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Abstract

Supersymmetry is an important concept in modern high energy physics. It has found many applica-

tions in theoretical considerations of supersymmetric gauge theories as well as in phenomenological

approaches to physics beyond the Standard Model. In this report we discuss some recent progress

in supersymmetric field theories in four and six dimensions.

After introducing basic ideas and properties of supersymmetry we review the concept of scat-

tering amplitudes in maximally supersymmetric theories in four dimensions before constructing a

related framework in six dimensions. Here, the spinor helicity formalism and on-shell superspace

were recently developed for six-dimensional gauge theories with (1,1) supersymmetry. We combine

these two techniques with (generalised) unitarity, which is a powerful technique to calculate scat-

tering amplitudes in any massless theory. As an application we calculate one-loop superamplitudes

with four and five external particles in the (1,1) theory and perform several consistency checks on

our results.

Within the area of phenomenological applications of supersymmetric gauge theories, we briefly

review basic properties of supersymmetry breaking and gauge mediation in four dimensions. An

important recent development has been the concept of theories with broken supersymmetry and

metastable vacua. By using the advances of Seiberg duality, we examine a metastable N = 1

Macroscopic SO(N) SQCD model of Intriligator, Seiberg and Shih (ISS). We introduce various

baryon and meson deformations, including multitrace operators. In this setup, direct fundamental

messengers and the symmetric pseudomodulus messenger mediate supersymmetry breaking to a

minimal supersymmetric Standard Model. We compute gaugino and sfermion masses and compare

them for each deformation type. We also explore reducing the rank of the magnetic quark matrix

of the ISS model and find an additional fundamental messenger in the theory.
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1 An Invitation

Over the centuries, our understanding of nature has developed constantly. From the days of Newton

to current research experiments at the Large Hadron Collider (LHC), physicists have always tried

to push the research frontier further. Historically, this has always happened as a fruitful interplay

between theory and experiment. Nowadays, probably the most successful, experimentally validated

theory is the Standard Model (SM) of high energy physics. However, we know that it cannot be

the full story: The SM is only a low energy effective theory.

Nevertheless, one of its fundamental building blocks, the concept of symmetries, turned out to

be extremely useful. Symmetries can be used to classify the particle content of a theory and play

an important role in describing interactions between the different particles by the means of gauge

theories. Furthermore, they constrain a physical system and quite often, this makes it possible to

extract information about the underlying theory which governs the system’s behaviour. Over the

last forty years a rather peculiar symmetry has edged ever closer to the spotlight. True to the

motto ‘nomen est omen’, this special type of symmetry is know as supersymmetry. It is the only

symmetry under which a fundamental property of a particle changes: Supersymmetry transforms

bosonic degrees of freedom into fermionic ones and vice versa. This concept has proven to be

extremely rich of consequences. Supersymmetry is applied over a wide range of topics in high

energy physics. It ranges from highly theoretical considerations in string and M-theory, over more

formal studies in supersymmetric gauge theories to quite phenomenological ideas for physics beyond

the SM. The vast range of areas that are influenced by supersymmetry indicates its importance in

physics, but makes it also difficult to cover all of these ideas thoroughly.

However, in this thesis we will try to bridge between different arenas of applications and dis-

cuss both technical and phenomenological reasons for why supersymmetry plays a central role in

modern theoretical physics. To make it somewhat tangible we will focus on maximally (rigid) su-

persymmetric theories in four (the N = 4 super Yang-Mills theory) and six (the N = (1, 1) super

Yang-Mills theory) dimensions as well as N = 1 supersymmetric gauge theories where we study

the effects of supersymmetry breaking. The first part of this thesis concentrates on more formal

aspects of supersymmetric field theories. Here, we will focus on the applications of supersymmetry

in perturbative quantum field theories. By using the framework of superamplitudes in four and six

dimensions we will demonstrate recent advances in efficient calculations of scattering amplitudes.

Also theories with non-extended supersymmetry are of high importance. They provide the leading

candidates for physics beyond the SM. However, experimental bounds dictates that supersymmetry,

1



1. An Invitation 2

if realised in nature, is only an approximate symmetry. In the second half of this thesis we will

discuss ways to incorporate the SM into a supersymmetric theory.

In Chapter 2 we begin by briefly reminding ourselves of the concept of spacetime and internal

symmetries. We then have a look at possible extension to the Poincaré algebra and find that

supersymmetry is a natural extension of it. Furthermore, we will discuss some details of maximally

supersymmetric theories in four and also six dimensions. After this digression we focus on non-

extended supersymmetry in four dimensions. We discuss the off-shell superspace construction for

N = 1 supersymmetry and review supersymmetric chiral and gauge theories.

Chapter 3 is devoted to the concept of scattering amplitudes in four dimensions. After a short

revision of amplitudes we introduce the four-dimensional spinor helicity formalism. In the following

sections we will utilise this construction to discuss several techniques for efficient calculations of

scattering amplitudes at tree-level. We then combine these ideas with N = 4 maximal supersym-

metry in four dimensions. The solely supermultiplet of this theory can be conveniently described

by an on-shell super-wavefunction. A superamplitude is then a scattering amplitude of super-

wavefunctions. We investigate this approach by discussing several supersymmetrised techniques of

amplitude calculation. Finally, we move on to loop-level and introduce the unitarity method as a

convenient approach for calculating loop amplitudes.

These ideas are taken to the next level in Chapter 4 where we discuss superamplitudes for the

maximally supersymmetric gauge theory in six dimensions. We begin by introducing the recently

developed six-dimensional spinor helicity formalism before constructing a super-wavefunction and

on-shell superspace for this N = (1, 1) super Yang-Mills theory. After a brief review of three-,

four- and five-point tree-level superamplitudes in this theory we will move on to the one-loop level.

Here, we discuss in detail two- and four-particle cuts for four- and five-point amplitudes. We also

perform several consistency checks of our results using dimensional reduction to four dimensions in

order to compare with the corresponding amplitudes in N = 4 SYM. This concludes the first part

of the thesis.

In the second half of the thesis, beginning with Chapter 5, we focus on the applications of

supersymmetry for physics beyond the SM where we will limit ourselves to N = 1 supersymmetry

in four dimensions. We begin the discussion with a short introduction into the relation between

supersymmetry and the SM and explore the necessity of supersymmetry breaking. Then, we follow

up on these ideas and discuss how supersymmetric and non-supersymmetric vacua are realised in

quantum field theory. After a short digression on the relation between supersymmetry breaking

and global symmetries in field theory we review some aspects of supersymmetry QCD for differ-

ent flavours. This will lead us to the introduction of the ISS model of metastable supersymmetry

breaking. We conclude the chapter by some general remarks on gauge-mediated models of super-

symmetry breaking.

In the last two Chapters we will explore a specific examples for the ISS construction in the

context of SO(N) symmetry groups. We begin in Chapter 6 with a discussion of the dual pictures

in SQCD with SO(N) groups. After that we discuss the effect of the supersymmetry breaking
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sector on the masses of the SM gauginos and sfermions where we focus on the contributions to

the gaugino masses. Before introducing a deformation to the ISS superpotential we consider R-

symmetry breaking in SO(N) theories. After deforming the superpotential we will discuss the

effect on the gaugino and sfermion masses of the SM. We conclude this chapter by considering the

supersymmetric vacua introduced by the non-perturbative superpotential which make the SUSY-

breaking states metastable and estimate the lifetime of the metastable states.

Finally, in Chapter 7, we consider deformations of the basic ISS model which had been in-

vestigated in the context of SU(N) theories before. We deform the superpotential by multitrace

operators utilising the magnetic quarks and the meson field of the magnetic theory. This will offer

the opportunity to highlight differences of these models compared to the vanilla ISS construction.

We also consider the possibility of reducing the rank of the magnetic quark matrix which results in

the appearance of an additional fundamental messenger field. In all these cases we explore the effect

on the gaugino and sfermion masses of the SM. The thesis concludes with a series of appendices.



2 Spacetime and Supersymmetries

What is a symmetry? The answer to this questions seems to be well known1. Almost everybody

has some kind of understanding of the word ‘symmetry’. However, its meaning can range from the

subjects of arts to science. Different people might have a different notion of what a symmetry is.

Therefore, it is important to provide a common framework. Within mathematics and physics, the

concepts of groups (more specifically Lie groups) and algebras provide such a framework. Com-

bined with the concept of quantum field theory, the construct which comprises quantum mechanics

and special relativity, symmetries enable us to study the fundamental processes in physics. In

the following we will briefly highlight some important implications of group theoretical studies of

symmetries that ultimately lead to the concept of ‘supersymmetry’.

2.1 A brief introduction

When we talk about a symmetry we are normally referring to some kind of invariance of an object

under a certain transformation. Hence, a symmetry is always defined with respect to an operation

that an object is undergoing. If we consider symmetries in physics we think of a symmetry as the

group of transformations that leaves the Lagrangian L (actually the action S) of a particular theory

invariant.

In general, symmetries are a basic, yet powerful concept in theoretical physics, making it some-

what hard to overestimate their importance for understanding the underlying physical theory. Using

symmetry arguments one can even get information about a physical system without understanding

and/or knowing the exact physical laws which govern it. All this is mainly due to two reasons.

Firstly, we have the fact that Noether’s theorem applies to our formulation of field theories. It

relates the symmetries of a system to conservation laws. For each continuous symmetry we have

an associate conserved quantity, a so called symmetry current. Secondly and even more impor-

tant, symmetries have a strong interrelation with experiments since nature seems to respect many

of them. The conserved quantities (the physical observables) coming from the symmetry currents

(spatial volume integrals of components of the symmetry currents leading to conserved charges) are

measurable. Some of the most important ones are the conservation of energy, spatial momentum

and angular momentum. If these quantities are conserved in a physical system they are linked to

the invariance under time translations, spatial translations and spatial rotations of the system.

1For a beautiful discussion see the text of the late Julius Wess [1]. Parts of our introduction are based on this

nice review.

4



2.2. Lorentz and Poincaré symmetries 5

So far, we have mentioned only symmetries of spacetime. Over the last decades it turned out

that another type, so called internal symmetries, are just as important as spacetime symmetries. In

general, these correspond to transformations of the different fields in a field theory. Starting with

the ideas of Heisenberg who generalised SU(2) spatial rotations to rotations in an internal space

which led to the concept of isospin, this idea was later generalised to ‘internal’ SU(3) rotations. This

was the first attempt to understand the structure of hadrons, leading to the so called ‘eightfold

way’. All these ideas turned out to be the right concept for phase transformations of particle

wave functions. Ultimately, this approach yielded a generalisation of global symmetries towards

local symmetries and the introduction of gauge theories. In this context, locality means that the

group transformations acting in the internal space depend on spacetime parameters. Since gauge

symmetries describe the interactions between matter particles they are of fundamental importance

for modern particle physics.

A concrete example of this is the Standard Model (SM), a quantum field theory based on

the non-abelian gauge symmetries SU(3)C ,SU(2)L and U(1). These correspond to the strong,

weak and electromagnetic interactions between the matter particles. Compared with experimental

measurements, the SM is a highly successful theory. This alone shows the importance of the

symmetry concept. Despite the huge success in predicting experimental data, the SM cannot be

a fundamental theory. First of all, the SM does not include gravitational interactions since a

viable quantum theory of gravity is not known yet. Usually it is expected that a fundamental

theory should describe all interactions of nature. Although the SM offers an excellent description

of the strong and electro-weak interactions at low energies, however, at high energies problems

arise. Quantum corrections of scalar masses are quadratically divergent within the SM. These are

just a few of the issues which indicate that the SM cannot offer a full description of nature to

arbitrarily high energies. Therefore, one needs to look for new ideas to go beyond the SM. There

are numerous ways to extend the SM or incorporate it within a new, more fundamental theory.

Most important for this thesis is the approach of generalising the symmetry concept of ordinary

quantum field theories. A starting point is to add more internal symmetries, leading to the ‘grand

unified theory’ (GUT) approach: The gauge symmetries of the SM could be only part of a bigger,

unified symmetry group. Unfortunately, the SM itself is not a GUT since the gauge couplings do

not unify at a high energy scale. This contrasts with the Minimal Supersymmetric Standard Model

(MSSM) where unification happens at the order of 1016 GeV. Another approach is to generalise the

concept of spacetime symmetries, also in combination with adding more spacetime dimensions. As

we will see, this leads directly to the introduction of supersymmetry. Before discussing this idea,

it is instructive to briefly review the symmetries of spacetime.

2.2 Lorentz and Poincaré symmetries

Since the days of Einstein we are familiar with the concept of spacetime. The unification of space

and time in the context of his special theory of relativity, based on independent contributions

of Hendrik Lorentz and Henri Poincaré, marked one of the important steps towards our current

understanding of the modern quantum field theories. Special relativity incorporates two basic
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principles:

• The principle of relativity (based on Galileo’s principle of relativity and formulated by Poincaré)

introduces the concept of inertial frames states that the laws of physics are independent from

the choice of an inertial frame.

• The second principle states the fact that the speed of light c is a constant in nature and hence

the same in all inertial frames.

Einstein’s theory makes use of the Lorentz transformations which became apparent in the for-

mulation of Maxwell’s theory of electrodynamics. It was shown by Henri Poincaré that Lorentz

transformations form a subset of a larger symmetry group, named the Poincaré group. This group

incorporates the Lorentz transformations and translations of spacetime and describe the basic sym-

metries in special relativity. The isometries of spacetime act as

xµ → x′µ = Λµν x
ν + aµ . (2.1)

The first term corresponds to the Lorentz transformations whereas the second one gives a translation

by a constant spacetime vector aµ. The group of these transformations is also often denoted

as inhomogeneous Lorentz group, the semi-direct product of the D-dimensional Lorentz group

O(D − 1, 1) and the translations in D dimensions. Restricting to those Lorentz transformations

with det(Λ) = +1 and Λ00 ≥ 1 yields the subgroup ISO(D − 1, 1) of the inhomogeneous Lorentz

group which is usually denoted as the Poincaré symmetry group. The elements Poincaré group

are generated by the momentum and rotation generators Pµ and Mµν . The generators fulfill the

commutation relations

[Pµ, P ν ] = 0 ,

[Mµν , P ρ] = i (gνρPµ − gµρP ν) , (2.2)

[Mµν ,Mρσ] = i (gνρMµσ − gµρMνσ − gνσMµρ − gµσMνρ) .

The generators are all bosonic. Depending on the type of field under consideration, one has to

look for the correct representation of the generators which generate the corresponding elements of

the algebra. For further information we refer the reader to the literature where a lot of excellent

reviews can be found, see for instance [2–4]. We also provide some discussions in Appendix A.3.

At this point, an important question arises: Is it possible to extend the symmetry group of

quantum field theory? Since nature respects the Poincaré symmetries, we should be looking for

extensions of the Poincaré algebra. We already know that this is possible since we describe the

fundamental interactions of nature by gauge theories. Hence, we could easily combine the Poincaré

and gauge algebras by adding the generators T a with a = 1, . . . , N2 − 1 for a SU(N) gauge group,

obeying

[T a, T b] = ifabcT c , [T a, Pµ] = 0 , [T a,Mµν ] = 0 . (2.3)

We immediately see that this extended symmetry group is a direct product of the Poincaré and

gauge groups since the generators T a, Pµ and Mµν commute. What we are really after is a non-
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trivial extension of the symmetry group of nature. This requirement2 leads us directly to the notion

of supersymmetry (SUSY) and the introduction of the super-Poincaré algebra.

2.3 The super-Poincaré algebra

As we have seen, trivial extensions of the Poincaré algebra can be easily constructed. In order to

introduce non-trivial extensions one has to look for new symmetry generators that mix with the ones

generating the Poincaré symmetries. An important step in this direction was taken by Coleman and

Mandula in 1967 [5]. They studied restrictions for possible extensions of the Poincaré group which

led to the famous Coleman-Mandula No-Go Theorem. It states that the only possible symmetries

compatible with an interacting quantum field theory are direct products of the Poincaré symmetries

with an internal symmetry group G (global or local). An important assumption in proving this

theorem is that only bosonic generators of symmetries are allowed. By bosonic generators we mean

scalar, vector or tensor generator that do not change the spin of a state. Hence, the generators

do not transform as spinors under the Lorentz group. The main step towards a realisation of an

extension of the Poincaré algebra is the weakening of this assumption, namely to allow commuting as

well as anti-commuting generators for the symmetry algebra which bypasses the Coleman-Mandula

theorem. This leads to the idea of considering generators with half-integer spin. Historically, this

is how supersymmetry was discovered.

Hence, one introduces supersymmetry generators Q that change the spin of a state by units of

1
2 . Being of fermionic nature, they transform as spinors under the Lorentz group. Therefore the

new symmetry is not an internal one, rather it is a non-trivial extension of the Poincaré symmetries.

In 1971, a first step was taken into this direction in the former Soviet Union when the Poincaré

algebra was extended to include spinor generators [6]. In the same year, supersymmetry appeared

in string theory in the context of a two-dimensional field theory [7–9]. It took another 3 years until

Wess and Zumino published their famous work on supersymmetry in four-dimensional quantum

field theory [10, 11] which made supersymmetry a widely known subject. Finally, in 1975 it was

shown that supersymmetry is actually the only possible extension of the Poincaré algebra if one

requires a non-trivial S-matrix in an interacting quantum field theory [12]. This statement is known

as the Haag-Lapusyanksi-Sohnius theorem.

Therefore, we can non-trivially extend the Poincaré algebra only by including the fermionic

supersymmetry generators (often also called supercharges). The new algebra comprise the su-

percharges which transform as spinors under the Lorentz group and the rotation and translation

generators. The new algebra can also contain other additional generators which commute with

the supercharges. These generators are usually denoted as ‘central charges’ of the algebra, al-

though this is not very precise: Often, the central charges do not commute with the Lorentz or

Poincaré generators. In any case, in this thesis we will not consider any extensions of the algebra,

we set the central charges to zero. For further information we refer the reader to the literature.

2Here, we assume that the requirements of the Coleman-Mandula theorem discussed further below need to be

fulfilled for a non-trivial extension.
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For a classification of the supersymmetry algebras in more than two dimensions see the work of

Nahm [13].

The defining anti-commutation relation between the supercharges holds for arbitrary spacetime

dimensions. Hence, we consider algebras of the form (a useful review can be found in [14])

{QIa, Q̄bJ} = 2Pµ (Γµ)
b
a δ

I
J , (2.4)

where a, b are spinor indices, Γµ are the Dirac matrices in D dimensions with µ = 0, . . . , D − 1

whereas I, J label different sets of supersymmetry generators in the case of extended supersym-

metry. In addition, we have introduced the Dirac conjugate supercharge Q̄ = Q†Γ0. The relation

(2.4) together with the algebra of the Poincaré transformations gives the super-Poincaré algebra

(plus anti-commutation relations among the supercharges QIa). Although we will focus on super-

symmetry in four and six dimensions, we find it instructive to briefly discuss some basic properties

of spinors in arbitrary dimensions.

The dimensionality of a Dirac spinor as a solution to the Dirac equation in D spacetime dimen-

sions is given by the dimension of the Dirac matrices. These objects obey a Clifford algebra

{Γµ,Γν} = 2ηµνI , (2.5)

where I is an unit matrix. The dimensionality of the Dirac matrices is also defined by these anti-

commutation relations. Following general theorems of representation theory the matrix dimension

of Γµ is given by (DΓ ×DΓ) where

DΓ =

2
D
2 D even

2
D−1

2 D odd .
(2.6)

This states the fact that Dirac spinors in D dimensions have 2D/2 complex components. In the

familiar example of four dimensions, Dirac spinors belong to reducible representations of the Lorentz

group. This is most easily seen by choosing a chiral basis for the Dirac matrices. The upshot of

this is that that additional constraints can be applied to a Dirac spinor which reduce its degrees of

freedom. For arbitrary spacetime dimensions one might wonder what dimensionality an irreducible

spinor has got. The answer can be conveniently presented as follows which is taken from the nice

discussion in [15].

In general, one has five different sequences of spinors of different dimensionalty for a metric

with Minkowski signature. The results are summarised in Table 2.1. We start with odd spacetime

dimensions. For some of them it is possible to apply the Majorana reality condition (MRC) on

the spinors, leading to the first sequence of Table 2.1. The second line corresponds to the case

of an odd dimension where a Majorana condition cannot be applied. Coming to even dimensions

one finds that charge conjugation relates (irreducible) spinors of positive and negative chirality.

This is the case in 4k, k ∈ N dimensions and is comprised in the third line. Now, we are left with

even dimensions and chirality-conserving charge conjugations. For a six-dimensional spacetime the

MRC cannot be applied and we have complex Weyl spinors as the only irreducible representation3.

3We will make use of this fact in Chapter 4 when discussing the spinor helicity formalism in six dimensions.
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Dimension D Ψirr spinor type Automorphism group

1, 3, 9, 11 2(D−1)/2 Majorana SO(N)

5, 7 2(D+1)/2 Dirac USp(2N)

4, 8 2D/2 Majorana U(N)

6 2D/2 Weyl USp(2N+)× USp(2N−)

2, 10 2D/2−1 Majorana-Weyl SO(N+)× SO(N−)

Table 2.1: Overview of various spacetime dimensions, the corresponding number of real dimensions

of an irreducible spinor, the spinor type and the automorphism group of the supersymmetry algebra.

If an application of the MRC is possible we have Majorana-Weyl spinors. This is case in two and

ten spacetime dimensions. Furthermore, for any dimension, there exists a group under which the

supercharges transform into each other. This is the automorphism group of the super-Poincaré

algebra. The last column of Table 2.1 states the corresponding symmetry group for the spinor

representations for the various dimensions.

Some additional comments about the super-Poincaré algebra are in order here. We know that

an irreducible representation of the Poincaré algebra corresponds to a particle state. In contrast,

an irreducible representation of the super-Poincaré algebra corresponds to several particle states

which differ in their spin by units of 1
2 . We understand this since the (on-shell) states in an

irreducible representation are related by the fermionic generators QIa or Q̄aJ which change the

spin of the states. A collection of (in general off-shell) fields that transform irreducibly under the

super-Poincaré transformations is conventionally called a supermultiplet. In our discussions we also

denote an irreducible representation of the supersymmetry algebra as a supermultiplet. Due to

the structure of the super-Poincaré algebra we immediately have two important properties of a

supermultiplet:

• All particle states within one supermultiplet have the same mass since the operator P 2 com-

mutes with all other generators of the super-Poincaré algebra.

• A supermultiplet contains an equal number of bosonic and fermionic (physical) degrees of

freedom.

From now on we will specialise our discussion to four or six spacetime dimensions. In the next two

chapters we will be mainly interested in the maximal amount of supersymmetry in these spacetime

dimensions. For the second half of this thesis, starting with Chapter 5, we will limit ourselves to

four spacetime dimensions and non-extended supersymmetry which offers many phenomenologically

viable inputs.

2.3.1 Maximal supersymmetry in four dimensions

In four spacetime dimensions, the Lorentz group is SO(3, 1). An irreducible spinor has four real

degrees of freedom. One can choose between a Majorana spinor (four real components) or a
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complex Weyl spinor (two complex components) to represent the irreducible supercharges. Here and

throughout the thesis, we use the two-component notation, i.e. we introduce fermionic generators qIα

and q̄β̇J which transform in the ( 1
2 , 0) and (0, 1

2 ) representations of the Lorentz group respectively.

Here, α, β̇ = 1, 2 are spinor indices and I, J = 1, . . . ,N with N ≥ 1 label the different set of

supercharges. The anti-commutation relation between the Weyl supercharges is then given by

{qIα, q̄β̇J} = 2pµσ
µ

αβ̇
δIJ , {q̄α̇J , qβI} = 2pµσ̄

µ,α̇βδIJ . (2.7)

The super-Poincaré algebra is then given by the above anti-commutators combined with the com-

mutators of the usual Poincaré generators Pµ and Mµν . The product of a left-handed and a

right-handed spinor is proportional to a vector and hence, the σµ
αβ̇

and σ̄µ,α̇β are the Clebsch-

Gordon coefficients that provide a dictionary between the spinor and vector representations. This

will be useful in Chapter 3 when we express four-dimensional momenta as bispinors in the (four-

dimensional) spinor helicity formalism.

At this point one might asked if there is any limit on the number N of possible sets of supersym-

metry generators. The answer to this question is closely connected to the possible representations

of the super-Poincaré algebra. From an algebraic point of view there is no limit on N . However,

with increasing N the corresponding supersymmetric quantum field theory contains particles of

increasing spin. As a physical requirement we impose the condition that no particle should have a

spin higher than s = 1 (we do not consider gravity states where the graviton has spin s = 2). This

leads to the bound of N ≤ 4 for non-gravitational theories.

The representation of the super-Poincaré algebra are obtained by acting with the supercharges

on a vacuum state. Since qIα and q̄β̇J are fermionic generators, they change the spin of the states

they act an. This can be easily seen from the super-Poincaré algebra. In particular when we identify

M12 = J3 we have [M12, q
I
α] = (σ12) βα q

I
β and [M12, q̄

α̇
J ] = (σ̄12)α̇

β̇
q̄β̇J . From this we deduce that

[J3, q
I
1 ] =

1

2
qI1 , [J3, q

I
2 ] = −1

2
qI2 , (2.8)

[J3, q̄1̇I ] = −1

2
q̄1̇I , [J3, q̄2̇I ] =

1

2
q̄2̇I .

Hence, the action of the supercharges is such that qI1 and q̃2I increase the helicity of a state by 1
2

whereas qI2 and q̃1I decreases it by 1
2 . Furthermore, since the momentum operator Pµ commutes

with the supercharges, we can consider the states at arbitrary but fixed momentum. This is helpful

when we consider different representations. For a massive particle, one can boost to the rest frame.

Here, we purely focus on massless states. Further information can be found in many reviews of

supersymmetry, see for instance [2–4] and also the books by Wess and Bagger [16] or by Terning [17].

In the massless case one cannot go to a restframe. However, the condition P 2 = 0 is fulfilled

for instance in the frame Pµ = (E, 0, 0, E). From the algebra we find that half of the supercharges

(namely qI2 and q̄2J) can be set to zero. The other half can be interpreted as creation and annihi-

lation operators which raise or lower the spin of the state they act on. Actually, in the massless

case, the states are labeled by their helicity which is the eigenvalue of the Lorentz generator M12.

Therefore, by repeatedly acting with q̄1I on a vacuum of helicity λ we can decrease its helicity by

multiples of 1
2 .
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A+ λ φ λ̃ A−

Figure 2.1: A pictorial representation of the states in the massless N = 4 vector supermultiplet.

The creation operators are understood to act from the left to the right in this diagram.

A comment about invariance under CPT (the combined transformation of the discrete symme-

tries of charge conjugation C, partiy conjugation P and time reversal T) is in order here. Since CPT

flips the sign of the helicity label, a supermultiplet is only CPT invariant if the helicities are sym-

metrically distributed about λ = 0. This is only the case if the highest helicity is λmax = N
4 . For all

other vacua one has to add the CPT conjugate multiplet to obtain a CPT invariant supermultiplet.

Let us discuss this on two examples. We begin with unextended supersymmetry. For N = 1

we have two possible states, |λmax〉 and
∣∣λmax − 1

2 〉. Adding their CPT conjugates we arrive at the

following N = 1 massless supermultiplets where we limit ourselves to non-gravitational theories:

Chiral supermulitplet - It consists of the helicity configuration (0, 1
2 ) and its CPT conjugate

(− 1
2 , 0). The degrees of freedom belong to a Weyl fermion and a complex scalar.

Vector supermulitplet - It consists of the configuration ( 1
2 , 1) and (− 1

2 ,−1). We have a

massless gauge boson and a real fermion field, represented by a complex Weyl spinor. The gauge

boson is in the adjoint representation of the gauge group and so is the corresponding fermion.

If we do not consider theories with particles of helicities |λ| > 1 then we have constructed

all possible massless supermultiplets. Allowing |λ| ≤ 2 we also have the gravitino supermultiplet

(containing a gravitino and a gauge boson) and the graviton supermulitplet (containing the graviton

and a gravitino) for N = 1 unextended supersymmetric theories.

Finally, we turn to the maximally supersymmetric theories in four dimensions. Again we do not

consider gravitational theories. Hence, we have N = 4 for maximal supersymmetry. We construct

the massless supermultiplet as before, starting with the highest possible helicity state. By applying

the four creation operators a†I = 1/
√

2 q̄1I for I = 1, . . . , 4 we get:

State Helicity Multiplicity

|Ω, λmax〉 λmax 1

a†I |Ω, λmax〉 λmax − 1
2 4

a†Ia
†
J |Ω, λmax〉 λmax − 1 6

εIJKLa†Ia
†
Ja
†
K |Ω, λmax〉 λmax − 3

2 4

εIJKLa†Ia
†
Ja
†
Ka
†
L|Ω, λmax〉 λmax − 2 1

Here, the multiplicity of each state is given by the antisymmetry of the labels I, J, . . . . For non-

gravitational theories we have λmax = 1 and we see that the supermultiplet is automatically CPT

invariant, having states helicities in the range of +1, . . . ,−1. Conventionally, the supermultiplet is



2.3. The super-Poincaré algebra 12

called the massless N = 4 vector supermultiplet. It contains states of massless gauge bosons/gluons

(helicities ±1), gauginos/gluinos (helicities ± 1
2 ) and scalars (helicity 0).

Here we have constructed the supermultiplets as states. The corresponding realisations in terms

of quantum fields can be deduced from these representations. However, this will result in ‘on-shell’

fields. We will construct such a ‘superfied’ explicitly in Chapter 3 for the case of N = 4 massless

representations. A construction of off-shell superfields, i.e. fields that do not obey their equations of

motions, is possible for non-extended supersymmetry. We discuss the off-shell superspace approach

for N = 1 supersymmetry in Section 2.4.

2.3.2 Maximal supersymmetry in six dimensions

The Lorentz group in six dimensions is SO(5, 1) which is isomorphic to the non-compact group

SU∗(4). Spinors transforming under the six-dimensional Lorentz group carry therefore a fundamen-

tal or anti-fundamental Lorentz index A = 1, . . . , 4 which corresponds to the chiral or anti-chiral

spinor representation, respectively. Here, the fundamental and anti-fundamental representations of

SU(4) are inequivalent, there is no tensor which could raise or lower the Lorentz indices.

As we have mentioned before, a general spinor in six dimensions is of Weyl-type4. Since the six-

dimensional γ5-equivalent is the identity, a charge conjugated spinor has the same chirality. We have

independent rotations for the chiral and anti-chiral supercharges, namely USp(2N+)× USp(2N−).

Just as for the well known Weyl spinors in four dimensions, it is useful to understand what Lorentz

invariant reality conditions we can impose on the six-dimensional spinors. The usual Majorana

reality condition in four dimensions relates a spinor to its charge conjugate, i.e. ψ = ψc = Bψ∗

which is only possible for BB∗ = I. Here, B plays the role of a charge conjugation matrix which

has to be an unitary matrix, BB† = I. However, in six dimensions we have BB∗ = −I and hence,

Majorana spinors do not exist in six-dimensional Minkowski spacetime. For details on this fact see

for instance the review [18]. Then, it is a question of how to introduce a reality condition on the

spinors. In six dimensions, we can impose the so called symplectic Majorana condition. In order to

do so, one introduces an additional SU(2) label a = 1, 2 on the six-dimensional spinors, such that

the reality condition reads (
ψAa
)c

= εabB̃
A
B

(
ψBb

)∗
, (2.9)

where A,B are SU(4) indices and a, b are the newly introduced SU(2) indices. This relation yields

ψAa =
((
ψAa
)c)c

= εabB̃
A
B

((
ψBb

)c)∗
= εabε

bdB̃ABB̃
∗B
C ψ

C
d = δdaδ

A
Cψ

C
d = ψAa , (2.10)

with B̃ABB̃
∗B
C = −δAC such that the complex conjugate of the spinor is equal to itself. By introduc-

ing the additional SU(2) indices we have doubled the components of the six-dimensional spinors.

However, by imposing the reality condition we have halved the number of components again. In the

end, we are left with four complex degrees of freedom of the symplectic spinor. One might wonder

of how to interpret the additional SU(2) indices which are needed to impose a reality condition in

six dimensions. It turns out that we can identify the additional SU(2) index on the spinors with

4Here, we follow the discussion and notation of [15].
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the six-dimensional little group, i.e. the part of the Lorentz group which leaves the momentum

invariant. Whereas in four dimensions the little group is SO(2) ∼= U(1) and labels the helicity of a

particle state, in the six-dimensional context it is SO(4) ∼= SU(2)× SU(2). The two copies of SU(2)

represent the fact that so far, we have considered spinors with fundamental SU(4) indices only.

However, we also have to include those spinors with anti-fundamental SU(4) indices. These spinors

come with their own little group index, usually denoted by a dotted index ȧ = 1, 2. This leads

to spinors ψ̃ ȧ
A for which a reality condition similar to (2.9) can be imposed. The upshot of this

construction is the fact that the invariance under the SU(2) little group transformations reduces

the components of a six-dimensional spinor even further. Due to the reality condition, we have 4

complex or 8 real components and the SU(2) invariance reduces these components by a factor of

3, yielding 5 real components. Since we have both a chiral and a reality condition, six-dimensional

real spinors are usually denoted as symplectic Majorana-Weyl spinors. This construction makes

real momenta and real representations of the supersymmetry algebra in six dimensions possible.

For further discussions on this topic we refer the reader to the literature, see for instance the recent

work [19] and also the original works [20] and [?]. Especially the latter one provides also a nice

overview on spinors in various dimensions.

The minimal amount of supersymmetry in six dimensions is given by N = (1, 0) and N = (0, 1).

If we limit ourselves again to the massless representations we have in the N = (1, 0) case the

hypermultiplet (one complex fermion and two complex scalars), the tensor multiplet (one 2nd rank

tensor, one complex fermion and one real scalar) and the vector multiplet (one massless vector field

and one complex fermion) when focusing only on non-gravitational theories. All multiplets have

in total eight real degrees of freedom. Increasing the number of chiral or anti-chiral supercharges

by one we get the N = (2, 0) or N = (0, 2) theories with maximal supersymmetry. In the case

of N = (2, 0) we encounter the tensor multiplet (one 2nd rank tensor, five real scalars and four

complex fermions) with in total 16 degrees of freedom (again we limit ourselves to non-gravitational

theories).

However, what we are really after is the non-chiral maximally supersymmetric theory with 16

supercharges, namely the N = (1, 1) theory. Although the N = (2, 0) is also maximal, it does not

contain a vector gauge field which we need for a description of six-dimensional gauge interactions.

The N = (1, 0) theory contains a massless vector field, however, it is not maximal and therefore

we cannot combine all on-shell states into a single (on-shell) superfield5. Therefore, from now

on, we solely consider the N = (1, 1) super Yang-Mills theory when we discuss supersymmetric

theories in six dimensions. As usual we consider particles with spins up to s = 1 and hence,

this supersymmetric Yang-Mills theory contains a single supermultiplet only, namely the vector

multiplet. It consists of a six-dimensional vector field and four real scalars (yielding eight bosonic

degrees of freedom) and also two fermion fields, one chiral and one anti-chiral one (yielding eight

fermionic degrees of freedom).

The N = (1, 1) theory contains 16 supercharges, eight chiral and eight anti-chiral ones. They

carry the usual Lorentz indices of the SU(4) and transform also under the USp(2) × USp(2) ∼=
5See the discussions in Sections 3.3.1 and 4.2 for further details.
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SU(2)× SU(2) R-symmetry group. Hence, we introduce spinorial generators qAI as chiral and q̃AI′

as anti-chiral supercharges where A = 1, . . . , 4 and I and I ′ are SU(2) R-symmetry indices. They

obey the anti-commutation relations

{qAI , qBJ} = pABεIJ , (2.11)

{q̃AI′ , q̃BJ′} = pABεI′J′ ,

where pAB and pAB is a six-dimensional vector which is in the anti-symmetric representation of

SU(4). The total anti-symmetric tensor εABCD can be used to raise the indices of a vector pAB .

Similarly, one can lower indices with εABCD. The anti-commutators (2.11) together with the six-

dimensional Poincaré algebra and additional vanishing anti-commutators between supercharges of

opposite chirality comprise the super-Poincaré algebra of the N = (1, 1) super Yang-Mills theory

in six dimensions. In addition to our brief overview in this section we will discuss six-dimensional

spinors, on-shell supercharges and an on-shell N = (1, 1) superspace construction in Sections 4.1

and 4.2.

2.4 The N = 1 Off-shell Superspace

In the second half of this thesis we focus on non-extended N = 1 supersymmetry in four dimensions

and on the important question of how supersymmetry can be broken. We find it therefore instructive

to introduce a convenient method to discuss the supermultiplet structure of the N = 1 algebra and

the corresponding field content, namely the N = 1 off-shell superspace. This section also sets the

notations and conventions for our discussions in the Chapters 5, 6 and 7.

So far, we have constructed irreducible representations of the super-Poincaré algebra and found

that they are realised as supermultiplets. This is an on-shell construction since it is based on

on-shell asymptotic states which the generators act on. For quantum fields, irreducible represen-

tations can be constructed under the requirement that the fields are complex and on-shell, i.e.

obeying their equation of motion. However, there is a problem if one tries to construct a field

content corresponding to a supermultiplet in an off-shell fashion, at least in the case of extended

supersymmetry. With the exception of theories with N = 2 supersymmetry, a closure of the super-

symmetry algebra where fields are not obeying their equations of motions requires an infinite set

of auxiliary fields. For more information about extended superspace we refer the interested reader

to the rather detailed review in [21]. Here, we will focus on the relevant case for our discussions,

namely the off-shell superspace for unextended N = 1 supersymmetry and its field content.

To construct such an off-shell superspace we remind ourselves that any quantum field is param-

eterised by spacetime coordinates xµ which themselves parameterise the coset K = P/L. Here, P

is the Poincaré group and L is the Lorentz group. In general, for a coset K = G/H we can identify

the elements g of G through an exponential map

g = eiε
aLaeiξ

bHb , (2.12)
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where εa with a = 1, . . . , (dimG − dimH) are a set of coordinates parameterising the coset. The

generators of G separate into the disjunct sets of generators Hb of H and the remaining generators

La. The elements of the coset K can be then obtained by letting ξb = 0.

In order to use this prescription to construct the off-shell N = 1 superspace we write the

supersymmetry algebra as a Lie algebra, i.e. we rewrite the anti-commutators as commutators

[θαqα, θ̄
α̇q̄α̇] = 2pµθ

ασµαα̇θ̄
α̇ . (2.13)

Here, we introduced two-component fermionic Grassmann variables θα and θ̄α̇ to obtain the com-

mutator between the supercharges. An element of the corresponding group is then written as

g(x, θ, θ̄, w) = ei(−a
µpµ+θq+θ̄q̄)eiw

µνMµν , (2.14)

where the sign of the parameter a is a convention. Now, the N = 1 superspace is defined as the

coset

K(N = 1) = super-Poincaré / Lorentz =
{
wµν , aµ, θα, θ̄α̇

}
/
{
wµν

}
, (2.15)

and an element in this superspace is given by elements k of the super-Poincaré group with wµν = 0,

k = ei(−x
µpµ+θq+θ̄q̄) ≡ ezaKa . (2.16)

Here, the elements are parameterised by the coordinates za = (xµ, θα, θ̄
α̇) with generators Ka =

(Pµ, qα, q̄
α̇). The elements are unitariy since (θq)† = θ̄q̄.

Having identified the coordinates of the N = 1 superspace we can follow a construction analog

to the well known case of scalar fields in Minkowski space in order to introduce scalar superfields.

The usual scalar fields φ are functions of the spacetime coordinates xµ and transform under the

Poincaré symmetries, for instance for translations we have

φ(x) −→ eiaµP
µ

φ(x) e−iaµP
µ

= φ(x+ a) . (2.17)

Here, the field is an operator in a Fockspace F such that it can be written in terms of creation and

annihilation operators. However, the field φ(x) can also be expressed as a vector in a Hilbert space

where the functions are act on by differential operators. In our example of translations we have

φ(x) −→ e−ia
µP̂µφ(x) = φ(x+ a) , (2.18)

where P̂µ is a representation of the abstract operator Pµ as an differential operator, P̂µ = i∂µ.

A scalar superfield Ω(x, θ, θ̄) can then be introduced by requiring similar transformational prop-

erties. Introducing constant Grassmann spinors ξα and ξ̄α̇, one defines a supertranslation operator

S(a, ξ, ξ̄) = ei(−a
µPµ+ξαqα+ξ̄α̇q̄

α̇) , (2.19)

where Pµ, qα and q̄α̇ are abstract operators in Fock space. We notice that by letting ξα = ξ̄α̇ = 0

and acting on a scalar field we immediately obtain the result of (2.17). We can combine two

supertranslations by usage of the Baker-Campbell-Hausdorff formula for matrix exponentials, which

yields the result

S(a, ξ, ξ̄)S(x, θ, θ̄) = S(xµ + aµ − iξσµθ̄ + iθσµξ̄, θ + ξ, θ̄ + ξ̄) . (2.20)
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Here, we used the non-zero commutators [ξq, θ̄q̄] = 2ξσµθ̄Pµ and [ξ̄q̄, θq] = −2θσµξ̄Pµ. Induced by

this transformation we have a translation of the coordinates za, a generalisation of the corresponding

relation (2.1) in Minkowski space. The transformation of a scalar superfield as a field operator in

Fock space is then

Ω(x, θ, θ̄) −→ e−i(−x
µPµ+ξαqα+ξ̄α̇q̄

α̇)Ω(x, θ, θ̄)ei(−x
µPµ+ξαqα+ξ̄α̇q̄

α̇) (2.21)

= Ω(xµ + aµ − iξσµθ̄ + iθσµξ̄, θ + ξ, θ̄ + ξ̄) .

Just as before, the abstract operators Pµ, qα, q̄α̇ have a representation as superspace differential

operators when acting on Hilbert vectors. Hence, we can consider the left multiplication of a

generator S(a, ξ, ξ̄) on a general coset element in the Hilbert space of states, yielding

S(a, ξ, ξ̄)Ω(x, θ, θ̄) = ei(−a
µP̂µ+ξαq̂α+ξ̄α̇ ˆ̄qα̇)ei(−x

µP̂µ+θq̂α+θ̄ ˆ̄q) (2.22)

= Ω(xµ + aµ − iξσµθ̄ + iθσµξ̄, θ + ξ, θ̄ + ξ̄) .

For infinitesimal parameters a, ξ and ξ̄ we can expand both sides of this relation and obtain, by

comparing the coefficients of the parameters (from now on we neglect the ˆ on the operators),

Pµ = i∂µ , (2.23)

qα = ∂α − iσµαβ̇ θ̄
β̇∂µ ,

q̄α̇ = ∂α̇ − iθβσµβα̇∂µ .

One can explicitly check that the differential operators obey the supersymmetry algebra for the

abstract supercharges. From this we have for the change of a general coset element Ω(x, θ, θ̄) under

a superspace translation

Ω −→ Ω + δξΩ = Ω + i(−aµPµ + ξαqα + ξ̄α̇q̄
α̇)Ω . (2.24)

Ignoring normal spacetime translations for a moment, we obtain

δξΩ = i(ξαqα + ξ̄α̇q̄
α̇)Ω . (2.25)

We can utilise these results to briefly note some properties of superfields. Firstly, if Ω1 and Ω2 are

superfields then the product Ω1Ω2 is also a superfield:

δξ(Ω1Ω2) = i
[
Ω1Ω2, ξ

αqα + ξ̄α̇q̄
α̇
]

= iΩ1

[
Ω2, ξ

αqα + ξ̄α̇q̄
α̇
]

+ i
[
Ω1, ξ

αqα + ξ̄α̇q̄
α̇
]
Ω2

= Ω1

(
i(ξαqα + ξ̄α̇q̄

α̇)Ω2

)
+
(
i(ξαqα + ξ̄α̇q̄

α̇)Ω1

)
Ω2

= i(ξαqα + ξ̄α̇q̄
α̇)(Ω1Ω2) . (2.26)

Note that in the first line the supercharges are abstract operators whereas after that they are given

by their represenation as differential operators. This is important in the last step where the product

rule is applied to combine both terms. Secondly, we note that although ∂µΩ is a superfield, the

object ∂αΩ is not because the operator ∂α mixes with the representation of the supercharges as

differential operators, i.e. [∂α, ξq + ξ̄q̄] 6= 0. At this point it is useful to introduce objects that
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anti-commute with the differential represenation of the supercharges. They are usually denoted as

covariant derivatives and are defined by

Dα = ∂α + iσµ
αβ̇
θ̄β̇∂µ Dα̇ = −∂α̇ − iθβσµβα̇∂µ . (2.27)

They satisfy the relations

{
Dα, qβ

}
=
{
Dα, q̄β̇

}
=
{
Dα̇, qβ

}
=
{
Dα̇, q̄β̇

}
= 0 , (2.28)

and we have [
Dα, ξq + ξ̄q̄

]
= 0 . (2.29)

Therefore,

δξ
(
DαS

)
= iDα

(
ξαqα + ξ̄α̇q̄

α̇
)
Ω = i

(
ξαqα + ξ̄α̇q̄

α̇
)
DαΩ (2.30)

and DαΩ is a superfield. We conclude that if Ω is a general scalar superfield, then ∂µΩ, DαΩ and

Dα̇Ω are also superfields.

The covariant derivatives inherit their name from the well-know covariant derivates of gauge

theory where the objects φ and Dµφ transform in the same way under gauge transformations. The

same holds for their superspace cousins which we will use when we discuss supersymmetric gauge

theories.

The fact the the scalar superfield Ω(x, θ, θ̄) is a function in the Grassmann parameters θα and θ̄α̇

makes it possible to Taylor-expand it in θα and θ̄ȧ. The expansion terminates since higher powers

of these fermionic parameters vanish. This gives the component expansion of a scalar superfield:

Ω(x, θ, θ̄) = c(x) + θψ(x) + θ̄ ψ̄′(x) + (θθ)f(x) + (θ̄θ̄)f ′(x) + θσµθ̄ Vµ(x)

+ (θθ)θ̄λ̄′(x) + (θ̄θ̄)θλ(x) + (θθ)(θ̄θ̄)D(x). (2.31)

Here, the primed fields are not related to the unprimed fields. Furthermore, all component fields are

complex and additionally, ψ(x), ψ̄′(x), λ(x), λ̄′(x) are Grassmann odd, hence, they anti-commute

with all other fermionic objects in this expansion. Notice that in principle, there are four terms

in the θα, θ̄α̇. Using standard Fierz identities they can be combined into one single term which

is conveniently written in terms of the vector field Vµ. Hence, we have for the component fields

four complex Weyl spinors ψ, ψ̄′, λ and λ̄′, four complex scalar fields c, f, f ′ and D and the vec-

tor field Vµ. This gives in total eight complex fermionic and eight complex bosonic degrees of

freedom which nicely states the fact of equal number of fermionic and bosonic degrees of freedom

in a supermultiplet. Using this explicit expansion and the represenation of the supercharges as

differential operators one can deduce from the (2.25) the transformation of the component fields

under a supertranslation (again with aµ = 0 for simplicity) by defining

δξΩ(x, θ, θ̄) =δξc(x) + θαδξψα(x) + θ̄α̇δξψ̄
′α̇(x) + θθδξf(x) + θ̄θ̄δξf

′(x) + θσµθ̄δξVµ(x)

+ θθθ̄α̇δξλ̄
′α̇(x) + θ̄θ̄θαδξλα(x) + θθθ̄θ̄δξD(x) (2.32)

and matching the appropriate powers in the Grassmann spinors on both sides of the relation (2.25).
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One might ask if the component field expansion yields an irreducible representation for off-

shell N = 1 supersymmetry. To see this we might impose constraints on the component fields of

Ω. One can then check that the supersymmetry transformations of the component fields respect

the imposed constraints. This shows that the general scalar superfield gives a reducible repre-

sentation of the off-shell N = 1 algebra. Hence, in general we can impose consistent (with the

superspace transformations) constraints on Ω, leading to smaller superfields which can give irre-

ducible representations of the algebra. In the following, we discuss some very important irreducible

representations for four-dimensional supersymmetric field theories, namely the chiral superfield and

the vector superfield.

2.4.1 The chiral superfield

We have seen that the covariant derivatives are important objects in superspace, especially since

they impose certain constraints on the superfields. Let Φ(x, θ, θ̄) be such a general scalar superfield.

Then, Dα̇Φ is also a superfield. Therefore, we can impose the constraint

Dα̇Φ = 0. (2.33)

A superfield that fulfills this condition is called chiral superfield. We now want to find the most

general solution to the covariant constraint (2.33). To do this we define a new set of coordinates

yµ in superspace,

yµ = xµ + iθσµθ̄ . (2.34)

Using Dα̇y
µ = Dα̇θ

α = 0 it is easy to see that any function Φ(yµ, θ) which is not a function of θ̄α̇

satisfies

Dα̇Φ(yµ, θ) = 0 (2.35)

which is the most general solution to the chiral constraint. We can therefore write

Φ(y, θ) = φ(y) +
√

2θψ(y) + (θθ)F (y) , (2.36)

where the factor of
√

2 is conventional. Notice that terms with higher powers in the Grassmann

spinor θα are not possible. Counting the degrees of freedom we see that the two complex scalars φ

and F give four real bosonic degrees of freedom whereas the left-handed Weyl spinor gives four real

fermionic degrees of freedom. As before, the compontent fields are off-shell in this construction.

Using the explicit form of yµ we can expand Φ(y, θ) in powers of θ and θ̄. The result, after

using some Fierz identities, is given by

Φ(x, θ, θ̄) = φ(x) +
√

2θψ(x) + iθσµθ̄∂µφ(x)− i√
2

(θθ)∂µψ(x)σµθ̄

− 1

4
(θθ)(θ̄θ̄)∂µ∂µφ(x) + (θθ)F (x). (2.37)

This is the full expansion of a left-handed chiral superfield. We also have anti-chiral superfields

which are also denoted as right-handed chiral superfields. The relation between chiral and anti-

chiral superfields is obvious. If Φ is a chiral superfield, then Φ† is an anti-chiral one, obeying the
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relation

DαΦ† = 0 , with Φ† = Φ†(y†, θ̄) , y†µ = xµ − iθσµθ̄ . (2.38)

Expanding in θ and θ̄ we have6

Φ†(x, θ, θ̄) = φ†(x) +
√

2 θ̄ψ̄(x)− iθσµθ̄∂µφ†(x) +
i√
2

(θ̄θ̄)∂µψ̄(x)σµθ̄

− 1

4
(θθ)(θ̄θ̄)∂µ∂µφ

†(x) + (θ̄θ̄)F †(x). (2.39)

Using the relations (2.25) and (2.32) we can deduce the transformations of the components of the

chiral superfield under the infinitesimal transformation δξ, yielding

δξφ =
√

2ξψ , (2.40)

δξψ =
√

2ξF + i
√

2σµξ̄δµφ ,

δξF = −i
√

2∂µψσ
µξ̄ .

Here, we note that the variantion of F (x), the so called F -term of the chiral superfield, transforms

as a total derivative.

We finish our discussion by quickly stating some comments about chiral superfields. As we have

seen, the product of two general superfields is a superfield itself. And since the covariant derivatives

obey the usual chain rule as differential operators, any product of chiral superfields Φi,Φj is also a

chiral superfield. The same holds for products of anti-chiral superfields. However, whereas Φ†Φ and

Φ+Φ† are real superfields, they are neither chiral nor anti-chiral. Furthermore, since D3 = D
3

= 0,

we have the simple fact

D
2
Ω = Φ with Φ as chiral superfield ,

D2Ω = Φ† with Φ† as anti-chiral superfield .

2.4.2 The vector superfield

From the chiral superfield we move on to an off-shell representation of the supermultiplet of next

higher spin in the N = 1 theory. Here, one can introduce the vector superfield V (x, θ, θ̄). Its

definition is deduced from the general scalar superfield by imposing the constraint

V (x, θ, θ̄) = V †(x, θ, θ̄) , (2.41)

such that it is a real superfield. This constraint yields a component expansion

V (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) +
i√
2
θθS(x)− i√

2
θ̄θ̄S†(x)− θσµθ̄Vµ(x) (2.42)

+ iθθθ̄
[
λ̄(x) +

i

2
σ̄µ∂µχ(x)

]
− iθ̄θ̄θ

[
λ(x)− i

2
σµ∂µχ̄(x)

]
+

1

2
θθθ̄θ̄

[
D(x) +

1

2
�C(x)

]
.

Hence, the representation of the vector superfield has two real scalars C,D, the complex scalar

S, four Weyl spinors ξ, ξ̄, λ, λ̄ and a real vector Vµ as component fields. The appearance of a

6We follow the usual convention to denote the complex conjugate of the complex scalars φ and F by φ† and F †.
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real four-dimensional vector field makes it natural to use vector superfields as building blocks for

supersymmetric gauge interactions.

The first step in this directions is to extend the usual gauge transformations in the N = 1

framework by noting that one can build a vector superfield of the form Φ + Φ† from a chiral

superfield Φ. This yields for the component fields in the expansion (2.42) the identifications

C = (φ+ φ†) , χ = −i
√

2ψ , (2.43)

S = −i
√

2F , Vµ = −i∂µ
(
φ− φ†

)
,

D = 0 , λ = 0 .

If we then define the supersymmetric generalisation of an infinitesimal abelian gauge transformation

of the vector superfield [11] as

V −→ V + Φ + Φ† , (2.44)

one can immediately deduce how the component transforms and finds for the vector Vµ, the scalar

D and the Weyl spinor λ

Vµ −→ Vµ − i∂µ
(
φ− φ†

)
(2.45)

D −→ D

λ −→ λ .

Hence, the supersymmetric abelian construction (2.44) gives the correct transformation of a gauge

field Vµ → Vµ − ∂µΛ with Λ = i
(
φ− φ†

)
. In addition, we can choose the component fields of Φ in

(2.44) in such a way that

C = χ = S = 0 . (2.46)

The freedom in setting these fields to zero is similar to a gauge choice. Hence, this particular choice

is called the Wess Zumino (WZ) gauge. In this gauge the vector superfield takes the simple form

VWZ = −θσµθ̄Vµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x) . (2.47)

The component fields of the superfield in the WZ gauge are the vector field V µ, corresponding to

gauge bosons, the gauginos λ and λ̄ and the real scalar D which is an auxiliary field. We note that

fixing the supersymmetric gauge freedom does not fix the remaining abelian gauge freedom for the

gauge field V µ. The simple structure of the vector superfield in WZ gauge yields for products of

VWZ

V 2
WZ =

1

2
θθθ̄θ̄D(x) , V n+2

WZ = 0 ∀n ∈ N . (2.48)

Unfortunately, the vector superfield in the WZ gauge is not invariant under supersymmetry trans-

formations since the superfield VWZ does not transform into a vector superfield of the same WZ

gauge under a supersymmetry transformation. Hence, one has to deal with the higher amount of

component fields when using the full vector superfield in a supersymmetric formulation. However,

one can define another superfield that contains only the fields of the WZ gauge. In addition, it

provides the field strength for the vector field and products with itself can provide the gauge kinetic

terms for the gauge field V µ.
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We can use the covariant derivatives to define the (abelian) supersymmetric field strength

Wα(x, θ, θ̄) = −1

4

(
DD

)
DαV (x, θ, θ̄) (2.49)

Wα̇(x, θ, θ̄) = −1

4
(DD)Dα̇V (x, θ, θ̄) .

We see that they are chiral or anti-chiral superfields, Dα̇Wβ = 0 because higher powers in the

covariant derivatives D
3

vanish. However, the chiral and anti-chiral Wα and Wα̇ obey the additional

constraint

Dα̇W
α̇

= DαWα . (2.50)

The anti-commutation relation of the covariant derivatives yield the invariance of the supersym-

metric field strength under the generalised abelian gauge transformation (2.44), for instance

Wα −→W′α = −1

4

(
DD

)
Dα

(
V + Φ + Φ†

)
. (2.51)

This allows us to compute the component expansion of the field strength superfield in the WZ gauge

where it is convenient to switch to the superspace coordinate yµ. Using the relation xµ = yµ−iθσµθ̄
we can expand the component fields as7

Wα = −iλα(y) + θαD(y)− i

2
(σµσ̄ν)

β
α θβ (∂µVν − ∂νVµ) (y) + (θθ)σµ

αβ̇
∂µλ̄

β̇(y) (2.52)

= −iλα(y) +

[
δβαD(y)− i

2
(σµσ̄ν)

β
α Fµν(y)

]
θβ + (θθ)σµ

αβ̇
∂µλ̄

β̇(y)

where we have used the abelian field strength Fµν(y) = ∂µVν − ∂νVµ. An analogue expansion

holds for the anti-chiral supersymmetric field strength Wα̇. Note that we have only discussed the

abelian case so far, i.e. a supersymmetric gauge transformation of the form (2.44) where V,Φ and

Φ† commute. We will generalise this construction to the general non-abelian case in the following.

2.4.3 The non-abelian field strength superfield

In the general non-abelian case, the superfields in the infinitesimal transformation (2.44) are matrix

valued fields. We can exponentiate the expression (2.44) and obtain for a finite gauge transformation

eV −→ e−iΛ
†
eV eiΛ (2.53)

with the conventional definitions of Φ = iΛ and Φ† = −iΛ [22]. In the abelian case, the infinitesimal

transformation follows directly from (2.53) since all fields commute. For a non-abelian gauge group,

we have

V ≡ (TA)abV
A , (2.54)

Λ ≡ (TA)abΛA

where the TA are the generators of the gauge group and a sum over the gauge index A = 1, . . . , N2−
1 for SU(N) gauge groups is understood. In this case, the superfields Λ and V do not commute.

Therefore, a priori it is not clear that the WZ gauge can be applied for non-abelian gauge symmetries

7The reader should not confuse the covariant derivative Dα with the auxiliary component field D(x).
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because the relation between the vector superfield V and Λ and Λ† are more complicated as can

be seen from the infinitesimal non-abelian gauge transformation. Following (2.53) one can use the

Baker-Campbell-Hausdorff relation for matrix exponentials which yields

V −→ V + i(Λ− Λ†)− i

2
[(Λ + Λ†), V ] . (2.55)

This transformation holds to first order in Λ where we neglect an infinite series of higher commuta-

tors [V, [V . . . [V, (Λ− Λ†)]. Although the relation between the vector and chiral superfields in the

non-abelian transformation is more involved, the transformation (2.55) suggests that one can still

arrange Λ and Λ† such that only the component fields V µ, λ, λ̄ and D are non-vanishing. Hence,

the WZ gauge holds also for non-abelian gauge transformations. Since V µ is now a matrix valued

gauge field, λ and D are now (matter) fields in the adjoint representation.

For the non-abelian case we also have to modify the definition of the supersymmetric field

strength because the expressions (2.49) are not gauge invariant. One defines for non-abelian gauge

symmetries

Wα(x, θ, θ̄) = −1

4

(
DD

)
e−VDα e

V (2.56)

Wα̇(x, θ, θ̄) = −1

4
(DD) eVDα̇e

−V

where the superfields are also matrix valued, Wα = WA
αT

A. This definition is compatible with

the abelian case as can be seen from expanding the exponentials. Without loss of generality we

choose V to be in the WZ gauge. Expanding with V 3
WZ = V 2

WZ (DαVWZ) = 0 and DαV
2

WZ =

(DαVWZ)VWZ + VWZ (DαVWZ) yields

Wα = −1

4

(
DD

)
(DαV + [DαV, V ]) , Wα̇ = −1

4
(DD)

(
Dα̇V − [Dα̇V, V ]

)
. (2.57)

For an abelian theory the commutators vanish and we obtain (2.49). We also note that the non-

abelian field strengh superfields are not invariant under gauge transformations but rather covariant,

Wα −→ e−iΛWα e
iΛ . (2.58)

Tracing over the gauge index A, the object Tr[WαWα] is gauge invariant. This is the same as in

the non-supersymmetric case where the field strength Fµν is not invariant under non-abelian gauge

transformation but the quantity Tr[FµνFµν ] = 1
2F

A,µνFAµν is8.

