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Abstract 
 

The production of ELR+ CXC chemokines is widely studied in arthritis and has been postulated to 

contribute to the inflammatory phenomena that eventually lead to cartilage breakdown.  Healthy 

articular chondrocytes also express CXC chemokines and chemokine receptors, however their 

purpose within cartilage is unclear because chondrocytes are encased within a dense avascular 

extracellular matrix and are not known to migrate in vivo.  This study reveals a novel homeostatic 

function of signalling via CXCR1 and CXCR2 in articular cartilage. 

Confocal microscopy confirmed the localisation of CXCR1/2 in both in vitro cultured chondrocytes 

and in human articular cartilage explants at the cell membrane as well as within the cytoplasm, as 

expected considering the internalisation and recycling of these receptors.  Calcium mobilisation 

assays proved that chondrocyte CXCR1/2 are functional and show a higher redundancy than that 

found in human neutrophils.  Disruption of CXCR1/2 signalling at receptor level or by downstream 

G-protein inhibition resulted in a reduced extracellular matrix sulphated glycosaminoglycan 

content, and reduced expression of the cartilage differentiation markers COL2A1, Aggrecan, and 

SOX9, showing that CXCR1/2 signalling is required for the phenotypic stability of adult articular 

chondrocytes.  In normal cartilage, CXCL6 and CXCL8 are present within the cartilage matrix.   CXCL8 

is bound to heparan sulphate proteoglycans, whilst CXCL6 is sequestered by an as of yet 

unidentified alternative matrix interaction, contributing to the determination of the chemokine 

signalling domain.  In vivo analysis of CXCR2 knockout mouse knee joints revealed that mice lacking 

CXCR2 have significantly thinner epiphyseal growth plates and medial tibial plateaus, suggesting 

that CXCR signalling may be required in cartilage during periods of high chondrocyte turnover.  

Pharmacological modulation of the CXCR1/2 signalling pathway may allow for the selective 

inhibition of catabolic inflammatory responses whilst preserving CXCR1/2 maintained chondrocyte 

phenotypic homeostasis in articular cartilage.  
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Background 

ELR+ CXC chemokine signalling has been widely studied for its role in neutrophil migration 

during inflammation (Bacon and Camp, 1990;Hauser et al., 1999).  The ELR+ CXC 

chemokine receptors CXCR1 and CXCR2 and their ligands are shown within published 

literature to be expressed in both normal and inflamed articular cartilage and synovial 

membrane; however a migratory role for this signalling pathway in adult chondrocytes is 

doubtful since adult chondrocytes have never been shown to migrate in vivo. 

In addition to the intriguing expression of these chemotactic molecules and their receptors 

in non mobile cells, a number of additional preliminary data prompted me to explore an 

alternative role for these molecules in the articular cartilage.  In particular: i) studies have 

revealed alternative roles for ELR+ CXC chemokine signalling within angiogenesis and 

cancer biology (Singh et al., 2009;Strieter et al., 2005;Vandercappellen et al., 2008); ii) 

preliminary data produced by Dr. F. Dell’Accio suggested that CXCL8 mRNA may be 

upregulated as part of a molecular response to mechanical cartilage injury; ii) CXCL1 and 

CXCL8 induced phenotypic modulation of chondrocytes (Merz et al., 2003); iii) CXCR1 and 

CXCR2 are upregulated during osteoarthritis (Borzi et al., 2000); iv) a microarray screening 

identification of ELR+ CXC chemokine ligands as positive predictors of the capacity of in 

vitro expanded chondrocytes to form stable cartilage in vivo (PCT WO2005014026).  This 

last result in particular suggested a potential role for ELR+ CXC chemokine signalling within 

cartilage homeostasis, which is the main subject of my thesis.   

Before presenting my results investigating this hypothesis, this introduction will provide a 

background of cartilage biology, osteoarthritis (OA) and chemokine biology, upon which 

my thesis is founded. 
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Embryonic Development of the Skeleton and Synovial Joints 

Endochondral bone formation and patterning 

Endochondral bone formation begins with mesenchymal cells originating from the lateral 

plate mesoderm migrating and colonising developing embryonic limb buds, giving rise to 

the skeletal and muscle progenitors of the developing limb.  Skeletal progenitor cells 

undergo condensation into uninterrupted rods within the centre of the developing limb, 

controlled firstly via the coordination of FGF, Wnt, BMP and hedgehog signalling activity 

(Goldring et al., 2006), and mediated by factors including cell adhesion molecules and 

extracellular matrix (ECM) interactions (DeLise et al., 2000).  Cells within the centre of 

mesenchymal condensations differentiate under the control of the SOX-9 transcription 

factor into proliferating chondrocytes (Bi et al., 1999;Lefebvre et al., 1998), characterised 

by their expression of type II collagen and proteoglycans (Archer et al., 2003;Eyre, 2004).  

These cells then cease proliferation and further differentiate into Indian hedgehog (Ihh) 

expressing prehypertrophic chondrocytes, and subsequently hypertrophic chondrocytes, 

expressing type X collagen, alkaline phosphatase and matrix metalloproteinases (MMPs). 

Hypertrophic chondrocytes, characterised by Runx2 expression (Inada et al., 1999;Kim et 

al., 1999), undergo apoptosis whilst their surrounding ECM becomes vascularised, with 

osteoclasts and osteoblasts controlling the matrix degradation and calcification of the 

tissue to form bone (Karsenty 2002, Hayes 2001).  Parathyroid hormone-related protein 

(PTHrP) expressing chondrocytes which form the articular cartilage continue to produce an 

ECM which is resistant to vascular invasion and mineralisation, whereas chondrocytes 

within the epiphyseal growth plates undergo hypertrophic differentiation to express type X 

collagen, alkaline phosphatase and matrix metalloproteinases (MMPs).   

The proliferation of chondrocytes and onset of hypertrophic differentiation during 

endochondral bone formation is regulated via a negative feedback loop of Ihh and PTHrP 
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(Vortkamp et al., 1996).  Ihh induces the expression of PTHrP in periarticular chondrocytes, 

which acts to retain the cells within their proliferative state.  In addition, Ihh regulates 

BMP gene expression within the perichondrium, which causes an increase in proliferation, 

leading to some chondrocytes being pushed into areas outside of the PTHrP signalling 

range where they become prehypertrophic, thus restricting the area of proliferating 

chondrocytes and consequently endochondral bone length (Minina et al., 2001).  BMP 

induced Ihh upregulation outside of the PTHrP signalling range promotes subsequent 

hypertrophic differentiation (Mak et al., 2008). 
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Figure 1.  Cellular events during endochondral bone development.  Mesenchymal 

condensation within the developing limb bud gives rise to type II collagen expressing 

proliferating round chondrocytes.  Within the centre of the developing cartilage anlagen, 

cells undergo hypertrophic differentiation and express type X collagen, whilst the BMP 

expressing perichondrium surrounds the developing cartilage.  Development of the 

primary ossification centre is marked by vascular invasion, osteoblast activity and matrix 

calcification.  Each stage of chondrogenic differentiation and endochondral bone 

formation is characterised by the action of different signalling pathways, changes in cell 

phenotypes, and expression of varying ECM components.  Figure edited from (Goldring et 

al., 2006). 
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Joint formation 

Synovial joint formation occurs through the segmentation of the continuous mesenchymal 

anlagen which results in the separation and morphogenesis of the future articular surfaces 

and synovial tissues.  Segmentation begins with the appearance of a high cell density area 

formed of flattened cells connected by gap junctions between the two developing articular 

surfaces which is known as the interzone (Archer et al., 2003).  Cells within the interzone 

express specific markers including Growth differentiation factor-5 (GDF-5)/Cartilage-

derived morphogenetic protein-1 (CDMP-1) (Francis-West et al., 1999), Wingless type 

MMTV integration site family (Wnt)9A, Wnt16, Wnt4 (Guo et al., 2004;Hartmann and 

Tabin, 2001), Noggin (Brunet et al., 1998), CD44 (Edwards et al., 1994), lubricin (Rhee et 

al., 2005), autotaxin (Hartmann and Tabin, 2001) the COL2A1-A splicing isoform (Koyama 

et al., 2008;Nalin et al., 1995) and matrilin-1 (Hyde et al., 2007) are known to differentiate 

into chondrocytes when cultured in vitro (Pacifici et al., 2006).  The interzone further 

separates into three layers, with the centre layer expressing increased levels of the 

glycosaminoglycan hyaluronan (HA) following mechanical stimulation to the developing 

limb (Dowthwaite et al., 1998;Dowthwaite et al., 2003;Pitsillides et al., 1995).  The high 

concentration of HA leads to the saturation of the cell surface receptor CD44, leading to 

cell separation and later apoptosis (Toole, 1991).  The cells remaining either on either side 

of the cavitated area further differentiate, becoming articular chondrocytes, synovial 

membrane and ligaments (Koyama et al., 2008). 
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Figure 2.  Schematic stages of synovial joint development.  Joint initiation begins within 

the condensation of mesenchymal cells at the site of future joint formation, perpendicular 

to the direction of anlagen growth.  Cells become flattened and give rise to the interzone.  

Joint cavitation results in the separation of adjacent skeletal anlagen and formation of the 

synovial cavity.  Further morphogenesis results in the formation of opposing articular 

cartilage surfaces, joint capsule, menisci and ligaments, leading to the development of a 

mature joint.  Figure from (Pacifici et al., 2006). 
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Structure and Function of Articular Cartilage 

Articular cartilage is an avascular and aneural tissue which covers the surfaces of synovial 

joints providing a smooth surface to facilitate frictionless motion within the 

musculoskeletal system.  It allows for the distribution of mechanical loads within weight 

bearing joints, minimising focal pressure upon the subchondral bone, whilst resisting 

compression, thereby acting as a shock absorber.  Articular cartilage consists 

predominantly of a heavily hydrated ECM produced by chondrocytes which are the only 

cell type found within cartilage, occupying between 1% and 10% of total articular cartilage 

tissue volume depending upon species and joint location (Maroudas and Schneiderman, 

1987).  The dense ECM consists of a complex framework of structural macromolecules 

which vary in proportion and organisation between the superficial and deeper cartilage 

layers (Poole et al., 2001). 

Both morphological and biochemical differences characterise the ECM content and 

chondrocyte distribution within the different layers of articular cartilage (Figure 3).  The 

uppermost superficial layer contains chondrocytes which have become flattened amongst 

a tightly packed network of collagen filaments parallel to the articular surface.  This 

structure provides resistance to shear forces occurring during normal joint movement 

whilst also maintaining the vital tensile properties of cartilage.  Chondrocytes within the 

superficial layer express superficial-zone protein (SZP), an O-linked glycosylated protein 

which acts to lubricate the surface of the articular cartilage whilst inhibiting the 

overgrowth of synovial cells (Rhee et al., 2005;Schumacher et al., 1994).  The transitional 

zone contains a lower density of predominantly spherical chondrocytes amongst a dense 

ECM consisting of arched large diameter collagen fibres and a high concentration of 

proteoglycans.  Chondrocytes are arranged into columns perpendicular to the cartilage 

surface within the deep zone, which contains the highest concentration of highly 
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sulphated negatively charged proteoglycans, required to maintain the high water content 

providing cartilage with its resistance to compression (Bhosale and Richardson, 2008).  

Underlying the deep zone is the calcified layer, where chondrocytes undergo hypertophic 

differentiation resulting in an increased expression of type X collagen and alkaline 

phosphatase (Reichenberger et al., 1991;Schmid and Linsenmayer, 1985) .  Collagen fibres 

arranged perpendicular to the cartilage surface, extend from the deep zone into the 

calcified layers in order to provide anchorage for the articular cartilage onto the 

subchondral bone below (Poole et al., 2001). 
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Figure 3.  Cross-sectional schematic view of human articular cartilage.  Figure from (Poole 

et al., 2001). 
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The Chondrocyte 

Articular chondrocytes are the sole cell type found within articular cartilage and are 

responsible for the synthesis and maintenance of the cartilage ECM.  Because cartilage is 

not vascularised, and chondrocytes are almost exclusively cytoplasmically isolated, 

chondrocytes must rely on diffusion from the articular surface or underlying subchondral 

bone for nutrient and metabolite exchange.  As a result, chondrocytes obtain the majority 

of their energy requirement through glycolysis, allowing the cells to operate at low oxygen 

tensions of between 6% in the superficial layer, to less than 1% in the deeper zones.  In 

fact, in vitro studies have shown a number of chondrogenic genes to be upregulated at 

lower oxygen tensions (Henderson et al., 2010;Rajpurohit et al., 1996). 

Chondrocyte mophology and gene expression is known to change with increasing age.  

Type II collagen synthesis begins to decrease upon adult maturity (Hollander et al., 1995), 

whilst smaller and less glycosylated proteoglycans are produced in older individuals which 

are likely to alter the compressive strength of articular cartilage (Buckwalter et al., 1994).   

As opposed to the epiphyseal chondrocytes that form the cartilage skeletal anlagen and 

are replaced by bone throughout endochondral bone formation, articular chondrocytes 

are phenotypically stable throughout life and are resistant to vascular invasion and 

endochondral bone formation.  This apparent similarity of the adult articular cartilage with 

the zone of resting chondrocytes of the growth plate led to speculation that the articular 

cartilage may represent the residue of growth plate “spared” after the arrest of 

endochondral bone formation.  In reality, articular chondrocytes display distinct molecular 

characteristics including lubricin, the ERG transcription factor (Iwamoto et al., 2001;Pacifici 

et al., 2006), and PTHrP.  Importantly, recent lineage tracking studies using cre-LoxP 

technology have indeed confirmed that the articular cartilage has a disinct embryological 
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origin from the epiphyseal chondrocytes, which is defined very early on in skeletal 

development (Koyama et al., 2008;Rountree et al., 2004). 

This phenotypic stability of the articular chondrocytes is also maintained during in vitro 

culture, at least during early passage cell expansion.  Benya et al. thoroughly studied this 

phenomenen and showed that such dedifferentiated chondrocytes may reestablish their 

chondrocyte phenotype, including expression of type II collagen, in anchorage 

independant conditions (Benya and Shaffer, 1982).  Dell’Accio et al. subsequently 

extended these findings in vivo, showing that whereas early passage adult human articular 

chondrocytes (EP-AHAC) can form stable cartilage implants when ectopically implanted 

into the muscle of immuno deficient mice, expanded late passate chondrocytes are unable 

to form stable ectopic cartilage in vivo, but rather tend to respond to molecular 

environmental stimuli and differentiate towards the muscle lineage (Dell'accio et al., 

2001;Dell'accio et al., 2003).  Although the chondrogenic phenotype of late passage cells 

cultured within agarose gels is partially rescued in vitro (Benya and Shaffer, 1982), their in 

vivo capacity to form cartilage remains compromised (Dell'accio et al., 2001). 

 

The Extracellular Matrix 

Macromolecules contributing to the ECM produced and maintained by chondrocytes are 

generally described as one of two major components: collagens which provide structural 

support to the cartilage via their arrangement into a fibrous network, and proteoglycans 

which attract water via their highly sulphated glycosaminoglycan chains, enabling a high 

swelling pressure within the tissue to counteract external compressive force.   

The composition of cartilage ECM varies according to the distance from chondrocytes with 

three distinct regions observed within healthy articular cartilage.  The pericellular matrix 
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forms the sphere of ECM immediately surrounding each chondrocyte.  It is formed mainly 

from type VI collagen (Alexopoulos et al., 2009;Poole et al., 1992) and the heparan 

sulphate proteoglycan (HSPG) perlecan (Costell et al., 1999) along with cell membrane 

associated proteins such as fibronectin which serves to anchor the ECM to the cell 

membrane (Chang et al., 1997).  Clusters of chondrocytes and areas of high cell density are 

enclosed by the terratorial matrix.  This consists primarily of type II collagen and 

chondroitin sulphate proteoglycans (CSPG) which form a complex mesh in order to protect 

chondrocytes.  The inter-territorial matrix accounts for the largest area within the articular 

cartilage, particularly contributing to areas of lower cell density.  Type II collagen fibres and 

proteoglycans are arranged as previously described for each macroscopic layer within the 

tissue.   

 

Collagens 

Collagen macromolecules account for two thirds of articular cartilage dry weight with type 

II collagen the most abundant form (Eyre, 1991;Eyre et al., 2002). Polymerised type II 

collagen provides the fibrillar framework required for the tensile strength of cartilage and 

is cross-linked and stabilised by fibril associated collagens, type IX and type XI.  Type VI 

collagen is found within the pericellular matrix of cartilage where it contributes to 

chondrocyte attachment and ECM interactions (Poole et al., 1992).  Type X collagen is 

expressed by hypertrophic chondrocytes and is hence found within the calcified layer 

where it may be used as a marker of endochondral bone formation (Shen, 2005). 

Collagen fibres are formed from 3 α-polypeptide subunits arranged into a triple helix 

known as tropocollagen, measuring 280nm in length and 1.5nm in diameter.  α-

Polypeptide subunits are synthesised with additional non-helical peptides attached to both 

the carboxy and amino termini forming procollagen.  Until the telopeptides can be 
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removed from the α-polypeptides by the enzyme procollagen peptidase upon 

transportation out of the chondrocyte, tropocollagens are unable to precipitate within the 

cell or form premature collagen fibres.  The type of collagen produced is determined by 

the combination of α-polypeptide subunits arranged within the helix.  Type II collagen 

consists of 3 α1 chains, whereas type VI is formed from 3 different chains: α1, α2 and α3.  

Collagen fibrils aggregate into large bundles which form the structural fibres providing 

articular cartilage with tensile strength and mechanical resistance (Eyre et al., 

2002;Mendler et al., 1989).  

 

 

Figure 4.  The collagen II, IX, XI heterofibril.  Molecular diagram illustrating the 

interactions of type II and IX collagens within articular cartilage collagen fibrils.  Type IX 

collagen is cross-linked to the surface of type II collagen fibrils.  Type XI collagen fibrils 

cross-link to one another via N-telopeptide-to-helix sites, contributing to heterofibril 

structure and limiting lateral expansion (Blaschke et al., 2000).  Diagram from (Eyre, 2004). 
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Proteoglycans  

Proteoglycans are complex glycoproteins formed from a protein core with one or more 

attached glycosaminoglycan (GAG) chains.  They form up to one third of articular cartilage 

dry weight.  GAGs are long unbranched polysaccharide chains formed of repeating 

dissacharides each carrying an amino sugar.  The high negative charge of each GAG 

molecule is provided by either a carboxylate or sulphate group attached to each 

dissacharide within the GAG chain.  This negative charge attracts cations including Na2+, 

which increase the osmolarity of the cartilage.  Water molecules attracted into the tissue 

are retained within the macromolecular network of GAG chains amongst the collagen 

network, providing articular cartilage with its high compressive strength. 

The most abundant proteoglycan found in articular cartilage is aggrecan.  The protein core 

of aggrecan is constructed from three globular (G1, G2 and G3) and two extended 

interglobular domains (E1 and E2).  The E2 interglobular domain is attached to many GAGs 

(chondroitin sulphate and keratin sulphate) (Doege et al., 1991;Roughley, 2006).  The C-

terminal G1 domain is linked to hyaluronic acid (Roughley and Lee, 1994) which may 

attach to as many as 100 individual GAG chains, resulting in the formation of large 

aggregates of aggrecan.  The attachment to HA allows aggrecan to bind to the chondrocyte 

cell surface via the CD44 receptor (Knudson et al., 1996).  In fact, this interaction may 

allow chondrocytes a method of regulation of ECM properties through the altered CD44 

phosphorylation activity upon HA binding, which in turn is thought to lead to HA 

internalisation (Knudson and Loeser, 2002;Uff et al., 1995). 
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Figure 5.  Structure of aggrecan.  The core aggrecan protein consists of three cysteine rich 

globular domains (G1-3), two interglobular domains (E1, E2).  E2 contains multiple 

attachment regions for keratan sulphate and chondroitin sulphate chains, including the 

CS1 domainwhich exhibits length polymorphism leading to variation in the number of 

available chondroitin sulphate attachment sites.  The G1 domain is responsible for 

interaction with hyaluronic acid and stabilising link proteins.  Diagram adapted from 

(Roughley, 2006). 

 

 

Less abundant proteoglycans found within articular cartilage include the dermatan 

sulphate proteogylcans, biglycan and decorin, the keratan sulphate proteoglycan, 

fibromodulin, and the heparin sulphate proteoglycan, perlecan, which all together 

contribute around 3% of the cartilage proteoglycans by mass.  Due to the smaller size of 

these proteogylcans, they do not contribute directly to the cartilage mechanical properties 

provided by larger macromolecules.  Instead, they bind to collagens in order to stabilise 

the matrix (Knudson and Knudson, 2001a).  Decorin and fibromodulin bind to type II 

collagen, whereas biglycan is found primarily within the pericellular matrix and is thought 

to interact with type VI collagen (Roughley and Lee, 1994). 
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In addition to their structural function, an increasing body of evidence has revealed that 

cartilage proteoglycans have important functions in chondrocytes signalling, either directly 

(Echtermeyer et al., 2009) or indirectly through interactions with growth factors and 

chemokines, allowing for the formation of morphogenetic gradients.  FGFs have been 

shown to bind to perlecan, which may contribute to its release following cartilage damage 

or loading, thus suggesting a mechanism of proteoglycan regulated mechanotransduction 

(Vincent et al., 2002;Vincent et al., 2007).  Biglycan, decorin and fibromodulin interact with 

the chondrogenic growth factor, transforming growth factor beta (TGFβ), allowing for its 

sequestration within the ECM (Hildebrand et al., 1994), with slight variations in the binding 

properties of different proteogylcans to growth factors allowing for the regulation of 

growth factor activity (Kolb et al., 2001).  HSPGs including syndecans are known to 

modulate BMP2 activity during cartilage differentiation (Fisher et al., 2006) and ELR+ CXC 

chemokines have been shown to interact with syndecans on endothelial cells and 

synovium (Halden et al., 2004;Patterson et al., 2005).  The expression of extracellular 

heparan sulphatase enzymes within cartilage may contribute to the regulation of growth 

factor signalling via the release of sequestered ligands and inhibitors upon homeostatic 

proteoglycan turnover, or during OA (Otsuki et al., 2008;Otsuki et al., 2010). 

