Z12 MOG-specific mAb on day 14. All animals were sacrificed on day 

21. 
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6.2.3 Drug preparations 

Several sodium channel blockers were studied for their neuroprotective potential in the 

MOGTCRxThy1CFP mouse.  

  

6.2.3.1 Carbamazepine 

Carbamazepine (CBZ) (5H-Dibenz[b,f]azepine-5-carboxamide) blocks voltage sensitive sodium 

channels in their inactivated state, which are responsible for the propagation of action potentials 

(Schauf et al., 1974; Willow & Catterall, 1982) (Figure 6.3). CBZ is an anticonvulsant and mood 

stabilising drug primarily used for the treatment of epilepsy, bipolar disorders and trigeminal 

neuralgia. CBZ is available as a white powder and is insoluble in water but soluble in ethanol.  

 

 

 

 

 

 

 

CBZ (Sigma-Aldrich Ltd, Poole, Dorset, UK) was diluted in a 1:1 dilution of PBS and DMSO (dimethyl 

sulfoxide) (Sigma-Aldrich Ltd, Poole, Dorset, UK) and administered i.p. daily in 100µl at a 

concentration of 10mg/kg from day 0. Animals treated with vehicle were injected i.p. with 100µl of 

1:1 dilution of PBS and DMSO. This vehicle had been used in ABH mice previously without adverse 

influences on onset of severity of EAE (Polak et al., 2005). 

 

6.2.3.2 Oxcarbazepine 

Oxcarbazepine (OXC) (10,11-Dihydro-10-oxo-5h-dibenz[b,f]azepine-5-carboxamide) is structurally 

related to CBZ, with the addition of ketone in the dibenzazepine ring (Figure 6.4). OXC was 

developed as a valuable alternative from CBZ to reduce its associated adverse effects but retain its 

neurologic effect and is used as a primary treatment of epilepsy (Dam et al., 1989).  OXC is not 

oxidatively metabolised and therefore does not induce hepatic enzymes, leading to fewer 

unwanted drug-drug interactions and breakdown of the compound as found with CBZ (Scwabe, 

1994). OXC is poorly soluble in water, ethanol and ether and is partly soluble in acetone, 

Figure 6.3 Chemical structure of Carbamazepine. Empirical formula C15H12N2O.  
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chloroform, dichloromethane and methanol. OXC is a pro-drug, which is metabolised to 

eslicarbazepine (Dulsat et al., 2009) and the pharmacological effect is mediated through its 

monohydroxy molecule (MHD), which induces blockade of voltage sensitive sodium channels. This 

leads to inhibition of repetitive neuronal discharges and reduces the propagation of synaptic 

pulses.  

 

 

 

 

 

 

 

 

Oxcarbazepine (Sigma-Aldrich Ltd, Poole, Dorset, UK) was diluted in a 1:1 dilution of PBS and 

DMSO (dimethyl sulfoxide) and administered i.p. daily in 100µl at a concentration of 10mg/kg from 

day 0. Animals treated with vehicle were injected i.p. with 100µl of 1:1 dilution of PBS and DMSO. 

 

6.2.3.3 CFM1604 

Newly designed and synthesised sodium channel blockers based on first generation sodium 

channel blockers (carbamazepine, lamotrigine, phenytoin) have been developed with more potent 

and selective neuroprotective activity (Clutterbuck et al., 2009). From these studies, a new 

compound CFM1604 was formulated and supplied by Dr. David Selwood, Biological and Medicinal 

Chemistry, The Wolfson Institute for Biomedical Research, UCL, London, UK. CFM1604 is an 

indazole derivative (Figure 6.5), which has potential as a neuroprotective voltage dependant 

sodium channel modulator. CFM1604 is a high affinity, non-selective, state dependant sodium 

channel blocker, which is only active during the inactive phase of voltage-gated sodium channel 

modulation (Table 6.1). 

 

 

 

Figure 6.4 Chemical structure of Oxcarbazepine. Systematic name 10,11-dihydro- 10-oxo- 5H-

dibenz(b,f)azepine- 5-carboxamide. Empirical formula C15H12N2O. 

 

http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Oxygen
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Physical Properties Value 

Rotational bonds lipophilicity LogP 1.8 

Total polar surface area tPSA 100Å2 

Aqueous solubility LogS -5.5 

Affinity in inactivated state  
 

Nav1.1 
Nav1.3 
Nav1.5 
Nav1.6 
Nav1.7 
Nav1.8 

IC50 (μm) 

 
 
 

19.66 
26.49 
21.39 
21.31 
14.68 
27.52 

 
 

Table 6.1 Physical properties of CFM1604. Physical properties of lipophilicity, polar surface area, aqueous 

solubility and receptor affinities. 

 

CFM1604 was diluted in a 1:1:16 dilutions of ethanol (Sigma-Aldrich Ltd, Poole, Dorset, UK), 

cremaphore (Sigma-Aldrich Ltd, Poole, Dorset, UK) and PBS and administered i.p. daily in 100µl at 

a concentration of 5mg/kg from day 0. Animals treated with vehicle were injected i.p. with 100µl 

of 1:1:16 dilution of ethanol, cremaphore and PBS. 

 

6.2.3.4 Vehicles 

A study was conducted to investigate the potential unwanted neuroprotective effects of vehicles. 