We obtain the component expansion of the non-abelian version of Wα by working in the WZ

gauge and expressing the superfield in the coordinate yµ = xµ + iθσµθ̄,

Wα = −iλα(y) +

[
δβαD(y)− i

2
(σµσ̄ν)

β
α Fµν(y)

]
θβ + (θθ)σµ

αβ̇
Dµλ̄

β̇(y) , (2.59)

where the field strength and gauge covariant derivate are given by

Fµν = ∂µVν − ∂νVµ + i[Vµ, Vν ] , (2.60)

Dµλ̄
β̇ = ∂µλ̄

β̇ + i[Vµ, λ̄
β̇ ] .

This shows that Wα = WA
αT

A. In the abelian limit, the commutators in the above expression

vanish and one obtains (2.52).

8For generators in the adjoint representation of an SU(N) gauge group one has Tr[TATB ] = 1
2
δAB .
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2.5 Supersymmetric field theories

Having introduced the machinery of the N = 1 superspace and the corresponding superfield nota-

tion, we are now ready to describe a supersymmetric version of familiar non-SUSY quantum field

theories in a superfield approach. The formulation is based on the observation that the F-term of a

chiral superfield and the D-term of a vector superfield transform into themselves plus a term which

is a total derivative under the infinitesimal SUSY transformations (2.25). Hence, the action does

not change. We can implement this feature by integrations of the Grassmann spinors, leading to

the terms

SF =

∫
d4x

{∫
d2θΦ +

∫
d2θ̄Φ†

}
, SD =

∫
d4x

∫
d4θV

which are automatically invariant under supersymmetry transformations. In the following we

quickly discuss possible theories that incorporate these constructions, firstly theories that are con-

structed out of chiral superfields only and then theories including gauge superfields.

2.5.1 Supersymmetric chiral models

Any holomorphic function of a chiral superfield is also a chiral superfield. Denoting such a holomor-

phic function by W (Φ), we know that its F-term transforms as a total derivative. If we generalise

this to a theory with several chiral superfields Φi, the term

LW =

∫
d2θW (Φi) + h.c. , (2.61)

together with its hermitian conjugate function W (Φ†), give rise to supersymmetric interactions

among the component fields. The function W is called the superpotential. Note that no spacetime

derivatives can occur in this construction and hence, this Lagrangian does not generate kinetic

terms for the fields.

However, we already know that the object ΦΦ† is a real superfield. If we again generalise to

several superfields in the theory, the term

LK =

∫
d4θK , with K =

∑
i

Φ†iΦi (2.62)

is invariant and give rise to canonical kinetic terms. Here, K is the so called canonical Kähler

potential. In general, it is possible to have a general Kähler potential which leades to kinetic terms

LK =

∫
d4θK ⊃ gij

(
−(∂µφi)

†(∂µφj)− iψ̄iσ̄µ∂µψj + F †i Fj

)
(2.63)

where gij = ∂2K/(∂Φ†i∂Φj)
∣∣
Φ=φ

is a Kähler metric. For the rest of our discussion we will assume

a canonical Kähler potential Kcan.

The simplest supersymmetric Lagrangian that contains only chiral superfields is the Wess-

Zumino model [11]. Its action is given by

SWZ =

∫
d4x

[∫
d4θKcan +

∫
d2θ

{
λiΦi +

1

2
mijΦiΦj +

1

3
yijkΦiΦjΦk + h.c.

}]
(2.64)
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for i flavours of chiral superfields Φi. Sometimes one can find definitions that include the numerical

factors in the couplings mij and yijk. By construction, the Lagrangian is supersymmetric and the

most general one leading to a renormalisable theory. The component expansion of the Lagrangian

is given by

LWZ =− (∂µφi)
†(∂µφi)− iψ̄iσ̄µ∂µψi + F †i Fi +

[
λiFi +mij

(
φiFj −

1

2
ψiψj

)
+ yijk (φiφjFk − ψiψjφk) + h.c.

]
(2.65)

We note that there are no kinetic terms for the F field in this expansion. This justifies to call it

an auxiliary field where its equations of motions are purely algebraic and we obtain (for just one

chiral superfield)

0 = − ∂L
∂F

= F † + λ+mφ+
1

2
yφφ . (2.66)

If we denote the interaction terms in (2.64) more generally by W (Φ), we can write the WZ La-

grangian in a compact form. Solving the auxiliary equations for F and F † and plugging the result

back into the component expansions, the Lagrangian contains the terms

LWZ ⊃ F †F − (λF +mφF +
1

2
yφφF + h.c.) =

∣∣∣∣∂W (Φ)

∂Φ

∣∣∣∣2
Φ=φ

. (2.67)

Therefore, we have the most general expression

LWZ =− (∂µφi)
†(∂µφi)− iψ̄iσ̄µ∂µψi −

∑
i

∣∣∣∣∂W (Φi)

∂Φi

∣∣∣∣2
Φ=φ

− 1

2

(
∂2W (Φi)

∂Φi∂Φj

) ∣∣∣∣
Φ=φ

ψiψj −
1

2

(
∂2W †(Φ†i )

∂Φ†i∂Φ†j

)∣∣∣∣
Φ=φ

ψ̄iψ̄j , (2.68)

where we identify

VF =
∑
i

∣∣∣∣∂W (Φi)

∂Φi

∣∣∣∣2
Φ=φ

, (2.69)

as the scalar potential of the Wess Zumino model. In the next step, we will add gauge interactions

to the supersymmetric formalism.

2.5.2 Supersymmetric gauge theories

Before introducing vector superfields into the theory we remind ourselves about the definition of

the field strength superfield Wα for the abelian and non-abelian case we discussed before. As we

have seen, it can be used to construct gauge kinetic terms. When discussing supersymmetric gauge

theories, we want invariance of the action under supersymmetry and gauge transformations.

We begin our discussion with an abelian gauge theory. Under a U(1) gauge transformations, a

chiral superfield Φ transforms as

Φ′ = e−iΛΦ , Φ′† = eiΛ
†
Φ† , (2.70)

with Λ and Λ† as chiral superfields. This immediately shows that the Kähler potential term from the

Wess-Zumino model is not invariant under local gauge transformations. However, if we remember



2.5. Supersymmetric field theories 25

the form of the infinitesimal abelian gauge transformation for a vector superfield V,

V ′ = V − iΛ† + iΛ (2.71)

we find that the term Φ†eV Φ is gauge and supersymmetry invariant. Combing gauge and matter

fields, the invariant Lagrangian takes the form

L =

∫
d4θ

∑
i

Φ†ie
V Φi +

1

4g2

[∫
d2θ WαWα +

∫
d2θ̄Wα̇W

α̇
]

(2.72)

+

[∫
d2θ W (Φi) + h.c.

]
,

where W is again the superpotential. The Lagrangian of the chiral and vector component fields

can be extracted as usual from the superfield Lagrangian where one usually replaces V → 2gV to

obtain the standard normalisation with respect to the coupling g of the component terms.

The non-abelian generalisation was originally discussed in [22, 23]. As mentioned before, the

superfields are now matrix valued

(V )
a
b = (TA)abV

A , (Λ)
a
b = (TA)abΛA ,

(
Λ†
)a
b

= (TA)abΛ†A , (2.73)

where the TA are the hermitian generators of the corresponding Lie algebra. The form of the gauge

transformation of the chiral superfields is

Φ′ = e−iΛΦ , Φ′† = eiΛ
†
Φ† (2.74)

and the finite supergauge transformation for the vector superfield is given by (2.53). Using these

results, the non-abelian generalisation is straight forward. The general non-abelian Lagrangian of

interacting chiral and vector superfields is given by

L =

∫
d4θ

∑
i

Φ†ie
V Φi +

1

4g2

[∫
d2θ WAαWA

α +

∫
d2θ̄Wa

α̇W
aα̇
]

(2.75)

+

[∫
d2θ W (Φi) + h.c.

]
.

A comment about the terms of the full Lagrangian that contain the component field D of the

vector superfield is in order here. We find in the general non-abelian case terms of the form (after

integration over the Grassmann variables)

L ⊃ 1

2
D2 +DAφ†iT

Aφi (2.76)

where the first part is coming from the supersymmetric field strength and the second part form the

expansion of the gauge kinetic piece to first order in V A. We have also suppressed all gauge group

indices. Just as in the case of the auxiliary field F , we see that its equation of motion is purely

algebraic and we can therefore eliminate the auxiliary field D:

0 = − ∂L
∂D

= DA + φ†iT
Aφi , (2.77)

such that the terms containing the field D can be written as

1

2
D2 +DAφ†iT

Aφi = −1

2

(
φ†iT

Aφi

)2

≡ −1

2

(
((φ†)ia(TA)baφbi

)2
. (2.78)
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In the last step we have explicitly written out all indices of the fields. This so called D-term

is another contribution to the scalar potential of the supersymmetric theory. We conclude our

discussion by giving the component expansion of this general super-gauge invariant theory. In

order to obtain the standard normalisation we let V → 2gV in (2.73). Suppressing all colour

indices we get

L = −1

4
F aµνF

aµν − iλ̄Aσ̄Dµλ
A − (Dµφ)†i (D

µφ)i − iψ̄iσ̄µDµψi (2.79)

−i
√

2gψ̄iλ
ATAφi + i

√
2gφ†iT

Aφiλ̄
A

−1

2

∂2W

∂φi∂j
ψiψj −

1

2

∂2W †

∂φ†i∂
†
j

ψ̄iψ̄j − V (φi, φ
†
j) . (2.80)

Here, the component fields V Aµ and λA belong to the vector superfield V A and φi and ψi to the

chiral superfields Φi. The gauge covariant derivatives are given by

Dµφ = ∂µφ+ igV Aµ T
Aφ (2.81)

Dµψ = ∂µψ + igV Aµ T
Aψ

Dµλ
A = ∂µλ

A + igfABCV Bµ λ
C .

The general scalar potential is now a some of the F-terms and D-terms,

V (φi, φ
†
j) = F †i Fi +

1

2
(DA)2 =

∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 +

1

2

∑
A

(
gφ†iT

Aφi

)2

(2.82)

where as usual the superpotential derivatives are evaluated with respect to the scalar component

of the chiral superfields. This concludes our discussion of the N = 1 superfields approach. We

will use some of the discussed machinery to describe a certain class of models of supersymmetry

breaking in the Chapters 6 and 7.

At this point we would like to move on and discuss another highly interesting application of

supersymmetry in four dimensions, namely the idea to construct superamplitudes in the maximally

supersymmetric Yang-Mills theory. We will return to four-dimensional, non-extended supersym-

metry in Chapter 5.



3 Amplitudes in Four-Dimensional

N = 4 SYM Theory

Within the framework of perturbation theory, the concept of perturbative scattering amplitudes

provides a unique link between experimental data and a mathematical description of the under-

lying theory. Since the beginning of 20th century, starting with the ideas of quantum mechanics,

physicists have been trying to formulate a theory that can describe the fundamental interactions in

nature. The concept of quantum field theories has been an important step towards this goal. Start-

ing with quantum mechanics and groundbreaking works on quantum electrodynamics in the thirties

and forties of the previous century, Feynman’s ideas about path integrals in quantum mechanics

and especially his works on a diagrammatical interpretation of scattering processes of subatomic

particles have led to an understanding which provides a highly impressive match between theo-

retical predictions and their experimental checks. Over the last 60 years, a lot of progress has

been made on these subjects. Nowadays, the perturbative analysis of a gauge theory in terms of

Feynman diagrams is in principle well understood. However, with increasing complexity of the

scattering process, the number of Feynman diagrams one has to calculate grows rapidly. Therefore,

it is a rather striking fact that the final result of a Feynman calculation can be elegant and simple.

In this chapter we introduce basic concepts and properties of scattering amplitudes and combine

these ideas with maximal supersymmetry in four dimensions. We will use techniques for efficient

calculation of superamplitudes both at tree- as well as loop-level. Furthermore, this chapter provides

some intuition on amplitudes in supersymmetric theories which will be useful for our discussion of

perturbative calculations in a six-dimensional context in Chapter 4.

3.1 Some preliminaries on scattering amplitudes

We begin by reminding ourselves what we actually mean by a scattering amplitude. In general,

a theory’s field content and corresponding interactions are defined by a Lagrangian density L. A

scattering event between particles of the theory is then described by elements of the so called S-

matrix. In order to define these matrix elements, we need to introduce the concept of asymptotic

states in the interacting quantum field theory. We define initial and final states for any number of

particles by states in a Fock space by

|i〉 = |a1(p1, ) . . . , ak(pk), . . . t = −∞〉, |f〉 = | . . . , bm(pm), . . . , t = +∞〉 . (3.1)

27
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Then, an interaction between particles in these asymptotic states is described by the time evolution

operator U . Asymptotically, one defines

lim
t→∞

U(t,−∞) |i〉 = S|i〉, with S†S = I (3.2)

where S is the S-operator or S-matrix which is an unitary operator. The individual matrix elements

are then given by considering the operator between initial and final (asymptotic) scattering states

〈f |S|i〉 = Sfi . (3.3)

For the actual purpose of calculating scattering events it is often practical to define all particles

involved in the process as incoming states. One can use the crossing-symmetry1 of the S-matrix

and rewrite the matrix-elements as

final〈vac|S|a1(p1), . . . , a1(pn)〉initial (3.4)

for the n incoming particles. The assumption of momentum conservation (sum of initial momenta

Pi is equal to the sum of the outgoing momenta Pf ) in the scattering process leads to the identity

Sfi = δfi + i(2π)4δ4(Pi − Pf )Tfi . (3.5)

Here, Tfi is a T-matrix element, usually denoted as the scattering amplitude A. In general, the

amplitude is a function of kinematical and structure variables like momenta, couplings, colour

factors and polarisation tensors. It is this part of the full S-matrix that is of high value in order

to make connections to experiments. Measurable observables are cross sections and decay widths

and these quantities are directly proportional to the squared amplitude |A|2 (integrated over the

corresponding phase space).

A comment is in place here: For most parts of this chapter we consider amplitudes in the N = 4

Super Yang-Mills theory which is a conformal field theory. Strictly speaking, asymptotic states are

not well defined in a conformal theory because of its scale invariance. A separation of interaction

and asymptotic regions is problematic because of the theory’s long-range interactions. In practice

this problem can be avoided by using regulators in the conformal theory. A convenient method

is dimensional regularisation in which one regularises the theory in the infrared by continuing the

four-dimensional spacetime to D = 4 − 2ε dimensions for ε < 0. In maximally supersymmetric

theories this can be done such that all supersymmetries are preserved [24]. This procedure breaks

the conformal symmetry and hence, asymptotic states can be defined. In that sense one has a

well-defined S-matrix, however, at loop-level it is divergent when we remove the regulator.

In the following section we present techniques that are helpful for efficient computations of

amplitudes in gauge theories. As mentioned before, one of the main difficulties of a perturbative

Feynman diagram approach is the increasing number of diagrams that have to be dealt with in

processes with more than 4 external particles or higher order corrections in the coupling constant.

It turns out that it is efficient to explicitly use the quantum numbers of the external particles (their

colour) to group similar diagrams together, leading to the so-called colour decomposition. Our

discussion of tree-level gluon amplitudes will loosely follow the work [25] and the reviews [26,27].

1In quantum field theory, crossing-symmetry is the fact that one can exchange initial particle states with final

anti-particle states going backwards in time. This can be understood from the usual Feynman diagram approach.
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3.1.1 Colour structure of the amplitude

Even at lowest order in a perturbative expansion (tree-level), the form of the scattering amplitudes

can become quite complicated, especially when particles carrying colour are involved in the scat-

tering process. The complication arises from the non-albelian nature of the gauge symmetry. The

most prominent example is QCD with gauge group SU(3). It is therefore important to understand

the colour structure of the amplitude. In the following we study scattering of SU(N) Yang-Mills

gauge bosons for arbitrary N . Here, quarks and antiquarks carry fundamental or anti-fundamental

indices SU(N) i, j = 1, . . . , N whereas the gauge bosons (the gluons) are in the adjoint representa-

tion and therefore carry a colour index a = 1, . . . , N2 − 1. If we are considering an amplitude of a

scattering process of n of these gauge bosons, we are dealing with n incoming states. These states

are labelled by the particles’ momenta pi, helicities hi and colours ci and we write for a generic

amplitude

A(n) = A(p1, h1, c1, . . . pn, hn, cn) . (3.6)

If one constructs such an amplitude from SU(N) Feynman rules one finds that the general structure

is a product between a kinematical part (containing momenta and coupling constants) and a colour

part (containing the colour factors). The latter one can be represented by the structure constants

of the corresponding gauge group, defined by the relation

[T a, T b] = ifabcT
c . (3.7)

Note that we have slightly changed our notation compared to the previous section in order to follow

the usual conventions of the amplitudes’ literature. The generators T a are in the fundamental

representation of SU(N), i.e. they are N ×N matrices and there are N2−1 of them. In the context

of amplitude calculations it is convenient to normalise them as2

Tr[T aT b] = δab . (3.8)

The Feynman rules are such that each quark-gluon vertex contributes a factor of T a, each three

gluon vertex a factor fabc and each four gluon interaction give a structure containing products of

the structure constants like fabef cde. One can use the defining relation of the structure constants to

replace all factors of fabc in the Feynman rules by linear combinations of strings of generators T a.

This is done by using the definition of the generators Lie-algebra to write the structure constants

in terms of products of generators,

fabc = −iTr[T a, [T b, T c]] . (3.9)

Furthermore, one can reduce the number of trace factors by using the identify3

∑
a

(T a)
j
i (T a)

l
k = δliδ

j
k −

1

N
δji δ

l
k . (3.10)

2The usual normalisation of the generators of the fundamental representation is Tr[TaT b] = δab/2. In order to

avoid any proliferation of factors of 2 in the amplitudes it is convenient in the context of scattering amplitudes to

normalise the generators without the factor of 1/2. Although Feynman rules are normally based on the normalisation

Tr[TaT b] = δab/2, one can simply rescale the generators and structure constants as Ta → Ta/
√

2 and fabc →
fabc/

√
2 in order to obtain a description which is compatible with our normalisation condition Tr [TaT b] = δab.

3Again, there is no factor of 1
2

on the RHS of this relation due to our normalisation condition.
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We see that the SU(N) generators are traceless due to the subtraction of the term proportional to

1/N which comes from the U(N) group into which SU(N) is embedded. By repeated application

of these relations one can show that any tree level amplitude of a scattering of n gauge bosons can

be written as a sum of single trace terms. This fact enables us to separate the colour part of the

tree level amplitude from the bit describing the kinematics. This is achieved by the decomposition

of the gluon amplitude [28], [29]

Atree
n = gn−2

∑
σ∈Sn/Zn

Tr(T aσ(1)T aσ(2) . . . T aσ(n)) An;0(σ(ph1
1 ), . . . , σ(phnn )) , (3.11)

where g is the SU(N) gauge coupling and An;0 is the colour-ordered partial amplitude at tree-level.

In this expression we are summing over all permutations Sn of n objects but we have to account

for the invariance of the trace under cyclic permutations Zn. Therefore, the sum is only performed

for permutations over the set Sn/Zn, giving a total of (n− 1)! permutations.

A similar structure holds at loop-level [30], however, expressions become even more complicated.

For an n-gluon amplitude, in general multi traces appear. Furthermore, we have to sum over the

different particles that circulate in the loop, i.e. one sums over their spins. If only particles in the

adjoint representation are propagating, the leading contribution for large N is a single trace term

(times a factor of N) and gives rise to planar partial amplitudes. The subleading terms which

are proportional to multi-trace terms are giving non-planar contributions. At one-loop one has an

expansion

A1-loop
n = gn

[ ∑
σ∈Sn/Zn

NTr(T aσ(1)T aσ(2) . . . T aσ(n)) A1-loop
n;c=1(σ(ph1

1 ), . . . , σ(phnn )) (3.12)

+

bn/2c+1∑
c=2

∑
σ∈Sn/Sn;c

Tr(T aσ(1) . . . T aσ(c−1))Tr(T aσ(c) . . . T aσ(n))

×A1-loop
n;c=1(σ(ph1

1 ), . . . , σ(phnn ))

]
.

Here, bnc is the largest integer less than or equal to n and Sn;c is the set of permutations that leaves

the double-trace structure invariant. In [31] it is discussed that for generic SU(N) theories, including

supersymmetric ones, the non-planar contributions can be obtained as a sum over permutations of

the planar terms. This holds as long as the contribution particles (external and internal) are in the

adjoint of the gauge group.

In these decompositions, An does not contain any information about the colour structure of

the full amplitude but provides full information about the kinematics of the process. A specific

partial amplitude receives only contributions for a specific ordering of the external gauge boson

states (again up to cyclic permutations). Hence, these objects have a simpler analytic structure.

Obviously, they are invariant under gauge transformations (due to gauge invariance of the theory)

and cyclic permutations. As indicated above, any partial amplitude depends on the gauge bosons

momenta and helicites. However, we notice that the momenta are direct parameters of the ampli-

tude whereas the helicites label different physical amplitudes (i.e. changing the helicities hi leads

to a different scattering process). In the following we use the short hand notation

An(ph1
1 , ph2

2 , . . . , phnn ) ≡ An(1, 2, . . . , n) (3.13)
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or even An(h1, h2, · · · , hn) with hi = +/− whenever the momentum structure of the amplitude

is clear from its context. We can reverse the helicity configuration of the partial amplitude by

applying parity (recalling that we define all external gauge boson momenta to be incoming). In

addition, partial amplitudes with reversed order of the gauge fields are related to each other by the

identity

An(n, n− 1, . . . , 1) = (−1)nAn(1, 2, . . . , n). (3.14)

There exist more relations and an overview of partial amplitude identities can be found in [32].

In general, these relations help to reduce the number of partial amplitudes one needs to calculate

in order to describe the full scattering process, either because the result for a partial amplitude

can be obtained from another calculation or the specific amplitude just vanishes (due to symmetry

relations). From now on we will refer to the partial amplitudes just as the amplitude and will not

consider any colour structure. If necessary, the full amplitude can easily be reconstructed by using

the discussed colour decomposition.

3.1.2 Spinor helicity formalism

As we have seen in the last section the complexity of calculating a scattering amplitude for an arbi-

trary process can be reduced by using the colour structure of SU(N) gauge groups and considering

the partial amplitudes. Although this is a nice feature, the kinematical structure of the remaining

amplitude can still be very complicated. In general, the particles’ wave functions ψ need to be

taken into account, yielding a structure

An = An(pi, ψi) δ
(4)(p1 + · · ·+ pn) (3.15)

where the delta function ensures 4-momentum conservation. The wave function used in these

expressions depends on the particles under consideration. Normally, one uses Dirac spinors u(p)

and v(p) whenever spin 1/2 particles are among the external states for a description of the wave

function dependence. In the case of spin 1 particles (e.g. gauge bosons), the particles’ polarisation

vectors εµ capture the needed behaviour. In any case, the amplitude is a scalar quantity (although

it might be complex) and hence it must be constructed out of Lorentz scalars. This condition is

fulfilled by the usual Minkowski four-vector products like pi · pj or εk · pl. A description that captures

the behaviour of spin 1 and spin 1/2 particles neatly would lead to further simplifications on the

structure of the partial amplitudes. Indeed, such a unified scheme exist in the case of massless

states, the so called spinor helicity formalism4 [33], [34]. In this prescription one uses spinor

inner products instead of Minkowski vector products. They are scalar quantities as well, capture

collinear behaviour of the momenta in a nice way and are in some sense more ’fundamental’ objects,

considering the fact that Minkowski products can be derived from spinor products quite easily. This

framework works for two-component (Weyl) as well as four-component (Dirac/Majorana) spinors

where in four-dimensions the general structure of the expressions is the same. Whereas Dirac

spinors are conventionally used in the normal Feynman diagram approach one finds the Weyl spinor

4This powerful method is not limited to four-dimensions. As one of the main results of this thesis we will apply

a six-dimensional spinor helicity formalism to scattering amplitudes at one-loop in Chapter 4.
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expressions in the context of the supersymmetric two-component description. To some extent, the

two-component objects are therefore more fundamental, not least due to the fact that one may

construct Dirac spinors by combining two Weyl spinors in four dimensions. In the following, we

will present the spinor helicity formalism in the context of two-dimensional Weyl spinors.

We start with the fact that the complexified Lorentz group in four dimensions is locally isomor-

phic to (we omit a Z2 periodicity)

SO(3, 1,C) ∼= Sl(2,C)× Sl(2,C) . (3.16)

The finite dimensional representations are then classified by (p, q) where p and q are integers or half-

integers. In this context, the simplest non-trivial objects which transform under the complexified

Lorentz group are the previously introduced two-component Weyl spinors. Conventionally, one

assigns λα to a negative chirality Weyl spinor (for a massless theory equal to the helicity) which

transforms in the ( 1
2 , 0) representation of the Lorentz group and λ̃α̇ to a positive chirality Weyl

spinor transforming in the (0, 1
2 ) representation, where α = 1, 2 and α̇ = 1, 2. In a shortened matrix

notation, one may represents these Weyl spinors in a bra-ket notation,

〈λ| = λα, |λ〉 = λα ,

[λ| = λ̃α̇ |λ] = λ̃α̇ . (3.17)

In this context of the spinor helicity formalism, these objects are defined to be commuting spinors,

in contrast to the usual two-component spinors describing spinor fields. This bra-ket notation can

be used to conveniently define products of the spinors. Before doing so, we note that we may

raise and lower the index of the ( 1
2 , 0) objects by using the antisymmetric tensor εαβ and εαβ as

λα = εαβλβ and λα = εαβλ
β . Similarly relations hold for the (0, 1

2 ) objects λ̃α̇ with dotted indices.

The epsilon tensor obeys εαβεβγ = δαγ with

εαβ = −εαβ =

 0 1

−1 0

 (3.18)

and acts as a metric in a two-dimensional spinor space. Using this metric we can define, given two

negative chirality spinors λ and µ, the Lorentz invariant spinor product as

〈λ, µ〉 ≡ 〈λ|µ〉 = λαµα = λαεαβµ
β . (3.19)

Due to the antisymmetry of the spinor indices we have 〈µ, λ〉 = −〈λ, µ〉. Obviously, a spinor

product for the positive chirality objects is defined in a similar fashion. To distinguish it from the

spinor product of the ( 1
2 , 0) representation, we uses the notation

[λ̃, µ̃] ≡ [λ̃|µ̃] = λ̃α̇µ̃
α̇ = λ̃α̇ε

α̇β̇µ̃β̇ (3.20)

where λ̃ and µ̃ are two Weyl spinors of positive chirality and we have again [µ̃, λ̃] = −[λ̃, µ̃]. In

addition, in the case of 〈λ, µ〉 = 0 (or [λ̃, µ̃] = 0) one finds that the two spinors are equal up to a

complex scaling, i.e. µa = cλa with c ∈ C, and similar for the positive chirality spinor product. In

order to shorten the notation of the spinor product even further, we will use abbreviations like

〈λi, λj〉 ≡ 〈i j〉 and [λ̃i, λ̃j ] ≡ [i j] . (3.21)
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Since both types of spinors are two-dimensional objects one might decompose them along two

independent directions in spinor space. Denoting the basis spinors by λi and λj we can decompose

any spinor λk as

λkα = aλiα + bλjα (3.22)

with a, b ∈ C and 〈ij〉 6= 0. Therefore, the complex coefficients are given by

a =
〈jk〉
〈ji〉 , b =

〈ik〉
〈ij〉 (3.23)

such that we can write for an arbitrary spinor λk

λkα =
1

〈ij〉 (〈kj〉λiα + 〈ik〉λjα) . (3.24)

Contracting again with a spinor λl which is not a multiple of λi, λj or λk we arrive at the useful

Schouten identities

〈i j〉 〈k l〉+ 〈j k〉 〈i l〉+ 〈k i〉 〈j l〉 = 0 , (3.25)

[i j][k l] + [j k][i l] + [k i][j l] = 0 . (3.26)

These relations are often used for spinor product manipulations.

In order to write Minkowski products of four-vectors in terms of spinor products we need to

express objects like pµ in terms of Weyl spinors. By considering the fact that the vector represen-

tation of the complex SO(1, 3,C) is the ( 1
2 ,

1
2 ) representation we can express any four-vector as a

product of spinors, a so called bi-spinor pαα̇. We use the chiral representation of the 4 dimensional

γ matrices and follow the usual convention of + − −− as the metric’s signature and write the γ

matrices as

γµ =

 0 σµ

σ̄µ 0

 (3.27)

where σµ = (1, ~σ) and σ̄µ = (1,−~σ). The σi are the well known SU(2) generators, the Pauli

matrices. Using the σ’s we can then write any four-vector pµ as

pαα̇ = pµσ
µ
αα̇

=

 p0 + p3 p1 − ip2

p1 + ip3 p0 − p3

 . (3.28)

Hence, one can express a vector pµ as a 2× 2 matrix pαα̇. We might invert this relation by noting

that σµαα̇σ
αα̇
ν = 2δµν and find

pµ =
1

2
σαα̇µ pαα̇. (3.29)

This gives us an expression for the Minkowski product of 4-vectors. Using the relation σµαα̇σ
ββ̇
µ =

2δβαδ
β̇
α̇ one has

pµp′µ =
1

2
pαα̇εαβεα̇β̇p

′ββ̇ (3.30)

where we write the last expression as det[pαα̇] after contraction of all indices. This leads to the

important observation that the determinant of pαα̇ vanishes for lightlike 4-vectors. Since we are
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dealing with 2×2 matrices this means rank [pαα̇] ≤ 1 in the case of massless particles. This enables

us to write every lightlike 4-momentum as a product of two Weyl spinors,

pαα̇ = λαλ̃α̇ . (3.31)

The spinors λα and λ̃α̇ are unique up to scaling by a complex number,

(λ, λ̃)→ (cλ, c−1λ̃) ∀c ∈ C, c 6= 0 . (3.32)

In general, these two spinors are independent complex variables. However, this results in complex

momenta pµ. Under the condition of working with real momenta (for Lorentz signature +−−−),

we have to impose a conjugation condition on the spinors, λ̃ = ±λ̄, i.e. the spinors are complex

conjugates of each other. The sign in the above relation determines whether the corresponding

null vector points into the positive lightcone (’future’) or the negative one (’past’). It is a standard

terminology to call the negative chirality spinor λ the holomorphic and the positive chirality spinor

λ̃ anti-holomorphic. As mentioned above, the representation of two Weyl spinors and the relation

to each other depend on the chosen signature of the metric. For instance, it is also possible to

choose them to be real and independent for the case of a metric with (+ +−−) signature.

In a final step we might generalise the relation (3.30) for Minkowski vector products. Given two

4-momenta p
(i)
αα̇ = λiαλ̃iα̇ and p

(j)
αα̇ = λjαλ̃jα̇ we can write the vector product as

pi · pj =
1

2
〈λi, λj〉 [λ̃j , λ̃i] =

1

2
〈i j〉 [j i]. (3.33)

We would like to stress that there are different conventions in the literature of how to define this

vector product, differing by a sign. This choice is related to the convention of how to contract indices

by the epsilon tensor. It is useful to introduce another convention when dealing with momentum

vectors in a matrix representation. For an arbitrary null vector p we define

〈λi| p|λ̃′l] ≡ λαi pαα̇λ̃
′α̇
l = λαi λpαλ̃pα̇λ̃

′α̇
l = 〈ip〉[pl] . (3.34)

In general, p can also be a sum over lightlike momenta,
∑
i pi and one writes in this case

〈i|
∑
j

pj |l] =
∑
j

〈i j〉 [j l]. (3.35)

By rewriting the momenta in terms of strings of spinor brackets, the usual spinor manipulations

can be applied to these objects.

Let us now turn back to the wavefunction ψi that we mentioned at the beginning of this section.

As described over there, one normally uses the polarisation vector εµ to describe a spin 1 particle’s

wavefunction. Since we are interested in gauge boson descriptions, this is an appropriate choice.

Obviously, one can choose different polarisation vectors for the same physical situation. The idea

is that this choice is equivalent to specifying which Weyl spinor λ we use for the description of a

given 4-momentum pµ (normally we want the momentum to be real and therefore only one spinor

needs to be specified). One starts with a description of the wavefunction for a massless spin 1/2

particle by considering the Dirac equation for a spinor ψa of negative chirality,

iσµαα̇∂µψ
α = 0. (3.36)
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Solutions for ψα are the plane waves ξα exp(ix · p) with momentum pαα̇ = λαλ̃α̇ if and only if

pαα̇ξ
α = 0. This implies that λ and ξ are related to each other by ξα = cλα for c ∈ C, c 6= 0.

Therefore, the wavefunction of a negative helicity fermion is

ψα = cλαeixαα̇λ
αλ̃α̇ (3.37)

where we write for 4-vector xµ = σαα̇µ xαα̇. This relation states the already mentioned fact that the

additional information about the spinor λ is carried by the corresponding wavefunction. Obviously,

this also holds in the case of a massless particle with positive chirality, suggesting the form

ψα̇ = cλ̃α̇e(ixαα̇λ
αλ̃α̇) . (3.38)

Similarly, one can construct a relation between the spinors describing the momentum of a spin 1

gauge boson and its polarisation vector [32], see also [25]. Choosing the momentum of the negative

helicity boson to be pαα̇ = λαλ̃α̇, we write for the polarisation vector

ε−αα̇ =
√

2
λαµ̃α̇

[λ̃, µ̃]
, (3.39)

where µ̃ is an arbitrary (but not a multiple of λ) spinor of positive chirality. Similarly, we take for

a gauge boson of positive chirality an arbitrary spinor µ of negative chirality and construct

ε+αα̇ =
√

2
µαλ̃α̇
〈µ, λ〉 . (3.40)

In general, polarisation vectors must fulfill the constraint pµε
µ = 0, i.e. stating that momentum

and polarisation are always orthogonal to each other. Hence, the particle has no longitudinal

polarisation states. We can explicitly check that this is fulfilled for our choice due to the fact that

the spinor products λαλα and λ̃α̇λ̃
α̇ vanish (the polarisation is related to the spinors describing the

momentum). Since the choice of the spinor µ or µ̃ is almost arbitrary, this corresponds to the gauge

freedom of the SU(N) gauge theory as is discussed in [25]. In general, the polarisation vector of a

gauge field transforms under a gauge transformation as

ε′µ = εµ + ω pµ (3.41)

where pµ is the associated momentum of the polarisation vector and ω is the transformation pa-

rameter. Since we are dealing with light-like particles, this transformation fulfills the transverse

condition. If we now consider the arbitrariness of the choice of the reference spinor µ, we observe

that any change of this spinor is of the form

µ′α = µα + δµα = µα +Aµα +Bλα. (3.42)

One can understand this relation by considering the fact that spinors are 2-dimensional objects.

Hence, two spinors λ and µ are a basis of this space if they are not multiples of each other and

one might build linear combinations of these two spinors. The first part which scales with A is just

rescaling of the spinor µα and hence - due to the definition of the polarisation vectors - leaves the

vector ε+ unchanged. The other term, proportional to B, generates a change of the polarisation

vector εµ + δεµ of the form

δε+αα̇ = B
λαλ̃α̇
〈µ λ〉 . (3.43)



3.1. Some preliminaries on scattering amplitudes 36

Because of the fact that the gauge boson’s momentum takes the form pαα̇ we see that this shift of

the polarisation vector is proportional to the momentum, hence fulfilling the gauge transformation

property of εµ. Obviously, this also applies to the polarisation vector ε−µ . We just have to apply a

change to the spinor variable µ̃ of the same form. This yields a change δε−αα̇, being proportional to

the momentum of the negative helicity gauge boson.

We conclude this section by introducing some useful relations between the polarisation vectors.

Since products of spinors with themselves vanish we easily see (using 4-vector notation)

ε+(p, q) · ε+(p, q) = 0 = ε−(p, q) · ε−(p, q) (3.44)

In addition we find relations between the polarisation vectors for different gauge boson momenta

ε+(p, q) · ε+(p′, q) = 0 = ε−(p, q) · ε−(p′, q), (3.45)

ε+(p, q) · ε+(p, q′) = 0 = ε−(p, q) · ε−(p, q′). (3.46)

Furthermore, one can shown that

ε+(p, q = p′) · ε−(p′, q) = 0 = ε−(p, q = p′) · ε+(p′, q). (3.47)

These relations between the polarisation vectors are useful if one wants to calculate scattering

amplitude ’by hand’, using Feynman rules. However, these vector products can also be related to

spinor products since they are just ‘ordinary’ 4-vectors. In addition, we notice that by choosing the

reference momenta qµi of all gauge bosons to be the same, this can simplify the structure of products

of polarisations vectors and, hence, the final form of the corresponding amplitude. Especially the

last relation suggests to choose the qµi not only equal to each other but also equal to one of the

external gauge bosons of an opposite helicity.

3.1.3 MHV tree-level amplitudes

The machinery developed in the last section allows us to focus on a reduced set of problems, namely

to calculate the partial amplitudes for a given process within the spinor helicity formalism. In the

following we would like to give some simple examples of scattering amplitudes of SU(N) gauge

bosons. In general, we are interested in processes involving n of these particles as external states.

In our discussions we will use the convention of labeling the external particle (here gauge bosons)

as incoming states. Hence, all given quantum numbers such as momentum and chirality (which

sometimes we will also refer to as the particle’s helicity due to its zero mass) are given according

to this convention. All the presented information can be found at various places in the literature,

for instance a detailed review is given in [27].

Let us start with the simplest case and consider the amplitude An(1+, 2+, . . . , n+) with n > 3,

i.e. the process where all gluons are incoming and have the same helicity. The case of n = 3 needs

special treatment as we will see further down in our discussions. According to our convention,

this is the case for a scattering process ++→ − . . .− with two incoming and n-2 outgoing bosons

(whichever they may be). For this class of amplitudes one has

An(1+, 2+, . . . , n+) = 0 (3.48)
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for arbitrary n. To see this, let us choose the reference momentum for all boson polarisation

vectors to be the same null vector qαα̇ = µαµ̃α̇ [27]. Hence, all products of polarisation vectors

ε+i · ε+j are equal to zero. The choice of the arbitrary momentum q is almost ’free’ since we cannot

choose q to be equal to one of the external boson’s momentum because then the spinor product in

the polarisation vector’s denominator would vanish. At the level of the partial amplitude, every

interaction vertex of gauge bosons comes with maximal one momentum vector ki (which might be

a combination of external momenta). For an scattering of n gauge bosons there is a maximum of

n − 2 interaction vertices (coming from the 3-point interaction of the gauge bosons - an insertion

of a 4-point interaction increases the number of the gauge bosons states). There are in total n

polarisation vectors εi of the n external states. Since the total amplitude is a scalar quantity all

vectors must be contracted with each other. We have n − 2 momentum vectors to be contracted

with n polarisation vectors, which means that two polarisation vectors must be contracted with

each other, yielding a factor εi · εj . By our choice of the reference vector q this product vanishes

and so does the whole amplitude.

Similarly, we can deal with the class of amplitudes like An(1−, 2+, . . . , n+). We can arrange

that one contraction of the polarisation vectors vanishes by choosing q2 = q3 = · · · = qn = p1 and

q1 = pn which leads to a vanishing amplitude. Obviously, we can rearrange the amplitude to obtain

An(1+, 2+, . . . , r− . . . , n+) from the previous case. Here, it does not matter which boson carries

the negative helicity because we can rearrange its position by cyclic symmetry of the amplitude.

Hence, we have discussed that certain classes of scattering amplitudes vanishes, namely

An(1+, 2+, . . . , r±, . . . , n+) = 0 (3.49)

for arbitrary n and some r in the range 1 ≤ r ≤ n.

We now turn to the first non-vanishing partial amplitude, namely the case where the helicity

of two of the incoming gauge bosons are different from the other helicities, i.e. we consider the

amplitude An(1+, 2+, . . . , r−, . . . , s−, . . . , n+) with 1 ≤ r ≤ s ≤ n. If we denote the total helicity

of an amplitude by htot then this type of amplitudes has htot = n − 4. And since amplitudes

with htot = n, n − 2 vanish, the helicity changes in such a scattering process by the maximal

possible amount. Hence, this type of amplitudes is called maximally helicity violating (MHV). It

turns out that these objects are on the one hand fundamental (first non-vanishing gauge boson

amplitudes) but on the other hand also very powerful in describing more complicated interactions.

Obviously, we can also consider the ’reversed’ MHV amplitude where most of the gauge bosons are

negative helicity states, An(1−, 2−, . . . , r+, . . . , s+, . . . , n−). Conventionally, these are called MHV

or anti-MHV amplitudes.

In both cases, these amplitudes take a surprisingly simple form, considering the fact that they

are valid for an arbitrary number of external gauge boson states. Their form in terms of spinor

products was first conjectured by Parke and Taylor [35] and was subsequently proven by Berends



3.1. Some preliminaries on scattering amplitudes 38

and Giele [36]. The Parke-Taylor formula takes the form5

An(1+, 2+, . . . , r−, . . . , s−, . . . , n+) = ign−2 〈r s〉4∏n
j=1 〈j j + 1〉 , n+ 1 ≡ 1 (3.50)

in the case of a mostly plus MHV amplitude (we have omitted a general delta function stating the

momentum conservation within the scattering process). Here, g is the YM coupling constant (the

power n − 2 states the fact that we have n − 2 interaction vertices at tree level). For the MHV

amplitudes we have

An(1−, 2−, . . . , r+, . . . , s+, . . . , n−) = ign−2(−1)n
[r s]4∏n

j=1[j j + 1]
, n+ 1 ≡ 1. (3.51)

It is remarkable that the amplitudes take such a simple form. They are just functions of holomorphic

(MHV) or anti-holomorphic (anti-MHV) spinor products with a sequence of spinor products in the

denominator.

So far, our discussion is valid for n particle states with n > 3. Let us now turn to the special

case of n = 3. The tree-level amplitude with just three external gauge boson states is the simplest

possible one, based on just a three-point interaction between the particles as shown in Figure 3.1.

It is interesting to note that this simplest amplitude is somewhat special, as we will see6. If one

denotes the momenta of the three particles by p1, p2 and p3 we have the following kinematical

constraints

0 =p2
1 = 2p2 · p3 = 〈23〉[32] , (3.52)

0 =p2
2 = 2p1 · p3 = 〈13〉[31] ,

0 =p2
1 = 2p1 · p2 = 〈12〉[21] .

For real momenta, the positive and negative helicity spinors are related by the constraints λ̃ = ±λ̄.

Hence, all spinor products vanish for real momenta and so does the three-point amplitude,

〈12〉 = 〈23〉 = 〈31〉 = [12] = [23] = [31] = 0 . (3.53)

Relaxing the constraint of real momenta we find that this is not the case anymore. Since the

holomorphic and anti-holomorphic spinors are independent for complex momenta, only the λi or

the λ̃i are proportional to each other for the three-point case. Hence, one can choose one of the

conditions

〈12〉 = 〈23〉 = 〈31〉 = 0 , (3.54)

[12] = [23] = [31] = 0 , (3.55)

which follow individually from momentum conservation. Note that they do not mix holomorphic

with anti-holomorphic spinors. We can choose the anti-holomorphic spinors to vanish and see

that this results in an non-vanishing amplitude with two negative and one positive helicity gluon

is non zero. This is of MHV type. Alternatively, choosing the first relation in (3.54) leads to a

non-vanishing anti-MHV amplitude.

5The gauge coupling is explicitly shown here. In our discussions, we will mostly omit this factor.
6For gauge bosons, the speciality is just the fact that one needs complex momenta to define the three-point

amplitude. This is different in the case of superamplitudes in four and six dimensions where the three-point amplitude

takes a rather ‘special form’ as we will see later.
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1

2

3

Figure 3.1: A generic three-point amplitude with all momenta defined to be incoming.

We can see this also from applying the usual colour-ordered Feynman rules for a three gauge

boson vertex. For example the amplitude A3(1−, 2−, 3+) is given by [37]

A3 =
i√
2

[
ε−1 · ε−2 ε+3 · (p1 − p2) + ε−2 · ε+3 ε−1 · (p2 − p3) + ε+3 · ε−1 ε+2 · (p3 − p1)

]
. (3.56)

One might use the freedom of choosing the reference momenta of the polarisation vectors such that

q1 = q2 and q3 = p1. Then, only one of the terms of amplitude is non-zero and rewriting the

four-vector quantities into spinor objects yields

A3(1−, 2−, 3+) = i
√

2ε−2 · ε+3 ε−1 · p2 (3.57)

= i
[q13]

[q12]

〈12〉
〈13〉

[q12]〈21〉
[q11]

= i
[q13]

[q11]

〈12〉2
〈31〉

〈32〉
〈32〉

= i
〈12〉3
〈23〉〈31〉 .

We arrived at this result by using normal spinor manipulations and momentum conservation. All

intermediate factors cancel out. This short calculation confirms the general structure of the MHV

amplitudes even for three gluons. A similar calculation, based on the assumption that the holomor-

phic spinors are proportional to each other, yields the corresponding anti-MHV amplitude. The

approach outlined above can be used to derive all tree-level amplitudes. The calculation becomes

more involved for increasing number of external particles since it is based on the Feynman rules.

In the next section we will see how one can does better in terms of efficient calculations.

We conclude this section by collecting the obtained results for tree-level n-point gluon scattering

amplitudes7, see also [27]:

An(1+, . . . , r±, . . . , n+) = 0 (3.58)

An(1−, . . . , r∓, . . . , n−) = 0

An(1+, . . . , i−, . . . , j−, . . . , n+) = i
〈ij〉4

〈12〉〈23〉 . . . 〈n1〉

An(1−, . . . , i+, . . . , j+, . . . , n−) = i(−1)n
[ij]4

[12][23] . . . [n1]
.

7We omit the coupling constant and the momentum conservation delta function.
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n 2 3 4 5 6 7

# of diagrams 4 25 220 2485 34300 559405

Table 3.1: The table shows the number of Feynman diagrams that have to be taken into account

in a scattering process of gg → n× g as presented in [32]. Here, n stands for number of outgoing

particles, so in total n+ 2 gauge bosons are involved in the scattering.

3.2 Novel techniques for perturbative calculations

In principle, interactions of an arbitrary number of SU(N) gauge bosons can be described by

considering all Feynman diagrams, calculating their individual contribution and summing over

all diagrams. The techniques and tools that we have described in the last section simplify this

task (and can reduce the number of diagrams that need to be calculated). However, the more

particles contribute to the scattering process the more diagrams have to be considered and hence,

the calculations get more complicated, see for instance Table 3.1 for an example of this fact. It

would be highly appreciated if one could determine the form of an amplitude with a certain number

of external states from an amplitude with less external particles, i.e. a recursive structure of the

scattering amplitudes would be of great advantage. It turns out that it is indeed possible to

construct such recursion relations. In this section we introduce some of the concepts that have

been developed within the last few years for scattering amplitudes in SU(N) gauge theories, with

or without supersymmetry.

A first step in this direction dates back to the 1980s. In [36], Berends and Giele (BG) introduced

their recursion relation for scattering processes at tree-level involving an arbitrary number of gluons.

The main idea which is also continued in other recursion relations is the possibility to use an off-

shell description for gauge bosons. The result is the generation of tree-level amplitudes recursively

in the number of legs.

For these BG recursion relations one introduces an off-shell gauge boson current Jµ(1, 2, . . . , n)

which we define to be colour ordered. The current itself has n+ 1 external legs where the legs with

p1, p2, . . . , pn are external on-shell gauge boson states and leg n + 1 (denoted by leg µ) is taken

off-shell. One can think of the current as the partial amplitude An+1(1, . . . , n, n + 1) where the

polarisation vector for leg µ is replaced by an off-shell propagator, i.e. pn+1 6= 0. However, one still

requires total momentum conservation. The off-shell leg is defined to be included in the current

Jµ.

The idea is now to construct a recursion for Jµ. We start at the off-shell leg, follow it into the

diagram and arrive at a three- or four-point gluon interaction vertex. In both cases, we have off-shell

(two or three) internal propagators branching out from this vertex, approaching a subdiagram with

less external on-shell gluons. We may than apply the same steps to each subdiagram, i.e. following

the off-shell leg into a three or four-point vertex. This procedure yields the following form of the
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Berends-Giele current [36]

Jµ(1, . . . , n) =− i

P 2
1,n

[ n−1∑
i=1

V µνρ3 (P1,i, Pi+1,n) Jν(1, . . . , i) Jρ(i+ 1, . . . , n) (3.59)

+

n−1∑
j=i+1

n−2∑
i=1

V µνρσ4 Jν(1, . . . , i) Jρ(i+ 1, . . . , j) Jσ(j + 1, . . . , n)

]
Here, we have used the colour ordered three- and four-point self-interactions of the gauge bosons,

V3 and V4 (with appropriate tensor structure, for their concrete form see e.g. [27]) and the Pi,j are

defined as the sum of consecutive momenta pi + · · ·+ pj .

One can see the recursive approach in the structure of the current Jµ. Starting with the off-

shell propagator we have one sum for a possible three-point interaction and another sum for the

four-point vertex. Once we have constructed Jµ, depending on n on-shell and one off-shell leg,

we can obtain the (n + 1)-point amplitude An+1 in the following way: We amputate the off-shell

leg by multiplying with the inverse propagator iP 2
1,n and take care of the Minkowski index µ by

contracting the current with an appropriate polarisation vector εµn+1. We take the off-shell leg to

be on-shell by letting P1,n = −pn+1 and P 2
1,n → 0. Letting n+ 1→ n yields

An(1, 2, . . . , n) =

(
iP 2

1,n−1 Jµ(1, 2, . . . , n− 1) εµn(pn)

) ∣∣∣∣
p2n→0

. (3.60)

In some cases, these recursions can be solved in a closed form and lead to a answers for the partial

amplitudes. It is interesting to note that the Berends-Giele recursion relations can be used to prove

the Parke-Tayler forumla for MHV/anti-MHV scattering amplitudes. Although these relations

fulfill a striking recursive structure, they still suffer from rather long calculations, leading to rather

unhandy expressions. In the following we present methods that are generic and lead to more

compact expressions.

3.2.1 CSW construction

A novel diagrammatic approach to calculate tree-level amplitudes, initially constructed for scatter-

ing of gauge bosons, was introduced by Cachazo, Svrcek and Witten in [38]. The authors introduced

a prescription of how to construct amplitudes in a recursive fashion by using MHV tree-level am-

plitudes as ‘building blocks’ of the total amplitude. Their construction was subsequently proven

in [39] by using a generalisation of the BCFW recursion relations which we will introduce in the

next section.

The CSW construction is based on the duality between the weakly gauged N = 4 YM theory

and a string theory in super twistor space CP3|4 as proposed by Witten in [25]. Based on the

twistor space ideas originally introduced by Penrose in the late 1960s [40], it was discussed that

MHV amplitudes localise on degree one, genus zero curves in twistor space, i.e. on lines. This

statement is equivalent to the fact that MHV amplitudes are only functions of the holomorphic

and not of the anti-holomorphic spinors. It is than an interesting fact that lines in twistor space

map to points in Minkowski spacetime [40]. This makes it somewhat natural to think of a MHV

amplitude as a local interaction in four-dimensional spacetime which leads to the central idea of
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the CSW construction: Any tree-level amplitude can be build out of MHV diagrams interpreted as

interaction vertices and then connected by internal propagators. This setup corresponds in twistor

space to the geometrical picture of two intersecting lines where the intersection point corresponds

to the internal gauge boson.

The MHV amplitudes are evaluated by the means of the Parke-Taylor formula where the internal

gauge boson propagators carry a positive helicity label on one side and the opposite label on the

other side, according to the fact that all subamplitudes are MHV. However, we face the problem that

the MHV amplitude in (3.50) is defined for on-shell spinors only and a general internal propagator is

given by an off-shell momentum with P 2 6= 0. For the momenta not being light-like, an application

of the spinor helicity formalism seems to fail since it is not clear what we mean by a spinor λα if the

corresponding momentum pαα̇ is not light-like. This can be solved by observing that any off-shell

vector can be decomposed as [41]

P = l + zp (3.61)

where l and p are null vectors and z is a real number. It follows that z is given as a function of l

since

z =
P 2

2l · p . (3.62)

In spinor notation we may write for lαα̇ = λαλ̃α̇ and pαα̇ = ηαη̃α̇. By considering η̃α̇Pαα̇ we obtain

λα =
Pαα̇ η̃

α̇

[λ̃, η̃]
. (3.63)

A similar relation holds for the anti-holomorphic spinor λ̃α̇. Since the spinor products are simply

scalar quantities we might rescale the anti-holomorphic spinors and define the negative helicity

spinor λα of an arbitrary off-shell vector pµ as

λα = pαα̇ η̃
α̇ . (3.64)

Thus, one can define MHV amplitudes according to the Parke-Taylor expression with external off-

shell legs. Since the choice of η̃ is arbitrary, one has to use the same spinors η and η̃ for all internal

off-shell lines. One then has to calculate all contributing MHV diagrams and sum in a final step

over all of them. The dependence on the fixed reference spinor η̃ drops out in the final expression,

i.e. the sum over all possible diagrams contributing to the total amplitude will not depend on the

choice of the arbitrary spinor. In addition it was shown that the total amplitude is indeed Lorentz

covariant (the interested reader finds more information in section 5 of [38]).

The Yang-Mills amplitude A4(1+, 2−, 3−, 4−) as an example

The CSW prescription is as easy as it is powerful. To see some applications of the construction

it is useful to consider a concrete example. In the following we calculate the four-point amplitude

A4(1+, 2−, 3−, 4−) by the means of the CSW rules. The amplitude has three negative-helicity

gluons and vanishes due to our discussions in section 3.1.3.

The number of vertices is v = q−1 where q is the number of external gauge bosons with negative

helicity. Hence, in our example v = 2 and we have to consider two distinct MHV diagrams. They
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Figure 3.2: The two contributing diagrams in the CSW construction of the amplitude

A4(1+, 2−, 3−, 4−). All vertices in the diagrams are of the MHV type.

are shown in Figure 3.2. Denoting the momentum of the internal propagator by q we start by

considering the s-channel diagram, shown on the left in the figure. We have q = (p1 + p2) =

−(p3 + p4) and choosing an arbitrary spinor η̃ȧ we define the holomorphic spinor of q as

λqα = qαα̇η̃
α̇ = (p1αα̇ + p2αα̇) η̃α̇

= (λ1αλ̃1α̇ + λ2αλ̃2α̇) η̃α̇ = λ1α[1, η̃] + λ2α[2, η̃] . (3.65)

Similarly, we get

λqα = −λ3α[3, η̃]− λ4α[4, η̃] . (3.66)

Following the CSW prescription, the s-channel diagram gives

As =
〈2q〉3
〈12〉 〈q1〉

1

q2

〈34〉3
〈4q〉 〈q3〉

where we evaluate

〈2q〉 = λ2αλqβε
αβ = 〈21〉 [1η̃] , (3.67)

〈q1〉 = 〈21〉 [2η̃] .

The spinor products involving λ3 and λ4 can be rewritten in a similar way and we obtain

As = − [1η̃]3

[2η̃][3η̃][4η̃]

〈21〉3
〈21〉 〈12〉

1

q2

〈34〉3
〈43〉 〈43〉 . (3.68)

Finally, rewriting the propagator in terms of spinors as q2 = 2p1 · p2 = 〈12〉 [21] gives

As =
[1η̃]3

[2η̃][3η̃][4η̃]

〈34〉
[12]

. (3.69)

A similar construction holds for the t-channel diagram where q = (p1 + p4) = −p2 + p3. Following

the CSW prescription (or just using crossing symmetry with 2←→ 4) yields

At =
[1η̃]3

[4η̃][3η̃][2η̃]

〈32〉
[14]

. (3.70)

We now sum over both contributions and find

A4(1+, 2−, 3−, 4−) =
[1η̃]3

[2η̃][3η̃][4η̃]

( 〈34〉
[12]

+
〈32〉
[14]

)
=

[1η̃]3

[2η̃][3η̃][4η̃]

(
[12] 〈32〉+ [14] 〈34〉

[14][12]

)
. (3.71)
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Now, using momentum conservation we see that [12] 〈23〉+ [14] 〈43〉 = [1|∑j pj |3〉 = 0 and hence,

the amplitude A4(1+, 2−, 3−, 4−) vanishes.

In a similar fashion, one can construct arbitrary tree-level amplitudes, not only limited to the

MHV or anti-MHV case. Obviously, the number of diagrams one has to calculate increases with

the number of external legs. However, for n external states the number of diagrams grows at most

as n2. For instance, in the case of the five-point anti-MHV amplitude A5(1−, 2−, 3−, 4+, 5+) four

different diagrams have to be considered and six diagrams contribute to the next-to-MHV amplitude

A6(1−, 2−, 3−, 4+, 5+, 6+). This is still a remarkable improvement compared with the more than

200 diagrams if one follows the Feynman rules approach [28]. Successively, the CSW ideas of an

off-shell continuation have been applied to many cases of tree-level scattering amplitudes, not only

limited to pure gluon case, see for instance the applications in [42–48]. For instance, the inclusion

of massless scalar or fermions is straight forward. If one includes quarks, some of the internal

propagators may become fermionic. As long as we stick to the CSW prescription (all vertices of

MHV type, final summation over all including diagrams), the prescription works also in these cases.

We conclude this section by a comment about the validity of the CSW construction at the

quantum level. So far, the MHV diagram method was discussed for tree-level amplitudes. Initial

considerations for the duality of the N = 4 SYM theory and the twistor string theory showed that

conformal supergravity enters the game from the loop-level on which can not be decoupled [49]. In

the remarkable paper [50], Brandhuber, Spence and Travaglini (BST) showed that an application

of the CSW idea to one-loop amplitudes in N = 4 SYM gives the correct n-point MHV amplitude

of [31]. Following the BST approach, applications of the CSW idea were successfully applied to

amplitudes in theories with less supersymmetry (N = 1 SYM) in [51] and the case of pure YM

theory in [52], highlighting the remarkable properties of this off-shell recursive prescription.

3.2.2 BCFW recursion relations

The previously discussed CSW prescription can be used to calculate arbitrary tree-level amplitudes

of gauge bosons. However, it uses an off-shell continuation for the internal boson legs. One might

ask if we can do better by only using on-shell information. Indeed, there is an on-shell prescription

based on the work of Britto, Cachazo and Feng (BCF) presented in [53] and proven by the previous

authors in collaboration with Witten in [54]. Therefore, this construction is normally referred

to as the BCFW recursion relations. Their construction is based on two fundamental properties

of scattering amplitudes at tree-level. Firstly, analyticity of the amplitude [55] and secondly the

factorisation properties of a general tree-level amplitude on multi-particle poles. Hence, the BCFW

relations can find applications in many different contexts within perturbative field theories.