Non-Collagenous Structural Proteins 

Smaller subgroups of non-collagenous proteins and glycoproteins are found within 

cartilage, occupying roles within ECM-chondrocyte interactions and within the ECM 

framework.  Cartilage oligomeric protein (COMP) is a glycoprotein found mainly within the 

territorial matrix of chondrocytes.  COMP has been shown to bind to type I and type II 

collagens via zinc-dependant interactions, as part of the collagen cross-linking mechanism 

(Rosenberg et al., 1998).  Chondronectin is a high molecular weight glycoprotein involved 

in the adherance of chondrocytes to the ECM via the interactions of chondronectin with 

chondroitin sulphate, hyaluronic acid and type II collagen (Chevalier, 1993).  Fibronectin is 
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a large polypeptide dimer linked together by disulphide bonds. It is localised to the 

pericellular matrix, has multiple ECM binding sites and is linked to chondrocytes via 

integrins.  Although fibronectin synthesis is known to increase during OA, following cyclical 

loading and following exposure to growth factors such as TGFβ (Homandberg, 1999), 

increased proteinase activity during OA results in the generation of fibronectin fragments 

that have been shown to activate catabolic pathways, including the upregulation of MMPs 

and aggrecanases (Xie and Homandberg, 1993). 

 

Cartilage Remodelling and Homeostasis  

In healthy cartilage, chondrocytes synthesise both ECM proteins, such as collagens and 

proteoglycans, and the enzymes responsible for their degredation (Cawston et al., 1999).  

The control of a slow and balanced turnover of these molecules is vital in maintaining the 

structure and function of the cartilage ECM.  In normal conditions an equilibrium is 

achieved between the anabolic and catabolic activities, which is ideally controlled by a 

balance between the synthesis of new ECM macromolecules and the activity of ECM 

proteinases and their inhibitors.  The remodelling of cartilage which is normally tightly 

controlled, is accelerated during conditions such as OA (Bay-Jensen et al., 2011).  The 

major classes of enzymes controlling the turnover and remodelling of cartilage are the 

matrix metalloproteinases (MMPs) and the A disintegrin and metalloproteinase with 

thrombospondin motifs (ADAMTSs).  Both of these may be inhibited by tissue inhibitors of 

metalloproteinases (TIMPs). 

MMPs 

MMPs are a family of 23 proteases that together, are capable of degrading all ECM 

proteins and play a key role in cartilage turnover.  Each molecule carries a central zinc 

atom required for catalytic activity.  MMPs are initially sythesised as inactive pro-MMPs 
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(zymogens) with a pro-peptide domain that must be cleaved for the enzyme to become 

functionally active.  A C-terminal haemopexin-like domain is reponsible for protein-protein 

interaction and consequently, substrate specificity.  The catalytic and C-terminal domains 

are connected via a hinge region (Nagase et al., 2006). 

 

 

Figure 6.  Structure of matrix metalloproteinases (MMPs).  Figure from  (Yong et al., 

2001). 

 

 

MMPs can be divided into 4 main groups: collagenases, gelatinases, stromelysins and 

membrane-type MMPs (MT-MMPs).  Collagenases (MMP-1, MMP-8, MMP-13 and MMP-

18) are the only MMP subgroup capable of degrading triple-helical collagens at a neutral 

pH.  Once cleaved, gelatinases (MMP-2 and MMP-9) are able to further degrade the 

generated collagen fragments.  Stromelysins (MMP-3, MMP-10 and MMP-11) have a 

broader substrate base and are able to cleave proteoglycans and fibronectins.  They have 

also been implicated in the activation of other MMPs (Murphy et al., 2002;Visse and 

Nagase, 2003), suggesting that they may play an important role within cartilage 

homeostasis.  

In addition to matrix remodelling, the degradation of the ECM by MMPs is necessary to 

allow for cell migration and tissue architecture during development and tissue repair, and 
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for the release and activation of ECM-bound morphogens and growth factors (Page-

McCaw et al., 2007;Werb, 1997;Whitelock et al., 1996).  Both the elevation and inhibition 

of MMP levels within cartilage have been implicated as factors in the arthritis associated 

destruction of cartilage.  Increased levels of MMPs have been observed within cartilage 

from OA patients (Tetlow et al., 2001).  In mice, the constitutive expression of MMP-13 

under the cartilage-specific type II collagen promotor showed increased cartilage 

degradation in comparison to wild type litter mates when subjected to the destabilisation 

of the medial meniscus (DMM) model of OA (Glasson et al., 2007), whilst the selective 

inhibition of collagenases allowed for the significant protection from cartilage damage in 

STR/Ort mice (Brewster et al., 1998).  However, MMP-9 null mutant mice challenged in the 

same DMM model also showed increased OA-like cartilage degradation in comparison to 

the wild type (Glasson et al., 2007).  This suggests that a regulated level of MMP activity is 

in fact required for the remodelling and homeostasis of cartilage, and might explain the 

failure of MMP inhibitors as a target for clinical intervention in arthritis (Clark and Parker, 

2003;Drummond et al., 1999). 

ADAMTSs 

ADAMTSs are a family of 19 proteases that are closely related to MMPs, containing a 

catalytic zinc atom within their active site (for review see (Jones and Riley, 2005)).  Unlike 

MMPs, ADAMTSs exhibit a narrow substrate specificity due to the presence of various 

exosites close to the C-terminus which allow for specific protein recognition and matrix 

localisation.  The identification of ADAMTS cleaved TEGE373 aggrecan fragments within the 

synovial fluid of both OA and inflammatory arthritis patients, confirmed the activity of 

ADAMTSs during cartilage destruction (Lohmander et al., 1993).  Although aggrecan may 

be cleaved by both ADAMTSs and MMPs (Lark et al., 1997), mice resistant to MMP 

cleavage of the IGD remained susceptible to cartilage degradation whereas mice resistant 

to ADAMTS cleavage of the IGD were protected from cartilage erosion in experimentally 
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induced arthritis, suggesting that ADAMTS activity is required for aggrecan breakdown 

(Little et al., 2007). 

Two subgroups of ADAMTSs have been shown to have specific roles in cartilage.  

Procollagen N-propeptidases (ADAMTS-2, ADAMTS-3 and ADAMTS-14), specifically 

ADAMTS-3 in cartilage, is involved in the processing of zymogen during collagen 

biosynthesis (Fernandes et al., 2001).  Hyalectanases (ADAMTS-1, -4, -5, -8, -9, -15 and -

20), otherwise described as ‘aggrecanases’, cleave aggrecan between the G1 and G2 

domains at the Glu-373-- Ala-374 site (IGD) close to the N-terminus, and at 4 specific sites 

within the CS-2 chondroitin sulphate domain at the C-terminus (Nagase and Kashiwagi, 

2003;Tortorella et al., 2000).  ADAMTS-4 has also been shown to cleave other cartilage 

macromolecules including COMP and fibromodulin, a small proteoglycan which interacts 

with type II collagen (Kashiwagi et al., 2004). 

ADAMTS-4 (aggrecanase-1) and ADAMTS-5 (aggrecanase-2) were the first ADAMTSs to be 

identified (Abbaszade et al., 1999;Tortorella et al., 1999).  Subsequently ADAMTS-5 was 

implicated as the main constitutively expressed ADAMTS within human cartilage 

(Tortorella et al., 2002;Bau et al., 2002), whereas ADAMTS-4 expression was observed to 

increase following exposure to proinflammatory cytokines, TNFα and IL-1β (Pratta et al., 

2003).  ADAMTS-4 was shown in vitro to cleave aggrecan at a higher rate than that seen 

using ADAMTS-5 (Bondeson et al., 2006), suggesting that ADAMTS-4 may provide the 

greater contribution to OA pathogeneisis in humans.  Meanwhile in mice, ADAMTS-5 

rather than ADAMTS-4 is seen to be stimulated by Interleukin-1 (IL-1) (Tortorella et al., 

2002).  ADAMTS-5 knockout mice subjected to the surgically induced DMM OA model 

showed a significant reduction in disease severity compared to controls, whereas no 

improvement was observed in ADAMTS-4 knockouts (Glasson et al., 2004;Glasson et al., 

2005).   Furthermore, within a model of inflammatory arthritis, ADAMTS-5 but not 
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ADAMTS-4 knockout mice were protected from proteoglycan loss (Stanton et al., 2005), 

suggesting ADAMTS-5 to be more involved in OA pathogenesis in mice.  However, mice 

with a knockout of the catalyic domain of either ADAMTS-4 or ADAMTS-5 were found to 

be indistinguished from wild type littermates, suggesting that the enzymes may be 

redundant during development at least. 

TIMPs 

Four TIMPs have been characterised in humans (TIMP-1, -2, -3 and -4) that inhbit the 

activity of MMPs, and to a lesser extent ADAMTSs (Baker et al., 2002).  In healthy cartilage, 

TIMPs act to regulate the homeostatic balance of MMP and ADAMTS activity required to 

maintain cartilage turnover, which is disrupted during OA where MMPs are shown to be 

upregulated relative to TIMPs (Dean et al., 1989).  TIMP-3 is regarded as a protective factor 

against cartilage degradation, as demonstrated by the spontaneous development of an 

osteoarthritic phenotype in TIMP-3 knockout mice (Sahebjam et al., 2007). 
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Cartilage homeostasis 

The articular cartilage maintains its integrity through the maintenance of a homeostatic 

balance of catabolism and anabolism.  In physiological conditions, the turnover of cells and 

extracellular matrix is extremely slow, however, following injurious events (including 

trauma, biomechanical challenges, or inflammation), a rapid response of catabolic events, 

balanced with anabolic mechanisms, simultaneously or in coordinated succession, re-

establish homeostasis (Dell'accio and Vincent, 2010).  

Although such mechanisms were previously thought to be active during disease, to be 

ultimately futile, and to lead to osteoarthritis, it is now well recognised, not only through 

animal studies, but also in human observational studies, that such homeostatic re-

adjustments, and even regeneration of full thickness defects often take place, frequently 

unnoticed and asymptomatically, and are a regular phenomenon throughout the adult life 

(Dell'accio and Vincent, 2010;Messner and Maletius, 1996;Nakamura et al., 2008). 

The molecular pathways and signalling systems contribute to these homeostatic 

mechanisms are currently being unveiled thanks to the availability of disease models of 

osteoarthritis and cartilage injury in mice, and the use of mouse genetics with such models 

(Dell'accio et al., 2006;Dell'accio et al., 2008;Lories and Luyten, 2005;Vincent et al., 2002).  

The most important findings of this body of research are summarized hereafter. 

 

Catabolic factors and the role of inflammation 

The balance between matrix proteinase activity and their inhibitors is essential for the 

control of ECM turnover.  However, the mechanisms by which cells achieve homeostasis in 

normal conditions, or activate excessive ECM proteolysis during arthritis are not yet well 

understood.  A number of pro-inflammatory molecules which are present during arthritis 
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can induce the breakdown of cartilage matrix.  IL-1 and TNFα have been shown to increase 

the expression and activation of MMPs and ADAMTSs (Rowan et al., 2001;Saklatvala, 

1986).  The presence of antagonists of these cytokines in OA cartilage explants resulted in 

a reduction of MMP gene expression and in a decrease in type II collagen cleavage and in 

GAG release (Kobayashi et al., 2005).  More recently, ADAMTS-4 and ADAMTS-5 have been 

shown to be induced following IL-1 stimulation (Bondeson et al., 2007).  MMP and 

ADAMTS-4 gene expression was induced in chondrocytes by the hypoxia-inducible factor 

2α (HIF2α), suggesting a clear relevance of oxygen availability within the transcriptional 

control of ECM catabolism (Yang et al., 2010;Saito et al., 2010). 

Interestingly, contrasting reports have emerged detailing the susceptibility of IL-1 

knockout mice to OA.  Clements et al. demonstrated that IL-1 knockout mice developed 

OA lesions within unoperated knees, however Glasson et al. showed that IL-1 knockout 

mice within the DMM surgically induced model developed less severe OA (Clements et al., 

2003;Glasson et al., 2007).  Notably, a similar varying outcome of OA cartilage destruction 

is seen in Interleukin-6 (IL-6) knockout mice, where an inhibition of DMM induced OA 

severity is observed in IL-6 knockout mice, but the absense of IL-6 is shown to lead to 

advanced OA damage upon ageing (Glasson et al., 2007;Ryu et al., 2011;de Hooge et al., 

2005).  These data suggest firstly that different mechanisms of disease induction active 

within different experimental models may require contributions from different catabolic or 

homeostatic signalling mechanisms to either accelerate or prevent disease progression.  

Furthermore, IL-1 and IL-6 demonstrate that such catabolic stimuli should not be regarded 

as only pathogenic mechanisms.  Their activity may be required in order to activate 

homseostatic mechanisms in healthy cartilage, and may therefore become pathogenic 

only when their regulation is lost, when they are no longer balanced alongside anabolic 

mechanisms, or when continuous injury (e.g. during joint instability) results in their 

continuous activation and ultimately futile activity.  
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Anabolic Factors 

Anabolic signalling molecules act to counteract the effects of cartilage breakdown through 

the promotion of ECM synthesis and the inhibition of matrix degradation.  Growth factors 

such as TGFβ and insulin growth factor 1 (IGF-1) are able to block the cytokine induced 

ECM breakdown by a potential suppression of MMPs.  TGFβ was also shown to induce 

TIMP-1 and TIMP-3 expression which in turn, inhibit MMP activity (Glasson et al., 2007;Hui 

et al., 2001).  FGF and BMP signalling molecules stimulate an upregulation of ECM 

synthesis and may be upregulated in response to cartilage damage in an attempt to 

counteract catabolic matrix activity (Dell'accio et al., 2006;Glasson et al., 2007;Vincent et 

al., 2002). 

Mechanical loading is widely regarded as an important anabolic stimulus within healthy 

cartilage matrix turnover.  Cyclical loading has been shown to induce both protein and 

proteoglycan synthesis in cartilage explants (Larsson et al., 1991;Valhmu et al., 1998), 

whereas the immobilisation of weight bearing joints resulted in the rapid loss of articular 

cartilage proteoglycan content (Setton et al., 1995).  COMP and fibronectin expression 

have also been seen to increase during periods of cyclical loading (Wong et al., 1999). 
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Osteoarthritis 

Osteoarthritis is the most common form of arthritis and is a highly prevelant disease 

associated with chronic disability for which there is currently no cure.  More than 6 million 

people in the UK suffer from OA in one or both knee joints. The high impact on working 

capacity of the population and economic costs upwards of £5.7 billion annually to the UK 

make OA a priority in medicine (Arthritis Research UK, 2010).  Although the disease may 

affect younger people, OA is predominantly associated with the older population.  

Whereas inflammatory arthritis, including rheumatoid arthritis (RA), is an autoimmune 

condition, OA is a degenerative disease that has been associated with mechanical cartilage 

damage, obesity and with a genetic predisposition. 

The major hallmarks of the clinical disease include the progressive loss of articular cartilage 

and alterations to the underlying subchondral bone.  Cartilage damage begins with the 

formation of fibrillations within the superficial layer which progressively extend down 

through the middle zone and into the deep zone.  The proliferation of chondrocytes close 

to fibrillations has been observed to increase, causing the OA characteristic of chondrocyte 

clustering (Mankin and Lippiello, 1971).  This activity may be due to the increased 

accessibility to proliferative factors available within the synovial fluid following the 

degradation of the collagen network (Lee et al., 1993).  Progression of the disease leads to 

an apparent overall decrease in extracellular matrix content and cell number (Hulth et al., 

1972).  Full thickness loss of articular cartilage in focal weightbearing areas is a typical 

feature of the end-stage disease.  Ongoing modifications within the subchondral bone 

during OA include osteosclerosis, edema formation, and the growth of boney and 

cartilagenous outgrowths at the joint margin known as osteophytes (Aigner et al., 

1995;Day et al., 2004). 
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Original theories regarding the causes of OA involved the reduced lubrication of the 

articular surface and thickening of the subchondral bone which were thought to lead to 

increased wear and tear of the articular surface through higher mechanical strain and 

friction (Walker et al., 1969;Simon et al., 1972).  Later studies correlated the progression of 

OA pathology with the reduced, or lack of expression of lubricin (Rhee et al., 2005;Teeple 

et al., 2008;Young et al., 2006), demonstrating the importance of the protection of the 

articular surface against biomechanical strain and friction.  Changes within the articular 

cartilage itself were linked to the OA pathogenesis following studies which exposed the 

weakening and breakdown of the collagen network (Maroudas, 1976;Pelletier et al., 1983).  

More recent studies have begun to unravel the molecular events thought to contribute to 

the biochemical and structural changes associated with OA.  The contribution of 

inflammatory cytokines and the activity of matrix degrading proteases are now known to 

disrupt the balance of cartilage ECM turnover, resulting in the progressive breakdown of 

ECM macromolecules which leads to the loss of structural resistance during normal weight 

bearing activity.  The exact events driving the early progression of OA are not yet fully 

understood, however their identification is likely to lead to novel diagnostic tools, such as 

biomarkers, and the subsequent development of therapies designed to intervene prior to 

the disruption of the cartilage homeostatic balance. 

 

Chondrocyte phenotypic modulation in OA 

In normal articular cartilage, chondrocytes maintain a low rate of turnover of cartilage 

matrix macromolecules.  During early OA, an increased synthetic activity is evident, 

suggesting an attempt from the chondrocytes to regenerate the ECM through the 

production of type II, VI, IX and XI collagens and aggrecan (Lorenz et al., 2005).  However, 

this unregulated behaviour of OA chondrocytes results in the disorganisation of the ECM 
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and appearance of fibrillations (Pritzker et al., 2006).  In some cases this is followed by 

cellular changes similar to those observed within the hypertrophic zone of the growth 

plate, including type X collagen expression, alkaline phosphatase and collagenase activity 

(von der et al., 1992).  Type X collagen, VEGF and MMP-13 are direct transcriptional targets 

of HIF2α, which is upregulated within OA cartilage and may be activated following either 

an increase of oxygen availability during vascularisation, or by proinflammatory stimuli 

(Saito et al., 2010;Yang et al., 2010).  However, the expression of hypertrophic markers is 

shown not to be a reliable marker for cartilage degeneration (Brew et al., 2010).  Isolated 

chondrocytes cultured in monolayer quickly lose the expression of key transcription 

factors including SOX 9, which drive the expression of type II collagen and aggrecan.  This 

may not in fact be a step of differentiation reversal, but a modulation of the chondrocyte 

phenotype in response to a change in extracellular environment and growth factor 

availability.  It is possible for OA chondrocytes to reinitiate matrix production following 

transduction with SOX 9 (Tew et al., 2005), however even cells with a re-established 

expression of chondrocyte phenotypic markers may not fully support the maintenance of 

cartilage growth in vivo (De Bari et al., 2004;Dell'accio et al., 2001), possibly due to the 

permenant disruption to autocrine/paracine chondrocyte homeostatic signalling 

mechanisms. 

The modulation of chondrocyte phenotype during OA follows the influence and feedback 

of mechanical, inflammatory and proteolytic factors and contributes significantly to the 

disruption of the homeostatic balance of ECM turnover. 
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Matrix turnover in OA 

The balance between the synthesis of new ECM macromolecules and the breakdown of 

the ECM network by MMPs and ADAMTSs is vital to the homeostasis of healthy cartilage.  

Although both type II collagen and aggrecan have been shown to be upregulated during 

OA (Hermansson et al., 2004;Lorenzo et al., 2004), evidence suggests that the upregulation 

of protease activity results in an overall catabolism of matrix macromolecules.  

Furthermore, the increased expression of COL2A1 in late OA cartilage may ultimately be 

futile, due to the inability of severely damaged cartilage to replicate the collagen 

arrangement laid down during development.  

A number of studies have reported the presence of increased levels of MMPs in OA joints.  

Elevated levels of the stromelysin MMP-3 were found within the synovial fluid obtained 

from OA joints (Lohmander et al., 1993).  MMP-3 mRNA levels were found to be increased 

in the middle and deep zones of human OA articular cartilage, whilst collagenases MMP-1, 

-8 and -13 mRNAs and the gelatinases MMP-2 and -9 were found to be upregulated within 

the superficial zone (Freemont et al., 1997;Tetlow et al., 2001).  Both MMP generated 

VDIPEN341 and ADAMTS generated NITIGE373 aggrecan fragments are found within OA 

cartilage (Lark et al., 1997), leading to debate as to which group of proteases plays the 

major role in cartilage degradation.  Cartilage explant studies have suggested that 

aggrecanases play an early role in aggrecan cleavage, with MMP activity increasing at a 

later stage (Little et al., 2002). 

Aggrecan fragments found within synovial fluid from OA joints first indicated the activity of 

aggrecanases during the early stages of OA development (Sandy et al., 1991).  ADAMTS-5 

was found using immunohistochemistry within canine joint cartilage following anterior 

cruciate ligament transection, whilst in human femoral head cartilage, ADAMTS-5 was 

found in OA but not in healthy samples (Boileau et al., 2007;Roach et al., 2005).  Although 
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ADAMTS-5 was identified as the primary aggrecanase in both inflammatory and OA model 

(Glasson et al., 2005;Stanton et al., 2005), the use of RNA interferance technology to knock 

down either or both aggrecanases in human cartilage explants has suggested that both 

ADAMTS-4 and ADAMTS-5 may contribute to the structural damage associated with OA in 

humans (Song et al., 2007). 

Although we do not fully understand the initial signals triggering the increased catabolic 

activity within OA cartilage, recent studies have revealed a novel mechanism by which 

ECM breakdown may be promoted.  Transgenic mice lacking syndecan-4 were shown to be 

protected from proteoglycan loss via a marked decrease in ADAMTS-5 activity.  Since 

syndecan-4 is associated with the hypertrophic chondrocyte phenotype, it is suggested 

that the alteration in the chondrocyte phenotype may trigger early aggrecan degradation 

through the increased retention of aggrecanases (Bertrand et al., 2010;Echtermeyer et al., 

2009).   