The following vehicles were used: 

1) Ethanol, cremaphore and PBS (Sigma-Aldrich Ltd, Poole, Dorset, UK) in a 1:1:16 dilution. 

Figure 6.5 Chemical structure of CFM1604. Systematic name N-((5-(2-(2-(1h-imidazol-1-yl)ethyl)-2h-indazol-

3-l)-1,2,4-oxadiazol-3-yl)methyl)-3-methylbenzamide. CFM1604 is an idazole derivative based upon the 

above structure. Derivatives are made by substitutions of chemical groups onto R
1
 to R

4
 branches. 

 

http://en.wikipedia.org/wiki/%C3%85
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2) 0.5% hydroxypropyl methylcellulose (HPMC) (Sigma-Aldrich Ltd, Poole, Dorset, UK) and 

0.25% Tween. 

3) Dimethyl sulfoxide (DMSO) and PBS (Sigma-Aldrich Ltd, Poole, Dorset, UK) in a 1:1 

dilution. 

 

6.2.4 Immunohistochemistry 

Eyes were dissected and cryoprotected as described in Section 2.2.4.1. Frozen sections were 

thawed for 30 minutes at room temperature and then immunostained using the following 

protocol:  

1) Samples were fixed in 100% ethanol for 1 minute and washed 2 x 5 minutes in PBS.  

2) Samples were permabilised in 0.1% Triton X-100 in PBS for 10 minutes and washed 3 x 

5 minutes in PBS. 

3) Blocked in 3% bovine serum albumin (BSA) in PBS containing 0.05% Tween 20. 

4) Primary antibody was added to samples and incubated overnight at 4°C followed by a 

wash 3 x 5 minutes in PBS. Two different primary antibodies were used: 

a. Active Caspase-2 at a 1 in 200 dilution rabbit polyclonal IgG (ab2251 - Abcam, 

Cambridge, UK). 

b. Total Caspase-2 at a 1 in 400 dilution rabbit polyclonal IgG (sc-623 Santa Cruz  

5) Secondary antibody Alexa Fluor 488 donkey anti-rabbit IgG (H+L) at a 1 in 1000 

dilution (A-21206 – Invitrogen, Paisley, UK) added was added to samples and 

incubated for one hour at room temperature and washed 3 x 5 minutes in PBS. 

6) Sections were placed on slides and mounted in Vectashield with DAPI. 

7) Sections were imaged using a Zeiss LSM 510 confocal laser scanning microscope. 

 

 

 

 

 

 

 

 

 



 
 

172 
 

      

 

6.2.5 Intravitreal injections 

Caspase-2 small interfering RNA (siRNA) and control nonsense siRNA were provided by Quark 

Pharmaceuticals, California, USA in collaboration with Dr. Zubair Ahmed, University of 

Birmingham. A fine tip glass pipette was used to inject the siRNA into the mouse eye. Using a P2 

micropipette and a long fine tip, the glass pipette was loaded with 2µl of siRNA. The mouse was 

briefly anaesthetised in an isofluorane chamber until eye flick response had stopped and the 

mouse showed signs of slowed breathing. The mouse was removed from the chamber and a small 

nose cone was used to maintain a low level of anaesthesia throughout the procedure. Using 

forceps the eye was exposed and the glass pipette needle was inserted into the vitreous (Figure 

6.6). The glass pipette tip was attached to rubber tubing connected to a syringe which was 

compressed to allow the siRNA to be injected into the vitreous. The glass pipette tip was removed 

and the animal was left to recover in its cage. Animals were injected in both eyes on day 0 and 10 

of disease. 

 

 

  

Figure 6.6 Schematic diagram of intravitreal injection into the mouse eye. Using forceps the eye is exposed 

and the needle is inserted through the eye into the vitreous cavity.  

Lens 

Cornea 

Iris 

Intravitreal 
injection 
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6.2.6 Statistical analysis 

Statistical analysis was performed in SigmaStat 3.1. Results were presented as mean values ± 

standard error of mean. Differences between EAE scores in multiple groups was analysed by 

Kruskal-Wallis non-parametric ANOVA tests with Dunn’s post test. Differences between RGC loss 

in multiple groups was analysed by one-way ANOVA with Bonferonni post-test. Results was 

considered significantly different if the probability level P<0.05 (*), P<0.01(**) or P<0.001(***) 

was reached between groups. 
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6.3 Results 

6.3.1 Carbamazepine treatment 

The neuroprotective effect of CBZ treatment was investigated in immunised MOGTCRxThy1CFP 

mice. Animals were divided into three groups; MOGTCRxThy1CFP no treatment, vehicle treatment 

and CBZ treatment. Treatment with CBZ reduced the severity, onset and the number of animals 

developing neurological EAE (Figure 6.7). Animals receiving no treatment showed signs of a weight 

decrease following Z12 MOG-specific mAb on day 14; however the other two groups remained 

relatively constant despite the development of EAE in several animals (Figure 6.7).  

 

The difference in the density of RGC following treatment with CBZ was not statistically different to 

vehicle treated groups or MOGTCRxThy1CFP controls (Figure 6.8). However, the CBZ treated group 

showed a greater average density of RGC compared to MOGTCRxThy1CFP, suggesting a trend 

towards neuroprotection with CBZ.  
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Figure 6.7 Neurological EAE development and weight changes in immunised MOG
TCR

xThy1CFP mice 

following injection of CBZ and vehicle. MOG
TCR

xThy1CFP transgenic mice were immunised with 150ng 

Pertussis toxin on day 0 and 2, followed by 0.25mg Z12 MOG-specific mAb on day 14 post-disease induction. 