A key observation is the fact that one can consider a general scattering amplitude as an analytic

function of complex variables by introducing complex momenta. Complex analysis provides a

powerful set of theorems that one can apply to analytic functions in order to obtain information

about their properties. To make use of these theorems it is necessary to express the amplitude as

a function of one complex variable z only. It was the main observation of [54] that this can be
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done in terms of complex momenta by introducing momentum deformations for two of the external

states. If one labels these momenta by k and l, the deformation is written in terms of shifts in the

spinor variables as

λ̃k −→ λ̃k(z) = λ̃k + zλ̃l , λl → λl(z) = λl − zλk (3.72)

where z is the only complex parameter of this [kl〉-shift. The spinors λk and λ̃l as well as all spinors

belonging to the remaining external momenta are unchanged. This means to shift the momenta pl

and pk according to

pk −→ pk(z) = λkλ̃k + zλkλ̃l , pl −→ pl(z) = λlλ̃l − zλkλ̃l . (3.73)

We immediately see that this complex deformation is not effecting the total momentum P =
∑
i pi

since pk(z) + pl(z) = pk + pl and so P is still conserved. Denoting the shift of the momenta pl

and pk by a bi-spinor ρ = λkλ̃l, we see that ρ2 = 0 and pk(z) · ρ = pl(z) · ρ = 0 and hence, the

shifted momenta are on-shell. Furthermore, since the unshifted amplitude is a rational function in

the spinor products and the z-dependence of the amplitude enters only through the shifts in two

spinors as rational functions, the amplitude An(z) is a rational function in z with

A(z) = An(p1, p2, . . . , pk(z), . . . , pl(z), . . . , pn) . (3.74)

Notice that a priori pk and pl do not need to be adjacent legs.

An important property of A(z) is the fact that it has only simple poles as a rational function

of z. This follows from the factorisation properties of the amplitude on multi-particle or collinear

singularities, for a discussion see for instance [32]. Multi-particle singularities of diagrams arise

when an internal propagator goes on-shell, i.e. P 2
i,j → 0 where Pi,j is the momentum flowing in

this channel and is the usual sum of adjacent particle momenta pi + · · ·+ pj . Under the shifts the

spinors of the internal propagator’s momentum may become z-dependent, Pi,j(z). This depends

on the shifted legs. If none or both of the z-dependent legs fall into the range i, j, the dependence

is not existent or cancels out explicitly. Only in the case where a single leg belongs to the range of

momenta we have a z-dependent propagator 1/P 2
i,j(z). For instance by letting pl be in the range of

pi, . . . pj we have Pi,j(z) = Pi,j−zλkλ̃l. One might square this expression and solve for P 2
i,j(z)→ 0.

Since P 2
i,j(z) is linear in z as P 2

i,j(z) = P 2
i,j − z(Pi,j)αα̇ λαk λ̃α̇l this yields in the on-shell limit

z → zP =
P 2
i,j

(Pi,j)αα̇ λαk λ̃
α̇
l

=
P 2
i,j

〈k|Pi,j |l]
, (3.75)

where zP is the value of z at the propagators pole. For a general momentum configuration of the

external states the different poles in zP are distinct for different pairs i, j. This proves the statement

that the general amplitude An(z) has simple poles in the complex variable. We are now ready to

apply the standard theorems of complex analysis.

The BCFW recursion relations emerge from the application of Cauchy’s theorem. To that

extent we consider the integral of the amplitude over a closed contour C at infinity

1

2πi

∮
C
dz

A(z)

z
(3.76)
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j j + 1

i i− 1

P̂i,j

p̂l p̂k

Figure 3.3: A recursive diagram in the limit of P 2
i,j → 0 which the BCFW relations are build

upon. We denote the shifted momenta by p̂l and p̂k which lay in the range of i ≤ l ≤ j or

j+1 ≤ k ≤ i−q, respectively. In order to extract the full n-point amplitude one has to sum over all

possible distributions of n momenta such that p̂l and p̂k are always on opposite sites of the internal

on-shell propagator.

and A(z) contains only poles and no branch cuts in the complex plane. Hence, the integrand in

(3.76) contains all physical poles plus the pole at z = 0. Under the requirement that A(z) vanishes

for z →∞ we find that the whole integral vanishes. Hence, Cauchy’s theorem implies

0 =
1

2πi

∮
C
dz

A(z)

z
= A(0) +

∑
poles zp

Res

{
A(z)

z

}
. (3.77)

The sum on the RHS runs over all poles zp of the function A(z)/z and the residue of pole at zp = 0

is the amplitude A(0), i.e. exactly the object one would like to calculate recursively,

An(p1, . . . , pn) = A(z = 0) = −
∑

poles zp

Res

{
A(z)

z

}
. (3.78)

One can then evaluate the sum over the poles in the following way: As we approach a pole in the

complex plane, z → zP , we have P 2
i,j → 0 and the internal propagator becomes on-shell, hence

dividing the total amplitude into two physical subamplitudes,

A(z)→
∑
h=±1

AhL(zP )
1

P 2
i,j(z)

A−hR (zP ) as z → zP . (3.79)

Here, we have to sum over the possible helicity assignments of the internal gluon propagator. With

the help of (3.75) we can substitute P 2
i,j(z) and arrive at

A(z)→ −
∑
h=±1

AhL(zP )A−hR (zP )

(z − zp) 〈λk|Pi,j |λ̃l]
as z → zP . (3.80)

Then, the residue of the amplitude at a pole zp is just given by

Res

{
A(z)

z

} ∣∣∣∣
z=zp

= −
∑
h

AhL(zP )A−hR (zP )

〈λk|Pi,j |λ̃l]
1

zp
. (3.81)

In a final step we replace the value of zp due to (3.75) and arrive at BCFW recursion relation

An(p1, . . . , pn) = A(0) =
∑
i,j

∑
h=±1

AhL(zP )
1

P 2
i,j

A−hR (zP ) (3.82)
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where we simply replaced the sum over the poles by a sum over all momenta pi, . . . , pj such that

one of the shifted legs lays within that range. A pictorial representation of the recursion relations

is given in Figure 3.3. The subamplitudes are evaluated at the pole of the corresponding sum of

external momenta and have the momentum dependence

AhL(−Phi,j , i, . . . , j) , A−hR (j + 1, . . . , i− 1, P−hi,j ) . (3.83)

Notice that the internal propagator 1/P 2
i,j is evaluated with unshifted kinematics. In order to

reduce the terms in the BCFW expansion it is convenient to shift adjacent legs, i.e. considering

shifts of the form [l l + 1〉.

The power of these relations lay in their recursive structure. In principle, they allow us to

derive any n-point amplitude starting from the basic amplitude in a gauge theory, the three-point

amplitude. Once this object is defined, we can calculate higher-point amplitudes recursively. The

only requirement for the application of the BCFW construction is the vanishing of the amplitude

for infinite complex momenta, A(z)→ 0 for z →∞. Different theories might behave differently for

large momenta. We will return to the question of vanishing amplitudes for large z in the context

of supersymmetric theories in Section 3.4.

3.3 Amplitudes for maximal supersymmetric theories

So far, we discussed amplitudes in four-dimensional Yang-Mills theory, focusing on pure gauge boson

interactions. In a realistic theory, like QCD, one has to deal with additional particles, both at tree-

level as external states as well as internal particles at loop-level. Similarly, the number of different

particle species in a supersymmetric theory is larger. However, the additional symmetries can put

constraints on the amplitudes, leading in many cases to simpler forms or can be useful as calculation

tools. Especially theories with the maximal amount of supersymmetry in four dimensions are

important examples.

For theories of massless particles with spin equal or less than 1 this is the N = 4 super Yang-

Mills theory (SYM) which we already discussed in Section 2.3.1. Its field content is given by a

vector supermultiplet in the adjoint representation, containing one gauge boson Aµ with 2 real

degrees of freedom (d.o.f.), 4 complex fermions χα with 8 real d.o.f. finally 6 real scalars with 6

d.o.f. As we have seen in Section 2.3.1, for this maximally supersymmetric theory it is possible to

combine all states into a single supermultiplet by merely acting with the supersymmetry generator

q̄α̇ on the vacuum state with the highest helicity possible. In the following we discuss the structure

of scattering amplitudes in this theory with maximal supersymmetry. It is important to note that

here, we are considering an on-shell description of the N = 4 superspace. Hence, no action can be

written down for this superspace. Merely, supersymmetry is used to relate scattering amplitudes

of different particles of the N = 4 theory. Via the power of supersymmetry, related amplitudes8

are combined into a single object, the so called superamplitude. Our discussion is mainly based on

the publications [56–58].

8Supersymmetric Ward Identities are used to relate amplitudes with a fixed number of external states.



3.3. Amplitudes for maximal supersymmetric theories 48

3.3.1 The N = 4 on-shell superspace and superamplitudes

Although the N = 4 SYM theory has the largest particle content of the four-dimensional super-

symmetric theories, it offers the feature of an unique combination of all particles states into a single

object, the N = 4 supermultiplet. We can use supersymmetry as a nice bookkeeping tool and

combine all states of the theory into a single superwavefunction. This idea goes back to Nair [59]

who proposed to use an on-shell superspace for the N = 4 theory with massless particles. The

generators of N = 4 algebra fulfill the following anti-commutation relations

{qIα, q̄Jα̇} = δIJλαλ̃α̇ , (3.84)

for a massless particle with momentum pαα̇ = λαλ̃α̇ where I, J are SU(4) R-symmetry indices

and α, α̇ are the usual SU(2) spinor indices in four dimensions. Then, one can decompose the

supercharge qIα along two independent directions λ and µ in spinor space,

qIα = λαq
I
(1) + µαq

I
(2) , (3.85)

where 〈λµ〉 6= 0. A similar decomposition is performed for q̄Iα̇. Substituting this decomposition

into (3.84) and multiplying with λα one can easily see that the charges q(2) and q̃(2) anti-commute

among themselves and the other generators, and can therefore be set to zero. The supersymmetry

algebra becomes

{qI(1), q̄(1)J} = δIJ . (3.86)

Denoting qI(1) = qI and q̄(1)J = q̄J , the Clifford algebra can be naturally realised in terms of

Grassmann variables ηI with {ηI , ηJ} = 0 as

qI = ηI , q̄J =
∂

∂ηJ
. (3.87)

Hence, we write for the supercharge qIα = λαη
I and q̄Iα̇ = λ̃α̇

∂
∂ηI

. Note that this representation of

the algebra is chiral. One could have chosen an anti-chiral representation, where the roles of q and q̄

in (4.12) are interchanged. If we are dealing with a scattering process where n particles are scattered

and the total momentum is Pαα̇, we write for supersymmetry generators {QIα, Q̄Jα̇} = δIJPαα̇ with

QIα =

n∑
i=1

λiαη
I
i , Q̄Iα̇ =

n∑
i=1

λ̃iα̇
∂

∂ηIi
, Pαα̇ =

n∑
i=1

λiαλ̃iα̇ . (3.88)

Due to our conventions for the super-Poincaré algebra, the Grassmann variables ηIi carry a helicity

of 1
2 whereas the η̄I have helicity − 1

2 .

We can use these fermionic variables to describe arbitrary external states of a scattering process.

To that extent one can reproduce the full content of the N = 4 supermultiplet in the following

compact super-wavefunction [57,59]

Φ(p, η) = G+(p) + ηIΓI(p) +
1

2
ηIηJSIJ(p) +

1

3!
ηIηJηKεIJKLΓ̄L(p) (3.89)

+
1

4!
ηIηJηKηLεIJKLG

−(p) .

Here, G± are the gauge boson states with helicities ±1, ΓI and Γ̄I are the eight fermion states

in the theory with helicities 1/2 and −1/2, respectively, and the helicity zero states are the six
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real scalar states SIJ with the reality condition SIJ = 1
2εIJKLS̄

KL. The Grassmann variables are

used for tracking the corresponding states in the super-wavefunction. For instance, the gluon of

positive helicity is just the power-zero component of Φ(p, η), so G+(p) = Φ(p, 0). The next state

can be obtained by projecting out the power-one component. Since q̄J acts as a derivate in ηJ ,

the projection is just a multiplication with q̄J and we have ΓI(p) = q̄IΦ(p, η)
∣∣
η=0

and so on. The

powers of ηI matches also the helicity counting: Since G+ has helicity h = +1 the whole super-

wavefunction Φ(p, η) has h = +1. Now each power of ηI increases the helicity by +1/2 and hence,

all terms in the expansion have h = +1. As we have seen in (3.86), the representation in terms

of Grassmann spinors ηI is chiral and leads to a chiral description of the super-wavefunction in

(3.89) and ultimately to a chiral on-shell superspace. However, we could have chosen an antichiral

description where the q̄I act multiplicative and the qI are represented by differentiation with respect

to η̄I . In the case of real momenta this leads to a antichiral super-wavefunction Φ̄ = (Φ(p, η))∗

where the antichiral Grassmann spinors are given by η̄I = (ηI)∗ [57]. For our discussion we will

choose the chiral super-wavefunction as it is commonly done in the literature.

Since the super-wavefunction Φ(p, η) combines all kind of particles of the N = 4 SYM theory

into a single object it is possible to use it to construct amplitudes for all kind of scattering processes

in that maximally supersymmetric theory. We can combine all scattering amplitudes of n external

particles into a single superamplitude An which is defined as

An(λ, λ̃, η) = An(Φ1 . . .Φn) . (3.90)

Here, the Φi stand for the super-wavefunctions Φi = Φ(pi, ηi). In that sense, a superamplitude

is a scattering amplitude of super-wavefunctions which depends on the spinors λi and λ̃i and the

Grassmann variables ηi of all external states with i = 1, . . . , n. The usual scattering amplitudes

of all sort of particle types are then component amplitudes of the superamplitude. Since every

component state in the super-wavefunction (3.89) carries a different power in the ηi one can ob-

tain the subamplitudes An by simpliy expanding the superamplitude An(λ, λ̃, η) in powers of the

Grassmann spinors ηi. The expansion of An contains for instance terms like

An = (η1)
4
An(G−G+ . . . G+) + (η1)

4
(η2)

4
An(G−G− . . . G+) (3.91)

+
1

3!
(η1)

4
ηI2η

J
2 η

K
2 η

M
3 εIJKLAn(G−Γ̄L2 Γ3MG

+ . . . G+) + . . .

where we defined (ηi)
4

= 1
4!η

I
i η
J
i η

K
i η

L
i εIJKL. Here, the first term is the gluon component amplitude

with one negative helicity gauge boson and n− 1 positive helicity gauge bosons. This amplitude is

zero, however, it is still a subamplitude in the expansion in the Grassmann variables. In a similar

fashion all possible scattering amplitudes can be extracted from one n-point superamplitude.

Having defined a general superamplitude in the N = 4 theory we might wonder if the presence

of supersymmetry puts any restrictions on their specific form. Indeed, this is the case. In general,

the superamplitude should be an inhomogenious polynomial of degree 4n in the ηIi due to invariance

under the SU(4) R-symmetry group. However, a superamplitude should also be invariant under

the supersymmetry transformations and this puts further restrictions on its form and its degree in

ηIi . The supersymmetry on-shell generators take the form of (3.88) and act multiplicatively on the
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superamplitude. Therefore, invariance under qIα constrains the superamplitude to live on a surface

in superspace defined by

QIαAn =

n∑
i=1

λiαη
I
iAn = 0 . (3.92)

Similar to the constraint of momentum conservation, one can implement this constraint as a con-

servation of total supermomentum QIα which restricts the generic form of the superamplitude to

be

An(λ, λ̃, η) = δ(4)(Pαα̇) δ(8)(QIα) Pn(λ, λ̃, η) . (3.93)

Here, the fermionic δ-function is defined as a product of the individual supercharge components,

δ(8)(QIα) =

4∏
I=1

2∏
α=1

(
n∑
i=1

λiαη
I
i

)
(3.94)

and Pn is a polynomial in the Grassmann parameters ηi. This form of the superamplitude is valid

for n ≥ 4 in the case of real momenta. As we will see, a three-point superamplitude can be defined

only for complex momenta, just as in the case of the usual scattering amplitudes which we discussed

in Section 3.1.3.

The generators Q̄Iα̇ are given by derivatives with respect to the Grassmann variables ηIi . Re-

quiring invariance under supersymmetry we have Q̄Iα̇A(λ, λ̃, η) = 0. Acting on a superamplitude

of the form (3.93) one obtains the expression n∑
i=1

λ̃iα̇
∂

∂ηIi
δ(8)(

∑
j

ηIjλjα)

Pn + δ(8)(QIα)

(
n∑
i=1

λ̃iα̇
∂

∂ηIi
Pn
)

(3.95)

which should vanish for invariance. The first term just simplifies to the total momentum of the

superamplitude and vanishes due to momentum conservation and the second term results in the

constraint

Q̄Iα̇Pn(λ, λ̃, η)) = 0 . (3.96)

The function P is a polynomial in the Grassmann variables ηIi and must be a singlet under the

SU(4) R-symmetry. Just as we can expand the superamplitude in powers of ηIi we can expand the

polynomial Pn. Since it should be invariant under the SU(4) R-symmetry, Pn can be expanded

into a sum of SU(4) singlet homogeneous polynomial functions, all having a degree of multiples of

4 in ηIi . The expansion is given by [57]

Pn = P(0)
n + P(4)

n + P(8)
n + · · ·+ P(4n−16)

n . (3.97)

It turns out that each of these terms represent a certain class of subamplitudes with a specific helicity

configuration. To see this we have to consider the total degree in the Grassmann variables of the

full superamplitude. Firstly, supersymmetry invariance requires the appearance of the fermionic

δ-function δ(8)(QIα) in the superamplitude which has degree 8 in η. This is actually the minimal

degree in the fermionic variables a superamplitude can have since the first term in the expansion

of Pn has degree 0 in η. It follows that P(0)
n represents subamplitudes with a total helicity of

htot = n − 4 since the degree 8 in the Grassmann spinors includes maximal two gauge bosons
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of negative helicity. Hence, this term represents subamplitudes of MHV type where all sorts of

particle configurations are allowed as long as htot = n − 4, for instance An(G−ΓI Γ̄
JG+ . . . G+)

is such a subamplitude. The remaining terms include all other helicity configurations, starting

with the next-to-MHV (NMHV) subamplitudes contained in the term P(4)
n up to the anti-MHV

subamplitudes with total helicity htot = −(n− 4) , being represented by P(4n−16)
n . In all cases one

has to include the δ(8)(QIα) when identifying the total helicity configuration of the subamplitudes

which raises the specific degree in η to 8 + 4k = 4(k + 2) for k ≥ 1. Note that the maximal degree

of a superamplitude is therefore not 4n but rather 4n − 8. The reason for this is the absence of

a term P(4n−8)
n in the expansion of Pn which would include subamplitudes with only one gauge

boson of positive helicity [56,57].

In our discussions of four-dimensional superamplitudes and their applications for unitarity cuts

we will focus on the MHV case, namely the first term in the expansion (3.97). The form of

the polynomial P(0)
n can be easily deduced by comparing the result of an integration over the

corresponding Grassmann variables with the know MHV tree-level all gluon amplitude. Choosing

the i-th and j-th gauge bosons to be of negative helicity, we have to extract factors of (ηi)
4 and (ηj)

4

from the fermionic δ-function in (3.93) since P(0)
n cannot contribute any powers of η. Integrating

over the Grassmann variables for the two negative helicity gluons one obtains the bosonic factor

〈ij〉4 from the δ(8)(QIα). By comparison with the Parke-Taylor expression (3.50) one finds

P(0)
n = (〈12〉〈23〉 . . . 〈n1〉)−1 (3.98)

Hence, in the MHV case, the n-point superamplitude (n ≥ 4) is given by

AMHV
n (λ, λ̃, η) = δ(4)(

n∑
i=1

λiαλ̃iα̇)
δ(8)(

∑n
i=1 λiαη

I
i )

〈12〉〈23〉 . . . 〈n1〉 , (3.99)

which was first presented by Nair in [59]. For further discussions of the terms in the polynomial

Pn we refer the interested reader to the original article [56]. In the following we focus on some

examples for tree-level superamplitudes, namely the case of external states with three, four and

five particles. Especially interesting is the three-point superamplitude since it is the only one

required when constructing higher-point superamplitudes in a recursive fashion. This can be done

by ‘supersymmetrising’ the BCFW construction as we will discuss in Section 3.4.

3.3.2 Tree-level superamplitudes

To get some intuition on the superamplitude structure of the N = 4 theory we start with the four-

and five-point case as examples. For n = 4, only the first term in the expansion (3.97) is non-zero,

stating the fact that all scattering amplitudes with four external states are of MHV-type and we

have

P(0)
4 = (〈12〉〈23〉〈34〉〈41〉)−1

. (3.100)

In the case of n = 5 two terms contribute to the polynomial P5, namely P(0)
5 and P(4)

5 . So all

amplitudes are either of MHV or anti-MHV since 4n − 16 = 4 for n = 5. The five-particle MHV

polynomial has the same structure as before whereas anti-MHV superamplitudes are described
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by [57]

P(4)
5 (λ, λ̃, η) =

(
〈12〉4[12][23] . . . [51]

)−1
δ(4)(η3[45] + η4[53] + η5[34]) . (3.101)

The δ(4) ensures that the polynomial is of degree four in η. By acting with Q̄Iα̇ on P(4)
5 one can

show that the term is invariant under q̄-supersymmetry as stated in (3.96). As we will see in the

following, the form of the fermionic δ-function is important for the special case of n = 3 anti-MHV

superamplitudes.

Just as discussed in Section 3.1.3 for the usual tree-level amplitudes, kinematical constraints

lead to vanishing three-point superamplitudes for real momenta since λ̃ = ±λ̄. Relaxing this

condition and going to complex momenta, we can choose between the constraints in (3.54) which

leads to a MHV or anti-MHV configuration. Choosing the [ij] = 0 we have the MHV tree-level

superamplitude with n = 3,

AMHV
3 (λ, λ̃, η) = δ(4)(

3∑
i=1

λiαλ̃iα̇)
δ(8)(

∑3
i=1 λiαη

I
i )

〈12〉〈23〉〈31〉 , (3.102)

which is holomorphic in the spinor variables. Choosing the holomorphic spinor brackets to vanish,

〈ij〉 = 0, we have the n = 3 anti-MHV superamplitude. In principle, we should assume that it

is described by the last term in the expansion (3.97). However, for n = 3 this would lead to a

polynomial P(−4)
3 of negative degree in η. This is due to our assumption that invariance under

q-supersymmetry is imposed by the δ(8)(QIα) which is not the case for the three-point anti-MHV

superamplitude. For n = 3 the anti-MHV superamplitude is given by [58,60]

AMHV
3 = δ(4)(

3∑
i=1

λiαλ̃iα̇)
δ(4)(η1[23] + η2[31] + η3[12])

[12][23][31]
. (3.103)

We notice that it is a anti-holomorphic function of degree four in η, corresponding to the fact that

the total degree in η of an anti-MHV superamplitude is 4n− 8. Although it is not proportional to

a δ(8)(QIα), it is invariant under q-supersymmetry. To see this we use the fermionic δ-function in

(3.103) to solve for instance for η1,

ηI1λ1α =
−ηI2 [31]− ηI3 [12]

[23]
λ1α . (3.104)

Hence, the supersymmetry generator QIα is given

QIα =

3∑
i=1

λiαη
I
i = ηI2

λ1α[13] + λ2α[23]

[23]
+ ηI3

λ1α[21] + λ3α[23]

[23]
(3.105)

which vanishes due to momentum conservation,
∑3
i=1 λiλ̃i = 0, and the three-point anti-MHV

superamplitude is automatically invariant under q-supersymmetry. Likewise, AMHV
3 is invariant

under q̄-supersymmetry: Acting with the generator Q̄Iα̇ on the superamplitude yields

Q̄Iα̇AMHV
3 →

3∑
i=1

λ̃i
∂

∂ηi
(η1[23] + η2[31] + η3[12]) = λ̃1[23] + λ̃2[31] + λ̃3[12] (3.106)

which vanishes as well after an application of an anti-holomorphic version of the Schouten-identity

(3.25). Hence, the anti-MHV superamplitude for n = 3 is invariant under the full N = 4 super-

symmetries.
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Both the MHV and anti-MHV three-point superamplitudes are important when constructing

higher point superamplitudes in a recursive fashion. The explicit form of both configurations is

needed: Since they are defined for different kinematical configurations, they cannot be combined

into a single three-point superamplitude.

3.4 Super-BCFW recursion relations

The motivation for a recursive construction of a n-point superamplitude at tree-level in the N = 4

theory is the same as for the more familiar tree-level amplitudes we discussed in Section 3.2.2. The

supersymmetric version of the BCFW recursion relations was first discussed in [58] and [60]. In

the following we will briefly motivated the construction for a supersymmetric theory. We will then

apply this technique to derive the five-point anti-MHV superamplitude as an example.

Just as in the non-supersymmetric case, one chooses to shift two external momenta by a complex

variable z according two

λ̃k −→ λ̃k(z) = λ̃k + zλ̃l , λl → λl(z) = λl − zλk (3.107)

which we denote as a [kl〉 shift. As we have seen, the total momentum is conserved by this shift. In

the supersymmetric framework, one has to deal with supermomentum as well. Since we are shifting

the holomorphic spinor with label l, the supermomentum changes as

ql → ql(z) = ql − zηlλk . (3.108)

Shifting the Grassmann spinor with label k according to

ηk → ηk(z) = ηk + zηl , (3.109)

leads to supermomentum conservation since qk(z) + ql(z) = qk + ql. The remaining construction of

the recursion relations follows suit. The shifted tree-level superamplitude is a rational function of

the spinor variables and a polynomial in the Grassmann parameters ηIi . Since the dependence on

z enters only through the spinor-shifts in λ and η, the superamplitude A(z) is an analytic function

in z and just as before it contains only poles and no cuts over the complex plane. Therefore, the

application of Cauchy’s theorem follows the case of the ordinary tree-level scattering amplitudes

An(z). The result are the supersymmetric recursion relations

An =
∑

poles zP

∫
d4ηP̂ AL(zP )

i

P 2
AR(zp) (3.110)

where we have to sum over the simple poles and both subamplitudes AL and AR are evaluated

at these poles. The main difference compared to the usual BCFW recursion relations is the as-

signment of helicities. Whereas in Section 3.2.2 we had to sum over all helicity configurations of

the subamplitudes, the sum is replaced by an integration over the Grassmann variable ηP̂ assigned

to the internal propagator. This is a manifestation of the fact that a superamplitude contains all

possible particle and helicity configurations for a fixed number of external states.

The subamplitudes AL and AR are superamplitudes themselves, i.e. they can be expanded in

terms of the fermionic variabels ηi just as in (3.93) and (3.97). Since a specific superamplitude is
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defined by the number of external states and its total helicity, this puts a constraint on the helicity

assignments. The Grassmann integration reduces the power of η on the LHS of the relation 3.110

by four. Hence, the sum of the total helicities of the two subamplitudes reduced by four should be

equal to the total helicity of the recursive superamplitude An.

One of the main requirements in the derivation of the BCFW recursion relation (supersymmetric

and non-supersymmetric ones) is the vanishing of the (super)amplitude for large z, i.e. A(z) → 0

for z → ∞. In the original papers [53, 54] this was checked for specific helicity configurations

using the MHV diagram approach we discussed in Section 3.2.1. However, an amplitude with a

general helicity assignment does not need to vanish at infinite complex momentum. Indeed, in [61]

it was shown that amplitudes in pure Yang-Mills vanish for large z only under certain shifts. If

one chooses the leg of the shifted holomorphic spinor λl and the anti-holomorphic spinor λ̃k both

to be of positive helicity then the whole (bosonic) amplitude vanishes for z →∞ (for a shift with

helicities (+,+) the amplitudes scales as ∝ 1/z [54]). Although not focus of our discussion, the

recursion relations can be applied to other theories as well, for instance gravity. Amplitudes in this

theory do behave similarly and vanish at infinite complex momentum for certain shifts. For further

discussions see the articles [61–63].

In a supersymmetric theory one does not need to distinguish between different helicity assign-

ments for the superamplitude. Hence, a large class of different subamplitudes can be considered

in terms of their large-z behaviour when considering a theory with maximal supersymmetry. The

behaviour of superamplitudes for large complex momenta was discussed in [58] and [60] and it

was found that the maximally supersymmetric Yang-Mills (N = 4 SYM) as well as maximally

supersymmetric gravity (N = 8 supergravity) vanish for z →∞ since

A(z) ∝ 1

z
, and M(z) ∝ 1

z2
(3.111)

where M(z) is the shifted super-gravity amplitude. In [60] this is proven by using the action of

the supersymmetry generators. Considering a shift of legs l and l + 1 we know that the whole

amplitudes vanishes for z → ∞ in the case of ηl = ηl+1 = 0 since this resembles the case of

leg l and l + 1 having positive helicity. A supersymmetry transformation with the q-supercharges

results in a translation of the Grassmann parameters. The parameter ξIα of such a supersymmetry

transformation can be decomposed along two independent directions in spinor space. By choosing

these two spinor-directions to coincide with the two shifted legs one can make ηl and ηl+1 vanish

and hence, this results in an amplitude with states of positive helicity at positions l and l + 1.

This amplitude is known to vanish for large z. The argument of vanishing amplitudes for large

complex momenta was extended to theories with spin-1 and spin-2 gauge bosonos in [64] where the

behaviour of (3.111) was confirmed.

3.4.1 The five-point anti-MHV superamplitude

In this section we want to present an example of a recursive calculation of the five-point anti-MHV

superamplitude in the N = 4 super Yang-Mills theory in order to apply the machinery we have

developed so far. We follow the discussion presented in [58] and start by choosing to shift two of



3.4. Super-BCFW recursion relations 55

1̂ 2̂
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Figure 3.4: The recursive diagrams which contribute to the BCFW calculation of the five-point anti-

MHV superamplitude. Notice that both subamplitudes in all recursive diagrams are of MHV-type.

Here, a hatted momentum p̂i represents a shifted (z-dependent) quantity.

the external legs. For convenience we shift adjacent legs and choose l = 1 and k = 2, leading to a

[12〉-shift

λ̃1(z) = λ̃1 + zλ̃2 , λ2(z) = λ2 − zλ1 . (3.112)

In the following we denote z-dependent quantities with a hat, i.e. by writing
ˆ̃
λ1 or λ̂2. According

to the super-BCFW construction, a [12〉-shift leads also to a z-dependent Grassmann spinor

η̂1 = η1 + zη2 . (3.113)

Having chosen the shift we can start considering the contributing recursive diagrams. In Figure 3.4

we give the two possible momentum configurations on both sides of the internal propagator. We

are interested in the n = 5 anti-MHV superamplitude which receives contributions from the term

P(4n−16)
n of the expansion (3.97). Including the δ-function of total supermomentum conservation,

the total degree of the superamplitude in the Grassmann spinors is then 4n − 8 = 12 for the

final five-point anti-MHV superamplitude. Since the fermionic integration over the parameter ηP̂

removes fours degrees in η’s, we have to have a total power of 16 in the Grassmann variables before

integrating over the subamplitudes as indicated in (3.110). This means that AL and AR must have

a combined degree of 16 in the η’s. Since an anti-MHV three-point superamplitude has only a

degree of 4, both subamplitudes must be of MHV type in both the recursive diagrams, contributing

8 powers in the Grassmann spinors each.

Inspecting the two recursive diagrams we find that the one on the right in Figure 3.4 vanishes.

This is due to the [12〉-shift which makes the three-point superamplitude on the left-hand side in

the right diagram vanish since the shift results in 〈2̂3〉 = 〈3P̂ 〉 = 〈P̂ 2̂〉 = 0. Hence, we can focus

our discussion on the diagram on the left-hand side in Figure 3.4.

The two subamplitudes are then given by

AL =
δ(4)(p̂1 − P̂ + p̂5) δ(8)(η̂1λ1 − ηP̂λP̂ + η5λ5)

〈1P̂ 〉〈P̂5〉〈51〉
, (3.114)

AR =
δ(4)(p̂2 + p3 + p4 + P̂ ) δ(8)(η2λ̂2 + η3λ3 + η4λ4 + ηP̂λP̂ )

〈2̂3〉〈34〉〈4P̂ 〉〈P̂ 2̂〉
, (3.115)
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where the signs are appropriately chosen such that all momenta (and supermomenta) are defined

to be incoming. For normal four-momenta this means just a change of sign, however, in terms of

spinors, one can choose to change the sign of λ or λ̃ when reversing the direction. Here, we follow

the usual convention to introduce factors of i in both spinors: We shift λ → iλ and λ̃ → iλ̃ when

p→ −p. To be consistent with our choice of the supermomenta, we also shift η → iη for q → −q.
This mimics the choice we will make for six-dimensional spinors in the next chapter.

One can now use the properties of the two fermionic and the two bosonic δ-functions to

rewrite them into a single bosonic δ-function imposing total momentum conservation and a single

fermionic δ-function imposing total supermomentum conservation, yielding a δ(4)(
∑5
i=1 pi) and a

δ(8)(
∑5
i=1 ηiλi). In order to combine the denominators of the two subamplitudes we apply momen-

tum conservation on each subamplitude which results in the following spinor identities:

〈2̂3〉[34] = −〈2̂|P̂ |4] = −〈2̂P̂ 〉[P̂4] , (3.116)

〈34〉[43] = (p3 + p4)2 = (p̂2 + P̂ )2 = 〈2̂P̂ 〉[P̂2] , (3.117)

〈4P̂ 〉[34] = [3|4|P̂ 〉 = −[32]〈2̂P̂ 〉 . (3.118)

Since all spinor brackets in these relations are non-zero, we can solve for the denominator of AR
and find9

〈2̂3〉〈34〉〈4P̂ 〉〈P̂ 2̂〉 =
[P̂4][P̂2][23][34]

[34]4
〈2̂P̂ 〉4 . (3.119)

Finally, we can combine this relation with the spinor products in the denominator of AL. Using

momentum conservation of the left subamplitude in Figure 3.4 we have

〈1P̂ 〉[P̂4] = 〈1|5|4] = 〈15〉[54] , (3.120)

〈P̂5〉[P̂2] = −〈5|P̂ |2] = −〈51〉[1̂2] = −〈51〉[12] . (3.121)

Combining these results we arrive at

1

(p1 + p5)2

1

〈1P̂ 〉〈P̂5〉〈51〉〈2̂3〉〈34〉〈4P̂ 〉〈P̂ 2̂〉
=

[34]4

〈15〉4〈2̂P̂ 〉4
1∏5

i=1[i i+ 1]
(3.122)

where the internal propagator is evaluated with unshifted quantities. Therefore, the whole n = 5

anti-MHV superamplitude is given by

AMHV
5 =

∫
d4ηP̂

[
δ(8)(η̂1λ1 − ηP̂λP̂ + η5λ5) δ(8)(η2λ̂2 + η3λ3 + η4λ4 + ηP̂λP̂ )

× δ(4)(

5∑
i=1

λiλ̃i)
[34]4

〈15〉4〈2̂P̂ 〉4
1∏5

i=1[i i+ 1]

]
. (3.123)

As mentioned in the previous section, this superamplitude combines all possible helicity and particle

configurations of five external states into a single object. In the following we discuss some explicit

particle and helicity configurations and show how to extract the corresponding amplitude from the

superamplitude, as presented in [58].

9Although our sign conventions are opposite to those of [58], all signs cancel out and the overall result is the

same.
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In general, the integration over ηP̂ ensures that when expanding the fermionic δ-functions

and integrating over the ηP̂ only terms which are proportional to (ηP̂ )4 survive. It is then a

computational question of how to extract the corresponding powers of the ηi from the fermionic

δ-functions that describe the particle and helicity content one is looking for. A convenient way for

extracting the sought after powers in the Grassmann spinors is provided by the identity

δ(8)
(∑

i

λiαη
I
i

)
=

1

16

4∏
I=1

∑
k,l

ηIkη
I
l 〈kl〉 . (3.124)

We start with a straight forward example and would like to extract the anti-MHV gluon amplitude

A5(1−g , 2
−
g , 3

+
g , 4

+
g , 5

−
g ) from (3.123). Hence, one needs to extract the coefficient of (η1)4(η2)4(η5)4(ηP̂ )4.

By inspection of the two fermionic δ-functions of the superamplitude we see that a contribution

for (η1)4(η5)4 can only come from the first δ(8) and hence, (η2)4(ηP̂ )4 must come from the second

one. Using the expansion (3.124) we generate prefactors 〈15〉4 and 〈2̂P̂ 〉4. Plugging this back into

(3.123) and integrating over ηP̂ leads to the result10

AMHV
5 (1−g , 2

−
g , 3

+
g , 4

+
g , 5

−
g ) =

[34]4

[12][23][34][45][51]
. (3.125)

For more complicated gluonic configurations a few more steps are required. For example, when

considering the non-adjacent gluon helicity configuration (1−, 2+, 3−, 4+, 5−) we need to extract

the coefficient of (η1)4(η3)4(η5)4(ηP̂ )4 and integrate over ηP̂ . Expanding the δ-functions generates

a coefficient of 〈15〉4〈3P̂ 〉4. After integration we can use momentum conservation p3 = −p̂2− P̂ −p4

to write

[34]4〈3P̂ 〉4 = ([42]〈2P̂ 〉)4 . (3.126)

Combining this with the result of the Grassmann integration leads to the gluonic amplitude

AMHV
5 (1−g , 2

+
g , 3

−
g , 4

+
g , 5

−
g ) =

[24]4

[12][23][34][45][51]
. (3.127)

In a final step we would like to consider amplitudes with fermionic states. Let us focus on the

subamplitude A5(1−g , 2
−
g , 3

+
f , 4

+
g , 5

−
f ). For this configuration one has to extract the coefficient of

the Grassmann variables (η1)4(η2)4η3(η5)3(ηP̂ )4. Just as in the previous cases, by inspecting the

two fermionic δ-functions in (3.123) one observes that the four powers in η1 and η2 are coming

from different δ-functions. The first one gives us the coefficient of (η1)4 whereas the second one

gives (η2)4. The sought powers of η3 and η5 have to come from the second and the first δ(8),

respectively. Hence, we have one power of the first and three powers of the second δ-function in

a Grassmann variable left which can be assigned to ηP̂ . Again, we use the expansion (3.124) and

obtain a factor 〈15〉3〈1P̂ 〉〈2̂P̂ 〉3〈2̂3〉. In a second step, we want to remove the dependence on P̂ in

these expressions. Here, momentum conservations proves to be useful again. Using the fact that the

left-hand subamplitude is a three-point MHV superamplitude we find by momentum conservation

〈2̂3〉 = − [54]〈43〉
[52]

,
〈1P̂ 〉
〈2̂P̂ 〉

=
〈15〉[52]

〈34〉[43]
(3.128)

10We omit the δ-function of momentum conservation.
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where the second relation follows after multiplying numerator and denominator by [P̂2] and using

the second relation in (3.116). Now, multiplying all factors together yields the final result

AMHV
5 (1−g , 2

−
g , 3

+
f , 4

+
g , 5

−
f ) =

[34]3[45]

[12][23][34][45][51]
. (3.129)

This result agrees with the form of the five-point anti-MHV amplitude found in [42].

This concludes our discussion of superamplitudes in the N = 4 super Yang-Mills theory at

tree-level. The techniques we discussed, especially how to deal with fermionic δ-functions and how

to expand them, will be useful when we discuss superamplitudes at one-loop level. We will do this

for the N = 4 theory in four dimensions in the next sections in order to set up some loop-level

terminology which will be important when we discuss six-dimensional superamplitudes at one-loop

in Chapter 4.

3.5 Unitarity for amplitudes in four dimensions

So far, we have discussed the structure of scattering amplitudes in the N = 4 SYM theory at

tree-level. It is also interesting to consider their structure at higher orders in perturbation theory.

As we will see, similar on-shell constructions to those at tree-level provide powerful techniques for

calculating one-loop amplitudes, not only in the maximally supersymmetric theory. In principle, it

is possible to reconstruct a scattering amplitude from its properties as a function over the complex

plane. This is the basic idea of the unitarity approach which we will discuss in the following. It

is intriguing to note that historically, an on-shell approach was first realised at one-loop level, see

for instance the textbook [55], and was only applied to tree-level amplitudes after the paper [25]

where some of the Twistor string theory inspired constructions of Section 3.2 were applied.

3.5.1 Unitarity and the optical theorem

We start by reminding ourselves that unitarity is an important property of any interacting quantum

field theory, closely tied to conservation of probability, a fundamental requirement on any physical

theory. Translating this into the context of scattering processes leads to the requirement of a

unitary S-matrix. Then, by interpreting the scattering amplitudes as transition matrix elements,

we can apply unitarity at the amplitude level directly. This leads to the so called optical theorem

which relates the imaginary part of the amplitude to a sum over contributions from all possible

intermediate particle states. Discussions of these analytic properties of scattering amplitudes can

be found in many textbooks on quantum field theory, see for instance [65] which we will follow

loosely.

As discussed in Section 3.1, the scattering amplitudes are the elements of the T-matrix, related

to the S-matrix by S = 1 + iT . Unitarity of the S-matrix then implies

− i(T − T †) = T †T . (3.130)

At the level of the transition matrix elements A, i.e. we are considering the T-matrix between

initial and final particle states, the LHS of (3.130) is then proportional to the imaginary part of
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the amplitude and one has in a short-hand notation the optical theorem11

− i
[
A(a→ b)−A∗(b→ a)

]
=
∑
f

∫
dLIPS A∗(b→ f)A(a→ f) (3.131)

where dLIPS is the n-particle Lorentz invariant phase pace measure,

dLIPS =

n∏
i=1

d4qi
(2π)4

δ(+)(q2
i −m2

i ) (2π)4δ(4)
(
pa + pb −

∑
i

qi
)

(3.132)

and a and b are initial and final particle states, respectively, and the sum on the RHS runs over

all possible intermediate states f . The optical theorem of (3.131) states that the imaginary part

of a scattering amplitude can be obtained from the sum of phase-space integrals of intermediate

multiparticle states. Here, one integrates products of scattering amplitudes which individually

transform the initial or final particle states into the intermediate states. Expanding both sides in

perturbation theory and matching the powers of the expansion parameter can lead to simplified

calculations of scattering amplitudes. For instance, in the case of the imaginary part of a full

one-loop amplitude, the two amplitudes on the RHS of (3.131) are tree-level objects.

One can understand the presence of the imaginary part of an amplitude from a concrete consid-

eration of Feynman diagrams. From the Feynman rules of the considered theory one can check that

each diagram contributing to the S-matrix element A is purely real unless an internal propagator

goes on-shell. In this case, the iε-prescription of the virtual particle’s propagator becomes relevant

and generates the imaginary part. To see possible implications we might consider the amplitude

A(s) as an analytic function of the complex variable s = E2
cm, although physically s is a real vari-

able. If s0 is the threshold energy for creation of the lightest multiparticle state (such that this

particle can be created to form a virtual state in a loop-diagram) then A(s) is real in the region

s < s0 for s ∈ R,

A(s) =
[
A(s∗)

]∗
. (3.133)

Since A(s) is an analytic function of (real) s we can continue the function analytically to the

entire complex s plane. To that extent we split A into its real and imaginary part, A(s) =

ReA(s) + i ImA(s). Then, for a given s near the real axis with s > s0 we have

Re A(s+ iε) = Re A(s− iε) ,

Im A(s+ iε) = −Im A(s− iε) . (3.134)

We see that the imaginary part of the amplitude is different above and below the real axis, it has

a branch cut, starting at the threshold energy s0. The discontinuity of the analytic function A(s)

is given by

Disc A(s) = 2iIm A(s+ iε) (3.135)

and hence, the imaginary part of an amplitude evaluated above the real axis at s + iε is given by

the amplitude’s discontinuity along a branch but in a diagrammatic interpretation. By the optical

11In many textbooks, the optical theorem is stated in terms of the forward scattering amplitude only where the

initial momenta pi and the final momenta ki are the same, pi = ki.
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theorem we find that the discontinuity of an amplitude is then related to the sum of phase space

integrals as in (3.131).

However, the discontinuity of an amplitude derived from Feynman graphs can be calculated

directly by applying a set of cutting rules which are usually denoted as the Cutkosky Rules, a

development of a series of papers [66–68]. Ultimately, in [69] Cutkosky generalised the analysis

of discontinuities of one-loop to multi-loop diagrams12. These rules can be used to compute the

discontinuity of any amplitude by cutting the corresponding Feynman diagram in a specific way.

At one-loop, the discontinuity is given by the following algorithm [65]:

1. Cut for a given kinematic invariant, the diagram such that the two cut propagators can be

simultaneously be put on-shell.

2. For each cut, replace the (massive) cut-propagator by a δ-function,

1

p2 −m2 + iε
−→ −2πiδ(p2 −m2)

Thus, the δ-functions that appear in (3.132) are generated and the propagators are ‘put

on-shell’. For massless propagators simply set m2 = 0.

3. Perform the phase-space integration over the two-particle dLIPS which gives the discontinuity

of the diagram in the branch but for the specific kinematical configuration.

This cutting-procedure leads to phase-space integrals which can be, at least in principle, evaluated

to extract the discontinuity of the amplitude.

3.5.2 Two-particle unitarity cuts and integral basis

Unfortunately, phase-space integrations can become quite cumbersome. The approach of Bern,

Dixon, Dunbar and Kosower (BDDK) [31, 70] showed an alternative way of calculating the ampli-

tude’s discontinuity by avoiding phase-space integrals. Their idea was to apply unitarity directly at

the level of amplitudes and hence, bypassing the use of Feynman diagrams. Rather than integrating

over the phase-space, in this unitarity approach one replaces the two δ-functions associated with

the cuts by propagators and thus generating Feynman integrals instead of phase-space integrals.

This procedure is usually denoted as the ‘reconstruction of the Feynman integral’. By application

of these two-particle cuts, BDDK were able to construct many one-loop amplitudes in supersym-

metric theories like the n-point MHV amplitudes for the N = 4 and N = 1 super Yang-Mills

theories [31,70]. The following discussion is mainly taken from [71].

From this analysis, BDDK could identify which integral functions can appear in the amplitude.

At one-loop, all amplitudes in massless gauge theories can be written in a basis of certain integral

functions

An;1 =
∑
Ii

ciIi + rational terms (3.136)

12For a detailed discussion, including singularities of the amplitude away from the physical parameter region, see

the textbook [55].
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Figure 3.5: A pictorial representation of the possible integral functions that can appear at one-

loop in four-dimensional massless gauge theories. Shown are from left to right the box-, triangle

and bubble-integrals. The Ki, Pi and Qi are generic momenta, in the case of K2
i , P

2
i , Q

2
i 6= 0 the

corresponding vertex i is denoted as a massive corner.

where the expansion is over scalar integral-functions Ii which are usually denoted as box, triangle

and bubble integrals. A pictorial representation of these integral functions is given in Figure 3.5.

In addition, rational terms are present. These terms are contributions to the one-loop amplitude

which do not contain any branch cuts. The coefficients ci are rational functions of the external

momenta and polarisation vectors. In general, the integral functions can contain products of loop-

momenta in their numerator, leading to so-called tensor integrals. We can characterise these general

functions by the number of vertices. Conventionally, an integral function with four vertices is called

a box integral. Then, a triangle integral function has three and a bubble integral function only two

vertices. Furthermore, all integrals can be distinguished in terms of the clusters of their external

momenta, Ki, Pi or Qi, compare with Figure 3.5. In the case of K2
i , P

2
i or Q2

i = 0 the corresponding

vertex is called massless, otherwise it is denoted as a massive vertex. Thus we have for the box

integrals four different types, the four-mass box (K2
i 6= 0 for all i), the three-mass box (K2

i = 0

for one i), the two-mass easy (two of the Ki vanish, K2
i = 0 and K2

i+2 = 0 for i = 1, 2) and the

two-mass hard box (two of the Ki vanish, K2
i = 0 and K2

i+1 = 0 for i = 1, 2) and finally the

one-mass box (only one K2
i 6= 0). Similarly, we can distinguish three-mass, two-mass and one-

mass triangles and of course two-mass and one-mass bubbles. In our applications of the unitarity

method in four and six dimensions we are mainly interested in the box integral functions since

in the maximally supersymmetric theories are UV finite. This excludes the appearance of bubble

and triangle integrals. For further discussion and explicit forms of the integral functions see the

Appendix I of [70].

In order to construct the full amplitude from the unitarity-cut approach one has to consider

all the kinematical channels and perform the double-cut procedure for each of them. However,

the two-particle cuts give only the so-called cut-constructible13 part of the amplitude. This is the

part of the full one-loop amplitude that contains discontinuities, like logarithms or polylogarithms.

13See [31] for a criterion of cut-constructibility which is full-filed by the N = 1 and N = 4 SYM theories. If

the degree of the loop-momentum in the numerator-polynomial of a n-point one-loop integrand is less then n the

supersymmetric theory is called cut-constructible.
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Cut-free terms are lost. It is for this reason that the BDDK two-particle cuts are successful

in constructing the full amplitude for supersymmetric theories where all rational terms of the

amplitude are uniquely linked to terms with discontinuities [31,70]. However, the two-particle cuts

cannot be easily used for non-supersymmetric theories where rational terms in the expansion (3.136)

are present. To order O(ε0) these rational terms are not linked to terms with discontinuities. If

one continues the dimension of the loop-momenta slightly away from four dimensions as D = 4−2ε

with ε < 0, rational terms develop discontinuities of the form R(−s)−ε = R − ε log(−s)R +O(ε2).

Keeping terms at least up to order O(ε), the amplitudes in the non-supersymmetric theory become

cut-constructible. The first applications of cuts in D = 4− 2ε dimensions appeared in [72–74].

A further simplification for non-supersymmetric theories comes from the well-known super-

symmetric decomposition of one-loop gluon amplitudes in pure Yang-Mills theory. A one-loop

amplitude Ag with gluons of the pure YM theory running in the loop can be written as

Ag = (Ag + 4Af + 3As)− 4(Af +As) +As (3.137)

where the first term on the RHS comes from a full N = 4 multiplet running in the loop, the second

term likewise from (four times) a N = 1 chiral multiplet whereas the last term comes from just a

scalar running in the loop. Since the one-loop amplitudes in the N = 4 and N = 1 theory can be

constructed by the double-cut unitarity method, this decomposition allows one to recast the pure

gluon amplitude at one-loop by an amplitude with the same external gluon states but with a scalar

running in the loop. Again, an efficient way to compute this scalar amplitude As is to continue the

loop momentum to 4− 2ε dimensions since a massless scalar in 4− 2ε dimensions can be described

as a massive scalar in four dimensions [73,74]. This can be easily seen by decomposing the (4−2ε)-

dimensional loop momentum. If we express the massless scalar as a four-dimensional massive scalar,

one has to deal with tree-level amplitudes involving massless gluon states and two massive scalars.

This approach is promising since the corresponding amplitudes have been calculated and have a

rather simple form [73, 74]. Additionally, amplitudes with massive scalars have been constructed

in a BCFW recursive fashion, for more information see [75].

In principle, using the various technical manipulations discussed above, the unitarity-cut tech-

nique can be used to calculate amplitudes in various theories. However, the procedure still involves

tedious steps and calculations. Firstly, one has to carefully consider the cuts in all the different

kinematical channels to obtain the full amplitude. The resulting integral function will have, be-

sides the correct discontinuities of the corresponding channel, additional discontinuities of other

channels. This precisely is the reason why one cannot just sum up all contributions from the dif-

ferent kinematical channels to obtain a final expression for the amplitude since this might lead

to an over-counting of some discontinuities. In addition, after simplification of the integrand and

reconstruction of the Feynman integral, one often ends up with tensor integrals, i.e. with integrands

that have products of loop momenta in their numerator. These integrals require reduction tech-

niques such as the Passarino-Veltman (PV) reduction [76] in order to reduce the tensor integrals

to scalar ones14. Such a procedure results in lengthy expressions for the rational coefficients of the

14We will discuss such a reduction in a six-dimensional context in Section 4.5.3 where we find that the one-loop
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scalar integrals in the basis (3.136). However, quite often the final results are of a simple form

which usually suggests that a more straightforward way for the computation exists. Indeed, a more

efficient method for extracting the rational coefficients of the integral basis expansion exists and,

intriguingly, it is based on the idea of simply cutting more than two propagators and replacing

them with δ-functions. This approach goes under the name of generalised unitarity and was known

since Cutkosky [69], see also [55] and [37]. In the following sections we present advantages of

this procedure and apply it to superamplitudes in the maximally supersymmetric theory in four

dimensions.

3.5.3 Triple- and quadruple-cuts in generalised unitarity

Cutting more than two propagators leads to triple- (three cut-propagators) and quadruple-cuts

(four cut-propagators). Especially quadruple-cuts are of great convenience since they freeze an in-

tegration over four-dimensional loop-momenta completely, hence making the calculation of the am-

plitude a purely algebraic procedure. This is of great importance in theories with maximal amount

of supersymmetry as we will see below. In any case, the procedure of putting more than two prop-

agators on-shell (cutting them) offers several advantages over the more restrictive two-particle cut

approach. Firstly, it reduces the overlap between different cuts, making it easier to disentangle the

individual rational integral-coefficients. Secondly, more on-shell conditions reduce the complexity

of the PV reduction of tensor integrals since fewer terms survive the uplift to the Feynman integral.

Although more tree-level amplitudes need to be sewn together, the individual tree-level amplitudes

are less complex. This all comes at the cost of working in complex momenta: Cutting more than

two propagators involves using on-shell three-point tree-level amplitudes that one needs to sew

together. As we have seen in Section 3.1.3, these objects are non-vanishing only when working

with complex momenta or using a metric of different signature. However, even under the condition

of using three-point amplitudes and complex momenta, the more streamlined generalised unitarity

approach leads to various applications in supersymmetric and also non-supersymmetric theories.

As we have discussed in the last section, amplitudes in pure Yang-Mills theory are only cut-

constructible when considering cuts in D = 4 − 2ε dimensions. The idea of cutting and uplifting

more than two propagators can be readily generalised to (4 − 2ε)-dimensions in massless, non-

supersymmetric theories [71]. The downside of this approach is the fact that higher-dimensional

integral functions, in addition to the four-dimensional bubble-, triangle- and box-functions, appear

in the integral basis. Nevertheless, to disentangle the various rational coefficients one can use

the advanced quadruple and triple cuts. This approach was discussed in [71] where triple and

quadruple cuts in (4 − 2ε)-dimensions were used to calculate one-loop amplitudes in pure Yang-

Mills theory. For instance, to all orders in ε, the four- and five-point amplitudes with helicities

(+ + ++), (− + ++) and (+ + + + +) (these amplitudes vanish in supersymmetric Yang-Mills

theory) were computed and agreement with the original results of [73] and [77] were found.

Moving on to the simplest supersymmetric gauge theory, namely N = 1 SYM theory, the

structure becomes simpler. Rational terms do not appear in the expansion of one-loop amplitudes

five-point superamplitude in six dimensions is given by a linear pentagon integral.
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Figure 3.6: A graphical representation of the scalar box integrals Ii of the expansion (3.138). The

cluster Ki of momenta contain all the external momenta. In the case of K2
i 6= 0 the corresponding

corner is called a massive one.

and one has to deal with linear combinations of scalar box, triangle and bubble functions only.

Applying generalised unitarity simplifies the calculation of one-loop amplitudes compared to the

original derivation based on two-particle cuts significantly. One may first apply quadruple-cuts

to fix the box coefficients. Since the four δ-functions freeze the loop-integration completely, the

coefficient of the specific box-function is just a product of four tree-level scattering amplitudes.

Then, by a series of algebraic manipulations one rewrites the spinor part of the product of tree-

level amplitude such that it is not depending on the loop-momenta. Uplifting the product of the

four δ-functions to a full Feynman integral gives the rational coefficient times the corresponding

box-function. In a next step one can use triple-cuts to isolate the triangle and bubble coefficients.

Cutting three propagators does not freeze the loop-integration completely and hence, after a series

of spinor manipulations due to the on-shell conditions one uplifts the cut-integral to a full Feynman

integral. Usually, one ends up with a tensor integral which can be reduced to a sum of scalar box-

, triangle- and bubble-functions, yielding the final rational coefficients for the specific triple-cut.

This procedure was applied to one-loop MHV amplitudes in the N = 1 SYM theory where the

two negative helicity gluons are adjacent, confirming the results of the original papers [31, 70].

Also, generalised unitarity for N = 1 SYM theory was used to study next-to-MHV amplitudes

at one-loop, again with adjacent negative-helicity gluons. These amplitudes can be expressed by

triangle-functions only and where computed by using triple-cuts, see the original paper [78].

The most intriguing example of generalised unitarity is its application to one-loop amplitudes

in the four-dimensional N = 4 SYM theory. Although the generlised unitarity approach was in

principle known since the sixties [55, 69] it was applied to the maximally supersymmetric case

much later [79]. The important difference to theories with less supersymmetry is the fact that
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one-loop amplitudes in this theory can be written as a linear combination of scalar box functions

only15 [31, 70] and triangle or bubble integral-functions are absent,

An;1 =
∑

P({Ki})

ci(K1,K2,K3,K4) Ii(K1,K2,K3,K4) . (3.138)

where the Ki are sums of external momenta as shown in Figure 3.6. The scalar box functions are

given by the integral16

I(K1,K2,K3,K4) = −i(4π)2−ε
∫

d4−2εl

(2π)4−2ε

1

l2(l +K1)2(l +K1 +K2)2(l −K4)2
. (3.139)

The integral is dimensionally regularised due to the infrared divergences of the one-loop amplitudes.

Here, we consider colour-ordered clusters of momenta Ki and each cluster contains consecutive

momenta only. The sum in the expansion (3.138) is then over permutations of the consecutive mo-

menta. As discussed in Section 3.5.2, one has four different types of scalar box integrals depending

on the number of massive corners. Therefore, it is convenient to expand a one-loop amplitude in

the N = 4 SYM theory in a basis which distinguishes between the different box integrals as

An;1 =
∑(

c1mI1m + c2meI2me + c2mhI2mh + c3mI3m + c4mI4m
)

(3.140)

where the sum runs over all possible distributions of the n external momenta. For the case of n = 4

there is just a single box function, the zero-mass integral I0m.

Since the one-loop amplitudes do not contain bubble and triangle integrals, each individual

quadruple cut, which is just a specific choice of how to distribute the external states among the

Ki, singles out a unique box function. The four δ-functions completely localise the integrand on

the solutions of the on-shell conditions and the loop integration is completely frozen. The product

of the four tree-level amplitudes can be manipulated using the on-shell conditions such that any

dependence on the loop momenta is removed. One is then left with an integrand which is just the

product of the four δ-functions. Therefore, uplifting all δ-functions to the corresponding Feynman

propagators yields directly the appropriate integral representation of the box function associated to

the specific cut. The corresponding rational coefficient is then just the (simplified) product of the

tree-level amplitudes. Hence, the calculation of the one-loop amplitude is reduced to the algebraic

problem of calculating the coefficients ci [79]. No integrations need to be carried out and in that

sense, the generalised unitarity approach is a truly diagrammatic approach for the N = 4 SYM

theory.

Let us discuss the form of the coefficients ci in more detail. The scalar box functions are purely

kinematical objects and therefore, any dependence on the helicities of the external states are carried

by the coefficients ci which for our purposes are functions of the spinor variables λi and λ̃i. The

specific form of the ci’s are determined by two requirements. Firstly, the four on-shell conditions

due to the δ-functions and secondly momentum conservation at the four corners. These conditions

15This fact is also true if one allows theories of higher spin. One-loop amplitude in the the maximally supersym-

metric gravity theory, N = 8 supergravity, can also be written as a sum of box-functions with rational coefficients,

see [80] and also [60] for a proof for both maximally supersymmetric theories.
16We follow the conventions of [57].
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are sufficient to reduce the loop integration to a discrete sum over two solutions S± with

S± : l2i = 0 , lµi+1 = lµi +Kµ
i . (3.141)

For more details on the explicit solutions see the original work [79] and also the discussions in

[81]. For our applications of quadruple cuts of one-loop superamplitudes we do not need the

specific form of the solutions. As we will see, it is often sufficient to use the constraints given

by momentum conservation to simplify the dependence on the li within the product of the four

tree-level amplitudes.

This diagrammatic approach simplifies the calculation of the rational coefficients significantly.