 

Inflammatory mediators of OA 

The increased activity of inflammatory molecules during OA is postulated to be an 

important factor leading to the degradation of the ECM and phenotypic modulation of 

chondrocytes (Loeser, 2006).  Although joint inflammation is generally considered to be 

secondary to cartilage degradation, evidence from a number of in vivo and in vitro studies 

indicate that chondrocytes may both produce and respond to cytokine and chemokines 

found within OA joints. 

In addition to the production and secretion into the synovial fluid of IL-1, TNFα and IL-6 by 

OA synoviocytes (Sakkas et al., 1998), OA chondrocytes, especially those found in clonal 

clusters, were shown to express IL-1, IL-1β converting enzyme, IL-1 receptor type I, TNFα 
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and IL-6 (Guerne et al., 1990;Moos et al., 1999).  IL-1 is found at suitable concentrations to 

induce MMP and ADAMTS expression (Tetlow et al., 2001).  Cartilage explant studies have 

demonstrated that exposure to IL-1 causes the rapid depletion of ECM proteoglycan 

content (Saklatvala, 1987).  IL-1β has been shown to suppress a number of genes 

associated with the differentiated chondrocyte phenotype including COL2A1, whilst also 

upregulating the expression of other proinflammatory cytokines and chemokines, 

including IL-6 and IL-8 (Goldring and Goldring, 2004).  OA cartilage may be particularly 

susceptible to the influence of TNFα signalling since both p55 TNFα receptors and the 

TNFα convertase enzyme (TACE) are seen to be upregulated at mRNA level, in correlation 

with the susceptibility of cartilage explants to TNFα induced proteoglycan loss (Webb et 

al., 1997). 

IL-1 and TNFα are potent stimulators of nitric oxide (NO) and prostaglandin production in 

cartilage (Palmer et al., 1993).  Nitric oxide synthase (iNOS) is upregulated in OA cartilage 

compared to both normal and RA cartilage (Amin et al., 1995;Melchiorri et al., 1998) and 

results in persistent biological effects including post-translational modifications of the 

collagen type II network (Hughes et al., 2010).  IL-1 induced NO activity inhibits aggrecan 

synthesis, however the blockade of NO production also resulted in an increase in 

proteolysis suggesting that IL-1 and NO activity may have a homeostatic role (Abramson, 

2008;Taskiran et al., 1994).  The recombinant human IL-1 receptor anatagonist (IL-1Ra), 

anakinra, had been demonstrated to reduce joint inflammation and cartilage erosion in RA 

patients (Jiang et al., 2000), whilst several in vitro and animal models of OA were subjected 

to anakinra treatment which suggested a beneficial effect of IL-1 blockade on cartilage 

structural integrity.  Intra-articular injection of a human recombinant IL-1Ra into a canine 

OA model resulted in the decrease in osteophyte and cartilage lesion formation together 

with a reduction in collagenase activity in comparison with placebo treated controls (Caron 

et al., 1996).  However, in a multi-centre trial for the use of anakinra in the treatment of 
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OA, no significant improvements were observed in knee pain or cartilage matrix turnover 

(Chevalier et al., 2009).  In fact, further evidence from mice show that gene deletion of IL-

1, IL-1 converting enzyme, iNOS or stromelysin-1 accelerates the development of cartilage 

lesions in surgical models of OA (Clements et al., 2003).  This evidence again suggests that 

low levels of IL-1 may be required for the maintenance of homeostatic ECM turnover in 

normal cartilage. 

Conflicting evidence from IL-6 studies have revealed that the IL-1 induced cytokine may 

also have a homeostatic role in cartilage.  IL-6 is found to be upregulated in OA cartilage 

and was shown to reduce proteoglycan synthesis in normal cartilage in vitro (Guerne et al., 

1990;Nietfeld et al., 1990).  Furthermore, IL-6 is regarded as a key mediator of 

inflammatory arthritis (de Hooge et al., 2000).  However, in vitro studies using human OA 

chondrocytes suggested that IL-6 may in fact reduce IL-1 induced proteoglycan 

breakdown, and induce expression of TIMP-1 (Silacci et al., 1998).  Most importantly, IL-6 

knockout mouse studies by Van de Loo et al., and de Hooge et al. have shown that mice 

lacking IL-6 undergo higher proteoglycan losses during the onset of zymogen-induced 

arthritis (ZIA), and during age-related OA (de Hooge et al., 2005;van de Loo et al., 1997).  

This evidence may be indicative of an impaired repair response in IL-6 -/- mice, thus 

suggesting a protective homeostatic role for IL-6 in cartilage prior to the upregulation of 

catabolism during OA.   
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Mechanical Load and Joint Surface Trauma 

The articular cartilage surface plays an essential role in the distribution of load transfer 

through the joint.  Evidence suggests that conditions resulting in the increased and/or 

altered load patterns applied to the cartilage surface may accelerate the initiation and 

development of OA (Kerin et al., 2002).  Injuries to the knee menisci or ligaments are 

known to predispose patients to OA through the destabilisation of joint alignment 

(Englund et al., 2009;Neuman et al., 2009) .  Chondrocytes respond to direct 

biomechanical stimuli by upregulating their synthetic activity and their production of 

inflammatory cytokines.  It is widely regarded that impact loading stimulates the depletion 

of cartilage proteoglycan content, whereas cyclic compressive loading may upregulate 

matrix synthesis (Guilak et al., 2004).  Chondrocytes may respond to mechanical stimuli 

through a number of receptors including integrins, which are also receptors for ECM 

components such as type II collagen fragments and fibronectin, known to trigger an 

increased expression of ECM proteases (Pulai et al., 2005). 

Post-traumatic secondary OA is known to develop in some individuals following damage to 

the articular cartilage surface (Dell'accio and Vincent, 2010;Ding et al., 2006;Ding et al., 

2008). It had long been believed that joint surface defects (JSD) were unable to heal and 

would lead to inevitable cartilage degeneration and OA (Dell'accio and Vincent, 2010), 

however more recent studies have revealed that spontaneous healing does occur in 

certain individuals (Messner and Maletius, 1996;Shelbourne et al., 2003).  The varying 

outcomes following JSDs in different patients can be partly explained through the 

consideration of underlying risk factors such as age, obesity, defect size and depth and 

joint malalignment.  However, in vitro and in vivo models of joint surface injury suggest the 

involvement of underlying morphogenetic and inflammatory mechanisms which may 

influence healing outcome.  The response of articular cartilage to sharp injury was first 

studied by Meachin et al. and Mankin et al., who showed that cartilage injury resulted in 
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interterritorial proteoglycan loss, and necrosis followed by increased proliferation of 

chondrocytes close to the site of cartilage damage respectively (Mankin, 1982;Meachim, 

1963).  This evidence suggested that chondrocytes were responsive to injury. 

Recent studies have revealed the activation of morphogenetic signalling mechanisms 

following cartilage injury.  Vincent et al. have described the release of perlecan-bound 

FGF-2 from the pericellular matrix following mechanical injury, which subsequently 

upregulated MAPK activity (Vincent et al., 2002;Vincent et al., 2007).  Dell’Accio et al. used 

an adult human ex vivo cartilage injury model to demonstrate an increase in both BMP and 

Wnt signalling activity (Dell'accio et al., 2006).  BMPs are well studied as anabolic 

mediators within cartilage and have been shown to be required for stable cartilage 

homeostasis (Erlacher et al., 1998;Lories and Luyten, 2005;Rountree et al., 2004).  In 

addition, BMP signalling is an important modulator of chondroprogenitor recruitment 

during embryonic skeletogenesis (Tsumaki et al., 1999), and is associated with in vivo 

chondrocyte phenotypic stability (Dell'accio et al., 2001).  These findings indicate that ECM 

production, progenitor cell recruitment and chondrocyte phenotypic preservation are all 

potential roles for BMP signalling during JSD repair.  However, the upregulation of BMP-2 

following cartilage explant exposure to IL-1 and TNFα, which are also produced following 

cartilage injury, suggests that any anabolic response of BMP-2 may be disrupted by injury 

induced inflammatory factors (Fukui et al., 2003).  

Ex vivo cartilage injury resulted in the consistent downregulation of the Wnt inhibitor FRZB 

and the increase in Wnt transcriptional targets Axin2 and c-Jun, consitent with studies 

revealing an association of a FRZB loss of function polymorphism with hip OA in humans 

(Loughlin et al., 2004).  Genetic studies targeting FRZB have since been supported with in 

vivo evidence from mice in three models of OA, which show an increase in Wnt signalling, 

proteoglycan loss, MMP-3 activity and cortical bone thickness following the targetted 
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deletion of FRZB (Lories et al., 2007).  Further work revealed the upregulation of WNT-16 

in ex vivo injured cartilage explants, and in human OA cartilage confirming that molecular 

responses to cartilage injury may be replicated during OA (Dell'accio et al., 2008).  Wnt 

activity involved in limb regeneration and wound healing is subject to tight regulation, so it 

is reasonable to expect the involvement of canonical Wnts in cartilage repair would also 

need to be highly controlled.  It is possible that unregulated Wnt signalling may increase 

the risk of OA development through the supression of chondrogenesis and cartilage 

destruction (Enomoto-Iwamoto et al., 2002;Zhu et al., 2008), or via increased but 

unregulated chondrogenesis (Yano et al., 2005;Zhu et al., 2009). 
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ELR+ CXC Chemokine Signalling 

Chemokines are a family of structurally related chemotactic cytokines ranging from 8 to 

10kDa in size that are involved in chemotaxis, proliferation, maturation, differentiation, 

apoptosis and malignant transformation and angiogenesis.  Chemokines are classified into 

4 subgroups, according to the arrangement of cysteines found at the N-terminus (CC, CXC, 

CX3X and XC).  Chemokine receptors are 7-transmembrane G-protein coupled receptors 

(GPCR) and are classified accordingly into CCR, CXCR, CX3CR and CR families (Murphy et 

al., 2000;Murphy, 2002).  CXC chemokines are futher divided into ELR+ (angiogenic) and 

ELR- (angiostatic) subgroups, based on the presence or absence of glutamic acid-leucine-

arginine (ELR) sequence motif following the first N-terminus cysteine residue (Balkwill, 

2004;Strieter et al., 1995;Thelen, 2001).  At present, more than 30 chemokines have been 

identified which have been shown to interact with at least 18 different seven-

transmembrane domain G-protein coupled receptors in humans (Figure 7). 
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Figure 7.  Chemokine receptors and ligands.  The chemokine wheel depicts the ligand-

binding patterns of G-protein coupled seven-transmembrane domain chemokine 

receptors.  CXCR1 may be activated by CXCL6 and CXCL8 only, whereas CXCR2 interacts 

with CXCL1, 2, 3, 5, 6, 7 and 8.  Figure from (Balkwill, 2004). 

 

Seven human ELR+ CXC chemokines bind to the chemokine receptor CXCR2 and activate 

neutrophil granulocytes.  Two of these ligands, CXCL6 and CXCL8 also bind to CXCR1.  

Competition binding assays and calcium flux measurements have shown that CXCR2 is 

relatively non selective for CXCL8 versus other ELR+ CXC chemokines however CXCR1 is 

shown to be highly selective for CXCL8 against CXCL1 (Ahuja and Murphy, 1996;Lee et al., 

1992), whilst CXCL6 is an equipotent agonist to both (Wuyts et al., 1997).  Genes encoding 

all ELR+ CXC chemokine ligands are found clustered within the human chromosome 4 

(O'Donovan et al., 1999).  Until recently, it was believed that neutrophil migration in the 
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mouse was controlled through only one receptor, the murine homolog of CXCR2, which 

had been shown to bind with high affinity to the mouse ELR+ CXC chemokines which are 

homologs of human CXCL1.  Since homologs of human CXCL8 are thought to be missing in 

the mouse, it was assumed that only one ELR+ CXC chemokine receptor was required.  

However, two different groups reported the cloning and characterisation of a mouse 

CXCR1 homolog and it has since been shown to be functional and may be activated using 

human CXCL6 and CXCL8 (Bozic et al., 1994;Fan et al., 2007;Fu et al., 2005).  Since the 

CXCR2-/- mutant mouse does have detectable phenotypes in wound healing and 

neutrophil chemotaxis (Cacalano et al., 1994;Devalaraja et al., 2000), it is unclear whether 

these phenotypes are due to only a partial redundancy of function or to a sort of 

"haploinsufficiency", whereby the CXCR1 ortholog cannot compensate fully for the 

absence of CXCR2, particularly in conditions of challenge. 

Upon secretion, the potency of chemotactic activity of CXC chemokines is increased by the 

proteolytic modification at the N-terminus.  More than 10 different modified forms of 

CXCL8 have been found to occur naturally, including truncated, elongated and dieminated 

forms (Proost et al., 2008;Van et al., 1989).  Neutrophil accumulation upon intra-air pouch 

injection of CXCL8 is less prominent in MMP-8 deficient mice in comparison with wild type.  

Neutrophil responsiveness remained unaffected in the absence of MMP-8 upon the 

injection of a truncated form of CXCL8 suggesting that MMP-8 activity has a role in 

chemokine processing and activity regulation (Mortier et al., 2011;Tester et al., 2007). 

Chemokines can form robust interactions with GAG chains within the ECM and on 

endothelial cells (Kuschert et al., 1999).  Heparan sulphate GAG chains (HSPGs) have a high 

sequence diversity that allows for interactions with many proteins including FGFs, Wnts 

and BMPs (Kronenberg, 2003).  Chemokines are able to interact with HSPGs on the cell 

surface and within the ECM (Handel et al., 2005).  There are several ways by which HSPGs 
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may modulate chemokine activity, primarily studied in inflammation.  Firstly, it is 

suggested that chemokines may be unable to function efficiently during inflammation in 

the absence of HSPGs.  Interactions may protect chemokines from proteolysis, and induce 

their oligomerisation that has been shown to maximise their signalling activity (Hoogewerf 

et al., 1997;Proudfoot et al., 2003;Webb et al., 1993).  Secondly, HSPGs play a vital role in 

immobilising chemokines upon the cell surface and may act to establish chemokine 

gradients on the vascular endothelium.  This HSPG mediated chemokine display is required 

for the directional migration of leukocytes through the blood vessel walls (Middleton et al., 

1997;Wang et al., 2005). 

 

CXCR1/2 Signalling Pathway 

The biological effects of ELR+ CXC chemokines are mediated through the GPCRs CXCR1 and 

CXCR2.  These receptors share a considerable similarity in their structure, suggesting that 

gene duplication may be responsible for the presence of two CXCL8 receptors in humans.  

Ligand binding induces conformational changes in CXCR1/2 which exposes epitopes on the 

intracellular loops and C-terminal of the receptor that interact with G-proteins.  This 

change causes the release of the α and the βγ subunits from the G-protein complex which 

in turn activate additional downstream intracellular signalling pathways (Ribeiro-Neto and 

Rodbell, 1989).  The classical chemotactic response of cells to CXC chemokine signalling is 

reduced in the presence of the Gαi inhibitor, pertussis toxin (PTX) suggesting that the Gαi 

subunit is largely responsible for chemokine induced cell migration.  Other responses to 

CXCL8 signalling are unaffected by PTX, however other Gα subunit forms, and the release 

of the βγ G-protein subunits are now regarded as important activators of numerous 

intracellular pathways (Neptune et al., 1999;Schraufstatter et al., 2001). 
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Figure 8.  CXCR1/2 downstream signalling pathways.  ELR+ CXC chemokines including 

CXCL1, 6 and 8 bind to CXCR1 and/pr CXCR2 receptors.  G-protein α and βγ subunit 

dissociation activate PI3K, MAPK and PLC mediated signalling pathways, driving 

downstream signalling cascade including ERK and AKT phosphorylation, and intracellular 

Ca2+ release. 

 

ELR+ CXC chemokines have a wide range of intracellular signalling targets (reviewed in 

(Waugh and Wilson, 2008)).  Phosphatidylinositol-3 kinase (PI3K) is a principal target and is 

a principal effector of CXCL8 induced neutrophil chemotaxis, resulting in the increased 

phosphorylation of PKB/Akt (Knall et al., 1997).  The mitogen-activated protein kinase 

(MAPK) serine/threonine kinase signalling cascade is activated in response to CXCL8 ligand 

binding.  Downstream phosphorylation of ERK1/2 has been detected in both neutrophils 

and in cancer cells, linking CXCR1/2 signalling to E2F and activator protein transcription 

factors, whose function is to upregulate genes implicated in cell proliferation (Luppi et al., 

2007).  Gα proteins also link CXC chemokine signalling to phospholipase C, which promotes 

the conversion of the membrane associated lipids to diacylglycerol and inositol 
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trisphosphate.  This in turn results in calcium mobilisation and the phospholylation of 

protein kinase C (PKC) (Richardson et al., 1998). 

The novel concept of ‘functional selectivity’ is currently under investigation within the 

pharmacological study of GPCR signalling (for review see (Allegretti et al., 2008)).  It is 

predicted that, for example, different CXC chemokine ligands may induce different 

receptor conformations which may consequently activate varying downstream signalling 

pathways (Baker and Hill, 2007;Mailman, 2007).  The functional effects of ligand-receptor 

binding may be determined by the type of Gα subunit associated with the receptor and by 

the three-dimensional changes in the receptor C-terminus following binding.  Lane et al. 

demonstrated that the inhibition of PI3K significantly inhibits CXCL8-induced chemotaxis in 

neutrophils, whereas the blockade of chemoattractant-induced Ca2+ release in fact 

increased leukocyte chemotaxis, suggesting that chemotaxis is dependant upon the 

downstream PI3K/AKT pathway and not on calcium signalling (Jiang et al., 1997;Lane et al., 

2006), providing an opportunity for additional selectivity of phentypic outcome. This type 

of pathway specific behaviour is leading to the increased study of allosteric inhibition of 

GPCRs, whereby some but not all downstream signalling activities may be modulated 

(Kenakin, 2007). 

Following activation of CXCR1 and CXCR2, receptors are internalised and are either 

recycled back to the cell surface or are targeted for degradation, providing an additional 

level of regulation for CXCR1/2 signalling.  Exposure of cells to below saturation ligand 

concentrations results in the movement of the receptor into clathrin-coated pits which are 

directed through the early endosome and onto the recycling endosome where they may 

be trafficked back to and re-expressed on the cell surface.  Prolonged saturation of the 

receptors causes a significant portion of CXCR1/2 to be directed to the late endosome, 

followed by movement into the lysosome where they are degraded (Richmond et al., 
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2004).  The chemotactic response following CXCR2 activation may be inhibited following 

an internalisation-imparing mutation to CXCR2, indicating that receptor recycling is 

necessary for chemotaxis.  A study by Feniger-Barish et al., revealed an interesting 

mechansim by which CXCR1 and CXCR2 are differentially regulated following the binding of 

CXCL6, a ligand for both receptors.  CXCL8 is regarded as a potent activator of both CXCR1 

and CXCR2 and is seen to induce rapid internalisation of both receptors.  On the other 

hand, CXCL6 had a low ability to induce internalisation of CXCR1 in comparison with 

CXCR2, correlating with previous data showing that CXCL6 is a less potent activator of 

CXCR1 in comparion with CXCR2 (Feniger-Barish et al., 2000;Wuyts et al., 1998).  The 

divergent abilities of CXCL6 and CXCL8 to induce chemotaxis and receptor internalisation 

may represent a fine-control mechanism by which different CXC chemokine 

ligand/receptor interations may mediate both homeostatic and inflammatory responses. 

 

ELR+ CXC Chemokines in Inflammatory and Non-Inflammatory Roles 

CXCL8 was first identified as a neutrophil activating factor, triggering chemotaxis, 

degranulation and superoxide formation during the inflammatory response (Thelen, 2001).  

It is produced in large amounts in response to inflammatory stimuli such as IL-1 and TNFα, 

and is present in high quantities in synovial tissue and fluid from RA patients (Endo et al., 

1991;Koch et al., 1991).  A single intra-articular injection of CXCL8 can initiate an 

inflammatory arthritis similar to RA in rabbits in a dose dependant manner, mediated by 

an increase in neutrophils and mononuclear cells within joints (Kraan et al., 2001).  The 

GAG binding properties of CXC chemokines allows for the creation of a chemotactic 

gradient upon endothelial cells which increases the rate at which neutrophil infiltration 

may occur. 
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CXCL1 and CXCL8 have been shown to be strong angiogenic factors (for review see 

(Strieter et al., 2005)).  VEGF activation of endothelial cells promotes the anti-apoptotic 

molecule Bcl-2, which in turn promotes endothelial expression of CXCL8.  CXCL8 functions 

in an autocrine/paracrine manner to promote further CXCL8 expression and to enhance 

endothelial cell survival and proliferation (Nor et al., 2001;Heidemann et al., 2003).  Since 

all ELR+ CXC chemokines are pro-angiogenic, it is accepted that CXCR2 is the primary 

receptor involved in endothelial cell migration and survival (Addison et al., 2000). 

As potent mediators of chemotaxis and angiogenesis leading to the recruitment and 

activation of leukocytes and pro-inflammatory mediators, CXC chemokines are prime 

targets for study within cancer biology (for review see (Balkwill, 2004)).  CXC chemokines 

have been linked to a wide range of roles within cancer biology which are fundamental to 

the survival and metastasis of tumour cells, from which many were originally purified 

(Proost et al., 1993;Richmond and Thomas, 1986).  Cell survival in hypoxic conditions was 

shown to be promoted by HIF-1 induced CXCR1 and CXCR2 expression in prostate cancer 

(Maxwell et al., 2007).  The upregulation of MMP expression has been strongly linked to 

CXCR1/2 activity, whereby protease activity is required for ECM breakdown, subsequently 

required for angiogenesis and tumour cell invasion (Galvez et al., 2005;Li et al., 2003).  

CXCL8 has been implicated as an autocrine growth factor for human colon carcinoma cells 

in vitro (Brew et al., 2000).  This wide range of CXC chemokine mediated cellular responses 

suggests that any pharmaceutical targeting of chemokine signalling towards the aim of 

reducing their pro-inflammatory activities, must carefully examine other potential 

outcomes of CXC chemokine signalling inhibition, particularly in cellular phenotypic control 

and survival patterns. 