Groups of mice received the following: no treatment (n=9), 100µl daily dose of vehicle (50% PBS:DMSO) (n=9) 

or  100μl 10mg/kg Carbamazepine (dissolved in 50% PBS:DMSO) (n=9). Mice were sacrificed on day 21. a) 

Percentage weight changes following Z12 MOG-specific mAb, b) Final neurological EAE scores on day 21, c) 

Development of EAE following Z12 MOG-specific mAb. 
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These results suggest that CBZ showed signs of neuroprotection against EAE and RGC loss in the 

retina. However, the neuroprotective capability was minimal and not significant to conclude a 

neuroprotective role of CBZ. The failure to produce a significant effect could be due to the high 

level of non-responders in the vehicle group, leading to a high average RGC density with a large 

amount of error. This suggested a vehicle effect of CBZ that has not been seen when the agent had 

been used in EAE studies in Biozzi ABH mice (Al-Izki et al., unpublished). 

  

Figure 6.8 RGC loss in immunised MOG
TCR

xThy1CFP mice following injection of CBZ and vehicle. 

MOG
TCR

xThy1CFP transgenic mice were immunised with 150ng Pertussis toxin on day 0 and 2, followed by 

0.25mg Z12 MOG-specific mAb on day 14 post-disease induction. Groups of mice received the following: no 

treatment (n=9), 100µl daily dose of vehicle (50% PBS:DMSO) (n=9) or 100μl 10mg/kg Carbamazepine 

(dissolved in 50% PBS:DMSO) (n=9). Mice were sacrificed on day 21. Eyes were flatmounted and RGC were 

counted using stereology software. Plots show mean ± SEM of RGC density.  
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6.3.2 Oxcarbazepine treatment 

Based on previous results with CBZ showing signs of neuroprotection, the derivative OXC was 

investigated for its neuroprotective effects. Animals were divided into three groups; 

MOGTCRxThy1CFP untreated control, vehicle treatment and CBZ treatment. Treatment with OXC 

significantly reduced the severity of animals developing neurological EAE with little effect on the 

number of animals developing neurological EAE (Figure 6.9). The weight remained relatively 

constant in each group despite the development of EAE in a small minority of animals (Figure 6.9).  

 

The difference in density of RGC following treatment with OXC was statistically different (P<0.05) 

compared to vehicle treated groups and MOGTCRxThy1CFP controls (Figure 6.10). The higher 

density of RGC in the OXC treated group demonstrates a neuroprotective effect of OXC. There is 

also a higher density of RGC in the vehicle treated group compared to the MOGTCRxThy1CFP 

control. A higher RGC density in the vehicle treated group could be explained by a neuroprotective 

effect of the vehicle, DMSO (Di Giorgio et al., 2008). 
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Figure 6.9 Neurological EAE development and weight changes in immunised MOG
TCR

xThy1CFP mice 

following injection of OXC and vehicle. MOG
TCR

xThy1CFP transgenic mice were immunised with 150ng 

PTX on day 0 and 2 followed by 0.25mg Z12 MOG-specific mAb at day 14 post-disease induction. Groups 

of mice received the following: no treatment (n=7), 100µl daily dose of vehicle (50% PBS:DMSO) (n=7) or 

100μl 10mg/kg Oxcarbazepine (dissolved in 50% PBS:DMS) (n=7). Mice were sacrificed on day 21. a) 

Percentage weight changes following Z12 MOG-specific mAb, b) Final neurological EAE scores on day 21, 

c) Development of EAE following Z12 MOG-specific mAb 
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Therefore, these results demonstrate that OXC has beneficial neuroprotective effects on the 

survival of RGC following immunisation in MOGTCRxThy1CFP mice developing optic neuritis. OXC 

also appears to have a greater neuroprotective effect than CBZ. 

 

Figure 6.10 RGC loss in immunised MOG
TCR

xThy1CFP mice following injection of OXC and vehicle. 

MOG
TCR

xThy1CFP transgenic mice were immunised with 150ng PTX on day 0 and 2 followed by 0.25mg Z12 

MOG-specific mAb on day 14 post-disease induction. Groups of mice received the following: no treatment 

(n=7), 100µl daily dose of vehicle (50% PBS:DMSO) (n=7) or 100μl 10mg/kg Oxcarbazepine (dissolved in 50% 

PBS:DMSO) (n=7). Mice were sacrificed on day 21. Eyes were flatmounted and RGC were counted using 

stereology software. Plots show mean ± SEM of RGC density. *P<0.05 compared to PTX treated controls. 
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6.3.3 CFM1604 

The novel compound CFM1604, a derivative of conventional sodium channel blockers, with CNS-

targeted for its neuroprotective effects in the MOGTCRxThy1CFP model. Animals were divided into 

three groups; MOGTCRxThy1CFP untreated control, vehicle treatment and CFM1604 treatment. 

Treatment with CFM1604 had no effect on the severity and number of animals developing 

neurological EAE compared to untreated and vehicle treated MOGTCRxThy1CFP mice (Figure 6.11). 