However, in gauge theories and especially in the maximally supersymmetric SYM theory it is neces-

sary to deal with different distributions of external particle states and their helicity. Furthermore,

if we consider one-loop amplitudes, in principle the full N = 4 multiplet can run in the loop. That

is why one has to carefully consider the external states and sum over all helicity assignments of

the particles that propagate inside the loop. One would wish for a more convenient method that

captures different particle and helicity configurations within one quadruple cut. In the maximally

supersymmetric theory both considerations can be neatly combined by using the superspace/ su-

peramplitude approach which was introduced in Section 3.3.1 and a unitarity method for one-loop

superamplitudes.

3.5.4 Generalised unitarity for N = 4 superamplitudes

The combination of superspace notations for scattering amplitudes and the generalised unitarity

method was first discussed in [57]. In this paper a supersymmetric extension of the quadruple

cuts was used to calculate the n-point MHV and NMHV superamplitudes at one-loop, confirming

results for amplitudes in the N = 4 theory previously obtained in [82,83].

Since all one-loop amplitude An;1 in the expansion (3.139) are just subamplitudes of a general

superamplitude as discussed in Section 3.3.1, it is easy to extend this approach to the expansion of

an one-loop superamplitude An;1 in the N = 4 SYM theory. In the basis of the five different scalar

box integral-functions one can expand as

An;1 = δ(4) (Pαα̇)
∑(

C1mI1m + C2meI2me + C2mhI2mh + C3mI3m + C4mI4m
)
. (3.142)

Now, the supercoefficients C are rational functions of the spinor variables but also polynomials in

the Grassmann parameters η defining the different subamplitudes [57].

In the expansion the same integral functions are present, so the quadrupole cut method dis-

cussed in the previous section can be applied to the superamplitude An;1 straight away. Each

specific quadruple cut will single out a specific box function and will result in the corresponding

supercoefficient, like the four-mass, three-mass, two-mass easy and two-mass hard or one-mass co-

efficient. Again, the special case n = 4 can be obtained by a single quadruple cut, leading to the

zero-mass supercoefficient C0m of the four-point one-loop superamplitude. Since the quadruple cut

method can be readily extended to the superamplitude formalism, it follows that the supercoeffi-

cients C are given by a product of four tree-level superamplitudes. Performing a quadruple cut as
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Figure 3.7: A quadruple cut for a one-loop superamplitude with clusters of external momenta

K1,K2,K3 and K4. The four cut propagators freeze the loop integration completely.

shown in Figure 3.7 yields the expression

C(Ki) =
1

2

∑
S±

∫ ( 4∏
i=1

d4ηli

)
An1+2;0(l1,K1,−l2) An2+2;0(l2,K2,−l3)

×An3+2;0(l3,K3,−l4) An4+2;0(l4,K4,−l1) . (3.143)

Here one averages over the two solutions S± due to (3.141). In the superspace formalism one

does not have to sum over the different particles of the N = 4 multiplet running in the loop, one

rather integrates over the Grassmann parameters ηli associated with the internal cut-legs of the

four tree-level superamplitudes (see Figure 3.7). The ni represent the number of external legs for

each cluster of momenta Ki. This makes it easy to classify the supercoefficients in (3.143) according

to the four different types of scalar integral functions. For instance the four-mass supercoefficient

is given by C4m = C(n1,2,3,4 ≥ 2), whereas the two-mass easy supercoefficient is for instance

C2me = C(n1,3 = 1, n2,4 ≥ 2).

By just extending the amplitudes into superspace, the supercoefficients became polynomials in

the Grassmann parameters η. Just as for tree-level superamplitudes, one can expand them into

polynomials of different degree in η, yielding their most general expression [57] (compare with the

expansion (3.97))

Cm = δ(8)(

n∑
i=1

λiηi)
[
P(0),m
n;1 + P(4),m

n;1 + · · ·+ P(4n−16),m
n;1

]
. (3.144)

where m labels the four different types of integral functions, m = 4m, 3m, 2me, 2mh, 1m. The above

expression gives the most general form. When considering certain helicity configurations of the

one-loop superamplitude (for instance a MHV or NMHV configuration), one has to match the total

power in the η’s on both sides of the expression (3.143), taking into account that the integration
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over the Grassmann variabels ηli reduces the total power in η of the left-hand side by 16. This is

similar to the case of the supersymmetric recursion relations discussed in Section 3.4. In addition,

one has to consider the fact that for specific configurations of the invariant masses Ki, terms in the

expansion (3.144) of the supercoefficient in polynomials of increasing degree in η might be absent.

For instance, in the four-mass case, the lowest degree of the one-loop polynomials Pn;1 in (3.144)

is 8 and the highest degree is 4n − 24. Therefore, the four-mass supercoefficient C4m does not

contribute to the MHV and NMHV as well as the anti-MHV and anti-NMHV superamplitudes. To

illustrate this behaviour we will discuss the example of a n-point one-loop MHV superamplitude

in the next section. For further discussions and explicit forms of the supercoefficient we refer the

reader to the original paper [57].

As in the case of the individual subamplitudes, the actual calculation of the one-loop superam-

plitude is then reduced to the derivation of the supercoefficients. One has to simplify the product

of the four tree-level superamplitudes in the expression (3.143) as much as possible and perform

the integrations over the Grassmann parameters ηli . This can be conveniently done by using the

fermionic δ-functions of the tree-level superamplitudes. They localise the ηli ’s on spinor combina-

tions of loop- and external-states. In the case of non-vanishing invariant masses Ki (ni > 1 for

all i), all tree-level superamplitudes are of the usual form (3.93). One might use the four δ(8)(QIα)

of all corners to isolate a single δ(8)(
∑

ext q
I
i,α) for total supermomentum conservation. Upon the

identity

δ(8)(
∑
k

λkηk) = 〈ij〉4δ(4)
(
ηi +

∑
k 6=j

〈jk〉
〈ij〉 ηk

)
δ(4)
(
ηj −

∑
k 6=i

〈ki〉
〈ij〉 ηk

)
(3.145)

the individual ηli can be isolated and integrated over if one chooses i and j as the label of the

spinors of the two cut propagators of any tree-level vertex.

As soon as one of the invariant masses vanishes (e.g. K2
1 = 0) we have to deal with a three-

point vertex and hence a three-point tree-level superamplitude. As discussed in Section 3.3.2, the

three-point superamplitudes only exist for the MHV and anti-MHV configuration with complex

momenta and their form is given in (3.102) and (3.103), respectively. In the MHV case, the tree-

level superamplitude carries the usual δ(8)(QIα). Since the degree in η is the same as before, the

separation and integration of the Grassmann spinors ηli follows the same logic. The anti-MHV

three-point superamplitude has only degree four in η and is proportional to a

δ(4)(η1[23] + η2[31] + η3[12]) (3.146)

for supercharges q1, q2 and q3 with external states pi, i = 1, 2, 3. Isolating a single Grassmann

parameter ηli for an anti-MHV corner is then straight forward. We will see an example of this

procedure in the next section when we discuss the one-loop MHV superamplitude.

A complication arises if more than one kinematical invariant Ki vanishes. In this case one

has to deal with more than one three-point tree-level superamplitude. We recall that MHV and

anti-MHV three-point superamplitudes are defined for different kinematical configurations, see the

relations in (3.54). In the case of two adjacent three-point superamplitudes, one has to require that

the superamplitudes are not of the same type. If they are both MHV or both anti-MHV as shown
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pi+1pi

l

pi+1pi

l

Figure 3.8: The diagrams for two adjacent MHV (left) or anti-MHV (right) three-point superam-

plitude. This kinematical configuration does not exist since it would imply the on-shell momentum

constraint (pi + pi+1)2 = 0 which is not true for general kinematics.

in Figure 3.8 the kinematical configurations require that λ̃i ∝ λ̃l ∝ λ̃i+1 (MHV) or λi ∝ λl ∝ λi+1

(anti-MHV). This would lead to spinor products [i, i+ 1] = 0 or 〈i, i+ 1〉 = 0, yielding a vanishing

invariant sii+1 = (pi + pi+1)2 = 〈i, i + 1〉[i + 1, i] = 0. However, for general kinematics this is not

fulfilled. Hence, this configuration does not exist and one can only have adjacent MHV and anti-

MHV three-point superamplitudes. This is of great importance when calculating superamplitudes

at one-loop with certain helicity configurations since it simplifies the possible contributions of the

three-point superamplitudes one has to consider. We encounter an example of this structure in the

next section where we discuss the derivation of the n-point MHV superamplitude at one-loop.

3.5.5 The n-point one-loop MHV superamplitude

In order to develop some intuition on the generalised unitarity approach, we want to apply the

techniques developed in the last sections to derive the MHV contribution to the one-loop superam-

plitude with n external states. This result was first presented in [57]. Here, we provide a slightly

different derivation and discuss some calculations details in order to illustrate the general procedure.

Since we are considering a MHV configuration we are looking for a Grassmann degree of 8 for

the one-loop superamplitude. The generalised unitarity approach reduces the calculation of the

superamplitude to the calculation of the supercoefficients in (3.143) of the individual quadruple

cuts. The integration over the variables ηli reduces the Grassmann degree of the left-hand side by

16, yielding an allowed Grassmann degree of 24 for the product of the four tree-level superampli-

tudes. From this observation it is clear that the MHV superamplitude at one-loop only receives

contributions from the one-mass and two-mass easy supercoefficients. In the case of three or more

non-vanishing kinematical invariants Ki the corresponding tree-level superamplitudes are at least

of Grassmann degree 8. This would already exhaust the maximal possible degree in the η’s of

the four tree-level superamplitudes. Hence, we are left with maximal two massive corners which

already contribute at least 16 powers in the Grassmann spinors if they are both of MHV type. This

fixes the two massless corners to be of anti-MHV type since they both have Grassmann degree 4,

resulting in a total degree of 8 + 8 + 4 + 4 − 16 = 8 for the one-loop MHV superamplitude. This

also holds for the exceptional case of n = 4 where both MHV superamplitudes are three-point am-
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2

s

l1

l2

l3

l4

Q

1

P

s− 1

s+ 1

n

Figure 3.9: The quadruple cut for an one-loop MHV superamplitude with n external particle states.

The two white vertices in the lower left and upper right corner represent three-point anti-MHV

superamplitudes whereas the grey vertices in the upper left and lower right higher point represent

MHV superamplitudes.

plitudes, contribution both a Grassmann degree of 8. This results in a zero-mass supercoefficient.

Finally, we deduce from this that the two-mass hard coefficient cannot contribute. As explained

in the previous section, two three-point MHV or anti-MHV superamplitudes cannot be adjacent.

In the two-mass hard case this would result in at least a three-point MHV and a three-point anti-

MHV superamplitude. Together with the two massive corners the total Grassmann degree would

be 8 + 8 + 8 + 4− 16 = 12 which does not correspond to the MHV configuration.

We start by computing the supercoefficient CMHV(1, P, s,Q) of the quadruple cut shown in Figure

3.9. Cyclic permutation of the external states leads then to the other supercoefficients. For this cut,

the momentum P runs in the range of 2, . . . , s−1 whereas Q runs between s+1, . . . , n. If one of the

corners P or Q become massless then the diagram reduces to the one-mass case and only if both

P and Q become massless we have the exceptional case of the four-point MHV superamplitude.

Following the generalised unitarity construction, the supercoefficient takes the form

CMHV(1, P, s,Q) =
1

2

∑
S±

∫ 4∏
i=1

dηli

[
AMHV

3 (l1, 1,−l2) AMHV(l2, 2, . . . , s− 1,−l3)

×AMHV
3 (l3, 2,−l4) AMHV(l4, s+ 1, . . . , n,−l1)

]
. (3.147)

Here, the individual tree-level MHV superamplitudes are given by the expressions in (3.99) and

(3.103). The general strategy is to integrate over the Grassmann spinors ηli and then simplify the

product of the tree-level superamplitudes such that we can remove any dependence on the loop

momenta li. First, we use the fermionic δ-function to simplify the dependence of the integrand on

the Grassmann variables ηli . The two anti-MHV superamplitudes provides us with a δ(4)(ηl1 [1l2] +
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η1[l2l1] + ηl2 [l11]) and a δ(4)(ηl3 [sl4] + ηs[l4l3] + ηl4 [l3s]). Let us integrate over ηl2 and ηl3 first. The

two fermionic δ-functions localise the spinors on the two solutions

ηl2 = −ηl1 [1l2] + η1[l2l1]

[l11]
and ηl3 = −ηs[l4l3] + ηl4 [l3s]

[sl4]
, (3.148)

generating the prefactors [l11]4 and [sl4]4. We can plug back these solutions in the two remaining

δ-functions of the MHV superamplitudes, yielding for instance

δ(8)
(ηl1 [1l2] + η1[l2l1]

[l11]
λl2 +

s−1∑
i=2

ηiλi −
ηs[l4l3] + ηl4 [l3s]

[sl4]
λl3
)
. (3.149)

In order to combine the arguments of the δ(8)s one might use momentum conservation. The spinor

products can be simplified by noting

[1l2]λl2 = [1|l2 = [1|(−1 + l1) = [1|l1 = [1l1]λl1 (3.150)

[l2l1]λl2 = −[1l1]λ1 , [l4l3]λl3 = [l4s]λs , [l3s]λl3 = [l4s]λl4 (3.151)

leading to an argument of

δ(8)
(
− ηl1λl1 + η1λ1 + ηsλs + ηl4λl4 +

s−1∑
i=2

ηiλi
)
. (3.152)

Hence, we have the following product of two δ(8) to integrate over,

δ(8)
(
− ηl1λl1 + η1λ1 + ηsλs + ηl4λl4 +

s−1∑
i=2

ηiλi
)
δ(8)
(
− ηl4λl4 + ηl1λl1 +

n∑
i=s+1

ηiλi
)
. (3.153)

The integration over the remaining Grassmann spinors ηl1 and ηl4 can be done by means of the

identity (3.145). We use one of the two δ(8)-functions to rewrite it as a product of two δ(4)-functions.

and integrate over ηl1 and ηl4 . This leads to

δ(8)
( n∑
i=1

ηiλi
)
〈l1l4〉4 (3.154)

as the result of the integration over the product of the two δ(8)-functions. Collecting the previous

results and remaining prefactors we end up with the following expression for the MHV supercoef-

ficient,

CMHV(1, P, s,Q) =
1

2

∑
S±

δ(8)
(∑n

i=1 ηiλi
)

〈12〉〈23〉 . . . 〈n1〉
〈12〉〈n1〉〈s− 1s〉〈ss+ 1〉

〈l22〉〈s− 1l3〉〈l4s+ 1〉〈nl1〉〈l2l3〉〈l4l1〉

× [l11]4[sl4]4〈l4l1〉4
1

[l11][1l2][l2l1]

1

[l3s][sl4][l4l3]
. (3.155)

One can simplify the spinor structure further and after a few lines of spinor algebra we arrive at

CMHV(1, P, s,Q) =
1

2

∑
S±

AMHV
n;0 〈n1〉〈12〉〈s− 1s〉〈ss+ 1〉 [1|l1l4|s]2

〈s− 1|l3l4|s+ 1〉〈2|l2l1|n〉
(3.156)

where we have used the fact that [1|l2l3|2] = [1|l1l4|2]. However, the supercoefficient still depends

on the loop-momenta li. In the following we focus on the part depending on the li and manipulate

it further. To that extent we consider the object

∆1,2,s,s+1 ≡
1

2

∑
S±

〈n1〉〈12〉〈s− 1s〉〈ss+ 1〉 [1|l1l4|s]2
〈s− 1|l3l4|s+ 1〉〈2|l2l1|n〉

(3.157)
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In order to simplify this object we mainly use momentum conservation. This leads to identities like

〈2|l2l1|n〉 = 〈2|(l1 − 1)l1|n〉 = −〈21〉[1l1]〈l1n〉 (3.158)

due to the fact that l21 = 0 and similarly to

〈s− 1|l3l4|s+ 1〉 = 〈s− 1s〉[sl4]〈l4s+ 1〉 (3.159)

since l24 = 0. Using these relations, a few lines of spinor algebra yield

∆1,2,s,s+1 = −
∑
S±

1

2

〈s s+ 1〉〈n1〉
〈l4 s+ 1〉〈l1n〉

[1l1]〈l1l4〉2[l4s] . (3.160)

Furthermore, one might use the proportionality of the holomorphic spinors belonging to the three-

point anti-MHV vertex, for instance λ1 ∼ λl1 ∼ λl2 . Combined with momentum conservation, this

leads to the expression

〈s s+ 1〉
〈l4 s+ 1〉 [1l2]〈l2l4〉〈1l3〉[l3s] = [1l2]〈l2s〉〈1l3〉[l3s] = [1|l2|s〉[s|l3|1〉 (3.161)

where we used the proportionality of λl4 and λs in the first step. Furthermore, we have from

momentum conservation l2 = l1 + p1 = l4 + Q + p1 which gives [1|l2|s〉 = [1|l4 − Q|s〉 = [1|Q|s〉.
Similarly, we have l3 = l2 + P which yields [s|l3|1〉 = [s|P |1〉 and, hence, we end up with

∆1,2,s,s+1 =
1

2

∑
S±

[1|Q|s〉[s|P |1〉 =
1

2

∑
S±

[1|QpsP |1〉 . (3.162)

By rewriting the spinor expression as Dirac traces we can simplify these spinor products further.

Converting the trace structure into products of usual four-dimensional momenta leads to

〈1|P |s]〈s|Q|1] = 2
[
(p1 ·P )(ps ·Q)− (p1 · ps)(P ·Q) + (p1 ·Q)(P · ps)

]
. (3.163)

Let us introduce the momentum invariants17 s = (p1 + P )2 and t = (ps + P )2. s = (p1 + P )2 and

t = (ps +P )2 and apply momentum conservation p1 +P + ps +Q = 0 we can rewrite the products

of four-momenta in the expression (3.163). this expression into a simple form as

∆1,2,s,s+1 =
1

2

∑
S±

(
P 2Q2 − st

)
. (3.164)

At this stage we observe that due to the presence of the three-point anti-MHV superamplitude,

only one of the solutions S± contributes since λ1 ∝ λl1 ∝ λl2 . Furthermore, the explicit form of

the solution is not needed since P,Q and s and t are fixed by the external kinematics. Hence, we

can write for the MHV supercoefficient

CMHV(1, P, s,Q) =
1

2

(
P 2Q2 − st

) δ(8)
(∑n

i=1 ηiλi
)

〈12〉〈23〉 . . . 〈n1〉 =
1

2

(
P 2Q2 − st

)
AMHV
n;0 . (3.165)

This is its generic form. In the two-mass easy case, we have the condition that P 2, Q2 6= 0. This

leads to the condition 4 ≤ s ≤ n − 2. If we consider the one-mass case, one of the MHV corners

becomes massless and we have an additional three-point MHV superamplitude in the case of either

17The reader should note that the momentum ps should not to be confused with the kinematic invariant s.
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P 2 = 0 or Q2 = 0. This results in s = 3 or s = n − 1 (compare with Figure 3.9). Hence, the

supercoefficient combines both the two- and one-mass case if s ranges between 3 and n − 1. This

allows us to write the result of the one-loop MHV superamplitude in a compact form [57]

AMHV
n;1 = δ(4)(Pαα̇)

δ(8)
(∑n

i=1 ηiλi
)

〈12〉〈23〉 . . . 〈n1〉

[ n−1∑
s=3

I1,2,s,s+1∆1,2,s,s+1 + cyclic

]
. (3.166)

We have discussed the specific cut that leads to the first term in the expression for the one-loop

superamplitude. The other terms are obtained from cuts where the external states are cyclicly per-

muted and have the same structure, i.e. they can be obtained from the result of our cut calculation

by just shifted in labels of the external states appropriately.

This concludes our discussion of four-dimensional superamplitudes in the N = 4 SYM theory

and the generalised unitarity approach. Other supercoefficients of one-loop amplitudes can be found

in [57] for the case of N = 4 SYM and in [84] for N = 8 supergravity. In the next chapter we

consider applications of the discussed four-dimensional concepts in the maximally supersymmetric

gauge theory in six dimensions.



4 Superamplitudes and Generalised

Unitarity in Six Dimensions

As we have seen in the previous chapter, considering amplitudes in the maximally supersymmetric

theory in four dimensions provides a rich field of investigations. The supersymmetric formulation

provides not only a nice tool to simplify calculations, it provides us also with the opportunity to

combine amplitudes with different particle content and helicity configurations in a compact form.

One might wonder if this approach extends to higher dimensions.

Furthermore, there are several reasons why it is interesting to consider scattering amplitudes

in six-dimensional theories. Firstly, there is a powerful spinor helicity formalism, introduced in

[85] and further discussed in [86] for arbitrary dimensions, which allows one to express scattering

amplitudes in a rather compact form. An important difference with respect to the four-dimensional

world is that physical states are no longer labeled by their helicity, but carry indices of the little

group SU(2) × SU(2) of a massless particle. As a consequence, states in a particular little group

representation can be rotated into each other, and hence, at a fixed number of external legs, all

scattering amplitudes for different external states are collected into a single object, transforming

covariantly under the little group. In [85], an expression for the three-point gluon amplitude in

Yang-Mills theory was obtained, and used to derive tree-level four- and five-point amplitudes using

on-shell recursion relations [53,54].

Particularly interesting are the maximally supersymmetric theories in six dimensions, with

(1,1) and (2,0) supersymmetry, which arise as the low-energy effective field theories on fivebranes

in string/M-theory and upon compactification on a two-torus reduce to N = 4 super Yang-Mills

(SYM) in four dimensions. The scattering superamplitudes in the (1,1) theory have been studied

in [87] (see also [88]), using supersymmetric on-shell recursion relations [58, 60]. In particular, the

three-, four- and five-point superamplitudes at tree-level have been derived, as well as the the one-

loop four-point superamplitude, using the unitarity-based approach of [31,70]. Some generalisations

to (2,0) theories in six dimensions have been considered in [88].

Six-dimensional tree-level amplitudes take a rather compact form, which can be fed into unitarity

[31,70] and generalised unitarity cuts [79,89] to generate loop amplitudes. Originally the unitarity

methods and their generalisations were formulated in four dimensions but they apply in principle

in any number of dimensions, which is also often exploited in calculations of QCD amplitudes in

dimensional regularisation (see e.g. [71–73,90]). First applications of unitarity to one-loop four-point

74
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amplitudes in six-dimensional (1,1) theories appeared in [87] and more recently in six-dimensional

Yang-Mills in [91], where also higher-loop four-point amplitudes in the (1,1) theory were computed.

Gauge theories in more than four dimensions are usually non-renormalisable, but at least for

the maximally supersymmetric examples their known embedding into string theory as low-energy

theories living on D-branes or M-branes guarantees the existence of a UV completion. In particular,

it is known that the (1,1) supersymmetric gauge theory in six dimensions is finite up to two

loops [92]. Furthermore, infrared divergences are absent in more than four dimensions, and hence

all amplitudes in the (1,1) theory are expected to be finite up to two-loop order and can be calculated

without regularisation.

An additional motivation to study higher-dimensional theories stems from the fact that QCD

amplitudes in dimensional regularisation naturally give rise to integral functions in higher dimen-

sions, in particular D = 6 and D = 8 [72,73]. These integrals are related to finite, rational terms or

terms that vanish in the four-dimensional limit. Furthermore, there exists a mysterious dimension

shift relation between MHV one-loop amplitudes in the maximally supersymmetric gauge theory

in eight dimension (with four-dimensional external momenta) and the finite same-helicity one-loop

gluon amplitude in pure Yang-Mills in four dimensions [74].

In this chapter, which is based on the author’s original work [93], we focus on the calculation of

four- and five-point superamplitudes in the maximally supersymmetric (1,1) theory using one-loop

two-particle as well as quadruple cuts. In particular, we show that the five-point superamplitude

can be expressed in terms of just a linear pentagon integral in six dimensions, which can be further

reduced in terms of scalar pentagon and box functions. Because of the non-chiral nature of the

(1,1) on-shell superspace, this superamplitude contains all possible component amplitudes with five

particles, in contradistinction with the four-dimensional case where one has to distinguish MHV

and anti-MHV helicity configurations.

We begin our discussion in Section 4.1 by briefly reviewing the six-dimensional spinor helicity

formalism developed in [85], which is required to present Yang-Mills scattering amplitudes in a

compact form. Then, in Section 4.2 we discuss the on-shell (1,1) superspace description of ampli-

tudes in maximally supersymmetric Yang-Mills which was introduced in [87]. We then move on

and discuss briefly the three-, four- and five-point amplitudes at tree-level in the six-dimensional

theory.

4.1 Spinor helicity formalism in six dimensions

The key observation for a compact formulation of amplitudes in six-dimensional gauge and gravity

theories is that, similarly to four dimensions, null momenta in six dimensions can be conveniently

presented in a spinor helicity formalism, introduced in [85]. Firstly, one rewrites vectors of the

Lorentz group SO(1, 5) as antisymmetric SU(4) matrices

pAB := pµσ̃ABµ , (4.1)
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using the appropriate Clebsch-Gordan symbols σ̃ABµ , where A,B = 1, . . . , 4 are fundamental indices

of SU(4). One can similarly introduce1

pAB :=
1

2
εABCDp

CD := pµσµ,AB , (4.2)

with σµ,AB := (1/2)εABCDσ̃
CD
µ . Here, we generally work with complex momenta. For the case of

real momenta, see the discussion on reality conditions of six dimensional momenta in the appendix

of [87]. When p2 = 0, it is natural to recast pAB and pAB as the product of two spinors as [85]

pAB = λAaλBa , (4.3)

pAB = λ̃ȧAλ̃Bȧ .

Here a = 1, 2 and ȧ = 1, 2 are indices of the little group2 SO(4) ' SU(2) × SU(2), which are

contracted with the usual invariant tensors εab and εȧḃ. The expression for p given in (4.3) auto-

matically ensures that p is a null vector, since

p2 = −1

8
εABCDλ

A
a λ

B
b λ

C
c λ

D
d ε

abεcd = 0 . (4.4)

The dot product of two null vectors pi and pj can also be conveniently written using spinors as

pi · pj = −1

4
pABi pj;AB . (4.5)

Lorentz invariant contractions of two spinors are expressed as

〈ia|jȧ] := λAi,aλ̃j,Aȧ = λ̃j,Aȧλ
A
i,a =: [jȧ|ia〉 . (4.6)

Further Lorentz-invariant combinations can be constructed from four spinors using the SU(4) in-

variant ε tensor, as

〈1a 2b 3c 4d〉 := εABCDλ
A
1,aλ

B
2,bλ

C
3,cλ

D
4,d , (4.7)

[1ȧ 2ḃ 3ċ 4ḋ] := εABCDλ̃1,Aȧλ̃2,Bḃλ̃3,Cċλ̃4,Dḋ .

This notation may be used to express compactly strings of six-dimensional momenta contracted

with Dirac matrices, such as

〈ia|p̂1p̂2 . . . p̂2n+1|jb〉 := λA1
i,a p1,A1A2 p

A2A3
2 . . . p2n+1,A2n+1A2n+2 λ

A2n+2

j,b , (4.8)

〈ia|p̂1p̂2 . . . p̂2n|jȧ] := λA1
i,a p1,A1A2 p

A2A3
2 . . . p

A2nA2n+1

2n λ̃j,A2n+1ḃ
.

Having discussed momenta, we now consider polarisation states of particles. In four dimen-

sions, these are associated to the notion of helicity. In six dimensions, physical states, and hence

their wavefunctions, transform according to representations of the little group, and therefore carry

SU(2)× SU(2) indices [85]. In particular, for gluons of momentum p defined as in (4.3) one has

εABaȧ := λ[A
a µ

B]
b 〈µb|λ̃ȧ]−1 , (4.9)

1Our notation and conventions are outlined in Appendix B.1.
2Or SL(2,C)× SL(2,C), if we complexify spacetime.
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or alternatively

εaȧ;AB := 〈λa|µ̃ḃ]−1µ̃ḃ[Aλ̃ȧB] . (4.10)

Here, µ and µ̃ are spinors of a reference momentum q, and the denominator is defined to be the

inverse of the matrices 〈qb|pȧ] and 〈pa|qḃ], respectively.3

It is amusing to make contact between six-dimensional spinors and momentum twistors [94], em-

ployed recently to describe amplitudes in four-dimensional conformal theories. There, one describes

a point in (conformally compactified) Minkowski space as a six-dimensional null vector X, i.e. one

satisfying ηijX
iXj = 0, with η = diag(+ − −−; +−). The conformal group SO(2, 4) acts linearly

on the X variables, and plays the role of the Lorentz group SO(1, 5) acting on our six-dimensional

momenta p. Furthermore, in contradistinction with the null six-dimensional momenta, the coordi-

nate X are defined only up to nonvanishing rescalings. For (cyclically ordered) four-dimensional

region momenta xi, one defines the corresponding six-dimensional null Xi as Xi = λi ∧ λi+1 ,

Xj = λj ∧ λj+1, and Xi ·Xj = 〈i i+ 1 j j + 1〉.

4.2 The N = (1, 1) on-shell superspace

We will now review the on-shell superspace description of (1, 1) theories introduced in [87]. This

construction is inspired by the covariant on-shell superspace formalism for four-dimensional N =

4 SYM introduced by Nair in [59]. As we have seen in in Section 3.3.1, by decomposing the

supercharges along two independent directions, the four-dimensional on-shell N = 4 algebra can

be represented as

{qI , q̄J} = δIJ (4.11)

where I, J are SU(4) R-symmetry indices in four dimensions. This yields a chiral representation of

the algebra in terms of Grassmann variables ηI , as

qI = ηI , q̄J =
∂

∂ηJ
. (4.12)

For an anti-chiral representation the roles of q and q̄ in (4.12) are interchanged.

One can apply similar ideas to the case of the N = (1, 1) superspace of the six-dimensional SYM

theory. However, for this on-shell space the chiral and anti-chiral components do not decouple. To

see this we start with the algebra

{qAI , qBJ} = pABεIJ , (4.13)

{q̃AI′ , q̃BJ′} = pABεI′J′ ,

where A,B are the SU(4) Lorentz index and I, J and I ′, J ′ are indices of the R-symmetry group

SU(2)× SU(2). As before, we decompose the supercharges as

qAI = λAaqI(1)a + µAaqI(2)a , (4.14)

q̃BI′ = λ̃ḃB q̃(1)ḃI′ + µ̃ḃB q̃(2)ḃI′ ,

3The reference spinors are chosen such that the matrices 〈qb|pȧ] and 〈pa|qḃ] are nonsingular.
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with det(λAaµ̃ȧA) 6= 0 and det(µAaλ̃ȧA) 6= 0. Multiplying the supercharges in (4.14) by λ̃Aȧ and λBb ,

respectively, and summing over the SU(4) indices, one finds that

{qI(2)a, q
J
(2)b} = 0 , (4.15)

{q̃(2)ȧI′ , q̃(2)ḃJ′} = 0 .

One can thus set all the q(2) and q̃(2) charges equal to zero, so that qAI = λAaqI(1)a. The supersym-

metry algebra then yields,

{qI(1)a, q
J
(1)b} = εabε

IJ ,

{q̃(1)I′ȧ, q̃(1)J′ḃ} = εȧḃεI′J′ . (4.16)

The realisation of (4.16) in terms of anticommuting Grassmann variables is

qAI = λAaηIa , q̃AI′ = λ̃ȧAη̃I′ȧ . (4.17)

In contrast to the four-dimensional N = 4 SYM theory, the N = (1, 1) on-shell superspace in six

dimensions carries chiral and anti-chiral components. The field strength of the six-dimensional

SYM theory transforms under the little group SU(2) × SU(2) and therefore carries both indices a

and ȧ. Hence, one needs both ηa and η̃ȧ to describe all helicity states in this theory.

In order to describe only the physical components of the full six-dimensional SYM theory, one

needs to truncate half of the superspace charges in (4.17) [87]. This is performed by contracting

the R-symmetry indices with fixed two-component (harmonic) vectors, which effectively reduce the

number of supercharges by a factor of two. The resulting truncated supersymmetry generators are

then [87]

qA = λAaηa , q̃A = λ̃ȧAη̃ȧ . (4.18)

Using this on-shell superspace, one can neatly package all states of the theory into a six-dimensional

analogue of Nair’s superfield [59],

Φ(p; η, η̃) = φ(1) + ψ(1)
a ηa + ψ̃

(1)
ȧ η̃ȧ + φ(2)ηaηa +Aaȧη

aη̃ȧ + φ(3)η̃ȧη̃ȧ (4.19)

+ ψ(2)
a ηaη̃ȧη̃ȧ + ψ̃

(2)
ȧ η̃ȧηaηa + φ(4)ηaηaη̃

ȧη̃ȧ .

Here φ(i)(p), i = 1, . . . , 4 are four scalar fields, ψ(l)(p) and ψ̃(l)(p), l = 1, 2 are fermion fields and

finally Aaȧ(p) contains the gluons. Upon reduction to four dimensions, Aaȧ provides, in addition to

gluons of positive and negative (four-dimensional) helicity, the two remaining scalar fields needed

to obtain the matter content of N = 4 super Yang-Mills.4 A pictorial representation of the states

in the (1,1) supermultiplet is given in Figure 4.1.

4.3 Tree-level amplitudes and their properties

In the following we briefly review the form of the three-, four- and five-point amplitudes in six-

dimensional Yang-Mills theory and discuss their supersymmetrisation. For further information we

refer the reader to the original papers [85,87].

4More details on the reduction to four dimensions are provided in Section 4.5.5.
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η
φ(1) ψ(1) φ(2)

ψ̃(1) A ψ̃(2)

φ(3) ψ(2) φ(4)

η̃

Figure 4.1: The component fields of the (1,1) superfield given in (4.19).

4.3.1 Three-point amplitude

The smallest amplitude one encounters is the three-point amplitude. In four dimensions, and for

real kinematics, three-point amplitudes vanish because pi · pj = 0 for any of the three particles’

momenta, but are non-vanishing upon spacetime complexification [53, 54]. In the six-dimensional

spinor helicity formalism, the special three-point kinematics induces the constraint det〈ia|jȧ] = 0,

i, j = 1, 2, 3. This allows one to write (see Appendix B.1)

〈ia|jḃ] = (−)Pijuiaũjḃ , (4.20)

where we choose (−)Pij = +1 for (i, j) = (1, 2), (2, 3), (3, 1) and −1 for (i, j) = (2, 1), (3, 2), (1, 3).

One can also introduce the spinors wa and w̃ȧ [85], defined as the inverse of ua and ũȧ,

uawb − ubwa := εab ⇔ uawa := −uawa := 1 . (4.21)

As stressed in [85] the wi spinors are not uniquely specified. Momentum conservation suggests a

further constraint that may imposed in order to reduce this redundancy. This is used in various

calculations throughout the present work. Specifically, for a generic three-point amplitude it is

assumed that

|w1 · 1〉+ |w2 · 2〉+ |w3 · 3〉 = 0 , (4.22)

where we have used the abbreviation |wi · i〉 = wai λ
A
i,a. One may then express the three-point

tree-level amplitude for six-dimensional Yang-Mills theory as [85]

A3;0(1aȧ, 2bḃ, 3cċ) = iΓabcΓ̃ȧḃċ , (4.23)

where the tensors Γ and Γ̃ are given by

Γabc = u1au2bw3c + u1aw2bu3c + w1au2bu3c, (4.24)

Γ̃ȧḃċ = ũ1ȧũ2ḃw̃3ċ + ũ1ȧw̃2ḃũ3ċ + w̃1ȧũ2ḃũ3ċ .
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As recently shown in [87], this result can be combined with the N = (1, 1) on-shell superspace in

six dimensions. The corresponding three-point tree-level superamplitude takes the simple form [87]

A3;0(1aȧ, 2bḃ, 3cċ) = i δ(QA)δ(Q̃A)δ(QB)δ(Q̃B)δ(W )δ(W̃ ) . (4.25)

Here we have introduced the N = (1, 1) supercharges for the external states,

QA :=

n∑
i=1

qAi =

n∑
i=1

λAai ηia , Q̃A :=

n∑
i=1

q̃iA =

n∑
i=1

λ̃ȧiAη̃iȧ (4.26)

(with n = 3 in the three-point amplitude we are considering in this section). The quantities W, W̃

appear only in the special three-point kinematics case, and are given by

W :=

3∑
i=1

wai ηia , W̃ :=

3∑
i=1

w̃ȧi η̃iȧ . (4.27)

In Appendix B.2 we give an explicit proof of the (non-manifest) invariance of the three-point

superamplitude under supersymmetry transformations, and hence of the fact that the total super-

momentum QA =
∑
i q
A
i is conserved.

4.3.2 Four-point amplitude

The four-point tree-level amplitude in six dimensions is given by

A4;0(1aȧ, 2bḃ, 3cċ, 4dḋ) = − i

st
〈1a2b3c4d〉[1ȧ2ḃ3ċ4ḋ] , (4.28)

and was derived by using a six-dimensional version [85] of the BCFW recursion relations [53, 54].

The corresponding N = (1, 1) superamplitude is [87]

A4;0(1, . . . , 4) = − i

st
δ(4)(Q)δ(4)(Q̃) , (4.29)

where the (1, 1) supercharges are defined in (4.26). In (4.29) we follow [87] and introduce the

fermionic δ-functions which enforce supermomentum conservation as

δ(4)(Q)δ(4)(Q̃) =
1

4!
εABCDδ(Q

A)δ(QB)δ(QC)δ(QD)

× 1

4!
εA
′B′C′D′δ(Q̃A′)δ(Q̃B′)δ(Q̃C′)δ(Q̃D′)

:= δ(8)(Q) . (4.30)

Hence, a δ(4)(Q) sets QA = 0 whereas the δ(4)(Q̃) sets Q̃A = 0.

4.3.3 Five-point amplitude

The five-point tree-level amplitude was derived in [85] using recursion relations, and is equal to5

A5;0(1aȧ, 2bḃ, 3cċ, 4dḋ, 5eė) =
i

s12s23s34s45s51

(
Aaȧbḃcċdḋeė +Daȧbḃcċdḋeė

)
(4.31)

5 In Appendix B.5 the five-point amplitude (4.31) is reduced to four dimensions and found to be in agreement

with the expected Parke-Taylor expression.
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where the two tensors A and D are given by

Aaȧbḃcċdḋeė = 〈1a|p̂2p̂3p̂4p̂5|1ȧ]〈2b3c4d5e〉[2ḃ3ċ4ḋ5ė] + cyclic permutations , (4.32)

and

2Daȧbḃcċdḋeė = 〈1a|(2 · ∆̃2)ḃ]〈2b3c4d5e〉[1ȧ3ċ4ḋ5ė] + 〈3c|(4 · ∆̃4)ḋ]〈1a2b4d5e〉[1ȧ2ḃ3ċ5ė]

+ 〈4d|(5 · ∆̃5)ė]〈1a2b3c4d〉[1ȧ2ḃ3ċ4ḋ]− 〈3c|(5 · ∆̃5)ė]〈1a2b4d5e〉[1ȧ2ḃ3ċ4ḋ]

− [1ȧ|(2 ·∆2)b〉〈1a3c4d5e〉[2ḃ3ċ4ḋ5ė]− [3ċ|(4 ·∆4)d〉〈1a2b3c5e〉[1ȧ2ḃ4ḋ5ė]

− [4ḋ|(5 ·∆5)e〉〈1a2b3c4d〉[1ȧ2ḃ3ċ5ė] + [3ċ|(5 ·∆5)e〉〈1a2b3c4d〉[1ȧ2ḃ4ḋ5ė] . (4.33)

Here, the spinor matrices ∆ and ∆̃ are defined by

∆1 = 〈1|p̂2p̂3p̂4 − p̂4p̂3p̂2|1〉, ∆̃1 = [1|p̂2p̂3p̂4 − p̂4p̂3p̂2|1] , (4.34)

where the other quantities ∆i, ∆̃i are generated by taking cyclic permutation on (4.34). The

contraction between the object ∆i and the corresponding spinor λAai is given by 〈1a|(2 · ∆̃2)ḃ] =

λA1aλ̃
ȧ′

2A[2ȧ′ |p̂3p̂4p̂5 − p̂5p̂4p̂3|2ḃ].

The five-point superamplitude in the N = (1, 1) on-shell superspace can also be calculated in a

recursive fashion. It takes the form [87]

A5;0 = i
δ(4)(Q)δ(4)(Q̃)

s12s23s34s45s51

[
(4.35)

+
3

10
qA1
[
(p̂2p̂3p̂4p̂5)− (p̂2p̂5p̂4p̂3)

]B
A
q̃2B +

3

10
q̃1A

[
(p̂2p̂3p̂4p̂5)− (p̂2p̂5p̂4p̂3)

]A
B
qB2

+
1

10
qA3
[
(p̂5p̂1p̂2p̂3)− (p̂5p̂3p̂2p̂1)

]B
A
q̃5B +

1

10
q̃3A

[
(p̂5p̂1p̂2p̂3)− (p̂5p̂3p̂2p̂1)

]A
B
qB5

+ qA1 (p̂2p̂3p̂4p̂5)BA q̃1B + cyclic permutations

]
,

where the supercharges Q and Q̃ are defined in (4.26).

4.4 The One-Loop Four-Point Superamplitude

In this section we calculate the four-point one-loop amplitude using two-particle and four-particle

cuts. As expected, we find that the one-loop amplitude is proportional to the four-point tree-level

superamplitude times the corresponding integral function.

4.4.1 The superamplitude from two-particle cuts

As a warm-up exercise, we start by rederiving the one-loop four-point superamplitude in six di-

mensions using two-particle cuts. This calculation was first sketched in [87]. Here, we will perform

it in some detail while setting up our notation. We will then show how to reproduce this result

using quadruple cuts.
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l2

l1

1

2

3

4

Figure 4.2: Double cut in the s-channel. The two internal cut-propagators, carrying momenta l1

and l2 set the two four-point subamplitudes on-shell. We identify l1 = l and l2 = l + p1 + p2.

We begin by considering the one-loop amplitude with external momenta p1, . . . , p4, and perform

a unitarity cut in the s-channel, see Figure 4.2. The s-cut of the one-loop amplitude is given by6

A4;1

∣∣
s-cut

=

∫
d6l

(2π)6
δ+(l21)δ+(l22)

[ 2∏
i=1

∫
d2ηlid

2η̃li A
(L)
4;0 (l1, 1, 2,−l2)A

(R)
4;0 (l2, 3, 4,−l1)

]
. (4.36)

Plugging the expression (4.29) of the four-point superamplitude into (4.36), we get the following

fermionic integral,

2∏
i=1

∫
d2ηlid

2η̃li

( −i
sLtL

δ(4)(
∑
L

qi)δ
(4)(
∑
L

q̃i)

)( −i
sRtR

δ(4)(
∑
R

qi)δ
(4)(
∑
R

q̃i)

)
, (4.37)

where the sums are over the external states of the left and right subamplitude in the cut diagram

and the kinematical invariants are given by

tL = (l1 + p1)2 , tR = (l2 + p3)2 , (4.38)

and

sL = (p1 + p2)2 = (p3 + p4)2 = sR = s . (4.39)

Using supermomentum conservation we can remove the dependence of the loop-supermomenta on

one side of the cut. For instance a δ(4)(QR) sets qAl1 = qAl2 + qA3 + qA4 , which can be used in the

remaining δ(4)(QL) to write

δ(4)(
∑
L

qi)→ δ(4)(
∑
ext

qi) ≡ δ(4)(Qext) ,

δ(4)(
∑
L

q̃i)→ δ(4)(
∑
ext

q̃i) ≡ δ(4)(Q̃ext) . (4.40)

Hence, (4.37) becomes

δ(4)(Qext)δ
(4)(Q̃ext)

2∏
i=1

∫
d2ηlid

2η̃liδ
(4)(
∑
R

qi)δ
(4)(
∑
R

q̃i) . (4.41)

6See Appendix A for our definitions of fermionic integrals.
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To perform the integration, we need to pick two powers of ηli and two powers of η̃ȧli . Expanding

the fermionic δ-functions, we find one possible term with the right powers of Grassmann variables

to be

ηl1aηl1bηl2cηl2dη̃l1ȧη̃l1ḃη̃l2ċη̃l2ḋ

[
εABCDλ

Aa
l1 λ

Bb
l1 λ

Cc
l2 λ

Dd
l2 εEFGH λ̃ȧl1E λ̃

ḃ
l1F λ̃

ċ
l2Gλ̃

ḋ
l2H

]
. (4.42)

Other combinations can be brought into that form by rearranging and relabeling indices. Integrating

out the Grassmann variables gives(
εABCDλ

Aa
l1 λ

B
l1a λ

Cb
l2 λ

D
l2b

) (
εEFGH λ̃ȧl1E λ̃l1Fȧ λ̃

ḃ
l2Gλ̃l2Hḃ

)
. (4.43)

Hence, the two-particle cut reduces to

A4;1

∣∣
s-cut

∝(−1)

∫
d6l

(2π)6
δ+(l21)δ+(l22)

[
δ(4)(Qext)δ

(4)(Q̃ext)

× εABCDl
AB
1 lCD2 εEFGH l1EF l2GH

s2(l1 + p1)2(l2 + p3)2

]
. (4.44)

Next, we use (B.4) to rewrite

εABCD pABl1 pCDl2 εEFGHpl1EF pl2GH = 64 (l1 · l2)
2
. (4.45)

Thus we obtain, for the one-loop superamplitude,

A4;1

∣∣
s-cut

∝− δ(4)(Qext)δ
(4)(Q̃ext)

∫
d6l

(2π)6
δ+(l21)δ+(l22)

[
64 (l1 · l2)

2

s2(l1 + p1)2(l2 + p3)2

]
=− 16 δ(4)(Qext)δ

(4)(Q̃ext)

∫
d6l

(2π)6
δ+(l21)δ+(l22)

[
1

(l1 + p1)2(l2 + p3)2

]
=− 16 istA4;0(1, . . . , 4) I4(s, t)

∣∣
s-cut

, (4.46)

where A4;0(1, . . . , 4) is the tree-level four-point superamplitude in (4.29), and

I4(s, t) =

∫
d6l

(2π)6

[
1

l21l
2
2(l + p1)2(l − p4)2

]
. (4.47)

The t-channel cut is performed in the same fashion and after inspecting it we conclude that

A4;1(1, . . . , 4) = stA4;0(1, . . . , 4) I4(s, t) , (4.48)

in agreement with the result of [87].

4.4.2 The superamplitude from quadruple cuts

We now move on to studying the quadruple cut of the one-loop four-point superamplitude, depicted

in Figure 4.3. The loop momenta are defined as

l1 = l, l2 = l + p1, l3 = l + p1 + p2, l4 = l − p4 , (4.49)

and all primed momenta l′i in Figure 4.3 are understood to flow in opposite direction to the li’s.

Four three-point tree-level superamplitudes enter the quadruple cut expression. Uplifting the

cut by replacing cut with uncut propagators, we obtain, for the one-loop superamplitude,

A4;1 =

∫
d6l

(2π)6

[ 4∏
i=1

∫
d2ηlid

2η̃li
1

l21
A3;0(l1, 1, l

′
2)

1

l22
A3;0(l2, 2, l

′
3)

× 1

l23
A3;0(l3, 3, l

′
4)

1

l24
A3;0(l4, 4, l

′
1)

]
. (4.50)
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41

l′1

l′2

l′4

l′3

Figure 4.3: The quadruple cut of a four-point superamplitude. The primed momenta l′i are defined

as l′i := −li.

In the following we will discuss two different but equivalent approaches to evaluate the Grassmann

integrals in (4.50).

Quadruple cut as reduced two-particle cuts

To begin with, we proceed in way similar to the case of a double cut. The idea is to integrate over

two of the internal momenta, say l1 and l3 first, and treat l2 and l4 as fixed, i.e. external lines. In

doing so the quadruple cut splits into two four-point tree-level superamplitudes, having the same

structure as in case of the BCFW construction for the four-point trevel-level superamplitude [87].

Let us start by focusing on the ‘lower’ part of the diagram first. Here we have two three-point

superamplitudes connected by an internal (cut) propagator carrying momentum l1. Treating l′2

and l4 as external momenta (they are on-shell due to the cut) we can follow the procedure of a

four-point BCFW construction. This involves rewriting fermionic δ-functions of both three-point

amplitudes and integrating over d2ηl1d
2η̃l1 , leading to the result

δ(4)(q1 + ql′2 + ql4 + q4)δ(4)(q̃1 + q̃l′2 + q̃l4 + q̃4) wal1wl′1a w̃
ȧ
l1w̃l′1ȧ . (4.51)

Note that the δ-functions are ensuring supermomentum conservation of the ‘external momenta’

and that we do not have an internal propagator with momentum l1 as in the recursive construc-

tion. Here, we get this propagator from uplifting the cut-expression for the one-loop amplitude.

Furthermore, note that we do not have to shift any legs in order to use the BCFW prescription

since the internal propagator is already on-shell due to the cut.

We may now perform the Grassmann integration over ηl1 and η̃l1 in (4.51). Since the w-spinors

are contracted we can simply use the spinor identity

wal1wl′1aw̃
ȧ
l1w̃l′1ȧ = −s−1

l4l′2
= −s−1

14 , (4.52)
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which is a direct generalisation of the corresponding result from the BCFW construction (see also

Appendix B.3).

We can now turn to the ‘upper’ half of the cut-diagram. Following the description we derived

above we get in a similar fashion after integrating over ηl3 and η̃l3

δ(4)(ql2 + q2 + q3 + ql′4)δ(4)(q̃l2 + q̃2 + q̃3 + q̃l′4)wal′3wl3aw̃
ȧ
l′3
w̃l3ȧ . (4.53)

We also have

wal1wl′1aw̃
ȧ
l1w̃l′1ȧ = −s−1

l2l′4
= −s−1

23 . (4.54)

Uplifting the quadruple cut, we get

A4;1 =

∫
d6l

(2π)6

∫
d2ηl2d

2η̃l2d
2ηl4d

2η̃l4

[
1

l21l
2
2l

2
3l

2
4

1

s14s23

× δ(4)(q1 + ql′2 + ql4 + q4)δ(4)(q̃1 + q̃l′2 + q̃l4 + q̃4)

× δ(4)(ql2 + q2 + q3 + ql′4)δ(4)(q̃l2 + q̃2 + q̃3 + q̃l′4)

]
. (4.55)

Since l′i = −li we can use the constraints given by the δ(4)(qi) to eliminate the dependence of the

remaining loop momenta in one of the sets of fermionic δ-functions and write it as a sum over

external momenta only. The same argument holds for the Grassmann functions δ(4)(q̃i), and we

find

A4;1 =

∫
d6l

(2π)6

∫
d2ηl2d

2η̃l2d
2ηl4d

2η̃l4

[
δ(4)(Qext)δ

(4)(Q̃ext)
1

l21l
2
2l

2
3l

2
4

1

s14s24

× δ(4)(ql2 + q2 + q3 − ql4)δ(4)(q̃l2 + q̃2 + q̃3 − q̃l4)

]
, (4.56)

where as before the QAext and Q̃A ext are the sums of all external supermomenta in η and η̃ respec-

tively. The remaining integrations over ηl2 and ηl4 and their η̃-counterparts yield just as in the case

of the two-particle cut

εABCD l2
ABl4

CD εEFGHpl2EF pl4GH = 64 (l2 · l4)
2
. (4.57)

The product of the two loop momenta cancels with the factor

s14s23 = 2(p1 · p4)2(p2 · p3) = 4(l′2 · l4)(l2 · l′4) = (−1)24(l2 · l4)2. (4.58)

so that our final result for the quadruple cut of the four-point superamplitude is

A4;1 ∝ istA4;0(1, . . . , 4)

∫
d6l

(2π)6

[
1

l2(l + p1)2(l + p1 + p2)2(l − p4)2

]
. (4.59)

Hence we have shown that the quadruple cut gives the same structure as the two-particle cut

discussed in Section 4.4.1.

Quadruple cut by Grassmann decomposition

In this section we will calculate the quadruple cut of the one-loop four-point superamplitude in

an alternative fashion. Whereas in the last section we used the structure of the cut-expression to
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simplify the fermionic integrations, here we will explicitly perform the integrals by using constraints

given by the δ-functions.

To perform the Grassmann integrations we work directly at the level of the three-point su-

peramplitudes. The quadruple cut results in the following four on-shell tree-level amplitudes (see

Figure 4.3)

A3(l1, 1, l
′
2), A3(l2, 2, l

′
3), A3(l3, 3, l

′
4), A3(l4, 4, l

′
1) . (4.60)

Each of the three-point superamplitudes has the usual form [87]

A3,i = i
[
δ(QAi )δ(Q̃iA)

]2
δ(Wi)δ(W̃i) , (4.61)

where i = 1, . . . , 4 labels the corners. The arguments of the δ-functions are

QAi = qAli + qAi + qAl′i+1
, Wi = waliηlia + wai ηia + wal′i+1

ηl′i+1a
, (4.62)

with the identification l5 ≡ l1. Similar expressions hold for for Q̃iA and W̃i. Note that since l′i = −li
we find it convenient to define spinors with primed momenta l′i as

λAl′i = iλAli , λ̃l′iA = λ̃liA , ηl′i = iηli , η̃l′i = iη̃li , (4.63)

which we will frequently use in the following manipulations.

We can use supermomentum conservation at each corner to reduce the number of δ-functions

depending on the loop variables ηli and η̃li . There is a choice involved and we choose to remove

the dependence of η`i (η̃`i) from one copy of each [δ(QAi )δ(Q̃iA)]2. This yields for the Grassmann

integrations

δ(4)(Qext )δ(4)(Q̃ext )

∫ 4∏
i=1

d2ηlid
2η̃li

[
δ(QAi )δ(Q̃iA)δ(Wi)δ(W̃i)

]
. (4.64)

We can simplify the calculation by noticing that we have to integrate over 16 powers of Grassmann

variables (8 powers of η and η̃ each) while at the same time we have 16 δ-functions in total.

Therefore, when expanding the fermionic functions, each of them must contribute a power of

Grassmann variables we are going to integrate over. Unless this is so, the result is zero. In other

words, we can only pick the terms in the δ-functions that contribute an ηli or η̃li . This simplifies

the structure considerably as we can drop all terms depending on external variables.

Equation (4.64) now becomes

δ(4)(Qext )δ(4)(Q̃ext )

∫ 4∏
i=1

d2ηlid
2η̃li

[
δ(qAli − qAli+1

) δ(q̃liA − q̃li+1A) (4.65)

× δ(waliηlia + iwal′i+1
ηli+1a)δ(w̃ȧli η̃liȧ + iw̃ȧl′i+1

η̃li+1ȧ)

]
.

Notice that the w-spinors wal′i+1
are not identical to wali+1

.

Since the δ-functions only depend on the ηli and η̃li , we find convenient to decompose the

integration variables as

ηali = ualiη
‖
li

+ waliη
⊥
li , η̃ȧli = ũȧli η̃

‖
li

+ w̃ȧli η̃
⊥
li , (4.66)
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which implies

wliaη
a
li = η

‖
li
, ualiηlia = η⊥li . (4.67)

Hence, we can rewrite the arguments of the δ-functions in the w-spinors as

iwal′i+1
ηli+1a = iwal′i+1

(
uli+1aη

‖
li+1

+ wli+1aη
⊥
li+1

)
=

i√−si,i+1
uali+1

wli+1aη
⊥
li+1

=
i√−si,i+1

η⊥li+1
, (4.68)

and similarly we have iw̃ȧl′i+1
η̃li+1ȧ = i√

−si,i+1
η̃⊥li+1

. Notice that we have used the fact that the w′li+1

can be normalised such that they are proportional to the uli+1
if the momenta fulfill the condition

l′i+1 = −li+1. We give some more detail on such relations in Appendix B.3.2.

Using this, the δ-functions in the w-spinors become

δ
(
− η‖li +

i√−si,i+1
η⊥li+1

)
δ
(
− η̃‖li +

i√−si,i+1
η̃⊥li+1

)
. (4.69)

Next we proceed by integrating first over the η
‖
li

variables. This sets

η
‖
li

=
−i√−si,i+1

η⊥li+1
, (4.70)

with similar expressions for the η̃
‖
li

. We then plug this into the remaining δ-functions of (4.65).

First we notice that

δ
(
λAali ηlia + λAal′i+1

ηl′i+1a

)
δ
(
λ̃Aȧli η̃liȧ + λ̃Aȧl′i+1

η̃l′i+1ȧ

)
=〈lai |l′

ȧ
i+1]ηliaη̃l′i+1ȧ

+ 〈l′ai+1|lȧi ]ηl′i+1a
η̃liȧ = −uali ũȧl′i+1

ηliaη̃l′i+1ȧ
+ ual′i+1

ũȧliηl′i+1a
η̃liȧ . (4.71)

The decomposition of the Grassmann spinors then yields

ual′i+1
ηl′i+1a

= i
√
−si,i+1w

a
li+1

uli+1aη
‖
li+1

= −i
√
−si,i+1 η

‖
li+1

(4.72)

and

ũȧl′i+1
η̃l′i+1ȧ

= −i
√
−si,i+1 η̃

‖
li+1

. (4.73)

The remaining Grassmann integrations give∫ 4∏
i=1

dη⊥li dη̃
⊥
li

[
δ
(
λAali ηlia + λAal′i+1

ηl′i+1a

)
δ
(
λ̃Aȧli η̃liȧ + λ̃Aȧl′i+1

η̃l′i+1ȧ

)]

=

∫ 4∏
i=1

dη⊥li dη̃
⊥
li

[
i
√
−si,i+1 η

⊥
li η̃
‖
li+1
− i
√
−si,i+1 η

‖
li+1

η̃⊥li

]

=

∫ 4∏
i=1

dη⊥li dη̃
⊥
li

[
η⊥li η̃

⊥
li+2
− η⊥li+2

η̃⊥li

]
, (4.74)

where we have used the solutions for η
‖
li

and η̃
‖
li

following (4.70). The integration is now straight-

forward, since the integrand is simply given by(
η⊥l1 η̃

⊥
l3 − η⊥l3 η̃⊥l1

)(
η⊥l2 η̃

⊥
l4 − η⊥l4 η̃⊥l2

)(
η⊥l3 η̃

⊥
l1 − η⊥l1 η̃⊥l3

)(
η⊥l4 η̃

⊥
l2 − η⊥l2 η̃⊥l4

)
= 4η⊥l1 η̃

⊥
l3η
⊥
l2 η̃
⊥
l4η
⊥
l3 η̃
⊥
l1η
⊥
l4 η̃
⊥
l2 . (4.75)
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Figure 4.4: A specific quadruple cut of a five-point superamplitude. We choose to cut the legs such

that we have the massive corner for momenta p3, p4.

This yields

A4;1 ∝ −istA4;0(1, . . . , 4)

∫
d6l

(2π)6

[
1

l2(l + p1)2(l + p1 + p2)2(l − p4)2

]
, (4.76)

recovering the expected result of [87] from two-particle cuts.

4.5 The One-Loop Five-Point Superamplitude

We now move on to the one-loop five-point superamplitude and calculate its quadruple cuts. These

cuts will reveal the presence of a linear pentagon integral, which we will reduce using standard

Passarino-Veltman (PV) techniques to a scalar pentagon plus scalar box integrals. Note that we

are considering here one-loop amplitudes in the maximally supersymmetric theory in six dimensions

which are free of IR and UV divergences. Therefore, bubbles and triangles which would be UV

divergent in six dimensions must be absent. It is for this reason that it will be enough to consider

quadruple cuts, without having to inspect also triple and double cuts, which would be required if

triangle and bubble functions were present.

