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Abstract

Applications such as concatenative synthesis (audio mosaicing) and

query-by-example require the ability to search a database using a sound

which is qualitatively different from the actual desired result – for example

when using vocal queries to retrieve nonvocal sound. Standard query

techniques such as nearest neighbours do not account for this difference

between source and target; they perform retrieval but do not learn to make

timbral analogies. This paper addresses this issue by considering timbral

query as a multivariate regression problem from one timbre distribution

onto another. We develop a novel variant of multivariate tree regression:

given only a set of unlabelled and unpaired samples from two distributions

on the same space, the regression learns a cross-associative mapping which

assumes general similarities in structure of the two distributions, yet can

accommodate differences in shape at various scales. We demonstrate the

technique with a synthetic example and with a concatenative synthesiser.

1 Introduction

Many musical applications of machine learning can be described as automatic
classification tasks, where the class labels may for example indicate genre, key
or instrumentation [Orio, 2006]. Less attention has been paid to regression-
type tasks in music processing, yet they too may be facilitated or automated
by machine learning. In this paper we consider one such task: automatically
inferring timbral analogies from one type of music audio to another, where
timbre is treated as a multivariate continuous attribute, and to infer a timbral
analogy means to take a timbre value (or series of values) in one context and
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infer which value(s) from some other context are the best match, a decision
influenced by differences between the contexts.

Timbral analogies are needed in systems which use one type of sound source
to search a database of some other type of sound source, such as query-by-
humming [Wold et al., 1996] or concatenative synthesis from templates (audio
mosaicing) [Schwarz, 2004, Part III][Sturm, 2006]. The basic problem is to map
a point drawn from one timbral distribution onto its corresponding location in
another distribution, accounting for global differences in the two timbre distri-
butions.

In this paper we first consider the question of why analogies might be needed
in the timbral domain, and discuss current approaches to timbre-based search
in this light. We then consider the search for timbral analogies as a regression
problem, and develop a variant of a non-linear multivariate regression technique
for our purpose. We apply this technique to a small synthetic example in order
to demonstrate the algorithm’s performance, and evaluate in a more realistic
situation through a concantenative synthesis of timbral audio samples.

2 Timbre search

In order to map the timbre of one sound onto that of another, we will require a
timbre analysis of the signal. An issue that affects our choice of search strategy
is whether the timbral analysis should best be treated as absolute and context-
independent, or whether it should be treated as relative – for example, relative
to the range of the sound source which produced it. Given a particular timbral
“coordinate”, should we treat it differently if we knew that it was produced
by a clarinet or by a violin? Would such information imply a difference in the
expressive purpose of the sound?

The common definition of timbre describes it as that attribute which en-
ables a listener to differentiate sounds which are equal in pitch and loudness
[ANSI, 1960]. It therefore does not demand that timbre be an absolute or
context-invariant attribute of a sound. Research into music timbre perception
has taken a similar stance, basing experiments on comparisons among sets of
sound examples [Grey and Gordon, 1978, McAdams et al., 1995, Caclin et al.,
2005, Burgoyne and McAdams, 2009]. Such studies often explain results in
part through acoustic features derived from the examples, which can imply a
context-independent notion of timbre inherent in the signal. However Grey
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[1978] finds evidence for context-dependence of timbre perception in musical
patterns. Lakatos [2000] offers some consideration of contextual effects by in-
vestigating sets of harmonic and percussive sounds both separately and com-
bined. He presents evidence supporting the existence of two broadly context-
independent timbre dimensions but also for some degree of contextual influence
on timbre judgements.

Musical applications of timbre analysis often use acoustic features taken from
the signal (e.g. Aucouturier and Pachet [2004], Schwarz [2004, Chapter 16]),
implicitly treating timbre as absolute. This will certainly be appropriate in
situations where the timbre data contains strong semantic “anchors” – a clear
example of this occurs in human speech, where vowels are largely characterised
by the absolute positions of the main resonances (formants) on the frequency
scale [Deterding, 1997]. However, the evidence of context-dependence in musical
timbre suggests this may not always be the case. Consider a system which
synthesises or retrieves sounds based on timbral examples produced by voice
(e.g. Schwarz [2004, Part III]): the human voice is naturally constrained to
its own timbre range, yet we may well wish to induce the system to produce
sounds outside this range. In fact we consider this to be a basic requirement,
since such ability to extend our timbral range is one of the main appeals of such
technologies.