The weight remained relatively constant in each group despite the development of EAE (Figure 

6.11). 

 

There was a significant difference in RGC density in the group treated with CFM1604 compared to 

treatment with vehicle (Figure 6.12). However the positive neuroprotective result of CFM1604 was 

not significantly different to the untreated group which appeared to have a large RGC density with 

a high level of error. Therefore it is difficult to conclude a neuroprotective role of CFM1604 based 

upon the uncertainty of the high RGC density in the untreated group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

181 
 

      

 

 

 

 

 

 

 

  

Time post-PTX immunisation (days)

13 14 15 16 17 18 19 20 21

N
eu

ro
lo

gi
ca

l E
A

E 
sc

o
re

 ±
 S

EM

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Control - no treatment

Vehicle treatment

CFMA treatment

F
in

a
l 

N
e

u
ro

lo
g

ic
a

l 
E

A
E

 S
co

re
 ±

 S
E

M

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Control - no treatment

Vehicle treatment

CFMA treatment 

3/7

4/7
3/7

Figure 6.11 Neurological EAE development and weight changes in immunised MOG
TCR

xThy1CFP mice 

following injection of CFM1604 and vehicle. MOG
TCR

xThy1CFP transgenic mice were immunised with 

150ng Pertussis toxin on day 0 and 2 followed by 0.25mg Z12 MOG-specific mAb at day 14 post-disease 

induction. Groups of mice received the following: MOGTCR x Thy1CFP control (n=7), 100µl daily dose of 

vehicle (1:1:16 alcohol, cremaphore, PBS) (n=7) or 100μl 5mg/kg CFM1604 (dissolved in 1:1:16 alcohol, 

cremaphore, PBS) (n=7). Mice were sacrificed on day 21. a) Percentage weight changes following Z12 

MOG-specific mAb, b) Final neurological EAE scores on day 21, c) Development of EAE following Z12 MOG-

specific mAb. 
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Figure 6.12 RGC loss in immunised MOG
TCR

xThy1CFP mice following injection of CFM1604 and vehicle. 

MOG
TCR

xThy1CFP transgenic mice were immunised with 150ng PTX on day 0 and 2 followed by 0.25mg Z12 

MOG-specific mAb on day 14 post-disease induction. Groups of mice received the following: no treatment 

(n=7), 100µl daily dose of vehicle (1:1:16 alcohol, cremaphore, PBS) (n=7) or 100μl 5mg/kg CFM1604 

(dissolved in 1:1:16 alcohol, cremaphore, PBS) (n=7). Mice were sacrificed on day 21. Eyes were flatmounted 

and RGC were counted using stereology software. Plots show mean ± SEM of RGC density. *P<0.05 

compared to vehicle treatment. 
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6.3.4 Caspase 2 siRNA  

The potential neuroprotective effect of targeting the anti-apoptotic pathway by using caspase-2 

siRNA was investigated in MOGTCRxThy1CFP mice.   

 

6.3.3.1 Caspase-2 staining 

To establish the pathways involved in RGC death in the retinae of MOGTCRxThy1CFP model, 

immunohistochemistry was carried out on retina sections to identify factors which could 

potentially be targeted or neuroprotection. Based upon previous data (Personal communication 

with Dr. Zubair Ahmed, University of Birmingham) caspase-2 was suggested as a key factor in the 

apoptotic pathway in RGC (Ahmed, 2011 #1509). Therefore, immunohistochemistry with both 

activated and total caspase-2 staining was carried out (Figure 6.13). Activated caspase-2 

recognised the carboxyterminals aspartate D316 on activated caspase-2 and total caspase-2 

recognised the propeptide of caspase 2 (i.e. before caspase activation).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13 Total and activated caspse-2 staining in RGC. MOG
TCR

xThy1CFP transgenic mice were 

immunised with 150ng PTX on day 0 and 2 followed by 0.25mg Z12 MOG-specific mAb at day 14 post-

disease induction. Mice were sacrificed on day 21. Eyes were cryoprotected and sectioned. Cross sections of 

the retina were stained with a) total caspase-2,  b) active caspase-2 and both were secondary labelled with 

Alex fluor 568 (Red). RGC are shown in green (arrow).  

b) a) 
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The results show that total caspase-2 is present in the RNFL and in particular is seen in the axons 

and cell bodies of RGC in MOGTCRxThy1CFP mice. Activated caspase-2, is difficult to analyse as 

staining in the RGC is dependent upon capturing the correct timing in the apoptotic pathway.  

However, it appears that activated caspase-2 in Figure 6.13b is present and can be seen in both 

RGC and areas where RGC have degenerated. From these results it can be concluded that 

casapase-2 plays an important role in the apoptotic pathway of RGC degeneration in the 

MOGTCRxThy1CFP model of disease. Therefore future strategies should be developed to target 

caspase-2 activation. 