4.5.1 Quadruple cuts

The quadruple cut we consider has the structure

A5;1

∣∣
(3,4)-cut

=

∫
d6l

(2π)6
δ+(l21) δ+(l22) δ+(l23) δ+(l24) (4.77)

×A3;0(l1, p1,−l2)A3;0(l2, p2,−l3)A4;0(l3, p3, p4,−l4)A3;0(l4, p5,−l1) ,

where the subscript (3, 4) indicates where the massive corner is located, see Figure 4.4. In the

following we will discuss this specific cut and all other cuts can be treated in an identical way.
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From the three three-point superamplitudes and the four-point superamplitude, we have the

following fermionic δ-functions,[
δ(QA1 )δ(Q̃1A)

]2
δ(W1)δ(W̃1)

[
δ(QB2 )δ(Q̃2B)

]2
δ(W2)δ(W̃2)

× δ(4)(QC3 )δ(4)(Q̃3C)
[
δ(QD4 )δ(Q̃4D)

]2
δ(W4)δ(W̃4) , (4.78)

where the QAi and the Wi are defined as sums over the supermomenta and products of w- and

η-spinors respectively at a given corner (including internal legs). We may now use the supermo-

mentum constraints QAi = 0 at all four corners and rewrite the δ(4)(Q3)δ(4)(Q̃3) as a total δ(8) in

the external momenta only,

δ(4)(Q3) = δ(4)(Q3 +Q1 +Q2 +Q4) = δ(4)(Qext). (4.79)

One is then left with the Grassmann integrations∫ 4∏
i=1

d2ηlid
2η̃li

{[
δ(qAl1 + qA1 − qAl2)δ(q̃l1A + q̃1A − q̃l2A)

]2
δ(wal1ηl1a + wa1η1a + iwal′2ηl2a)δ(w̃ȧl1 η̃l1ȧ + w̃ȧ1 η̃1ȧ + iw̃ȧl′2 η̃l2ȧ)[
δ(qBl2 + qB2 − qBl3 )δ(q̃l2B + q̃2B − q̃l3B)

]2
δ(wbl2ηl2b + wb2η2b + iwbl′3ηl3b)δ(w̃

ḃ
l2 η̃l2ḃ + w̃ḃ2η̃2ḃ + iw̃ḃl′3 η̃l3ḃ)[

δ(qDl4 + qD5 − qDl1 )δ(q̃l4D + q̃5D − q̃l1D)
]2

δ(wcl4ηl4c + wc5η5c + iwcl′1ηl1c)δ(w̃
ċ
l4 η̃l4ċ + w̃ċ5η̃5ċ + iw̃ċl′1 η̃l1ċ)

}
. (4.80)

Unfortunately, a decomposition as used for the quadruple cut of the four-point one-loop super-

amplitude is not immediately useful here. However, we notice that, due to the particular dependence

of the δ-functions on the loop momenta li, by removing a total δ(8) from the integrand one can re-

strict the dependence on the Grassmann variables ηl3 and ηl4 to six δ-functions each for this specific

cut. This allows us to narrow the possible combinations of coefficients for, say, two powers of ηl4a

and two powers of η̃l4ȧ. For example, two powers of ηl4a can either come both from δ(QA4 )δ(QB4 ) or

one from δ(QA4 ) and one from7 δ(W4), and both possibilities needs to be appropriately contracted

with the possible combinations from δ(Q̃4A)δ(Q̃4B)δ(W̃4). If we choose both powers of ηl4a from

δ(QA4 )δ(QB4 ) we have a coefficient

λAal4 ηl4aλ
Bb
l4 ηl4b , (4.81)

which will be contracted at least by a λ̃ȧl4A or λ̃ȧl4B coming from the possible combinations for η̃l4ȧ.

Since λAiaλ̃iAȧ = 0 these terms vanish.

In conclusion, the only non-vanishing combination is

λAal4 ηl4aδ(q̃5A − q̃l1A)δ(qB5 − qBl1 )λ̃ȧl4B η̃l4ȧw
b
l4ηl4bw̃

ḃ
l4 η̃l4ḃ . (4.82)

The same argument holds for the expansion of the δ-functions depending on ηl3a and η̃l3ȧ. Here,

we only have to deal with additional signs and factors of i. We get for the expansion

(−1)λAal3 ηl3aδ(q̃l2A + q̃2A)δ(qBl2 + qB2 )(−1)λ̃ȧl3B η̃l3ȧiw
b
l′3
ηl3biw̃

ḃ
l′3
η̃l3ḃ . (4.83)

7 This is similar to the recursive calculation of the five-point tree-level superamplitude in six dimensions, see

also [87].
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This leads us to the structure∫ 4∏
i=1

d2ηlid
2η̃li

{[
δ(qAl1 + qA1 − qAl2)δ(q̃l1A + q̃1A − q̃l2A)

]2
δ(wal1ηl1a + wa1η1a + iwal′2ηl2a)δ(w̃ȧl1 η̃l1ȧ + w̃ȧ1 η̃1ȧ + iw̃ȧl′2 η̃l2ȧ)

λCcl3 ηl3cδ(q̃l2C + q̃2C)δ(qDl2 + qD2 )λ̃ċl3Dη̃l3ċ(i)
2wcl′3ηl3cw̃

ċ
l′3
η̃l3ċ

λEdl4 ηl4dδ(q̃5E − q̃l1E)δ(qF5 − qFl1)λ̃ḋl4F η̃l4ḋw
d
l4ηl4dw̃

ḋ
l4 η̃l4ḋ

}
. (4.84)

Notice that we have not expanded the six δ-functions of the first corner yet, therefore we still

have supermomentum conservation QA1 = 0, Q̃A1 = 0. We can use this constraint to remove the

dependence on ηl2a in the third line of the above integrand, using qAl2 = qAl1 + qA1 . Our fermionic

integral then becomes∫ 4∏
i=1

d2ηlid
2η̃li

{[
δ(qAl1 + qA1 − qAl2)δ(q̃l1A + q̃1A − q̃l2A)

]2
δ(wal1ηl1a + wa1η1a + iwal′2ηl2a)δ(w̃ȧl1 η̃l1ȧ + w̃ȧ1 η̃1ȧ + iw̃ȧl′2 η̃l2ȧ)

(i)2ηl3cη̃l3ċηl3c′ η̃l3ċ′λ
Cc
l3 λ̃

ċ
l3Dw

c′

l′3
w̃ċ
′

l′3
δ(q̃l1C + q̃1C + q̃2C)δ(qDl1 + qD1 + qD2 )

ηl4dη̃l4ḋηl4d′ η̃l4ḋ′λ
Ed
l4 λ̃

ḋ
l4Fw

d′

l4 w̃
ḋ′

l4 δ(q̃5E − q̃l1E)δ(qF5 − qFl1)

}
. (4.85)

We immediately see that, just as before, only the first six δ-functions depend on ηl2a and η̃l2ȧ so

we can expand straight away (noticing that we get another factor of (i)2 from this expansion)∫ 4∏
i=1

d2ηlid
2η̃li

{
(i)2ηl2bη̃l2ḃηl2b′ η̃l2ḃ′λ

Ab
l2 λ̃

ḃ
l2Bw

b′

l′2
w̃ḃ
′

l′2
δ(q̃l1A + q̃1A)δ(qBl1 + qB1 )

(i)2ηl3cη̃l3ċηl3c′ η̃l3ċ′λ
Cc
l3 λ̃

ċ
l3Dw

c′

l′3
w̃ċ
′

l′3
δ(q̃l1C + q̃1C + q̃2C)δ(qDl1 + qD1 + qD2 )

ηl4dη̃l4ḋηl4d′ η̃l4ḋ′λ
Ed
l4 λ̃

ḋ
l4Fw

d′

l4 w̃
ḋ′

l4 δ(q̃5E − q̃l1E)δ(qF5 − qFl1)

}
. (4.86)

One notes that, by expanding the fermionic δ-functions, the dependence on the Grassmann param-

eters ηl1a and η̃l1ȧ has reduced to

δ(q̃l1A + q̃1A)δ(qBl1 + qB1 )δ(q̃l1C + q̃1C + q̃2C)δ(qDl1 + qD1 + qD2 )δ(q̃5E − q̃l1E)δ(qF5 − qFl1) (4.87)

only. Expanding this further gives the sought-after coefficient of ηl1aηl1bη̃l1ȧη̃l1ḃ. The result (in an

appropriate order of the Grassmann spinors) of the expansion of the six δ-functions in (4.87) is

then given by

η̃l1ȧη̃l1ḃ

(
− η̃1ċλ̃

ȧ
l1Aλ̃

ċ
1C λ̃

ḃ
l1E − η̃2ċλ̃

ȧ
l1Aλ̃

ċ
2C λ̃

ḃ
l1E − η̃5ċλ̃

ȧ
l1Aλ̃

ḃ
l1C λ̃

ċ
5E + η̃1ċλ̃

ċ
1Aλ̃

ȧ
l1C λ̃

ḃ
l1E

)
× ηl1aηl1b

(
η5cλ

Ba
l1 λ

Db
l1 λ

Fc
5 + η1cλ

Ba
l1 λ

Dc
1 λFbl1 + η2cλ

Ba
l1 λ

Dc
2 λFbl1 − η1cλ

Bc
1 λDal1 λFbl1

)
. (4.88)

Having extracted the correct powers of the Grassmann variables from all fermionic δ-functions, we
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can now integrate over the ηli and η̃li . The integration is straightforward and yields,(
η̃1ċ[1

ċ|l3〉 ·wl′3 wl′2 · 〈l2|l̂1|l4〉 ·wl4 − η̃1ċ[1
ċ|l2〉 ·wl′2 wl′3 · 〈l3|l̂1|l4〉 ·wl4

+ η̃2ċ[2
ċ|l3〉 ·wl′3 wl′2 · 〈l2|l̂1|l4〉 ·wl4 + η̃5ċ[5

ċ|l4〉 ·wl4 wl′2 · 〈l2|l̂1|l3〉 ·wl′3
)

×
(
η1c〈1c|l3] · w̃l′3 w̃l′2 · [l2|l̂1|l4] · w̃l4 − η1c〈1c|l2] · w̃l′2 w̃l′3 · [l3|l̂1|l4] · w̃l4

+ η2c〈2c|l3] · w̃l′3 w̃l′2 · [l2|l̂1|l4] · w̃l4 + η5c〈5c|l4] · w̃l4 w̃l′2 · [l2|l̂1|l3] · w̃l′3
)
. (4.89)

Here we introduced the notation that wli · 〈li| := wali〈li,a|, and the l̂i are slashed momenta, with

e.g.

wl′2 · 〈l2|l̂1|l3〉 ·wl′3 = wal′2λ
A
l2,al1,ABλ

B
l3,bw

b
l′3
. (4.90)

Next, one rewrites the spinor expressions in (4.89) in terms of six-dimensional momenta, thereby

removing any dependence on u- and w-spinors. An important observation to do so is the fact that

the expressions depending on η̃1 and/or η1 antisymmetrise among themselves8. The result of these

manipulations is

η̃1ċη1c
1

s12
[1ċ|p̂2 l̂1p̂5p̂2|1c〉 − η̃1ċη2c

1

s12
[1ċ|p̂2p̂5 l̂1p̂1|2c〉+ η̃2ċη1c

1

s12
[2ċ|p̂1 l̂1p̂5p̂2|1c〉

+η̃1ċη5c[1
ċ|p̂2 l̂1|5c〉 − η̃5ċη1c[5

ċ|l̂1p̂2|1c〉+ η̃2ċη2c
1

s12
[2ċ|p̂1 l̂1p̂5p̂1|2c〉

+η̃5ċη5c
1

s15
[5ċ|p̂1 l̂1p̂2p̂1|5c〉+ η̃5ċη2c[5

ċ|l̂1p̂1|2c〉 − η̃2ċη5c[2
ċ|p̂1 l̂1|5c〉 . (4.91)

4.5.2 Final result (before PV reduction)

Including all appropriate prefactors, our result for the five-point one-loop superamplitude is ex-

pressed in terms of a single integral function, namely a linear pentagon integral. Explicitly,

A5;1 = Cµ Iµ5,l1 , (4.92)

where

Iµ5,l1(1, . . . , 5) :=

∫
dDl

(2π)D
lµ1

l21l
2
2l

2
3(p3 + l3)2l25

, (4.93)

is the linear pentagon, and the coefficient Cµ is given by

Cµ =
1

s34

{
η̃1ċη1c

1

s12
[1ċ|p̂2σ̂µp̂5p̂2|1c〉 − η̃1ċη2c

1

s12
[1ċ|p̂2p̂5σ̂µp̂1|2c〉+ η̃2ċη1c

1

s12
[2ċ|p̂1σ̂µp̂5p̂2|1c〉

+ η̃1ċη5c[1
ċ|p̂2σ̂µ|5c〉 − η̃5ċη1c[5

ċ|σ̂µp̂2|1c〉+ η̃2ċη2c
1

s12
[2ċ|p̂1σ̂µp̂5p̂1|2c〉

+ η̃5ċη5c
1

s15
[5ċ|p̂1σ̂µp̂2p̂1|5c〉+ η̃5ċη2c[5

ċ|σ̂µp̂1|2c〉 − η̃2ċη5c[2
ċ|σ̂µp̂1|5c〉

}
. (4.94)

The factor of 1/s34 and the additional propagator in the pentagon appearing in (4.92), are due to

the prefactor of the four-point tree-level superamplitude entering the cut. A pictorial representation

of a generic pentagon integral is given in Figure 4.5. We now proceed and summarise the result of

the PV reduction of (4.93) in the next section.

8We give more details on these manipulations in Appendix B.3.2.
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Figure 4.5: A generic pentagon loop integral.

4.5.3 Final result (after PV reduction)

The PV reduction of (4.93) allows us to re-express a linear pentagon in terms of a scalar pentagon

and scalar box functions. Using this, we re-express the one-loop five-point superamplitude as

A5;1 = C(5)I5(1, . . . , 5) +

5∑
i=1

C(4,i)I4,i(1, . . . , 5) , (4.95)

where we introduced the scalar integral functions I5 for the pentagon and I4,i for the boxes. Here,

the index i in I4,i labels the first leg of the massive corner for a clockwise ordering of the external

states.

Explicitly, the coefficients for the specific cut we discussed in the previous section are given by

C(5)/(4,3) = η̃1ċη1c
1

s12

(
s12[1ċ|p̂5p̂2|1c〉A(5)/(4,3) + [1ċ|p̂2p̂3p̂5p̂2|1c〉C(5)/(4,3)

)
+ η̃2ċη2c

1

s12

(
s12[2ċ|p̂5p̂1|2c〉B(5)/(4,3) + [2ċ|p̂1p̂3p̂5p̂1|2c〉C(5)/(4,3)

)
+ η̃5ċη5c

1

s15

(
[5ċ|p̂1p̂3p̂2p̂1|5c〉C(5)/(4,3) + s15[5ċ|p̂2p̂1|5c〉D(5)/(4,3)

)
− η̃1ċη2c

1

s12

(
s12[1ċ|p̂2p̂5|2c〉B(5)/(4,3) + [1ċ|p̂2p̂5p̂3p̂1|2c〉C(5)/(4,3)

)
+ η̃2ċη1c

1

s12

(
s12[2ċ|p̂5p̂2|1c〉B(5)/(4,3) + [2ċ|p̂1p̂3p̂5p̂2|1c〉C(5)/(4,3)

)
+ η̃1ċη5c

(
[1ċ|p̂2p̂1|5c〉A(5)/(4,3) + [1ċ|p̂2p̂3|5c〉C(5)/(4,3)

)
− η̃5ċη1c

(
[5ċ|p̂1p̂2|1c〉A(5)/(4,3) + [5ċ|p̂3p̂2|1c〉C(5)/(4,3)

)
+ η̃5ċη2c

(
[5ċ|p̂2p̂1|2c〉B(5)/(4,3) + [5ċ|p̂3p̂1|2c〉C(5)/(4,3)

)
− η̃2ċη5c

(
[2ċ|p̂1p̂2|5c〉B(5)/(4,3) + [2ċ|p̂1p̂3|5c〉C(5)/(4,3)

)
. (4.96)

Here, the variables A(5)/(4,3), B(5)/(4,3), C(5)/(4,3) and D(5)/(4,3) are the coefficients from the PV

reduction of the scalar pentagon I5 or box function I4,3 respectively. For the scalar pentagon, we
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have

A(5) = ∆−1(s15s13s23s25 + s15s25s
2
23 − s13s23s

2
25 − s2

13s
2
25 + 2s12s13s25s35

+ s12s23s35s15 + s12s23s25s35 − s2
12s

2
35)

B(5) = ∆−1s15(s12s23s35 + s13s23s25 − s12s13s35 − s13s23s15 + s2
13s25 − s15s

2
23)

C(5) = ∆−1s12s15(s12s35 − s15s23 − s13s25 − 2s23s25)

D(5) = ∆−1s12s23(s15s23 + s13s25 − s12s35 + 2s15s13) (4.97)

whereas for the coefficients of the box integral I4,3 we find

A(4,3) = ∆−1s25(s13s25 − s15s23 − s12s35)

B(4,3) = ∆−1s15(s15s23 − s13s25 − s12s35)

C(4,3) = ∆−12s12s15s25

D(4,3) = ∆−1s12(s12s35 − s15s23 − s13s25) . (4.98)

Furthermore, we have defined ∆ as the Gram determinant. Explicitly, it is given by

∆ = s2
15s

2
23 + (s13s25 − s12s35)2 − 2s15s23(s13s25 + s12s35) . (4.99)

Notice that for the final expression for the amplitude we have to collect the five box integrals

I4,i with their respective coefficients which can be obtained by cyclic permutation of the states

(1, . . . , 5). Furthermore, we have to include one copy of the pentagon integral with its coefficient.

The pentagon coefficient does not possess manifest cyclic symmetry, and each of the five quadruple

cuts produces a different looking expression. However, our tests provided below confirm that the

pentagon coefficients have the expected cyclic symmetry.

4.5.4 Gluon component amplitude

In this section we extract from the one-loop five-point superamplitude its component where all

external particles are six-dimensional gluons. This is useful since, dimensionally reducing this

component amplitude to four dimensions, one can access the gluon MHV and anti-MHV amplitudes

of N = 4 SYM.

In order to extract this component we have to integrate one power of ηi and η̃i for each external

state, here denoted by 1aȧ, 2bḃ, 3cċ, 4dḋ, and 5eė. Doing this, one arrives at

A5;1

∣∣
(3,4)-cut

∝
∫

d6l

(2π)6

1

s34
δ+(l21)δ+(l22)δ+(l23)δ+(l25)

1

(p3 + l3)2
(4.100)

×
{

1

s12
[1ȧ|p̂2 l̂1p̂5p̂2|1a〉〈2b3c4d5e〉[2ḃ3ċ4ḋ5ė] +

1

s12
[2ḃ|p̂1 l̂1p̂5p̂1|2b〉〈1a3c4d5e〉[1ȧ3ċ4ḋ5ė]

+
1

s15
[5ė|p̂1 l̂1p̂2p̂1|5e〉〈1a2b3c4d〉[1ȧ2ḃ3ċ4ḋ]

− 1

s12
[2ḃ|p̂1 l̂1p̂5p̂2|1a〉〈2b3c4d5e〉[1ȧ3ċ4ḋ5ė] +

1

s12
[1ȧ|p̂2p̂5 l̂1p̂1|2b〉〈1a3c4d5e〉[2ḃ3ċ4ḋ5ė]

−[1ȧ|p̂2 l̂1|5e〉〈1a2b3c4d〉[2ḃ3ċ4ḋ5ė] + [5ė|l̂1p̂2|1a〉〈2b3c4d5e〉[1ȧ2ḃ3ċ4ḋ]

−[5ė|l̂1p̂1|2b〉〈1a3c4d5e〉[1ȧ2ḃ3ċ4ḋ] + [2ḃ|p̂1 l̂1|5e〉〈1a2b3c4d〉[1ȧ3ċ4ḋ5ė]

}
,
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where li, i = 1, . . . , 5 are the five propagators in Figure 4.5. In the next section we perform the

reduction to four dimension of (4.100), which will give us important checks on our result.

4.5.5 4D limit of the one-loop five-point amplitude

An important series of nontrivial consistency checks on our six-dimensional five-point amplitude

at one loop can be obtained by performing its reduction to four dimensions, and comparing it to

the expected form of the one-loop (MHV or anti-MHV) amplitude(s) directly calculated in four-

dimensional N = 4 SYM theory. In performing this reduction, we restrict any six-dimensional

spinorial expression to four dimensions which we discuss below. As for the integral functions, we

formally evaluate them in 6−2ε dimensions. The four-dimensional limit of these higher dimensional

integrals is then obtained by simply replacing ε→ 1 + ε. Then, in order to perform the reduction

to four dimensions of various six-dimensional quantities, one can employ the results of [86] (see

also [87]). There, it was found that the solutions to the Dirac equation with the external momenta

living in a four-dimensional subspace, i.e. p = (p0, p1, p2, p3, 0, 0), can be written as

λAa =

 0 λα

λ̃α̇ 0

 , λ̃Aȧ =

 0 λα

−λ̃α̇ 0

 , (4.101)

where λα and λ̃α̇ are the usual four-dimensional spinor variables. Hence, the Lorentz invariant,

little group covariant quantities 〈ia|jȧ], [iȧ|ja〉 become

〈ia|jȧ] =

 [ij] 0

0 −〈ij〉

 , [iȧ|ja〉 =

 −[ij] 0

0 〈ij〉

 . (4.102)

Here, we follow the standard convention of writing the four-dimensional spinor contractions as

λαi λjα = 〈ij〉 and λ̃iα̇λ̃
α̇
j = [ij].

The four-dimensional helicity group is a U(1) subgroup of the six-dimensional little group which

preserves the structure of (4.101) and (4.102). In order to determine the (four-dimensional) helicity

of a certain state in (4.19), a practical way to proceed is as follows. Each appearance of a dotted or

undotted index equal to 1 (2) contributes an amount of +1/2 (−1/2) to the total four-dimensional

helicity. As an example, consider the term Aaȧ in (4.19). States with (a, ȧ) = (1, 1) correspond,

upon reduction, to gluons with positive helicity and states with (a, ȧ) = (2, 2) to gluons of negative

helicity.

In the four-dimensional limit, the six-dimensional spinor brackets become9 [87]

− 〈i+|j+] = [ij] = [i+|j+〉 , 〈i−|j−] = 〈ij〉 = −[i−|j−〉 , (4.103)

〈i−j−k+l+〉 = −〈ij〉[kl] , [i−j−k+l+] = −〈ij〉[kl] ,

〈i−j+k−l+〉 = +〈ik〉[jl] , [i−j+k−l+] = +〈ik〉[jl] .

In the following we will use these identifications to check the four-dimensional limits of (4.100)

for all MHV helicity assignments of the external gluons. As expected, we will always obtain the

9Note that our definition of spinors of positive and negative helicities in four dimensions is opposite to that

in [87], i.e. the spinor bracket 〈 · , · 〉 represents a product between spinors of negative helicitiy.
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expected N = 4 SYM result, i.e. the appropriate Parke-Taylor MHV prefactor multiplied by a

four-dimensional one-loop box function.

To begin with, we recall that upon four-dimensional reduction, a six-dimensional scalar pentagon

reduces to five different box functions (plus terms vanishing in four dimensions) [95–97], and hence

contributes to the coefficients of the relevant box functions. Schematically,

C(5)I5 + C(4,3)I4,3
4D−→

[
C(5) P (4,3)

2s12s23s34s45s51
+ C(4,3)

]
I4,3 (4.104)

where

P (4,3) = s12s51(s12s23 − s12s51 − s23s34 − s34s45 + s45s51) , (4.105)

when going to four dimensions. Hence, upon dimensional reduction the coefficients of the PV

reduction become

A→− s12s15 − s15s45 + s34s45

2s23s34s45
, (4.106)

B →− s15s12 − s15s45

2s23s34s45
,

C →− s12s15

2s23s34s45
,

D →− s12

2s34s45
.

Let us now discuss specific helicity assignments. We start by considering the amplitude with a

helicity configuration of (1−, 2−, 3+, 4+, 5+). In this case, after PV reduction only the third term

in (4.100) is non-vanishing. Hence, we have to consider the four-dimensional limit of

1

s34s15
([5ė|p̂1p̂3p̂2p̂1|5e〉C + [5ė|p̂1p̂5p̂2p̂1|5e〉D) 〈1a2b3c4d〉[1ȧ2ḃ3ċ4ḋ] . (4.107)

Upon dimensional reduction, the resulting contribution is

s15s12

2

〈12〉3
〈23〉〈34〉〈45〉〈51〉 . (4.108)

Given the relation between the scalar box functions F4 and the corresponding box integrals, I4 =

2F/(s12s15), it is immediate to see that the kinematic factors in (4.108) cancel and the final result

is the anticipated one:
〈12〉4

〈12〉〈23〉〈34〉〈45〉〈51〉 . (4.109)

The fact that the form of the one-loop five-point amplitude upon reduction to four dimensions is

precisely the well-known result is an expected, though highly non-trivial, outcome.

As mentioned above, we have performed checks for all external helicity configurations, finding in

all cases agreement with the expected four-dimensional result. We would like to highlight a partic-

ularly stringent test, namely that corresponding to the helicity configuration (1+, 2+, 3−, 4−, 5+),

where all terms in (4.100) contribute to the four-dimensional reduction.

A final comment is in order here. It is known that collinear and soft limits put important

constraints on tree-level and loop amplitudes in any gauge theory and in gravity. In six dimensions,

the lack of infrared divergences makes loop level factorisation trivial, similarly to what happens to
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four-dimensional gravity because of its improved infrared behaviour compared to four-dimensional

Yang-Mills theory amplitudes. Therefore, the factorisation properties we derive below from tree-

level amplitudes will apply unmodified to one-loop amplitudes.

We now consider again the five-point amplitude (4.31) derived in [85], and take the soft limit

where p1 → 0. A short calculation shows that

A
(0)
5;aȧ... → Saȧ(5, 1, 2)A

(0)
4;... , (4.110)

where we find, for the six-dimensional soft function,

Saȧ(i, s, j) =
〈sa|p̂j p̂i|sȧ]

sisssj
. (4.111)

In (4.110) the dots stand for the little group indices of the remaining particles in the amplitude.

Using the results in this section, it is also immediate to check that (4.111) reduces, in the four-

dimensional limit, to the expected soft functions of [32]. As a final test on our five-point amplitude

we have checked that the soft limits where legs 1, 2 or 5 become soft are all correct.

This provides an exhaustive set of checks of our result for the six-dimensional five-point superam-

plitude at one-loop. In summary, our checks confirm the appearance of a linear pentagon integral

function (see the result (4.92)) in the the six-dimensional, maximally supersymmetric theory at

one-loop with five external states.



5 Gauge Mediation, SQCD and

N = 1 Seiberg Duality

In this chapter we review some basic facts about supersymmetric theories and how supersymmetry

can be broken. We will be interested mainly in phenomenological applications and the possibility

of metastable non-supersymmetric vacua in N = 1 super-QCD (SQCD) theories. The ideas and

concepts behind this construction will be reviewed in the following sections.

5.1 Some introductory comments

Quite generally, the concept of supersymmetry is a corner stone in modern theoretical physics. Ideas

surrounding supersymmetry were involved in many important developments in the last decades.

The reason for the wide range of SUSY applications is the observation that quite often, supersym-

metric models are easier to understand. Furthermore, they are even easier to solve since the high

amount of symmetry constrains a system. We have seen applications of this in the last two chap-

ters where the maximal amount of supersymmetry in a quantum field theory makes the notation

of highly constrained superamplitudes natural. Although (maximally) supersymmetric Yang-Mills

theories are not part of the framework that ultimately describes nature, they serve as toy models in

which analytic results can be derived. These results can then provide deeper insights or simplified

computational approaches to more realistic theories.1

Especially interesting are supersymmetric versions of non-abelian gauge theories. The studies of

non-perturbative effects in supersymmetric QCD has led to insights in the strong-coupling limit of

ordinary, non-supersymmetric QCD. An example of this is a better understanding of the dynamics

which lead to quark confinement. Two basic principles have heavily influenced the studies of

supersymmetric gauge theories, namely the concepts of duality and holomorphy. Behind the first

one lies the idea of mapping strongly and weakly coupled regimes of different supersymmetric

theories. This seems to be a rather general pattern. Strong-weak dualities are rather easily realised

in supersymmetric theories compared to non-supersymmetric ones. To that extent, several examples

of at least (by the means of dualities) partly calculable strongly coupled supersymmetric theories

have been found in the past. Examples are dualities in the maximally supersymmetric N =

4 SYM theory [98–102], the Seiberg-Witten duality [103], the highly celebrated gauge/gravity

1We have seen an example of this in Chapter 3 where we briefly mentioned the supersymmetric decomposition

of one-loop QCD amplitudes.

97
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correspondence in AdS space [104] and also the recently discovered dualities of Wilson-loops and

scattering amplitudes in the four-dimensional N = 4 SYM theory [105–107]. Another important

example is key to our discussions in the following chapters namely a class of certain dualities in

QCD-like N = 1 supersymmetric theories which go under the name of Seiberg dualities [108,109].

These dualities generalise to some extent the well known electric-magnetic duality of Maxwell’s

electrodynamics. Seiberg argued that in certain cases the infrared limit of a strongly coupled

supersymmetric gauge theory (normally denoted as the ‘electric theory’) is ‘dual’ to the infrared

limit of another weakly coupled supersymmetric gauge theory (the ‘magnetic theory’). If the

theories both flow to a (non-trivial) infrared fixed point, they essentially describe the same physics.

Since we want to perform perturbation theory, we can then choose the weakly coupled description.

Although strictly speaking the Seiberg dualities have not been proven2, they passed a lot of stringent

tests [109–111]. In our discussions of supersymmetric QCD theories we will point out some of the

ideas behind the SQCD Seiberg duality.

The other important ingredient is the fact that the superpotential of a supersymmetric theory

is a holomorphic function of the chiral superfields only. Otherwise the Lagrangian would not be

invariant under supersymmetry. This can be used to prove [112] that the superpotential in a

supersymmetric theory is not renormalised to any order in perturbation theory, see also [113,114].

This can be motivated as follows: Essential is the idea of promoting the couplings (including the

gauge coupling) of the specific theory to non-dynamical chiral superfields such that the physical

couplings are their vacuum expectation values. In order to be consistent with supersymmetry these

spurious3 superfields must appear holomorphically in the superpotential. This puts constraints

on its form. In the literature these are often called ‘selection rules’, leading to the observation

that the effective superpotential of a supersymmetric theory is actually equal to the tree level

superpotential [112]. Hence, the superpotential receives no loop corrections and is not renormalised.

However, Seiberg’s argument does not take account of non-perturbative effects which can provide

corrections to the superpotential.

5.1.1 Supersymmetry and the Standard Model

Supersymmetry is not only of pure theoretical interest, it has also heavily influenced elementary

particle physics. Furthermore, it has attracted theorists to more phenomenological ideas and top-

ics. There are two main motivations for why supersymmetry is so attractive to particle physicists.

Firstly, the coupling constants of the Standard Model (SM) unify within the minimal supersym-

metric extension of the SM at a large energy EGUT ∼ 1016 GeV [115–117]. Secondly, there is the

important fact that supersymmetry protects certain quantities from receiving quadratically diver-

gent quantum corrections. The most prominent example of this is the solution to the hierarchy

problem of the Standard Model which supersymmetry can offer. This ‘problem’ is the famous

2From a more ‘physical’ point of view it is not necessarily a question of ‘proving’ the duality. As long as the

global symmetries in both theories match, we can treat one theory as an effective one which provides a weakly

coupled description in a certain energy regime.
3Here, the expression ‘spurion’ just comes from the fact that setting the coupling superfields to the actual value

of the coupling breaks certain symmetries which the spurios superfields were chosen to be charged under.



5.1. Some introductory comments 99

h h

fL, fR

Figure 5.1: One-loop correction to a scalar field where a left- and right-handed fermion is running

in the loop.

puzzle of why the electroweak scale Mew is so much smaller than the Planck scale MPl and if this

hierarchy between the scales is stable under quantum corrections.

In the SM one finds that scalar masses are indeed not stable under quantum corrections. This

is rather important for the mass of the Higgs particle which is the only scalar particle of the SM.

In general, a scalar mass receives one-loop corrections from quantum diagrams where a fermion is

running in the loop as shown in Figure 5.1. This leads to a correction of the scalar mass squared

of the order

δm2
S ' −|yf |2

[
Λ2 + c log

(
Λ2

m2
f

)]
, (5.1)

where yf is a Yukawa-type coupling of the scalar to the fermions, c is a constant with dimension

[c] = 2 and Λ is a cut-off in the theory. Hence, the scalar mass gets corrected to leading order

by Λ2 and is therefore quadratically divergent. In contrast, fermion masses - if introduced in the

theory at tree-level - grow only logarithmically with the cut-off scale and hence, any corrections

are of the same order as the bare fermion mass itself. This observation yields the unpleasant fact

that the Higgs mass (and therefore the Higgs vev) would be as heavy as the cut-off scale Λ. This

is somewhat unnatural4 since the cut-off can be much larger than the electroweak scale where the

Higgs mass is supposed to lie. Hence, even a tree-level Higgs mass of an appropriate order would

end up at the cut-off scale due to quantum corrections. The only way to obtain a physical Higgs

mass of the order of 10−2 GeV is to highly fine-tune the bare mass of the scalar field to be as well

of the order of the cut-off. And this has to be done order by order in perturbation theory. However,

such a fine-tuning is considered to be unnatural in the sense that it is not providing an explanation

of why the electroweak scale can be naturally hierarchically smaller than the cut-off scale Λ.

The introduction of supersymmetry into the theory can solve the issue of quadratic divergencies.

If new scalars are present in the theory which couple to the existing scalar field new corrections

to the scalar mass are introduced. The corresponding one-loop diagrams are shown in Figure 5.2.

4Here we mean that a Higgs of the order of the cut-off is not inconsistent, it is just not what one would expect

from the Higgs-mechanism in the SM.
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h h

f̃L, f̃R

h h

f̃L, f̃R

Figure 5.2: One-loop correction to a scalar field with scalars f̃L, f̃R running in the loop.

From the three-point and four-point interactions one finds schematically a correction of

δm2
S ' λ

[
Λ2 + c̃L log

(
Λ2

m̃2
L

)
+ c̃R log

(
Λ2

m̃2
R

)]
. (5.2)

Here, we used the same cut-off scale Λ, m̃L/R are the scalar masses and again c̃L/R are coefficients

with dimension [c̃L/R] = 2. Note that these terms come from the diagram on the right-hand side

of Figure 5.2. The diagram on the left only generates terms with logarithmic divergences times the

three-point coupling between the newly introduced scalar fields and the Higgs.

From these oberservations one finds that the quadratic divergences cancel out if λ = |yf |2.

This is exactly what supersymmetry provides. Of course, the additional scalar fields are the scalar

partners of the fermion yielding the correction to the Higgs mass. Furthermore, the interactions

between scalar-fermion (three-point) and scalar-scalar (three- and four-point) are coming from the

same term in the superpotential of the supersymmetric theory and hence, the couplings match.

However, by supersymmetry, the new scalar particles in the theory are bound to have the same

mass as their fermionic partners. And since we have not observed any light scalars at all, we know

that at low energies supersymmetry can only be an approximate symmetry of nature. Although

this might look disappointing at first sight, it offers a neat solution to the hierarchy problem. If

supersymmetry is broken at a scale of the order of the weak scale it protects the Higgs mass from

becoming too large since a new supersymmetric theory above the breaking scale provides a natural

cut-off for the quantum corrections of the scalar mass in the SM. In that sense, the presence of

supersymmetry stabilises the electroweak scale which solves the ‘naturalness part’ of the hierarchy

problem.

In addition to that, supersymmetry might offer a promising way to explain the hierarchy between

the supersymmetry breaking and Planck scale itself. The possible solution that a supersymmetric

theory provides is strongly connected to the mechanism of how this symmetry is broken. In order

to keep the nice features of supersymmetry like the cancellation of quadratic divergences we don’t

want to break supersymmetry by brute force. We rather prefer to break it spontaneously such

that the Lagrangian is still supersymmetry but the vacuum state of the theory does not share

this symmetry. If the spontaneous supersymmetry breaking is a dynamical effect as was first

suggested by Witten [118] one can naturally implement a large hierarchy between the Planck and
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the supersymmetry breaking scale (which sets the electroweak scale). By dynamical supersymmetry

breaking one means that small non-perturbative effects break supersymmetry such that the breaking

scale Ms is much smaller (namely exponentially suppressed) than the cut-off scale in the theory

Ms = e−1/g2Mcut-off �Mcut-off . (5.3)

Here, g is a small coupling constant at the cut-off scale Mcut-off. The need for non-perturbative

effects to break supersymmetry is connected to the non-renormalisation of the superpotential. In

general, the scalar potential of supersymmetric gauge theories has a rather complicated vacuum

structure. In many cases, the potential of the classical theory also has flat directions which are

vacua with vanishing energy. As we will shortly see, these are all supersymmetric vacua of the

theory. By the non-renormalisation theorem [112] we know that flat directions of the potential are

not lifted by quantum corrections. So if a theory is supersymmetric at the classical level (it has

vacua with vanishing energy) then supersymmetry is unbroken to all order in perturbation theory.

However, non-perturbative effects can break supersymmetry. Based on this important insight, a

vast amount of different models of dynamical supersymmetry breaking where constructed in the

past, starting with the early papers [118] and [119, 120] in 1981. It is this non-trivial relation

to supersymmetry breaking that made it important to study and understand non-perturbative

effects in supersymmetric theories in order to construct phenomenological models with broken

supersymmetry.

5.1.2 The need for a hidden sector

To that extent, supersymmetry is an attractive candidate for physics beyond the SM. It stabilises

the hierarchy between the electroweak and ultraviolet scales and offers an explanation for the large

difference in the scales. Furthermore, due to the presence of new degrees of freedom, it provides

a vast arena for model-building physics at a rather accessible energy scale. The ‘only’ missing

piece in this nice picture is the mechanism that dynamically breaks supersymmetry. Of course,

one could just argue that one is not interested in the specific model and only wants to do low

energy phenomenology. This is certainly possible and leads to soft-breaking terms in the minimal

supersymmetric extension of the SM. Here, soft-breaking means terms that break supersymmetry

but do not disturb the important cancellation of quadratic divergences. This approach is discussed

in many places, for instance a nice introduction can be found in [121]. Here, we follow the approach

of trying to model the dynamics that break supersymmetry. To do so we need another important

ingredient in the supersymmetry breaking approach which is strongly tied to the mass spectrum of

supersymmetric theories. In general, the masses of the particles obey a supertrace sum rule [122]

where the supertrace is defined as

STr[M2] ≡
∑
j

(−1)j(2j + 1)Tr[M2
j ] . (5.4)

Here, the M2
j are the squared mass matrices for scalars (j = 0), fermions (j = 1/2) and gauge

bosons (j = 1). Calculating the mass matrices for all the different particle species one finds the
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sum rule [122]

STr[M2] = Tr[M2
0 ]− 2Tr[M†1

2

M 1
2
] + 3Tr[M2

1 ] = −2g2〈DA〉Tr[TA] , (5.5)

where DA is the D-term of (2.76). From this trace relation we can see that the supertrace vanishes

if 〈DA〉 = 0 or Tr[TA] = 0, i.e. if no U(1) gauge factors are present in the theory. The physical

consequence is that the sum of all squared masses of the bosonic degrees of freedom is equal to

the fermionic ones. This is an automatic consequence of supersymmetry since all masses in a

supermultiplet are the same. However, even for broken supersymmetry the relation (5.5) holds. In

any case, this mass relation is valid at tree-level and receives loop-level corrections, however, these

corrections are usually relatively small for weakly coupled theories.

The supertrace relation has important consequences for realistic models of extensions to the

SM with broken supersymmetry. From a phenomenological point of view we would like to break

supersymmetry such that the superpartners of the SM particles are all heavier. However, the

upshot of the supertrace mass formula (5.5) is such that in supersymmetric extensions of the SM

with broken supersymmetry one finds a mass splitting between the scalar degrees of freedom of a

supermultiplet5, leading to scalar particles which are lighter than their fermionic partner [115,123].

This is ruled out by experiments which have pushed the mass-bound for the scalar SM partners to

be larger than the mass of the SM fermions [124]. The standard lore to circumvent these strong

constraints is the introduction of a hidden sector. Non-perturbative dynamics are then assumed to

break supersymmetry in the hidden sector. In order to transmit the breaking of supersymmetry to

the visible sector one needs certain ‘mediator’ interactions between the hidden and visible sector.

5.1.3 Mediation of supersymmetry breaking effects

This leads to the question of what type the mediating interactions are. Just as there exist many

different models of how to break supersymmetry in the hidden sector, there are different ways to

mediate the supersymmetry breaking effects to the supersymmetric SM. Two constructions have

been of major interest in the literature, namely gravity mediation and gauge mediation. In the

first approach it is assumed that the breaking is transmitted through interactions of gravitational

strength by Planck suppressed couplings. More precisely, these models are supergravity mediated

where supergravity is the combination of gravity and local supersymmetry. In general, it is rather

complicated to construct such theories and detailed discussions of this are far beyond the scope

of this thesis. Here, we only mention some basics aspects of gravity mediated constructions. In

these models, the mass of the gravitino, the superpartner of the spin-two graviton, represents the

supersymmetry breaking scale. The mass is of the order

m3/2 ∼
FX
MPl

(5.6)

where FX is the F-component of a chiral superfield X which breaks supersymmetry, i.e. FX =

DXW 6= 0 with Di as the covariant supergravity derivative

DiW =
∂W

∂φi
+
∂K

∂φi
W , (5.7)

5We assume no flavour mixing between different fermion generations.
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with K as the Kähler potential. This leads to an order parameter of FX ≈
√
m3/2MPl ≈

(1011 GeV)2 if we require an effective supersymmetry breaking scale (and hence the scale of the

soft breaking terms of the supersymmetric SM, including the gravitino mass m3/2) of the order of

1 TeV.

Although gravity mediated models have been heavily studied in the development of realistic

supersymmetry breaking models, they have drawbacks. Most prominent is the problem of non-

degenerate sfermion masses which lead to amplitudes of flavour-changing-neutral-current processes

(FCNC, for instance KK mixing) which are not consistent with experimental bounds [125]. One can

construct gravity mediated models that lead to diagonal mass matrices in flavour space which fulfill

experimental bounds. However, these models are quite exotic: In supergravity, nothing forbids a

Kähler potential of the general form

K =
1

M2
Pl

f(X,X†)jiΦ
†iΦj (5.8)

where X is again the field of the hidden sector triggering supersymmetry breaking and Φi are

chiral superfields of the supersymmetric SM. For instance, a f of the form f ji = XX†[mδji + ∆j
i ]

gives contributions to the Kähler potential which lead directly to off-diagonal elements in the mass

matrix M j
i which is found in the term

L ⊃
∫
d4θ

XX†

M2
Pl

M j
i Φ†iΦj . (5.9)

To avoid these contributions one needs additional constraints in the supergravity model. Per

se, gravity is flavour-blind. So in order to have a mechanism similar to the GIM-mechanism

[126] in the supersymmetric SM, one needs a model which highly restricts terms leading to off-

diagonal contributions to the sfermion mass matrices. An approach to this has been studied in [127]

where the possibility of a strongly coupled hidden sector was discussed. Another possible scenario

is to separate the visible and hidden sectors by an extra dimension, e.g. by working in a five-

dimensional spacetime. For early works see for instance [128]. This concludes our brief comments

about supergravity and gravity mediation. For the rest of this thesis we will focus on the other key

approach in mediating supersymmetry breaking effects which circumvents problems with flavour

symmetry, namely gauge mediation.

An economic way to solve flavour issues is to use the gauge interactions of the SM for mediating

any supersymmetry breaking from the hidden sector. This is due to the fact that the standard

gauge interactions are flavour-blind and therefore, do not give rise to any off-diagonal terms in

the sfermion mass matrices of the supersymmetric SM. All gauge-mediated models are based on

the simple idea of having a messenger sector of chiral superfields. The messenger fields couple

to the hidden sector and hence, supersymmetry breaking is transmitted to the messenger sector

such that these have a susy-broken spectrum. In addition to that, the messenger fields are also

charged under the SM gauge groups. Therefore, they couple to the visible sector by the usual gauge

interactions and communicated the supersymmetry breaking effects to all of the supersymmetric

SM. The soft breaking terms6 (soft masses) for the superpartners of the SM fields are produced

6Again, ‘soft’ refers to the fact that these terms, although breaking supersymmetry, do not spoil the nice UV

cancellations.
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through loop-effects. A detailed analysis of the contributing processes leads to soft masses of the

order

msoft ∼
αi
4π

FX
Mmess

(5.10)

where αi is the coupling constant of the corresponding SM gauge group, FX is the F-component

of a chiral superfield which triggers supersymmetry breaking and Mmess is the mass-scale of the

messenger fields. Under the condition that
√
FX and the messenger scale Mmess are of the same

order, the supersymmetry breaking scale can be of the order of 104 GeV. We see that the scale of the

order parameter can be much lower in gauge mediated models compared to the gravity mediated

construction. This nice setup provides a rich area of model-building opportunities. Especially in

the last 5 years, the field of gauge mediation was invigorated by Intriligator, Seiberg and Shih in

their work [129]. The authors explored the possibility of dynamical supersymmetry breaking and

gauge meditation combined with metastable vacua, i.e. vacua with non-vanishing energy which are

not the global minimum of the scalar potential. This ISS construction led to a vast amount of

research on different phenomenological models and will be the main ingredient for our discussion

of metastable supersymmetry breaking for SO(N) models in Chapters 6 and 7. To build up some

intuition and understanding of these ideas we will discuss some aspects of gauge mediated models

in Section 5.6

In general, the field of supersymmetry breaking and its mediation is a broad and fast developing

one and therefore, giving a complete overview of all important aspects is far beyond the scope

of this thesis. We will rather focus on selected topics which are needed for our discussions on

SO(N) metastable models. To that extent it is sensible to develop some background knowledge of

supersymmetric field theories which we will provide in the following sections. Throughout this part

of the thesis we will restrict ourselves to theories withN = 1 rigid supersymmetry. We focus on non-

extended supersymmetric theories since these provide chiral superfields which enables us to keep

the right- and left-handed fermions of the SM in separate superfields. Furthermore, a restriction

to global supersymmetry arises from the approach of having a supersymmetry breaking scale of

low energies accessible by current and future collider experiments. In the next section we begin

by considering vacua in supersymmetric theories and find a criterion for broken supersymmetry.

Then we move on and discuss some aspects of supersymmetric QCD, the structure of its vacua for

different flavours and some non-perturbative aspects. This leads us to a brief discussion of Seiberg

duality in N = 1 SQCD. Before finally discussing gauge mediation and some recent developments,

we have a more detailed look at the ISS model which utilises the N = 1 Seiberg duality.

Although we cannot discuss all aspects of supersymmetry breaking and its applications in gauge

mediation, fortunately, a lot of excellent reviews can be found in the literature. Most of them focus

also on recent developments which we could not discuss here. General discussions and information

can be found in the text book by Terning [17] and of course in the evergreen of Wess and Bagger [16].

Furthermore, the reviews [110,130–133] provide detailed discussions of supersymmetry breaking and

Seiberg duality whereas further information on supersymmetry breaking mediation and other recent

developments can be found in [134–137]. Our introductory review in this section is mainly based

on discussions provided in [17] and [131,136,137].
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5.2 Preliminaries on vacua in supersymmetric theories

In the last section we understood that supersymmetry - if realised in nature - must be a broken

symmetry. Furthermore, in order to keep its nice features we want to break supersymmetry spon-

taneously. The question is then how one can characterise such a non-supersymmetric theory. To

this extent, much can be learned from simple considerations of vacua in supersymmetric theories.

Here, we follow the discussions of [3].

When we work in the regime of perturbation theory we normally expand in powers of the

coupling constant around a stable configuration which corresponds to a minimum of the action. In

quantum field theory, such a stable configuration which is also Lorentz invariant is called a vacuum.

The requirement of Lorentz invariance basically implies that only scalar fields are non-vanishing in

the vacuum. All other fields and all spacetime derivatives of fields must vanish. Hence, a general

vacuum configuration is given by

〈AAµ 〉 = 〈λA〉 = 〈ψα〉 = ∂µ〈φ〉 = 0 for V (〈φ〉, 〈φ†〉) at its minimum, (5.11)

where we have denoted the vacuum expectation value (vev) of a field by 〈 · 〉. Here, the minimum

of the potential might be a local or a global one. If it is only a local minimum one has the case

of a ‘false vacuum’ which will eventually decay into the true global minimum of the theory via

tunneling processes. In a supersymmetric theory the generator algebra puts important constraints

on the minima of the potential. From the anti-commutation relation of the N = 1 algebra

{qα, q̄β̇} = 2pµσ
µ

αβ̇
(5.12)

we find for any state |φ〉
2σµ

αβ̇
〈φ|pµ|φ〉 = 〈φ|qαq̄β̇ + q̄β̇qα|φ〉 (5.13)

If we multiply now by (σ̄0)β̇α and use q̄α̇ = (qα)† we get

q1q
†
1 + q†1q1 + q2q

†
2 + q†2q2 = 4η0µpµ = 4p0 = 4H ≥ 0 , (5.14)

due to positivity of the Hilbert space. Here, H is the Hamiltonian and we immediately see that it

is bounded from below, i.e. 〈φ|H|φ〉 ≥ 0 for any state |p〉. In a supersymmetric theory, a vacuum

state |Ω〉 obeys S(0, ξ, ξ̄)|Ω〉 = 0 and hence, qα|Ω〉 = (qα)†|Ω〉 = 0. This implies that the scalar

potential vanishes in the vacuum. For a theory which is supersymmetric at the Lagrangian level

but has qα|Ω〉 6= 0, the vacuum is not invariant under supersymmetry. Hence, supersymmetry is

spontaneously broken. However, due to the relation (5.13) we have the important restriction that

the energy in a supersymmetric theory is always positive, 〈Ω|H|Ω〉 ≥ 0.

Let us now turn specifically to the vacuum of such a supersymmetric theory. In general, we

obtain a vacuum state (true or false) by considering

V

∂φi
(〈φj〉, 〈φ†j〉) =

V

∂φ†i
(〈φj〉, 〈φ†j〉) = 0 . (5.15)
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As we have seen in Section 2.5.2, in a supersymmetric theory the scalar potential is given by7

V (φi, φ
†
j) = F †i Fi +

1

2
(DA)2 ≡

∑
i

{ ∣∣∣∣∂W∂φi
∣∣∣∣2 +

1

2

∑
a

(
g(φ†iT

Aφi)
)2
}

(5.16)

Therefore, for a global supersymmetric minimum V = 0 of the scalar potential we have to find

solutions for the equations8

Fi(〈φ†i 〉) = 0 , DA(〈φi〉, 〈φ†j〉) = 0 (5.17)

which are usually denoted as F-term and D-term equations9. One has to solve this system of

equations simultaneously in order to obtain a vanishing scalar potential. If the system has a

solution, it automatically defines the global minimum of the theory since the potential is always

positive. This leads to a stable vacuum state. In principle, there can be many solutions to the F-

and D-flatness conditions such that we end up with many (degenerate) supersymmetric vacua.

However, not always do solutions to the relations (5.17) need to exist. Generally, we have as

many F-term equations Fi = 0 as we have unknown vevs 〈φi〉 and the same holds for the complex

conjugate equation F †i = 0. In addition, we need to satisfy as many D-term equations DA = 0 as

the dimension of the gauge group. If there is no solutions to the F- and D-terms but the condition

(5.15) is fulfilled we have a ground state with a strictly positive energy, V0 > 0. In such a case,

the vacuum is not invariant under supersymmetry transformations and hence, supersymmetry is

broken in any perturbative field theory around this ground state.

We conclude that broken supersymmetry requires some Fi(〈φ†〉) 6= 0 or some DA(〈φ〉, 〈φ†〉) 6= 0.

This can also be seen at the level of the supersymmetry transformations of the component fields of

a chiral superfield Φ. Recalling the transformations (2.40) we find

δ〈φi〉 !
= 0 , δ〈ψi〉 = −

√
2〈Fi〉ξ !

= 0 , δ〈Fi〉 !
= 0 (5.18)

since only scalar fields can acquire a vev. This is only consistent for 〈Fi〉 = 0. Similarly, from the

component transformations of a vector superfield we deduce that for δ〈λA〉 !
= 0 one needs 〈DA〉 = 0.

In a supersymmetric theory, one has different possibilities of how a ground state with vanishing

energy can be realised. The theory might have a single point in field space where the energy is

zero. It is also possible that the scalar potential has several isolated minima where the theory

is supersymmetric. However, supersymmetric theories often have a whole range of vacua, i.e.

the theory has directions in field space which are both F- and D-flat. These flat directions are

usually denoted as the moduli space of the (classical) theory. The field fluctuations along the flat

directions are massless fields and are called moduli. For unbroken supersymmetry, the moduli

stay massless to all orders in perturbation theory. However, non-perturbative effects can generate

contributions to the scalar potential with non-zero energy and hence, the moduli space can be lifted.

7Here, we write out the derivatives with respect to the scalar components of the chiral superfields explicitly. In

general, we will write ∂W/∂Φi for an F-term. It is then understood to take only the scalar component of the result.
8Here and in the following we always assume that the Kähler potential is a regular function of the superfields

and does not have any singularities.
9In the literature, the notion of F-flatness and D-flatness are used equivalently.
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Finally, a theory for which supersymmetry is broken at tree-level can also have a (classical) moduli-

space of degenerate, non-supersymmetric vacua. Since supersymmetry is broken, the potential is

not protected in perturbation theory and hence, quantum corrections typically lift the classical

degeneracy of the non-supersymmetric vacua. In these cases, we speak of a pseudomoduli space of

vacua. In the following chapters we will see several examples of this behaviour.

In principle, we have to solve the D- and F-terms in order to find the moduli space of a

theory. If we imagine to set all superpotential couplings to zero classically, then the F-terms vanish

automatically and the moduli space is given by the D-flat directions. Usually, for small tree-level

couplings, the vacua resulting from solving both D- and F-terms will be close to the D-flat directions.

Therefore, it is convenient to solve for the D-terms first and then analyse and solve the F-terms

along the D-flat directions, for details see the discussions in [138]. The F-flat conditions can lift the

D-flat directions, and typically this happens for large vevs of the fields. This is because the F-terms

usually grow with the vevs and vanish at the origin of field space since the tree-level superpotential

is a polynomial in the chiral superfields. For further discussion on theories with broken or unbroken

supersymmetry and their moduli space we refer the reader to the nice review of [133].

Finally, we briefly mention a theorem that will be useful in our discussions of the moduli spaces.

It was pointed out by Luty and Taylor that the moduli space of a classical gauge theory (with

vanishing superpotential) can always be parameterised by independent, gauge-invariant composite

operators [139] (for further details see also the discussions in [110]). By the means of this theorem,

it is not necessary to solve the D-flat conditions in order to find the moduli space. We can rather

build all possible composite gauge-invariant operators but have to consider all classical relations

between them in order to achieve a matching of the degrees of freedom when comparing to the case

of solving the D-flat conditions.

5.3 Supersymmetry breaking and global symmetries

The concept of global symmetries restricts the behaviour of physical quantities in a theory under

the corresponding symmetry transformations. Especially in the study of non-perturbative effects

in supersymmetric gauge theories, global symmetries place important constraints on the form of

the non-perturbative contributions. Besides the usual global SU(N) and U(1) symmetries, super-

symmetry possesses an additional class of symmetries: one has symmetry generators R which do

not commute with the supersymmetry generators qα and q̄α̇ as

[R, qα] = qα , [R, q̄α̇] = −q̄α̇ . (5.19)

The corresponding symmetry group is called U(1)R. Following [16] we assign a R-symmetry trans-

formation to the fermionic superspace coordinate θα and θ̄α̇ as

θ → eiαθ , θ̄ → e−iαθ̄ . (5.20)

Hence, a general chiral superfield with R-charge r transforms under the U(1)R as

Φ(x, θ, θ̄)→ e−irαΦ(x, eiαθ, e−iαθ̄) (5.21)
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which yields for the R-charges of the component fields R[φ] = r,R[ψ] = r − 1 and R[F ] = r −
2. Invariance of the theory under the R-symmetry requires the superpotential to have R-charge

R[W ] = 2. Similarly, for the field-strength superfield Wα we have a supercharge R[Wα] = 2 which

fixes the gaugino supercharge to be R[λ] = 1. With these requirements, the U(1)R is a classical

symmetry of the action. Quantum mechanically though, the symmetry is be broken. However,

there is an anomaly-free R-symmetry, compare with our discussion in Section 5.4.1.

The question of broken or unbroken supersymmetry is strongly tied to the existence of a R-

symmetry in the theory. The connection between supersymmetry breaking and R-symmetries

was studied by Seiberg and Nelson [140]. They considered supersymmetric theories with generic

superpotentials which are described by a low-energy theory with just chiral superfields and no

gauge fields. By generic we usually mean that the superpotential contains all by the symmetries

of the theory allowed terms. The important assumption here is that one has a theory of chiral

superfields only such that the superpotential does not receive any non-perturbative corrections as

in supersymmetric gauge theories. In the following we review the nice discussion in [141].

We consider a theory with a generic superpotential with n chiral superfields Φi and a canonical

Kähler potential. Hence, the condition for unbroken supersymmetry is10

∂W

∂Φi
(Φ1, . . . ,Φn) = 0 ∀i . (5.22)

Without any global symmetries putting restrictions on the superpotential, this is a system of n

complex equations for n complex variables. Hence, a solution exists for a generic superpotential

and supersymmetry is not broken.

We move on and consider global symmetries of the theory. The superpotential should be

invariant under the global symmetry where we assign the superfields a charge Q[Φi] = qi. For

simplicity, we assume a global U(1) symmetry. If the vacuum state does not break the global

symmetry spontaneously, all charged fields must vanish in that vacuum,

〈Φi〉 = 0 for qi 6= 0 . (5.23)

Suppose k of the n fields carry a non-zero charge under the U(1) symmetry. This gives k constraints

on the fields. Then, the conditions (5.22), restricted to the subspace of possible solutions under the

vanishing vevs for k fields, give n − k constraints for the remaining n − k unknowns. Thus, for a

generic superpotential, supersymmetry is still unbroken.

What happens if the global U(1) symmetry is broken spontaneously? At least one of the charged

fields will have a non-zero vev. Suppose that this field is Φ1 with q1 6= 0. This theory should still

be invariant under the symmetry and the superpotential can be expressed by

W (Φ1, . . . ,Φn) = f
(

Φ2Φ
−q2/q1
1 , . . . ,ΦnΦ

−qn/q1
1

)
. (5.24)

Here, we have written the superpotential as a function of variables that are not charged under

the global symmetry. Under the condition (5.22) this gives a system of n − 1 equations for n − 1

10As usual, we consider the scalar component of the chiral superfields only and write for the vev of the fields the

corresponding field itself, i.e. 〈φi〉 = φi.
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unknowns (the vevs of the other Φi). Again, a solution generically exists and supersymmetry is

unbroken.

Things are different in the case of a global U(1)R symmetry. The important difference is that

the superpotential is not invariant under this symmetry but rather carries an R-charge of 2. If the

R-symmetry is not broken spontaneously (i.e. all charged fields vanish in the vacuum), our previous

analysis goes through accordingly and supersymmetry is not broken. However, this changes if the

U(1)R symmetry is broken spontaneously. Denoting the R-charges of the fields by R[Φi] = ri we

have to modify the relation (5.24) as

W (Φ1, . . . ,Φn) = Φ
2/r1
1 f

(
Φ2Φ

−q2/q1
1 , . . . ,ΦnΦ

−qn/q1
1

)
(5.25)

in order to maintain R[W ] = 2. This form of the superpotential yields for the condition of unbroken

supersymmetry ∂iW = 0

∂i 6=1 f
(

Φ2Φ
−q2/q1
1 , . . . ,ΦnΦ

−qn/q1
1

)
= 0 , (5.26)

f
(

Φ2Φ
−q2/q1
1 , . . . ,ΦnΦ

−qn/q1
1

)
= 0 , (5.27)

where the second relation follows from ∂1W = 0 and we have used the abbreviation ∂i ≡ ∂/∂Φi.