2.1 Timbre lookup strategies

The most basic form of timbral search is perhaps a nearest-neighbour (NN)
search, often using Euclidean distance. Since timbre features in general have
quite different ranges, their ranges may be standardised before search, or a
scale-invariant metric such as Mahalanobis distance may be used [Wouters and
Macon, 1998]. For example, Schwarz [Schwarz, 2004, Chapter 16] uses the
Euclidean distance normalised over the entire database of sounds. This normal-
isation accounts for differences between the ranges of the features, but not for
differences between the timbral range of the different sound sources included
in the database. Note that timbral distance search is but one criterion used
in a concatenative synthesiser such as this, which uses a constraint-satisfaction
framework to combine criteria related to duration, pitch and other considera-
tions.

Large database search systems often do not store the raw timbral co-ordinates
needed for NN search, but parametrically model the timbre of a recording
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(e.g. using Gaussian Mixture Models) and store the model parameters [Au-
couturier and Pachet, 2004]. Timbral search can then be performed by finding
the parameter-set which maximises the likelihood of query data.

Whether search is performed by instance-based methods such as NN or
model-based methods such as Gaussian Mixture Model likelihood, the differ-
ence in timbral ranges of different sound sources is often neglected, reflecting an
approach to timbre as absolute rather than relative. One way to accommodate
for some differences could be to standardise the mean and variance of timbre
features separately for each type of sound source, or for each recorded audio ex-
cerpt, which would accommodate the large-scale differences. However it would
fail to account properly for multidimensional interactions in the data such as
the movement of one region relative to the rest of the distribution.

Rather than pursuing the idea of a normalisation scheme as a precursor
to search, in this paper we develop an integrated method which automatically
learns to map from one data distribution to another, assuming similarities in
the orientation of the datasets in timbre space but allowing for differences in
the distributions at large and small scales. Tree methods are attractive in this
context because recursive partitioning provides a generic approach to dividing
multidimensional distributions into regions of interest at multiple scales. We
next describe the method, before applying it in two experiments which will
illustrate its usefulness for timbral queries.

3 Multivariate regression trees

The framework of Classification And Regression Trees (CART) [Breiman et al.,
1984] was developed as a computationally efficient nonparametric way to analyse
structure in a multivariate dataset, with a class label or a continuous-valued
response to be predicted by the independent variables. The core concept is to
recursively partition the dataset, at each step splitting it into two subsets using
a threshold on one of the independent variables (i.e. a splitting hyperplane
orthogonal to one axis). The choice of split at each step is made to minimise an
“impurity” criterion for the value of the response variable in the subsets. When
the full tree has been grown it is likely to overfit the distribution, so it is then
pruned by merging branches according to a cross-validation criterion to produce
an optimally-sized tree.

CART methods have found application in a variety of disciplines and have
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spawned many variants [Murthy, 1998]. Classification trees are perhaps more
commonly used than regression trees; here we focus on the latter. Note that
tree-based methods are not restricted to datasets with an underlying hierarchical
structure, rather they provide an efficient approach to general nonparametric
modelling of the variation and structure within a dataset.

The standard CART is univariate in two senses: at each step only one vari-
able is used to define the splitting threshold; and the response variable is uni-
variate. The term “multivariate” has been used in the literature to refer to
variants which are multivariate in one or other of these senses: for example
Questier et al. [2005] regress a multivariate response variable, while Brodley
and Utgoff [1995] use multivariate splits in constructing a classification tree;
Gama [2004] considers both types of multivariate extension. In the following
we will refer to “multivariate-response” or “multivariate-splits” variants as ap-
propriate. Multivariate-splits variants can produce trees with reduced error,
although the trees will usually be harder to interpret since the splitting planes
are more conceptually complex.