 

6.3.3.2 Caspase-2 intravitreal injections 

As the previous results showed a role of caspase-2 in the apoptotic pathway of RGC, siRNA against 

caspase-2 was used and its neuroprotective potential analysed.  Animals were divided into three 

groups; untreated, vehicle treatment (scrambled siRNA) and capase-2 siRNA treatment. Treatment 

with caspase-2 siRNA and control siRNA appeared to reduced the severity and number of animals 

developing neurological EAE compared to untreated MOGTCRxThy1CFP mice (Figure 6.14).  
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Figure 6.14 Neurological EAE development in immunised MOG
TCR

xThy1CFP mice following intravitreal 

injection of caspase-2 siRNA and vehicle siRNA. MOG
TCR

xThy1CFP transgenic mice were immunised with 

150ng Pertussis toxin on day 0 and 2 followed by 0.25mg Z12 MOG-specific mAb on day 14 post-disease 

induction. Groups of mice received the following: no treatment (n=9), 2µl control siRNA (vehicle treated) on 

day 0 and 10 (n=11) or 2µl caspase-2 siRNA (n=11). Mice were sacrificed on day 21. Final neurological EAE 

scores expressed as mean ± SEM.  
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Treatment with capase-2 siRNA had a highly significant effect on the increased survival of RGC 

compared to MOGTCRxThy1CFP mice with no treatment (Figure 6.15). However, these results also 

show animals treated with control siRNA promoted the survival of RGC and a clear vehicle effect 

(RGC density of vehicle was 834 cells/mm2 compared to control, which was 296 cells/mm2), which 

needs to be taken into consideration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15 RGC loss in immunised MOG
TCR

xThy1CFP mice following intravitreal of caspase-2 sRNA. MOG-

TCR x Thy1CFP transgenic mice were immunised with 150ng PTX on day 0 and 2 followed by 0.25mg Z12 

MOG-specific mAb at day 14 post-disease induction. Groups of mice received the following: untreated (n=8), 

2µl control siRNA (vehicle) at Day 0 and 10 (n=10) or 2μl caspase-2 siRNA at Day 0 and 10 (n=10). Mice were 

sacrificed on day 21. Eyes were flatmounted and RGC were counted using stereology software. Plots show 

mean ± SEM of RGC density. ***P<0.001 compared to PTX treated control. 

 

In conclusion, caspase-2 siRNA shows the potential to increase the survival of RGC and be 

neuroprotective. However, these results need to be interoperated with caution due to the high 

neuroprotective effect of the vehicle treated group. The vehicle effect could possibly be due to 

damage caused by intravitreal injection leading to an inflammatory response and the activation of 

growth factors, which offer a form of neuroprotection. Therefore, the vehicle effect needs to be 

addressed and approaches made in future experiments to reduce this effect.  
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6.3.5 Neuroprotective effects of vehicles 

Some of the previous results suggested a disease modifying neuroprotective effect of vehicles, 

therefore the effect of different vehicles on development of EAE was analysed. To determine the 

vehicle with the least neuroprotective effect, the following vehicles were investigated for their 

properties to attenuate the development of neurological EAE compared to daily treatment with 

OXC; Vehicle 1 (0.5% HPMC, 0.25% Tween in dH2O), vehicle 2 (ethanol, cremaphore, PBS 1:1:16), 

vehicle 3 (DMSO, PBS 1:1) (Figure 6.16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results show that vehicle 3 (DMSO, PBS 1:1) reduced the onset of neurological EAE to a similar 

extent of treatment of MOGTCR animals with OXC. This suggests that DMSO is exerting an anti-

inflammatory neuroprotective effect and reducing the development of neurological EAE. The 

results also show that vehicle 2 (ethanol, cremaphore, PBS 1:1:16) had the least effect on the 

development of neurological EAE. Therefore, future drug study experiments should use ethanol, 

cremaphore and PBS (1:1:16) as a vehicle which displays limited effect on disease activity. 
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Figure 6.16 Neurological EAE development in immunised MOG
TCR

xThy1CFP mice following injection of OXC 

and vehicle. MOG
TCR

xThy1CFP transgenic mice were immunised with 150ng PTX on day 0 and 2 followed by 

0.25mg Z12 MOG-specific mAb on day 14 post-disease induction. Groups of mice received the following: 

Vehicle 1 (100µl daily dose of 0.5% HPMC, 0.25% Tween in dH2O) (n=8), Vehicle 2 (100µl daily dose of 

Ethanol, cremaphore, PBS 1:1:16) (n=8), Vehicle 3 (100µl daily dose of DMSO, PBS 1:1) (n=8), Oxcarbazepine 

(100µl daily dose of 10mg/kg OXC dissolved in 0.5% HPMC, 0.25% Tween in dH2O) (n=8). Mice were 

sacrificed on day 21. Neurological EAE scores expressed as mean ± SEM.  
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6.4 Discussion 

The MOGTCRxThy1CFP is a valuable mouse model, which can be used to test the neuroprotective 

properties of treatment strategies. This chapter investigated the neuroprotective properties of 

two conventional sodium channel blockers (CBZ and OXC), a novel sodium channel blocker 

(CFM1604) and a novel therapeutic strategy (caspase 2 siRNA). Each of these treatment strategies 

showed signs of neuroprotection and prevented RGC loss to a varying degree.  