ELR+ CXC chemokines are active in embryonic development prior to the maturation of the 

adult immune system.  CXC chemokines have been implicated in gamete migration, whilst 



 Introduction  

55 
 

CXCL1 was shown to participate in the control of spatial and temporal organisation of 

oligodendrocyte precursor proliferation (Kunwar et al., 2006;Robinson and Franic, 2001).  

Although these functions are largely based upon chemotaxis, it is evident that CXC 

chemokine signalling must not be solely regarded as a mediator of inflammation. 

 

CXC Chemokines in Cartilage Biology 

Human chondrocytes have been shown to express functional CXC chemokine receptors 

(Borzi et al., 2000) and ligands which are believed to be upregulated in both OA and RA 

chondrocytes (Borzi et al., 1999), most likely due to the influence of pro-inflammatory 

stimuli including IL-1 and TNFα (De Ceuninck et al., 2004).  The possible increase in CXCR1 

in OA cartilage, leading to increased MMP activity, suggested that chemokines within 

cartilage may contribute to a potential catabolic mechanism during arthritis.  A phenotypic 

response to CXCL1 and CXCL8 was revealed by Merz et al., whereby markers of 

chondrocyte hypertrophy including type X collagen, alkaline phosphatase and MMP-13 

expression were upregulated in vitro in CXCL1 and CXCL8 treated normal chondrocytes 

(Merz et al., 2003).  Silvestri et al. reported that a relatively high percentage of human 

normal and OA chondrocytes express CXCR1 and CXCR2, suggesting that they may be 

implicated in normal physiological processes such as matrix remodelling (Silvestri et al., 

2003).  The reduced receptor levels found in OA samples however, suggests that this 

signalling pathway may be involved in a phenotypic maintenance that is lost during 

pathology.  The study suggests that CXC chemokine signalling, in combination with other 

CC chemokine signalling pathways, may respond via either an anabolic or catabolic 

pathway, depending upon ligand type, dose and exposure duration (Silvestri et al., 2003).  

Within this study, a large variation was observed between different OA samples.  Since OA 

may be regarded as a syndrome, where cartilage destruction results from the cumulation 
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of a number of genetic, mechanical and biochemical factors, it should be expected that 

variation in the inflammatory contribution to each case of disease may account for such 

differences in chemokine signalling activity, and its contribution to pathogenic 

mechanisms. 
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Preliminary data leading towards this study 

Cell based cartilage repair and the role of chondrocyte phenotypic stability in 

outcome determination 

Autologous chondrocyte implantation (ACI) is a cell based technique used to achieve 

biological repair of articular cartilage defects.  The technology requires the harvesting of 

articular chondrocytes from a healthy non-load bearing area, which are enzymatically 

digested from the cartilage ECM and expanded in vitro to provide a ten-fold increase in cell 

number.  Up to five million chondrocytes are then injected into the cartilage defect and 

covered with a periosteal flap, harvested from the medial tibia.  Dell’Accio et al. linked the 

expression of a number of molecular markers to the capacity of in vitro expanded 

chondrocytes to form ectopic cartilage explants when implanted into the quadriceps of 

nude mice (Dell'accio et al., 2001).  These findings were subsequently linked to improved 

clinical outcome in ACI (Saris et al., 2008), thereby establishing the importance of the 

capacity of articular chondrocytes to retain their phenotypic stability in culture in 

determining the potency of expanded chondrocyte preparations used in ACI.   

Interestingly, the molecular marker profile characterising the stable chondrocyte 

phenotype included the CXC chemokine ligands CXCL8, CXCL6 and CXCL1.  Their presence, 

together with the expression of the corresponding chemokine receptors CXCR1 and CXCR2 

on chondrocytes raised the question and promted us to explore whether CXC chemokine 

signalling has a functional role in the maintenance of the phenotypic stability through 

culture expansion.  
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Hypothesis 

 

This project tests the hypothesis that ELR+ CXC chemokine signalling via CXCR1 and 

CXCR2 receptors is required for the phenotypic stability of articular chondrocytes and 

articular cartilage homeostasis 

 

Aims of the study 
 

The overall aim of this study was to investigate the function of ELR+ CXC chemokine 

signalling in articular cartilage.  ELR+ CXC chemokine signalling is primarily regarded as pro-

inflammatory and pro-angiogenic, however the loss of expression of CXCL1, CXCL6 and 

CXCL8 during in vitro chondrocyte expansion correlate with the dedifferentiation of 

chondrocytes, measured by the loss of phenotypic molecular marker expression and the 

ability of articular chondrocytes to form stable ectopic cartilage in vivo, suggesting that it 

may be required for the maintenance of the chondrocyte phenotype. 

 The specific aims for this project are as follows: 

1. To confirm the expression of functional ELR+ CXC chemokine receptors in human 

articular chondrocytes. 

2. To investigate whether CXCR1/2 mediated signalling is required for the 

maintenance of the stable chondrocyte phenotype. 

3. To investigate whether CXC chemokine ligands may be produced and retained 

within healthy articular cartilage, thereby preventing the activation of pro-

inflammatory responses within the synovial joint. 

4. To characterise the articular cartilage phenotype of CXCR2 null mutant mice. 
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Experimental scheme 
 

CXCR1/2 expression  

Human primary chondrocytes     -  PCR 

           -  Western blot 

         -  Immunofluorescence  microscopy 

Human cartilage explants -  Immunofluorescence microscopy 

C28/I2         -  PCR 

JJ012        -  PCR 

CXCR1/2 activity  

Human primary chondrocytes     -  Intracellular calcium mobilisation 

     -  CXCR1/2 Blocking antibodies 

     -  CXCR1/2 siRNA 

     -  Pertussis toxin 

CXCR1/2 loss of function  

Human primary chondrocytes   -  Alcian blue staining 

      -  CXCR1/2 blocking antibodies 

             -  RT-qPCR  

     -  CXCR1/2 blocking antibodies 

      -  Pertussis toxin 

JJ012            -  Alcian blue staining 

      -  CXCR1/2 blocking antibodies 

      -  CXCR1/2 siRNA 

Porcine primary chondrocytes  -  Alcian blue staining 

      -  Pertussis toxin 

CXCR2-/- mutant mouse -  Safranin-O staining and histomorphometry  

CXCL6/8 matrix localisation  

Human cartilage explants -  Immunofluorescence microscopy 

      -  Proteoglycan digestion  
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Cartilage samples 

Human cartilage was obtained from the femoral condyles of patients undergoing knee 

joint replacement surgery (ethics approval from the East London & The City Ethics 

Committee 3).  Condyles were rinsed in 2X antibiotic/antimycotic complete DMEM (10% 

FBS, 2% antibiotic/antimycotic, 1% sodium pyruvate, see Appendix) and full thickness 

cartilage was dissected from relatively preserved areas using a scalpel.  Full thickness slices 

measuring approximately 10mm in length and 2mm in width were immediately placed into 

a 4% paraformaldehyde fixation solution in preparation for histology.  Remaining cartilage 

was then finely minced and rinsed again in 2X antibiotic/antimycotic complete DMEM.  

Porcine cartilage was collected from the metacarpophalangeal joints of pigs from a local 

abattoir and was washed and minced as descibed above. 

Cartilage digestion 

Chondrocytes were released from cartilage tissue following a 2-stage digestion protocol.  

Tissue was first incubated for 30 minutes at 37°C in a complete DMEM solution 

supplemented with 1mg/ml pronase (Roche), followed by an overnight incubation at 37°C 

in 0.2% collagenase IV (Gibco, Invitrogen) in complete DMEM.  The chondrocyte containing 

solutions were filtered through 40µm cell strainers (Falcon), separated from the medium 

by centrifugation and resuspended in 1ml of complete DMEM for cell counting.  Cells to be 

stored in liquid nitrogen were suspended at a density of 250,000 cells/ml of complete 

DMEM medium which was then mixed with an equal volume of freezing medium 

(complete DMEM, 20% DMSO, 30% FBS) and stored as 1ml aliquots in cryovials. 
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Monolayer cell culture 

For monolayer culture experiments, human primary chondrocytes and the JJ012 human 

chondrosarcoma cell line (kindly provided by Professor Joel Block, Chicago) were plated in 

complete DMEM (5x104 cells/cm2) and cultured at 37°C in a humidified atmosphere 

containing 5% CO2 until confluent.  Once confluent, cells were either used for blockade 

experiments, or released and replated as follows:  medium was removed from the culture 

vessel and cells were washed twice in sterile PBS (BioWhittaker, Lonza) at room 

temperature (RT).  Cells were covered in 0.25% trypsin-EDTA (Invitrogen) for 4 minutes at 

37°C before cells were resuspended and replated in complete DMEM. 

Micromass cell culture 

For micromass culture, JJ012 or primary human or porcine chondrocytes were plated in 

20µl drops of complete DMEM at a cell density of 20million cells/ml into a 24 well plate.  

Cells were incubated at 37°C in a humidified atmosphere containing 5% CO2 for 3 hours, 

before 1ml of complete DMEM was slowly added to each well. 

 

CXCR1 and CXCR2 blocking antibody treatment 

Chondrocyte confluent monolayer or micromass culture medium was replaced with 

DMEM supplemented with DMEM supplemented with 1% heat-inactivated FBS, 1% 

pyruvate and 1% antibiotic-antimycotic solution (see Appendix).  After 24 hours 

incubation, blocking antibodies for the chemokine receptors CXCR1 and/or CXCR2 (R&D 

systems) were added at a total concentration of 10 μg/ml unless otherwise noted.  

Monolayer and micromass cells were then cultured for 4 days before phenotypic analysis.  

Isotype matched mouse IgG (Dako) at an equal concentration was used as a negative 

control.   
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CXCR1 and CXCR2 siRNA 

Knockdown of CXCR1/2 was achieved using RNA interference.  siRNA sequences obtained 

from Invitrogen Stealth™ were:  

CXCR1  sense 5’-GGAGUUCUUGGCACGUCAUCGUGUU-3’   

antisense 5’-AACACGAUGACGUGCCAAGAACUCC-3’,  

CXCR2  sense 5’-ACCGAGAUUCUGGGCAUCCUUCACA-3’  

antisense 5’-UGUGAAGGAUGCCCAGAAUCUCGGU-3’.  

A Stealth™ RNAi negative control duplex of medium GC content was used as a negative 

control (Invitrogen). 

Lipofectamine™ transfection 

24 hours prior to transfection, culture medium was removed and replaced with an 

antibiotic free medium (Appendix 1).  For each transfection well of a 24-well plate, siRNA 

oligomer-Lipofectamine™ complexes were prepared separately as follows.  50pmol of 

siRNA oligomer was diluted in 50µl of Opti-MEM® I reduced serum medium (Gibco®, 

Invitrogen) and mixed gently.  The required volume of Lipofectamine™ reagent 

(Invitrogen) was diluted in 50µl of Opti-MEM® medium (Gibco, Invitrogen), mixed gently 

and incubated at RT for 5 minutes.  The diluted oligonucleotide was then combined with 

the diluted Lipofectamine™ reagent and incubated at RT for 20 minutes to allow for 

transfection complex formation.  The oligomer-Lipofectamine™ complexes were then 

added into each well containing chondrocytes and mixed by gently rocking the plate back 

and forth.  A Stealth™ RNAi negative control duplex of medium GC content was used as a 

negative control.  Cells were incubated at 37°C for 24 hours before kncokdown efficiency 

was assessed by RT-PCR and Western blot.  Transficiency was optimised using BLOCK-iTTM 



 Materials and Methods  

65 
 

fluorescent oligo (Invitrogen) as a positive control for siRNA transfection shown to 

correlate with Stealth™ siRNA uptake. 

jetPRIME™ transfection 

siRNA was used at a total concentration of 50nM in complete DMEM using jetPRIME™ 

transfection reagent (Polyplus).  Briefly, siRNA was added to the jetPRIME™ buffer at a 

concentration of 50nM, before jetPRIME™ reagent was added and vortexed to mix.  

Typically for each well of a 24-well plate, 2µl of reagent was combined with 50µl of buffer 

containing siRNA.  After a 15 minute incubation at RT, 50µl of the transfection mix was 

added to each well containing 500µl of complete DMEM.  A Stealth™ RNAi negative control 

duplex of medium GC content was used as a negative control.  Gene and protein 

knockdown were assessed by RT-PCR and Western blot after 24 hours. Transfection 

optimisation was achieved using BLOCK-iT™ fluorescent oligo as a positive control for siRNA 

transfection.   

 

G-protein blockade  

Intracellular CXCR signaling was inhibited at the G-protein level using pertussis toxin from 

Bordetella pertussis (Sigma).  Chondrocyte culture medium was replaced with DMEM 

supplemented with 1% heat-inactivated FBS, 1% pyruvate and 1% antibiotic-antimycotic 

solution (see Appendix) 24 hours before the cells were treated with pertussis toxin.  

Although all reagents used were purchased as endotoxin-free, before addition of the 

pertussis toxin, polymyxin B sulphate (Sigma) was added at a concentration of 50mg/l in 

order to neutralize any endotoxins.  Pertussis toxin was added to the culture medium at a 

concentration of 1µg/ml and the cells were cultured for a further 4 days before phenotypic 

analysis.  Cells treated with an equal concentration of PBS vehicle and polymyxin B 

sulphate were used as a negative control.   
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Calcium mobilisation assay 

CXCR1/2 G-protein dependant calcium mobilisation was measured using the Fluo-4 Direct™ 

calcium assay (Molecular Probes, Invitrogen).  Half of the 100µl of culture medium from 

each well of cells plated in a 96-well plate was removed and replaced with 50µl of reagent, 

made by adding 10ml of Fluo-4 DirectTM assay buffer and 200µl of 250mM probenecid 

stock solution to one bottle of Fluo-4 DirectTM reagent and vortexing to mix.  Plates were 

incubated for 30 minutes at 37°C followed by a further 30 minutes at RT.  CXCL8 (10ng/ml) 

was added as a stimulus 5 minutes before the fluorescence was measured with an 

excitation wavelength of 495nm and emission wavelength of 530nm using XFluor™ (Tecan 

Group Ltd.).  The difference in fluorescence between CXCL8 stimulated and unstimulated 

cells was calculated and used to assess CXCL8 induced calcium mobilisation. 

 

Total RNA extraction 

Culture medium was removed from 24 well plates in which cells were growing and 1ml of 

TRIzol® reagent (Invitrogen) was immediately added into each well.  Cells were 

homogenised into the reagent using a syringe and 26G needle and 1ml was transferred 

into a sterile RNAse free Eppendorf tube.  The suspension was kept on ice for 15 minutes 

and was then certrifuged at 10000g for 10 minutes to remove debris.  200µl chloroform 

was added to each 1ml of TRIzol®, the sample was shaken vigorously for 20 seconds and 

left on ice for 2 minutes.  Samples were then centrifuged at 10000g for 15 minutes at 4°C 

in order for the separation of the sample into distinct phenol and aqueous layers.  The top 

red phenolic layer containing RNA was removed and placed into a new Eppendorf tube.  

The lower clear aqueous layer containing protein and cloudy interphase containing DNA 

was discarded.  500µl of ice cold isopropan-2-ol was added into each sample.  Tubes were 

vigorously shaken and put on ice for 20 minutes prior to centrifugation at 10000g for 30 
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minutes at 4°C to precipitate RNA.  The supernatant was removed leaving a small white 

pellet which was washed in 1ml of 70% ethanol in RNAse-free water and spun for 5 

minutes at 10000g.  The ethanol supernatant was removed and the pellets were left to air 

dry for 20 minutes before being resuspended in 12µl of RNAse-free water and stored at -

80°C.  1µl was used to measure RNA concentration using a NanoDrop spectrophotometer 

(Thermo Scientific).  The purity of the RNA was estimated using the ratio between the 

absorbance at 260/280 nm, where a ratio of 2 indicates pure RNA, and ratios of less than 

1.6 indicates poor RNA quality. 

 

Reverse transcription cDNA synthesis 

cDNA was produced by reverse transcription using the Thermoscript™ RT-PCR System for 

first strand cDNA synthesis (Invitrogen, UK).  For each sample, 1µg of total RNA, diluted 

into 1µl of RNAse-free water, was mixed with 1µl of Oligo(DT)20 primers (50mM) and 2µl 

of dNTPs (10mM) and made up to a total volume of 12µl with RNAse-free water in a PCR 

tube.  Sample mixes were incubated at 65°C for 5 minutes before immediately being 

placed on ice.  8µl of a reaction master mix containing (per sample) 4µl of 5X cDNA 

synthesis buffer, 1µl ThermoScript™ reverse transcriptase (15U/µl), 1µl of 0.1M DTT, 1µl of 

RNAse OUTTM ribonuclease inhibitor (40U/µl) and 1µl of DEPC-treated water.   Samples 

were mixed and spun down in a centrifuge and incubated for 1 hour at 50°C in a PCR 

machine (Applied Biosystems 9700), followed by 5 minutes at 85°C in order to inactivate 

the reverse transcriptase.  To clear the resulting cDNA of any remaining RNA, 1µl of E.coli 

RNAse H (2U/µl) was added to each sample before a 20 minute incubation at 37°C.  

Samples were made up to a total volume of 60µl in RNAse-free water and stored at -20°C. 
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Quantitative real time PCR  

For quantitative real time analysis of target gene expression, primers were designed using 

VectorNTI™ (Invitrogen, UK) ( 

Table 1) for the following properties: 

 Resulting amplicon size of 100-300 base pairs 

 GC base pair content of 45-65% 

 Proximity to the poly-A sequence 

 A target annealing temperature of 60°C. 

 

 

 

Table 1.  Sequences of the primers used for PCR reactions and their product sizes. 

Genes Sense Primer Antisense primer Product Size (bp) 

Col2A1 5’-CTGCTCGTCGCCGCTGTCCTT-3’ 5’-AAGGGTCCCAGGTTCTCCATC-3’ 511 

Aggrecan 5’-GTTGTCATCAGCACCAGCATC-3’ 5’-ACCACACAGTCCTCTCCAGC-3’ 509 

SOX 9 5’-GAACGCACATCAAGACGGAG-3’ 5’-TCTCGTTGATTTCGCTGCTC-3’ 631 

β-actin 5’-CACGGCTGCTTCCAGCTC-3’ 5’-CACAGGACTCCATGCCCAG-3’ 134 

CXCL6 5’-AAAATTGCCCAGTCTTCAGC-3’ 5’-CCGACACCTAAAGCATACCT-3’ 360 

CXCL8 5’-CATTGCCAGCTGTGTTGGTA-3’ 5’-AGTTTCAACCAGCAAGA-3’ 112 

CXCR1 5’-GGAAAGAATAACCAACACCC-3’ 5’-ATCAGAGCACACAGAGCCAC-3’ 410 

CXCR2 5’-GCAGAAGACAGTATGGCAGC-3’ 5’-CCATTAAACCGTCACTTCCC-3’ 459 
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To prepare the reaction mix, 1µl of sample cDNA was added per well using a 384-well PCR 

plate (Applied Biosystems) on ice before 0.5µl of forward and 0.5µl of reverse primers and 

8µl of a reaction master mix consisting of 6.61µl of RNAse-free water, 0.04µl of dNTPs 

(10mM), 1µl of 10X PCR buffer, 0.05µl of Hot Start Polymerase, 0.1µl of 10X SYBR Green 

(Sigma) and 0.2µl of ROX reference dye (Invitrogen, UK) were added.  For each sample, 

PCRs for each target gene were plated in triplicate alongside a standard curve serial 

dilution of a positive control sample (1:1, 1:32, 1:1024) in triplicate and a template free 

water negative control completing each row of wells.  The plate was covered with adhesive 

film (Applied Biosystems), was spun down and kept at 4°C. 

The PCR was run using the 7900HT Taqman real time PCR machine (Applied Biosystems) 

with thermal cycling conditions summarised in Table 2.  Results were then analysed using 

7900HT Sequence Detection System 2.3 (SDS2.3) software.  Within the software, the 

standard curve of positive control serial dilutions allowed for the conversion of target gene 

Ct values into absolute gene expression.  An average value of gene quantity was taken 

from each triplicate which was then normalised for β-actin to give a quantitative 

measurement of target gene expression in relation to the β-actin housekeeping gene 

expression.  Analysis of the melting curve provided within the SDS2.3 readout provided 

confirmation of specific gene target amplicification. 

 

Table 2.  Optimal PCR cycling conditions 

 

2 minutes 50°C 15 minutes 96°C

40 CYCLES

3 Step 60

2 Step 68

2 Step 60

Equilibration
Denaturation Annealing Extension

Enzyme Activation Primers

30 seconds 

96°C

30 seconds 

96°C

30 seconds 

96°C

30 seconds 

60°C

1 minute 30 

seconds 72°C

COL2A1, SOX9, CXCL6, 

CXCL8, β-actin

Aggrecan

CXCR1, CXCR2

1 minute 30 seconds 68°C

1 minute 30 seconds 60°C
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Semi-quantitative PCR 

For the testing of primer specificity and for semi-quantitative analysis of target gene 

expression, the same reaction volumes were prepared as for the real time RT-PCR and 

were amplified in separate PCR tubes using a GeneAmp PCR System 9700 thermocycler 

(Applied Biosystems) using the conditions described in Table 2.  To analyse, PCR products 

were run on a 1% agarose gel prepared in 1X Tris acetic acid EDTA (TAE) buffer (Invitrogen) 

supplemented with Gelred nucleic acid stain (Biotium) diluted 1:10000 into the agarose 

gel.  DNA bands were visualised using a Gel doc 1000 imager (Biorad).  Amplicon band sizes 

in positive control samples were measured by comparison to a 1kb DNA ladder (New 

England Biolabs). 

 

Alcian Blue staining and quantification 

For quantitation of cartilage-specific, highly sulphated glycosaminoglycans I used the alcian 

blue method as previously described (De Bari et al., 2001).  Briefly, micromasses were 

rinsed twice with PBS, fixed in methanol for 30 minutes at -20°C, washed gently in distilled 

water and immersed in Alcian blue at pH 0.2 (0.5% Alcian blue 8 GS [Carl Roth, Karlsruhe, 

Germany] in 1N HCl) overnight at RT.  After 24 hours, micromasses were washed three 

times for 10 minutes each in water.  Alcian blue was extracted with 200µl of 6M guanidine 

HCl in Baxter water for 6 hours at RT.  The absorbance of the extracted dye was measured 

at 630nm using XFluor™. 