We next consider a particular type of regression tree which was proposed for
the unsupervised case, i.e. it does not learn to predict a class label or response
variable, rather the structure in the data itself. We will extend this tree to
include multivariate splits, before considering the cross-associative case.

3.1 Auto-associative MRT

Regression trees are studied in a feature-selection context by Questier et al.
[2005], including their application in the unsupervised case, where there is no
response variable for the independent variables to predict. The authors propose
in that case to use the independent variables also as the response variables,
yielding a regression tree task with a multivariate response which will learn
the structure in the dataset. In their feature-selection application, this allows
them to produce an estimate of the variables that are “most responsible” for the
structure in the dataset. However the strategy is quite general and could allow
for regression trees to be used on unlabelled data for a variety of purposes.
It is related to other data-dependent recursive partitioning schemes, used for
example in estimation of densities [Lugosi and Nobel, 1996] or information-
theoretic quantities [Stowell and Plumbley, 2009].
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3.1.1 Splitting criterion

In constructing a regression tree, a choice of split must be made at each step.
The split is chosen which minimises the sum of the “impurity” of the two re-
sulting subsets, typically represented by the mean squared error [Breiman et al.,
1984, Section 8.3]. For multivariate responses this is:

impurity(α) =
nα∑
i=1

p∑
j=1

(yij − ȳj)2 (1)

where nα is the number of data points in the subset α under consideration, and
ȳ is the mean of the p-dimensional response variable yi for the points in α. In
the auto-associative case the yij are the same as the xij , the variables by which
the splitting planes will be defined.

The impurity measure (1) is equivalent to the sum of variances in the sub-
sets, up to a multiplication factor which we can disregard for the purposes of
minimisation. By the law of total variance (see e.g. Searle et al. [2006, Appendix
S]), minimising the total variance within the subsets is the same as maximising
the variance of the centroids; therefore the impurity criterion selects the split
which gives the largest difference of the centroids of the response variable in the
resulting subsets.

In the feature-selection task of Questier et al. [2005] splits are univariate:
each splitting plane is perpendicular to one axis. However, we are not perform-
ing feature-selection but characterising the data distributions; as explored by
Gama [2004] it may be advantageous to allow multivariate splits to reduce er-
ror. We therefore extend the AAMRT approach by allowing multivariate splits.
Since the hyperplane which splits a dataset into two subsets with the furthest-
separated centroids is simply the hyperplane perpendicular to the first principal
component in the centred data, the multivariate-splits AAMRT is implemented
simply by using the first principal component to define the splitting plane.

Partitioning using the first principal component has been considered by pre-
vious authors such as Boley [1998]. It allows for efficient implementation since
the leading principal component in a dataset can be calculated quickly e.g. by
expectation-maximisation. We next introduce a novel extension of this approach
specifically for the task of learning analogies between two datasets.
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3.2 Cross-associative MRT

Auto-associative MRT may be useful for discovering structure in an unlabelled
dataset [Questier et al., 2005]. Here we wish to adapt it such that it can be used
to analyse structural commonalities between two unlabelled datasets, and learn
associations between the two. Therefore we now develop a variant that is cross-
associative rather than auto-associative; we will refer to it as cross-associative
MRT or XAMRT.

Our assumptions will be that the two datasets are i.i.d. samples from two
distributions which have broad commonalities in structure and orientation in
the measurement space, but that there may be differences in location of regions
between the distributions. These may be broad differences such as the location
(centroid) or dispersion (variance) along one or many dimensions, or smaller-
scale differences such as the movement of a small region of the distribution
relative to the rest of the distribution. These assumptions are relevant for
timbral datasets as will be illustrated in Section 4.

The AAMRT approach is adaptable to the case of two data distributions
simply by considering the distributions simultaneously while partitioning. In
our scheme with multivariate splits this means determining the splitting plane
using the principal component of the concatenation of the datasets (or of subsets
therefrom). However, given that we allow the two distributions to have differ-
ences in location we perform centring separately on each distribution, before
combining them for the purpose of finding a common principal component. We
perform this centring at each level of the recursion, which creates an algorithm
which allows for differences in location both overall and in smaller subregions
of the distributions. This is illustrated schematically in Figure 1.