 

In some of these neuroprotective studies it was difficult to determine the potential of these drugs 

as the vehicle effect compromised any results obtained. Sodium channel blockers are highly 

hydrophobic and therefore have limited solubility in water, which leads to difficulties in selecting 

an appropriate vehicle. Both OXC and CBZ were tested using the organic solvent DMSO as a 

vehicle. However, both experiments showed DMSO had a moderate neuroprotective effect, which 

reduced the ability to make conclusions about the neuroprotective potential of the sodium 

channel blockers being tested. This effect has been noticed in several other studies and 

compounded the results of the neuroprotective treatment under investigation (Di Giorgio et al., 

2008). The neuroprotective effect of DMSO has been demonstrated to reduce the neurological 

deficit in rodent (Bardutzky et al., 2005) and monkey models of cerebral ischemia (de la Torre & 

Surgeon, 1976) and tested in patients with severe head trauma (Karaca et al., 1991). The 

mechanism of neuroprotection by DMSO is not clearly understood and is postulated to be due to 

its radical scavenging properties, which lead to a reduction in oxidative stress (Repine et al., 1981). 

To overcome the vehicle effects of DMSO, several other vehicles were tested and found to have 

less of a neuroprotective effect compared to DMSO. It is therefore essential to carefully select 

future vehicles appropriate for the strain used, which are capable of dissolving hydrophobic drugs 

but still remain to have no effect. 

 

A vehicle effect was also observed in the caspase-2 siRNA study using intravitreal injections, which 

highlights the complex relationship between inflammation and neuroprotection. It appears from 

the results that mechanical injury at the injection site can result in neuroprotection, possibly by an 

inflammatory mechanism. Previous studies have demonstrated a T-cell dependant 

neuroprotective response following immunisation of MBP-specific T cells after optic nerve crush 

(Moalem et al., 1999). The mechanism of neuroprotection as a consequence of inflammation is 

postulated to be due to the release of neurotrophic factors (Hammarberg et al., 2000), which is 

supported by other studies providing evidence that immune cells can produce NGF (Ehrhard et al., 
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1993) and brain derived neurotrophic factor (Braun et al., 1999). Similar studies have also 

reported the phenomenon of the immune response slowing down degeneration following ocular 

injections of gene therapy (Reichel et al., 2001). Therefore there is a need to exclude the 

possibility that the immune response to intravitreal injections is responsible for neuroprotection in 

the MOGTCRxThy1CFP model. This effect could potentially be minimised with more experience 

resulting in a greater accuracy of intravitreal injections without leading to damage of surrounding 

areas and the consequential inflammation driven neuroprotection. 

 

An observation made throughout the neuroprotective studies of MOGTCRxThy1CFP mice was the 

decreasing RGC density in untreated groups and increased frequency and severity of neurological 

EAE (MOGTCRxThy1CFP mice immunised with PTX and Z12 MOG-specific mAb). The cause of 

increased severity of disease is not obvious, although there are several possible explanations. 

There could potentially be phenotypic variability as the breeding colony develops; animals are 

bred with an increased copy number of the MOGTCR transgene, which potentiate the susceptibility 

of animals to PTX and the severity and incidence of disease. However, the increased copy number 

of the transgene does not typically correlate with increased expression, as expression is 

dependent upon the integration site of the transgene. To resolve this issue, the qPCR techniques 

developed in Section 2.2.2.3 could be used to determine the copy number of MOGTCR transgene 

and correlate with the development of neurological EAE and RGC density. There are also 

techniques which have been developed and can be used to correlate transgene copy number with 

expression using reverse transcription to quantify levels of transgene mRNA (Ringel et al., 1998). 

An alternative explanation for the increased severity and incidence of disease is the presence of 

infections in the breeding colony of MOGTCRxThy1CFP mice. The compromised immune system in 

MOGTCRxThy1CFP mice would make them more susceptible to infections showing clinical signs 

compared to wildtype C57BL/6 mice. Pathogens present in the breeding colony include Murine 

norovirus (MNV), which commonly circulates in laboratory mice and is harmless to wildtype mice 

but can cause complications in immune deficient mice (Mumphrey et al., 2007). Presence of MNV 

in the breeding colony could explain the increased incidence of disease in MOGTCRxThy1CFP mice. 

This issue could be resolved by re-deriving the MOGTCRxThy1CFP breeding colony to produce a 

clean, virulent free strain, which is currently being undertaken. Both of these hypotheses 

(increased transgene expression and presence of infections) could explain the increased incidence 

and severity of disease in MOGTCRxThy1CFP mice and they could also be working in combination to 

produce a noticeable effect.  
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The results from this chapter provide promising evidence for support of sodium channel blockers 

as a neuroprotective therapy in MS. Although the first large scale trial of a sodium channel blocker 

failed to show any significant benefit (Kapoor et al., 2010) the potential of other sodium channel 

blockers should still be investigated. The trial targeted the late stage of disease and raised 

questions about the ideal phase of MS to start a neuroprotective therapy. Future clinical trials 

have been proposed to start treatment at the earliest signs of MS when patients present with ON 

who may progress on to developing MS. In summary, the results provide promising pre-clinical 

evidence for the use of sodium channel blockers in MS. Although it initially seems that finding a 

neuroprotective therapy is ambitious due to the poorly understood mechanisms of 

neurodegeneration, it is clear that drug treatments existing for other disorders could be used to 

treat people with MS.  
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Chapter 7 

General Discussion and Conclusions 

 