The quanitification of highly sulphated proteoglycans was then normalised for total 

micromass protein content using the bicinchoninic (BCA) assay (Pierce, ThermoScientific) 

using XFluor™.  Briefly, 25µl of each sample of guanidine HCl solution retrieved following 

the extraction of Alcian blue, was added to wells of a 96-well plate.  250µl of BCA solution, 

prepared by combining the two supplied solutions in a ratio of 50 parts of Reagent A to 1 
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part of Reagent B, was added onto each sample and mixed thoroughly using a pipette.  The 

reaction plate was then incubated at 37° for 30 minutes.  Absorbance was read at 570nm 

using XFluor™ and protein concentration was quantified by comparison to a standard 

curve of bovine serum albumin (BSA) diluted into 6M guanidine HCl on the same plate. 

 

Western Blotting 

Cells were enzymatically removed from culture and lysed in RIPA buffer (10nM NaCl, 1% 

Triton X-100, 0.5% sodium deonycholate, 0.1% SDS, 50nM Tris pH8) containing PhosSTOP 

protease inhibitor cocktail tablets (Roche) and Complete Mini EDTA–free phosphatase 

inhibitor cocktail tablets (Roche).  Total protein concentration of cell lysates was 

determined using the BCA assay, requiring a standard curve of BSA diluted into RIPA 

buffer.  Lysates were prepared for blotting in sample buffer (see Appendix) containing 5% 

2-β mercaptoethanol,  and run at 150V on a 10% Tris-glycine gel (Invitrogen) contained 

within a running buffer (see Appendix) and transferred onto nitrocellulose membrane (GE 

Healthcare) for 1 hour at 100V within transfer buffer (see Appendix).  Membranes were 

blocked for 3 hours in 5% non-fat milk, 0.1% Tween20 PBS solution, then treated with 

mouse anti-human CXCR1 or CXCR2 primary antibodies (R&D) at 1:200 dilution in blocking 

solution at 4°C overnight, washed in 0.1% Tween20 PBS and incubated with goat anti-

mouse IgG-HRP (Santa Cruz Biotechnology), 1:2000 dilution in blocking solution at RT for 

30 minutes.  After further washing, HRP bound protein bands were detected using the 

chemiluminescent SuperSignal® West Dura Extended Duration Substrate system (Thermo 

Scientific).  Following instructions from the supplier, 2.5ml of the stable peroxide buffer 

was combined with 2.5ml of luminol enhancer.  Membranes were submerged in the 

solution and incubated at RT for 3 minutes.  Membranes were then washed three times for 

10 minutes in PBS, blocked for 3 hours in 5% non-fat milk, 0.1% Tween20 PBS and stained 
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for β-actin for normalisation using rabbit anti-human β-actin primary antibody (Cell 

Signaling) 1:1000 dilution in blocking solution overnight at 4°C, followed by goat anti-

rabbit IgG-HRP (Santa Cruz) 1:2000 dilution in blocking solution for 30 minutes at RT 

before the membrane was developed as previously described. 

 

Processing of histological samples 

CXCR2-/- and wild type BALB/C mouse knee joints (provided by Dr L. Brandolini, Dompé S. 

P. A.) were dissected immediately after the animals were killed and fixed in formalin.  The 

joints were then washed and decalcified in a formic acid decalcifying buffer (33% formic 

acid, 13.5% tri sodium citrate) for 24 hours at RT.  They were then washed under running 

water for 24 hours before being placed in formalin prior to paraffin embedding. 

Human cartilage explants were fixed in 4% paraformaldehyde in PBS and then processed 

for paraffin embedding. 

Paraffin Embedding 

Following fixation and, when appropriate decalcification, the tissues were washed in PBS, 

placed into embedding cassettes and processed in a Leica TP 1050 tissue processor 

through the following steps: 

1) 70% ethanol, 1 hour x2 

2) 80% ethanol, 1 hour x2 

3) 95% ethanol, 1 hour x2 

4) 100% ethanol, 1 hour x3 

5) Xylene, 1 hour x3 

6) Paraffin wax (56-58°C), 1 hour 30 mins x2 
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Following processing, the tissue samples were embedded into liquid paraffin in the desired 

orientation and placed onto a cold plate for 1 hour to set.  Cartilage explants were 

embedded with their lateral side facing down to ensure sections include the full thickness 

of the articular cartilage.  Mouse knees were orientated into the ‘kneeling position’ with 

the anterior aspect of the tibia facing downwards, and the femur angled at 90° and 

directed upwards.  This orientation allowed for the presentation of the patello-femoral 

and both lateral and medial compartment of the tibio-femoral joints in each section. 

Sample sectioning 

Paraffin embedded mouse knee joints and human articular cartilage explants were placed 

onto ice to cool for 30 minutes before they were cut into 5µm serial sections using a Leica 

RM 2135 microtome (Knowlhill, UK).  Each section was floated on a warm water bath 

(40°C), attached to a Superfrost slide and placed onto a hot plate at 50°C to dry for a 

minimum of 1 hour.  Slides were then stored at RT before histology. 

 

Immunofluorescence staining and imaging 

Monolayer chondrocytes 

Chondrocytes were plated onto 13mm glass coverslips, sterilised in 70% ethanol and left to 

dry within the cell culture hood before being placed into 24-well plates. Upon reaching 

80% confluency, cells were fixed in 4% paraformaldehyde for 30 minutes at RT, washed in 

PBS, quenched in PBS supplemented with 50nM ammonium chloride and blocked in 

protein block (Dako) for 30 minutes.  Chondrocyte coverslips were incubated with mouse 

anti-human CXCR1 or CXCR2 antibodies (R&D) 1:200 diluted in blocking solution at RT for 1 

hour in a humid atmosphere, washed extensively in PBS containing 0.2% Triton X-100 and 

incubated with Cy2 conjugated goat anti-mouse IgG (Santa Cruz) 1:100 dilution for 1 hour 

at RT in the dark, washed in PBS 0.2% Triton X-100 three times for 10 minutes each in the 
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dark, counterstained with 10µg/ml propidium iodide for 5 minutes at RT in the dark, 

washed in PBS three times for 10 minutes in the dark, and mounted in Mowiol.   

 

Cartilage explant sections 

Cartilage explant paraffin sections were deparaffinized as follows: 

1) Slides with sections were heated on a hot plate at 50°C for 30 minutes. 

2) Slides were placed into xylene for 5 minutes x2 

3) Slides were placed into 100% ethanol for 5 minutes x2 

4) Slides were placed into distilled water for 2 minutes and left to air dry for 40 

minutes at RT. 

5) Sections were fixed using 4% paraformaldehyde for 10 minutes at RT, followed by 

two 10 minute washes in PBS. 

Sections were placed for 7 min in prewarmed 0.2N HCl in slide mailers in a waterbath at 

37oC.  The HCl was then replaced with a pre-warmed solution of 100mg/ml pepsin in 0.2N 

HCl for 45 minutes at 37°C.  Each slide was carefully removed, dipped individually into PBS 

for 2 seconds, followed by distilled water for 2 seconds and left to dry at RT.     Sections 

were post-fixed in buffered 4% paraformadehyde for 10 minutes at RT, washed in PBS, 

quenched in two 5 minute washes of NH4Cl and blocked for 1 hour in a blocking solution 

consisting of PBS with 20% FBS and 0.2% Triton-X100 at RT.   

Fixed and digested paraffin sections were incubated overnight at 4°C with mouse anti-

human CXCR1 or CXCR2 antibodies (R&D, 1:20 dilution into blocking solution), washed 

extensively in PBS 0.2% Triton-X and treated with Cy2 conjugated goat anti-mouse IgG 

secondary antibody (1:100 dilution in blocking solution) for 1 hour at RT, washed three 

times for 10 minutes each in PBS 0.2% Triton-X, counterstained with 10µg/ml propidium 
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iodide for 5 minutes at RT, washed three times for 10 minutes in PBS.  Coverslips were 

then mounted using mowiol.  Images were acquired at 22°C by either Leica DM5500 Q 

Confocal microscope using 40X magnification/0.75 numerical aperture, or Olympus BX61 

microscope with a fixed exposure using either 10X/0.4 or 20X/0.7 objective lenses, using 

Cell-P software.  Aquisition parameters were set using positive and negative control 

sections in order to achieve maximum sensitivity and specificity, which was then kept 

constant during the aquisition of all images in the set.  Specifically, the autogain facility 

was switched off, exposure time was selected as to allow for the negative control to show 

a barely visible fluorescence, whilst the gain setting was selected using the section 

exhibiting the strongest fluorescent activity, using the upper limit to prevent saturation 

and consequent loss of sensitivity.   Images were enhanced using Adobe Photoshop for 

better rendering without altering the relationship of target to control images.   

 

Table 3.  Summary of antibodies used for immunofluorescence staining 

Target 
Antigen 

Primary Antibody Secondary Antibody 

Antibody Supplier Dilution Antibody Supplier Dilution 

CXCR1 

Mouse 
monoclonal 
anti-human 

CXCR1 

R&D 
Systems 
(Cat No. 

MAB330) 

1:200 

Cy2 
conjugated 
goat anti-
mouse IgG 

Santa Cruz 
Biotechnology 

1:100 

CXCR2 

Mouse 
monoclonal 
anti-human 

CXCR2 

R&D 
Systems 
(Cat No. 

MAB331) 

1:200 

CXCL8 

Mouse 
monoclonal 
anti-human 

CXCL8 

R&D 
Systems 
Cat No. 

MAB208) 

1:20 

CXCL6 

Mouse 
monoclonal 
anti-human 

CXCL6 

R&D 
Systems 
Cat No. 

MAB333) 

1:20 
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Explant digestion and CXC chemokine immunohistochemistry 

Cartilage explant paraffin sections were deparaffinised and digested for 1 hour at 37°C in 

10mg/ml pepsin in 0.2N HCl as described previously.  For removal of carbohydrate chains, 

sections were treated with 5mU/ml heparitinase (Seikagaku) in Tris-HCl pH8.0 to remove 

heparan sulphate, or with 5mU/ml chondroitinase ABC (Sigma) to remove chondroitin 

sulphate.  Sections were post-fixed in buffered 4% paraformadehyde for 10 minutes at RT, 

washed three times in PBS for 5 min each, quenched in NH4Cl and blocked as previously 

described.  Paraffin sections were incubated overnight at 4°C with either mouse anti-

human CXCL8 primary antibody (R&D), or mouse anti-human CXCL6 primary antibody 

(R&D), 1:20 dilution in blocking buffer, washed extensively in PBS 0.2% Triton-X and 

incubated for 1 hour at RT with goat anti-mouse Cy2 secondary antibodies (Santa Cruz, 

1:100 dilution), counterstained using propidium iodide and mounted as described for 

CXCR1/2 receptor staining.   

 

Histological staining 

Toluidine Blue 

In order to identify when the correct level within the sample had been reached during 

cutting, a fast Toluidine blue stain was applied to the slides.  Slides were individually dried 

above a flame, depariffinased in xylene for 1 minute and dehydrated in 100% ethanol for 1 

minute.  Slides were then washed in running water and covered with a drop of Toluidine 

blue (see Appendix) for 10 seconds.  Slides were rinsed in running water again and viewed 

under the microscope.  Slides were left to air dry, cleared in xylene and mounted in DPX. 
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Safranin O 

To stain the highly sulfated, negatively charged glycosaminoglycans within the cartilage, 

Safranin O staining was used on mouse knee sections.  Slides were deparaffinised and 

dehydrated as described for immunohistochemistry and covered in 0.2% Safranin O 

solution (see Appendix) for 13 minutes.  Slides were washed in distilled water and 

differentiated in 100% ethanol twice for 5 minutes, cleared in xylene twice for 5 minutes, 

then air dried and mounted in DPX. 

Histomorphometry 

Histomorphometric analysis was performed on sections obtained from wild type and 

CXCR2-/- null mutant mouse knees.  Non-consecutive sections from each sample were 

used to evaluate variability across sections and between animals.  In this analysis, articular 

cartilage thickness of femoral condyles and tibial plateaux and the density of Safranin O 

staining and hence sulphated proteoglycan content were compared using Cell-P (Olympus, 

UK) and ImageJ software.  To this end, ImageJ was used to firstly measure the thickness of 

articular cartilage from each compartment and the growth plate (Figure 32).  To measure 

Safranin-O staining intensity, a cross section of each image was selected within Image J, 

positive colour intensity was plotted across the section as demonstrated in Figure 33, and 

the area above a standard threshold measured for each individual image was recorded for 

each cartilage compartment.  Safranin-O staining density was calculated by dividing the 

area of positive staining plotted above the threshold, by the thickness recorded previously.  

The staining density of each articular cartilage compartment was then normalised for 

staining density of the growth plate in that section, thus accounting for staining intensity 

variation between sections from the same knee. 
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Histological scoring 

The structural integrity of the joint surface in mice was assessed using a well validated 

Chambers histological scoring system which is summarised in Table 4.  Scoring was 

performed independantly by two observers (Dr Dell’Accio and myself).  

 

Table 4.  Chambers Score 

Description Points 

No damage 0 

Loss of metachromatic staining without structural changes 0.5 

Roughened articular surface and small fibrillations 1 

Fibrillations down to the layer immediately below superficial layer 2 

Loss of surface lamina and fibrillations extending down to the calcified 
cartilage 

3 

Major fibrillations and cartilage erosion down to the subchondral bone 4 

Major fibrillations and erosion of up to 80% of the cartilage 5 

More than 80% loss of cartilage 6 

Chambers et al., 2001 

Statistical analysis 

Parametric data were subjected to the student T-test.  For dose response analysis, ANOVA 

analysis was used with the Dunnet post test applied.  P values of less than 0.05 were 

considered significant, * P < 0.05, ** P < 0.01, ***P < 0.001. 
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Expression of functional ELR+ CXC chemokine receptors and 

ligands in human articular chondrocytes 

Experimental layout. 

Previous studies have revealed the expression of the CXC chemokine receptors, CXCR1 and 

CXCR2, in articular chondrocytes (Borzi et al., 2000;Merz et al., 2003).  In preparation for 

my investigation into the function of these receptors within cartilage, it was important to 

establish whether both ELR+ CXC chemokine receptors are expressed at mRNA and protein 

level by chondrocytes cultured within our lab, and to examine the distribution of these 

receptors both in subcellular compartments and within cartilage tissue.  To this end, we 

began by using reverse transcription PCR and Western blotting to confirm CXCR1 and 

CXCR2 expression in monolayer cultured human chondrocytes.  Immunohistochemistry 

was used to detect CXCR1 and CXCR2 in human cartilage explants in order to verify that 

receptor expression occurs within cartilage tissue. 

As an indication of the importance of any CXCR1/2 signalling activity in relation to 

chondrocyte stability, real time RT-PCR was used to compare the expression of CXCL6 and 

CXCL8 mRNA in early and late passage chondrocytes.  Late passage chondrocytes are 

known to lose the expression of key molecular markers of chondrocyte stability, notably 

type II collagen, aggrecan, BMP2, FGFR3 and SOX9, in correlation with the failure of 

passaged cells to form stable cartilage explants when implanted in vivo  (Dell'accio et al., 

2001). 

With the aim of revealing an indication into the possible functions of CXCR1/2 signalling in 

articular chondrocytes, immunofluoresence microscopy and confocal microscopy was used 

to examine the cellular distribution of CXCR1 and CXCR2 in human early passage 

monolayer chondrocytes.   
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Following this, it was necessary to establish whether any CXCR1 and CXCR2 found within 

the in vitro cultured chondrocytes were functional.  A calcium mobilisation assay was used 

as a downstream readout of CXCR1/2 activation following exposure to CXCL8.  This 

approach was also used to assess the efficiency of CXCR1/2 blocking methods in 

preparation for later experiments, and to determine the redundancy of each receptor 

within chondrocytes.     

 

ELR+ CXC chemokine receptor and ligand expression in human articular 

chondrocyte monolayers 

The ELR+ CXC chemokine receptors, CXCR1 and CXCR2, are primarily studied during 

neutrophil recruitment during inflammation (Baggiolini et al., 1995;Taub et al., 1996), and 

in the regulation of angiogenesis and metastasis in various cancers (Balkwill, 2004;Singh et 

al., 2009;Xie, 2001).  Chondrocytes are not known to migrate in vivo, therefore it was 

important to confirm the presence and functional activity of CXCR1 and CXCR2 in articular 

chondrocytes in culture in our laboratory before investigating any possible functions of the 

CXCR1/2 signalling pathway using receptor blocking methods. 

RNA extracted from human primary chondrocytes cultured in monolayer to full confluence 

was subject to reverse transcription and semi-quantitative PCR (Figure 9), which confirmed 

the expression at mRNA level of both CXCR1 and CXCR2 at levels comparable to those 

found in human neutrophils.  Western blotting on cell lysates extracted from confluent 

human primary chondrocyte monolayers confirmed the expression of CXCR1 and CXCR2 at 

protein level (Figure 9B).   
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Figure 9.  CXC chemokine receptor expression in human chondrocytes.  (A)  Semi 

quantitative RT-PCR shows the expression at mRNA level of CXCR1 and CXCR2 in early 

passage AHAC in comparison to human neutrophils and a water negative control.  Human 

β-actin is included as a loading control.  (B) Western blot shows the expression of CXCR1 

and CXCR2 at protein level in freshly isolated AHAC in comparison to human neutrophil 

positive control and NIH3T3 negative control.  Data presented are representative of 3 

individual donors. 
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Quantitative real time RT-PCR was used to compare CXC chemokine ligand mRNA levels in 

early and late passage human articular chondrocyte monolayers (Figure 10).  CXCL6 and 

CXCL8 were found to be expressed in early passage chondrocytes thereby suggesting the 

presence of a possible autocrine or paracrine signalling mechanism.  Interestingly, this 

expression was found to be lost in late passage chondrocytes in correlation with the loss of 

phenotypic molecular markers and their capacity to form cartilage in vivo (Dell'accio et al., 

2001). 

 

 

Figure 10.  CXC chemokine ligand expression is lost during in vitro cell expansion.  Real 

time RT-PCR comparison of CXCL6 and CXCL8 expression in EP and LP-AHAC demonstrates 

the loss of CXC chemokine ligands during in vitro chondrocyte culture. n = 3 **P < 0.01. 
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CXCR1 and CXCR2 subcellular expression 

Confocal microscopy was used to examine the subcellular localisation of CXCR1 and CXCR2 

in monolayer cultured human articular chondrocytes.  Immunocytochemistry performed 

on permeabilised cells allowed for the visualisation of receptors both upon the surface of 

chondrocytes and within the cytoplasm (Figure 11B).  Activated receptors are known to be 

recycled within the cytoplasm before being returned to the cell membrane (Feniger-Barish 

et al., 2000;Matityahu et al., 2002).  In addition to demonstrating receptor recycling, the 

relative abundance of receptors present within the cytoplasm further supports the 

hypothesis of a possible autocrine CXCR signalling mechanism within chondrocytes. 

 

 

Figure 11.  CXC chemokine receptor expression in monolayer chondrocytes.  Confocal 

microscopy of immunofluorescent staining of CXCR1 and CXCR2 in freshly isolated human 

articular chondrocytes plated in monolayer.  Receptors are found to be present within the 

cytoplasm as well as localised to the cell membrane.  Nuclei are counterstained with 

propidium iodide (red).  n = 3.  Bar, 20µm.  
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CXCR1/2 expression in human articular cartilage explants 

 

It is possible that CXCR1 and CXCR2 expression is induced in chondrocytes due to the 

monolayer culture conditions.  Immunohistochemistry was used to identify receptors in 

full thickness human articular cartilage explants obtained from healthy control donors 

(Figure 12).  CXCR1 was found to be more abundant than CXCR2 within these explants, in 

keeping with studies demonstrating a higher rate of degradation of CXCR2 following 

exposure to CXC chemokine ligands in comparison to that of CXCR1 (Chuntharapai and 

Kim, 1995;Haringman et al., 2004).  Similar patterns of expression were found in cartilage 

explants taken from relatively preserved areas of cartilage obtained from OA donors, 

suggesting that CXCR1 and CXCR2 expression is not lost during OA pathology, at least at an 

early stage of disease.      
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Figure 12.  CXC chemokine receptor expression in human articular cartilage explants.  

Immunofluorescent staining of CXCR1 and CXCR2 in human articular cartilage explants 

5µm paraffin sections from femoral condyles of both healthy and osteoarthritis donors.   

Nuclei are counterstained with propidium iodide (red).  Data presented are represenative 

of 3 donors.  Bar, 20µm.  
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Interestingly, a clear patterning of CXCR2 was obvserved within the preserved cartilage 

explant.  The receptor was found to be relatively absent within the superficial layer of the 

articular cartilage, whereas it was present in chondrocytes throughout the middle and 

deep zones of the cartilage (Figure 13).   

 

 

Figure 13.  CXC chemokine receptor distribution within articular cartilage.  

Immunofluorescent staining comparing CXCR1 and CXCR2 expression between the 

superficial and deep zones of preserved articular cartilage from an osteoarthritis donor.  

Nuclei are counterstained with propidium iodide (red).  n = 3 Bar, 20µm. 
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CXCL8 induces calcium mobilisation in articular chondrocytes which is CXCR1/2 

and G-protein dependant 

Having established that articular chondrocytes express CXCR1/2 in monolayer and 

cartilage explants, we set out to ascertain whether the CXC chemokine receptors found to 

be expressed in human articular chondrocytes were functionally active.  G-protein coupled 

ELR+ CXC chemokine receptor activation is known to stimulate calcium mobilisation (Lee et 

al., 1992;Wu et al., 1993).  A calcium mobilisation assay was used as a method of 

measurement for CXCR1/2 activation (Bacon and Camp, 1990;Wuyts et al., 1997).   