[Figure 1 about here.]

If the datasets contain unequal numbers of data points then the larger set
will tend to dominate over the smaller in calculating the principal component.
To eliminate this issue we weight the calculation so as to give equal emphasis
to each of the datasets, equivalent to finding the principal component of the
concatenation J of weighted datasets:

J = [nY (X − CX), nX(Y − CY )] (2)

where X and Y represent the data (sub)sets, CX and CY their centroids, and
nX and nY the number of points they contain.
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By recursively partitioning in this way, the two datasets are simultaneously
partitioned in a way that reflects both the general commonalities in structure
(using splitting hyperplanes with a common orientation) and their differences
in location (the position of the hyperplanes, passing through the centroids of
subsets of each dataset). The tree structure defines two different partitions
of the space, approximating the densities of the two distributions, and pairing
regions of the two distributions.

The tree thus produced is similar to a standard (i.e. neither auto-associative
nor cross-associative) multivariate-response regression tree, in that it can predict
a multivariate response from multivariate input. For example an input vector
xi can be classified into a node, and the corresponding expected value ŷi given
as the centroid of the Y data associated with that node. However the tree treats
the two distributions symmetrically, allowing projection from either dataset onto
the other. Unlike the AAMRT it does not require the input data to be the same
as the response data.

3.2.1 Pruning criterion

Allowing a regression tree to proceed to the maximum level of partitioning will
tend to overfit the dataset. Criteria may be used to terminate branching, but a
generally better strategy (although more computationally intensive) is to grow
the full tree and then prune it back by merging together branches [Breiman
et al., 1984, Chapter 3]. In the CART framework, the standard measure for
pruning both classification and regression trees is crossvalidation error within a
branch: a normalised average over all datapoints of the error that results from
estimating the label of each datum from the other data labels [Breiman et al.,
1984, Chapters 3 and 8]. Branches which exhibit high crossvalidation error are
merged into leaf nodes, so as to improve the stability and generality of the tree.

In our case this approach cannot be applied directly because we consider the
unsupervised case, i.e. without labels. In Questier et al. [2005] the unlabelled
data are used to predict themselves, meaning that the tree algorithm does in fact
see (multivariate) labels attached to the data and the crossvalidation measure
can be used. We wish to associate two separate distributions whose data points
are not paired, and so such a strategy is not available to us.

Instead, we propose to apply the crossvalidation principle to the splitting
hyperplanes themselves, producing a measure of the “stability” of a multivariate
split with respect to the sampled data. This would penalise splitting hyperplanes
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which were only weakly justified by the data, and so produce a pruned tree whose
splits were relatively robust to outliers and noise. Our crossvalidation measure
is calculated using a leave-one-out (“jackknife”) procedure as follows: given a
set of nα data points whose first principal component pα has been calculated to
give the proposed splitting plane, we calculate

Rα =
1
nα

nα∑
i=1

abs(pα · p̂αi) (3)

where p̂αi is the first principal component calculated after excluding datum
i. The abs has been introduced so that our measure considers the orientation
but not the direction of the principal component vectors (a measured principal
component may be flipped by 180◦ yet define the same splitting hyperplane; cf.
Gaile and Burt [1980]). Both pα and p̂αi are unit vectors, so R is the average
cosine distance between the principal component and its jackknife estimates.

As with the standard CART, we then simply apply a threshold, merging a
given branch if its value of R is below some fixed value. Our measure ranges
between 0 and 1, where 1 is perfect stability (meaning the principal component
is unchanged when any one data point is excluded from the calculation). In
this work we use manually-specified thresholds when applying our algorithm,
as in CART. Alternatively one could derive thresholds from explicit hypothesis
tests by modelling the distribution of the jackknife principal components on the
hypersphere [Figueiredo, 2007].

3.2.2 Summary of algorithm

The algorithm is summarised as pseudocode in Figure 2. Given two datasets X
and Y , both taking values in X = RD, the recursive function GROW creates the
regression tree from X and Y , and the recursive function PRUNE prunes the
tree given a user-specified stability threshold. An open-source implementation
of the algorithm in Python is available.1

[Figure 2 about here.]