The first relation leads again to a system of n − 1 equations for n − 1 unknowns. However,

the relation (5.27) gives an additional constraint, yielding an over-constrained system and hence,

generically no solution exists. Since the condition (5.22) is not fulfilled we have a theory with

broken supersymmetry.

This yields the main-result of the Nelson-Seiberg theorem: For a supersymmetric theory de-

scribed by a generic effective Lagrangian, the existence of a R-symmetry is a necessary condition

for a supersymmetry breaking vacuum. Furthermore, a spontaneously broken R-symmetry is a suf-

ficient condition for a supersymmetry breaking minimum. In addition, it was shown quite recently

that spontaneous R-symmetry breaking in so-called O’Raifeartaigh-type models11 require fields of

a R-charge different from 0 or 2 [143]12. In all these considerations, the important constraint is a

generic superpotential of the theory. Again, generic usually means that the superpotential contains

all terms which are allowed by the symmetries of the theory. More specifically, one requires that for

a tree-level potential as a polynomial of some degree n, no term of degree equal or less than n that

is compatible with the global symmetries of the theory is omitted from the superpotential. In gen-

eral, this is only true for the classical superpotential in perturbation theory since non-perturbative

corrections are often not generic, see for instance discussions in [138] and [133].

Unfortunately, for a generic theory one runs into problems when we want to construct realistic

models of broken supersymmetry. Since the gaugino carries R-charge R[λ] = 1, a R-symmetry in

the theory forbids a gaugino mass term. And if we spontaneously break the R-symmetry, we have a

11The basic O’Raifeartaigh model [142] and its generalisation are generic examples of F-term supersymmetry

breaking, i.e. for models where the F-component of a chiral superfield acquires a VEV which breaks supersymmetry.

The model is defined by a set of chiral superfields Φ a superpotential which is a polynomial in the superfields up to

degree 3 and a canonical Kähler potential.
12This does not hold for models with gauge interactions.
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massless Goldstone boson in the spectrum. Hence, we either have massless gauginos with preserved

R-symmetry or a massless R-Goldstone boson and spontaneously broken R-symmetry. In both

cases we have an additional massless particle in the theory which has not been observed. So in

order to have massive gauginos, we should break the R-symmetry. However, we don’t want to break

it spontaneously in order to avoid the massless R-Goldstone boson and hence, we need to break

the R-symmetry explicitly. Following the discussion of the Nelson-Seiberg theorem, the explicit

R-symmetry breaking introduces supersymmetry vacua in the theory. Following this approach one

has to accept the inevitable: If we want to construct generic models of broken supersymmetry, then

metastable supersymmetry breaking states cannot be avoided, any ‘resistance is futile’13. In that

sense, metastable supersymmetry breaking is inevitable14 [145].

Strictly speaking, this is only true when we exclude gravitational effects. In the case of a spon-

taneously broken R-symmetry it was shown that supergravity contributions give the R-Goldstone

boson a mass due to a constant term in the superpotential which is needed to set the cosmological

constant to (nearly) zero [149]. It then depends on the various scales in the supergravity theory if

the R-Goldstone mass is compatible with experimental bounds. For the purposes of this thesis we

do not consider gravity effects for breaking the R-symmetry and focus purely on the discussed field

theory reasoning. However, even including supergravity contributions, there are good reasons for

taking the concept of metastable supersymmetry breaking seriously. This is directly linked to the

observation that in many direct mediation models one has to deal with anomalously small gaugino

masses. Generating large enough gaugino masses is directly linked to the vacuum structure of the

theory. Gaugino masses vanish in a stable supersymmetry breaking vacuum at leading order in an

expansion in the supersymmetry breaking order parameter if there is no unstable point anywhere in

the pseudo-moduli space. Therefore, one needs to construct a theory of metastable supersymmetry

breaking vacua such that an unstable point in the pseudo-moduli space is allowed. For further

details see Section 5.6 and also the nice summary in [150]. We will also discuss possible techniques

for R-symmetry breaking in the case of SO(N) metastable ISS-like theories in Chapter 6.

5.4 Some results in supersymmetric QCD

Before we discuss some specific gauge mediation models and the ISS construction of metastable

supersymmetry breaking, we need to review some basic results in supersymmetric QCD theories

and non-perturbative gauge dynamics. Our discussions loosely follow the reviews [133,137] and the

corresponding chapters in [17].

13See [144] - the author could not resist.
14Metastable supersymmetry breaking vacua are also possible for spontaneously broken R-symmetry. As men-

tioned ealier, one can assign generic R-charges to the chiral superfields [143]. Furthermore, one can couple the

effective theory to some broken gauge symmetry [145,146]. Or one can have the case in which the pseudo-moduli are

only lifted by two-loop effects, leading to an R-symmetry breaking [147,148]. We do not consider these possibilities

here.
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5.4.1 Supersymmetric gauge theories

By super-QCD or SQCD we normally mean a supersymmetric gauge theory with gauge group

SU(N)15 and F flavours. In the case of F = 0 we have a supersymmetric Yang-Mills (SYM) theory.

The particle content is given by ‘quark’ chiral superfields Qai in the fundamental representation and

‘anti-quark’ chiral superfields Q̃ai in the anti-fundamental representation of the gauge group with a

flavour index i = 1, . . . , F and a gauge index m = 1, . . . , N in the fundamental or anti-fundamental

representation. The theory has a SU(F ) × SU(F ) × U(1)B × U(1)R global symmetry group. We

summarise the quantum numbers of the chiral superfields in the following table:

Field SU(N) SU(F ) SU(F ) U(1)B U(1)R

Q 1 1 F−N
F

Q̃ 1 -1 F−N
F

Here, and denote the fundamental and anti-fundamental representation, respectively. The

charges of the R-symmetry have been chosen such that the symmetry is non-anomalous. As usual,

the R-charge of the chiral superfield Q is given by the charge of its scalar component φ and the

R-charge of the fermion ψ is R[ψ] = R[φ]− 1 with Q = φ+ θψ+ θ2F . The charges under the other

symmetries are the same for all component fields of Q and Q̃.

For a general gauge theory with matter content in some representations, the β-function of the

gauge coupling at one-loop is given by [151–153]

βg = µ
dg

dµ
= − g3

16π2

11

3
C(Ad)− 2

3

∑
f

C(r)− 1

3

∑
s

C(r)

 ≡ − g3b

16π2
(5.28)

where the sums run over all fermions f and all scalars s of the corresponding theory. The fermions

are in Weyl multiplets and the scalars are complex. For the N = 1 SQCD theory with 2F fermions

and scalars in the fundamental or anti-fundamental and a gluino we have

b = 3N − F . (5.29)

Solving for the running gauge coupling yields for the coupling at an energy scale µ

1

g2(µ)
= − b

8π2
log

( |Λ|
µ

)
(5.30)

where |Λ| is the intrinsic scale of the SQCD theory. Within a supersymmetric theory, the gauge

coupling can be conveniently combined with the ΘYM-angle of the theory which represents non-

perturbative contributions to the action. Recalling the Lagrangian of pure SYM in Section 2.5.2,

L =
1

4g2

∫
d2θ WAαWA

α + h.c. (5.31)

we can incorporate non-perturbative effects by defining the holomorphic gauge coupling16

τ =
4πi

g2
+

ΘYM

2π
. (5.32)

15Other gauge groups are possible and conventionally these theories are also denoted as SQCD ones.
16Unfortunately, different conventions are used in the literature, mainly differing by a factor of 2π. We follow the

conventions of [17].
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Then, the SYM Lagrangian takes the form

L =
1

16πi

∫
d2θ τWAαWA

α + h.c. (5.33)

As usual, one obtains the canonically normalised component expansion by rescaling the component

fields (compare with expression (2.79)). Then, the one-loop running expression of the holomorphic

coupling τ is given by

τ1-loop =
4πi

g2(µ)
+

ΘYM

2π

=
1

2πi

[
b log

( |Λ|
µ

)
+ iΘYM

]
=

1

2πi
log

[( |Λ|
µ

)b
eiΘYM

]
. (5.34)

From this expression we can define the holomorphic dynamical scale Λ of the theory,

Λ = |Λ|eiΘYM/b = µe2πiτ/b −→ τ1-loop =
b

2πi
log

(
Λ

µ

)
. (5.35)

Beyond the one-loop order, the holomorphic gauge coupling receives only contributions from non-

perturbative instanton effects. In perturbation theory, there is no additional running beyond the

one-loop level. For details see for instance [17]. By construction, we can treat Λ as a complex

parameter with the Θ-angle as its phase. Furthermore, from (5.35) we see that

e−8π2/g2+iΘYM =

(
Λ

µ

)b
∼ Λb (5.36)

and hence, one-instanton effects are weighted by Λb since Sinst = −8π2/g2. The fact that Λ is a

holomorphic quantity is important since we can apply the usual ‘Seiberg holomorphy’ construction

like assigning charges to holomorphic quantities.

5.4.2 Classical moduli space

After introducing SQCD, let us move on and explore the classical moduli space of the theory for

different ranges of flavours. As mentioned earlier, it is a useful strategy to solve for the D-terms

first. Therefore, we will ignore any superpotential for the moment. We remind ourselves that

in the case of W = 0 the moduli space arises from solving the D-term constraints only or from

constructing independent, gauge-invariant, holomorphic polynomials [139].

The case F < N : We start with a SU(N) SQCD theory with F < N flavours. Revelant for

the scalar potential are the F ‘squarks’ φai in the fundamental and F ‘anti-squarks’ φ̃ai in the

anti-fundamental representation. Let us first consider the possible gauge-invariant object we can

construct with these fields. Since F < N , the only possibility is to build ‘mesons’ M j
i where we

contract on the gauge indices,

M j
i = φ̃jaφai . (5.37)

Following the Luty-Taylor theorem, the F×F meson field M j
i has (massless) F 2 degrees of freedom

which parameterise the F 2-dimensional moduli space.
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This result can also be obtained by solving the D-flat conditions explicitly. We briefly want to

highlight the main steps. The D-term is given by

DA =
∑
i

φ†iT
Aφi + φ̃†T̃Aφ̃i =

∑
i

[
(φ†)iaφbi − φ̃ia(φ̃†)bi

]
(TA)ba

!
= 0 (5.38)

where a, b = 1, . . . , N and i = 1, . . . , F and the second identity follows from rewriting the anti-

fundamental generators T̃A in terms of fundamental ones, TA = −(TA)∗. Defining a matrix

Na
b =

∑
i

[
(φ†)iaφbi − φ̃ia(φ̃†)bi

]
, the D-flat conditions yield

Na
b = αδab +

∑
A

βA(TA)ab
!
= 0 (5.39)

The SU(N) generators are traceless, hence βA = 0 and we have a solution to the D-flat condition,

Na
b = c0δ

a
b . Using appropriate SU(N) and SU(F ) rotations we can bring the N × F matrices φai

into a form where the first F × F block is diagonal with elements v1, . . . , vF and the remaining

(N − F )× F block has only zero entries. It follows that (φ†)iaφbi must be N ×N diagonal matrix

with (φ†)iaφbi = diag(|v1|2, . . . , |vF |2, 0, . . . , 0). Imposing the D-flat condition with cA = 0 yields

that φ̃ia(φ̃†)bi = diag(|ṽ1|2, . . . , |ṽF |2, 0, . . . , 0), again with N − F zero entries. Since Na
b = c0δ

a
b ,

this can only be true for c0 = 0 and we have |vi|2 = |ṽi|2.

Having F vevs for the squarks, the gauge symmetry is spontaneously broken from SU(N) →
SU(N − F ). This is the supersymmetric version of the well-known Higgs mechanism. Normally, a

massless vector boson ‘eats’ a massless Goldstone boson and becomes massive. In a supersymmetric

theory, and under the condition that the scalar vevs do not break supersymmetry, one has to have

a similar mechanism to ensure mass degeneracy of the bosonic and fermionic degrees of freedom.

In the super Higgs mechanism a massless vector supermultiplet becomes massive by eating the

components of a massless chiral supermultiplet [154].

Due to the spontaneous breaking through F vevs we end up with some broken generators,

[N2 − 1]− [(N − F )2 − 1] = 2NF − F 2 . (5.40)

By the super Higgs mechanism, 2NF − F 2 of the total 2NF chiral superfields are eaten to form

massive vectormultiplets. Hence, some chiral superfields are left over, we have

[2NF ]− [2NF − F 2] = F 2 (5.41)

massless chiral superfields in the theory. Their scalar components parameterise the moduli space

of the SQCD theory. These F 2 light degrees of freedom are exactly the ones described earlier by

the F ×F meson field. Hence, both description lead to the same description of the classical moduli

space.

The case F ≥ N : As before we can solve the D-flat conditions or construct all independent,

gauge invariant, holomorphic polynomials. The D-terms

DA =
∑
i

[
(φ†)iaφbi − φ̃ia(φ̃†)bi

]
(TA)ba

!
= 0 (5.42)
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can be solved similarly to the previous case. Since F ≥ N , the matrices φai have more columns

than rows. By appropriate gauge and flavour rotations the first N ×N block can be brought to a

diagonal form with entries v1, . . . vN and the remaining N × (F −N) block has only zero entries.

Hence, the matrix (φ†)iaφbi is diagonal and of full rank with (φ†)iaφbi = diag(|v1|2, . . . , |vN |2).

Now, the D-flat conditions

(φ†)iaφbi − φ̃ia(φ̃†)bi = ρδab (5.43)

for some constant ρ, yield that φ̃ia(φ̃†)bi is also a diagonal matrix of full rank with φ̃ia(φ̃†)bi =

diag(|ṽ1|2, . . . , |ṽF |2). Hence, we have

|vi|2 = |ṽi|2 + ρ (5.44)

and we can maximally ‘higgs’ N different scalars. At a generic point of the moduli space, the SU(N)

gauge symmetry is completely broken. As before, the concept of the super Higgs mechanism yields

the number of light degrees of freedom which are left-over after the spontaneous symmetry breaking.

We have N2 − 1 broken generators and a total of 2NF chiral superfields in the theory. Therefore,

a total of 2NF − [N2 − 1] massless chiral superfields are left over which parameterise the moduli

space for F ≥ N .

This can also be seen from constructing all possible independent, gauge invariant operators. As

before, we can build scalar ‘meson’ fields but since F ≥ N we can also construct ‘baryons’,

M j
i = φ̃jaφai (5.45)

BiN+1,...,iF = φa1i1 . . . φaN iN εa1...aN εi1...iN iN+1...iF (5.46)

B̃iN+1,...,iF = φ̃a1i1 . . . φ̃aN iN εa1...aN εi1...iN iN+1iF . (5.47)

By the virtue of [139], the description of the moduli space in terms of these gauge-invariant poly-

nomials should match the result of the previous discussion. We have F 2 degrees of freedom from

M and each B and B̃ has
(
F
N

)
components. This gives F 2 + 2

(
F
N

)
> 2NF − [N2 − 1]. Hence, we

have over counted the light degrees of freedom by not considering classical constraints between the

composite operators. For instance, multiplying two Baryons yields the relation

BjN+1...jF B̃iN+1...iF = εi1,...,iN ,...,iF ε
j1,...,jN ,...,jF

(
M j1
i1
. . .M jN

iN

)
. (5.48)

Furthermore, the product of a Baryon and the Meson field gives zero: Anything antisymmetrised

with more than N colour indices ai vanishes.

We end this section by briefly looking at a specific example. Let us consider the case of F = N .

We have N + 2
(
N
N

)
= N2 + 2 possible gauge-invariant polynomials. Breaking the SU(N) gauge

symmetry completely leaves N2+1 massless chiral superfields. Since all baryons are flavour singlets,

the classical constraint (5.48) yields

BB̃ = detM (5.49)

which is the needed relation between the gauge-invariant polynomials.
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5.4.3 Pure super-Yang-Mills, F = 0

Although not the focus of this thesis, we briefly summarise the dynamics of a pure Yang-Mills theory

with N = 1 supersymmetry. Let us start by considering the global symmetries of the theory. Here,

the U(1)R symmetry, under which λ→ eiαλ, is anomalous since we do not have any flavours in the

theory to build a non-anomalous R-symmetry. An explicit calculation of the triangle diagram with

the gaugino (the only fermion of the theory) running in the loop shows that the anomaly coefficient

is indeed non-zero. However, a Z2N subgroup of the U(1)R is left unbroken in the quantum theory.

The pure gauge theory is characterised by a dynamical scale Λ at which the theory is believed

to confine. The initial massless particles form condensates and the theory develops a mass gap.

This is similar to the case of usual QCD: the strongly interacting fermions of the theory (quarks)

undergo pair condensation and combine into massive colour-singlet bound states. For pure SYM,

the gaugino condensate is given by

〈λAλA〉 = aΛb/N = aΛ3 (5.50)

where a is a constant which can be calculated, see the discussions in [155–157]. The formation of

this condensate spontaneously breaks the discrete Z2N symmetry since under the symmetry

〈λAλA〉 −→ e2iα〈λAλA〉 (5.51)

which is only invariant for α = kπ/N with k = 0 or equivalently k = N . Only a discrete Z2

symmetry is left over. The pure SYM theory has N degenerate but distinct vacua.

5.4.4 The ADS superpotential, F < N

The classical moduli space of the theory with flavours F < N was discussed in Section 5.4.2. In a

next step we want to write down the effective superpotential representing the low energy dynamics.

It is described by the gauge-invariant chiral superfields of the theory. The generated superpotential

should respect all global symmetries. These are the non-anomalous ones discussed in Section 5.4.1

and additionally an anomalous U(1)A symmetry. We can construct the effective superpotential out

of the chiral superfields WA and M as well as the holomorphic scale Λ. Here, Λ transforms under

the anomalous abelian global symmetries due to the transformation of ΘYM. A detailed analysis of

the invariance under all global symmetries yields the Affleck-Dine-Seiberg (ADS) superpotential

WADS = CN,F

(
Λ3N−F

det M

)1/(N−F )

. (5.52)

This superpotential is generated by non-perturbative effects as one can see from the positive power

of Λ. It was first discussed in [158] and studied further in [159].

One can perform various consistency checks on the ADS superpotential by deforming the original

SQCD theory. The idea is here to perturb the UV limit of the theory and check for the consequence

of the perturbation on the low energy theory. This can be done by ‘higgsing’ a squark field and

adding a mass term for specific flavours such that the low energy effective theory is described by a

different N ′ and/or F ′. For instance, by giving a vev v to one squark we end up with a low energy
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higgsed theory with gauge group SU(N − 1) with (F − 1) flavours. In the spirit of the Wilsonian

renormalisation flow we can match the two theories at the scale v and obtain

(ΛN,F )3N−F = v2(ΛN−1,F−1)3(N−1)−(F−1) . (5.53)

A similar approach can be used to match the scales after introducing a mass term for a single flavour

into the theory. The outcome of these consistency checks is a relation between the coefficients CN,F

and CN ′,F ′ . To obtain an expression for the coefficient one needs to know the explicit value of CN,F

for any particular pair of (N,F ). This can be achieved by considering the case of F = N − 1 where

the gauge group is completely higgsed. Here, one has WADS ∼ Λb such that the superpotential

can be generated by instantons. A detailed analysis of this case yields CN,N−1 = 1. This theory

is special since for F < N − 1, and after introducing F vevs for the squarks, the gauge group is

never completely broken. Hence, the resulting SYM theory is asymptotically free and the ADS

superpotential is generated by gaugino condensation. The upshot of all these consistency limits of

the ADS superpotential is a result for the coefficient CN,F . One finds that the superpotential is

given by

WADS = (F −N)

(
Λ3N−F

det M

)1/(N−F )

. (5.54)

For further information and detailed derivations of the above results we refer the reader to the

literature, for instance to the corresponding chapters in [17] or [130].

Finally, let us briefly discuss which vacuum structure the ADS superpotential induces. The

scalar potential for F < N is given by

VADS =

∣∣∣∣∂WADS

∂M

∣∣∣∣2 ∼ |M | −2N
N−F . (5.55)

Hence, the potential is minimised for 〈M〉 → ∞ and we have a so-called run-away vacuum, the

quantum theory does not have a ground state. We find that the quantum effects (the dynamical

WADS) in the SQCD theory completely lift the classical moduli space. However, by adding a tree-

level mass term to the superpotential, a minimum is generated for finite 〈M〉 and we avoid the

run-away vacuum. If we add a mass term

Wtree = mi
jM

j
i (5.56)

for all flavours and integrate them out, we end up with a pure SYM theory. A detailed analysis of

the full superpotential shows that the minimum is found at a vev [158]

〈M j
i 〉min = (m−1)ji (det m Λ3N−F )1/N . (5.57)

Taking the Nth root shows explicitly that there exist N distinct vacua in the SYM theory. Although

constructed in the case of F < N , this result holds for general F since one can always integrate

out enough flavours such that we end up with F ′ < N .

5.4.5 The special cases F = N and F = N + 1

For all theories with F ≥ N , the ADS superpotential cannot be generated since it blows up in the

weak coupling limit Λ→ 0. In general, we can distinguish four interesting regimes, namely the cases
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F = N,F = N + 1, N + 2 ≤ F ≤ 3
2N and 3

2N < F < 3N . For F ≥ 3N we lose asymptotic freedom

and have an ‘ordinary’ weakly coupled SQCD theory which can be described perturbatively.

We begin with the special case of F = N . Here, the moduli space is parameterised by F 2

meson fields and the two baryons B and B̃. Classically, we have the constraint (5.49). We see

that at the origin of the moduli space we have a conical singularity associated with the undefined

phase of the complex fields M,B and B̃. Here, the gauge group is completely unbroken and we

have massless gluons in the theory. So what happens in the quantum theory where we do not

have a dynamically generated superpotential? In general, the absence of a superpotential indicates

that the moduli space persists in the quantum theory. However, the classical constraint between

the fields parameterising the moduli space might be modified. We can analyse the constraint by

considering the massive theory where the meson vev is given by the relation (5.57). For F = N we

can consider the det〈M〉 and find

det〈M〉 = Λ2N , (5.58)

independent of m. However, for det m 6= 0 we can integrate out all fields with non-zero baryon

number, yielding 〈B〉 = 〈B̃〉 = 0. This is not fulfilled in the classical moduli space. A detailed

analysis (see for instance [17] and for further details [160]) shows that the constraint of the quantum

moduli space is given by

detM −BB̃ = Λ2N . (5.59)

Hence, the origin is not part of the quantum moduli space and there is no point on the moduli

space with unbroken gauge symmetry. In addition, since all gauge-invariant operators are charged

under the global symmetries (up to the R-symmetry), at a generic point on the moduli space some

global symmetries are also broken. The quantum modified constraint can be used to write down

a superpotential of the quantum theory which give rise to the correct equations of motion. One

usually introduces a Lagrange multiplier field X and writes [108]

WQM = X
(

det M −BB̃ − Λ2N
)

(5.60)

Interestingly, this superpotential yields the correct ADS superpotential of a theory with F ′ = N−1

by introducing a mass term for the Nth flavour of the F = N theory, providing a useful consistency

check.

Let us move on by considering the second special case of F = N +1. The classical moduli space

is again given by F 2 mesons and 2F baryons (baryons + anti-baryons) under the constraints

M j
i B

i = B̃jM
j
i = 0 , BiF B̃jF = (M−1)ij det M . (5.61)

Introducing tree-level masses for the chiral superfields we have again the vev (5.57) and 〈B〉 =

〈B̃〉 = 0. It follows that the classical constraints are satisfied in the massless limit m → 0 and

hence, persist quantum mechanically [108]; the classical and quantum moduli space are identical.

The origin is part of the quantum moduli space and additional massless degrees of freedom exist

there. Classical one has massless gluons and gluinos (see also the case F = N) but since the

quantum theory is strongly coupled and confines at the origin, it is sensible that one has massless
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mesons and baryons. These specific composite fields are removed anywhere else on the moduli

space by the constraints (5.61). This interpretation is strongly supported by considering the so-

called ’t Hooft anomaly matching [161]: The anomalies of the theory’s global symmetry currents

computed in terms of the composite meson and baryon fields and in terms of the fundamental fields

match. Since the origin lies on the quantum moduli space, the chiral symmetry is not broken at

this point and gives additional constraints from the anomaly matching. An important difference

to the F = N case is that here, one has a dynamical superpotential which includes an interaction

between the mesons and baryons. One can show that

W =
1

Λ2F−3

(
B̃jM

j
i B

i − det M
)

(5.62)

is the correct superpotential, being invariant under all the symmetries [108]. The quantum (= clas-

sical) constraints (5.61) can be reproduced from this superpotential by considering the equations of

motions of the composite fields. The case of F = N +1 is an example of a so-called s-confining the-

ory [162], namely a theory with a dynamical superpotential and confinement without the necessity

of chiral symmetry breaking.

5.4.6 Seiberg duality and conformal fixed points, N + 1 < F < 3N

If we increase the number of flavours F further to F ≥ N + 2, the classical moduli space is again

given by F 2 mesons and a set of baryon fields. One can show that the quantum moduli space is

equal to the classical one, especially the origin is part of the quantum theory. Again, we should ask

ourselves how to interpret the singularity at M = B = B̃ = 0. Unfortunately, we cannot repeat

the story of the previous section: A dynamical superpotential consistent with all symmetries (such

that the quantum constraints arise as equations of motion) diverges at the origin. Since also the ’t

Hooft anomaly matching conditions are not satisfied when one considers only the composite fields

M,B and B̃, additional light degrees of freedom must be present.

This puzzle was solved by Seiberg’s proposal [103] where he suggested that the original SQCD

theory is dual to another gauge theory with the same global symmetries but with a different gauge

group SU(Ñ) where Ñ = F −N . A physical interpretation for the appearance of Ñ is given by the

fact that one can see the F −N baryons BiN+1,...,iF and B̃iN+1,...,iF of the original theory as bound

states of Ñ components which in turn are the fundamental fields in the dual theory. For reasons

which become apparent shortly, Seiberg denoted these dual component fields as ‘magnetic quarks’

q and q̃. Additionally, we have the meson field M as a fundamental object. The dual fields have

the following quantum numbers under all symmetries:

Field SU(F −N) SU(F ) SU(F ) U(1)B U(1)R

q 1 N
F−N

N
F

q̃ 1 − N
F−N

N
F

M 1 0 2F−NN



5.4. Some results in supersymmetric QCD 119

In Seibergs proposal, the superpotential of the ‘electric’ theory vanishes in the limit of zero masses

whereas the dual ‘magnetic’ theory has the superpotential [103]

Wmag =
1

Λ̂
qMq̃ (5.63)

where Λ̂ is some characteristic scale such that the superpotential can be written in terms of the

original meson field M . The scale of the electric theory Λel and the magnetic theory Λmag matches

as

Λ3N−F
el Λ3(F−N)−F

mag = (−1)F−N Λ̂F . (5.64)

The precise form is not so important for us, however, what is important is the fact that ΛbelΛ
b̃
mag =

const. This gives the precise reason for calling the theories ‘electric’ and ‘magnetic’ since we have

a strong-weak duality here, similar to the well-know one in electro-magnetism. As an important

check of Seibergs proposal, one can use the fermion content of the dual theory (the dual quarks

ψq, ψq̃, the mesinos ψM and the gaugino λ̃) to show that the anomaly matching conditions are

fulfilled [103], see also the discussions in [130].

After identifying the dual theory, it is natural to ask if this description holds for arbitrary

F > N + 117. We have already mentioned that for F > 3N the original theory becomes IR free,

i.e. we have a theory of weakly coupled chiral (quarks) and vector (gluon) supermultiplets. To

understand the behaviour of the dual theory, it is useful to consider the original theory just below

the point F = 3N . By considering a large N limit, it was shown by Banks and Zaks [163] using

general gauge theory properties that there exists a non-trivial fixed point g∗ of small coupling. For

SQCD with F = 3N − εN , the perturbative fixed point is given by

g2
∗ =

8

3
π2 N

N2 − 1
ε (5.65)

where ε � 1. Without any mass terms, the theory is scale-invariant at the fixed point g∗. For

theories with particles of spin less than 2, this actually implies conformal invariance [164]. When

considering supersymmetric theories, the conformal algebra is extended to a superconformal one18.

For a superconformal theory, near a fixed point, all scalar gauge-invariant operators must have a

dimension greater or equal to one [165]. In the large N limit, the meson’s dimension is given by

dim(M) = dim(QQ̃) = 2 + γ = 3
F −N
F

(5.66)

with R[Q] = R[Q̃] = (F −N)/F and γ as the meson’s anomalous dimension. From this we get a

lower bound on the region of flavours where we expect a fixed point in the superconformal theory,

F/N > 3
2 . Seiberg suggested that a non-trivial conformal fixed point exists not only away from

the limit of ε << 1 but rather in the whole range of 3
2N < F < 3N [103], the so-called conformal

window. Theories in this range are UV free, however, the coupling does not diverge in the IR

but rather flows to a fixed point g∗. Hence, we have an interacting conformal theory with no

confinement.

17Note that for the case F = N + 1 the Seiberg dual gauge group is empty. However, as we have seen, some sort

of a simple duality is also happening in this case. The mesons and baryons describe the theory near the origin of

the moduli space.
18For an introduction see for instance [17] or the lectures [141].
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A similar analysis holds for the dual theory. From the coefficient b̃ of the one-loop beta-function

one finds that the magnetic theory is IR free when F < 3
2N . For F slightly above 3

2N (equivalent

to F = 3Ñ−εÑ), a perturbative fixed point g̃∗ exists here as well in the limit of large Ñ . Assuming

that this fixed point exists away from F ≈ 3
2N in the dual theory yields the following picture: The

original theory flows to an interacting fixed point in the IR in the range of 3
2N < F < 3N where

the coupling is weak for F close to 3N and becomes stronger as F moves down towards 3
2N . In

the same range of 3
2N < F < 3N , the dual theory flows also to an IR interacting fixed point,

however, the dual coupling is weak for F close to 3
2N and gets stronger as F is increased! Seiberg’s

conjecture states that the two conformal IR fixed points can be identified with each other, leading

to a strong-weak duality in the conformal window: if one of the two theories is strongly coupled,

the other one is in its weakly coupled regime. This duality only holds in the IR! Both theories are

different in the UV, there is no relation between them for high energies.

We see that Seiberg’s IR duality proposal holds in the range of 3
2N < F < 3N . For F ≤ 3

2

the original theory is strongly coupled. However, in this range, asymptotic freedom in the dual

theory is lost. The magnetic theory is IR free and the non-trivial IR fixed point vanishes, we are

left with the trivial IR fixed point. Here, the dual theory makes sense only for energies below a UV

cutoff. Therefore, in the range of N+2 ≤ F ≤ 3
2N the Seiberg duality proposal can be summarised

as follows: The original theory is UV free and hence strongly coupled in the IR. However, the

dual theory is weakly coupled in the IR and Seiberg duality tells us that both theories flow to

the same IR physics but are different in the UV. Since the magnetic theory is weakly coupled for

N +2 ≤ F ≤ 3
2N , it is best to describe the physics by the IR free theory. It is this range of flavours

that we will be interested in when discussing the ISS construction of metastable gauge meditation

in the next section.

5.5 The ISS Model of supersymmetry breaking

The work which has recently invigorated the field of gauge mediated supersymmetry breaking is

the work of Intriligator, Seiberg and Shih (ISS) [129]. It is based on the simple but sweeping

assumption of accepting supersymmetric vacua in a phenomenological viable theory of broken

supersymmetry. As we have seen in Section 5.3 this is tied to an explicitly broken R-symmetry

in the theory. Models with metastable SUSY-broken states have been studied before. In the

early eighties, the authors of [166] considered a metastable vacuum in a classical theory. Later on,

metastable vacua were discussed in theories with pseudomoduli space that are modified by quantum

corrections [167]. Further, more recent examples of models with metastable SUSY-broken states

include [168, 169]. Although accepting true supersymmetric vacua in phenomenological theories

made their construction much easier, many of the models had the drawback of not being under

control in the IR limit. In addition, the metastable states often appeared ‘accidentally’ and one had

to justify their existence by arguing for a long enough lifetime of the false vacua. The novelty of the

ISS approach was the acceptance of metastable SUSY-broken vacua right from the beginning. Most

importantly, the main phenomenological requirement of a long-lived metastable state is fulfilled by

the ISS construction. The metastability of the states is controlled by a small parameter ε which is
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given by the ration of a mass and a dynamical scale, ε = µ/Λmag. By taking ε→ 0 one can ‘control’

the amount of metastability in the theory.

The big advantage of the ISS construction is the control of the theory in the IR limit. This is

important since the metastable states occur near the origin of the field space. By the means of

Seiberg duality, this macroscopic IR free theory can be identified with a microscopic UV free SQCD

theory and hence, the construction is rather involved: The model relies on SQCD with the right

range of flavours with an extensive number of (matrix-valued) fields transforming under the large

SQCD symmetry group. We will therefore only summarise the main results of this model and focus

on the parts which provide some intuition for our discussion of SO(N) based ISS constructions in

the next two chapters. For more detailed information and derivations of results we refer the reader

to the original paper [129] and the lectures [133]. We will follow mainly the discussions in [129,137]

and try to stay as close as possible to the original ISS notation19. It is instructive to provide a brief

overview of the ISS model. Its construction can be summarise in three main steps:

• Consider an IR free theory of chiral superfields only where supersymmetry is broken at tree-

level by the so-called rank condition. ISS call this the macroscopic model I.

• Gauge one of the global symmetry groups such that gauge superfields are present in the

theory. We end up with a SQCD like theory which posseses supersymmetric vacua. The

gauging should happen such that the susy-broken vacua are preserved, resulting in metastable

supersymmetry breaking in the macroscopic model II.

• Use the Seiberg duality to identify the IR free SQCD-like theory with its electric dual de-

scription which is strongly coupled in the considered range of flavours. This identification

establishes dynamical metastable supersymmetry breaking in the UV free microscopic model.

Since we have discussed Seiberg dual theories already in Section 5.4.6, it is instructive to start

directly with the microscopic theory. ISS considered a SU(Nc) SQCD model with flavours in the

range Nc + 1 ≤ Nf < 3
2Nc with massive quark superfields such that the superpotential of the

electric theory is given by20

Wel = mTr[Q · Q̃] . (5.67)

Assuming the masses to be much smaller than Λel, the electric mass term arises in the dual theory

as an additional term in the superpotential. Hence, the magnetic theory is described by [103]

Wmag =
1

Λ̂
Tr[qMq̃] +mTrM (5.68)

with a Kähler potential

K =
1

β
Tr[q̃†q̃ + q†q] +

1

α|Λel|
Tr[M†M ] . (5.69)

19It is therefore sensible to slightly change notation, compared to our notation in Section 5.4: From now on we

refer to the number of flavours by Nf while denoting the number of colours by Nc and the difference in Nf and Nc

by N = Nf −Nc.
20For simplicity we assume equal quark masses.
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The scales of the electric and magnetic theories matches as in relation (5.64), here Λmag plays the

role of an UV cutoff. Setting β = 1 and identifying

M =
√
αΛelΦ , q = ϕ , q̃ = ϕ̃

h =
αΛel

Λ̂
, µ2 = −mΛ̂ (5.70)

yields a canonical Kähler potential and a superpotential

Wmag = hTr[ϕΦϕ̃]− hµ2TrΦ (5.71)

in terms of the new fields Φ, ϕ and ϕ̃. Here, h is a dimensionless constant and µ has dimensions of

a mass. The only free parameters of the theory are h and µ. Due to Seiberg duality, the new fields

are charged under the symmetries as

Field SU(N = Nf −Nc) SU(Nf ) SU(Nf ) U(1)B U(1)A U(1)R

ϕ 1 1 1 0

ϕ̃ 1 -1 1 0

Φ 1 0 -2 2

This theory is precisely the one which ISS discussed as their macroscopic model I where all symmetry

groups are global ones [129]. We note that for µ 6= 0, the global symmetries SU(Nf )×SU(Nf )×U(1)A

are explicitly broken to their diagonal subgroup SU(Nf )D.

Let us stick to this chiral model with only global symmetries for a moment. In order to check if

supersymmetry is broken we have to consider the F-terms of the superpotential. For instance, the

F-term of Φ is given by −(F †Φ)ij = hϕiϕ̃j − hµ2δij which is a Nf × Nf matrix relation. The first

term has rank N whereas the second term has rank Nf . Since N < Nf , the F-term cannot vanish

and hence, supersymmetry is spontaneously broken by the rank condition! If we calculate the full

scalar potential of the theory, we find find that it is minimised along a classical moduli space of

Φ =

 0 0

0 X0

 , ϕ =

 ϕ0

0

 , ϕ̃T =

 ϕ̃0

0

 , with ϕ̃0ϕ0 = µ2IN . (5.72)

Here, X0 is an arbitrary (Nf −N)× (Nf −N) matrix field whereas ϕ0, ϕ̃0 are N ×N fields. The

minimum occurs for

Vmin = (Nf −N)|h2µ4| . (5.73)

The transformations of the component fields under the global symmetries for µ 6= 0 are

Field SU(N) SU(N)f SU(Nf −N)f

Φ =

 YNxN ZTNf -NxN

Z̃NxNf -N XNf -NxNf -N

 (
1

)  Adj + 1

1


 1

Adj + 1


ϕ =

 χNxN

ρNf -NxN

 ( ) 
1


 1


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where a similar decomposition holds for ϕ̃. In the moduli space, the vacua with the maximal

unbroken subgroup of the global symmetries are given by

X0 = 0 , ϕ0 = ϕ̃0 = µIN . (5.74)

Here, the global symmetries are spontaneously broken down to SU(N)×SU(Nf )D×U(1)B×U(1)R →
SU(N)D × SU(Nf −N)× U(1)B′ × U(1)R. These vacua are also stable when considering quantum

corrections [129], namely the one-loop corrections to the effective theory of the pseudo-moduli.

Since the quantum corrections lift the moduli space elsewhere, they drive the theory into the vacua

(5.74).

In order to compute the one-loop effective potential of the pseudo-moduli, one has to calculate

the one-loop correction to the vacuum energy, the so-called Coleman-Weinberg effective potential,

given by

VCW =
1

64π2
STr M4 log

M2

Λ2
=

1

64π2

(
Tr m4

B log
m2
B

Λ2
− Tr m4

F log
m2
F

Λ2

)
(5.75)

where mB and mF are the mass eigenvalues of the bosonic and fermionic mass matrices of the

theory. Hence, to compute VCW we need to know the spectrum of the theory. For the ISS model,

this is quite an involved task and we refer the reader to the original paper for detailed derivations.

Here, we briefly summarise the results: Firstly, most component fields get tree-level masses of the

order |hµ| from the relevant terms of the scalar potential. We also have massless scalars in the

spectrum, namely the Goldstone bosons from the spontaneously broken symmetries and the fields

which are fluctuations around X0 and ϕ0−ϕ̃0 of the classical moduli space. Whereas the Goldstone

fields stay exactly massless, the pseudo-moduli acquire masses from the one-loop effective potential.

A detailed analysis shows [129]

m2
δX0

= |h4µ2| log 4− 1

8π2
N ,

m2
δ(ϕ0−ϕ̃0) = |h4µ2| log 4− 1

8π2
(Nf −N) . (5.76)

Let us now weakly gauge the SU(N) group such that the macroscopic model II can be identified

with the magnetic dual theory of SU(Nc) massive SQCD. The potential gets a D-term contribution,

however, in the vacuum 5.74 the D-terms vanish. Hence, the gauging does not effect the supersym-

metry broken minimum. Due to the vevs of ϕ and ϕ̃, the gauge symmetry is completely broken and

N2 − 1 of the former Goldstone bosons are eaten. The gauge fields acquire mass gµ. Furthermore

N2 − 1 of the pseudo-moduli, associated with the fluctuations δ(ϕ0 − ϕ̃0), get a mass gµ from the

D-term potential. In addition, the gauging of SU(N) does not destabilise the vacua 5.74 since the

effect of the gauge fields drops out in the Coleman-Weinberg calculation (5.75).

However, gauging a global symmetry introduces new supersymmetric vacua at large values of

the meson vev 〈Φ〉 of the macroscopic model II. This can be seen as follows: For any non-zero

mesons vev the fields ϕ and ϕ̃ obtain a mass h〈Φ〉 and one can integrate them out below that scale.

Hence, the low energy theory is just a pure SYM theory with gauge group SU(N) which is described

by an effective superpotential21 W = N(Λ3N
L )1/N [103]. Matching the running gauge coupling of

21As usual, the holomorphic scale ΛL is promoted to a background chiral superfield.
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the theory to energies above the mass scale but below the UV cutoff Λmag yields an additional

term in the superpotential from the pure SYM theory. The low energy theory is described by the

superpotential

W = N(hNfΛ3N−Nf
mag det Φ)1/N − hµ2Tr Φ . (5.77)

By considering the corresponding field equations, we find Nf−N = Nc supersymmetric vacua [129]

〈Φ〉 =
Λmag

h
ε2N/(Nf−N)INf (5.78)

where ε = µ/Λmag. For ε� 1 we have a hierarchy of |µ| � |〈hΦ〉| � |Λmag|. Hence, in the limit of

small ε (this corresponds to a large but finite Λmag ), the vacua of broken supersymmetry near the

origin are far away from the supersymmetric ones and parametrically long lived. This statement

can be made precise [129] by estimating the decay of the metastable vacua through a semi-classical

field theory decay where the decay probability is given by e−S with S is a ‘bounce’ action [170].

By analysing the potential and using a triangle potential barrier [171], the bounce action for ‘pure’

ISS can be estimated by

S ≈ (∆Φ)4

Vpeak
≈
(

Λmag

µ

)4
(Nf−3N)

Nf−N

� 1 . (5.79)

Here, ∆Φ is the difference between the SUSY-broken and supersymmetric vacua in the meson vev

and Vpeak is the value at the potential at its local maximum.

In a final step, one uses Seiberg duality to obtain a UV completion for the now gauged macro-

scopic theory such that the construction is valid for arbitrary high energy. We have already men-

tioned the identification of electric and magnetic degrees of freedom at the beginning of our dis-

cussion. Now, we have come full circle. The electric description, valid for energies E > Λmag, is an

SU(Nc) SQCD theory with Nf flavours in the range of Nc + 1 ≤ Nf <
3
2Nc which breaks super-

symmetry non-perturbatively in a metastable state near the field space origin. This is dynamical

supersymmetry breaking in a strongly coupled region of the N = 1 SQCD theory! By the advances

of Seiberg duality one obtains an effective description such that supersymmetry breaking can be

explored in a perturbative fashion.

The ISS model was originally construction for theories with SU(N) groups. The authors of [129]

also generalised the model to theories with SO(N) and Sp(N) groups. In the Chapters 6 and

7 we will provide a detailed discussion on the SO(N)-ISS construction where we also consider

various deformations of the ‘vanilla’ ISS model. Having discussed the important steps in the ISS

construction we are ready to move on: In the next section we review some aspects of the gauge-

mediated approach of supersymmetry breaking and how the ISS models fits into this setting.

5.6 Gauge mediated supersymmetry breaking

If we request that supersymmetry is broken at low energies, then gauge mediation offers an attrac-

tive framework for mediating the SUSY-broken spectrum to the supersymmetric SM. As we have

already mentioned in Section 5.1.3, in this construction the gauge interactions of the SM transmit

the SUSY-breaking effects. In order to separate the hidden from the visible sector, messenger
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superfields are introduced which inherit a SUSY-broken spectrum by directly coupling to a super-

symmetry breaking theory. Since non-gravitational interactions are used for mediating between the

two sectors, any gravity contributions are negligible and no flavour problems arise.

The gauge mediation setup originated with the pioneering works [172–174] in the early 1980s.

Later on, in the important works [175–177] gauge mediation models with stable dynamical super-

symmetry breaking22 were constructed. Phenomenological investigations of these ideas followed in

the 1990s, see the ‘canonical’ gauge mediation review [178]. As we have discussed in the previous

section, a rather radical new approach to dynamical supersymmetry breaking was the Intriligator-

Seiberg-Shih model [129]. In the years following its publication, a vast amount of different gauge

mediation models using the ISS construction were developed. However, modifications of the vanilla

ISS model are needed in order to obtain a phenomenological viable particle spectrum. We will

return to this issue in Section 6.2.

Let us briefly review how a gauge-mediated model is constructed. One usually starts with

the sector which breaks supersymmetry. The simplest approach is to consider a O’Raifeartaigh

model [142] which breaks supersymmetry by a non-zero F-term. For the rest of the thesis we will

consider an ISS-like theory as the hidden sector model but right now, the details of the SUSY

breaking theory are not important. All we need is a chiral superfield X in the hidden sector which

breaks supersymmetry by a vev

〈X〉 = M + θ2F . (5.80)

We then couple the hidden sector with broken supersymmetry to the supersymmetric SM. More

precisely, we introduce messenger fields which are charged under the gauge groups of the visible

sector. Since the messengers should have a SUSY-broken spectrum, we need to couple them directly

to the hidden sector. Furthermore, these newly introduced fields need to be sufficiently heavy to

fulfill experimental bounds. In a minimal setup one therefore introduces two chiral superfields ϕ and

ϕ̃ in complete vector-like representations of a GUT SU(5) gauge group23, i.e. the fields transform

as a 5 and 5 of SU(5) such that large enough (Dirac) masses are possible. The messenger fields get

a SUSY-broken spectrum from the hidden sector superpotential

Wmess = Xϕϕ̃ (5.81)

where X is the spurion whose vev breaks supersymmetry. The fermionic components of the mes-

sengers get a mass of M while the scalar components have a split spectrum with a squared mass

of m2 = M2 ± F . In order to obtain positive squared masses we require F < M2.

The coupling of the messenger fields ϕ and ϕ̃ to the SM gauginos and sfermions now lifts the

masses of the SM partner fields such that they can be sufficiently heavy. The gaugino masses are

generated at one-loop by tree-level couplings between messenger fermion, messenger scalar and

SM gaugino. The masses of the SM sfermions are only generated at two-loop order. A detailed

22For detailed discussions see for instance [137,138].
23A SU(5) gauge group is not a strict requirement but merely a ‘nice thing to have’, also as a book-keeping tool.

We will stick to the SU(5) language in the following.
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calculation [179] yields

mλi =
αi
4π
n
F

M
g(x) , (5.82)

mf̃ = 2n
F 2

M2

∑
i

(αi
4π

)2

Cif(x) , (5.83)

where αi is the coupling constant for SU(3),SU(2) and U(1)Y respectively, n is the number of

messenger pairs ϕ and ϕ̃ (n = 1 for the most minimal construction) and Ci are the quadratic

Casimirs of the relevant scalar representation. Furthermore, the functions f(x) and g(x) are given

by

f(x) =
1

x2
[(1 + x) log(1 + x) + (1− x) log(1− x)] , (5.84)

g(x) =
1 + x

x2

[
log(1 + x)− 2Li2

(
x

1 + x

)
+

1

2
Li2

(
2x

1 + x

)]
+ (x→ −x) , (5.85)

with x = F/M2 < 1. Quite often we assume a small splitting between for the scalar masses which

corresponds to the limit F � M2 or x � 1. In that limit, the functions are approximately one,

f(x), g(x) −→ 1 for x � 1, and we find that not only the generated scalar and gaugino masses

are of the same order in the gauge couplings but we also have mf̃ ∼ mλ. Furthermore, we have a

distinct mass hierarchy where coloured superpartners are heavier than those charged under SU(2)L

and U(1)Y . Interestingly, this is independent of the dynamics in the hidden sector or the messenger

fields, at least in the limit of F �M2. Let us also mention that the previous results (5.82) which

were extracted from an explicit diagrammatic calculation [179] can also be obtained, in the limit

F � M2, from a consideration based on holomorphy and wave function renormalisation. For

details on this approach see the original work [180] and the follow up publication [181].

The minimal gauge mediation model we briefly discussed above is part of a general class of

so-called ordinary gauge mediation (OGM) models. In this construction, a hidden sector field X

obtains a vev through a non-specified mechanism and couples to a set of vector-like messenger fields

via Yukawa interactions of the form

WOGM = λijXϕ
iϕ̃j , (5.86)

where 〈X〉 = M + θ2F . Although these constructions were successful in terms of separating the

SUSY-breaking dynamics from the visible sector with a low SUSY-broken scale, the messenger

sector was quite arbitrarily introduced. Attempts to simplify the structure of gauge mediation

models led to constructions where the messenger fields themselves participate in the supersymmetry

breaking. These models are usually denoted as direct gauge mediation (DGM). Here, the messengers

are part of the hidden sector and play a role in the breaking of supersymmetry. In order to couple

them via gauge interactions to the supersymmetric SM we gauge one of the global symmetry groups

of the hidden sector and identify a subgroup with the SU(3)× 2×U(1) of the SM. In general, this

is possible for hidden sectors with a large global symmetry group, like the ISS magnetic theory.

However, due to additional matter fields in the now gauged flavour group, the running of the SM

gauge couplings is affected. It is then a question of careful model building to avoid a running of

the couplings into the strong coupling regime before the GUT scale, usually denoted as the Landau
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pole problem of direct mediation models. For further discussions on direct gauge mediation and

models in the pre-ISS area we refer the reader to the literature, see for instance the review in [135]

and reference therein.

The realisation that metastable states can be well incorporated in models of gauge mediation

not only led to a vast amount of different gauge-mediated constructions utilising the ISS model and

a return of the modular OGM idea, but also triggered some new approaches to gauge mediation

itself. One of the ideas developed in the post-ISS days is the semi-direct gauge mediation model of

Seiberg, Volansky and Wecht [182]. In this construction there is no separate sector of messenger

fields, the messengers are part of the hidden sector. However, they do not contribute in the breaking

of supersymmetry. Next, a group of authors (Cheung, Fitzpatrick and Shih) generalised [183] the

OGM construction by introducing a number of singlets Xk in the hidden sector that couple to the

messengers to all possible renormalisable couplings, yielding the extra-ordinary gauge mediation

(EOGM) superpotential

WEOGM =
(
λ

(k)
ij Xk +mij

)
ϕiϕ̃j . (5.87)

From this starting point, generalised results for gaugino and sfermion masses could be derived [183].

We will return to these EOGM results for the SM superpartner masses in Chapters 6 and 7 where

we utilise them for SO-based ISS models. One of the most recent developments for gauge-mediated

models is a framework denoted as general gauge mediation (GGM). In this work, Meade, Shih and

Seiberg [184] defined the most general approach to gauge mediation. Whereas before the OGM

construction was only valid in the cause of weakly coupled messenger fields, the general gauge

mediation framework describes also strongly interacting hidden sectors. GGM is defined as the

class of models for which the hidden sector decouples in the limit of vanishing SM couplings, i.e.

αi → 0. The authors of GGM could describe a general SUSY-breaking sector by utilising two-point

functions of gauge supercurrent correllators, yielding that SM gaugino and sfermion masses are

governed by three complex and three real parameters [184]. For further details24 see for instance

the nice review in [136].

Finally, let us briefly review gauge mediation models based specifically on the ISS framework.

The metastable vacua approach provides an attractive possibility for gauge mediation model-

building since the phenomenologically difficult requirement of having no supersymmetric vacua

in the theory is avoided. In principle, one can use the ISS model as the hidden sector theory which

breaks supersymmetry and then couple it via gauge interactions to the supersymmetriy SM, for

instance via modular gauge mediation (OGM) or via models of direct mediation. Because of the

large flavour symmetry group of the perturbative ISS description, the direct mediation approach was

mainly considered in the last years. The first works appeared quickly after the original ISS paper.

In [185] the importance of metastable states to circumvent the problems related to R-symmetries

are discussed, see also our related review in Section 5.3. Then Kitano, Ooguri and Ookouchi (KOO)

developed a direct mediation model which is directly based on the ISS construction [186]. Another

ISS-based direct mediation construction was discussed in [187] which utilised a Nf = Nc+1 SQCD

theory for the hidden sector. These are just some of the early attempts of using metastable states

24We also provide some information in Appendix C.
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for gauge-mediated phenomenological constructions. For a more complete list we refer the reader

to the nice review of [137].

However, all gauge mediation constructions based on the ISS model face three obstacles when

one tries to build a phenomenological viable model. This forces one to modify the vanilla ISS

construction, usually by deforming the superpotential of the theory. Firstly, the ISS model has an

(approximate) R-symmetry which forbids gaugino masses in the SUSY-broken metastable vacuum.

In order to obtain a sensible spectrum from any gauge-mediated model based on the ISS construc-

tion, one has to break the R-symmetry, either spontaneously or explicitly. We will tie in on this

in Sections 6.2 and 6.3 when discussing gaugino masses and R-symmetry breaking in the context

of SO(N) ISS models. Secondly, even for broken R-symmetry, some models of gauge mediation

have, although non-zero, very small gaugino masses, leading to a hierarchy between the scalar and

fermion superpartner masses of the SM. This has been observed in many direct mediation models,

not only in those based on the ISS construction. The reason for this can be easily seen from the

expression of the gaugino masses at leading order in the parameter F/M2 [183],

mλ =
α

4π
F

∂

∂X
log[det M(X,M)] (5.88)

where X is the field whose vev breaks supersymmetry and M is the fermion mass matrix of the

messenger fields. If the matrix M has at least one eigenvalue m = 0, the right-hand side of

the above relation vanishes at leading order in F/M2 and gaugino masses are only generated at

subleading order. Models with zero entries in the fermionic messenger matrix were encountered

in many occasions. The reason for this behaviour was understood recently by Komargodski and

Shih [188]: If a gauge-mediated model can be described as a generalised O’Raifeartaigh model

in a stable SUSY-broken minimum/minima, then the fermionic messenger matrix is constant, i.e.

independent of the field X, and gaugino masses vanish at leading order in F/M2. This is for

instance the case for the vanilla ISS model with broken R-symmetry. In order to obtain non-zero

masses the theory has to have a pseudo-moduli space which is not locally stable everywhere. For

models based on the ISS construction, this can be achieved by deforming the original model such

that the fermionic messenger mass matrix does not have a zero eigenvalue. A well written review

on possible ISS deformations is given in [137]. Thirdly, when gauging a global flavour group of the

ISS model, the additional matter fields usually ruin the unification of the gauge couplings at the

GUT scale. As mentioned before, this is a general problem of direct mediation models if the mass

scale of the messengers is not chosen to be fairly high. For discussions in the context of ISS direct

mediation see the works [186,189,190].

This concludes our review of gauge-mediated models of supersymmetry breaking. In the fol-

lowing two chapters, we will consider an ISS construction based on SO(N) global symmetries.

Furthermore, we discuss deformations of the basic ISS model which deal with the first two obsta-

cles mentioned above, namely how to break the R-symmetry and how to deform the superpotential

such that non-vanishing gaugino masses at leading order in F/M2 are obtained.



6 Metastable Supersymmetry

Breaking for SO(N) theories

Supersymmetry is an attractive candidate for physics beyond the SM. However, as we have realised

in the previous chapter, supersymmetry can only be an approximate symmetry of nature and should

be broken in a hidden sector. Especially the gauge-mediated approach to supersymmetry breaking

offers the opportunity to verify the concept of supersymmetry and any signatures of a unifying

‘parent gauge group’ of the SM in the current LHC and other future collider experiments. Direct

mediation constructions based on the ISS idea of metastable vacua are an interesting subclass of

these phenomenologically viable approaches: They are succinct, perturbative and calculable thanks

to Seiberg duality for N = 1 SQCD theories. The power of applying the duality in the hidden sector

is that the model is perturbative in either the fundamental electric or the dual magnetic theory.

In particular, one can have a UV free electric description and an IR free effective description

in which supersymmetry breaking can be explored perturbatively. The supersymmetry breaking

vacuum need only be metastable, allowing for R-symmetry to be broken and gaugino masses to be

generated.

The hidden sector is a supersymmetric N = 1 QCD Seiberg dual theory. These have been found

for SU(N), SO(N) and Sp(N) gauge groups. Initially SU(N) models were explored in which the

messenger fields are in SM representations [186, 191, 192]. Later, models in which the messengers

formed complete representations of a SU(5) GUT group were implemented [189]. Here, we extend

the ‘dictionary’ of possible metastable constructions by implementing an SO(N) model in which

the messengers can be in complete representations of a SO(10) group.

In the next two chapters, based on the author’s original work [193], we identify parts of the

hidden sector flavour symmetry with SO(10), thereby making the hidden sector dynamics compat-

ible with visible sector GUT models based on this group. Furthermore, we will explore several

deformations of the vanilla SO(N) construction in order to break the R-symmetry in the vacuum

and to allow for non-vanishing gaugino masses at leading oder in the F/M2 expansion.

In Section 6.1 we review the macroscopic model and the choice of embeddings of SO(10) into

a weakly gauged flavour group. We examine the field content and identify the messenger fields

which will generate soft terms for the supersymmetric SM. In Section 6.2 we look at how various

messengers will affect gaugino masses and use this to guide our analysis of the deformations of the

ISS model. We then introduce some minimal R-symmetry breaking deformations in Section 6.3

129
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and explore the outcomes of these deformations on the vacuum of the theory. In Section 6.4 we

use these and additional deformations introduced in [186] and calculate the contributions to the

messenger and gaugino masses of the supersymmetric SM. Section 6.5 explores the non-perturbative

potential for the ISS model and determines the lifetime of the SUSY broken vacuum. Beginning

with Chapter 7, in Section 7.1 we extend the deformation types of Section 6.4 by adding multitrace

deformations to the ISS model. We then explore how these models behave when the rank of SUSY

breaking magnetic quark matrices is reduced.

6.1 Seiberg dual pictures for SO(N) SQCD

As we have seen in the previous chapter, Seiberg duality is an electromagnetic duality in which by

interchanging variables charged under the electric theory with ‘magnetic’ variables, one can move

between different unphysical gauge groups and their strong or weak gauge coupling, preserving the

physical global symmetries in both pictures. Whereas the previous discussion was focused on SU(N)

gauge groups, in this section, we want to briefly outline the duality for SO(N) gauge groups. In

particular we will choose the weakly coupled side of the duality to explore supersymmetry breaking.

This section closely reviews the discussion for SO(N) groups in [129] and sets our notation.

6.1.1 Microscopic theory

We start by summarising the electric side of the duality in which one has a UV free electric theory

when Nf <
3
2 (Nc − 2) for a SO(N) local symmetry group. We can map this electric picture to a

magnetic theory which is weakly coupled in the IR. The field content of the electric theory is given

by Nf flavours of quarks and squarks which are combined into complex chiral superfields Qi

Field SO(Nc) SU(Nf ) U(1)R

Q
Nf−Nc+2

Nf

such that the field Qai carries fundamental indices a of SO(Nc) and i of SU(Nf ). We refer to the

Q’s as ‘electric quarks’. There is also a discrete symmetry associated with Q:

Q→ e
2πi
2Nf Q Nc 6= 3, Q→ e

2πi
4Nf Q Nc = 3. (6.1)

In the case of massless electric quarks the superpotential of the electric description vanishes, W = 0.

At the non-trivial IR fixed point the duality is exact. It is insightful to note that at the scale

invariant fixed point we do not have a well defined particle interpretation, for instance of the gauge

bosons of the two dual gauge groups, and the duality between the different gauge groups is exact.