Initial time course experiments showed a significant increase in calcium mobilisation 

within human articular chondrocytes following CXCL8 stimulation, confirming that 

CXCR1/2 present in monolayer cultured chondrocytes are functionally active.  This increase 

was observed to be greatest at 5 minutes following ligand addition (Figure 14), providing a 

standard time point for all following calcium mobilisation readings. 
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Figure 14.  Time course of calcium mobilisation in chondrocytes.  Fluo-4 calcium 

mobilisation in EP-AHAC following the CXCL8 induced release of intracellular Ca2+.  Time 

course analysis from 2 minutes post ligand addition.  n = 3  * P < 0.05.  

 

In order to confirm whether calcium mobilisation in human articular chondrocytes is 

CXCR1/2 dependant, we first used CXCR1 and CXCR2 blocking antibodies to inhibit 

CXCR1/2 signalling at ligand-receptor level, whilst measuring CXCL8 induced calcium 

mobilisation.  To confirm this data we then used CXCR1 and CXCR2 siRNA to inhibit at 

specific receptor level.  To investigate if CXCL8-induced calcium mobilisation conducted via 

a G-protein dependant signalling pathway, Pertussis toxin was used to inhibit signalling at 

intracellular level. 

To select concentrations of CXCR1 and CXCR2 blocking antibodies and Pertussis toxin for 

use in calcium mobilisation analysis, and in later chondrocyte phenotypic analysis, dose 

response experiments were conducted around previously published concentrations for 

human neutrophil studies (Becker et al., 1985;Ginestier et al., 2010;Sturm et al., 

2005;Wuyts et al., 1997) (Figure 15).   Doses of CXCR1/2 lower than the normal published 
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concentration of 10µl/ml showed the same inhibition of calcium mobilisation of around 

50%, whereas a dose dependant response was observed following G-protein inhibition 

upto the published concentration of 1µl/ml.   

 

 

 

Figure 15.  Dose response of CXCL8-induced calcium mobilisation following CXCR1/2 or 

G-protein blockade.  Fluo-4 calcium mobilisation in EP-AHAC following the CXCL8 induced 

release of intracellular Ca2+, (A) following specific inhibition of CXCR1 and CXCR2 using 

blocking antibodies and (B) following G-protein inhibition using Pertussis toxin. n = 1. 
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Calcium mobilisation was inhibited following the exposure of primary chondrocytes to 

CXCR1 and CXCR2 blocking antibodies at a total concentration of 10µg/ml.  Analysis 

revealed a blocking efficiency of approximately 40% of CXCL8-induced calcium mobilisation 

activity for blocking antibody treatment (Figure 16A).  

 

Figure 16.  CXCR1/2 activity in EP-AHAC.  Fluo-4 intracellular calcium mobilisation in EP-

AHAC following incubation with (A) αCXCR1 and αCXCR2 blocking antibodies, with and 

without CXCL8 stimulus.  Mouse non-specific IgG used as negative control.  (B) CXCR1 and 

CXCR2 siRNA, following CXCL8 stimulus.  Scrambled siRNA used as negative control.  *P < 

0.05, ***P < 0.001.  Data show the activation of downstream calcium mobilisation 

following CXCL8 stimulation, which is significantly reduced during CXCR1+2 inhibition. 
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To confirm the inhibition of CXCL8-induced calcium mobilisation following CXCR1 and 

CXCR2 blockade using a second method, CXCR1 and CXCR2 were knocked down in human 

chondrocytes using specific siRNA (see Page 102 for knockdown optimisation).  Calcium 

mobilisation was induced at 48 hours following siRNA transfection.  Calcium mobilisation 

in CXCR1 and CXCR2 siRNA treated chondrocytes was shown to be 50% lower than in cells 

transfected with the scrambled control siRNA (Figure 16B), thereby confirming the 

decrease in calcium mobilisation found in cells treated with CXCR1 and CXCR2 antibodies. 

CXCR1 and CXCR2 are G-protein coupled receptors known to regulate calcium mobilisation 

via the pertussis toxin sensitive release of βγ subunits from Gi class of G proteins (Wu et 

al., 1993;Wu et al., 1996).  This allowed for pertussis toxin to be used to inhibit CXCR1/2 

signalling at G-protein level, giving a blocking efficiency of more than 50% in CXCL8 

stimulated cells.  An inhibition of calcium influx was also seen in non-stimulated cells 

following pertussis toxin treatment, indicating the presence of underlying 

autocrine/paracrine activity either via CXCR1/2 which are inaccessible to blocking 

antibodies, possibly through internalisation, or via the activity of other G protein coupled 

receptors.   
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Figure 17.  G-protein dependant CXCR1/2 activity in EP-AHAC.  Fluo-4 intracellular 

calcium mobilisation in EP-AHAC following incubation with Pertussis toxin, with and 

without CXCL8 stimulus, vehicle negative control.  *P < 0.05.  Data show the activation of 

downstream calcium mobilisation following CXCL8 stimulation, which is significantly 

reduced during G-protein inhibition. 
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CXCR1 and CXCR2 are functionally redundant in human articular chondrocytes 

Chemokine induced neutrophil activation and migration requires signalling via both CXCR1 

and CXCR2 (Jones et al., 1997).  The blockade of each receptor individually using blocking 

antibodies specific to either CXCR1 or CXCR2 was used to investigate whether the 

simultaneous activation of CXCR1 and CXCR2 is required for CXCR signalling measured via 

calcium influx in human articular chondrocytes. 

CXCR1 and CXCR2 activation by CXCL8 was found to be sufficient to induce calcium 

mobilisation in monolayer cultured early passage chondrocytes (Figure 16).  The inhibition 

of only one receptor did not result in a calcium influx response of significant difference to 

cells treated with a negative control mouse IgG antibody, whereas the blockade of both 

receptors simultaneously resulted in a significant decrease (Figure 18).  These data suggest 

that CXCR1/2 signalling in chondrocytes may only be pharmacologically modulated 

through the blockade of both ELR+ CXC chemokine receptors, whilst the inhibition of only 

one receptor would be required to affect neutrophil migration during inflammation. 
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Figure 18.  Redundant functional activity of CXCR1 and CXCR2.  Fluo-4 intracellular 

calcium mobilisation in EP-AHAC following incubation with either CXCR1 or CXCR2 specific 

blocking antibodies. **P < 0.01.  Data show the activation of downstream calcium 

mobilisation following CXCL8 stimulation, which is not significantly reduced during 

individual blockade of either CXCR1 or CXCR2. 
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CXCR1 and CXCR2 expression in human chondrocyte cell lines 

Due to the periodic difficulty in obtaining well preserved human articular cartilage 

samples, it was necessary to obtain a suitable cell line for use in CXCR1/2 inhibition 

experiments on a larger scale than possible using the available primary cells.  Two 

immortalised human chondrocytic cell lines, C28/I2 and JJ012 were analysed for their 

expressions of CXCR1 and CXCR2 at mRNA level in order to test for their suitability for 

CXCR1/2 blockade experiments. 

C28/I2 mRNA was taken from monolayer cells cultured both in the presence of 10% FBS 

and in serum-free medium supplemented with ITS+ (Insulin-Transferrin-Selenium, 1%) for 

4 days and analysed using semi-quantitative RT-PCR.  CXCR2 only was found to be 

expressed in cells cultured in ITS+ supplemented medium, whilst neither receptor was 

found in standard culture conditions, deeming C28/I2 largely unsuitable for blockade 

experiments (Figure 19A).  The JJ012 human chondrosarcoma cell line was then compared 

using RT-PCR, with both CXCR1 and CXCR2 found to be expressed at mRNA level in 

standard culture conditions (Figure 19B). 
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Figure 19.  CXCR1 and CXCR2 expression in human chondrocyte cell lines.  Semi-

quantitative PCR for CXCR1 and CXCR2 in (A) C28/I2 human immortalised chondrocytes 

cultured in either 10% FBS supplemented culture medium or in 1% ITS+ supplemented 

culture medium, or (B) JJ012 human chondrosarcoma cells cultured in 10% FBS 

supplemented culture medium. 
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Discussion 

ELR+ CXC chemokine signalling is primarily regarded as a mediator of neutrophil 

recruitment during inflammation and has been shown to be upregulated during arthritis.  

It is also known to regulate angiogenesis and tumour growth and survival in cancer (Singh 

et al., 2009;Strieter et al., 2005), suggesting that non-conventional roles aside from 

chemotaxis should be considered when targetting CXCR signalling during therapy.  ELR+ 

CXC chemokines have been implicated in joint inflammation during arthritis; however, 

recent data suggest that ELR+ CXC chemokines may play a role in joint surface 

homeostasis.  ELR+ CXC chemokines are expressed in normal and inflamed articular 

cartilage and synovial membrane (Borzi et al., 1999;Patterson et al., 2002), exogenous 

CXCL1 and CXCL8 have been shown to promote hypertrophic differentiation of articular 

chondrocytes (Merz et al., 2003), and CXCL8 has been shown in our laboratory to be 

upregulated in human articular cartilage explants following injury. 

Before investigating a possible homeostatic role of CXC chemokine signalling using a loss of 

function approach, it was vital to validate the expression of ELR+ CXC chemokine receptors 

in human primary articular chondrocytes and potential cell lines used in our laboratory.  

CXCR1 and CXCR2 were first shown to be expressed at mRNA level and at protein level in 

monolayer cultured early passage articular chondrocytes at levels similar to those found in 

the human neutrophil positive control.   The CXCR1/2 ligands, CXCL6 and CXCL8, were 

expressed in early passage, but not late passage monolayer cells, following patterns 

observed for chondrocyte phenotypic marker gene expression (Dell'accio et al., 2001).   

During in vitro chondrocyte expansion, the expression of type II collagen, aggrecan and 

SOX9 is reduced, in correlation with the loss of the ability of chondroyctes to form stable 

ectopic cartilage explants in vivo.  We have demonstrated a significant reduction in CXCL6 

and CXCL8 expression in late passage chondrocytes, suggesting that CXCR1/2 signalling 

may be linked to this maintenance of phenotypic stability in chondrocytes. 
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 The possibility that CXC chemokine receptor expression was induced during the 

monolayer seeding of chondroyctes was addressed using immunohistochemistry, which 

confirmed the presence of CXCR1 and CXCR2 in both normal and preserved osteoarthritic 

human articular cartilage explants.  We cannot exclude however, that in challenge 

conditions, such as following tissue digestion, components of this signalling pathway 

including receptors and ligands may be upregulated, perhaps in an attempt to re-establish 

homeostasis.  In fact, upregulation of CXCL8 in OA is well established (Borzi et al., 1999).  It 

is tempting to speculate that this attempt, however, is ultimately futile due to the ECM 

breakdown typical of OA. 

Interestingly, CXC chemokine receptors are noted within previous literature as being found 

only in osteoarthritic cartilage (Borzi et al., 2000).  This discrepancy may be explained by 

the use in my study of more efficient antigen retrieval methods that have allowed for the 

digestion of the denser extracellular matrix of the healthy cartilage, whereas, in OA 

cartilage, matrix breakdown related to the disease may have facilitated detection with 

milder retrieval methods.  Indeed, without the aggressive pepsin retrieval method used 

here, CXCR1, CXCR2 and CXCL8 were undetectable in the healthy or preserved cartilage 

explants (Figure 34).  In addition, the strong detection of CXCR1 and CXCR2 at mRNA level 

and also at protein level by western blotting confirms our data that normal or relatively 

healthy chondrocytes express CXCR1 and CXCR2. 

The measurement of calcium mobilisation following CXCL8 stimulation, and its reduction 

following various methods of CXCR1/2 signalling has demonstrated the functional activity 

of CXCR1 and CXCR2 in human articular chondrocytes following exposure to the ligand 

CXCL8.   These data have also provided an insight into the efficacy of each CXCR1/2 

signalling blockade approach used during my analysis of chondrocyte phenotypic stability.   
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Chemokines can activate several downstream signalling components including PI3K, 

intracellular Ca2+ accumulation and MAPK.  One unresolved problem is the determination 

of which signalling components activated by chemokines may mediate the chondrocyte 

phenotype.  PLCβ2 mediates chemokine induced Ca2+ release.  Mice deficient in for the 

gene encoding PLCβ2 have impaired chemoattractant-induced intracellular Ca2+ release 

however their leukocyte migration was not affected (Jiang et al., 1997).  Therefore, Ca2+ 

release does not appear to be required for chemotactic activity.  However, Ca2+ 

mobilisation in chondrocytes was shown previously to modulate the chondrocyte 

phenotype.   Intracellular calcium increases, driven by IGF1 and PI3K signalling, have a 

strong anabolic effect on chondrocytes (Poiraudeau et al., 1997), however, other studies 

have suggested that calcium mobilisation may result in the loss of chondrocyte 

differentiation markers including SOX9, COL2A1 and aggrecan (Alford et al., 2003;Kulyk et 

al., 2000;Lee et al., 2007).  

The discrepancies found between the conclusions of these studies may be explained by 

examining the downstream molecular cascades mediating the Ca2+ release.  The specific 

activation of PI3K modulated Ca2+ release, known to be a downstream signalling target of 

CXCR1/2, was shown to increase the anabolic activity of chondrocytes.   

This evidence suggests that the inhibitory effects of CXCR1/2 or G-protein blockade on 

calcium mobilisation are likely to replicate any patterns of modulation on chondrocyte 

phenotypic stability seen in later experiments. The quantification of Ca2+ mobilisation 

therefore allows for the evaluation of the likely efficacy of each method of CXCR1/2 

inhibition used for phenotypic analysis later in this study. 

Whereas G protein blockade or receptor knockdown by siRNA resulted in a very efficient 

blockade of signalling, blockade using anti CXCR1 and CXCR2 blocking antibodies achieved 

a relatively modest inhibition in Ca2+ mobilisation by comparison.  This may be explained 
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by unavailability of the internalised pool of CXCR1/2 for antibody binding.  Indeed, the 

confocal microscopy data indicate that a large proportion of the receptor was present 

within intracellular vesicles.  The rate of recycling and degradation of CXCR1 and CXCR2 

varies as a function of ligand concentrations, however the presence of this threshold of 

inhibition, the amount of internalised receptors and the fact that the same cells express 

both ligands and receptors raises the question as to whether secretion of the ligands is 

required for signalling or whether autocrine production of CXC chemokines is sufficient to 

activate the receptors within intracellular vesicles without secretion.  

CXC chemokine mediated neutrophil migration requires the activation of both CXCR1 and 

CXCR2 (Jones et al., 1997).  My data indicate that CXCL8-induced calcium mobilisation in 

chondrocytes only requires the activation of one of the two receptors, suggesting at least a 

partial redundancy between CXCR1 and CXCR2 not seen in neutrophil activation.  This 

suggests that alternative downstream signalling pathways, and hence functional 

outcomes, may depend upon the activation of either one or both receptors in 

chondrocytes.  This provides a potential method of pharmalogical modulation of CXCR1/2 

signalling in inflammatory neutrophils, via the inhibition of only one ELR+ CXC chemokine 

receptor, whereby chondrocyte function should remain unaffected. 

In the next chapter, I aim to determine the functional role of CXCR1/2 signalling in articular 

chondrocytes using a series of loss of function experiments, using my findings that 

CXCR1/2 and G-protein inhibition disrupts calcium mobilisation, which has previously been 

shown to be involved in the maintenance of the chondrocyte phenotype. 
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CXCR1/2 signalling is required for articular chondrocyte 

phenotypic stability. 

Experimental Layout 

Having demonstrated that articular chondrocytes express functional CXCR1/2 receptors 

and their respective ligands, the next stage of the project was to identify the function of 

such molecules in chondrocytes, which are not known to migrate in vivo.  Cartilage is an 

avascular tissue, therefore possible explanations involving chemotaxis or angiogenesis are 

unlikely to be relevant within this context. 

The primary function of chondrocytes is to produce and maintain a specialised 

extracellular matrix, providing articular cartilage with its resistance and compressive 

biomechanical properties required for weight bearing and joint motion.  I have shown that 

CXC chemokine ligand expression decreases significantly during in vitro cell expansion, in 

correlation with the loss of markers of the stable chondrocyte phenotype, including type II 

collagen and aggrecan (Dell'accio et al., 2001).  To this end, I have hypothesised that CXC 

chemokines may be required for the maintenance of chondrocyte phenotypic stability and 

ECM production. 

I have investigated this hypothesis using a series of loss of function experiments whereby 

CXCR1/2 signalling was inhibited at both receptor level and downstream G-protein level in 

human and porcine primary chondrocytes and in the JJ012 chondrosarcoma cell line.  The 

ability of chondrocytes to produce large amounts of ECM when cultured in 3 dimensional 

micromasses was the first readout used to measure the influence of CXCR1/2 signalling on 

the maintenance of ECM production.  These results were then supported using real-time 

RT-qPCR to measure the expression of key marker genes specific to the stable chondrocyte 

phenotype.   
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The present data in CXCR2-/- mice are in agreement with a previous study which did not 

report differences in cartilage phenotype (Bischoff et al., 2011).      

 

Optimisation of CXCR1 and CXCR2 knockdown using siRNA 

One of the problems found during our previous experiments using blocking antibodies to 

inhibit CXCR1/2 signalling was that internalised receptors were not accessible to the 

antibodies, resulting in only a partial inhibition of signalling using this technique.  To 

circumvent this problem, siRNA oligonucleotide sequences were used to specifically 

knockdown the specific activity of the receptors, thus restricting any effect of internalised 

receptors which may be protected from exposure to blocking antibodies.  The following 

series of experiments detail how the optimisation of CXCR1/2 knockdown in primary 

chondrocytes and JJ012 cells was achieved. 

As a first approach, a recommended dose of positive control fluorescent oligonucleotides 

was transfected into human primary chondrocytes using lipofectamine 2000 reagent at 

increasing concentrations, with the aim of finding a concentration at which efficient 

transfection may be achieved without the toxic effects of lipofectamine compromising 

chondrocyte viability (Figure 20).  A peak of transfection efficiency was observed using 

1µg/ml of lipofectamine reagent, which was used for subsequent lipofectamine 

transfections.  Concentrations above this level resulted in altered cell morphology. 
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Figure 20.  Lipofectamine™ dose response of fluorescent oligonucleotide transfection.  

Bright field and FITC fluorescent imaging of EP-AHAC transfected with 50nM green 

fluorescent oligonucleotide using an increasing concentration of Lipofectamine™.  Bar, 

200µm 
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Three individual CXCR1 and two individual CXCR2 specific siRNA oligonucleotide sequences 

were obtained and transfected into human primary chondrocytes in order to select the 

sequence providing the most effective gene knockdown.  Semi-quantitative PCR 

normalised for β-actin expression was used as a readout to assess the knockdown at gene 

expression level.  Figure 21 demonstrates the reduction in CXCR1 and CXCR2 mRNA 

obtained using each siRNA sequence relative to a scrambled control.  CXCR1-oligo I was 

selected for use in later siRNA experiments.   

To confirm the selection of CXCR2-oligo I as the most efficient sequence and to assess the 

translation of mRNA knockdown into protein expression in human primary chondrocytes, a 

Western blot was performed on cell lysates obtained from CXCR2-oligonucleotide I and 

CXCR2-oligonucleotide II treated cells in comparison with untreated and scrambled 

oligonucleotide transfected chondrocytes.  After 48 hours, protein expression levels 

confirmed CXCR2-oligonucleotide I as the preferred oligo for CXCR2 knockdown (Figure 

22), however the overall reduction in receptor expression was not satisfactorily 

comparable to that observed at mRNA level.   This pattern was repeated in CXCR1 

knockdown when comparing siRNA oligo concentration in order to select an optimal dose 

for protein knockdown (Figure 23).  We argued that this discrepancy was due to the well 

known recycling of the CXCR1/2 receptors and the consequent long half-life of each 

individual molecule.  Long-term knockdown experiments are not feasible with primary 

chondrocytes, which lose their phenotype with prolonged passaging.  In spite of these 

limitations, Western blotting confirmed that an siRNA dose of 50nM was preferred, as 

recommended in previous literature (Klatt et al., 2007), however a maximum reduction in 

protein levels of 50% was achieved.  As described in the previous chapter, this reduction in 

receptor expression was sufficient to reduce CXCL8-induced calcium mobilisation by 

approximately 50%.  
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Figure 21.  Selection of CXCR1 and CXCR2 siRNA oligonucleotides.  Semi quantitative RT-

PCR comparison of EP-AHAC transfected with either a CXCR1 (left) or CXCR2 (right) specific 

siRNA oligonucleotides or scrambled negative control siRNA oligonucleotide.  Knockdown 

efficiency 48 hours post transfection was quantitatively measured by optical densitometry, 

normalising each CXCR1 or CXCR2 PCR band intensity for β-actin band intensity. 
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Figure 22. Confirmation of CXCR2 siRNA oligonucleotide selection.  Western blot 

comparison of EP-AHAC transfected with CXCR2 specific siRNA oligonucleotides or a 

scrambled negative control siRNA oligonucleotide.  Knockdown efficiency 48 hours post 

transfection was quantitatively measured by optical densitometry, normalising each CXCR2 

band intensity for β-actin band intensity. 

 

Figure 23.  CXCR1 siRNA dose response.  Western blot analysis of CXCR1 knockdown 

efficiency by CXCR1 specific siRNA in comparison to a scrambled negative control siRNA.  

Knockdown efficiency 48 hours post transfection was quantitatively measured by optical 

denstiometry, normalising each CXCR1 band intensity for β-actin band intensity. 
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In order to achieve a more significant functional readout at phenotype level, I decided to 

assess whether a higher receptor knockdown may be achieved in the JJ012 human 

chondrocyte cell line, which, since they proliferate faster than primary chondrocytes, will 

be more dependent on transcription to maintain their “physiological” amount of CXCR1 

and CXCR2.  The choice of JJ012 was driven by preliminary experiments examining the 

CXCR1 and CXCR2 expression profile of human chondrocyte cell lines, described previously 

(Figure 19).  In a direct comparison to fluorescent oligonucleotide transfection using 

lipofectamine, jetPRIME™ (Polyplus, UK) was found to give an increased transfection 

efficiency in viable cells (Figure 24).   