7.1 Key findings 

This project met the aim to develop and characterise a novel transgenic mouse model for the 

study of neuroprotection and repair strategies in autoimmune disease. Initial studies defined and 

characterised the MOG-specific TCR transgenic mouse and an immunising protocol, to produce an 

appropriate model for studying neurodegeneration. The subsequent crossing with a Thy1CFP 

transgenic mouse allowed the axonal loss to be easily monitored using CFP-expressing RGC in the 

retina. Several in vivo methods were developed to longitudinally study visual dysfunction including 

electrophysiology, visual tracking drum, OCT and cSLO. These methods were developed as a 

correlate to techniques currently used to study disease progress in people with MS. The 

MOGTCRxThy1CFP mouse model was used to study the potential of sodium channel blockers for the 

treatment of MS and ON. Two conventional sodium channel blockers (CBZ and OXC) and a novel 

sodium channel blocker (CFM1604) were studied for their neuroprotective properties. The pre-

clinical evidence using these drugs showed promising results; CBZ increased RGC survival by 11%, 

OXC increased RGC survival by 23% and CFM increased survival by 18% compared to vehicle 

control. These findings could potentially be translated into a treatment for people with MS.  

 

 

7.2 Value of the MOGTCRxThy1CFP mouse model 

The MOGTCRxThy1CFP mouse model offers multiple advantages over current animal models of 

autoimmune diseases and is a valuable model to study axonal loss and neuroprotection. Due to 

the rapid onset of disease and the short nature of experiments (approximately 21 days), new 

drugs can be studied and evaluated in a shorter time and their potential for further development 

can be assessed quickly.  

 

Following on from the preliminary data presented in Chapters 2 and 3, the project was successfully 

funded by the National Centre for the Replacement, Refinement and Reduction of Animals in 

Research (NC3Rs) to allow methods to be developed to measure RGC loss in the animal model 
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therefore offering a refinement and reduction opportunity over the EAE animal model of MS. The 

immunising protocol developed for the MOGTCRxThy1CFP model results in reduced paralysis 

typically associated with classical EAE, therefore resulting in minimal weight loss. The system 

primarily affected in the MOGTCRxThy1CFP model is the visual system, which seems to be well 

tolerated by the animals and does not result in any welfare issues due to the nocturnal nature of 

mice, which do not rely on the visual system as a primary sense. The induction of disease in the 

MOGTCRxThy1CFP model offers a reduction of substantial procedures and is considerably milder 

than the typical immunising protocol used to induce EAE consisting of CFA. The development of 

methods to non-invasively measure disease progress reduced need for time-consuming histology 

and also reduced the number of animals required in an experiment. The methods also allow 

objective outcomes to be recorded in contrast to the subjective clinical scoring routinely carried 

out on EAE animals, therefore increasing the statistical power of detecting a change. 

 

As is common with many experimental situations, this model currently has several limitations that 

need to be addressed. The most significant limitation of the model at this stage is the limited 

degree of demyelination observed in the pathology of disease, therefore preventing the model 

from being used to study drugs for remyelination. The results from all the experiments suggest the 

disease is rapid and axonal loss prevails over demyelination. To overcome this, future work would 

need to be carried out to adapt the immunisation protocol using immunomodulating antibodies to 

reduce the severity of disease to promote demyelination. Previously, this was difficult to study as 

it required a significant number of animals to be sacrificed at different time points to gain an 

understanding of the stages of the disease process. With the addition of the SLO, the disease 

progress can now be studied in the MOGTCRxThy1CFP mouse non-invasively and a greater 

understanding of the timing of RGC death can be achieved. Further studies to measure 

demyelination by measuring latency delay in the VEP response will be carried out. However, as an 

alternative we may adapt these protocols towards disease in the rat by administration of 

demyelinating antibodies resulting in marked demyelination with preservation of axons (Linington 

et al., 1988). 

 

A significant weakness of the MOGTCRxThy1CFP mouse model throughout the project was the 

limited number of animals available due to problems with the breeding of a double transgenic 

strain, resulting in experiments with low n numbers. The breeding problems with the 

MOGTCRxThy1CFP appeared to become exaggerated when a higher percentage of homozygous 
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mice for the MOG-specific TCR transgene were included in the breeding colony, a trend which has 

been observed previously in other transgenic strains (Olivares-Villagomez et al., 1998). To prevent 

further problems occurring, the colony will require close observation and selection of healthy, 

robust animals as breeders. To further enhance the breeding success, immune intervention could 

prevent the frequency of spontaneous disease developing and improve the general health of 

breeding animals. Another limitation of the model which made several of the methods difficult to 

develop was the restrictions imposed by the size of the mouse eye. However, these difficulties 

were successfully overcome by adapting the lens on the cSLO/OCT machine to allow imaging of 

the mouse eye. In addition, with all animal models of disease there may be discrepancies between 

the physiology and anatomy of the mouse in comparison with the human, which may restrict the 

translation between the two species.  