1 http://www.elec.qmul.ac.uk/digitalmusic/downloads/xamrt/
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4 Experiments

In this section we present two experiments exploring the application of the
proposed algorithm to audio examples. The ultimate evaluation of musical
synthesis techniques should typically include user listening tests and the like; our
focus here is on the behaviour of the algorithm in comparison against standard
techniques, for which it is particularly helpful to use numerical and graphical
analysis of the output of different mapping techniques. Hence we focus on
objective measures.

We first introduce the evaluation measure we will use, before presenting the
two experiments.

4.1 Evaluation measure

It is natural to expect that a good mapping will produce a good coverage of
the timbre distribution onto which we are mapping. For example, in concatena-
tive synthesis this means making wide use of the “alphabet” of available sound
grains, so as to generate a rich as possible output from the limited alphabet,
avoiding too much repetition of grains. Here we develop this notion into an
information-theoretic evaluation measure.

Communication through finite discrete alphabets has been well studied in
information theory [Arndt, 2001]. A key information-theoretic quantity is the
(Shannon) entropy, defined for a discrete random variable X taking values from
an alphabet A as

H(X) = −
|A|∑
i=1

pi log pi (4)

where pi is the probability that X = Ai and |A| is the number of elements in
A. The entropy H(X) is a measure of the information content of X, and has
the range

0 ≤ H(X) ≤ log |A| (5)

with the maximum achieved iff X is uniformly distributed.
If the alphabet size is known then we can define a normalised version of the

entropy called the efficiency

Efficiency(X) =
H(X)
log |A|

(6)
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which indicates the information content relative to some optimised alphabet giv-
ing a uniform distribution. This can be used for example when X is a quantisa-
tion of a continuous variable, indicating the appropriateness of the quantisation
scheme to the data distribution.

We can apply such an analysis to a unit-selection system such as concate-
native synthesis, since it fits straightforwardly into this framework: timbral
expression is measured using a set of continuous acoustic features, and then
“quantised” by selecting one grain from an alphabet to be output. It does not
deductively follow that a scheme which produces a higher entropy produces
the most pleasing audio results. However, a scheme which produces a low en-
tropy will tend to be one which has an uneven probability distribution over the
grains, and therefore is likely to sound relatively impoverished—for example,
some grains will tend to be repeated more often than in a high-entropy scheme.
Therefore the efficiency measure is useful in combination with the resynthesised
audio results for evaluating the efficacy of a grain selection scheme.

[Figure 3 about here.]

4.2 Experiment 1: Synthetic tones

Our first experiment uses two synthetic test tones, for the purpose of comparing
the behaviour of techniques applied to data with a specific known mapping. We
designed two synthetic sound recordings which each represented a trajectory
through timbre space over 20 seconds. In order to enable visual and numerical
assessment of the quality of the analysis, the timbral trajectories were designed
to be piecewise linear and monotonic – in fact strictly increasing along each of
the timbral axes – yet different in each of the two recordings. Thus the expected
mapping from one to the other would be a mapping which matched units in the
same time-order as they were generated.

The synthesisers used timbrally different sources – one a saw wave and one
a square wave – each with a control for pitch and a control for the depth of
modulation by white noise, thus allowing to vary smoothly between a purely
harmonic tone and a noisy tone. The two sound recordings can be heard online.1

The two sound recordings were analysed into a 3D representation using
standard measures of pitch and timbre: an autocorrelation-based pitch tracker
[McLeod and Wyvill, 2005], the spectral flatness measure of signal-to-noise ratio
and the spectral centroid measure of timbral brightness [Peeters, 2004]. Audio
was generated at 44.1 kHz, and analysis was performed in frames of size 1024
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with 50% overlap. Hann windowing was applied to audio frames before FFT
analysis. The features were multiplied by fixed ratios to standardise their vari-
ances to similar ranges.

The 3D analysis co-ordinates from the two signals are depicted in Figure
3. The designed timbral trajectories are evident in the figure, but with some
measurement noise which manifests as a broadening of the main trajectory trace.