 

 

Figure 24.  JetPRIME™ fluorescent oligonucleotide transfection.  (A) Bright field and (B) 

FITC fluorescent imaging of JJ012 cells transfected with 50nM green fluorescent 

oligonucleotide using jetPRIME™ reagent.  Bar, 200µm. 
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Using the same siRNA oligos for CXCR1 and CXCR2 shown to be most efficient in primary 

chondrocytes (Figure 21), JJ012 were transfected with siRNA for both receptors 

simultaneously using jetPRIME™ reagent and mRNA and cell lysate was collected after 24 

hours.  A knockdown of CXCR1 and CXCR2 at mRNA level of around 75% was observed 

(Figure 25A).  At protein level, Western blotting indicated a clear knockdown of both 

receptors, particularly in CXCR2 (Figure 25B).  The high availability of the JJ012 cell line, 

and the increased viability of cells transfected using jetPRIME™ led me to continue with 

this experimental approach in order to support the following loss of function data 

obtained using blocking antibodies and Pertussis toxin upon human and porcine primary 

chondrocytes. 

 

 

 

 

 

 



 Results  

110 
 

 

Figure 25.  CXCR1 and CXCR2 knockdown efficiency in JJ012 human chondrosarcoma cell 

line.  (A) Semi quantitative RT-PCR for CXCR1 and CXCR2 in JJ012 monolayer cells 24 hours 

after transfection with either CXCR1 and CXCR2 specific siRNA or scrambled negative 

control siRNA.  β-actin was used as a loading control.  Knockdown efficiency was 

quantitatively analysed by optical densitometry, normalising each CXCR1 or CXCR2 band 

intensity for β-actin band intensity.  (B)  Western blot for CXCR1 (left) and CXCR2 (right) in 

JJ012 monolayer cells 24 hours after transfection with either CXCR1 and CXCR2 specific 

siRNA or scrambled negative control siRNA.  β-actin was used as a loading control.  

Knockdown efficiency at protein level was quantitatively analysed using optical 

densitometry, normalising each CXCR1 or CXCR2 band for β-actin band intensity. 
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G-protein coupled receptor signalling is required for the maintenance of 

chondrocyte extracellular matrix 

Chondrocytes are not known to migrate in vivo and their main function is to maintain the 

homeostatic equilibrium of the extracellular matrix (ECM).  Therefore, I set out to test 

whether CXC chemokine signalling plays a role in the maintenance of the phenotype of 

articular chondrocyte ECM using a loss of function approach.  As an initial readout, I 

stained chondrocyte micromass cultures with Alcian blue at pH 0.2.  At this pH, Alcian blue 

very specifically stains highly sulphated GAGs, which are unique to the cartilage matrix. 

The staining can be quantified by spectrophotometry following guanidine extraction (De 

Bari et al., 2001). 

The specific inhibition of CXCR1 and CXCR2 using blocking antibodies resulted in a 

statistically significant decrease in the accumulation of highly sulphated GAGs in early 

passage adult human articular chondrocytes (Figure 26A) and in the JJ012 human 

chondrocytic cell line in micromass cultures (Figure 26B).  These data were supported by 

the similar depletion in highly sulphated GAGs obtained when CXCR1 and CXCR2 were 

knocked down by siRNA in JJ012 chondrocytic cells (Figure 26C), thereby confirming the 

requirement of the CXCR1/2 signalling pathway for the accumulation of the cartilage-

specific extracellular matrix.  Interestingly, the siRNA-mediated receptor knockdown 

resulted in a greater decrease in GAG content than treatment with anti CXCR1/2 blocking 

antibodies.  One possible explanation is that receptors that are internalised as shown in 

Figure 11 may not be accessible to blocking antibodies and may support baseline signalling 

through autocrine availability of CXCL8.  
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Figure 26. CXCR1/2 signalling is required for maintenance of ECM.  Guanidine extraction 

and quantification of Alcian blue sulphated proteoglycan staining normalised for total 

protein content of (A) human EP-AHAC and (B) JJ012 human chondrosarcoma cell line 

micromass cultures incubated with αCXCR1 and αCXCR2 antibodies.  Mouse non-specific 

IgG negative control.  (C) Alcian blue staining quantification of CXCR1 and CXCR2 siRNA 

treated JJ012 micromass cultures normalised for total protein content.  Scrambled siRNA 

used as negative control.  *P < 0.05, ***P < 0.001.  Data show CXCR1/2 signalling is 

required for the maintenance of chondrocyte ECM sulphated proteoglycan content in 

micromass cultures of human primary chondrocytes and a human chondrocyte cell line.   
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G protein blockade by PTX resulted in a statistically significant, dose-dependent reduction 

in the accumulation of highly sulphated GAGs in adult porcine chondrocytes in micromass 

culture (Figure 27), demonstrating that the CXCR1/2-dependent accumulation of sulphated 

GAGs is mediated by G proteins (most likely Gαi) and that the G-protein dependant 

modulation of chondrocyte phenotype may be conserved across species.  A decrease was 

also observed in the absence of exogenous CXCL8 (Figure 27), thereby suggesting that the 

endogenous production of CXCR1/2 ligands is sufficient for autocrine/paracrine signalling. 

 

 

Figure 27.  G-protein signalling is required for maintenance of ECM.  (A) Alcian blue 

staining quantification of EP porcine chondrocyte micromasses normalised for total 

protein content treated with 1µg/ml Pertussis toxin or vehicle control, and (B) treated with 

an increasing dose of Pertussis toxin before 4 day incubation with CXCL8.  *P < 0.05.  Data 

show the requirement of G-protein signalling for maintenance of ECM sulphated 

proteoglycan content of porcine chondrocyte micromass cultures. 
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CXCR1/2 signalling is required for the expression of chondrocyte differentiation 

markers. 

Next, I asked whether the decrease in cartilage specific extracellular matrix was associated 

with specific changes in the chondrocyte phenotype.  To this end, I compared the 

expression of genes associated with the articular cartilage phenotype in human articular 

chondrocytes treated with either CXCR1 and CXCR2 specific blocking antibodies or a 

mouse IgG control.  CXCR1/2 blockade resulted in a statistically significant decrease in the 

expression of COL2A1 and aggrecan mRNA (Figure 28).   

 

 

Figure 28.  CXCR1/2 signalling is required for chondrocyte phenotypic marker expression.  

Real time RT-PCR for (A) α1(II)collagen (COL2A1), (B) Aggrecan and (C) SOX9 in EP-AHAC 

incubated with αCXCR1 and αCXCR2 blocking antibodies for 4 days.  Mouse non-specific 

IgG used as negative control.  .  *P < 0.05, ***P < 0.001. 
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G protein blockade using PTX fully confirmed downregulation of COL2A1 and aggrecan 

mRNA (Figure 29).  Taken together, these data show that CXCR1/2, G protein-dependent 

chemokine signalling supports the synthesis of cartilage-specific extracellular matrix at 

least in part by increasing aggrecan and COL2A1 mRNA accumulation.  In addition, both 

CXCR1/2 and G protein blockade resulted in a statistically significant reduction of the 

expression of the transcription factor SOX9 (Figure 28 and Figure 29), which is known to 

support chondrocyte differentiation, including COL2A1 expression (Bi et al., 1999;Lefebvre 

et al., 1998), demonstrating that CXCR1/2 signalling is required for the phenotypic stability 

of articular chondrocytes.  

 

 

Figure 29.  G-protein signalling is required for chondrocyte phenotypic marker 

expression.  Real time RT-PCR for (A) α1(II)collagen (COL2A1), (B) Aggrecan and (C) SOX9 in 

EP-AHAC incubated with Pertussis toxin or vehicle control for 4 days.  **P < 0.01.  CXCR1/2 

via G-protein signalling is required for the maintenance of key chondrocyte phenotypic 

stability marker genes in monolayer culture. 
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Exogenous CXCR1/2 ligands are not sufficient to rescue the expression of stable 

chondrocyte molecular markers in late-passage AHAC. 

The blockade of CXCR1/2 signalling revealed that ELR+ CXC chemokine signalling is 

required for the phenotypic stability of early passage AHAC.  During the in vitro expansion 

of chondrocytes, the expression of both CXC chemokine ligands CXCL8 and CXCL6, and the 

expression of key phenotypic marker genes including SOX9 are lost.  In order to test 

whether the re-activation of CXCR1/2 signalling may be sufficient to rescue the expression 

of SOX9, type II collagen and aggrecan, late passage (second passage) were treated with 

either 10ng/ml CXCL8, 10ng/ml CXCL6, or both in combination, for 4 days before mRNA 

was retrieved for real time RT-PCR analysis for phenotypic marker genes.  No significant 

rescue of type II collagen, aggrecan or SOX9 mRNA expression was found after 4 days of 

treatment (Figure 30). 

 

 

Figure 30.  Addition of CXC chemokine ligands to LP-AHAC.  CXCL6 and/or CXCL8 are not 

sufficient to rescue the expression of COL2A1, Aggrecan and SOX 9 in late passage 

monolayer de-differentiated AHAC.  Q-PCR for COL2A1, Aggrecan and SOX 9 in late 

passage AHAC following 4 day culture in complete DMEM containing 10ng/ml CXCL6 

and/or CXCL8. 
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Phenotypic analysis of CXCR2 -/- mutant mice knee joints 

In order to investigate whether CXCR1/2 signalling is required for cartilage homeostasis in 

vivo, in unchallenged conditions, 8 week old CXCR2 knockout mutant mice knee joints 

were characterised and compared to wild-type BALB/C mice, firstly by using the Chambers 

osteoarthritis score to measure articular cartilage integrity, and secondly by measuring the 

thickness of articular cartilage on both femoral condyles and the tibial plateau, normalised 

by epiphysial growth plate thickness.  This was followed by a quantification of Safranin-O 

cartilage staining intensity in order to measure the proteoglycan content of the cartilage.   

In the mouse, it has long been regarded that ELR+ CXC chemokine mediated neutrophil 

chemotaxis is activated through one receptor, mCXCR2, following the binding of mouse 

CXCL1 and CXCR2 homologues, MIP2α and KC (Bozic et al., 1994;Luan et al., 2001).  

Recently, however, a mouse homologue of human CXCR1, capable of being activated by 

the human CXCL6 ligand has been discovered (Fan et al., 2007).  The availability of the 

CXCR2 -/- knockout mouse therefore poses more detailed questions then first expected as 

to whether, in the mouse, the lack of CXCR2 may compromise the phenotype of articular 

cartilage.  My data presented previously has revealed that in human chondrocytes, CXCR1 

may compensate for the inhibition of CXCR2 at calcium mobilisation level.  It may 

therefore be hypothesised that a similar redundancy of chemokine receptors in mouse 

articular cartilage may allow for sufficient cartilage homeostasis in normal conditions.  

However, this prediction is uncertain, firstly because of the large variation between human 

and mouse chemokine profiles, and secondly because the absence of CXCR2 in mice has 

been shown to be sufficient to impair neutrophil chemotaxis (Lee et al., 1995). 

Comparison of the Chambers score of both medial and lateral femoral condyle and tibial 

plateau surfaces (Figure 31A) indicate that no spontaneous cartilage destruction is 

acquired consistently in CXCR2 -/- mice in comparison with wild type controls.  However in 



 Results  

118 
 

4 out of the 15 CXCR2 -/- joints examined, evidence of spontaneous damage to the 

articular surface was found (Figure 31B). 

 

 

Figure 31.  Histological analysis of CXCR2-/- articular cartilage.  (A) Chambers 

osteoarthritis score comparing the structural integrity of cartilage from each articular 

surface in 8 week old CXCR2-/- null mutant mice and BALB/C wild type. (B) Safranin-O 

staining of tibiofemoral joint surfaces in CXCR2-/- and wild type mice.  Rectangular 

selections in x10 images highlight superficial articular surface irregularities in CXCR2-/- 

sections. 
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CXCR2 knockout mice have been noted as being smaller than their wild type littermates in 

early studies on CXCR2 function (Luan et al., 2001;Padovani-Claudio et al., 2006), however 

a recent paper published by Bischoff et al. (Bischoff et al., 2011) has revealed that CXCR2 -

/- mice exhibit an altered skeletal phenotype consisting of a decreased bone density, 

mineral content and repair capacity, hypothesised to be a result of a lack of CXCR 

regulated angiogenic activity rather than a disruption of immune cell migration or of an 

osteocyte phenotype.  No analysis of articular cartilage or endochondral bone formation 

was included in the study. 

Measurement of the thickness of articular cartilage in each compartment, as 

demonstrated in Figure 32, revealed that despite the smaller overall size of CXCR2 -/- mice 

reported by Bischoff et al., only medial tibial plateau cartilage thickness was significantly 

smaller than that in the BALB/C wild type controls.  Epiphyseal growth plate cartilage was 

significantly thinner in CXCR2-/- mice than in wild types, in correlation with the differences 

observed in femur bone length, total size and weight of 6 and 12 week old mice reported 

previously.  These data suggest that the lack of CXCR2 may result in the modulation of 

cartilage development, particularly affecting the epiphyseal growth plate and 

consequently longitudinal bone growth. 
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Figure 32.  ImageJ analysis of articular cartilage and epiphyseal growth plate thickness.  

(A) Sulphated proteoglycan rich cartilage thickness, identified by Safranin-O staining, was 

measured using ImageJ. (B) Comparison of cartilage thickness of 15 CXCR2-/- and 15 wild 

type mouse knee joints. **P < 0.01, ***P < 0.001. 
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I then investigated whether CXCR2 function is required to maintain the high proteoglycan 

content of articular cartilage by comparing the intensity of Safranin-O proteoglycan 

staining measured by densitometry (Figure 33).  The intensity of staining of a cross section 

of each articular surface was plotted as demonstrated in Figure 33B.  The areas under the 

curve, above a threshold created using the growth plate staining density were calculated, 

normalised for cartilage thickness, with Safranin-O staining densities for each surface of 

articular cartilage then normalised for Safranin-O staining density of their respective 

growth plate.  A statistically significant decrease in proteoglycan content in the medial 

femoral condyle articular cartilage of CXCR2 -/- mice was observed, however no significant 

changes in other surfaces were found (Figure 33C). 
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Figure 33.  ImageJ analysis of articular cartilage sulphated proteoglycan content.  (A) A 

cross section of each tibiofemoral joint was analysed for Safranin-O staining intensity as 

demonstrated in (B).  Articular cartilage staining intensity in the tibial plateau (a) and 

femoral condyle (b) were each normalised firstly for cartilage thickness, and secondly for 

staining intensity of the corresponding growth plate (c).  (C) Comparison of Safranin-O 

staining intensity of 15 CXCR2-/- and 15 wild type mouse knee joints. *P < 0.05. 
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Discussion 

The data presented in this chapter reveal a new role for ELR+ CXC chemokines and their 

downstream CXCR1/2 modulated signalling pathway.  Although CXCR1/2 signalling is 

primarily regarded as inflammatory and catabolic, or required for cell migration, my results 

suggest that a basal level of autocrine/paracrine CXCR1/2 signalling is required for the 

phenotypic stability of human articular chondrocytes. 

The blockade of CXCR1/2 signalling at both receptor level and at G-protein level results in a 

significant decrease in the ability of primary chondrocytes to maintain their highly 

sulphated proteoglycan rich extracellular matrix.  This observation has been replicated in 

the human JJ012 chondrosarcoma cell line following CXCR1/2 blockade, and in porcine 

primary chondrocytes following G-protein inhibition suggesting that this functional activity 

may be conserved across species.   

In correlation with my previous calcium mobilisation data, the decrease in Alcian blue 

staining of sulphated proteoglycan ECM content was more pronounced following siRNA 

receptor knockdown or G-protein inhibition than in micromass cultures treated with 

CXCR1 and CXCR2 blocking antibodies.  Although some variation in matrix composition and 

rates of ECM synthesis and breakdown may be expected between chondrocytes from 

different species, it must be considered that the blocking activity of CXCR1 and CXCR2 

antibodies may be limited by the reduced accessibility of internalised receptors. 

CXCR1/2 signalling inhibition at both extracellular (blocking antibodies) and intracellular 

(Pertussis toxin) level resulted in the significant decrease in the expression of well 

validated molecular markers of chondrocyte phenotypic stability.  The expression of the 

key ECM components, type II collagen and aggrecan, and of the key cartilage-specific 

transcription factor, SOX9, appears to be compromised when CXCR1/2 signalling is 

inhibited, despite the cells not having been cultured in the presence of additional ligands, 
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suggesting that an autocrine or paracrine CXC chemokine signalling mechanism may be 

active, taking advantage of the autologous expression of chemokine ligands previously 

discussed. 

By comparing the relatively modest levels of phenotypic modulation observed by 

measuring ECM proteoglycan content in micromass cultures with molecular marker 

expression measured using real time RT-PCR, a number of possible limitations with the 

micromass culture assay have been identified.  Firstly, the 3-dimensional ECM structure of 

the chondrocyte micromass cultures may prevent the blocking antibodies from accessing 

receptors upon the surface of cells enclosed within the micromass, resulting in a number 

of cells not being reached by blocking antibody treatment, a hypothesis supported by the 

more significant loss of proteoglycan content in JJ012 micromasses treated with CXCR1/2 

siRNA in comparison to blocking antibodies.  Additionally, the measurement of micromass 

sulphated proteoglycan content at the same 4 day timepoint used for gene expression 

readouts results only in the measurement of previously established ECM GAG content 

which was not able to be homeostatically maintained during the assay time period.   

It was hypothesised that since CXCR1/2 signalling activity was required for the 

maintenance of articular chondrocytes phenotypic stability, the addition of CXC 

chemokines to late passage dedifferentiated chondrocytes in vitro may re-establish the 

expression of molecular markers including type II collagen and aggrecan.  No statistically 

significant rescue was observed following addition of CXCL8 or CXCL6, however it may not 

be ruled out that other chemokines signalling via CXCR1 and CXCR2, including CXCL1 may 

be required either alone, or in combinantion with other factors missing from the culture 

conditions.  Furthermore, the unavailability of CXC chemokine ligands throughout the 

duration of in vitro expansion may result in the irreversible loss of additional signalling 

mechanisms required in combination with CXCR1/2 signalling for articular chondrocyte 
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phenotypic maintenance (Luyten 1992 JBC, Harrison 1992 in vitro cell dev biol, Benya 1982 

cell). 

Mice deficient in CXCR2 are not reported to have spontaneous features of OA (Bischoff et 

al., 2011), at least in physiological conditions. This is not surprising since, as demonstrated 

in Chapter 3, CXCR1 can functionally compensate for the absence of CXCR2 at calcium 

mobilisation level in the context of cartilage biology (Figure 18).  Functional CXCR1 has 

been recently identified in the mouse, binding prevalently to mCXCL6.  A double knockout 

will address whether the absence of the two genes in vivo results in an articular cartilage 

phenotype.   

Interestingly, a recent study has reported that mice lacking CXCR2 display growth 

retardation (Bischoff et al., 2011).  Whilst the Bischoff et al. paper suggests that the 

disruption of bone mineral density and repair capacity is most likely linked to CXCR2 

mediated angiogenesis, my observations of significantly reduced tibial growth plate 

thickness in CXCR2 knockout mice suggests that an epiphyseal cartilage specific phenotype 

may be involved.   Whereas in the resting articular cartilage, which has a very slow 

turnover, CXCR2 function may be sufficiently compensated, in the growth plate it is not, 

possibly due to the much higher biological activity of this cartilage tissue.  Whether in 

conditions of challenge requiring an increased anabolic activity from chondrocytes the 

absence of CXCR2 is sufficient to accelerate articular cartilage breakdown is currently 

under investigation in our laboratory using, as a model of OA, the destabilisation of the 

medial meniscus (DMM). 
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CXCL8 is linked to heparan sulphate within healthy cartilage 

matrix 

Experimental layout. 

The CXC chemokines CXCL8 and CXCL1 have been shown to be upregulated in articular 

cartilage during osteoarthritis and have been implicated as inducers of the hypertrophic 

differentiation of chondrocytes via the increase in type X collagen and MMP-13 

expression, alkaline phospahatase activity and matrix calcification (Merz et al., 2003).  

Although CXC chemokine ligands are widely accepted as being expressed by healthy 

articular chondrocytes, I have shown that CXCL8 and CXCL6 expression in particular is lost 

during chondrocyte cell expansion in correlation with dedifferentiation (Figure 10), and 

that CXCR1/2 signalling is in fact required for chondrocyte phenotypic stability.     

ELR+ CXC chemokines are inflammatory cytokines well known for their ability to attract 

inflammatory cells including neutrophils.  Therefore, if ELR+ CXC chemokines are produced 

in cartilage and are required for the maintenance of cartilage homeostasis, what prevents 

these molecules from activating local inflammation in physiological conditions?  The 

opposing anabolic and catabolic outcomes of homeostatic and inflammatory CXCR1/2 

signalling suggest that an additional level of modulation of chemokine activity may occur 

specifically within cartilage in order to prevent ligands from acting as inflammatory stimuli 

within the joint.  Studies within the field of inflammation have shown that heparan 

sulphate proteoglycans (HSPGs) may act to both immobilise chemokines upon the cell 

surface and ECM, and to facilitate oligomerisation and interaction with other signalling 

molecules thus optimising chemokine signalling efficiency (Halden et al., 2004;Hoogewerf 

et al., 1997;Proudfoot et al., 2003;Webb et al., 1993).  The high concentration of 

proteoglycans within articular cartilage indicates that chemokine-GAG chain interactions 
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may be involved in the regulation of CXCR1/2 signalling in cartilage (Knudson and Knudson, 

2001b).  

In this chapter I present my investigation into the patterning of ELR+ CXC chemokine 

distribution within cartilage explants.  Immunofluorescence staining was used to examine 

the relative expression of CXCL8 and CXCL6 within normal articular cartilage explants.  

Cartilage explants were then pre-incubated with either chondroitinase ABC or heparitinase 

enzymes, in order to identify the type of proteoglycan found to actively bind chemokine 

ligands in cartilage.  Finally, samples of cartilage from relatively preserved and damaged 

areas of OA cartilage were compared for ligand presence, leading to the formulation of a 

novel model of OA disease progression.  
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CXCL6 and CXCL8 are expressed in normal human articular cartilage  

Cartilage explant immunofluorescence was optimised using sections of relatively 

preserved human articular cartilage explant.  By comparing CXCL8 immunostaining in 

pepsin digested to nondigested sections, it is observed that CXCL8 expression is more 

apparent following cartilage pre-digestion antigen retrieval (Figure 34), suggesting that 

aggressive and optimized antigen retrieval is necessary to unmask CXCL8 within the 

cartilage ECM. 