Introducing an electric quark mass term to the superpotential

W = mQTr[Qi ·Qj ] = mQTr[Mij ] (6.2)

one moves away from the fixed point and the duality becomes effective. The term W = mQTr[Q ·Q]

introduces a scale and hence, the particle states are well defined and we find that the two theories

have a different number of gauge bosons. Hence, in the massive case, the duality between the two

gauge groups is an effective one [109].
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6.1.2 Macroscopic theory

In this section we review the process of supersymmetry breaking for the SO(N) macroscopic (mag-

netic) theory where N = Nf −Nc + 4. The macroscopic theory is IR free when Nf > 3(N − 2). As

for the case of the SU(N) duality, it is the effective description of an electric theory (microscopic),

at energies below the scale Λm where the macroscopic theory becomes strongly coupled. We may

treat the SO(N) gauge symmetry as a global symmetry to extract the vacuum symmetries and

the field representations and then later gauge this symmetry. As discussed in Section 5.5 one can

redefine the ‘electric’ meson field such that the Kähler potential becomes canonical. We also relate

the electric quark masses mQ to µ by µ2
ij = −mQ,ijΛ̂ where Λ̂ is introduced such that the electric

meson M can be used in the magnetic superpotential.

We start by considering the macroscopic theory with a global SO(N) symmetry group where

N = Nf −Nc + 4. The field content is1

Field SO(N) SU(Nf )f U(1)′ U(1)R

Φ 1 -2 2

ϕ 1 0

where all fields are complex chiral superfields. The canonical Kähler potential is

K = Tr[ϕ†ϕ] + Tr[Φ†Φ]. (6.3)

In the following we consider the ISS superpotential of the macroscopic theory which is given by

WISS = hTr[ϕTΦϕ]− hµ2Tr Φ (6.4)

The initial global symmetries are valid for the case of µ = 0. If we have µ 6= 0 the global symmetries

break down as SU(Nf )× U(1)′ → SO(Nf ),

Field SO(N) SO(Nf )f U(1)R

Φ 1 +1 2

ϕ 0

As in the SU(N) case, supersymmetry is broken by the rank condition when Nf > N . For the

SO(N) theory the scalar potential of the theory is minimised by

Φ =

 0 0

0 X0

 ϕ =

 χ

0

 χ = µ

 cosh θ i sinh θ

−i sinh θ cosh θ

⊗ IN/2 (6.5)

where X0 is a (Nf − N) × (Nf − N) symmetric matrix and the field χ fulfills χTχ = µ2IN .

Considering the decomposition of the fields Φ and ϕ suggested by the moduli space we find for

their charges under the global symmetry groups

1Note that in the SO(N) there are no additional degrees of freedom associated with a field ϕ̃.
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Field SO(N) SO(N)f SO(Nf −N)f

Φ =

 YNxN ZTNf -NxN

ZNxNf -N XNf -NxNf -N

 (
1

)  + 1

1


 1

+ 1


ϕ =

 χNxN

ρNf -NxN

 ( ) 
1


 1


These global flavour symmetries are the symmetries into which we weakly gauge and identify with

the standard model GUT “parent”. The singlet TrX = (1, 1, 1) in the above field representation

(where we use the notation where (A,B,C) refers to the irreducible representations of SO(N) ×
SO(N)f×SO(Nf−N)f ) is the chiral superfield whose fermionic component is the massless Goldstino

arising from the spontaneous breaking of supersymmetry. The pseudo flat directions which will be

lifted by quantum corrections have a degenerate vacuum energy density

Vmin = (Nf −N)|h2µ4| . (6.6)

Perturbative quantum effects create a local minimum at X0 = 0, χ = µIN (up to global symmetries

in the parameterisation of χ). This breaks the global symmetries further down to their maximal

unbroken subgroup SO(N)D × SO(Nf − N) × U(1)R. As the global flavour symmetry is broken

we can choose to diagonalise Tr[µ2Φ] according to the remaining symmetries and assign different

values to parameters within each global flavour symmetry group,

µ2
AB =

 µ2IN 0

0 µ̂2INF−N


AB

(6.7)

with µ > µ̂ and A,B running over the Nf flavour indices. From this, when writing the superpo-

tential in terms of the component fields, we find

W = hTr[χTY χ+ ρTXρ+ χTZρ+ ρTZTχ]− hµ2TrY − hµ̂2TrX. (6.8)

This choice of different values explicitly breaks the global symmetry group and would remove the

Goldstone bosons of the vacuum. In the vacuum X0 = 0, χ = µIN the charges of the component

fields are

Field SO(N)D SO(Nf −N)f

Φ =

 YNxN ZTNf -NxN

ZNxNf -N XNf -NxNf -N

  + 1

1

  1

+ 1


ϕ =

 χNxN

ρNf -NxN

  ×
  1


Here, SO(N)D represents a so-called colour-flavour locking phase [194]. The vacuum has five

sectors of fields under equivalent representations of the symmetry groups. Each sector satisfies

the constraint StrM2 = 0. The chiral superfields are complex matrix-valued functions with their

fermionic component fields in Weyl multiplets. This gives two real boson mass eigenstates for each

complex degree of freedom. In the following we give a brief overview on each of these sectors:
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Tr X The trace of X is the massless Goldstino of the spontaneously broken global supersymmetry

and it is accompanied by two real bosons.

X This field is the classically massless pseudo-modulus which is one loop lifted by the Coleman

Weinberg potential. For a pure ISS model (no deformations) its vev is lifted to the origin by

quantum corrections. There are (Nf − N)(Nf − N + 1) − 2 real bosons and half as many Weyl

fermions.

(ρ, Z) These fields give the largest contribution towards the messengers of the SUSY breaking

sector. There are 2N(Nf − N) Weyl fermions coming from (ψρ, ψZ). For small vevs of X their

mass is approximately hµ. We will explore their mass in more detail for different ISS models in the

following sections. The Goldstone boson arising from the broken global symmetries SO(Nf )f →
SO(Nf − N)f × SO(N)f are in Re(ρ). Here, the explicit breaking by high dimension operators

results in pseudo Nambu-Goldstone bosons [195]. If one makes an explicit choice of different quark

masses (see the relation (6.7)) these Goldstone bosons are avoided.

(Y, χS) There are N(N +1)−2 chiral superfields whose fermion and scalar components have mass

of order hµ. As we explore in the next section, increasing the vevs of fields will increase the masses.

Introducing explicit R-symmetry breaking terms that generate a vev for Y will cause multiplet

splittings of the scalar components of these fields. As FY = 0 and Fχ = 0, these fields play no role

as messengers.

χA The antisymmetric part of χ parameterises the Goldstone bosons and pseudo-moduli of SO(N)×
SO(N)f → SO(N)D. If all the electric quark masses are the same µ ∼ mQΛ, there are N

2 (N − 1)

complex chiral superfields of which half are Goldstone and the other half pseudo-moduli. Using

the vacuum (6.5) we can label θ+ = θ + θ∗ as the pseudo-modulus and θ− = θ − θ∗ the Goldstone

boson. The Coleman-Weinberg potential will generate a mass for θ+. The gauge fields will all

acquire mass from the super-Higgs mechanism when SO(N)c is completely gauged, in particular

the Goldstone superfields become Higgs superfields which are then eaten by the vector superfields.

Just as in the SU(N)-model, the gauging of SO(N)c does not affect the vacuum of the quantum

theory: The spectrum of the added gauge superfields is supersymmetric [129] and drops out when

considering in the effective potential of the pseudomoduli (5.75). The gauge fields obtain their

masses from the usual scalar kinetic term whereas the mass of pseudo-moduli superfields come

from the D-term potential, giving m = ghµ. When one considers embedding the standard model in

SO(10) flavours groups of the model, and SO(10) is broken, the correspondingly charged particles

form irreducible representations of the SM gauge group, see for instance [186, 196] for related

discussion in the SU(N) case.

6.1.3 Choice of embeddings

At tree-level, we have two global flavour groups available for embedding the SM via SO(10). Firstly,

we can embed the the standard model into the global symmetry group SO(Nf−N)f . Contributions

to the beta functions would come from the matter superfield represenations under the new SO(Nf−
N)f gauge group. Alternatively, we might embed the SM into the global symmetry SO(N)f . As we
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have seen, the vacuum of the quantum theory has the global symmetries SO(N)D × SO(Nf −N)f .

For this embedding, the beta function contributions are from matter representations under the

SO(N)f gauge group.

The gauged SO(N)c is infrared free for Nf > 3(N−2). The electric description is asymptotically

free for Nf <
3
2 (Nc − 2). If we identify SO(Nf − N)f = SO(10) and weakly gauge, then we find

Nf −N = 10 and since N = Nf −Nc + 4 this leads to Nc = 14. These conditions are met when

12 ≤ Nf ≤ 18 where the corresponding N is in the range of 8 ≥ N ≥ 2.

Embedding the SM into SO(N)f = SO(10) results in the constraint Nf > 24 which yields

Nc > 18. Of course we may also embed SO(10) into a subset of a larger flavour symmetry group.

Identifying the full flavour group is merely the minimal choice when exploring these models. For

a recent example of embedding into a subset, in particular embedding SU(5) into a weakly gauged

SU(6) flavour symmetry, see for instance [197].

6.2 Contribution to gaugino masses

Due to its large unbroken flavour symmetries, the ‘vanilla’ ISS model provides a convenient frame-

work for direct gauge mediation constructions. However, for model building purposes one has to

overcome two ‘obstacles’ of the ISS model which are related to massless particles in the spectrum.

Firstly, there is an (accidental) R-symmetry which needs to be broken in order to obtain non-zero

gaugino masses and secondly, there are massless Goldstone bosons by spontaneous broken global

flavour symmetries (even in the gauged theory). In order to avoid these issues one has to break the

R-symmetry spontaneously or explicitly and some of the global symmetries explicitly. Following

the original ISS work, a lot of deformations of the pure model were discussed in the literature,

see for instance [186, 187, 196, 198–201]. Many of the studied deformed ISS constructions have a

signature of heavy squarks and lighter gaugino masses. In general, these SM mass types are soft

terms for the supersymmetric Standard Model which originate from gauge interactions with the

messengers fields of the hidden sector. In this section we will focus on the gaugino masses, as being

generally light, they pose the initial phenomenological concern.

The vector superfield of a (hidden sector) SO(10) gauge group is in the antisymmetric 45

(adjoint) representation which is traditionally broken at an energy scale MGUT that we assume to

be far above the SUSY breaking scale. By the super-Higgs mechanism, the gauge superfields get a

mass by eating the scalar and fermionic components of a Higgs chiral superfield. Thus the gauge

bosons and gauginos of the broken hidden sector gauge group both have masses at the MGUT scale.

We are thus left with the issue of the gaugino masses of the SM. Regardless of the super-Higgs

mechanism, all the gauginos of the SM parent gauge group will get equal contributions to their

masses from the messenger fields.

ISS models have multiple messengers. The fundamental messengers (ρ, Z) are the major con-

tributor to the gaugino masses mλ. These have been the focus of much of the gauge mediation

literature, for an overview see for instance [121, 178–180, 202–204]. Their contribution to gaugino

and sfermion masses depends on the vev of X, which is non-zero only if R-symmetry breaking de-



6.2. Contribution to gaugino masses 135

formations are added to the vanilla ISS model, and also on FX . Explicit examples will be discussed

in the Sections 6.4.2, 7.1.1, 7.2.3 and 7.3.1 . The other contributions are either from X or from

(Y, χS). A concise method for calculating this contribution is given by the general gauge mediation

approach [184]. The gaugino mass contribution is calculated from the two point function of the

fermionic component of the gauge current superfield2.

We follow this approach and start by calculating the gaugino mass contribution from the X

pseudo-modulus. When identifying SO(Nf −N)f = SO(10), X is in the symmetric representation

of SO(10). Schematically the scalar mass squared matrix is:

(
X†X

)
M2
X

 X

X†

 , M2
X ∝

h4

64π2

 µ2 〈X〉2

〈X〉2 µ2

⊗ INf−N ⊗ INf−N (6.9)

The diagonal and off-diagonal terms are both found from computing the one loop Coleman Weinberg

potential. The diagonal components arise from the pure ISS superpotential. The off -diagonal

components are proportional to |Wρρ|4, where Wρρ is the double derivative of the superpotential

with respect to ρ. This type of term is classically zero in the ISS model but may be non-vanishing

at one loop if there are deformations to the ISS model as we will see in the following sections. The

mass matrix has two mass eigenstates m±. There is also a mass-term for the fermionic components

of X with a fermionic mass eigenstate mψ. The fermionic mass mψ may found by taking the

STrM2 = 0 = m2
+ +m2

− − 2m2
ψ and obtain the fermionic mass from the known scalar masses. The

result for the pure ISS model is

m2
ψ =

h4µ2

64π2
. (6.10)

Computing the two point function and using Ward identities (see Appendix C) we find,

mλr = 2Mψg
2
rR[X]C(r) (D(x;m+)−D(x;m−))D(x;mψ)

= 2MψXgr
2R[X]C(r)

∫
d4k

(2π)4

(
1

k2 +m2
+

− 1

k2 +m2
−

)
1

k2 +m2
ψ

(6.11)

∝ (
2αr
4π

)R[X]C(r)
h2 〈X〉2

8πµ
for 〈X〉2 < µ2

where C(r) is the quadratic Casimir of the representation r, in this case the symmetric of SO(10),

C(sym) = 12. R[X] is the rank of the field X. The subscript r on the coupling gr denotes the

gauge group associated to each coupling, such as g3 of SU(3).

Let us now look at the (Y, χs) sector. When identifying SO(N)D = SO(10), these fields are

charged under the standard model GUT parent and we should expect them to behave as messengers

as well. The terms depending on Y and χ are of the form

WISS ⊃ hχTY χ . (6.12)

We see that these fields do not behave like the fundamental messengers which have a coupling of

the form WISS ⊃ ρTXρ where X was just a background superfield. In this case we would apply

2The interested reader may follow Appendix C where we review these techniques in the light of a SO(N)-based

model.
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the methods [203] for multi-messengers where the fermion messenger mass matrix parameterised

by the superfields (Y, χs) is

W =
(
χTY T

)
M

 χ

Y

 , M =

 h 〈Y 〉 hµ

hµ 0

⊗ IN ⊗ IN . (6.13)

Now, the field χ achieves a vev by requiring FY = 0 in order to minimise the scalar potential.

For Y to obtain a vev at the minimum requires setting Fχ = 0 in general. The result is that

these fields, although possibly charged under the standard model GUT group, cannot generate

gaugino or sfermion contributions [203]. One may speculate that a complicated deformation of ISS

with magnetic quarks may give a vev to Y and achieve Fχ 6= 0. In that case we would apply the

methods [203] for multi-messengers and there would be no supression of gaugino masses at first

order in F , despite a zero in the fermion mass matrix.3

6.3 Spontaneous versus explicit R-symmetry breaking

A R-symmetry of the superpotential prevents gaugino mass terms from the messengers of the

magnetic description of the ISS model. For non-zero gaugino masses we have to then include R-

symmetry breaking terms. The key motivation of ISS models is that they satisfy Seiberg’s dual

descriptions at the (trivial) IR fixed point. So any deformations should be from irrelevant operators

that do not add new degrees of freedom (new fields) into the superpotential. The general approach

is to add irrelevant operators to the electric description which will be parametrically suppressed.

In SU(N) models one has a choice between spontaneous and explicit R-symmetry breaking when

adding deformations to the model4. For spontaneous R-symmetry breaking one requires that some

of the fields in the ISS model are R 6= 0 or R 6= 2 but that the superpotential still has R[W ] = 2.

If we consider specifically the ISS model, the first term in the superpotential is

WISS ⊃ hTr[ϕ̃Φϕ] (6.14)

where ϕ̃ may signify the antifundamental of ϕ in the SU(N) case, or simply transpose in the SO(N)

and Sp(N) cases. If we also consider the TrΦ linear term in WISS we obtain two constraints

R[ϕ̃] +R[Φ] +R[ϕ] = 2 R[Φ] = 2→ R[ϕ̃] = −R[ϕ] . (6.15)

In SO(N) and Sp(N) models the ϕ̃ signifies transpose such that the constraints can only ever be

satisfied by R[ϕ] = 0. So we see the only explicit R-symmetry may be used for SO(N) and Sp(N)

models.5

In SO(N) we can use the invariant two index Kronecker (δαβ) and the Levi-Civita tensor

(εα1...αN ) to build terms that explicitly break R-symmetry using the dual magnetic quarks, ex-

plicitly the χ component fields of the magnetic quarks ϕ. For SO(N) = SO(2) we may have a

3The interested reader may note that the zero in the fermion mass matrix for (Y, χs) can be filled by a multitrace

deformation of the magnetic meson TrΦ2.
4See also an example of spontaneous R-symmetry breaking at two loops [148].
5However, see Section 4 of [145] for a spontaneous breaking of U(1)R for SO(N) involving D terms and breaking

of the SO(N) symmetry for an O’Raifeartaigh model.
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superpotential deformation

δW = hkδstδαβϕ
s
αϕ

t
β + hmεαβεstϕ

s
αϕ

t
β (6.16)

where the s, t indices are of SO(2)mag and the α, β are from SO(N)f . This is the deformation used

in [199–201] for SU(5) models. Baryon deformations of this type will give a vev to the Y field. This

will effect the scalar masses of (Y, χ) but in general will have no effect on gaugino masses when

embedding into either SO(N)D or into SO(Nf −N)f at leading order in F/M2.

6.3.1 Tree level potential for a SO(2) model

Let us consider a specific example, namely the SO-analog to the SU(5) models mentioned above.

We first analyse the dual quark deformations from (6.16). Setting N = 2 and Nf − N = 10, we

take (6.4) and (6.16) and compute the tree level potentials for SO(2)mag × SO(2)f × SO(Nf −N)f

W = hTrϕTΦϕ− hTr[µ2Φ] + hkδstδαβϕ
T
sαϕβt + hmεαβεstϕ

T
sαϕβt. (6.17)

Using the SO(2)f × SO(10)f symmetry we may diagonalise the matrix µ2
AB as

µ2
AB =

 µ2I2 0

0 µ̂2I10


AB

. (6.18)

The resulting tree level potential is

VF =
∑
αβ

|hχTsαχβs − hµ2δαβ |2 +
∑
aβ

|2hρTsaχβs|2

+
∑
ab

|hρTsaρbs − hµ̂2δab|2 +
∑
sa

|2hZaβχβs + 2hXabρbs|2 (6.19)

+
∑
sα

|2hYαβχβt + 2hZTαbρbs + 2hkδαβχβs + 2hmεαβχβs|2 .

The indices are A =(α, a) and B =(β, b) running over all Nf with α, β running over the first N

and a, b running over the Nf −N . We apply the rank condition of ISS and set ρ = 0 in a first step.

The potential becomes

VF =
∑
αβ

|hχTsαχβs − hµ2δαβ |2 +
∑
ab

|hµ̂2δab|2 +
∑
sa

|2hZaβχβs|2

+
∑
sα

|2hYαβχβt + 2hkδαβχβs + 2hmεαβχβs|2. (6.20)

The contributions from the F-term FY is minimised (FY = 0 for χ = µ) when

χTsαχβs = µ2Iαβ (6.21)

where α, β run over N . For SO(N) models χTsα is just the transpose of χβs, they are not independent

fields. To minimise, we further set Z = 0. Notice also that VF is independent of Xab and these are

the pseudo-moduli and hence, the flavour group SO(10) is unbroken. Preliminarily we choose the

local minimum to occur at a vev

〈χ〉 = Σ

 1 0

0 1

+ θ

 0 −1

1 0

 (6.22)
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under the constraint

Σ2 + θ2 = µ2. (6.23)

The χ fields have excitations that are constrained to live on a circle. As expected, both the sym-

metric and antisymmetric piece preserve the SO(2)D symmetry. We have still F-term constraints

on Y to minimise. Let us initially set 〈Yαβ〉 = ηIαβ . Then, the scalar potential becomes

VF = 2Nh2|ηΣ +mΣ + kΣ|2 +Nh2| − ηθ −mθ − kθ|2

+Nh2|ηθ +mθ + kθ|2 + (Nf −N)h2µ̂4 (6.24)

where we keep in mind that N = 2 and Nf − N = 10. Using the constraint (6.23) reduces the

potential VF to

VF = 2Nh2µ2|η + k +m|2 + (Nf −N)h2µ̂4 . (6.25)

Minimising in η we find η = −(k +m) and hence,

〈Yαβ〉 = −(k +m) Iαβ

V (µ̂) = (Nf −N)h2µ̂4 . (6.26)

So the minimum of the scalar potential is independent of the particular choices of Σ and θ, with

these fields constrained to live on a circle of radius µ in field space. Choosing a particular value of

Σ and θ will break this continuous symmetry. It is clear now that the Kronecker contracted and

Levi-Civita contracted terms act equivalently to the scalar potential and we may drop one of them

without loss of generality. For all values of the potential, it is positive definite and non zero in

terms of the Y (η) field.

It is useful to compare this with the SU(N) ISS models [199–201]. In those models there is a

runaway direction, associated with the parameterisation of the vevs of Y , χ and antifundamental

χ̄ fields, which is one loop lifted. In those models the deformation will be significant to the (ρ, Z)

messenger contributions to gaugino masses and plays an important role when embedding into both

flavour groups.

6.4 The KOO deformation

In this section we keep the delta contracted deformation

δW = hkδstδαβϕ
s
αϕ

t
β (6.27)

of the previous section, which is valid for any SO(N) and not just SO(2). We add to this a new

deformation. As has previously been pointed out in [186], to obtain gaugino mass contributions

from the fundamental messengers (ρ, Z) at first order in FX (the F-component of pseudo-modulus

X) one must add a deformation that adds a mass term to the diagonal of the messenger mass matrix.

The new term in the superpotential (from now on we will refer to this as the KOO deformation) is

an explicit R-symmetry breaking term,

δWKOO = h2mzTr[ZTZ] . (6.28)
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The full potential we would like to analyse is therefore

W = hTr[ϕTΦϕ]− hTr[µ2Φ] + hkδstδαβϕ
T
sαϕβt + h2mzTr[ZTZ] (6.29)

where we also apply the choice of (6.7). Hence, the scalar potential is given by

VF =
∑
αβ

|hχTsαχβs − hµ2δαβ |2 +
∑
aβ

|2hρTsaχβs + 2h2mzZ
T
βa|2

+
∑
ab

|hρTsaρbs − hµ̂2δab|2 +
∑
sa

|2hZaβχβs + 2hXabρbs|2

+
∑
sα

|2hYαβχβt + 2hZTαbρbs + 2hkδαβχβs|2 . (6.30)

We can follow the usual steps of minimising the potential. We find an ISS type minimum with an

energy V (µ̂) = (Nf −N)|h2µ̂4| at

〈ρ〉 = 0 〈Z〉 = 0 〈Y 〉 = −kIN . (6.31)

As before, X is a modulus of the classical potential. The deformation introduces other metastable

minima into the theory [186] which are found at the following values

χαsχ
T
sβ = µ2IN

ρasρ
T
sb =

h2m2
z

µ2
ZZ = diag(µ̂2...µ̂2, 0...0)Nf−N

Xab = − µ
2

mz
diag(1...1, x̂...x̂)Nf−N (6.32)

Yαβ = −(
µ̂2

mz
+ k)IN

Vlow = (Nf −N − n)|hµ̂2|2.

The label n runs from 1 to N . The condition for ρasρ
T
sb has µ̂2 for the first N entries corresponding

to the rank condition. The remaining Nf − 2N entries of the total Nf − N are zero and the µ̂2

of that F-term generate Vlow. The x̂ signify classical moduli. These extra SUSY broken minimum

only arise because the KOO deformation gives an extra degree of freedom to fix the Z minimum in

the scalar potential. The deformation fills the zero of the scalar mass matrix giving gaugino masses

at first order in FX . It is also an explicit R-symmetry breaking term, giving a nonzero vev to the

pseudo-modulus X which is also crucial for non-vanishing gaugino masses.

6.4.1 Messenger masses with KOO deformation

As we have stated before, the deformations using the magnetic quarks (e.g. a term hkδδϕϕ) does

not effect the mass matrix of (ρ, Z) and does not effect the vev of X. The KOO deformation of

(6.28) does effect both of these quantities. In this section we examine the messenger sector of (ρ, Z).

We beginn by noting that for a general set of fields the fermionic mass matrix is given by [205]

m1/2 =

 W ab
√

2iDβ
a√

2iDα
b 0

 (6.33)
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such that the fermionic mass squared matrix is

m2
1/2 =

 W abWbc + 2DαaDα
c −

√
2W abDβ

b

−
√

2DαbWbc 2DαcDβ
c

 (6.34)

whereWa = ∂W/∂Φa, W a = ∂W †/∂Φ†a and α, β are gauge group indices such thatDα
a = ∂Dα/∂Φa.

The general scalar mass squared matrix is

m2
0 =

 W abWbc +DαaDα
c +Dαa

c Dα W abcWb +DαaDαc

WabcW
b +Dα

aD
α
c WabW

bc +Dα
aD

αc +Dαc
a Dα

 . (6.35)

In the vacuum, the D terms are vanishing. To compute the matrices for (ρ, Z), we choose to

parameterise the fermion mass matrix by ψ = (ρas, Zaβ). The scalar mass squared matrix is

parameterised by (ρas, Zaβ , ρ
∗
as, Z

∗
aβ). We choose the vevs to be

〈Xab〉 = X0Iab 〈Yαβ〉 = ηIαβ 〈χβs〉 = µIβs . (6.36)

Here and in the following we have switched off the θ-dependence of the χ vev by setting θ = 0 to

achieve analytic results. Hence, for both embeddings the fermion mass matrix is computed to be

m1/2 = INf−N ⊗ IN ⊗ 2h

 X0 µ

µ hmz

 . (6.37)

The two fermionic eigenvalues are

M± = h(hmz +X0 ±
√

4µ2 + (−hmz +X0)2) . (6.38)

Here, the scalar mass matrix is given by

m2
0 =

 W abWbc W abcWb

WabcW
b WabW

bc

 (6.39)

where

W abWbc = INf−N ⊗ IN ⊗ 4h2

 X0X0
∗ + µ2 µ(X0

∗ + hmz)

µ(X0 + hmz) h2m2
z + µ2

 (6.40)

and

W abcWb = WabcW
b = INf−N ⊗ IN ⊗ 2h2

 −µ̂2 0

0 0

 . (6.41)

The four independent scalar mass squared eigenvalues are

m2
1,± = h2

[
− µ̂2+4µ2+2h2m2

z+2|X0|2 (6.42)

±
√

16µ2(hmZ +X0)(hmZ +X0
∗) + (2h2m2

Z − (−µ̂2 + 2X0X0
∗))2

]
m2

2,± = h2
[
µ̂2+4µ2+2h2m2

z+2|X0|2

±
√

16µ2(hmZ +X0)(hmZ +X0
∗) + (2h2m2

Z − (µ̂2 + 2X0X0
∗))2

]
.

Using the messenger spectrum, we can calculate the corresponding Coleman-Weinberg potential

(5.75) for the messenger correction at one-loop level. We find

X0 = 〈X〉 =
1

2
hmz, M2

X =
h4µ̂2

12µ2π2

 µ̂2 − 9
40X0

2

− 9
40X0

2 µ̂2

 (6.43)
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where we have expanded to first order in h,mz and in µ̂/µ up to first non-vanishing order. We have

suppressed factors of N(Nf − N) in the expression for M2
X coming from tracing over degenerate

mass eigenvalues.

6.4.2 SM Gaugino and sfermion masses

Having identified the mass spectrum of the messengers (ρ, Z) and also X we can now calculated their

contributions to the gaugino and sfermion masses of the SM. Generalisations of the wavefunction

renormalisation technique, in the regime that the F -term of the pseudo-modulus is smaller than

the messenger scale, give analytic expressions for the gaugino and sfermion masses [183]. For the

gauginos one has in general

mλr =
αr
4π

ΛG ≡
αr
4π
FX
∑
i

∂Xmi

mi
(6.44)

where mi are the eigenvalues of the corresponding fermion mass matrix . Hence, the gaugino masses

from the (ρ, Z) messengers are found to be

mλr,(ρ,Z) =
αrh

2µ̂2mz

2π(µ2 − hmzX0)
(6.45)

where to simplify expressions we have defined X0 = 〈X〉. The contribution to the sfermions masses

are given by

m2
f̃

= 2
∑
r

Cr
f̃
(
αr
4π

)2Λ2
S

Λ2
S =

1

2
|FX |2

∑
i

|∂XMi

Mi
|2 (6.46)

where αr is the gauge coupling at the messenger scale and Cr
f̃

denotes the quadratic Casimir of the

irrep f̃ in the gauge group factor labelled by r. In the case of the (ρ, Z) sector we find

Λ2
S,(ρ,Z) =

(h2µ̂4)[h4m4
z + 2µ4 − 2h3m3

zX0 − 2hmzµ
2X0 + h2m2

z(4µ
2 +X2

0 )]

[(µ2 − hmzX0)2(4µ2 + (−hmz +X0)2)]
(6.47)

The KOO deformation h2mzTr[ZTZ] is a mass term for some of the messengers of the theory. As

is highlighted in [183], the introduction of messenger masses changes the ratio

Λ2
G

Λ2
S

= N → Neff (h, µ,mz, X0) (6.48)

where Neff is the effective messenger number which can continuously vary from 0 to N inclusive.

For the (ρ, Z) messengers we find

Λ2
G

Λ2
S

=
4h2m2

z[4µ
2 + (−hmz +X0)2]

[h4m4
z + 2µ4 − 2h3m3

zX0 − 2hmzµ2X0 + h2m2
z(4µ

2 +X2
0 )]

. (6.49)

In our case it ranges from 0 to 4 which is compatible with SU(N) models (see for instance [206]).

Let us move on by discussing the effect of the pseudo-modulus on the gaugino and sfermion

masses. From (6.11) we find that the messenger field X gives a contribution to the gaugino masses

as (see also Appendix C)

mλr,X =
αr
4π
C(r)R[X]ΛG,X , with ΛG,X = 2

√
3

[
3h2µ̂2X2

0

80πµ3

]
. (6.50)
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Similarly, we find for the contributions to the sfermion masses

m2
f̃ ,X

= 2
∑
r

Cr
f̃
(
αr
4π

)2C(r)R[X]Λ2
S,X , with Λ2

S,X =
27h4µ̂4X4

0

6400µ6π2
. (6.51)

6.4.3 Constraints on parameters

It is also useful to briefly discuss how to constrain the parameter space for comparison between

differing models. More accurate constraints on the parameters would involve a more detailed

phenomenological survey of the model. Here, we just review closely the constraints used in [196]

where a direct mediation construction based on the KOO deformation is discussed in detail. The

model discussed in the SO context has a dimensionless coupling h and further five parameters

(µ, µ̂,mz, k,Λm).

• h
4π is used for a perturbative expansion; we require h to be at most ∼ O(1).

• Cosmological bounds on the gravitino mass give

m3/2 =
F√

3Mpl

< 16 eV , (6.52)

hµ2 =
F

Nf −N
<

√
3Mpl16eV

Nf −N
< (146TeV)2 , (6.53)

where the second bound follows from the F-term of the pseudo-modulus. Mpl is the reduced

Planck mass. This is of the same order as in [196].

• We can determine µ̂ from the ratio of µµ̂ which controls the longevity of the metastable vacuum

from

S ∼ (
µ

µ̂
)4(

µ

mz
)4. (6.54)

• The scalar masses are completely equivalent to those found in Appendix A of [196]. In

particular there is a ‘no Tachyon’ constraint

|µ2 ± hmzX|2 > µ̂2(µ2 + h2m2
z). (6.55)

This will give a constraint on mz dependent on the values of h, µ and µ̂.

• We can determine the cutoff scale Λm from the longevity of the metastable vacuum to the

non-perturbative SUSY vacuum. Normally we expect that

|ε| = | µ
Λm
| � 1 (6.56)

is sufficient suppression of tunneling to the non-perturbative vacuum. In cases where there is

no large hierarchy between Λm and µ, (e.g in order to avoid low energy Landau poles in SM

gauge coupling constants) then it is suffices to take µ̂ sufficiently smaller than µ to avoid a

too short lifetime of the metastable vacuum.

• The term k plays no role for either gaugino masses or vacuum stability. It plays no significant

role to visible sector phenomenology.
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6.5 The non-perturbative potential

In this section we explore the non-perturbative potential of the macroscopic theory. This is per-

turbative in the electric theory. When gauging the SO(N)c symmetry group and taking the model

to be IR free when Nf > 3(N − 2), one finds a non-perturbative potential (compare with (5.77) in

the SU case)

Wdyn = (N − 2)(hNfΛ
3(N−2)−Nf
m detΦ)1/(N−2) . (6.57)

The supersymmetry preserving vacua are found at

〈ϕ〉 = 0 〈Φ〉 =
µ

h
(
Λm
µ

)
Nf−N+2

3N−Nf−4 INf . (6.58)

When ε = µ
Λm

<< 1 the metastable vacuum will be exponentially long lived. This formula being

valid when the electric quark masses are all equal. In general the vev of X and Y is fixed by solving

∂W
∂X = ∂W

∂Y = 0, 〈ϕ〉 = 0 where the superpotential is the full classical one plus the dynamically

generated part. We find

〈X〉 = h
Nf−2N+4

N−Nf−2 µ̂
4

N−Nf−2µ
− 2N
N−Nf−2 Λ

−
(Nf−3(N−2))

N−Nf−2

m

〈Y 〉 = h
Nf−2N+4

N−Nf−2 µ̂
2(N−Nf )

N−Nf−2µ
2(−2N+Nf+2)

N−Nf−2 Λ
−

(Nf−3(N−2))

N−Nf−2

m . (6.59)

The above SUSY minimum applies to the case N 6= 2. For the specific embedding where N = 2,

Nf = 12 one has Nf = Nc−2 such that the macroscopic (IR) theory is in the coulomb phase [129].

The IR ISS superpotential should be multiplied by an arbitrary function f(t) where

t = det[Φ]/Λ24 (6.60)

subject to the boundary condition f(0) = 1. To leading order in Φ the SUSY broken vacuum is

independent of this function. The magnetic SO(2)c is Higgsed and the unbroken electric SO(2)c

is confined. Thus we have a metastable SUSY broken vacuum in a confining phase. For a more

detailed exploration of these and other cases one can look at the original papers [129,207].

6.5.1 Lifetime of the metastable vacuum

The ISS vacuum can decay into either the secondary SUSY broken minimum or into the SUSY

restored non-perturbative vacuum far away in field space. In general one can apply the techniques

outlined in [171]. Here we review some analytic estimates applicable to this model when tunneling

into the SUSY restored minimum. At the ISS minimum

VISS = (Nf −N)|hµ̂|2 . (6.61)

The value of the pseudo-modulus is found from the Coleman Weinberg potential to be

X0 = 〈X〉 =
hmz

2
. (6.62)
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We can estimate the value of the local maximum of the potential by expanding the superpotential

around the vevs Z = ρ = 0. The potential has a local maximum for χ̃χ = 0,

VPeak = N |hµ2|2 + (Nf −N)|hµ̂|2 ≈ Nf |hµ2|2 . (6.63)

We can also estimate the value of the pseudo-modulus at this vev by use of the Tachyon constraint

(6.55) and find

X0 = 〈X〉 =
µ2 − µ̂

√
µ2 + h2m2

z

hmZ
. (6.64)

We use the triangle approximation [171] when µ ∼ µ̂ and find for the bounce action

S ≈ (∆X)4

Vpeak
≈ (〈hΦ〉)4

Vpeak
=

h2

Nf
(
Λ

µ
)
4(

Nf−N+2

3N−Nf−4 )
. (6.65)

For the case µ 6= µ̂ we approximate the action by

S ≈ 1

Nf
h
−

(6N−2Nf−12)

N−Nf−2 ε′
16

N−Nf−2 ε
−

(12N−4Nf−8)

N−Nf−2 , (6.66)

where we have defined ε′ = µ̂/Λm and ε = µ/Λm. In deriving the above expression we have assumed

that µ and µ̂ though unequal are approximately the same order so that the approximation (6.63)

is still valid.

One can compare this with S ∼ 400 for which the lifetime of the metastable state is larger

than the age of the universe. Typically, the vevs of the fields are small compared to the distance

from the origin to the SUSY restored vacuum. Also the Vpeak value is in general independent of

the deformations used. For these reasons, this result is consistent with the results obtained in the

SU-based literature. To derive the actual value of the lifetime we will need to input the various

allowed values of Λm, µ and µ̂ consistent with various other conditions which we will consider later.

When using the KOO deformation one can also tunnel from the ISS metastable state to the

second SUSY broken minimum. For this particular model, with the baryon deformation switched

off (k = 0), the calculation is completely equivalent to the numerical one carried out in appendix

B of [196]. In [186] there is an analytic estimate of the bounce action, using again the triangle

approximation [171], given by

S ∼ (
µ

µ̂
)4(

µ

mz
)4. (6.67)

Similarly to the SU(N) models discussed in the literature, one would expect that the metastable

vacua are preferred in the thermal history of the universe, see also the discussions in Section 5.5.



7 Multitrace Deformations of the

SO(N) ISS superpotential

In the previous chapter, we saw that certain deformations of the ISS superpotential lead to dif-

ferent moduli spaces. We would like to follow up on these ideas by examining an introduction of

multitrace deformations of the magnetic quarks ϕ and the meson field Φ, compare with similar

SU(N) deformations [208–210]. The deformations of magnetic quarks mix fields of the two global

symmetry groups in which one may embed the standard model GUT. These operators have been

suppressed by the strong coupling scale of the magnetic picture. Whilst we do neither seek nor

supply an UV completion, we find them useful as they demonstrate how the vev of the pseudo-

modulus may be shifted without changing their F-term FX . In contrast, the KOO deformation of

Section 6.4 demonstrated a shifting of 〈X〉 and a removal of zero entries in the fermionic messenger

mass matrix.

Additionally, we explore adding multitrace deformations of the meson field to the superpoten-

tial. These deformations are irrelevant operators of the electric quarks Q fields of the UV electric

description which are then mapped to Φ fields in the magnetic picture. These deformations will

make the supersymmetry breaking order parameter FX dependent on the field X itself and the

KOO deformation naturally appears as part of this meson multitrace deformation. As the scalar

potential is no longer independent of X, it has no longer a classically flat direction in X . However,

one loop corrections still contribute to its minimisation.

7.1 Multitrace deformation of magnetic quarks

We begin our discussion by considering a deformation of the superpotential of the magnetic de-

scription which is made out of magnetic quarks. A similar deformation in the context of SU(N)

ISS constructions was also considered in [198] where the superpotential was deformed by the term

δW =
hε

Λm

(
Tr[ϕϕT ]

)2
. (7.1)

Here, we also add a single trace term and also keep the KOO deformation of the previous chapter.

Therefore, after decomposing the magnetic quark fields into their components, we add to the

superpotential,

δW ∝ hη
[
(χαsχ

T
sβχβtχ

T
tα) + (χαsρ

T
sbρbtχ

T
tα) + (ρasχ

T
sβχβtρ

T
ta) + (ρasρ

T
sbρbtρ

T
ta)
]

(7.2)

+ hγ
[
(χαsχ

T
sα)(χγtχ

T
tγ) + (χαsχ

T
sα)(ρctρ

T
tc) + (ρasρ

T
sa)(χγtχ

T
tγ) + (ρasρ

T
sa)(ρctρ

T
tc)
]
,

145
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where the field indices are the same as in Section 6.4. Calculating the derivatives of the deformation

gives
∂δW

∂χβs
= hη[4χαsχβtχ

T
tα + 4χβsρ

T
saρat] + hγ[4χβs(χαtχ

T
tα) + 4χβs(ρctρ

T
tc)] (7.3)

and similarly

∂δW

∂ρbt
= hη

[
4ρbsχ

T
sαχαt + 4ρbsρ

T
saρat

]
+ hγ

[
4(χαsχ

T
sα)ρTtb + 4ρbt(ρcsρ

T
sc)
]

(7.4)

where the numerical factors arise from relabeling of the matrix indices. The rest of the F-terms are

the same as for the KOO-superpotential, especially FX does not change. In order to minimise the

F terms we take the vevs to be

〈ρ〉 = 〈Z〉 = 0 χTsαχβs = µ2Iαβ 〈Yαβ〉 = −2(η + γ)µ2Iαβ . (7.5)

The minimum of the scalar potential has then an energy of

Vmin = (NF −N)|hµ̂2|2. (7.6)

There is a local maximum of the potential with χ = 0 and Y undetermined at

V = (NF −N)|hµ̂2|2 +N |hµ2|2 . (7.7)

We would like to investigate how the deformation affects the masses of the fundamental messengers

(ρ, Z). To that extent we follow the same reasoning as in Section 6.4.1. For this model, the fermion

mass matrix is given by

m1/2 = INf−N ⊗ IN ⊗ 2h

 X0 + 2µ2∆ µ

µ hmz

 (7.8)

where we have defined ∆ = (η + γ). In particular we have F †χ = 0 and ∂W
∂ρ3 ∝ ρ = 0. For the scalar

mass matrix we use (6.39) and find for the sub-blocks

W abWbc = INf−N ⊗ IN ⊗ 4h2

 |X0+2µ2∆|2+|µ|2 µ(X0
∗+2µ2∆+hmz)

µ(X0+2µ2∆+hmz) |µ|2+|hmz|2

 (7.9)

and

W abcWb = WabcW
b = INf−N ⊗ IN ⊗ 2h2

 −µ̂2 0

0 0

 . (7.10)

From these mass matrices the independent mass eigenvalues for the scalar fields are given by

m2
1,± = h2(−µ̂2 +G)±

√
(G− µ̂2)2 +H

m2
2,± = h2(µ̂2 +G)±

√
(G+ µ̂2)2 +H (7.11)

where the functions G and H are defined as

G = 8∆2µ4 + 2X0X0
∗ + 2h2m2

z + 4µ2(1 + ∆X0 + ∆X0
∗)

H = −8(2µ4(1− 2∆hmz)
2 − h2m2

z(µ̂
2 − 2X0X0

∗)

+µ2(−µ̂2 + 2hmz(−1 + 2∆hmz)(X0 +X0
∗))) . (7.12)
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Expanding the Coleman-Weinberg potential we find the vev of X to first order in (η+ γ) and first

order in mz, to be

X0 =
1

2
hmz − 2µ2(η + γ) . (7.13)

Hence, we find a shift in the vev of X compared to the KOO-deformed theory of the order of µ2

although the F-term FX has not changed. The mass matrix for X is given by

M2
X =

h4

π2

 µ̂4

12µ2 − 3∆µ̂4

40µ2 X0 − 3µ̂4

160µ4X0
2

− 3∆µ̂4

40µ2 X0 − 3µ̂4

160µ4X0
2 µ̂4

12µ2

 . (7.14)

These expression are sufficient to determine the contributions to gaugino and sfermion masses as

was discussed in Section 6.4.2.

7.1.1 Gaugino and squark masses from multitrace of magnetic quarks

For this model the fermion mass matrix differs from the KOO case. However, we can still use (6.44)

and find the gaugino masses to be

mλr,(ρ,Z) =
αrh

2µ̂2mz

4π(µ2(1− 2hmz∆)− hmzX0)
. (7.15)

In exactly the same way we find the sfermion masses from (6.46) where we have in this case

Λ2
S,(ρ,Z) =

h2µ̂4

2[µ2(−1+2hmz∆)+hmzX0]2[4µ2+(−hmz+2∆µ2+X0)2]
(7.16)

× [(h4m4
z+2µ4)−(2h3m3

z+2hmzµ
2)(2µ2∆+X0)+h2m2

z(4∆2µ4+X2
0 +4µ2(1+∆X0)] .

Equally, the effective messenger number is given by

N
(ρ,Z)
eff = 2h2m2(4u2+[−hm+2∆u2+X0]2)

× 1

h4m4+2u4− (2h3m3 + 2hmu2)[2∆u2+X0] +h2m2(4∆2u4+X2
0 +4u2[1+∆X0])

. (7.17)

In addition, we have contributions to the gaugino and sfermion masses from the messenger field X.

By applying the techniques of Section 6.2 we find

mλr,X =
2αr
4π

C(r)
3
√

3h2µ̂2µ2X0[4(η + γ)µ2 +X0]

80µ3π
(7.18)

for the gauginos and

m2
f̃ ,X

= 2
∑
r

Cr
f̃
(
αr
4π

)2C(r)R[X]Λ2
S,X , Λ2

S,X =
27h4µ̂4X2

0 [4∆µ2 +X0]2

6400µ6π2
(7.19)

as the contribution to the sfermion masses.

7.2 Multitrace deformation of the meson field

In this section we explore the multitrace deformations suggested in [208–210]. First we consider

the case in which all the electric quark masses are the same. In the second case we again explicitly
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split the electric quark masses with the hierarchy m << µ̂ < µ << Λ where m is playing the role

of mz of the previous, KOO-based models. The superpotential we explore is

W = hTr[ϕTΦϕ]− hTr[µ2Φ] +
h2m

2
Tr[Φ2] +

h2mγ

2
Tr[Φ]2

= h[χTY χ+ ρTXρ+ χTZT ρ+ ρTZχ]− hµ2TrY − hµ̂2TrX + h2mTr[ZTZ]

+
h2m

2
[(Tr[Y 2] + γTr[Y ]

2
) + (Tr[X2] + γTr[X]

2
)] +

h2mγ

2
TrXTrY . (7.20)

In order to minimise the tree-level potential we take the vevs of the fields to be

〈ρ〉 = 〈Z〉 = 0, 〈Y 〉 = 0, 〈χ〉 = q0, 〈X〉 = X0 (7.21)

and find for the F-terms of the fields X and Y

F †X = −hµ̂2 + h2m(1 + γ(Nf −N))X0 (7.22)

F †Y = hq2
0 − hµ2 + h2mγ

2
(Nf −N)X0 . (7.23)

This determines q0 to be of the form hq2
0 = hµ2− h2mγ

2 (Nf −N)X0. As before, we investigate the

influence on the masses of (ρ, Z). From the superpotential we find the fermionic mass matrix to be

m1/2 = INf−N ⊗ IN ⊗ 2h

 X0 q0

q0 hm

 (7.24)

with the independent eigenvalues

M± = h(hm+X0 ±
√

4q2
0 + (−hm+X0)2) . (7.25)

Computing derivatives of the scalar potential one finds the scalar mass matrix to be

m2
s = 4h2INf−N ⊗ IN⊗

q0q
∗
0 +X0X0

∗ hmq∗0 + q0X0
∗ F †X/2h 0

hmq0 + q∗0X0 h2m2q0q
∗
0 0 0

FX/2h 0 q0q
∗
0 +X0X0

∗ hmq0 + q∗0X0

0 0 hmq∗0 + q0X0
∗ h2m2 + q0q

∗
0

 . (7.26)

The independent eigenvalues are given by

m2
1± = h2

{
2h2m2 + 2X0X0

∗ + 4q0q
∗
0 ± |µ̂2 − hmX0(1 + γ(Nf − n))|+ (7.27)

+
√

16|hmq0 +X0q∗0 |2 + (2X0X0
∗ − 2h2m2 ± |µ̂2 − hmX0(1 + γ(Nf − n))|)2,

}
m2

2± = h2

{
2h2m2 + 2X0X0

∗ + 4q0q
∗
0 ± |µ̂2 − hmX0(1 + γ(Nf − n))|− (7.28)

+
√

16|hmq0 +X0q∗0 |2 + (2X0X0
∗ − 2h2m2 ± |µ̂2 − hmX0(1 + γ(Nf − n))|)2

}
.

The meson deformation results in a scalar potential V , dependent on the field X and hence, X is no

longer a classically flat direction. In [208] the vev of X is found by considering the scalar potential
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plus Tr[XX†]-terms from the one-loop Coleman-Weinberg contribution. Initially expanding the

Coleman-Weinberg potential in X and X∗ around 0 we find linear terms in the expansion as

V (X) = V tree(X) + V 1-loop(X) = |FX |2 +BXX∗ + C|X|+D|X∗| (7.29)

where we take FY = 0 for our choices of vevs. We note that the B term (one loop mass term) will

correspond to the b term of [129,208,209].

7.2.1 Equal electric quark masses

We first consider the case of equal electric quark masses, µ̂ = µ, and discuss two scenarios. We

start by considering the deformation with switched off multitrace-terms (γ = 0) and turn then to

the case with γ 6= 0. The classical plus one-loop Coleman-Weinberg potential to first order in m

and second order in X is given by (taking X to be real)

V (X) = V tree(X) + V 1-loop(X) = |FX |2 + b
h4µ2

π2
X2 + c 2

h5µ2m

π2
X (7.30)

where FX , b and c are in general γ-dependent factors. Furthermore, we note that there is an overall

factor of N × (Nf −N) for the scalar potential coming from the degeneracy of the mass matrices.

The γ = 0 case: Switching off the Tr[Φ]2 deformation, the coefficients b of the mass term and c

of the linear term are given by 1

b = log[(
39

256
)

1
4 ]− 1, (7.31)

c =
1

48

(
51 + 21 log[2h2µ2] + 48 log[4h2µ2]− 63 log[6h2µ2]

)
. (7.32)

We note that we have scaled the coefficients in the full scalar potential by a factor of 1/π2 compared

to [208,209]. This potential gives

X0 = 〈X〉 =
mµ2 − c h2mµ2

h(bµ2 +m2)
, M2

X =
h4

π2

 bµ2 X0f +X0
2g

X0f +X0
2g bµ2

 . (7.33)

We remind the reader that again overall factors of N(Nf −N) coming from tracing over degenerate

mass eigenvalues are omitted. Also, we have not included tree level mass terms in the diagonal

components of M2
X since they are sub leading of order O(m2). The off-diagonal components of the

mass matrix are given by the two functions

f =
mh

24
(172 + 87 log[2h2µ2] + 192 log[4h2µ2]− 279 log[6h2µ2]) (7.34)

g =
1

24
(86 + 30 log[2h2µ2] + 132 log[4h2µ2]− 162 log[6h2µ2]) . (7.35)

Hence we find that the vev of X gets a correction proportional to c due to the inclusion of the linear

term into the full potential.

1Note that in the SU-based ISS case, b = log 4− 1 but in both SO and SU cases b > 0.
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The γ 6= 0 case: We now turn on the γ-deformation and find that to first order in m, the mass

term of X does not depend on γ. The coefficient of the linear term now has a γ dependence,

c = − 1

16

(
17− γ(Nf −N) + 7 log[2h2µ2] + 4(4− γ(Nf −N)) log[4h2µ2]

+(−21 + 6γ(Nf −N)) log[6h2µ2]

)
. (7.36)

We find for the vev of X and the mass matrix MX

X0 = 〈X〉 =
mµ2(1 + γ(Nf −N)− c h2)

h(bµ2 +m2(1 + γ(NF −N))2)
, (7.37)

M2
X =

h4

π2

 bµ2 X0fγ +X0
2gγ

X0fγ +X0
2gγ bµ2

 , (7.38)

where fγ is given by

fγ =
hm

24

(
172− 3(−29 + γ(Nf −N)) log[2h2µ2] + 12(16 + γ(Nf −N)) log[4h2µ2]

−9(31 + γ(Nf −N)) log[6h2µ2]

)
(7.39)

and gγ = g. Again, X0 is shifted by a correction proportional to c.

7.2.2 Unequal electric quark masses

We may now make use of the hierarchy between µ̂ and µ and expand in µ̂/µ. The classical plus

one loop potential is given by

V (X) = |FX |2 + b̃
h4µ2

π2
X2 + c̃

2h5µ2m

π2
X (7.40)

and again as before FX , b̃ and c̃ are γ dependent.

The γ = 0 case: Switching the multitrace parts off, the coefficients of the potential are given by

b̃ =
µ̂4

12µ4
c̃ = − µ̂2

48µ4
(9µ2 + 2µ̂2 + 6µ2 log[4h2µ2]) . (7.41)

From this potential we find

X0 =
mµ̂2 − c̃ h2mµ2

h(bµ2 +m2)
M2
X =

h4

π2

 b̃µ2 X0f̃ +X0
2g̃

X0f̃ +X0
2g̃ b̃µ2

 (7.42)

where we have for the functions f̃ and g̃

f̃ =
hmµ̂4

40µ4
− hmµ̂2

12µ2
g̃ = − 3µ̂4

160µ4
. (7.43)

Also in the case of unequal electric quark masses the tree-level mass terms of the X field are sub

leading and we do not include them in the mass matrix.
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The γ 6= 0 case: The coefficient of the linear term in the considered potential is given by

c̃ = − µ̂2

48µ4

(
9µ2[1 + γ(Nf −N)] + µ̂2[2 +

3

2
γ(Nf −N)]

+6µ2[1 + γ(Nf −N)] log(4h2µ2)

)
(7.44)

whereas the mass term b̃, stays the same to first order in m. Using the full scalar potential we find

for the vev and the mass matrix

X0 =
m(µ̂2[1 + γ(Nf −N)]− c̃ h2µ2)

h(b̃µ2 +m2[1 + γ(NF −N)]2)
, (7.45)

M2
X =

h4

π2

 b̃µ2 X0f̃γ +X0
2g̃γ

X0f̃γ +X0
2g̃γ b̃µ2

 (7.46)

where we have for the functions g̃γ = g̃ and f̃γ is given by

f̃γ =
hmµ̂4

40µ4
− hmµ̂2

12µ2
[1 + γ(Nf −N)] +

hmµ̂4

48µ4
γ(Nf −N). (7.47)

We see that also in the case of unequal electric quark masses, the vev of X is shifted by a term

proportional to the coefficient c̃.

7.2.3 Gaugino and squark masses from multitrace of meson

The multitrace model has the same fermion mass matrix as the generic model with KOO deforma-

tion in the previous sections. However, the FX terms are different. Using again (6.44) the gaugino

masses from the fundamental messengers are given by

mλr,(ρ,Z) =
αrh

2m(µ̂2 + hm[−1 + γ(N −Nf )]X0)

4π(q2
0 − hmX0)

(7.48)

Similarly, using (6.46) we find the masses of the sfermions to be proportional to

Λ2
S,(ρ,Z) = h2(µ̂2+hm[γ(N −Nf )− 1]X0)2 (7.49)

× [h4m4+2q0
4−2h3m3X0−2hmq0

2X0+h2m2(4q2
0 +X2

0 )]

2[(q2
0−hmX0)2(4q2

0 + (−hm+X0)2)]
.

Hence, the effective messenger number is given by

N
(ρ,Z)
eff =

Λ2
G

Λ2
S

=
2h2m2[(−hm+X0)2 + 4q2

0)]

[h4m4 + 2q4
0 − 2h3m3X0 − 2hmq2

0X0 + h2m2(X2
0 + 4q2

0)]
. (7.50)

The gaugino masses from the X messenger are

mλr,X = C(r)R[X](
αr

4h2π2
)
[X0f +X2

0g]√
bµ2

(7.51)

and the sfermion contribution can be calculated by using

Λ2
S,X = (

h4

π2
)
[X0f +X2

0g]2

bµ2
. (7.52)

For the different cases one may scale (b, f, g) to (b̃, f̃ , g̃) and switch γ on or off as appropriate.
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7.3 Uplifted vacuum

A recent suggestion [211] to improve the viability of SU-based ISS models is to reduce the rank

of the magnetic quark matrix: rank(ϕTϕ) = k < N . This reduction in rank leads to new vacua

which are higher in energy than the ISS vacuum of full rank and are metastable with respect to

decay to the ISS vacuum. In particular, new minimal fundamental messengers (labeled ω) are

formed that are tachyonic in some range of the parameter space. Their contribution to gaugino

masses will somewhat alleviate the problem of light gauginos and heavy sfermion (quantified by

the ratio Neff ) usually found in the ISS model building literature. Here, in order to stabilise

〈X〉, deformations are added to the basic ‘ISS with reduced rank’ model. In this section we use

meson multitrace operators. To stay away from these tachyonic directions it is important that we

construct a hierarchy as

m� µ̂ < 〈X〉 < µ� Λ . (7.53)

We now apply the uplifting procedure to our SO-based ISS models. Firstly, let us focus again

on the field content of the basic SO-model in (6.4). However, now we break the global symmetry

groups by a reduced rank. This means we can choose to parameterise the matrix µ2 by

µ2
AB =

 µ2Ik 0

0 µ̂2INf−k


AB

. (7.54)

In this case the rank k < N of the magnetic quark matrix will break both the SO(N)c and SO(Nf )f

where the magnetic quark matrix which comes from the F-term of the meson field Φ is (ϕTϕ)Nf×Nf .

The matrices are contracted on their SO(N)c index. From breaking supersymmetry by the rank

condition we get the following constraints from the F-term equations:

(χTχ+ ρT ρ)k×k = µ2Ikk

(χTσ + ρTω)k×N−k = 0× Ik×N−k

(σTσ + ωTω)N−k×N−k = 0× IN−k×N−k. (7.55)

Using the usual vevs, the middle condition implies that 〈σ〉 = 0. The vacuum energy without

deformations is

V = (Nf − k)|h2µ̂4| (7.56)

with X again a classically flat direction. To obtain the full rank breaking and return to an ISS type

vacuum, one would set2

(ωTω)N−k×N−k = µ̂2IN−k×N−k. (7.57)

which is lower in energy by

∆V = (N − k)|h2µ̂4|. (7.58)

As such, this reduced rank breaking is metastable with regard to the lower minimum. We keep the

traditional (χTχ)αβ = µ2Iαβ and find under all symmetry groups

2One should not confuse this ISS type vacuum with the ISS vacuum that has full rank breaking with the energy

V= (Nf −N)|h2µ̂4| and only (ρ, Z) fundamental messengers. In the former the gauge symmetry that is completely

Higgsed is actually SO(N − k)× SO(k).
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Field SO(k)c SO(N−k)c

Φ =

 Yk x k ZTk x(Nf-k)

Z(Nf-k)xk X(Nf-k)x(Nf-k)

 1 1

ϕ =

 χk x k σk x N-k

ρNf-k x k ωNf-k x N-k

  1

1

  1

1


Field SO(k)f SO(Nf−k)f

Φ =

 Yk x k ZTk x(Nf-k)

Z(Nf-k)xk X(Nf-k)x(Nf-k)

 
1

  1

+ 1


ϕ =

 χk x k σk x N-k

ρNf-k x k ωNf-k x N-k

 
1 1

  1 1


The vacuum of unbroken global symmetries have the following field content (χ = µI):

Field SO(N−k)c SO(k)D SO(Nf − k)f

Φ =

 Yk x k ZTk x(Nf-k)

Z(Nf-k)xk X(Nf-k)x(Nf-k)

 1


1

  1

+ 1


ϕ =

 χk x k σk x N-k

ρNf-k x k ωNf-k x N-k

  1

1

  ×
1

  1 1


Here, SO(k)c is completely Higgsed by the χ vevs and forms again part of a colour flavour locking

phase. The superpotential in the component fields is then given by

W = hTr[ϕTΦϕ]− hTr[µ2Φ] +
h2m

2
Tr[Φ2] +

h2mγ

2
Tr[Φ]2

= h[χTY χ+ ρTXρ+ χTZT ρ+ ρTZχ]− hµ2TrY − hµ̂2TrX + h2mTr[ZTZ]

+ h[σTY σ + ωTZσ + σTZTω + ωTXω]

+
h2m

2
[(Tr[Y 2] + γTr[Y ]

2
) + (Tr[X2] + γTr[X]

2
)] +

h2mγ

2
TrXTrY. (7.59)

In the above we have also included the meson multi-trace deformation terms [TrΦ]2 in addition to

Tr[Φ2]. With 〈X〉 = X and 〈Y 〉 = Y the F-terms are given by

F †X = h(ρT ρ− µ̂2 + ωTω) + h2mX(1 + γ(Nf − k)) +
h2m

2
Y γk ,

F †Y = h(χTχ− µ2 + σTσ) + h2mY (1 + γk) +
h2m

2
Xγ(Nf − k) ,

F †ω = h(2Zσ + 2Xω) ,

F †σ = h(2Y σ + 2ωTZ) . (7.60)

Minimising under the condition that 〈ω〉 = 0, the vevs are

〈ρ〉 = 〈Z〉 = 0, 〈Y 〉 = 0, 〈σ〉 = 0, 〈χ〉 = q0 (7.61)

where we have hq2
0 = µ2 − h2m

2 γX(Nf − k). We now expect two separate sectors to contribute to

the one loop scalar potential in addition to the tree level potential.