 

The generation of the MOGTCRxThy1CFP mouse model has many implications for work undertaken 

in this field of research and the development of drugs for people with MS. The novel model also 

has many implications for the welfare of animals and the way animals are used to screen new 

drugs. Although the current immunising protocol of the MOGTCRxThy1CFP mouse does not appear 

to result in a prolonged phase of demyelination, the model has many implications for the study of 

neuroprotective therapies and the drugs that were tested focused primarily on their 

neuroprotective potential. The need for neuroprotective therapies for MS patients is still a primary 

goal, even though the majority of RRMS patients are being treated more effectively with 

immunomodulatory drugs.  Evidence shows that axonal loss occurs at early stages of MS (Filippi et 

al., 2003) and emphasises the importance of intervening in early stages of MS. Additionally, there 

is demand for neuroprotective therapies for SPMS and PPMS, which is an area deprived of drug 

treatment. Therefore, the generation of the MOGTCRxThy1CFP mouse model will have significant 

implications on the development of neuroprotective therapies by providing a rapid screening tool 

to identify potential drug candidates for clinical trials and molecular targets for drug development.    
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7.4 Future work 

There are several lines of future work that could potentially be investigated to improve and refine 

the MOGTCRxThy1CFP mouse model and the methods used to study the model. The most 

significant part of the model which needs modifying is the level of demyelination that occurs. 

Future work could utilise the cSLO and OCT to detect the critical time points of RGC damage and 

loss and identify a window for promotion of demyelination. Once demyelination has been 

established, alternative electrophysiological methods will be investigated to monitor 

demyelination (Cambiaghi et al., 2011) and the MOGTCRxThy1CFP mouse model could therefore be 

employed to study remyelination strategies.  

 

To achieve an animal model of demyelination, a rat model of optic neuritis could be used as the 

rat model of EAE has been shown to have a greater degree of demyelination and would therefore 

be valuable to study remyelination therapies (Meyer et al., 2001). Using a rat model would also 

offer many advantages over the mouse due to the larger size of the eye and the methods 

developed in this project could be developed for a rat model. Several of the methods would be 

easier to use with rats, for example the head tracking behaviour of rats is more evident than mice 

and this would therefore be easier to detect changes in visual acuity. In addition the transfer of 

Z12 antibody is likely to be more demyelinating in rat compared to the degeneration in mice. 

However, the drawback to using a rat model is the lack of fluorescent transgenic rats available. 

Therefore to use the SLO to visualise the RGC it would require injection of fluorescent dye. In the 

future, appropriate transgenic rats could be generated and it may be feasible to generate 

transgenic rats that mimic the MOGTCRxThy1CFP mouse model. Similar transgenic rats to the 

Thy1CFP strains of mice have been developed to study axons in vivo (Magill et al., 2010). 

 

 

Another avenue of research would be to use the cSLO to complement current studies by using it to 

study neuroinflammation and neurodegeneration in greater detail. During the modification of the 

cSLO by Heidelberg Engineering, the spare filter positions were fitted with filters capable of 

detecting GFP and YFP. This would allow both GFP and YFP to be detected in the retina of animals. 

One example of how this additional capability of the cSLO could be used in the future is to detect 

YFP to study the degeneration process of axons and dendrites in the eye (Leung et al., 2011; Li et 

al., 2011). The transgenic mouse B6.Cg-TgN(Thy1-YFP)16Jrs expresses YFP under the Thy1 

promoter specifically in axons and dendrites, with limited expression in the RGC (less than 1%) 
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(Feng et al., 2000). The Thy1-YFP transgenic mouse can be monitored serially using the cSLO to 

measure cell body area, axon diameter, dendritic field and branching complexity (Li et al., 2011). 

From these measurements, the degree of dendritic shrinkage can be used as an early sign of RGC 

dysfunction (Shou et al., 2003) and can therefore be used as a sensitive method to monitor 

neuronal degeneration and identify potential neuroprotective therapies. Taking into consideration 

dendritic and axonal behaviours, this method would be a more accurate evaluation of RGC 

degeneration, as the presence of a cell body does not directly represent a functional and an intact 

RGC.     

 

The methods developed could also be used to monitor blood retinal barrier function in models of 

experimental autoimmune uveitis (EAU). This model can therefore be used to address the activity 

of agents before confirmation of activity of optimal formation to prevent neurodegeneration in 

EAE (Pryce et al., 2003). Loss of photoreceptor cells in EAU could be monitored using OCT to 

measure changes in the thickness of the retina, which would be within the resolution limits of the 

OCT. 
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7.5 Conclusions 

This project successfully met the aim to develop and characterise a novel transgenic mouse model 

for the study of neuroprotection and repair strategies in autoimmune diseases.  

 

1. The MOG-specific TCR transgenic mouse was successfully crossed with the Thy1CFP transgenic 

mouse to produce the novel MOGTCRxThy1CFP mouse model that expresses fluorescent RGC and 

develops ON. 

 

2. An immunisation protocol for the MOGTCRxThy1CFP model was developed and refined, which 

resulted in optimum disease activity and extensive RGC and axonal loss so the model can be 

ultimately for studies of neuroprotective compounds.  

 

3. Non-invasive methods were developed which allowed the study of visual dysfunction by 

measuring the VEP using electrophysiology and measuring head tracking movements using the 

OKN drum. 

 

4. Methods were developed to measure RGC loss by measuring thinning of RNFL using OCT and 

RGC density using cSLO. These methods provide an animal model correlate to concurrent human 

studies using cSLO and OCT.  

 

5. Neuroprotective therapies were investigated in the form of two conventional sodium channel 

blockers (CBZ and OXC), a novel sodium channel blocker (CFM1604) and a novel therapeutic 

strategy (caspase 2 siRNA). These treatment strategies showed signs of neuroprotection and 

prevented RGC loss in the MOGTCRxThy1CFP model.  
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