 

Figure 34.  Pepsin retrieval is required for the demonstration of CXCL8 in human articular 

cartilage.  CXCL8 (green) immunofluoresence staining of preserved articular cartilage 

explants following pepsin digestion, or following incubation in 0.02M HCl.  Sections stained 

with IgG represent negative control.  Nuclei are counterstained with propidium iodide 

(red). Bar, 100µm. 
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Before examining any chemokine-ECM interaction, I examined the expression of CXCL8 

and CXCL6 in articular cartilage.  Immunofluorescence in pepsin-digested cartilage explant 

sections from healthy donors revealed distinct distribution patterns for the two ligands.  

CXCL8 was found to be consistently located throughout the inter-territorial ECM with a low 

level found in close proximity to each chondrocyte lacunae.  On the other hand, CXCL6 was 

found in abundance in the territorial and pericellular matrices surrounding each 

chondrocyte, and was largely absent within the inter-territorial space (Figure 35).  
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Figure 35.  CXCL6 is found in high abundance in healthy human articular cartilage.  CXCL6 

immunofluorescence staining of healthy articular cartilage explants following pepsin 

digestion, in comparison with CXCL8 staining in the same explant.  IgG represents negative 

isotype matched control.  Nuclei are counterstained with propidium iodide (red).  Data 

presented are representative of 3 donors.  Bar 100µm. 
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CXCL8 is linked to heparan sulphate within healthy cartilage matrix 

ELR+ CXC chemokines are known to avidly bind to heparan sulphate proteoglycans (HSPG) 

in blood vessels (Halden et al., 2004;Hoogewerf et al., 1997).  Since the articular cartilage 

ECM is very rich in HSPGs (Knudson and Knudson, 2001b), I hypothesised that HSPGs may 

be responsible for retaining ELR+ CXC chemokines within the cartilage matrix, making 

them available for autocrine/paracrine signalling in chondrocytes.  Consistent with this 

hypothesis, CXCL8 was detected by immunofluorescence amongst the ECM of relatively 

preserved (Mankin score <4) human articular cartilage from OA patients. To test whether 

CXCL8 was bound to either chondroitin or heparan sulphate proteoglycans, I performed 

the same staining following digestion of the slides with chondroitinase ABC or 

heparitinase.  Chondroitinase digestion did not abolish the staining, and in fact further 

improved it by acting as a further method of antigen retrieval.  In contrast, heparitinase 

digestion nearly completely abolished the matrix staining thereby demonstrating that 

binding to heparan sulphate chains is required for the localisation of CXCL8 to the cartilage 

ECM (Figure 36).    In keeping with my data, CXCL8 was shown to bind to HSPGs but not to 

chondroitin sulphate in blood vessels, and in vitro (Kaneider et al., 2002).  
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Figure 36.  CXCL8 is bound to HSPGs within articular cartilage extracellular matrix.  CXCL8 

(green) immunofluorescence staining of preserved articular cartilage explants digested 

with pepsin, pepsin followed by chondroitinase ABC, or pepsin followed by heparitinase.  

Sections stained with IgG represent the negative control.  Nuclei are counterstained with 

propidium iodide (red).  Data presented are representative of 3 donors.  Bar, 100µm. 

 

In order to establish whether the altered distribution pattern of CXCL6 in comparison with 

CXCL8 is caused by CXCL6  interacting with either a different HSPG or different 

proteoglycan class entirely, immunofluorescence was used to detect CXCL6 in heparitinase 

pre-treated cartilage, which was then compared with CXCL8.  CXCL8 was once again 

observed to be released following heparitinase treatment, however CXCL6 distribution 

remained unchanged (Figure 37), suggesting that CXCL6 within articular cartilage is not 

HSPG bound.  
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CXCL6 and CXCL8 distribution is altered in areas of OA damaged cartilage 

Finally, cartilage samples from areas with severe OA damage (Mankin score > 6) were 

compared to those from relatively preserved areas (Mankin score < 4) from the same joint.  

In preserved samples, CXCL8 staining was more intense in proximity to the cells, whereas 

an opposite pattern with depletion of CXCL8 from the matrix immediately adjacent to the 

chondrocytes was observed in highly damaged samples (Figure 37 and Figure 38), 

suggesting that ECM depletion by OA chondrocytes may lead to failure of the ECM to 

retain CXCL8 in situ.   

I therefore propose a model (Figure 39) in which, under physiological conditions, CXCL8 is 

retained in the cartilage ECM bound to HSPGs, which determine its signalling domain, and 

activate a homeostatic autocrine/paracrine mechanism.  In OA, ECM breakdown results in 

failure to retain CXCL8 locally, in loss of the anabolic local autocrine/paracrine CXCR-

dependent signaling.  It is reasonable to speculate that the loss of anchoring HSPG may 

also result in the release of inflammatory chemokines into the joint space where they 

contribute to local inflammation which perpetuates and amplifies the damage.         
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Figure 37.   CXCL6 and CXCL8 show different matrix binding patterns.  CXCL6 or CXCL8 

(green) immunofluorescence staining of preserved and damaged articular cartilage 

explants from an OA donor digested with pepsin alone, or pepsin followed by heparitinase.  

Sections stained with IgG represent the negative control.  Nuclei are counterstained with 

propidium iodide (red).  Data presented are representative of 3 donors.  Bar, 100µm. 
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Figure 38.  CXCL8 is lost from articular cartilage extracellular matrix during osteoarthritis 

pathology.  CXCL8 immunofluorescence of pepsin-digested cartilage samples obtained 

either from preserved (Mankin score < 4) or from severely damaged (Mankin score > 6) 

areas of femoral condyles affected by OA.  Nuclei are counterstained with propidium 

iodide (red). Data presented are representative of 3 donors.  Bar, 100µm. 
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Figure 39.  Autocrine/Paracrine homeostatic CXCR1/2 signalling in articular cartilage.  In 

healthy articular cartilage, CXCL8 is expressed by chondrocytes, is retained within the ECM 

by HSPGs and is available and required for signaling via CXCR1 and CXCR2 supporting 

chondrocyte phenotypic stability and cartilage homeostasis.  In osteoarthritis, breakdown 

of HSPGs within the ECM results in the release of CXCL8, the disruption of the homeostatic 

ELR+ CXC chemokine signaling mechanism required for phenotypic stability, and in the 

diffusion of CXCL8 in the synovial space, which leads to recruitment of inflammatory cells. 
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Discussion 

Previous studies have, on the whole, regarded ELR+ CXC chemokine ligand and receptor 

expression to be upregulated during OA, resulting in the upregulation of inflammatory 

pathways, hypertrophic differentiation and cartilage destruction.  The data presented in 

this chapter supports my findings from Chapter 5, that CXCR1/2 signalling is required for 

chondrocyte phenotypic stability, by developing a model in which chemokines may be 

produced by normal articular chondrocytes and retained within the cartilage ECM, where 

they contribute to chondrocyte homeostasis.    

Firstly, I have optimised an antigen-retrieval method which enables the detection of 

chemokines in healthy articular cartilage explants.  Previous reports of increased detection 

of CXCL8 in OA cartilage fail to account for the increased accessibility of chemokines in OA 

cartilage to antibody detection due to the breakdown of the ECM.  Following pepsin 

digestion pre-treatement upon all cartilage explant sections, we see that chemokines are 

not only present in healthy tissue, and in the case of CXCL6, found in abundance. 

Although previous studies have noted the upregulation of CXCL8 and CXCL1 in OA (Borzi et 

al., 1999;Merz et al., 2003), no data has been previously presented regarding the presence 

of CXCL6 in either normal or OA cartilage.  My data suggests that CXCL6 may be present in 

high levels within healthy articular cartilage, making it a likely contributor to chondrocyte 

homeostasis.  In OA cartilage explants, including those that are relatively preserved, CXCL6 

levels were found to be much lower, indicating that the ECM associations retaining this 

chemokine within the tissue are disrupted at an early stage of OA pathology.  Additionally, 

CXCL8 is known to be more potent as a mediator of human neutrophil chemotaxis than 

CXCL6 (Fox et al., 2005).  Producing CXCL6 as a homeostatic mediator within cartilage is 

therefore less likely to result in an inflammatory response as would be expected from the 

release of a similar concentration of CXCL8, since both ligands signal via both CXCR1 and 
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CXCR2, although the relative potency of each ligand in chondrocyte phenotypic 

modulation is not yet known.  

The binding of endogenous ELR+ CXC chemokines to HSPGs, or other cartilage matrix 

components, may play an important part in the modulation of their functional activity.  

Specifically, oligomerisation of chemokines when bound to GAG chains within the ECM, 

may allow for the presentation of subunit receptor binding sites thus actively increasing 

signaling activity (Proudfoot et al., 2003).  In this way, ligands shown to be relatively 

redundant in vitro, including CXCL6, may in fact aid in the functional activity of other more 

potent chemokine ligands.  Alternatively, CXCL6, which is 100 times less potent as an 

inflammatory chemokine as CXCL8 (Fox et al., 2005), may have a dominant negative effect 

over CXCL8 in cartilage.  This type of agonist/antagonist system amongst chemokine 

ligands in cartilage would ensure sufficient signalling activity to maintain cartilage 

homeostasis without resulting in a pro-inflammatory or pro-angiogenic response.   
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We have discovered that, in physiological conditions, ELR+ CXC chemokines and their 

downstream CXCR1/2 signalling pathway constitute an autocrine/paracrine mechanism 

supporting chondrocyte phenotype and cartilage ECM homeostasis.  We have shown that 

chondrocytes express both CXCR1 and CXCR2 and their ligands CXCL8 and CXCL6 in 

monolayer and cartilage explants, that endogenous ligands activate the receptors locally, 

and that signalling through both CXCR1/2 and G proteins is required for the maintenance 

of the stability of the mature articular cartilage phenotype, of the maintenance of a highly 

sulfated GAG-rich ECM, and for the expression of the transcription factor SOX9.  

ELR+ CXC chemokines are best known as inflammatory molecules mediating leukocyte 

migration and angiogenesis. Although it is known that some CXC chemokines have a role in 

embryonic morphogenesis including gamete and oligodendrocyte migration (Kunwar et al., 

2006;Robinson and Franic, 2001), these functions take place before the immune system is 

mature and are still mediated by the known function of these molecules to guide cell 

migration. Their role as mediators of homeostasis in adulthood is completely novel and 

unexpected, firstly, because this role is not related to cell migration, but rather to maintain 

cell differentiation, and secondly because it occurs outside of the context of inflammation, 

in an immunologically mature organism. 

In nature there are a number of examples of molecules that have completely different 

functions within different biological contexts, particularly highly evolutionarily conserved 

morphogens including Wnts and BMPs which are the building blocks of embryonic 

morphogenesis, but is less common in more specialised and more evolutionarily recent 

molecules including inflammatory cytokines and chemokines.  The novel homeostatic 

function of ELR+ CXC chemokines is made possible in this case by the peculiarity of the 

articular cartilage being an avascular tissue, which is immunologically "privileged", and by 

a sequestration of ligands including CXCL8 onto matrix molecules.  Interestingly, this 
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property is shared by other morphogens which also play a role in cartilage homeostasis 

such as Wnts (Bishop et al., 2007;Shortkroff and Yates, 2007) and BMPs (Ohkawara et al., 

2002;Otsuki et al., 2010;Ruppert et al., 1996).  In this regard, a crosstalk between these 

molecular pathways is an interesting possibility and is being investigated in our laboratory. 

We cannot exclude the possibility that CXC chemokines may play additional roles in 

cartilage, such as attract mesenchymal stem cells (Ringe et al., 2007) or even regulate a 

postulated migration of chondrocytes across the different cartilage layers (Hayes et al., 

2001).  Of course these functions are not mutually exclusive. 

Mice deficient in CXCR2 do not have spontaneous features of OA (Jacobs et al., 2010), 

however this is not surprising since in our experiments, CXCR1 can functionally 

compensate for the absence of CXCR2 in the context of cartilage biology (Bischoff et al., 

2011).  Interestingly, however, Bischoff et al have recently reported that CXCR2 deficient 

mice have a skeletal growth defect and low bone mineral density.  Since the bone 

phenotype is prevalently related to the cortical bone, which does not develop through 

endochondral bone formation, it has been argued that this phenotype is due to defects of 

angiogenesis rather than cartilage development (Bischoff et al., 2011).  Nevertheless, since 

bone collar formation is directly dependent on Ihh signaling from the prehypertrophic 

chondrocytes of the growth plate (Chung et al., 2001;Vortkamp et al., 1996), it therefore 

cannot be excluded that a defect in the rate of maturation of epiphyseal chondrocytes may 

be responsible for the bone defect in these mice.  In this context, it is interesting that we 

have discovered that even in adulthood, CXCR2-/- mice display a significant decrease in 

epiphyseal growth plate thickness.  Therefore we are currently exploring the hypothesis 

that, at least in part, the thinner cortical bones observed in these mice results from 

deficient Ihh signalling within the growth plate.  I am currently testing this hypothesis in 

our laboratory using in vitro and in vivo systems. This will include addressing whether 
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hedgehog signalling is dependent on CXCR signaling, whether CXCR2-/- chondrocytes have 

deficient Ihh signalling, and if exogenous Ihh can rescue the bone phenotype.   

The majority of the results included in this thesis has been obtained in in vitro settings and 

partly contrasts with previous literature showing a pathogenic role of CXCR signaling in 

various forms of arthritis, although most functional studies were in inflammatory arthritis, 

where the role played by inflammatory chemokines is clearly different.  The effects of 

CXCR1/2 signalling intervention in attenuation of inflammatory arthritis did not include the 

analysis of cartilage integrity (Cunha et al., 2008;Jacobs et al., 2010).   The formal testing of 

the role of CXCR signalling in models of OA is still missing, and is a priority for the future 

development of this study. 

The rationale for such experiment is that although the analysis of articular cartilage of 

CXCR2-/- mice, which in resting conditions has a relatively slow cell turnover, revealed no 

significant pathology, CXCR2 specific activity may be required in order to maintain the 

anabolic activity of chondrocytes in conditions of challenge.  A functional ortholog of 

CXCR1 has been recently identified in mice (Fan et al., 2007).  CXCR1 activity may 

compensate for the loss of CXCR2 signalling to a certain extent, shown firstly at 

downstream calcium mobilisation level, and secondly by the apparent maintenance of 

articular cartilage in CXCR2-/- mice, but subtle differences between the behaviours of the 

two receptors found in human studies suggest that distinct functional roles may exist for 

each receptor.  These include differences in receptor recycling, and in the selection of 

chemokine ligands able to act via each receptor in both humans and mice.  We aim to 

investigate the extent to which predicted CXCR1 activity may sufficiently compensate for 

CXCR2 by challenging the CXCR2-/- mice in the DMM (destabilisation of the medial 

meniscus) OA model.  The surgically induced instability, shown previously to induce 

articular cartilage destruction (Glasson et al., 2007), is likely to lead to accelerated cartilage 
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breakdown should the increased anabolic activity required to counteract the activated 

destructive pathways within the cartilage become too great to be supported through 

CXCR1 mediated homeostasis alone. 

An interesting aspect of our study is that the same molecule can have a homeostatic 

function in physiological conditions and a pathogenic one in osteoarthritis.  In fact, CXCR2 

blockade has been shown to attenuate the outcome of inflammatory arthritis in vivo in 

mice.  Other examples of such double function of inflammatory chemokines include IL-1 

and IL-6.  These two inflammatory cytokines are currently established therapeutic targets 

in arthritis (Cohen et al., 2002;Yokota et al., 2005;Smolen and Maini, 2006), but mice 

deficient in IL-1 or IL-6 are more susceptible to OA, either surgically induced (Clements et 

al., 2003) or spontaneous (de Hooge et al., 2005). 

The dual function of some inflammatory cytokines represents an important 

pharmacological challenge for the use of chemokine inhibitors as a therapeutic strategy for 

treatment of arthritis.   The homeostatic importance of ELR+ CXC chemokine signalling in 

chondrocytes, whereby CXCR1/2 signalling is required in order to maintain phenotypic 

stability and ECM production, suggests that the inhibition of this pathway aimed at 

reducing neutrophil infiltration during inflammatory arthritis (Barsante et al., 2008;Coelho 

et al., 2008) may in fact result in chondrocyte toxicity accentuating cartilage damage.  At 

the same time, this project has presented an opportunity for the development of targeted 

strategies for cytokine blockade that preserve homeostatic mechanisms within the 

cartilage compartment. 

Immunohistochemical analysis of healthy human articular cartilage within this 

study has revealed that CXCL8 in particular is specifically bound to HSPGs within the 

cartilage ECM.  It is therefore reasonable to expect that homeostatic maintenance of 

articular chondrocytes by CXC chemokines is driven by ligands bound and localised within 
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the ECM.  This will need experimental testing, however, if this is true, therapeutic 

intervention aimed at inhibiting the effects of chemokine driven joint inflammation, 

particularly during the early stages of disease when the cartilage remains relatively intact, 

should therefore be developed with the aim of being unable to infiltrate into the cartilage 

tissue itself.  The dense, highly sulphated ECM and avascular nature of articular cartilage 

should present ideal opportunities for the design of suitable compounds. 

The concept of “functional selectivity”, whereby the activation of common 

receptors by different ligands, or in different cell types, results in the activation of specific 

downstream signalling pathways, suggests that inflammatory CXCR1/2 signalling may be 

specifically blocked within the joint following the elucidation and inhibition specific 

pathways.  A number of CXCR1/2 allosteric inhibitors, shown to inhibit AKT 

phosphorylation and directional migration in neutrophils represent an important 

opportunity to develop therapeutic compounds (Allegretti et al., 2008;Leach et al., 2007).  

Allosteric inhibition is able to alter the three-dimensional receptor conformation, thus 

modulating which G-proteins are able to associate with the receptor.  By evaluating the 

relative contributions of downstream signalling targets, including calcium mobilisation and 

PI3K/AKT signalling to chondrocyte phenotypic maintenance, and selecting only 

compounds which avoid modulation of these pathways, specific outcomes of CXCR1/2 

activation may be pharmacologically targetted in order to avoid potential cartilage toxicity. 

With the same aim, we have the opportunity to further investigate whether the 

different ligands found within healthy articular cartilage modulate specific functional 

outcomes.  CXCL6 is a significantly less potent mediator of neutrophil migration than 

CXCL8, however it is found to be extremely abundant in healthy articular cartilage, 

suggesting that it is of greater importance to cartilage homeostasis.  In this regard, we do 

not currently know if CXC chemokines are required in combination for cartilage 
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homeostasis, or whether a level of functional redundancy exists that would allow for 

elimination of ligands found to more actively promote inflammation, without 

compromising the chondrocyte phenotype.   
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Appendix: Reagents 

Complete culture medium 

500ml DMEM/F-12 + GlutaMAX™-1 (Gibco, Invitrogen, UK) 

10% FBS (Gibco, UK) 

1% Sodium pyruvate 100nM (Sigma, UK) 

1% Antibiotic Antimycotic 100X (Gibco,UK) 

HS-FBS medium 

500ml DMEM/F-12 + GlutaMAX™-1 

1% FBS pre-heated to 57°C for 30 minutes 

1% Sodium pyruvate 100nM 

1% Antibiotic Antimycotic 100X 

Antibiotic free medium 

500ml DMEM/F12 + GlutaMAX™-1 

10% FBS 

1% sodium pyruvate 

Freezing medium 

7.5ml FBS 

5ml DMSO 

Make up to 25ml with complete DMEM 

Sterilise by filtration 

To freeze, cells resuspended in complete DMEM are diluted 1:1 into DMSO freezing 

medium and placed immediately into -80°C freezer for 48 hours, before transfer into liquid 

nitrogen.  
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10X PBS 

80g Sodium chloride (NaCl) 

2g Potassium chloride (KCl) 

14.4g Sodium phosphate diphasic (Na2HPO4) 

2.4g Potassium phosphate monobasic (KH2PO4) 

Make up to 1 litre with distilled water.  Adjust pH to 7.4. 

 

Western blot sample buffer 

63mM Tris HCl 

10% glycerol 

2% SDS 

0.0025% bromophenol blue 

pH6.8 

1. To prepare 10ml of 2X solution mix the following: 

a. 0.5M tris HCl, pH6.8  2.5ml 

b. Glycerol   2ml 

c. 10% (w/v) SDS   4ml 

d. 0.1% bromophenol blue  0.5ml 

2. Adjust the volume to 10ml with ultrapure water 

3. Store at 4°C.  buffer is stable for 6 months 
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Western blot running buffer 

25mM Tris base 

192mM glycine 

0.1% SDS 

pH8.3 

1. To prepare 1litre of 10X solution, dissolve the following into 900ml of ultrapure 

water 

Tris base 29g 

Glycine 144g 

SDS  10g 

 

2. Mix well and adjust volume to 1000ml with ultrapure water 

3. Store at RT.  The buffer is stable for 6 months. 

4. For electrophoresis, dilute the buffer to 1X with water, pH will still be pH8.3, do 

not adjust with acid/alkali. 

Western blot transfer buffer 

12mM Tris base 

96mM glycine 

1. To prepare 500ml of 25X solution dissolve the following in 400ml of ultrapure 

water 

a. Tris base  18.2g 

b. Glycine  90g 

2. Mix well and adjust the volume to 500ml with ultrapure water 

3. Store at RT, buffer is stable for 6 months 

4. For blotting dilute this buffer to 1X (pH8.3): 

a. Tris-glycine transfer buffer (25X)  40ml 

b. Methanol     200ml 

c. Deionized water    760ml 
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Toluidine blue 

0.1% Toluidine blue (Sigma) in 0.1M acetate buffer pH5. 

Safranin-O 

0.2% Safranin-O in 0.2M acetic acid pH3.8. 

Alcian blue 8GS 

0.5% Alcian blue 8GS (Carl Roth, Karlsruhe, Germany) in 1N HCl pH0.2. 
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