V (X) = Vtree + V
(ρ,Z)

1-loop + V
(ω)

1-loop. (7.62)
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The (ρ, Z) sector From the uplifted superpotential we find that the fermion mass matrix is

given by

mf = INf−k ⊗ Ik ⊗ 2h

 X0 q0

q0 hm

 (7.63)

whereas the bosonic mass matrix squared is

m2
s = INf−N ⊗ IN ⊗ 4h2

q0q
∗
0 +X0X0

∗ hmq∗0 + q0X0
∗ F †X/2h 0

hmq0 + q∗0X0 h2m2q0q
∗
0 0 0

FX/2h 0 q0q
∗
0 +X0X0

∗ hmq0 + q∗0X0

0 0 hmq∗0 + q0X0
∗ h2m2 + q0q

∗
0

 . (7.64)

They are identical to the mass matrices of the deformation by a meson field. This is as expected

because the uplifted model does not introduce any new mixing between (ρ, Z) and the other fields.

Note that now we include a tree level mass term for X. The tree level term is roughly of the same

order as the one loop contribution. The mass matrix is therefore given by

M2
X =

h4

π2

 b̃µ2 +m2π2(1 + γ(Nf − k))2 X0f̃γ +X0
2g̃γ

X0f̃γ +X0
2g̃γ b̃µ2 +m2π2(1 + γ(Nf − k))2


(7.65)

for the general case of µ̂ 6= µ and γ 6= 0. Here we have used again

b̃ =
µ̂4

12µ4
,

c̃ = − µ̂2

48µ4

(
9µ2[1 + γ(Nf −N)] + µ̂2[2 +

3

2
γ(Nf −N)]

+6µ2[1 + γ(Nf −N)] log[4h2µ2]

)
,

f̃γ =
hmµ̂4

40µ4
− hmµ̂2

12µ2
[1 + γ(Nf −N)] +

hmµ̂4

48µ4
γ(Nf −N),

g̃γ = − 3µ̂4

160µ4
.

Results for the other cases can be found in the corresponding sections of 7.2. As before, we keep

the quadratic and linear terms in X for the scalar potential. The result is

V
(ρ,Z)

1-loop (X) = b̃
h4µ2

π2
X2 + c̃

2h5µ2m

π2
X , (7.66)

yielding the same one-loop contribution from the (ρ, Z) messengers as for meson deformation with-

out reduced rank.

The ω sector The reduced rank produces new messengers ω where the field ω does not mix with

the other messengers. The fermion mass is given by

mf = 2hX0 (7.67)



7.3. Uplifted vacuum 155

and parameterising by (ω, ω∗) we find the scalar mass squared matrix to be

m2
ω = INf−k ⊗ IN−k ⊗ 4h2

 X0X0
∗ F †X

2h

FX
2h X0X0

∗

 . (7.68)

The bosonic eigenvalues are

m2
ω± = 2h2(2X0X0

∗ ± |µ̂2 − hmX0(1 + γ(Nf − k))|) . (7.69)

In order to express the contribution from the ω messenger to the full potential we make use of the

hierarchy µ̂ < X0 < µ. We expand the Coleman Weinberg potential for the ω sector and keep

only the leading logarithm terms (as in [211]) ignoring terms higher than quadratic order in X.

Expanding the potential and considering appropriate cancellations we find

V
(ω)

1-loop =
h4µ̂4

8π2
log[4h2X2] (7.70)

for the contribution to the one-loop potential from the ω messengers.

The scalar potential at one loop Combing the results from the (ρ, Z) and ω sectors, the full

scalar potential is given by

V (X) = |FX |2 + kb̃
h4µ2

π2
X2 + kc̃

2h5µ2m

π2
X + (N − k)

h4µ̂4

8π2
log[4h2X2] . (7.71)

There are (Nf − k) copies of this potential coming from the trace on X. This plays no role on the

minimisation as it is an overal factor. The term |FX |2 is obtained from

F †X = −hµ̂2 + h2mX(1 + γ(Nf − k)) . (7.72)

Minimising the full potential we find two stationary points for real X

X±0 =
1

4h2( 1
12kµ̂

4 +m2µ2π2Γ2)

(
− 2ch3kmµ̂2 + 2mµ2µ̂2π2Γ2 ±

√
2µ̂4

×
√

(2m2(ch3k − µ2π2Γ)2 − h4µ2(N − k)(
1

12
kµ̂4 +m2µ2π2Γ2))

)
, (7.73)

where we defined c = c̃µ4/µ̂2 and Γ = 1 + γ(Nf − k). One may derive simplifications for the case

γ = 0 by setting Γ = 1. We have two conditions for a stationary point to be a minimum(
X

µ

)2

>
µ̂4(N − k)

8( 1
12kµ̂

4 +m2µ2π2Γ2)
,

0 < µ̂4

(
2m2(ch3k − µ2π2Γ)2 − h4µ2(N − k)(

1

12
kµ̂4 +m2µ2π2Γ2)

)
, (7.74)

where the second one is the reality condition of the solutions. From this we may derive a lower

bound on m which is set to be the smallest mass scale in this model. We get

m2 >
1
12h

4kµ2µ̂4(N − k)

2c2h6k2 − 4ch3kµ2π2Γ + µ4π2Γ2(2π2 − h4(N − k))
. (7.75)

The above is a generalization of a similar lower bound found in [211] (referred to as GKK from

now on) but includes the additional multitrace deformation related to γ and has also included a

tree level |X|2 term and a 1-loop linear term (proportional to c).3

3 In order to compare with the results in GKK the parameter ε defined by the latter is related to our mass scale

m via m = εµ̂ and µi, i = 1, 2 in the GKK notation corresponds to our µ, µ̂. Finally the field Z in GKK is the field

X here.
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As a result, we encounter a more complex expression for the lower bound in m which requires

us to also demand that the denominator of this bound on m2 is positive. We may approximate the

coefficient c ∼ 9/48µ2Γ + . . . since the term proportional to µ2 log[µ2] does not change the general

analysis. Taking h ∼ 1 we find

9k2 + 224kπ2 − 128π2(N − 2π2) > 0 (7.76)

in order to have a positive denominator in (7.75). For a given value of N , this constraint puts a

lower bound on the allowed values of k.

Using these approximations and the condition on m2 we get(
X

µ

)2

>
3(N − k)

2(k + J)
(7.77)

with

J =
128π2(h4k(N − k))

(9k2 + 224kπ2 − 128π2(N − 2π2))
. (7.78)

The lower bound in the relation (7.77) is an extension of the simpler expression of GKK, namely

(N − k)/k. It is interesting that this lower bound on the vev of X is independent of γ (though

the lower bound on m does depend on both these parameters). Due to the hierarchy condition we

must also demand that
3(N − k)

2(k + J)
< 1 . (7.79)

As such there will be constraints on the allowed values of k for a given N in which all bounds are

satisfied in the same spirit as those found in GKK. It is not difficult to find values of N, k that

satisfy this.

Let us discuss the scaling behaviour of the vev of X. Since we have c ∼ µ2 we see that m & µ̂2/µ.

From this we find that the vev of X generally scales as

〈X〉 ∼ µ . (7.80)

Using the tree level part of the full scalar potential we may approximate the SUSY restored vacuum

of this model and get

〈X〉SUSY ∼
µ̂2

m
. (7.81)

The difference between the two vacua of the theory is ∆X ∼ µ. Hence, we find for the bounce

action

S ∼ (∆X)4

∆V
∼ µ4

µ̂4
=

(
µ

µ̂

)4

(7.82)

which is parametrically large as required. The minimum of full rank arises when ωTω = µ̂2. Again,

the bounce action scales as S ∼ (∆X)4

∆V ∼ µ4

µ̂4 and tunneling is suppressed. The main results of GKK

are therefore reproduced in our SO-based ISS deformed model even if we include the additional

meson single-trace deformation Tr[Φ2] in the superpotential.
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7.3.1 Gaugino and sfermion masses from the uplifted model

As before we begin with the contributions to the mass terms from the fundamental (ρ, Z) messenger

fields. The gaugino masses are

mλr,(ρ,Z) =
αrh

2m[µ̂2 + hm(−1 + γ(k −Nf )X0)]

4π[µ2 − hmX0]
. (7.83)

The sfermion masses contribution arises from

Λ2
S =

h2[h4m4+2µ4−2h3m3X0−2hmµ2X0+h2m2(4µ2+X0
2)][FX0

/h]2

2[µ2−hmX0]2[4µ2+(−hm+X0)2)]
. (7.84)

Finally the effective messenger number is

N
(ρ,Z)
eff =

2h2m2[4µ2 + (−hm+X0)2]

h4m4 + 2µ4 − 2h3m3X0 − 2hmµ2X0 + h2m2[4µ2 +X0
2]
. (7.85)

A novel feature of the uplifted model is that a new messenger is naturally introduced. The funda-

mental ω can be a messenger when embedding into SO(Nf − k)f and is the sole messenger if one

attempts to embed into into SO(N − k)c ! The contributions to gaugino and sfermion masses can

be easily determined from Appendix C

mλr,ω = C(r)R[ω](
αr
4π

)
FX
X0

. (7.86)

m2
f̃

= 2
∑
r

Cr
f̃
(
αr
4π

)2C(r)R[ω]Λ2
S,ω (7.87)

where

Λ2
S,ω =

|FX |2
|X0|2

. (7.88)

These expressions are valid when the off-diagonal terms of the w bosonic mass squared matrix are

smaller than the diagonal terms (compare with Appendix C for a > b).

The gaugino masses from the X messenger are

mλr,X = C[r]R[X](
αr

4h2π2
)

X0f̃γ +X2
0 g̃γ√

b̃µ2 +m2π2(1 + γ(Nf − k))2

. (7.89)

The contribution to the sfermion masses can be calculated using

Λ2
S,X = (

h4

π2
)

[X0f̃γ +X2
0 g̃γ ]2

b̃µ2 +m2π2(1 + γ(Nf − k))2
. (7.90)



8 Summary and Conclusions

In this thesis, we have taken the reader onto a journey on applications of supersymmetry, both

in terms of more mathematical explorations as well as phenomenological questions. Overall, the

thesis is a testament to the power of supersymmetry. In this last chapter we would like to give a

concluding overview on all the topics covered and the findings developed in the previous discussions.

In Chapter 2, after a short introduction, we began by considering supersymmetry as an extension

to the Poincaré symmetries of spacetime. After introducing the basic ideas of supersymmetry, we

discussed spinors in various dimensions and concentrated on the maximally supersymmetric theories

in four and six dimensions which were of importance for the rest of the thesis. Furthermore, we

considered the off-shell construction of an N = 1 non-extended superspace and its corresponding

superfields which are of phenomenological importance for the second half of the thesis.

After this quite general introduction we moved to the topic of scattering amplitudes, both in

four as well as six dimensions. In Chapter 3 we saw the importance of the concept of scattering

amplitudes, namely as a link between theoretical considerations and experimental measurements.

We discussed the general features of amplitudes with external gauge boson states and introduced

efficient techniques for their calculation like the BCFW recursion relations. Then, we realised the

importance of supersymmetry in this context by considering the maximally supersymmetric N = 4

theory in four dimensions. Here, an on-shell superspace can be introduced where the full particle

content of the N = 4 supermultiplet can be combined in a compact super-wavefunction. Further-

more, we introduced the concept of superamplitudes in the maximally supersymmetric theory. A

superamplitude is a scattering amplitude of super-wavefunctions and contains all amplitudes of

that specific theory with a fixed amount of external states. This concept proved to be very pow-

erful since we could apply similar techniques for efficient computations as for the usual bosonic

amplitudes, however, had a much richer particle content covered. Also, this approach could be

nicely combined with the unitarity method for computing scattering amplitudes at loop-level. At

the end of Chapter 3, we discussed the calculation of one-loop superamplitudes by so-called double

and quadruple cuts via the unitarity method.

This approach was taken to the next level in Chapter 4. It is intriguing that the concepts of the

four-dimensional spinor helicity formalism, superamplitudes and unitarity method can be applied

to the six-dimensional maximally supersymmetric N = (1, 1) SYM theory. After a review of the

recently introduced 6D spinor helicity formalism, we discussed the construction of superamplitudes

with three, four and five external states. The basic ideas of the four-dimensional theory can be
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imported to the six-dimensional one, however, the main difference is the non-chiral nature of the

N = (1, 1) superspace. This fact makes the construction of superamplitudes more complicated, yet

also more powerful due to the explicit transformation of the particle states under the SU(2)×SU(2)

little group in six dimensions. Then, for the first time, we considered double as well as quadruple

cuts for one-loop superamplitudes with four and five external particles. Especially the structure of

the five-point one-loop superamplitude is interesting since it can be expressed in terms of a linear

pentagon integral function in six dimensions. It would be highly interesting to extend this research

to amplitudes with more external states, both at tree- and loop-level, as well as one-loop amplitude

with more cut-propagators. For instance, a five-particle cut of the five-point superamplitude has

not been performed so far. However, due to the structure of the spinor helicity formalism, these

calculations are expected to become quite involved.

In the second part of the thesis, beginning with Chapter 5, we focused on phenomenological im-

plications of non-extended supersymmetry in four dimensions. More specifically, we were interested

in supersymmetric theories for which the vacuum state possesses no supersymmetry. Especially

important are supersymmetric N = 1 QCD-like theories due to their rich moduli space structure.

For these theories, Seiberg duality can be used to related theories with different number of flavours

and colours with each other. One approach which strongly invigorated the interest in models of

gauge mediated supersymmetry breaking was the ISS construction which we discussed in Chapter

5. In these models, metastable states of broken supersymmetry are accepted right from the begin-

ning which offers interesting phenomenological applications. We concluded our discussion of N = 1

theories with broken supersymmetry with an overview on recent developments in gauge mediation.

Finally, in the last two Chapters 6 and 7, we discussed our work on ISS like constructions

with SO(N) gauge and flavour groups. Firstly, we had a brief discussion on the general ideas of

Seiberg duality for SO(N) SQCD theories where we found some important distinctions compared

to SU(N) models. We then moved on and considered gaugino masses in those SO(N) models before

specifically discussing several approaches of how to construct a phenomenologically viable model of

supersymmetry breaking. Here, the main idea was to introduce deformations to the basic SO(N)-

ISS superpotential in order to allow for non-zero gaugino masses. We systematically investigated

the deformations suggested in the SU-based literature, namely that of baryonic deformations of

magnetic quarks, the KOO deformation and multitrace operators of magnetic quarks and the mag-

netic meson. Furthermore, we extended the multitrace meson deformation by looking at reducing

the rank of the magnetic squark matrices of supersymmetry breaking. Here, we could confirm that

this approach helps to make ISS models more viable by generating a vev for the X meson field at

tree level by destabilising the origin, for details see the corresponding sections. Our findings can

be extended in several ways, one quite important one would be to extract a detailed picture of the

phenomenology of SO(N) ISS models which has been carried out in the literature for particular

SU(N) deformations. In addition, it would be interesting to see how a string and brane construction

can realise our SO(N) ISS setup which was also discussed before for the SU(N) case.



A Notations and Conventions

In this section we give - for the reader’s convenience - an overview of notations and conventions

used throughout this thesis. The discussed material can be found in various place, see standard

textbooks and reviews about quantum field theory and supersymmetry.

A.1 Basic spinor notation

Throughout this thesis we work in D-dimensional Minkowski spacetime with metric

ηµν = ηµν = diag(1,−1,−1, . . . ,−1) . (A.1)

This establishes the usual field theory conventions for the metric for which the Lorentz invariant

mass squared pµpµ = m2 of a particle is positive. However, we face the tradeoff that the determinant

of the metric changes sign when adding a spatial dimension. Since we are dealing with four and

six spacetime dimensions only this is not relevant for our discussions.

In many places throughout the thesis, we face two-component spinor indices, both in the four-

as well as six-dimensional context. In order to raise and lower two-component spinor indices we

introduce the SL(2,C) invariant matrices

εαβ = εα̇β̇ = iσ2 =

 0 1

−1 0

 = −εαβ = −εα̇β̇ (A.2)

where we raise and lower indices with respect to the second index of the tensor. Here, σ2 is one of

the 2× 2 Pauli matrices. These objects are often used in two-component spinorial expressions. We

use the form

σ1 =

 0 1

1 0

 , σ2 =

 0 −i
i 0

 , σ3 =

 1 0

0 −1

 . (A.3)

From this, the sigma matrices in four dimensions are defined as

(σµ)αα̇ = (1, σi)αα̇ (A.4)

and σi = −σi are the 2 × 2 Pauli matrices introduced above. We see that the sigma matrices

naturally have a undotted-dotted index. We can raise these indices and find

(σ̄µ)α̇α = εα̇β̇εαβ(σµ)ββ̇ = (1,−σi)ββ̇ . (A.5)
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This can be explicitly seen by considering the individual components of σµ. Note that the σ̃µ have

a dotted - undotted index structure.

Further information can be found in the corresponding sections in the Chapters 3 and 4, namely

in Sections 3.1.2 and 4.1. In general, for spinors in four dimensions as well as Grassmann variables,

we follow the conventions of [2] and [17].

A.2 Some Group Theory Notation

For completeness we collect some basic group theory results for SU(N) and SO(N) groups which

were used throughout this thesis and which might be useful for the reader’s reference. Also, we set

our conventions for the group generators used in various sections. We have tried to be consistent

with the normalisations throughout the text and whenever we have used different conventions we

have tried to make the change visible to the reader.

Throughout this thesis, we have used different representations of various Lie groups. In general,

a representation of a group G is a correspondence between elements of G and the set of linear

operators which act on a vector space V over the group G. For each group element g ∈ G we have

a linear operator D(g) with

D(g) : V −→ V (A.6)

and conventionally D(g) is called the representation of G. The linear operators satisfy the opera-

tions

D(g1)D(g2) = D(g1g2) , D(g−1
1 ) = D(g1)−1 ∀ g1, g2 ∈ G . (A.7)

In particular, we are interested in irreducible representations. These can be classified by Schur’s

lemma: A representation D(g) is irreducible if and only if the only class of operators A : V → V

commuting with the other elements of the representation are proportional to the identity operator,

[D(g), A] = 0 ∀ g ∈ G ⇔ A = c 1 with c ∈ C . (A.8)

In this thesis we consider representations of classical Lie groups. Their elements are labelled by

a number of continuous parameters. In important additional property of Lie groups is the fact that

in a neighbourhood of the identity element one can obtain a representation of the Lie group in terms

of the corresponding Lie algebra generators T a where a is the group index with a = 1, . . . ,dim(G).

We have

D(g) = e−iαaT
a

(A.9)

with αa as a set of coordinates in the neighbourhood of the 1. The generators satisfy a commutation

relation, relating them to the structure constants fabc as

[T a, T b] = ifabcT c with fabc ∈ C . (A.10)

This relation together with the set of generators T a form the corresponding Lie algebra. Therefore,

a representation of the Lie algebra generators yields a representation of the Lie group by simply

exponentiating the generators T a around the identity element.
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We now turn to the application of Lie groups in quantum field theory. The basic group theory

structure of Lie groups has a nice diagrammatic interpretation in the general case of non-abelian

groups G [212]. One identifies the generators1 T a as part of an interaction vertex between a gauge

boson and two fermions, as in the following diagram for the generator (T a)mn :

m n

In principle, the generator keeps track of the colour indices, denoted by m and n in the diagram.

Having identified the T a we now consider products of generators in specific irreducible representa-

tions r of the gauge group G. The generators obey the relations

Tr[T ar T
b
r ] ≡

(
T ar
)m
n

(
T br
)n
m

= C(r)δab (A.11)∑
a

T ar T
a
r ≡

(
T ar
)m
n

(
T ar
)n
l

= C2(r)δml (A.12)

which define the quadratic invariant C(r) and the quadratic Casimir C2(r). For both relations we

can give a diagrammatic interpretation by using the identifitcation of the group generators T a:

a b

m l

Furthermore, by contracting the relation (A.11) with δab and evaluating the LHS using the second

relation (A.12) yields

dim(r)C2(r) = dim(Ad)C(r) (A.13)

Here, dim(r) is the dimension of the specific representation and dim(Ad) is the dimension of the

adjoint representation. This result can also be obtained from the two diagrams shown above.

Closing the first diagram corresponds to setting a = b. Summing over a gives the dimension of

the adjoint representation. Closing the second diagram means setting m = l and then summing

over m leads to the dimension of the representation. Since closing both diagrams yields a identical

diagram the identity (A.13) follows.

We can use this relation to calculate the quadratic casimir C2(r) for any representation r.

Following the usual field theory conventions for the invariants of the fundamental and adjoint

representation, we have for groups SU(N), SO(N) and Sp(2N):

1Here, we follow the discussion of [17].
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group G rank(G) dim(Ad) C(Ad) dim( ) C( )

SU(N) N − 1 N2 − 1 N N 1
2

SO(N) [N2 ] 1
2N(N − 1) N − 2 N 1

Sp(2N) N N(2N + 1) N + 1 2N 1
2

Here, we have denoted the fundamental representation by and have used the standard convention

for SU(N) groups,

C( ) =
1

2
, C(Ad) = N , (A.14)

and using the relation (A.13) yield the quadratic Casimirs

C2( ) =
N2 − 1

2N
, C2(Ad) = N . (A.15)

Finally, one can also define the index of a representation which is defined as the quadratic Casimir

of a representation r, normalised with respect to the fundamental representation,

T (r) ≡ C(r)

C( )
. (A.16)

One should be careful about different conventions in the literature, especially when considering one-

loop beta-functions for theories with particles in different representations (i.e. N = 1 super-QCD

with Nf flavours). For instance, the reference [17] normalises the group generators with respect to

the index T (r) and not with respect to the quadratic invariant C(r). Denoting the index of [17] by

T ′ we have

T ′(r) = C( ) T (r) = C(r) . (A.17)

For SU(N) groups this results in a factor of 1
2 whereas for SO(N) we have a trivial factor of 1.

An overview on dimensions on quadratic invariants for some representations of SU(N), SO(N) and

Sp(2N) can be found in Appendix B of [17] where one can simply replace 2T (r) → T (r) in order

to obtain results compatible with our conventions.

A.3 Representations of the Poincaré Algebra

As we have discussed in Section 2.2, the isometries of spacetime are given by the Poincaré trans-

formations, namely the elements of the Poincaré group. They act as

xµ → x′µ = Λµν x
ν + aµ , (A.18)

with Λµν = ∂x′µ

∂xν as the elements of the Lorentz group and aµ as the parameter of spacetime

translations. The Lorentz transformations preserve the spacetime metric ηµν since

ΛT σ
µ ησρΛ

ρ
ν = ηµν . (A.19)

Furthermore, any Lorentz transformation leaves the origin of spacetime unchanged and preserves

the infinitesimal line element

ds2 = ηµνdx
µdxν . (A.20)
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The Lorentz group in D spacetime dimensions is O(p, q) where p stands for the spatial and q for the

time directions (in a standard notation for our metric convention). Therefore, for D-dimensional

Minkowski spacetime the Lorentz group is O(D− 1, 1). This group includes also parity and time-

reversal transformations. Due to physical reasons we restrict ourselves to transformation matrices

Λ with determinant det(Λ) = +1 and request that Λ0
0 ≥ 0. These matrices form a subgroup

of O(d− 1, 1) whose elements preserve the direction of time-flow and have positive determinant.

This subgroup is the proper orthochronus Lorentz group and is denoted by SO+(D− 1, 1). In

the literature, this is conventionally written just as SO(D− 1, 1). Focusing on four-dimensional

spacetime we have the transformation group SO(3, 1) which we simply call the Lorentz group.

The semi-direct product of the group O(D− 1, 1) and the spacetime translations forms the so

called inhomogeneous Lorentz group IO(D − 1, 1). Restricting ourselves to transformations with

det(Λ) = +1 and Λ0
0 ≥ 0 yields the subgroup SIO(D − 1, 1), namely the Poincaré group with its

generators Pµ and Mµν .

In the previous Appendix A.2 we have seen that one obtains an element of a group by expo-

nentiating the generator of the corresponding algebra. Hence, in order or obtain representations of

the Poincaré group, we need to find representations of the Poincaré generators Pµ and Mµν . The

representations depend on the vector space which the group elements act on. In general, we are

interested in vector spaces of scalar, (four-)vector and spinor fields.

Let us begin with spacetime translations which are generated by Pµ. For a general field Φa

as a function of spacetime, the translations act as spacetime derivatives. One can represent the

generator by

(Pµ)
a
b = i

∂

∂xµ
δab , (A.21)

where a, b are generic field indices. For instance, in the case of four-vectors a and b are Lorentz

indices, e.g. a = µ and b = ν. The translation elements of the Poincaré group are then given by

D(g) = T bc = exp
[
− iaµ(Pµ)

]b
c

= exp

[
aµ

∂

∂xµ
δab

]
. (A.22)

Since translations and Lorentz transformations commute, this is all to say for the translations and

their representation as differential operators when acting on spacetime fields.

The case of Lorentz transformations is a bit more involved. In general, a field Φa(x) will

transform as (active transformation)

Φa(x)→ Φ′a(x) = D(Λ)abΦb(Λ−1x) . (A.23)

The coordinate transformation xµ → Λµνx
ν results in a shifted field argument

(
Λ−1

)µ
ν
xν . The

elements D(Λ) of the Lorentz group are given by the exponentiation of the algebra generators

Mµν , i.e. D(Λ) = Λab = exp
[
− iwµνMµν

]a
b
. The form of the generators

(
Mµν

)a
b

depends on the

nature of the field Φa. Scalar fields transform with the trivial representation Mµν
S ≡ 0 and hence

D(Λ) = 1 (one-dimensional vector space) yields

φ(x)→ φ′(x) = φ(Λ−1x) . (A.24)
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Vector fields Aµ(x) carry a spacetime index and therefore, they transform with the fundamental

representation of the Lorentz group. The generators take the form

Mµν
V ≡ (Mµν)

ρ
σ = i(ηµρδνσ − ηνρδµσ) (A.25)

for this four-dimensional vector space (vector fields in D = 4) and we find

Aµ(x)→ A′µ(x) = D(Λ)µνA
ν(Λ−1x) = exp

[
− i

2
wρσM

ρσ
V

]µ
ν
Aν(Λ−1x) . (A.26)

In the case of spinor fields ψA(x) where A is a spinor index we have also have a four-dimensional

vector space (Dirac spinors in D = 4). In the case of four-dimensional Dirac spinors the generators

take the form

Mµν
D ≡ (Σµν)

A
B , where Σµν ≡ i

4
[γµ, γν ] , (A.27)

is the commutator of the usual γ-matrices satisfying the Dirac algebra (2.5) in four dimensions. A

particularly useful representation of the γ-matrices in four dimensions is the Weyl representation,

γµ =

 0 σµαα̇

σ̄µαα̇ 0

 , and γ5 ≡ iγ0γ1γ2γ3 =

 −I 0

0 I

 , (A.28)

where γ5 is the chirality operator. We see that the γ-matrices can be decomposed into a 2 × 2

block form which represents the fact that a Dirac spinor in four dimension is reducible into two

irreducible Weyl spinors. This is true for any even dimension. From this, the Lorentz generators

of a Dirac spinor are also block-diagonal,

Σµν =

 (σµν) βα 0

0 (σ̄µν)α̇
β̇

 , (A.29)

where (σµν) βα = i
4 (σµσ̄ν − σµσ̄ν) βα and (σ̄µν)α̇

β̇
= i

4 (σ̄µσν − σ̄µσν)α̇
β̇
. Here, ΣµνL ≡ (σµν) βα is a

representation of the generator for a left-handed Weyl spinor whereas ΣµνR ≡ (σ̄µν)α̇
β̇

is similarly

acting on a right-handed Weyl spinor.

Let us return to the transformation of a general spinor field under the Lorentz transformations.

In this case, the spinor field transforms as

ψA(x)→ ψ′A(x) = D(Λ)ABψ
B(Λ−1x) = exp

[
− i

2
wρσM

ρσ
D

]A
B
ψB(Λ−1x) . (A.30)

We note that without any spacetime dependence of the fields, the above representations are finite-

dimensional when acting on finite-dimensional vector spaces (all fields have a finite number of

components). However, since the quantum fields ultimately depend on the four-vector xµ, we have

to take into account the change of the field argument. The dependence on xµ is the same for all

the different types of fields and hence, in all cases the active coordinate transformation (resulting

in the changed field argument (Λ−1)µν x
ν) can be implemented in the same way. Here, Λ−1 is the

inverse of a Lorentz transformation Λ in the fundamental representation, i.e.

Λ ≡
(
ΛV
)µ
ν

= exp
[
− i

2
wρσM

ρσ
V

]µ
ν
. (A.31)
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By considering an infinitesimal Lorentz transformation in the fundamental representation we can

Taylor-expand the generic field Φa(Λ−1x) and find

Φa(Λ−1x) = exp
[
− i

2
wρσ(Mρσ

V )µν x
ν∂µ
]
Φa(x) = exp

[
− i

2
wρσL

ρσ
]
Φa(x) . (A.32)

Using the explicit form (A.25), the generators Lµν are given by differential operators which can be

written as

Lµν = i (xµ∂ν − xν∂µ) . (A.33)

Furthermore, we not that the Lµν act on an infinite-dimensional vector space (the space of the

function Φa) and hence, it is an infinite-dimensional representation of the Lorentz algebra.

In a final step we can combine the exponential factors of the individual finite-dimensional

representations (corresponding to the generators Mµν
S ,Mµν

V and Mµν
D ) of the different fields with

the infinite-dimensional representation of the Lµν , yielding the transformation

Φa(x)→ exp
[
− i

2
wρσM

ρσ
i

]a
b

exp
[
− i

2
wρσL

ρσ
]
Φb(x) , (A.34)

where i = S, V,D stand for the finite-dimensional generators of the Lorentz group for scalar, vector

and spinor objects. Since the generators Mµν
i are finite and constant, the exponential factors can

be combined into a single exponential, resulting in

Φa(x)→ exp
[
− i

2
wρσM

ρσ
]a
b
Φb(x) (A.35)

where Mµν = Mµν
i +Lµν are the generators of an infinite-dimensional representation of the Lorentz

algebra. Whereas the form of the Mµν
i depend on the type of field the transformation is acting on,

the form of the generators Lµν is always the same.



B Calculations for Six-Dimensional

Superamplitudes

In this appendix we would like to present some details on derivations and calculations that are used

in the context of the six-dimensional unitarity method. We first present some basic conventions

and provide then a proof of the supersymmetry invariance of the three-point superamplitude for

the six-dimensional (1, 1) SYM theory. Furthermore, spinor manipulations in six dimensions are

discussed as well as a brief overview on the PV reduction of the linear pentagon integral function

which was found in the one-loop five-point superamplitude.

B.1 Some conventions

In this appendix we collect some details on the conventions of the six-dimensional spinors and

related constructions.

We can raise and lower SU(2) indices with the SU(2)-invariant epsilon tensor defined in (A.2).

The Grassmann integration measure is defined as d2η = (1/2)dηadηa = dη2dη1, such that∫
d2η

[
λAaηa λ

Bbηb
]

= −
(
λAaλBa

)
. (B.1)

The Clebsch-Gordan symbols are normalised as

σ̃ABµ :=
1

2
εABCD σµ,CD , (B.2)

with

Tr(σµσ̃ν) = 4 ηµν . (B.3)

Using these relations, the scalar product of two vectors p and q can equivalently be expressed as

p · q = −1

4
pABqAB = −1

8
εABCDp

ABqCD , (B.4)

where pAB := pµσ̃ABµ and pAB := pµσµ,AB .

Momentum conservation for three-point amplitudes implies that pi · pj = 0, i, j = 1, 2, 3. In six

dimensions, this condition is equivalent to [85]

det〈i|j]aȧ = 0 (B.5)

where λAiaλ̃Aja := 〈ia|jȧ] and we used pABi = λAiaλ
Ba
i and piAB = λ̃ȧiAλ̃iBȧ. Hence, (B.5) allows to

recast the matrix 〈ia|jȧ] as a product of two spinors, as [85]

〈ia|jḃ] = (−)Pijuiaũjḃ , (B.6)
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where we choose (−)Pij = +1 for (i, j) = (1, 2), (2, 3), (3, 1), and −1 for (i, j) = (2, 1), (3, 2), (1, 3).

Hence, for a generic three-point vertex with all momenta defined to be incoming (see Figure 3.1) we

have a positive sign when rewriting Lorentz contracted spinor combinations in a clockwise ordering.

B.2 Invariance of the three-point superamplitudes

Here we provide an explicit proof of the fact that the three-point superamplitude (4.25) is super-

symmetric. To show this, we choose to decompose each variable ηi as

ηai = uai η
‖
i + wai η

⊥
i , (B.7)

which is a convenient choice since uaiwia = 1. We also notice that, using this decomposition, we

can recast the quantities W and W̃ defined in (4.27) entering the expression of the three-point

superamplitude, as

W =

3∑
i=1

η
‖
i , W̃ =

3∑
i=1

η̃
‖
i . (B.8)

The supersymmetry generators can then be written as

QA =
∑
i

λAai uiaη
‖
i +

∑
i

λAai wiaη
⊥
i . (B.9)

A direct consequence of six-dimensional momentum conservation is the fact that the quantities

λAai uia are i-independent, therefore we can rewrite (B.9) in several equivalent ways, one of which

is

QA = (λAa1 u1a)W + (λAa1 w1a)(η⊥2 − η⊥1 ) + (λAa2 w2a)(η⊥3 − η⊥1 ) , (B.10)

where W is given in (B.8), and the constraint on the w’s (4.22) is used. Using the decomposition

(B.10) it is very easy to prove that QAA3 = 0. To this end, we first observe that the presence of a

factor δ(W )δ(W̃ ) in (4.25) effectively removes the first term from the expression of (B.10), and we

are left to prove that QA⊥ := (λAa1 w1a)(η⊥2 − η⊥1 ) + (λAa2 w2a)(η⊥3 − η⊥1 ) annihilates the amplitude.

Specifically, we will show that

QA⊥

[
δ(QA)δ(Q̃A)

]2
= 0 . (B.11)

To begin with, we observe that

δ(QA)δ(Q̃A) =

3∑
i,j=1

〈ia|jȧ]ηai η̃
ȧ
j =

3∑
i,j=1

(−)Pijuiaũjȧ(1− δij)ηai η̃ȧj

=

3∑
i,j=1

(−)Pij (1− δij)η⊥i η̃⊥j

= η⊥1 η̃
⊥
2 − η⊥1 η̃⊥3 − η⊥2 η̃⊥1 + η⊥2 η̃

⊥
3 + η⊥3 η̃

⊥
1 − η⊥3 η̃⊥2 , (B.12)

where we have used (B.6). Using (B.12), one then finds (we drop the superscript ⊥ in the following)[
δ(QA)δ(Q̃A)

]2
=− η1η̃2η2η̃1 + η1η̃2η2η̃3 + η1η̃2η3η̃1 + η1η̃3η2η̃1 − η1η̃3η3η̃1 + η1η̃3η3η̃2

− η2η̃1η1η̃2 + η2η̃1η1η̃3 + η2η̃1η3η̃2 + η2η̃3η1η̃2 + η2η̃3η3η̃1 − η2η̃3η3η̃2

+ η3η̃1η1η̃2 − η3η̃1η1η̃3 + η3η̃1η2η̃3 + η3η̃2η1η̃3 + η3η̃2η2η̃1 − η3η̃2η2η̃3 . (B.13)
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1̂

l′

4

l

2̂

3

Figure B.1: The recursive construction of a four-point tree-level amplitude. The shifted legs are 1

and 2 and we have l′ = −l for the internal propagator.

Next, we calculate

η1

[
δ(QA)δ(Q̃A)

]2
= 2η1η2η3(η̃1η̃3 − η̃1η̃2 − η̃2η̃3) , (B.14)

and furthermore we find that

η2

[
δ(QA)δ(Q̃A)

]2
= η3

[
δ(QA)δ(Q̃A)

]2
= η1

[
δ(QA)δ(Q̃A)

]2
. (B.15)

Inspecting the form of QA in (B.10) and using (B.15), we conclude that (B.11) holds, and therefore

the three-point superamplitude is invariant under supersymmetry.

B.3 Useful spinor identities in six dimensions

In this appendix we collect identities between six-dimensional spinor variables that we have fre-

quently used in the calculations presented in this thesis.

We begin by quickly stating two basic relations for three-point spinors ui,a and wi,a. For a

general three-point amplitude in six dimensions we have [85]

uai |ia〉 = ubj |jb〉 , ũȧi |iȧ] = ũḃj |jḃ] . (B.16)

We also have the constraints (4.22) on the w’s and their w̃ counterparts, which are essentially a

consequence of momentum conservation.

Next, we make use of relations between two three-point amplitudes, connected by an internal

propagator, just as in the BCFW construction of the four-point amplitude. We give a pictorial

representation of this in Figure B.1. We have defined the internal momenta l and l′ to be incoming

for the three-point amplitudes, giving the relation l′ = −l. Since six-dimensional momenta are

products of two spinors we can define

|l′i〉 = i|li〉 , |li〉 = (−i)|l′i〉 , (B.17)

and similarly for λ̃-spinors. Also note that we can normalise the spinors ua, wb of one three-point

subamplitudes in Figure B.1 such that they are related to the spinors of the other subamplitude,

yielding (see Appendix B.3.2)

wl′ia =
ulia√−s , wlia = −

ul′ia√−s . (B.18)
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Similar expressions hold for the spinors ũȧ, w̃ḃ. In the following we will be discussing several

relations in the cases of the four- and five-point amplitudes.

B.3.1 Product of two u-spinors

In the calculation of the five-point cut-expression we encounter u-spinors belonging to the same

external state and would like to remove them from the expression. Consider the object uiaũiȧ with

states pi and pj belonging to the same three-point amplitude. We can write [87]

uiaũiȧ = uiaũiḃδ
ḃ
ȧ = uiaũiḃ

〈Pb|iḃ]
〈Pb|iȧ]

= uiaũiḃ〈Pb|iḃ]〈Pb|iȧ]−1 = uiaũiḃ[i
ḃ|Pb〉〈P b|iȧ]

1

siP

= uiaũjḃ[j
ḃ|Pb〉〈P b|iȧ]

1

siP
= (−)Pij 〈ia|jḃ][j ḃ|Pb〉〈P b|iȧ]

1

siP

=
(−)Pij

siP
〈ia|p̂j p̂P |iȧ] , (B.19)

where we have (−)Pij = +1 for clockwise ordering of the states (i, j) for the three-point amplitude.

Also, P is an arbitrary momentum. By the same series of manipulations we can show that

uiaũiȧ = uibũiȧδ
b
a =

(−)Pji

siP
〈ia|p̂P p̂j |iȧ] . (B.20)

Note that the difference between (B.19) and (B.20) is just a sign since (−)Pji = −(−)Pji .

B.3.2 The relation wl ·wl′ w̃l · w̃l′ = −s−1
ij

Here we provide an expression for the contraction between w- and w̃-spinors of two three-point

amplitudes, connected by an internal propagator, originally encountered in the recursive calculation

of the four-point tree amplitude in [85].

We start with expression B.19 and choose i = 1, j = 4 and P = 2, following Figure B.1. This

yields

u1aũ1ȧs1̂2̂ = −〈1̂a|p̂4p̂2̂|1̂ȧ] . (B.21)

However, we can also write

〈1̂a|p̂4p̂2̂|1̂ȧ] = −u1̂aũ
ḋ
4[4ḋ|2̂b〉〈2̂b|1̂ȧ] = −u1̂aũ

ḋ
l′ [l
′
ḋ
|2̂b〉〈2̂b|1̂ȧ]

= (−i)u1̂aũ
ḋ
l′ [lḋ|2̂b〉〈2̂b|1̂ȧ] = iu1̂aũ

ḋ
l′ ũlḋu

b
2̂
〈2̂b|1̂ȧ]

= iu1̂aũ
ḋ
l′ ũlḋu

b
l 〈lb|1̂ȧ] = u1̂aũ

ḋ
l′ ũlḋu

b
l 〈l′b|1̂ȧ]

= −u1̂aũ
ḋ
l′ ũlḋu

b
lul′bũ1̂ȧ = −u1̂aũ1̂ȧũl′ · ũl ul ·ul′ . (B.22)

Comparing (B.21) and (B.22) we conclude

ũl′ · ũl ul′ ·ul = −s12 , (B.23)

since s1̂2̂ = s12. Now we express the contractions of u-spinors in terms of w-spinors. As discussed

in [85] we can deduce from (B.23) that

ul ·wl′ = ũl · w̃l′ = wl ·ul′ = w̃l · ũl′ = 0 , (B.24)
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by using the redundancy of the w-spinors under a shift wla → wla + blula. Exploiting the defining

relation between a spinor ul and its inverse wl and multiplying by ul′,a and wl′,b we have

ual ul′,aw
b
lwl′,b − ublwl′,bwal wl′,a = ul′,awl′,bε

ab . (B.25)

Now, the second term on the RHS vanishes as stated in (B.24). Since ul ·ul′ 6= 0, we have the

relation

ul ·ul′ wl ·wl′ = 1 ⇔ ul ·ul′ =
1

wl ·wl′
. (B.26)

From this we can deduce that a spinor wla/wl′b is related to the spinor ul′a/ulb, respectively, and

we can choose to normalise as in (B.18)

wl′ia =
ulia√−sij

, wlia = −
ul′ia√−sij

. (B.27)

B.3.3 Spinor identities for the one-loop five-point calculation

Here we would like to outline some steps of the calculation which takes us from (4.89) to (4.91).

The basic idea is to express the result of the Grassmann integration as a sum of coefficients

of factors η̃iċηjc with i, j = 1, 2, 5 for the (3, 4)-cut. It is then a matter of algebra to rewrite the

coefficient of η̃iċηjc in such a way that any dependence on the three-point quantities wli , wl′i and

their counterparts in η̃li is removed. In the following we provide some explicit terms as examples.

Let us consider one of the terms of the product in (4.91), e.g.

η̃1ċη1c

{
〈1c|l3] · w̃l′3w̃l′2 · [l2|l̂1|l4] · w̃l4 − 〈1c|l2] · w̃l′2w̃l′3 · [l3|l̂1|l4] · w̃l4

}
×
{

[1ċ|l3〉 ·wl′3wl′2 · 〈l2|l̂1|l4〉 ·wl4 − [1ċ|l2〉 ·wl′2wl′3 · 〈l3|l̂1|l4〉 ·wl4
}
. (B.28)

The first thing one realises is that the two factors in the brackets antisymmetrise among themselves.

This can be seen by applying the normalisation relations for the w-spinors related to the internal

momenta

[1ċ|l3〉 ·wl′3wl′2 · 〈l2|l̂1|l4〉 ·wl4 = [1ċ|l3〉 ·wl′3
ual2√−s12

〈l2a|l̂1|l4〉 ·wl4

=
1√−s12

ual′3w
b
l′3

[1ċ|l3b〉〈l′3a|l̂1|l4〉 ·wl4 (B.29)

where a similar relation is used for the second term of each bracket factor. Since

ual′3w
b
l′3
− ubl′3w

a
l′3

= εab , (B.30)

we can write (B.28) as

η̃1ċη1c

( 1√−s12

)2
[1ċ|l3b〉εab〈l′3a|l̂1|l4〉 ·wl4 〈1c|l3ḃ]εȧḃ[l′3ȧ|l̂1|l4] · w̃l4

= η̃1ċη1c
i2

−s12
[1ċ|la3〉〈l3a|l̂1|l4〉 ·wl4 〈1c|lȧ3 ][l3ȧ|l̂1|l4] · w̃l4

= η̃1ċη1c
(−1)

−s12
[1ċ|l̂3 l̂1|l4〉 ·wl4 〈1c|l̂3 l̂1|l4] · w̃l4

= η̃1ċη1c
1

s12
[1ċ|p̂2 l̂1|l4〉 ·wl4 w̃l4 · [l4|l̂1p̂2|1c〉 , (B.31)
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where we have used momentum conservation at the second corner, l3 = l2 + p2 = l1 + p1 + p2, in

the last line.

The next step is to remove the dependence on the w-spinors. The following relation holds:

l̂1|l4a〉wal4w̃ȧl4 [l4ȧ|l̂1 = p̂5|l4a〉wal4w̃ȧl4 [l4ȧ|p̂5 = p̂5|l′1a〉wal′1(−1)2w̃ȧl′1 [l′1ȧ|p̂5

=
( 1√−s15

)2
p̂5|l′1a〉ual1 ũȧl1 [l′1ȧ|p̂5 =

1

s15
p̂5|1a〉ua1ũȧ1 [1ȧ|p̂5 . (B.32)

Using the result of (B.19) we arrive at the following string of momenta,

η̃1ċη1c
1

s12s15s1P
[1ċ|p̂2p̂5p̂1 l̂1P̂ p̂1p̂5p̂2|1c〉 . (B.33)

Choosing now P = p5, after some rearrangement of the momenta we arrive at

η̃1ċη1c
1

s12s15
[1ċ|p̂2p̂5p̂1 l̂1p̂5p̂2|1c〉 . (B.34)

This expression can be further simplified as follows: Since l1 = p5 + l4 we have

l̂1p̂5 = l̂1(l̂1 − l̂4) = −(l̂4 + p̂5)l̂4 = −p̂5 l̂1 . (B.35)

Permuting now the string of external momenta the final result for the coefficient becomes

− η̃1ċη1c
1

s12
[1ċ|p̂2p̂5 l̂1p̂2|1c〉 = η̃1ċη1c

1

s12
[1ċ|p̂2 l̂1p̂5p̂2|1c〉 (B.36)

by rearranging the order of p̂5 and l̂1 again.

This algebraic procedure can then be similarly repeated to simplify all the other coefficients in

the cut expression (4.89).

B.4 PV reduction of the linear pentagon Iµ5,l1

We have found in Section 4.5 that the one-loop five-point superamplitude can be expressed in terms

of just a single function, namely a linear pentagon,

Iµ5,l1(1, . . . , 5) :=

∫
dDl

(2π)D
lµ1

l21l
2
2l

2
3(p3 + l3)2l25

. (B.37)

This can be decomposed on a basis of four independent momenta, as

Iµ5,l1(1, . . . , 5) = Apµ1 +Bpµ2 + Cpµ3 +Dpµ5 . (B.38)

The choice of the basis vectors is most convenient one due to the kinematical structure of the cut

expression in (4.91). Contracting with the basis momenta yields

2p1 · I5,l1 =

∫
dDl

(2π)D
2p1 · l1∏5
i=1 l

2
i

= I4,1 − I4,5 !
= Bs12 + Cs13 +Ds15 ,

2p2 · I5,l1 =

∫
dDl

(2π)D
2p2 · l1∏5
i=1 l

2
i

= I4,2 − I4,1 − s12I5
!
= As12 + Cs23 +Ds25 ,

2p3 · I5,l1 =

∫
dDl

(2π)D
2p3 · l1∏5
i=1 l

2
i

= I4,3 − I4,2 − (s12 + s23)I5
!
= As13 +Bs23 +Ds35 ,

2p5 · I5,l1 =

∫
dDl

(2π)D
2p5 · l1∏5
i=1 l

2
i

= I4,4 − I4,4 !
= As15 +Bs25 + Cs35 . (B.39)

Solving the set of linear equations in (B.39), one obtains the desired coefficients A,B,C and D,

used in Section 4.5.3.
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B.5 Four-dimensional reduction

In this appendix we consider the four-dimensional limit of the four- and five-point tree-level am-

plitudes in pure Yang Mills theory, and provide detailed information of how the calculations of

Section 4.5.5 are carried out.

We begin with the four-point amplitude of [85], given by (4.28), and reduce down to a four-

dimensional amplitude with helicities (1−, 2−, 3+, 4+, 5+). Using (4.103), the four-dimensional

reduction of (4.28) yields

A
(4d)
4 = − i

st
〈12〉2[34]2 = i

〈12〉3
〈23〉〈34〉〈41〉 . (B.40)

Next, we consider the five-point amplitude (4.31) and reduce to a four-dimensional helicity con-

figuration (1+, 2+, 3+, 4−, 5−). For this case, only a few terms in (4.31) survive. The A-tensor

becomes

Aaȧbḃcċdḋeė = 〈1a|p̂2p̂3p̂4p̂5|1ȧ]〈2b3c4d5e〉[2ḃ3ċ4ḋ5ė]

+〈2b|p̂3p̂4p̂5p̂1|2ḃ]〈3c4d5e1a〉[3ċ4ḋ5ė1ȧ]

+〈3c|p̂4p̂5p̂1p̂2|3ċ]〈4d5e1a2b〉[4ḋ5ė1ȧ2ḃ] , (B.41)

which in the four-dimensional limit takes the form

Aaȧbḃcċdḋeė
4d−→ −[12]〈23〉[34]〈45〉[51]× [23]2〈45〉2

−[23]〈34〉[45]〈51〉[12]× [31]2〈45〉2

−[34]〈45〉[51]〈12〉[23]× [12]2〈45〉2 . (B.42)

For our specific helicity choice, the non-zero parts of the D-tensor are those involving the Lorentz

invariant brackets

〈2b3c4d5e〉[1ȧ3ċ4ḋ5ė] , (B.43)

and

[2ḃ3ċ4ḋ5ė]〈1a3c4d5e〉 , (B.44)

where both reduce to [23]〈45〉[13]〈45〉 in four dimensions. Each factor multiplies 〈1a(2.∆̃2)ḃ] and

[1ȧ(2.∆2)b〉. The quantities ∆i’s that are of interest here take the form:

∆2 = 〈2|p̂3p̂4p̂5 − p̂5p̂4p̂3|2〉 , and ∆̃2 = [2|p̂3p̂4p̂5 − p̂5p̂4p̂3|2] . (B.45)

Expanding the expression of the first non-vanishing D-term yields,

〈1a(2.∆̃2)ḃ] = 〈1a|2ḃ][2ḃ|3c〉〈3c|4ḋ][4ḋ|5e〉〈5e|2ḃ]− 〈1a|2ḃ][2ḃ|5e〉〈5e|4ḋ][4ḋ|3c〉〈3c|2ḃ]
4d−→ [12]〈23〉[34]〈45〉[52]− [12]〈25〉[54]〈43〉[32] . (B.46)

Using similar manipulations one can reduce the [1ȧ(2.∆2)b〉 term. This yields:

2Daȧbḃcċdḋeė
4d→ 2 ([12]〈23〉[34]〈45〉[52]− [12]〈25〉[54]〈43〉[32])× [13][23]〈45〉2. (B.47)

Combining (B.42) and (B.47), one finds, after a little algebra, the expected Parke-Taylor result.



C Gaugino Masses from General

Gauge Mediation

In this section we give a brief review on the techniques of general gauge mediation [184]. In

particular this section generalises, to adjoint representation, the results obtained for fundamental

messengers in Appendix B of [213]. We derive the expression for gaugino masses which was used

in Section 6.4.2 Further literature on general gauge mediation relevant for our discussion can be

found in [214–216].

C.1 A brief overview

We start by considering the gauge current superfield (suppressing a group index A)

J =J + iθαj
α + iθ̄α̇jα̇ − θασµαα̇θ̄α̇jµ +

1

2
θαθ

αθ̄α̇σ̄µα̇α∂µj
α

− 1

2
θ̄α̇θ̄α̇θ

ασ̄µαα̇∂µj̄
α̇ − 1

4
θαθ

αθ̄α̇θ̄α̇�J . (C.1)

Here, J is a real linear superfield defined by the current conservation relation

D̄2J = D2J = 0. (C.2)

One can derive each component of the current multiplet by looking at the kinetic terms that couple

the chiral superfields to the gauge vector supermultiplet. Two parts are necessary to generate these

currents. Firstly, the vector super field in Wess Zumino gauge

VWZ
ij = V ATAij = θσµθ̄Aµ + θθθ̄λ̄+ θ̄θ̄θλ+

1

2
θθθ̄θ̄D (C.3)

in matrix notation where the gauge index A runs from 1 to the dimension of the gauge group. And

secondly the fully expanded chiral superfield

Φ(x, θ, θ̄) = φ(x) +
√

2θψ(x) + iθσµθ̄∂µφ(x)− i√
2

(θθ)∂µψ(x)σµθ̄

− 1

4
(θθ)(θ̄θ̄)∂µ∂µφ(x) + (θθ)F (x) .. (C.4)

Once one has the gauge current supermultiplet, one may take two point functions of the component

currents. These two point functions are related to the soft terms for sfermions and gauginos as

shown in [184]. For example to calculate the gaugino contribution one first looks at the fermionic

current of the full gauge current supermultiplet. In general this has the form

jAα (x) = −i
√

2(φ∗TAψ − φ̃∗TAψ̃) . (C.5)

174
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λ λ

Figure C.1: A general gauge mediation diagram for the gaugino mass at one loop. The grey object

in the diagram represents the current correlator.

The scalar and fermionic fields in this three vertex source term are the interaction eigenstates of

the gauge messengers fields φ(x) and ψ(x). Furthermore, the external legs of the source current

are the gauginos λ in a non-abelian representation. The external fields have been amputated but

the corresponding generators TA are still part of the source. The gauge index A runs from 1 to the

dimension of the gauge group. The tilde represents the possibility of opposite charge conjugation

of the field. The two point function of two fermionic currents is then given by [184]

〈jAα (x)jBβ (0)〉 = εαβδ
ABC(r)

x5
B1/2(x2M2) (C.6)

where M is a characteristic mass scale of the theory and B1/2 is a complex function. We normalise

the gauge group generators as Tr[TATB ] = C(r)δAB , with C(r) as the quadratic invariant of

the group represenation r. Applying a Fourier transformation in order to write the current in

momentum space,

MB̃1/2(p2/M2) =

∫
d4xeip.x

1

x5
B1/2(x2M2) (C.7)

we obtain

〈jAα (p)jBβ (−p)〉 = εαβMC(r)δABB̃1/2(p2/M2) . (C.8)

The gaugino mass arrises as the term proportional to λrλr in the effective Lagranian and is pro-

portional to B̃1/2(0), explicitly we have

Mλr = g2
rMC(r)B̃1/2(0) (C.9)

for a couple constant gr for the gauge index r. Here, we have removed the δAB on both sides for

clarity. We then use Ward identities to contract the fields in the two point function. In particular,

we have for scalar fields

〈φ(x)mφ(0)m〉 = D(x,m) =

∫
d4p

(4π)4

ieip.x

p2 −m2
. (C.10)

Similar expressions for the sfermion contributions may be found in [184].

C.2 Contributions to gaugino masses from SO(N) fields

We now demonstrate the utility for the the case of SO(10) for fields in a symmetric representation.

These results would be similarly obtained for SU(5) for adjoint representation fields and other

higher representations. We start with the Lagrangian

LX =

∫
d4θ

(
X†eV

ATAX
)

(C.11)
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= −

〈X〉 〈X〉

X† X†

ψX ψX

mX

λ λ λλ λ λ

mX mX

ψX ψX ψX ψX

Φ+ Φ−

Figure C.2: One loop gaugino masses from the symmetric X messenger field.

The gauge superfield V is in the antisymmetric (adjoint) and chiral superfield X is in the symmetric

representation of SO(N). We can amputate the component fields (DA, λA, λ̄A, AAµ ) of the full gauge

supermultiplet and leave the generators as part of the source currents. In the following we write for

the components of the chiral superfield X = (φ, ψ, F ). In this notation we obtain for the currents

JA = (φ†ijT
A
jkφki) ,

jAα = −i
√

2(φ†ijT
A
jkψki) ,

j̄Aα̇ = i
√

2(ψ̄ijT
A
jkφki) ,

jAµ = i(∂µφ
†
ijT

A
jkφki − φ†ijTAjk∂µφki)− ψ̄ijσµTAjkψki , (C.12)

where we have written out all gauge indices. In addition to the kinetic Lagrangian there is a mass

term for the complex scalar field φ,

L ⊃
(
φ†φ

)
M2

0

 φ

φ†

 , (C.13)

with a scalar squared mass matrix

M2
0 =

 a b

b a

 , (C.14)

and a mass term for the fermion with mass m2
ψ = a. We might diagonalise the scalar mass matrix

to find the two real eigenvalues and their mass eigenstates,

φ+ =
1√
2

(φ+ φ†) , iφ− =
1√
2

(φ− φ†) . (C.15)

Hence, the interaction eigenstates can be written as

φ =
1√
2

(φ+ + iφ−) , φ† =
1√
2

(φ+ − iφ−) . (C.16)

The masses are

m2
± = a± b mψ =

√
a . (C.17)

We can rewrite the fermionic current which will couple to the gauginos in terms of mass eigenstates

jAα = −(φ− + iφ+)TAψα . (C.18)

Considering the corresponding two point function and using Ward identities yields

〈jAα jBβ 〉 = C(r)δAB〈ψαψβ〉[〈φ−φ−〉+ (i)2〈φ+φ+〉] , (C.19)
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and we have for the fermion two-point function

〈ψα(x)ψβ(0)〉 = εαβmψD(x,Mψ) . (C.20)

Now, we can substitute the corresponding propagators of the scalars and fermion which yields a

diagrams shown in Figure C.2. We evaluate the mass from the symmetric X field to be

mλr = 2mψg
2
rR[X]C(r) (D(x;m+)−D(x;m−))D(x;mψ)

= 2mψg
2
rR[X]C(r)

∫
d4k

(2π)4

(
1

k2 +m2
+

− 1

k2 +m2
−

)
1

k2 +m2
ψ

, (C.21)

where R[X] is the rank of the representation of the X field. The resulting gaugino masses are

mλr = C(r)R[X]
αr
4π

b√
a
× 2g(x) (C.22)

where x = b/a and the function g(x) is given by

g(x) =
(1− x)Log(1− x) + (1 + x)Log(1 + x)

x2
. (C.23)

Similar reasoning results in an expression for the sfermions

m2
f̃

= 2
∑
r

Cr
2f̃

(
αr
4π

)2T(r)R[X]Λ2
S (C.24)

Λ2
S =

b2

a
f(x) (C.25)

where we have for x = b
a

f(x) =
1 + x

x2

[
ln(1 + x)− 2Li2

(
x

1 + x

)
+ Li2

(
2x

1 + x

)]
+ (x→ −x) . (C.26)

Here, αr is the gauge coupling at the messenger scale and Cr
f̃

denotes the quadratic Casimir of the

irrep f̃ of the gauge group labeled r.

For the fundamental messengers the calculation is analogous. In the SU(N) there is a funda-

mental (φi) and antifundamental (φ̃i) messenger. For SO(N) the real and imaginary components

of the fundamental messenger play these roles. The source for fundamental messenger fields (ρ, Z)

are computed using

JA =(φ†iT
Aφi) ,

jAα =− i
√

2(φ†iT
Aψi) ,

j̄Aα̇ =i
√

2(ψ̄iT
Aφi) ,

jAµ =i(∂µφ
†
iT

A
i φi − φ†iTA∂µφi)− ψ̄iσµTAψi . (C.27)

The label i is a flavour index. The resulting gaugino and sfermions formulas are the same as in the

SU(N) case of [213].
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