Given the two sequences of 3D co-ordinates, we then performed a remapping
from one signal to another: for each co-ordinate measured from one signal, we
performed a query to retrieve the corresponding co-ordinate in the other signal,
and stored the temporal index of the result. This was performed to map the
saw-wave signal onto the square-wave signal, and vice versa, for three different
types of search:

• Nearest neighbour (NN),

• Nearest neighbour (NN) after normalising the mean and variance within
each of the two sets of co-cordinates,

• and our XAMRT algorithm with a pruning threshold of 0.99.

This gives a total of six remapping tasks. We did not perform any resynthesis
in this first experiment.

Note that the time-series ordering information is not available to the search
algorithms, but is used for evaluation. Since the signals were designed to be the
same length and have monotonically increasing values for the co-ordinates, the
most desirable mapping is a simple identity mapping that recovers the same time
sequence as the input. The pure identity mapping is unlikely to be retrieved
in this test because of the measurement noise in the acoustic features, but the
algorithms can be compared to determine how close each of them is to this ideal.

[Figure 4 about here.]

[Table 1 about here.]

Results are depicted in Figure 4 and Table 1. All of the remapping algorithms
produce a strong correlation between input and output indices – the normalised
version of the NN search performing better than the non-normalised version,
but the XAMRT search yielding a stronger correlation than either of them.
However, the plots demonstrate some important features of the mappings which
are not evident from the correlation values alone, and demonstrate visually
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why the efficiency results show a stronger advantage for our method than is
revealed by the correlations. The plots for both forms of nearest-neighbour
lookup appear strongly striated, indicating that significant clusters of query
indices are being mapped to the same target index. Conversely, many gaps are
visible, indicating target indices which are never returned from the query. The
plots for the XAMRT mapping show no such striation or gaps, offering a much
smoother mapping for these data.

These results indicate that the XAMRT algorithm does perform as intended,
learning to draw analogies from one dataset to another by adapting to the
distributions taken by the two trajectories; and further, learning a rich mapping
which selects widely from the available data points, rather than neglecting large
selections of points as do the NN searches.

4.3 Experiment 2: Concatenative synthesis

Our second application example concerns concatenative synthesis or audio mo-
saicing, in which the timbral trajectory of one sound can be used to create new
musical sequences by concatenating appropriately-selected segments of existing
recordings. These brief segments (on the order of 100 ms duration, henceforth
called grains) are stored in large numbers in a database and are not individually
annotated.

As discussed earlier, the timbre features measured on the controlling signal
and on the source material may well often occupy different regions of the tim-
bral space since they have different timbral ranges (see also Figure 5). Range
normalisation could be used to align the source and target timbre spaces, but
would be unable to account for differences in the shapes of the distributions,
and so is only a partial solution. We propose that our method could be used
in such systems to perform the timbral search in a way which takes account
of the differences in timbral distributions, as was already demonstrated for the
synthetic examples in Section 4.2.

Concatenative synthesisers typically operate not only on timbre, but use
pitch and duration as well as temporal continuity constraints in their search
strategy, and then modify the selected grains further to improve the match
[Maestre et al., 2009]. While recognising the importance of these aspects in a
full concatenative synthesis system, we designed an experiment in which the
role of pitch, duration and temporal continuity were minimised, by excluding
such factors from grain construction/analysis/resynthesis, and also by selecting
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audio excerpts whose variation is primarily timbral. In a full concatenative
synthesiser it may be desirable to use strongly-pruned trees which would return
a large number of candidate grains for a timbral query, and then to apply other
criteria to select among the candidates; we leave this for future work.

We first describe the audio excerpts we used and how timbre was analysed,
then the concatenative synthesiser. We then give results of the information-
theoretic evaluation. Note that graphical/correlation-based analysis is not ap-
propriate here (as it was in the previous experiment) because the timbre tra-
jectories are not manually designed, so we cannot specify an expected sequence
for the units chosen.

4.3.1 Audio data

[Table 2 about here.]

In order to focus on the timbral aspect, we selected a set of audio excerpts
in which the interesting variation is primarily timbral and pitch is less relevant.
The five excerpts—two musical (percussive) and three non-musical—are listed in
Table 2 and are also available online.1 The excerpts are 44.1 kHz mono record-
ings. This dataset is small, but as we will see is sufficient to yield statistically
significant results in this case.

The excerpts are quite heterogeneous, in both sound source and duration
(some differ by an order of magnitude). They each contain various amounts/types
of audio event.

[Figure 5 about here.]

4.3.2 Timbre features

For this experiment we chose a set of 10 common acoustic timbre features:
spectral power, spectral power ratio in 5 log-spaced subbands (50–400, 400–
800, 800–1600, 1600–3200, and 3200–6400 Hz), spectral centroid, spectral 95-
and 25-percentiles and zero-crossing rate (for definitions see Peeters [2004]).
This is a richer timbral analysis than in the synthetic experiment of Section
4.2, and more reflective of the type of timbre space that might be used in a
concatenative synthesiser.

Analysis was performed on audio grains of fixed 100ms duration taken from
the audio excerpt every 100ms (i.e. with no overlap). Each grain was analysed
by segmenting into frames of 1024 samples (at 44.1 kHz sampling rate) with
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50% overlap, then measuring the feature values for each frame and recording
the mean value of each feature for the grain. Grains with a very low spectral
power (< 0.002) were treated as silences and discarded. The timbre features
of the remaining grains were normalised to zero mean and unit variance within
each excerpt. Analysis was performed in SuperCollider 3.3.1 [McCartney, 2002].

Figure 5 plots a PCA projection of the grain timbre data for two of the
sound excerpts.

4.3.3 Timbral concatenative synthesiser

We designed a simple concatenative synthesiser using only timbral matching,
either by a nearest-neighbour (NN) search (after normalising features by mean
and variance) or by our XAMRT algorithm. Given two excerpts—one which
is the source of grains to be played back, and one which is the control excerpt
determining the order of playback—and the timbral metadata for the grains in
the two excerpts, the synthesis procedure works as follows:

For each grain in the control excerpt, if the grain is silent (power < 0.002)
then we replace it with silence. Otherwise we replace it with a grain selected
from the other excerpt by performing a lookup of the timbre features—either
a NN search or the XAMRT tree regression (without pruning). For numerical
evaluation, the choice of grain is recorded. For audio resynthesis, the new set
of grains is output with a 50ms linear crossfade between grains.

4.3.4 Results

[Table 3 about here.]

We applied the concatenative synthesis of Section 4.3.3 to each of the 20
pairwise combinations of the 5 audio excerpts (excluding self-to-self combina-
tions, which are always 100% efficient) using each of the two lookup methods
(NN and XAMRT). We then measured the information-theoretic efficiency (6)
of each run. Table 3 summarises the efficiencies for each lookup method. Our
method is seen to be significantly better than the normalised NN search, im-
proving efficiency by over 13 percentage points.

Audio examples of the output from the system are available online.1 Note
that the reconstructed audio examples sound rather unnatural because the
experiment is not conducted in a full concatenative synthesis framework. In
particular we use a uniform grain duration of 100ms and impose no temporal
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constraints, whereas a full concatenative synthesis system typically segments
sounds using detected onsets and includes temporal constraints for continuity,
and therefore is able to synthesise much more natural attack/sustain dynamics
[Maestre et al., 2009]. Our method shows promise as the timbral component of a
multi-attribute search which could potentially be used in concatenative synthe-
sis, as well as other applications requiring timbral search from audio examples
(e.g. query-by-example [Wold et al., 1996]).

5 Conclusions

We have introduced an unsupervised algorithm which is able to learn associa-
tions between two unlabelled datasets, on the assumption that the underlying
distributions have some common structure. The purpose is to address a spe-
cific issue arising from timbral database queries: the need for systems to learn
to make analogies when the query is qualitatively different from the intended
target sound. Our algorithm is a variant on the multivariate regression tree,
and has a simple implementation with a novel pruning criterion based on the
stability of the multivariate splits. We have presented two experiments which
demonstrate the benefits of our algorithm over nearest-neighbour-type searches.

As future work we intend to incorporate the XAMRT algorithm into a full
concatenative synthesis framework, and perform subjective evaluations includ-
ing listening tests. We are also investigating other application domains for the
XAMRT algorithm, e.g. comparing vowel formants in corpora of different speak-
ers. More broadly, we hope to have motivated the need to be able to search for
analogies in timbral queries, and look forward to further developments in this
area.
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Figure 1: Schematic representation of the first two steps in the recursion. In the
first step (top), the centroids of each dataset are calculated separately, and then
a splitting plane with a common orientation is chosen. The second step (bottom)
is the same but performed separately on each of the partitions produced in the
first step.
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GROW(X,Y )
CX ← centroid of X
CY ← centroid of Y
J ← result of equation (2)
p← principal component of J
Xl ← X ∩ ((X − CX) · p > 0)
Xr ← X ∩ ((X − CX) · p ≤ 0)
Yl ← Y ∩ ((Y − CY ) · p > 0)
Yr ← Y ∩ ((Y − CY ) · p ≤ 0)
if Xl is singular or Yl is singular

then L = [Xl, Yl]
else L = GROW(Xl, Yl)

if Xr is singular or Yr is singular
then R = [Xr, Yr]
else R = GROW(Xr, Yr)

return [L, R]

PRUNE(tree, threshold)
PRUNE(left child, threshold)
PRUNE(right child, threshold)
if children of left child are both leaf nodes

then PRUNEONE(left child, threshold)
if children of right child are both leaf nodes

then PRUNEONE(right child, threshold)

PRUNEONE(tree, threshold)
R← result of equation (3)
if R < threshold

then merge child nodes into a single node

Figure 2: The XAMRT algorithm. X and Y are the two sets of vectors between
which associations will be inferred.
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Figure 3: 3D pitch and timbre features measured on the two 20-second syn-
thesised sounds after segmenting into 1024-sample frames. Axes are variance-
normalised, hence units are not given.
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(a) Nearest neighbour (NN)
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(b) Nearest neighbour (NN), normalised
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(c) XAMRT

Figure 4: A-to-B index mappings for a pair of synthesised signals. For each
mapping technique, two plots are shown: one mapping the saw-wave signal
to the square-wave signal (left), and one doing the reverse (right). Because
the synthetic signals both have a monotonically increasing timbral progression
through time, the ideal mapping here is a smooth and unbroken monotonically
increasing mapping.
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Figure 5: Two-dimensional PCA projections of timbre co-ordinates derived from
analysis of the Amen breakbeat (left) and thunder (right) sound excerpts (de-
scribed in Section 4.3.1). The timbre distributions have broad similarities in
structure as well as differences: both show a non-linear interaction between the
two axes yielding a curved profile; yet the lower plot exhibits a sharper bend and
a narrower distribution in the upper-left region. The projection was calculated
by applying PCA to the balanced concatenation of the separately-standardised
datasets (Equation (2)).
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Correlation Efficiency (%)
Saw→square
NN 0.86 36.6
NN, normalised 0.91 37.9
XAMRT 0.97 83.0

Square→saw
NN 0.80 41.5
NN, normalised 0.94 47.3
XAMRT 0.97 83.7

Table 1: Pearson correlations and efficiencies for the synthetic sound experi-
ment, corresponding to the results of Figure 4.
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Description Duration (sec) No. of grains
Amen breakbeat 7 69
Beatboxing 93 882
Fireworks 16 163
Kitchen sounds 49 355
Thunder 8 65

Table 2: Audio excerpts used in timbre experiment. “No. of grains” is the
number of 100ms grains segmented and analysed from the audio (excluding
silent frames)—see text for details.

28



Query type Efficiency (%)
Nearest neighbour 70.8 ± 4.4
XAMRT 84.5 ± 4.8

Table 3: Experimental values for the information-theoretic efficiency of the
lookup methods. Means and 95% confidence intervals are given. The improve-
ment is significant at the p < 0.000001 level (paired t-test, two-tailed, 19 degrees
of freedom, t = 12.47).
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